WO2013042542A1 - 燃料電池用樹脂枠付き電解質膜・電極構造体 - Google Patents

燃料電池用樹脂枠付き電解質膜・電極構造体 Download PDF

Info

Publication number
WO2013042542A1
WO2013042542A1 PCT/JP2012/072698 JP2012072698W WO2013042542A1 WO 2013042542 A1 WO2013042542 A1 WO 2013042542A1 JP 2012072698 W JP2012072698 W JP 2012072698W WO 2013042542 A1 WO2013042542 A1 WO 2013042542A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte membrane
resin frame
electrode
peripheral end
electrode structure
Prior art date
Application number
PCT/JP2012/072698
Other languages
English (en)
French (fr)
Inventor
田中之人
布川和男
相馬浩
田中健一
満田直樹
杉下昌史
小此木泰介
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2013534660A priority Critical patent/JP5824522B2/ja
Priority to DE112012003942.4T priority patent/DE112012003942B4/de
Priority to CN201280046196.7A priority patent/CN103828107B/zh
Priority to US14/346,377 priority patent/US9966623B2/en
Publication of WO2013042542A1 publication Critical patent/WO2013042542A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0276Sealing means characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0286Processes for forming seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0284Organic resins; Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • a first electrode and a second electrode each having an electrode catalyst layer and a gas diffusion layer are provided on both sides of a solid polymer electrolyte membrane, and the first electrode has an outer dimension larger than that of the second electrode.
  • the present invention relates to an electrolyte membrane / electrode structure with a resin frame for a fuel cell, comprising: an electrolyte membrane / electrode structure in which is set small; and a resin frame member provided around the outer periphery of the solid polymer electrolyte membrane.
  • a solid polymer fuel cell employs a solid polymer electrolyte membrane made of a polymer ion exchange membrane.
  • This fuel cell has an electrolyte membrane / electrode structure in which an anode side electrode and a cathode side electrode each comprising a catalyst layer (electrode catalyst layer) and a gas diffusion layer (porous carbon) are disposed on both sides of a solid polymer electrolyte membrane, respectively.
  • the body (MEA) is sandwiched between separators (bipolar plates).
  • This fuel cell is used as, for example, an in-vehicle fuel cell stack by stacking a predetermined number of fuel cells.
  • one gas diffusion layer is set to have a smaller surface area than the solid polymer electrolyte membrane, and the other gas diffusion layer is set to the same surface area as the solid polymer electrolyte membrane.
  • a so-called step type MEA may be formed.
  • an electrolyte membrane 1 and a cathode catalyst layer 2a disposed on one side of the electrolyte membrane 1 As shown in FIG. 18, an electrolyte membrane 1 and a cathode catalyst layer 2a disposed on one side of the electrolyte membrane 1
  • the anode catalyst layer 2b disposed on the other side of the electrolyte membrane 1 and the gas diffusion layers 3a and 3b disposed on both sides of the electrolyte membrane 1 are provided.
  • the gas diffusion layer 3b on the anode side is equivalent to the area of the electrolyte membrane 1 and is configured to be larger than the area of the gas diffusion layer 3a on the cathode side.
  • a gasket structure 4 is disposed in the edge region of the electrolyte membrane / electrode assembly (MEA). The outer peripheral part of the electrolyte membrane 1 on the gas diffusion layer 3 a side and the gasket structure 4 are joined via an adhesive layer 5.
  • the present invention solves this type of problem and circulates around the outer periphery of the solid polymer electrolyte membrane to firmly and easily join the resin frame member and reliably maintain the desired gas sealing property.
  • An object of the present invention is to provide an electrolyte membrane / electrode structure with a resin frame for a fuel cell.
  • a first electrode and a second electrode each having an electrode catalyst layer and a gas diffusion layer are provided on both sides of a solid polymer electrolyte membrane, and the first electrode has an outer dimension larger than that of the second electrode.
  • the present invention relates to an electrolyte membrane / electrode structure with a resin frame for a fuel cell, comprising an electrolyte membrane / electrode structure that is set to be small and a resin frame member that is provided around the outer periphery of the solid polymer electrolyte membrane .
  • this electrolyte membrane / electrode structure with a resin frame for a fuel cell it is exposed to the outside from the outer peripheral end of the first electrode between the outer peripheral end of the first electrode and the inner peripheral end of the resin frame member.
  • positioned continuously between the outer peripheral edge part of a 2nd electrode, and the inner peripheral edge part of the said resin-made frame members are provided.
  • the intermediate layer is preferably made of a resin material different from that of the resin frame member.
  • an impregnation layer impregnated with the same component as the intermediate layer is provided on the outer peripheral edge of at least one gas diffusion layer.
  • the impregnation layer is impregnated in the gas diffusion layer with a porosity filling rate of 85% or more.
  • the first intermediate electrode is disposed between one end of the intermediate layer and the outer peripheral end of the first electrode and the inner peripheral end of the resin frame member.
  • a gap is formed, and a second gap is formed between the other end of the intermediate layer and the outer peripheral end of the second electrode and the inner peripheral end of the resin frame member.
  • the first protrusion provided integrally with or separately from the resin frame member is melted to form the first resin impregnated portion, while the second gap is formed in the resin frame member.
  • the 2nd protrusion part provided integrally or separately is fuse
  • an intermediate layer is provided continuously between the inner peripheral end of the member.
  • the bonding strength between the first electrode and the second electrode and the resin frame member is improved better than the bonding by bonding, and the occurrence of peeling or the like can be suppressed as much as possible.
  • FIG. 2 is a cross-sectional explanatory view taken along the line II-II in FIG. 1 of the fuel cell. It is front explanatory drawing by the side of the cathode side electrode of the said electrolyte membrane and electrode structure with a resin frame. It is front explanatory drawing by the side of the anode side electrode of the said electrolyte membrane and electrode structure with a resin frame. It is explanatory drawing of the method to manufacture the said electrolyte membrane-electrode structure with a resin frame.
  • FIG. 2 is an explanatory diagram of an electrolyte membrane-electrode assembly disclosed in Japanese Patent Application Laid-Open No. 2007-66766.
  • the polymer electrolyte fuel cell 12 incorporating the resin frame-equipped electrolyte membrane / electrode structure 10 according to the first embodiment of the present invention includes the resin frame-equipped electrolyte membrane / electrode.
  • the structure 10 is sandwiched between the first separator 14 and the second separator 16.
  • the first separator 14 and the second separator 16 are made of, for example, a steel plate, a stainless steel plate, an aluminum plate, a plated steel plate, a metal plate whose surface is subjected to anticorrosion treatment, a carbon member, or the like. .
  • an electrolyte membrane / electrode structure 10 with a resin frame is provided with an electrolyte membrane / electrode structure 10a, and the electrolyte membrane / electrode structure 10a is formed of, for example, a perfluorosulfonic acid thin film with water.
  • the solid polymer electrolyte membrane 18 uses an HC (hydrocarbon) electrolyte in addition to a fluorine electrolyte.
  • the cathode side electrode 22 has a smaller surface area than the solid polymer electrolyte membrane 18 and the anode side electrode 20.
  • the cathode side electrode 22 may have a larger surface area than the anode side electrode 20.
  • the outer peripheral edge of the solid polymer electrolyte membrane 18 only needs to protrude from the outer periphery of the smaller electrode, for example, the cathode side electrode 22, and is located at the same position as the end of the larger electrode, for example, the anode side electrode 20. It does not need to be arranged.
  • the anode side electrode 20 is disposed on one surface 18 a of the solid polymer electrolyte membrane 18.
  • the cathode side electrode 22 is disposed on the other surface 18b of the solid polymer electrolyte membrane 18, and exposes the outer peripheral end portion 18be of the solid polymer electrolyte membrane 18 in a frame shape.
  • the anode side electrode 20 is provided with an electrode catalyst layer 20a joined to the surface 18a of the solid polymer electrolyte membrane 18, and a gas diffusion layer 20b laminated on the electrode catalyst layer 20a.
  • the cathode side electrode 22 is provided with an electrode catalyst layer 22a joined to the surface 18b of the solid polymer electrolyte membrane 18, and a gas diffusion layer 22b laminated on the electrode catalyst layer 22a.
  • the electrode catalyst layers 20a and 22a form catalyst particles in which platinum particles are supported on carbon black, use a polymer electrolyte as an ion conductive binder, and uniformly mix the catalyst particles in a solution of the polymer electrolyte.
  • the catalyst paste produced in this way is configured by printing, coating or transferring on both sides of the solid polymer electrolyte membrane 18.
  • the gas diffusion layers 20b and 22b are made of carbon paper or the like, and the plane dimension of the gas diffusion layer 20b is set larger than the plane dimension of the gas diffusion layer 22b.
  • the electrolyte membrane / electrode structure 10 with a resin frame circulates around the outer periphery of the solid polymer electrolyte membrane 18 and is made of a resin bonded to the cathode side electrode 22 and the anode side electrode 20.
  • a frame member 24 is provided.
  • the resin frame member 24 may be made of PPS (polyphenylene sulfide), PPA (polyphthalamide), or the like, or may be made of an elastic polymer material.
  • the resin frame member 24 is provided with a stepped opening therein, and a first inner peripheral end portion 24a disposed inward and a first inner peripheral end portion 24a disposed outer than the first inner peripheral end portion 24a. 2 inner peripheral end 24b.
  • An intermediate layer 26 is provided between the resin frame member 24 and the electrolyte membrane / electrode structure 10a.
