WO2013039234A1 - 太陽電池用保護材 - Google Patents

太陽電池用保護材 Download PDF

Info

Publication number
WO2013039234A1
WO2013039234A1 PCT/JP2012/073728 JP2012073728W WO2013039234A1 WO 2013039234 A1 WO2013039234 A1 WO 2013039234A1 JP 2012073728 W JP2012073728 W JP 2012073728W WO 2013039234 A1 WO2013039234 A1 WO 2013039234A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
protective material
moisture
film
adhesive
Prior art date
Application number
PCT/JP2012/073728
Other languages
English (en)
French (fr)
Inventor
直哉 二宮
由美 満倉
治 赤池
Original Assignee
三菱樹脂株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱樹脂株式会社 filed Critical 三菱樹脂株式会社
Priority claimed from JP2012203025A external-priority patent/JP2013084928A/ja
Priority claimed from JP2012203034A external-priority patent/JP2013123036A/ja
Priority claimed from JP2012203027A external-priority patent/JP2013084929A/ja
Priority claimed from JP2012203031A external-priority patent/JP2013077818A/ja
Priority claimed from JP2012203036A external-priority patent/JP6007037B2/ja
Publication of WO2013039234A1 publication Critical patent/WO2013039234A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10788Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing ethylene vinylacetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10018Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising only one glass sheet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2327/00Polyvinylhalogenides
    • B32B2327/12Polyvinylhalogenides containing fluorine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a protective material for use in solar cells and the like, and more particularly, to a protective material for solar cells that retains moisture resistance and can prevent foaming during vacuum lamination.
  • the solar cell is configured such that a solar cell is sealed between a front protective film (light-receiving surface side) and a back protective film with a sealing material such as an ethylene-vinyl acetate copolymer.
  • a solar cell is usually manufactured by laminating a front protective film, a sealing material, a power generating element, a sealing material, and a back protective film in this order, and bonding and integrating them by heating and melting.
  • a solar cell protective material that is a front protective film and / or a back protective film of a solar cell, it is required to have excellent durability against ultraviolet rays. In order to prevent rusting, it is extremely important to have excellent moisture resistance. Furthermore, there is a