  • the intermediate layer 26 includes a first plate-like portion 26a disposed between the outer peripheral end portion 22be of the gas diffusion layer 22b constituting the cathode side electrode 22 and the first inner peripheral end portion 24a of the resin frame member 24,
  • the second plate-like portion 26b disposed on the outer peripheral end portion 18be of the solid polymer electrolyte membrane 18 exposed to the outside from the outer peripheral end portion 22be, the outer peripheral end portion 20be of the gas diffusion layer 20b constituting the anode side electrode 20, and the aforementioned
  • a third plate-like portion 26c disposed between the second inner peripheral end portion 24b of the resin frame member 24 is continuously and integrally formed.
  • the intermediate layer 26 has a substantially Z-shaped cross section and is made of a resin material different from the resin frame member 24.
  • the intermediate layer 26 is made of silicon rubber (elastomer), fluororubber (elastomer), epoxy resin (elastomer), urethane resin (elastomer), modified PET (polyethylene terephthalate) resin (elastomer), PVDF ( Polyvinylidene fluoride) resin (elastomer), olefin resin (elastomer), hot melt or the like is used.
  • a first impregnation layer 28a having a predetermined range inward from the outer peripheral end position and impregnated with the same components as the intermediate layer 26 is provided on the outer peripheral edge of the gas diffusion layer 22b constituting the cathode side electrode 22. It is done.
  • a second impregnated layer 28b having a predetermined range inward from the outer peripheral end position and impregnated with the same components as the intermediate layer 26 is provided at the outer peripheral edge of the gas diffusion layer 20b constituting the anode side electrode 20. It is done.
  • the first impregnation layer 28a and the second impregnation layer 28b are impregnated in the gas diffusion layer 22b and the gas diffusion layer 20b, respectively, with a filling factor of 85% or more.
  • the first impregnation layer 28 a is formed over the entire circumference of the gas diffusion layer 22 b constituting the cathode side electrode 22.
  • the second impregnation layer 28 b is formed over the entire circumference of the gas diffusion layer 20 b constituting the anode side electrode 20.
  • one end edge of the fuel cell 12 in the arrow B direction communicates with each other in the arrow A direction, which is the stacking direction, and contains an oxidant gas, for example, oxygen
  • the other end edge of the fuel cell 12 in the direction of arrow B communicates with each other in the direction of arrow A, a fuel gas inlet communication hole 34a for supplying fuel gas, and a cooling medium outlet communication hole for discharging the cooling medium.
  • 32b and an oxidant gas outlet communication hole 30b for discharging the oxidant gas are arranged in the direction of arrow C.
  • An oxidant gas flow path 36 communicating with the oxidant gas inlet communication hole 30a and the oxidant gas outlet communication hole 30b is provided on the surface 16a of the second separator 16 facing the electrolyte membrane / electrode structure 10 with a resin frame. .
  • a fuel gas flow path 38 communicating with the fuel gas inlet communication hole 34a and the fuel gas outlet communication hole 34b is formed on the surface 14a of the first separator 14 facing the electrolyte membrane / electrode structure 10 with a resin frame. Between the surface 14 b of the first separator 14 and the surface 16 b of the second separator 16, a cooling medium flow path 40 communicating with the cooling medium inlet communication hole 32 a and the cooling medium outlet communication hole 32 b is formed.
  • the first seal member 42 is integrated with the surfaces 14 a and 14 b of the first separator 14 around the outer peripheral end of the first separator 14, and the second The second seal member 44 is integrated with the surfaces 16 a and 16 b of the separator 16 around the outer peripheral end of the second separator 16.
  • the first seal member 42 includes a first convex seal 42 a that contacts the resin frame member 24 of the electrolyte membrane / electrode structure 10 with a resin frame, and a second seal member of the second separator 16. And a second convex seal 42 b that abuts on 44.
  • the second seal member 44 constitutes a flat seal.
  • the second seal member 44 may be provided with a convex seal (not shown).
  • the first and second sealing members 42 and 44 include, for example, EPDM, NBR, fluorine rubber, silicone rubber, fluorosilicone rubber, butyl rubber, natural rubber, styrene rubber, chloroprene or acrylic rubber, a cushioning material, Alternatively, an elastic seal member such as a packing material is used.
  • the first separator 14 has a supply hole portion 46 that communicates the fuel gas inlet communication hole 34a with the fuel gas passage 38, and the fuel gas passage 38 communicates with the fuel gas outlet communication hole 34b.
  • a discharge hole 48 is formed.
  • an electrolyte membrane / electrode structure 10a which is a step MEA is manufactured. Specifically, electrode catalyst layers 20 a and 22 a are applied to both surfaces 18 a and 18 b of the solid polymer electrolyte membrane 18. A gas diffusion layer 20b is disposed on the surface 18a side of the solid polymer electrolyte membrane 18, that is, the electrode catalyst layer 20a, and at the surface 18b of the solid polymer electrolyte membrane 18, that is, on the electrode catalyst layer 22a. A gas diffusion layer 22b is disposed.
  • the electrolyte membrane / electrode structure 10a is manufactured by stacking these together and subjecting them to hot pressing.
  • the resin frame member 24 is molded in advance by an injection molding machine (not shown), and the resin frame member 24 and the electrolyte membrane / electrode structure 10a are aligned.
  • the resin frame member 24 has a first inner peripheral end 24a and a second inner peripheral end 24b.
  • the outer peripheral end 18be of the solid polymer electrolyte membrane 18 is exposed in a frame shape, and the second plate-like portion 26b constituting the intermediate layer 26 corresponding to the outer peripheral end 18be. Is placed.
  • the resin-made frame member 24 and the electrolyte membrane / electrode structure 10a are arranged such that the cathode-side electrode 22 is disposed at the first inner peripheral end 24a, while the second inner peripheral end 24b.
  • the solid polymer electrolyte membrane 18 and the anode-side electrode 20 are disposed on the second plate-like portion 26b and integrated with each other.
  • the first inner peripheral end portion 24a and the outer peripheral end portion 22be of the gas diffusion layer 22b constituting the cathode side electrode 22 and the second inner peripheral end portion 24b and the gas diffusion layer constituting the anode side electrode 20
  • gaps S1 and S2 are provided, respectively.
  • the same material of the intermediate layer 26 as the second plate-like portion 26b is injected into each of the gaps S1 and S2. For this reason, the material filled in the gaps S1 and S2 is hardened to form the first plate-like portion 26a and the third plate-like portion 26c, and these are integrated with the second plate-like portion 26b to form the intermediate layer. 26 is formed.
  • the first plate-like portion 26a, the second plate-like portion 26b, and the third plate-like portion 26c may have different material compositions as long as the adhesion is good.
  • the injected material is impregnated in the gas diffusion layers 22b and 20b. Accordingly, the first impregnation layer 28a is provided on the outer peripheral edge of the gas diffusion layer 22b with a predetermined range inward from the outer peripheral end position. On the other hand, the second impregnation layer 28b is provided on the outer peripheral edge of the gas diffusion layer 20b with a predetermined range inward from the outer peripheral end position.
  • the first impregnation layer 28a and the second impregnation layer 28b are impregnated into the gas diffusion layer 22b and the gas diffusion layer 20b with a pore filling rate of 85% or more, respectively.
  • the hole filling rate and the gas diffusion layer flow rate have a relationship shown in FIG. 8 as an evaluation result by a palm porometer, for example. Thereby, if the hole filling rate is 85% or more, the gas can be reliably sealed.
  • an intermediate layer 26 is provided between the resin frame member 24 and the electrolyte membrane / electrode structure 10a.
  • the intermediate layer 26 is a first plate-like portion 26 a that is disposed without a gap between the outer peripheral end portion 22 be of the gas diffusion layer 22 b constituting the cathode side electrode 22 and the first inner peripheral end portion 24 a of the resin frame member 24.
  • the gas diffusion layer 22b and the gas diffusion layer 20b are provided with a first impregnation layer 28a and a second impregnation layer 28b. Only the first impregnation layer 28a or the second impregnation layer 28b may be provided.
  • the joining strength of the cathode side electrode 22 and the anode side electrode 20 and the resin frame member 24 can be improved better than the joining by adhesion, and the occurrence of peeling or the like can be suppressed as much as possible.
  • first inner peripheral end 24 a and the outer peripheral end 22 be of the gas diffusion layer 22 b constituting the cathode side electrode 22, and the second inner peripheral end 24 b and the gas diffusion layer 20 b constituting the anode side electrode 20.
  • a gap is not formed between the outer peripheral end portion 20be. Therefore, the desired gas sealing performance can be reliably maintained, and the effect that the mixing of the fuel gas and the oxidant gas can be suppressed as much as possible with a simple and economical configuration can be obtained. .
  • an oxidant gas such as an oxygen-containing gas is supplied to the oxidant gas inlet communication hole 30a, and a fuel gas such as a hydrogen-containing gas is supplied to the fuel gas inlet communication hole 34a. Further, a cooling medium such as pure water, ethylene glycol, or oil is supplied to the cooling medium inlet communication hole 32a.
  • the oxidant gas is introduced into the oxidant gas flow path 36 of the second separator 16 from the oxidant gas inlet communication hole 30a, moves in the direction of arrow B, and the cathode side electrode 22 of the electrolyte membrane / electrode structure 10a.
  • the fuel gas is introduced from the fuel gas inlet communication hole 34 a through the supply hole 46 into the fuel gas flow path 38 of the first separator 14. The fuel gas moves in the direction of arrow B along the fuel gas flow path 38 and is supplied to the anode side electrode 20 of the electrolyte membrane / electrode structure 10a.
  • each electrolyte membrane / electrode structure 10a the oxidant gas supplied to the cathode side electrode 22 and the fuel gas supplied to the anode side electrode 20 are consumed by an electrochemical reaction in the electrode catalyst layer. Power generation is performed.
  • the oxidant gas supplied to and consumed by the cathode side electrode 22 is discharged in the direction of arrow A along the oxidant gas outlet communication hole 30b.
  • the fuel gas consumed by being supplied to the anode side electrode 20 passes through the discharge hole portion 48 and is discharged in the direction of arrow A along the fuel gas outlet communication hole 34b.
  • the cooling medium supplied to the cooling medium inlet communication hole 32a is introduced into the cooling medium flow path 40 between the first separator 14 and the second separator 16, and then flows in the direction of arrow B.
  • the cooling medium is discharged from the cooling medium outlet communication hole 32b after the electrolyte membrane / electrode structure 10a is cooled.
  • a liquid seal LS made of the same material as the intermediate layer 26 is formed on the outer periphery of the electrolyte membrane / electrode structure 10a.
  • the liquid seal LS includes an outer peripheral end 22be of the gas diffusion layer 22b constituting the cathode side electrode 22, an outer peripheral end 18be of the solid polymer electrolyte membrane 18, and an outer peripheral end 20be of the gas diffusion layer 20b constituting the anode side electrode 20.
  • the first impregnation layer 28a and the second impregnation layer 28b are integrally formed.
  • the resin frame member 24 is integrated with the electrolyte membrane / electrode structure 10a as shown in FIG. Therefore, the semi-cured liquid seal LS flows and cures in the gaps S1 and S2 formed between the electrolyte membrane / electrode structure 10a and the resin frame member 24. Accordingly, by removing the flash (not shown) extending outward from the resin frame member 24, the electrolyte membrane / electrode structure 10 with a resin frame is obtained.
  • FIG. 11 is an exploded perspective view of a main part of a polymer electrolyte fuel cell 62 in which an electrolyte membrane / electrode structure 60 with a resin frame according to a second embodiment of the present invention is incorporated.
  • the electrolyte membrane / electrode structure 60 with a resin frame includes an electrolyte membrane / electrode structure 10a, and is made of a resin that goes around the outer periphery of the solid polymer electrolyte membrane 18 and is joined to the cathode side electrode 22 and the anode side electrode 20.
  • a frame member 64 is provided.
  • the resin frame member 64 is set to have the same outer dimensions as the first separator 14 and the second separator 16, and has an oxidant gas inlet communication hole 30 a, a cooling medium inlet communication hole 32 a, and fuel gas at the outer peripheral edge.
  • An outlet communication hole 34b, a fuel gas inlet communication hole 34a, a cooling medium outlet communication hole 32b, and an oxidant gas outlet communication hole 30b are formed.
  • an intermediate layer 26 is provided between the resin frame member 64 and the electrolyte membrane / electrode structure 10a, and the gas diffusion layer 22b and the gas diffusion layer 20b are provided. Are provided with a first impregnation layer 28a and a second impregnation layer 28b.
  • the bonding strength of the cathode side electrode 22 and the anode side electrode 20 and the resin frame member 64 can be improved better than the bonding by bonding, and the occurrence of peeling or the like can be suppressed as much as possible.
  • the same effects as those of the first embodiment described above can be obtained, for example, it is possible to suppress the mixing of the fuel gas and the oxidant gas as much as possible with a simple and economical configuration.
  • FIG. 12 is a cross-sectional explanatory view of a polymer electrolyte fuel cell 72 in which an electrolyte membrane / electrode structure 70 with a resin frame according to a third embodiment of the present invention is incorporated.
  • the electrolyte membrane / electrode structure 70 with a resin frame is provided with an electrolyte membrane / electrode structure 10 a and is made of a resin that goes around the outer periphery of the solid polymer electrolyte membrane 18 and is bonded to the cathode side electrode 22 and the anode side electrode 20.
  • a frame member 74 is provided.
  • the resin frame member 74 is set to have the same outer dimensions as the first separator 14 and the second separator 16. Seal members 76 a and 76 b are interposed between the resin frame member 74 and the first separator 14 and the second separator 16, respectively.
  • FIG. 13 is a cross-sectional explanatory view of a polymer electrolyte fuel cell 82 in which an electrolyte membrane / electrode structure 80 with a resin frame according to a fourth embodiment of the present invention is incorporated.
  • the electrolyte membrane / electrode structure 80 with a resin frame is provided with an electrolyte membrane / electrode structure 10 a and is made of a resin that circulates around the outer periphery of the solid polymer electrolyte membrane 18 and is bonded to the cathode side electrode 22 and the anode side electrode 20.
  • a frame member 84 is provided.
  • the resin frame member 84 is set to have a larger outer dimension than the first separator 14 and the second separator 16.
  • a seal member 86 a is interposed between the resin frame member 84 and the first separator 14, and between the resin frame member 84, the first separator 14 and the second separator 16 are disposed outward.
  • the seal member 86b is interposed at the position.
  • FIG. 14 is a cross-sectional explanatory view of a polymer electrolyte fuel cell 92 in which an electrolyte membrane / electrode structure 90 with a resin frame according to a fifth embodiment of the present invention is incorporated.
  • an intermediate layer 94 is provided between the resin frame member 93 constituting the electrolyte membrane / electrode structure 90 with a resin frame and the electrolyte membrane / electrode structure 10a.
  • the intermediate layer 94 is made of the same material as the intermediate layer 26 and has a substantially Z-shaped cross section. Between one end of the intermediate layer 94 and the outer peripheral end 22be of the gas diffusion layer 22b constituting the cathode side electrode 22 and the first inner peripheral end 93a of the resin frame member 93, a first gap 96a is formed. Is formed.
  • a second gap 96b is provided between the other end of the intermediate layer 94 and the outer peripheral end 20be of the gas diffusion layer 20b constituting the anode-side electrode 20 and the second inner peripheral end 93b of the resin frame member 93. Is formed.
  • the first protrusion 98a provided integrally or separately with the resin frame member 93 is melted to form the first resin impregnated portion 100a.
  • the second protrusion 98b provided integrally with or separately from the resin frame member 93 is melted to form the second resin impregnated portion 100b.
  • the first resin impregnated portion 100a is provided so as to partially overlap one end portion of the intermediate layer 94 and impregnated inside the gas diffusion layer 22b, and the second resin impregnated portion 100b is provided on the other side of the intermediate layer 94.
  • the gas diffusion layer 20b is provided so as to partially overlap with the end of the gas diffusion layer 20b.
  • the gas diffusion layers 22b and 20b are provided with adhesive layers 102a and 102b impregnated with a part of the intermediate layer 94, respectively.
  • the resin frame member 93 is formed by an injection molding machine (not shown), and one outer surface of the resin frame member 93 (on the first inner peripheral end 93a side). Is formed integrally with a frame-shaped first protrusion 98a that circulates around the first inner peripheral end portion 93a. On the other outer surface (the outer surface on the second inner peripheral end portion 93b side) of the resin frame member 93, a frame-shaped second protrusion 98b that circulates around the second inner peripheral end portion 93b is integrally formed.
  • the first projecting portion 98 a and the second projecting portion 98 b may be formed by a frame member that is separate from the resin frame member 93, and may be disposed so as to overlap the resin frame member 93.
  • the resin frame member 93 and the electrolyte membrane / electrode structure 10a are aligned, and a plate-like member 94a constituting the intermediate layer 94 is disposed corresponding to the outer peripheral end 18be of the solid polymer electrolyte membrane 18. .
  • the resin-made frame member 93 and the electrolyte membrane / electrode structure 10a are configured such that the cathode-side electrode 22 is disposed at the first inner peripheral end portion 93a, while the second inner peripheral end portion 93b.
  • the solid polymer electrolyte membrane 18 and the anode-side electrode 20 are disposed on and integrated with each other via a plate-like member 94a.
  • the plate member 94a is sandwiched between the resin frame member 93 and the electrolyte membrane / electrode structure 10a. For this reason, the plate-like member 94a is formed between the first inner peripheral end portion 93a and the outer peripheral end portion 22be of the gas diffusion layer 22b constituting the cathode side electrode 22, and the second inner peripheral end portion 93b and the anode side electrode 20.
  • the intermediate layer 94 having a substantially Z-shaped cross section is obtained by entering between the outer peripheral end 20be of the gas diffusion layer 20b constituting the.
  • the gap between one end of the intermediate layer 94 and the outer peripheral end 22be of the gas diffusion layer 22b constituting the cathode-side electrode 22 and the first inner peripheral end 93a of the resin frame member 93 is between the first end.
  • One gap 96a is formed.
  • the second end portion of the intermediate layer 94 and the outer peripheral end portion 20be of the gas diffusion layer 20b constituting the anode-side electrode 20 and the second inner peripheral end portion 93b of the resin frame member 93 are not connected to each other.
  • a gap 96b is formed.
  • the first protrusion 98a and the second protrusion 98b of the resin frame member 93 are heated.
  • the heating method laser welding, infrared welding, impulse welding, or the like is employed.
  • the first protrusion 98a is heated and melted and impregnated in the gas diffusion layer 22b constituting the cathode-side electrode 22 so as to cover the first gap 96a.
  • the second protrusion 98b is melted by heating and impregnates the gas diffusion layer 20b constituting the anode-side electrode 20 so as to cover the second gap 96b.
  • the electrolyte membrane and electrode structure 90 with a resin frame is manufactured.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

 固体高分子電解質膜の外周を周回して樹脂製枠部材を強固且つ容易に接合するとともに、所望のガスシール性を確実に維持することを可能にする。樹脂枠付き電解質膜・電極構造体(10)は、固体高分子電解質膜(18)を挟持するアノード側電極(20)及びカソード側電極(22)を備える電解質膜・電極構造体(10a)と、前記固体高分子電解質膜(18)の外周を周回する樹脂製枠部材(24)とを備える。カソード側電極(22)の外周端部(22be)と樹脂製枠部材(24)の第1内周端部(24a)との間、前記カソード側電極(22)の外周端部(22be)から外部に露呈する固体高分子電解質膜(18)の外周端部(18be)、及びアノード側電極(20)の外周端部(20be)と前記樹脂製枠部材(24)の第2内周端部(24b)との間には、中間層(26)が連続して配置される。

Description

燃料電池用樹脂枠付き電解質膜・電極構造体
 本発明は、それぞれ電極触媒層とガス拡散層とを有する第1電極及び第2電極が、固体高分子電解質膜の両側に設けられるとともに、前記第1電極は、前記第2電極よりも外形寸法が小さく設定される電解質膜・電極構造体と、前記固体高分子電解質膜の外周を周回して設けられる樹脂製枠部材とを備える燃料電池用樹脂枠付き電解質膜・電極構造体に関する。
 一般的に、固体高分子型燃料電池は、高分子イオン交換膜からなる固体高分子電解質膜を採用している。この燃料電池は、固体高分子電解質膜の両側に、それぞれ触媒層(電極触媒層)とガス拡散層(多孔質カーボン)とからなるアノード側電極及びカソード側電極を配設した電解質膜・電極構造体(MEA)を、セパレータ(バイポーラ板)によって挟持している。この燃料電池は、所定の数だけ積層することにより、例えば、車載用燃料電池スタックとして使用されている。
 この種の電解質膜・電極構造体では、一方のガス拡散層が固体高分子電解質膜よりも小さな表面積に設定されるとともに、他方のガス拡散層が前記固体高分子電解質膜と同一の表面積に設定される、所謂、段差型MEAを構成する場合がある。
 通常、燃料電池スタックでは、多数の電解質膜・電極構造体が積層されており、コストを抑制するために、前記電解質膜・電極構造体を安価に構成することが要請されている。従って、特に高価な固体高分子電解質膜の使用量を削減するとともに、構成の簡素化を図るため、種々の提案がなされている。
 例えば、特開2007-66766号公報に開示されている電解質膜-電極接合体では、図18に示すように、電解質膜1と前記電解質膜1の一方の側に配置されたカソード触媒層2aと、前記電解質膜1の他方の側に配置されたアノード触媒層2bと、前記電解質膜1の両側に配置されるガス拡散層3a、3bとを備えている。
 アノード側のガス拡散層3bは、電解質膜1の面積と同等で、且つ、カソード側のガス拡散層3aの面積よりも大きく構成されている。この電解質膜・電極接合体(MEA)のエッジ領域には、ガスケット構造体4が配置されている。ガス拡散層3a側の電解質膜1の外周部とガスケット構造体4とは、接着層5を介して接合されている。
 しかしながら、上記の特開2007-66766号公報では、MEAとガスケット構造体4とが、ガス拡散層3aから外部に露呈する電解質膜1の外周縁部に接着層5を介して固定されているだけである。このため、MEAとガスケット構造体4との接合強度が低く、所望の強度を得ることができないという問題がある。
 しかも、ガス拡散層3a、3bの外周端部とガスケット構造体4の内周端部とを、互いに気密に密着させることは、製造上、相当に困難である。従って、ガス拡散層3a、3bの外周端部とガスケット構造体4の内周端部との間には、隙間が発生し易く、ガスシール性が低下して燃料ガスと酸化剤ガスとが混合するという問題がある。
 本発明は、この種の問題を解決するものであり、固体高分子電解質膜の外周を周回して樹脂製枠部材を強固且つ容易に接合するとともに、所望のガスシール性を確実に維持することが可能な燃料電池用樹脂枠付き電解質膜・電極構造体を提供することを目的とする。
 本発明は、それぞれ電極触媒層とガス拡散層とを有する第1電極及び第2電極が、固体高分子電解質膜の両側に設けられるとともに、前記第1電極は、前記第2電極よりも外形寸法が小さく設定される電解質膜・電極構造体と、前記固体高分子電解質膜の外周を周回して設けられる樹脂製枠部材とを備える燃料電池用樹脂枠付き電解質膜・電極構造体に関するものである。
 この燃料電池用樹脂枠付き電解質膜・電極構造体では、第1電極の外周端部と樹脂製枠部材の内周端部との間、前記第1電極の前記外周端部から外部に露呈する固体高分子電解質膜の外周縁部、及び第2電極の外周端部と前記樹脂製枠部材の内周端部との間に連続して配置される中間層を備えている。
 また、この燃料電池用樹脂枠付き電解質膜・電極構造体では、中間層は、樹脂製枠部材とは異なる樹脂材料で構成されることが好ましい。
 さらに、この燃料電池用樹脂枠付き電解質膜・電極構造体では、少なくとも一方のガス拡散層の外周端縁部には、中間層と同一の成分が含浸される含浸層が設けられることが好ましい。
 さらにまた、この燃料電池用樹脂枠付き電解質膜・電極構造体では、含浸層は、ガス拡散層に85%以上の空孔充填率で含浸されることが好ましい。
 また、この燃料電池用樹脂枠付き電解質膜・電極構造体では、中間層の一方の端部と第1電極の外周端部及び樹脂製枠部材の内周端部との間には、第1隙間が形成されるとともに、前記中間層の他方の端部と第2電極の外周端部及び前記樹脂製枠部材の内周端部との間には、第2隙間が形成され、前記第1隙間には、前記樹脂製枠部材に一体又は別体に設けられた第1突起部が溶融されて第1樹脂含浸部が形成される一方、前記第2隙間には、前記樹脂製枠部材に一体又は別体に設けられた第2突起部が溶融されて第2樹脂含浸部が形成されることが好ましい。
 本発明によれば、第1電極の外周端部から外部に露呈する固体高分子電解質膜の外周縁部の他、前記第1電極の外周端部及び第2電極の外周端部と樹脂製枠部材の内周端部との間に連続して、中間層が設けられている。
 このため、第1電極及び第2電極と樹脂製枠部材との接合強度は、接着による接合に比べて良好に向上し、剥がれ等の発生を可及的に抑制することができる。しかも、第1電極の外周端部と樹脂製枠部材の内周端部との間、及び第2電極の外周端部と前記樹脂製枠部材の内周端部との間には、隙間が形成されることがない。従って、所望のガスシール性を確実に維持することが可能になり、簡単且つ経済的な構成で、燃料ガスと酸化剤ガスとの混合を可及的に抑制することができる。
本発明の第1の実施形態に係る樹脂枠付き電解質膜・電極構造体が組み込まれる固体高分子型燃料電池の要部分解斜視説明図である。 前記燃料電池の、図1中、II-II線断面説明図である。 前記樹脂枠付き電解質膜・電極構造体のカソード側電極側の正面説明図である。 前記樹脂枠付き電解質膜・電極構造体のアノード側電極側の正面説明図である。 前記樹脂枠付き電解質膜・電極構造体を製造する方法の説明図である。 前記樹脂枠付き電解質膜・電極構造体を製造する方法の説明図である。 前記樹脂枠付き電解質膜・電極構造体を製造する方法の説明図である。 空孔充填率とガス流量との関係説明図である。 前記樹脂枠付き電解質膜・電極構造体を製造する別の方法の説明図である。 前記樹脂枠付き電解質膜・電極構造体を製造する別の方法の説明図である。 本発明の第2の実施形態に係る樹脂枠付き電解質膜・電極構造体が組み込まれる固体高分子型燃料電池の要部分解斜視説明図である。 本発明の第3の実施形態に係る樹脂枠付き電解質膜・電極構造体が組み込まれる固体高分子型燃料電池の断面説明図である。 本発明の第4の実施形態に係る樹脂枠付き電解質膜・電極構造体が組み込まれる固体高分子型燃料電池の断面説明図である。 本発明の第5の実施形態に係る樹脂枠付き電解質膜・電極構造体が組み込まれる固体高分子型燃料電池の断面説明図である。 前記樹脂枠付き電解質膜・電極構造体を製造する方法の説明図である。 前記樹脂枠付き電解質膜・電極構造体を製造する方法の説明図である。 前記樹脂枠付き電解質膜・電極構造体を製造する方法の説明図である。 特開2007-66766号公報に開示された電解質膜-電極接合体の説明図である。
 図1及び図2に示すように、本発明の第1の実施形態に係る樹脂枠付き電解質膜・電極構造体10が組み込まれる固体高分子型燃料電池12は、前記樹脂枠付き電解質膜・電極構造体10を第1セパレータ14及び第2セパレータ16で挟持する。第1セパレータ14及び第2セパレータ16は、例えば、鋼板、ステンレス鋼板、アルミニウム板、めっき処理鋼板、あるいはその金属表面に防食用の表面処理を施した金属板や、カーボン部材等で構成されている。
 図2に示すように、樹脂枠付き電解質膜・電極構造体10は、電解質膜・電極構造体10aを備えるとともに、前記電解質膜・電極構造体10aは、例えば、パーフルオロスルホン酸の薄膜に水が含浸された固体高分子電解質膜18と、前記固体高分子電解質膜18を挟持するアノード側電極(第2電極)20及びカソード側電極(第1電極)22とを有する。固体高分子電解質膜18は、フッ素系電解質の他、HC(炭化水素)系電解質が使用される。
 カソード側電極22は、固体高分子電解質膜18及びアノード側電極20よりも小さな表面積を有する。また、カソード側電極22は、アノード側電極20よりも大きな表面積を有していてもよい。固体高分子電解質膜18の外周縁部は、小さい方の電極、例えば、カソード側電極22の外周よりも突出していればよく、大きい方の電極、例えば、アノード側電極20の端部と同一位置に配置されていなくてもよい。
 アノード側電極20は、固体高分子電解質膜18の一方の面18aに配置される。カソード側電極22は、固体高分子電解質膜18の他方の面18bに配置されるとともに、前記固体高分子電解質膜18の外周端部18beを額縁状に露呈させる。
 アノード側電極20は、固体高分子電解質膜18の面18aに接合される電極触媒層20aと、前記電極触媒層20aに積層されるガス拡散層20bとを設ける。カソード側電極22は、固体高分子電解質膜18の面18bに接合される電極触媒層22aと、前記電極触媒層22aに積層されるガス拡散層22bとを設ける。
 電極触媒層20a、22aは、カーボンブラックに白金粒子を担持した触媒粒子を形成し、イオン導伝性バインダーとして高分子電解質を使用し、この高分子電解質の溶液中に前記触媒粒子を均一に混合して作製された触媒ペーストを、固体高分子電解質膜18の両面に印刷、塗布又は転写することによって構成される。ガス拡散層20b、22bは、カーボンペーパ等からなるとともに、前記ガス拡散層20bの平面寸法は、前記ガス拡散層22bの平面寸法よりも大きく設定される。
 図2~図4に示すように、樹脂枠付き電解質膜・電極構造体10は、固体高分子電解質膜18の外周を周回するとともに、カソード側電極22及びアノード側電極20に接合される樹脂製枠部材24を備える。樹脂製枠部材24は、例えば、PPS(ポリフェニレンサルファイド)やPPA(ポリフタルアミド)等で構成される他、弾性を有する高分子材料を用いてもよい。
 樹脂製枠部材24は、内部に段付き開口部を設けており、内方に配置される第1内周端部24aと、前記第1内周端部24aよりも外方に配置される第2内周端部24bとを有する。樹脂製枠部材24と電解質膜・電極構造体10aとの間には、中間層26が設けられる。
 中間層26は、カソード側電極22を構成するガス拡散層22bの外周端部22beと樹脂製枠部材24の第1内周端部24aとの間に配置される第1板状部26a、前記外周端部22beから外部に露呈する固体高分子電解質膜18の外周端部18beに配置される第2板状部26b、及びアノード側電極20を構成するガス拡散層20bの外周端部20beと前記樹脂製枠部材24の第2内周端部24bとの間に配置される第3板状部26cを、連続して一体に有する。
 中間層26は、断面略Z形状を有しており、樹脂製枠部材24とは異なる樹脂材料で構成される。具体的には、中間層26は、シリコン系ゴム(エラストマー)、フッ素ゴム(エラストマー)、エポキシ系樹脂(エラストマー)、ウレタン系樹脂(エラストマー)、変性PET(ポリエチレンテレフタレート)樹脂(エラストマー)、PVDF(ポリフッ化ビニリデン)樹脂(エラストマー)、又はオレフィン系樹脂(エラストマー)、あるいは、ホットメルト等が使用される。
 カソード側電極22を構成するガス拡散層22bの外周縁部には、外周端位置から内方に所定の範囲を有して中間層26と同一の成分が含浸される第1含浸層28aが設けられる。アノード側電極20を構成するガス拡散層20bの外周縁部には、外周端位置から内方に所定の範囲を有して中間層26と同一の成分が含浸される第2含浸層28bが設けられる。第1含浸層28a及び第2含浸層28bは、ガス拡散層22b及びガス拡散層20bに、それぞれ85%以上の空孔充填率で含浸される。
 図3に示すように、第1含浸層28aは、カソード側電極22を構成するガス拡散層22bの全周にわたって形成される。図4に示すように、第2含浸層28bは、アノード側電極20を構成するガス拡散層20bの全周にわたって形成される。
 図1に示すように、燃料電池12の矢印B方向(図1中、水平方向)の一端縁部には、積層方向である矢印A方向に互いに連通して、酸化剤ガス、例えば、酸素含有ガスを供給するための酸化剤ガス入口連通孔30a、冷却媒体を供給するための冷却媒体入口連通孔32a、及び燃料ガス、例えば、水素含有ガスを排出するための燃料ガス出口連通孔34bが、矢印C方向(鉛直方向)に配列して設けられる。
 燃料電池12の矢印B方向の他端縁部には、矢印A方向に互いに連通して、燃料ガスを供給するための燃料ガス入口連通孔34a、冷却媒体を排出するための冷却媒体出口連通孔32b、及び酸化剤ガスを排出するための酸化剤ガス出口連通孔30bが、矢印C方向に配列して設けられる。
 第2セパレータ16の樹脂枠付き電解質膜・電極構造体10に向かう面16aには、酸化剤ガス入口連通孔30aと酸化剤ガス出口連通孔30bとに連通する酸化剤ガス流路36が設けられる。
 第1セパレータ14の樹脂枠付き電解質膜・電極構造体10に向かう面14aには、燃料ガス入口連通孔34aと燃料ガス出口連通孔34bとに連通する燃料ガス流路38が形成される。第1セパレータ14の面14bと第2セパレータ16の面16bとの間には、冷却媒体入口連通孔32aと冷却媒体出口連通孔32bとに連通する冷却媒体流路40が形成される。
 図1及び図2に示すように、第1セパレータ14の面14a、14bには、この第1セパレータ14の外周端部を周回して、第1シール部材42が一体化されるとともに、第2セパレータ16の面16a、16bには、この第2セパレータ16の外周端部を周回して、第2シール部材44が一体化される。
 図2に示すように、第1シール部材42は、樹脂枠付き電解質膜・電極構造体10の樹脂製枠部材24に当接する第1凸状シール42aと、第2セパレータ16の第2シール部材44に当接する第2凸状シール42bとを有する。第2シール部材44は、平面シールを構成する。なお、第2凸状シール42bに代えて、第2シール部材44に凸状シール(図示せず)を設けてもよい。
 第1及び第2シール部材42、44には、例えば、EPDM、NBR、フッ素ゴム、シリコーンゴム、フロロシリコーンゴム、ブチルゴム、天然ゴム、スチレンゴム、クロロプレーン又はアクリルゴム等のシール材、クッション材、あるいはパッキン材等の弾性を有するシール部材が用いられる。
 図1に示すように、第1セパレータ14には、燃料ガス入口連通孔34aを燃料ガス流路38に連通する供給孔部46と、前記燃料ガス流路38を燃料ガス出口連通孔34bに連通する排出孔部48とが形成される。
 次いで、樹脂枠付き電解質膜・電極構造体10を製造する方法について、以下に説明する。
 先ず、図5に示すように、段差MEAである電解質膜・電極構造体10aが作製される。具体的には、固体高分子電解質膜18の両方の面18a、18bには、電極触媒層20a、22aが塗布される。そして、固体高分子電解質膜18の面18a側に、すなわち、電極触媒層20aにガス拡散層20bが配置されるとともに、前記固体高分子電解質膜18の面18bに、すなわち、電極触媒層22aにガス拡散層22bが配置される。これらが一体に積層されてホットプレス処理されることにより、電解質膜・電極構造体10aが作製される。
 一方、樹脂製枠部材24は、射出成形機(図示せず)により予め成形され、前記樹脂製枠部材24と電解質膜・電極構造体10aとが位置合わせされる。樹脂製枠部材24は、第1内周端部24aと第2内周端部24bとを有している。電解質膜・電極構造体10aでは、固体高分子電解質膜18の外周端部18beが額縁状に露呈しており、前記外周端部18beに対応して中間層26を構成する第2板状部26bが配置される。
 そして、図6に示すように、樹脂製枠部材24と電解質膜・電極構造体10aとは、第1内周端部24aにカソード側電極22が配置される一方、第2内周端部24bに固体高分子電解質膜18及びアノード側電極20が配置され、第2板状部26bを介して一体化される。ここで、第1内周端部24aとカソード側電極22を構成するガス拡散層22bの外周端部22beとの間、及び第2内周端部24bとアノード側電極20を構成するガス拡散層20bの外周端部20beとの間には、それぞれ間隙S1及びS2が設けられる。
 次に、図7に示すように、各間隙S1、S2には、第2板状部26bと同じ中間層26の材料が射出される。このため、間隙S1、S2に充填された材料が硬化することにより、第1板状部26a及び第3板状部26cが形成され、これらが第2板状部26bと一体化されて中間層26が形成される。なお、第1板状部26a、第2板状部26b及び第3板状部26cは、密着性が良ければ、それぞれの材料組成が異なっていてもよい。
 さらに、射出された材料は、ガス拡散層22b、20bに含浸される。従って、ガス拡散層22bの外周縁部には、外周端位置から内方に所定の範囲を有して第1含浸層28aが設けられる。一方、ガス拡散層20bの外周縁部には、外周端位置から内方に所定の範囲を有して第2含浸層28bが設けられる。
 その際、第1含浸層28a及び第2含浸層28bは、ガス拡散層22b及びガス拡散層20bに、それぞれ85%以上の空孔充填率で含浸される。空孔充填率とガス拡散層流量とは、例えば、パームポロメータによる評価結果として図8に示す関係を有している。これにより、空孔充填率が85%以上であれば、ガスを確実に封止することができる。
 この場合、第1の実施形態では、樹脂製枠部材24と電解質膜・電極構造体10aとの間には、中間層26が設けられている。中間層26は、カソード側電極22を構成するガス拡散層22bの外周端部22beと樹脂製枠部材24の第1内周端部24aとの間に隙間なく配置される第1板状部26a、前記外周端部22beから外部に露呈する固体高分子電解質膜18の外周端部18beに配置される第2板状部26b、及びアノード側電極20を構成するガス拡散層20bの外周端部20beと前記樹脂製枠部材24の第2内周端部24bとの間に隙間なく配置される第3板状部26cを、連続して一体に有している。
 その上、ガス拡散層22b及びガス拡散層20bには、第1含浸層28a及び第2含浸層28bが設けられている。なお、第1含浸層28aのみ、又は、第2含浸層28bのみを設けてもよい。
 このため、カソード側電極22及びアノード側電極20と樹脂製枠部材24との接合強度は、接着による接合に比べて良好に向上し、剥がれ等の発生を可及的に抑制することができる。
 しかも、第1内周端部24aとカソード側電極22を構成するガス拡散層22bの外周端部22beとの間、及び第2内周端部24bとアノード側電極20を構成するガス拡散層20bの外周端部20beとの間には、隙間が形成されることがない。従って、所望のガスシール性を確実に維持することが可能になり、簡単且つ経済的な構成で、燃料ガスと酸化剤ガスとの混合を可及的に抑制することができるという効果が得られる。
 このように構成される燃料電池12の動作について、以下に説明する。
 先ず、図1に示すように、酸化剤ガス入口連通孔30aに酸素含有ガス等の酸化剤ガスが供給されるとともに、燃料ガス入口連通孔34aに水素含有ガス等の燃料ガスが供給される。さらに、冷却媒体入口連通孔32aに純水やエチレングリコール、オイル等の冷却媒体が供給される。
 このため、酸化剤ガスは、酸化剤ガス入口連通孔30aから第2セパレータ16の酸化剤ガス流路36に導入され、矢印B方向に移動して電解質膜・電極構造体10aのカソード側電極22に供給される。一方、燃料ガスは、燃料ガス入口連通孔34aから供給孔部46を通って第1セパレータ14の燃料ガス流路38に導入される。燃料ガスは、燃料ガス流路38に沿って矢印B方向に移動し、電解質膜・電極構造体10aのアノード側電極20に供給される。
 従って、各電解質膜・電極構造体10aでは、カソード側電極22に供給される酸化剤ガスと、アノード側電極20に供給される燃料ガスとが、電極触媒層内で電気化学反応により消費されて発電が行われる。
 次いで、カソード側電極22に供給されて消費された酸化剤ガスは、酸化剤ガス出口連通孔30bに沿って矢印A方向に排出される。同様に、アノード側電極20に供給されて消費された燃料ガスは、排出孔部48を通り燃料ガス出口連通孔34bに沿って矢印A方向に排出される。
 また、冷却媒体入口連通孔32aに供給された冷却媒体は、第1セパレータ14と第2セパレータ16との間の冷却媒体流路40に導入された後、矢印B方向に流通する。この冷却媒体は、電解質膜・電極構造体10aを冷却した後、冷却媒体出口連通孔32bから排出される。
 次いで、樹脂枠付き電解質膜・電極構造体10を製造する別の方法について、以下に説明する。
 先ず、図9に示すように、上記と同様に電解質膜・電極構造体10aが作成された後、前記電解質膜・電極構造体10aの外周に、中間層26と同一の材料の液状シールLSが一体化される。液状シールLSは、カソード側電極22を構成するガス拡散層22bの外周端部22be、固体高分子電解質膜18の外周端部18be及びアノード側電極20を構成するガス拡散層20bの外周端部20beを覆って設けられるとともに、第1含浸層28a及び第2含浸層28bを一体に形成している。
 そこで、液状シールLSが半硬化した後、図10に示すように、電解質膜・電極構造体10aに樹脂製枠部材24が一体化される。このため、電解質膜・電極構造体10aと樹脂製枠部材24との間に形成される間隙S1、S2には、半硬化した液状シールLSが流動して硬化する。従って、樹脂製枠部材24の外方に延在するばり(図示せず)が除去されることにより、樹脂枠付き電解質膜・電極構造体10が得られる。
 図11は、本発明の第2の実施形態に係る樹脂枠付き電解質膜・電極構造体60が組み込まれる固体高分子型燃料電池62の要部分解斜視説明図である。
 なお、第1の実施形態に係る樹脂枠付き電解質膜・電極構造体10が組み込まれる燃料電池12と同一の構成要素には、同一の参照符号を付して、その詳細な説明は省略する。また、以下に説明する第3以降の実施形態においても同様に、その詳細な説明は省略する。
 樹脂枠付き電解質膜・電極構造体60は、電解質膜・電極構造体10aを備えるとともに、固体高分子電解質膜18の外周を周回し、カソード側電極22及びアノード側電極20に接合される樹脂製枠部材64を設ける。樹脂製枠部材64は、第1セパレータ14及び第2セパレータ16と同一の外形寸法に設定されており、外周縁部には、酸化剤ガス入口連通孔30a、冷却媒体入口連通孔32a、燃料ガス出口連通孔34b、燃料ガス入口連通孔34a、冷却媒体出口連通孔32b及び酸化剤ガス出口連通孔30bが形成される。
 このように構成される第2の実施形態では、樹脂製枠部材64と電解質膜・電極構造体10aとの間には、中間層26が設けられるとともに、ガス拡散層22b及びガス拡散層20bには、第1含浸層28a及び第2含浸層28bが設けられている。
 このため、カソード側電極22及びアノード側電極20と樹脂製枠部材64との接合強度は、接着による接合に比べて良好に向上し、剥がれ等の発生を可及的に抑制することができる。しかも、簡単且つ経済的な構成で、燃料ガスと酸化剤ガスとの混合を可及的に抑制することが可能になる等、上記の第1の実施形態と同様の効果が得られる。
 図12は、本発明の第3の実施形態に係る樹脂枠付き電解質膜・電極構造体70が組み込まれる固体高分子型燃料電池72の断面説明図である。
 樹脂枠付き電解質膜・電極構造体70は、電解質膜・電極構造体10aを備えるとともに、固体高分子電解質膜18の外周を周回し、カソード側電極22及びアノード側電極20に接合される樹脂製枠部材74を設ける。樹脂製枠部材74は、第1セパレータ14及び第2セパレータ16と同一の外形寸法に設定される。樹脂製枠部材74と第1セパレータ14及び第2セパレータ16との間には、それぞれシール部材76a、76bが介装される。
 図13は、本発明の第4の実施形態に係る樹脂枠付き電解質膜・電極構造体80が組み込まれる固体高分子型燃料電池82の断面説明図である。
 樹脂枠付き電解質膜・電極構造体80は、電解質膜・電極構造体10aを備えるとともに、固体高分子電解質膜18の外周を周回し、カソード側電極22及びアノード側電極20に接合される樹脂製枠部材84を設ける。樹脂製枠部材84は、第1セパレータ14及び第2セパレータ16よりも大きな外形寸法に設定される。樹脂製枠部材84と第1セパレータ14との間には、シール部材86aが介装されるとともに、前記樹脂製枠部材84間には、前記第1セパレータ14及び第2セパレータ16の外方に位置してシール部材86bが介装される。
 このように構成される第3及び第4の実施形態では、上記の第1及び第2の実施形態と同様の効果が得られる。
 図14は、本発明の第5の実施形態に係る樹脂枠付き電解質膜・電極構造体90が組み込まれる固体高分子型燃料電池92の断面説明図である。
 樹脂枠付き電解質膜・電極構造体90を構成する樹脂製枠部材93と電解質膜・電極構造体10aとの間には、中間層94が設けられる。中間層94は、中間層26と同様の材料で構成されるとともに、断面略Z形状を有している。中間層94の一方の端部と、カソード側電極22を構成するガス拡散層22bの外周端部22be及び樹脂製枠部材93の第1内周端部93aとの間には、第1隙間96aが形成される。中間層94の他方の端部と、アノード側電極20を構成するガス拡散層20bの外周端部20be及び樹脂製枠部材93の第2内周端部93bとの間には、第2隙間96bが形成される。
 第1隙間96aには、後述するように、樹脂製枠部材93に一体又は別体に設けられた第1突起部98aが溶融されて第1樹脂含浸部100aが形成される。第2隙間96bには、後述するように、樹脂製枠部材93に一体又は別体に設けられた第2突起部98bが溶融されて第2樹脂含浸部100bが形成される。
 第1樹脂含浸部100aは、中間層94の一方の端部に一部が重なり且つガス拡散層22bの内部に含浸されて設けられるとともに、第2樹脂含浸部100bは、前記中間層94の他方の端部に一部が重なり且つガス拡散層20bの内部に含浸されて設けられる。ガス拡散層22b、20bには、それぞれ中間層94の一部が含浸された接着層102a、102bが設けられる。
 次いで、樹脂枠付き電解質膜・電極構造体90を製造する方法について、以下に説明する。
 先ず、図15に示すように、樹脂製枠部材93は、射出成形機(図示せず)により成形されており、前記樹脂製枠部材93の一方の外表面(第1内周端部93a側の外表面)には、第1内周端部93aを周回する枠形状の第1突起部98aが一体成形される。樹脂製枠部材93の他方の外表面(第2内周端部93b側の外表面)には、第2内周端部93bを周回する枠形状の第2突起部98bが一体成形される。なお、第1突起部98a及び第2突起部98bは、樹脂製枠部材93とは別体の枠部材で形成しておき、前記樹脂製枠部材93に重ねて配置してもよい。
 樹脂製枠部材93と電解質膜・電極構造体10aとが位置合わせされるとともに、固体高分子電解質膜18の外周端部18beに対応して中間層94を構成する板状部材94aが配置される。
 そして、図16に示すように、樹脂製枠部材93と電解質膜・電極構造体10aとは、第1内周端部93aにカソード側電極22が配置される一方、第2内周端部93bに固体高分子電解質膜18及びアノード側電極20が配置され、板状部材94aを介して一体化される。
 ここで、板状部材94aは、樹脂製枠部材93と電解質膜・電極構造体10aとに挟持される。このため、板状部材94aは、第1内周端部93aとカソード側電極22を構成するガス拡散層22bの外周端部22beとの間、及び第2内周端部93bとアノード側電極20を構成するガス拡散層20bの外周端部20beとの間に進入し、断面略Z形状に成形された中間層94が得られる。
 その際、中間層94の一方の端部と、カソード側電極22を構成するガス拡散層22bの外周端部22be及び樹脂製枠部材93の第1内周端部93aとの間には、第1隙間96aが形成される。また、中間層94の他方の端部と、アノード側電極20を構成するガス拡散層20bの外周端部20be及び樹脂製枠部材93の第2内周端部93bとの間には、第2隙間96bが形成される。
 次に、図17に示すように、樹脂製枠部材93の第1突起部98a及び第2突起部98bが加熱される。加熱方式としては、レーザ溶着、赤外線溶着やインパルス溶着等が採用される。
 従って、第1突起部98aは、加熱溶融され、第1隙間96aを覆ってカソード側電極22を構成するガス拡散層22bに含浸される。一方、第2突起部98bは、加熱溶融され、第2隙間96bを覆ってアノード側電極20を構成するガス拡散層20bに含浸する。これにより、樹脂枠付き電解質膜・電極構造体90が製造される。
 このように製造される第5の実施形態では、上記の第1~第4の実施形態と同様の効果が得られる。

Claims (5)

  1.  それぞれ電極触媒層(22a、20a)とガス拡散層(22b、20b)とを有する第1電極(22)及び第2電極(20)が、固体高分子電解質膜(18)の両側に設けられるとともに、前記第1電極(22)は、前記第2電極(20)よりも外形寸法が小さく設定される電解質膜・電極構造体(10a)と、
     前記固体高分子電解質膜(18)の外周を周回して設けられる樹脂製枠部材(24、93)と、
     を備える燃料電池用樹脂枠付き電解質膜・電極構造体であって、
     前記第1電極(22)の外周端部(22be)と前記樹脂製枠部材(24、93)の内周端部(24a、93a)との間、前記第1電極(22)の前記外周端部(22be)から外部に露呈する前記固体高分子電解質膜(18)の外周縁部(18be)、及び前記第2電極(20)の外周端部(20be)と前記樹脂製枠部材(24、93)の内周端部(24b、93b)との間に連続して配置される中間層(26、94)を備えることを特徴とする燃料電池用樹脂枠付き電解質膜・電極構造体。
  2.  請求項1記載の燃料電池用樹脂枠付き電解質膜・電極構造体において、前記中間層(26、94)は、前記樹脂製枠部材(24、93)とは異なる樹脂材料で構成されることを特徴とする燃料電池用樹脂枠付き電解質膜・電極構造体。
  3.  請求項1又は2記載の燃料電池用樹脂枠付き電解質膜・電極構造体において、少なくとも一方の前記ガス拡散層(22b)の外周端縁部には、前記中間層(26)と同一の成分が含浸される含浸層(28a)が設けられることを特徴とする燃料電池用樹脂枠付き電解質膜・電極構造体。
  4.  請求項3記載の燃料電池用樹脂枠付き電解質膜・電極構造体において、前記含浸層(28a)は、前記ガス拡散層(22b)に85%以上の空孔充填率で含浸されることを特徴とする燃料電池用樹脂枠付き電解質膜・電極構造体。
  5.  請求項1又は2記載の燃料電池用樹脂枠付き電解質膜・電極構造体において、前記中間層(94)の一方の端部と前記第1電極(22)の前記外周端部(22be)及び前記樹脂製枠部材(93)の前記内周端部(93a)との間には、第1隙間(96a)が形成されるとともに、
     前記中間層(94)の他方の端部と前記第2電極(20)の前記外周端部(20be)及び前記樹脂製枠部材(93)の前記内周端部(93b)との間には、第2隙間(96b)が形成され、
     前記第1隙間(96a)には、前記樹脂製枠部材(93)に一体又は別体に設けられた第1突起部(98a)が溶融されて第1樹脂含浸部(100a)が形成される一方、
     前記第2隙間(96b)には、前記樹脂製枠部材(93)に一体又は別体に設けられた第2突起部(98b)が溶融されて第2樹脂含浸部(100b)が形成されることを特徴とする燃料電池用樹脂枠付き電解質膜・電極構造体。
PCT/JP2012/072698 2011-09-22 2012-09-06 燃料電池用樹脂枠付き電解質膜・電極構造体 WO2013042542A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013534660A JP5824522B2 (ja) 2011-09-22 2012-09-06 燃料電池用樹脂枠付き電解質膜・電極構造体
DE112012003942.4T DE112012003942B4 (de) 2011-09-22 2012-09-06 Elektrolyt-Membran-Elektrodenstruktur mit Harz-/Kunstharzrahmen für Brennstoffzellen
CN201280046196.7A CN103828107B (zh) 2011-09-22 2012-09-06 燃料电池用带有树脂框的电解质膜电极构造体
US14/346,377 US9966623B2 (en) 2011-09-22 2012-09-06 Electrolyte membrane-electrode structure with resin frame for fuel cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-207134 2011-09-22
JP2011207134 2011-09-22

Publications (1)

Publication Number Publication Date
WO2013042542A1 true WO2013042542A1 (ja) 2013-03-28

Family

ID=47914318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072698 WO2013042542A1 (ja) 2011-09-22 2012-09-06 燃料電池用樹脂枠付き電解質膜・電極構造体

Country Status (5)

Country Link
US (1) US9966623B2 (ja)
JP (1) JP5824522B2 (ja)
CN (1) CN103828107B (ja)
DE (1) DE112012003942B4 (ja)
WO (1) WO2013042542A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105144456A (zh) * 2013-04-25 2015-12-09 日产自动车株式会社 绝缘结构体、燃料电池以及燃料电池堆
WO2016199223A1 (ja) * 2015-06-09 2016-12-15 日産自動車株式会社 固体酸化物型燃料電池
US10243221B2 (en) 2014-12-08 2019-03-26 Honda Motor Co., Ltd. Resin-framed membrane-electrode assembly for fuel cell and method for manufacturing the same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106611864B (zh) 2015-10-21 2019-08-13 本田技研工业株式会社 燃料电池用带树脂框的电解质膜-电极构造体
US10522851B2 (en) * 2016-06-10 2019-12-31 Toyota Jidosha Kabushiki Kaisha Fuel cell resin frame assembly
JP6427215B2 (ja) * 2017-03-07 2018-11-21 本田技研工業株式会社 固体高分子型燃料電池用フィルム成形品のプレス加工方法及びプレス加工装置
JP6496382B1 (ja) 2017-10-26 2019-04-03 本田技研工業株式会社 発電セル
DE102018217259A1 (de) * 2018-10-10 2020-04-16 Robert Bosch Gmbh Dichtungskörper für eine Brennstoffzelle und Verfahren zum Herstellen einer solchen Brennstoffzelle
KR102683801B1 (ko) 2018-12-12 2024-07-09 현대자동차주식회사 연료전지용 탄성체 셀 프레임 및 그 제조방법과 이를 이용한 단위 셀
CN111342076A (zh) * 2018-12-18 2020-06-26 中国科学院大连化学物理研究所 一种密封线的加工方法
KR20200082238A (ko) * 2018-12-28 2020-07-08 현대자동차주식회사 연료 전지용 막 전극 접합체 및 이의 제조 방법
US11121384B2 (en) * 2019-07-30 2021-09-14 Honda Motor Co., Ltd. Frame equipped membrane electrode assembly and fuel cell
KR20210015384A (ko) * 2019-08-02 2021-02-10 현대자동차주식회사 연료전지용 탄성체 셀 프레임 및 그 제조방법과 이를 이용한 단위 셀
JP7487679B2 (ja) * 2021-02-03 2024-05-21 トヨタ自動車株式会社 燃料電池の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765847A (ja) * 1993-08-24 1995-03-10 Kansai Electric Power Co Inc:The 固体高分子電解質型燃料電池
JP2002124276A (ja) * 2000-10-18 2002-04-26 Honda Motor Co Ltd 燃料電池のシールの装着方法および燃料電池
JP2005183210A (ja) * 2003-12-19 2005-07-07 Nissan Motor Co Ltd 燃料電池のシール構造
JP2009514144A (ja) * 2003-07-14 2009-04-02 ユミコア アクチェンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフト 電気化学的デバイスのための膜電極アセンブリ
JP2009158391A (ja) * 2007-12-27 2009-07-16 Toyota Motor Corp 燃料電池およびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004088779A1 (ja) * 2003-03-28 2004-10-14 Honda Motor Co., Ltd. 固体高分子型燃料電池及びその燃料電池用の電極構造体
KR101146519B1 (ko) * 2003-07-14 2012-07-05 우미코레 아게 운트 코 카게 물의 전기 분해를 위한 멤브레인-전극 유니트
US20070003821A1 (en) * 2005-06-30 2007-01-04 Freudenberg-Nok General Partnership Integrally molded gasket for a fuel cell assembly
JP5194346B2 (ja) 2005-08-31 2013-05-08 日産自動車株式会社 電解質膜−電極接合体
CN101356676B (zh) * 2006-06-16 2010-06-02 松下电器产业株式会社 燃料电池用膜电极接合体、高分子电解质型燃料电池用单元、高分子电解质型燃料电池及膜电极接合体的制造方法
JP5164348B2 (ja) 2006-08-03 2013-03-21 日本ゴア株式会社 膜電極組立体およびその製造方法ならびにそれを用いた固体高分子形燃料電池
JP5366469B2 (ja) * 2008-08-04 2013-12-11 本田技研工業株式会社 電解質膜・電極構造体
JP5653015B2 (ja) 2009-08-12 2015-01-14 日本ゴア株式会社 補強された膜電極組立体の製造方法および補強された膜電極組立体
WO2012035591A1 (ja) * 2010-09-16 2012-03-22 トヨタ自動車株式会社 膜電極接合体およびそれを用いた燃料電池、膜電極接合体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0765847A (ja) * 1993-08-24 1995-03-10 Kansai Electric Power Co Inc:The 固体高分子電解質型燃料電池
JP2002124276A (ja) * 2000-10-18 2002-04-26 Honda Motor Co Ltd 燃料電池のシールの装着方法および燃料電池
JP2009514144A (ja) * 2003-07-14 2009-04-02 ユミコア アクチェンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフト 電気化学的デバイスのための膜電極アセンブリ
JP2005183210A (ja) * 2003-12-19 2005-07-07 Nissan Motor Co Ltd 燃料電池のシール構造
JP2009158391A (ja) * 2007-12-27 2009-07-16 Toyota Motor Corp 燃料電池およびその製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105144456A (zh) * 2013-04-25 2015-12-09 日产自动车株式会社 绝缘结构体、燃料电池以及燃料电池堆
US9450252B2 (en) 2013-04-25 2016-09-20 Nissan Motor Co., Ltd. Insulating structure, fuel cell and fuel cell stack
EP2991148B1 (en) * 2013-04-25 2018-06-06 Nissan Motor Co., Ltd. Insulating structure, fuel cell and fuel cell stack
CN105144456B (zh) * 2013-04-25 2018-06-08 日产自动车株式会社 绝缘结构体、燃料电池以及燃料电池堆
US10243221B2 (en) 2014-12-08 2019-03-26 Honda Motor Co., Ltd. Resin-framed membrane-electrode assembly for fuel cell and method for manufacturing the same
WO2016199223A1 (ja) * 2015-06-09 2016-12-15 日産自動車株式会社 固体酸化物型燃料電池
US10483579B2 (en) 2015-06-09 2019-11-19 Nissan Motor Co., Ltd. Solid oxide fuel cell

Also Published As

Publication number Publication date
CN103828107A (zh) 2014-05-28
DE112012003942T5 (de) 2014-07-17
DE112012003942B4 (de) 2020-10-01
US9966623B2 (en) 2018-05-08
DE112012003942T8 (de) 2014-08-07
JPWO2013042542A1 (ja) 2015-03-26
JP5824522B2 (ja) 2015-11-25
CN103828107B (zh) 2016-03-16
US20140234749A1 (en) 2014-08-21

Similar Documents

Publication Publication Date Title
JP5824522B2 (ja) 燃料電池用樹脂枠付き電解質膜・電極構造体
JP5681792B2 (ja) 燃料電池用電解質膜・電極構造体及びその製造方法
JP5615875B2 (ja) 燃料電池用樹脂枠付き電解質膜・電極構造体
JP5638508B2 (ja) 燃料電池用樹脂枠付き電解質膜・電極構造体の製造方法
JP5366469B2 (ja) 電解質膜・電極構造体
JP5855540B2 (ja) 燃料電池用樹脂枠付き電解質膜・電極構造体
JP5683433B2 (ja) 燃料電池スタック
US9130206B2 (en) Method for manufacturing resin-framed membrane electrode assembly for fuel cell
JP2014029834A (ja) 燃料電池用電解質膜・電極構造体
US10326150B2 (en) Fuel cell module, fuel cell stack, and method for producing fuel cell module
JP5643146B2 (ja) 燃料電池
JP2014137936A (ja) 樹脂枠付き電解質膜・電極構造体
US11171341B2 (en) Fuel cell and method of manufacturing fuel cell
JP5778044B2 (ja) 燃料電池用樹脂枠付き電解質膜・電極構造体
JP2008171613A (ja) 燃料電池
JP5912942B2 (ja) 樹脂枠付き電解質膜・電極構造体及び燃料電池
JP2011023161A (ja) 燃料電池の密封構造
JP6666664B2 (ja) 燃料電池用樹脂枠付き電解質膜・電極構造体
JP2017079170A (ja) 燃料電池用樹脂枠付き電解質膜・電極構造体及びその製造方法
KR102683799B1 (ko) 연료전지용 탄성체 셀 프레임 및 그 제조방법과 이를 이용한 단위 셀
JP6145082B2 (ja) 燃料電池用樹脂枠付き電解質膜・電極構造体及びその製造方法
JP2016058161A (ja) 燃料電池用樹脂枠付き電解質膜・電極構造体
JP2013258096A (ja) 燃料電池用樹脂枠付き電解質膜・電極構造体の製造方法
JP2013157093A (ja) 燃料電池
JP2008123885A (ja) 燃料電池、燃料電池の製造方法、および、アッセンブリ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280046196.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12832819

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013534660

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14346377

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112012003942

Country of ref document: DE

Ref document number: 1120120039424

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12832819

Country of ref document: EP

Kind code of ref document: A1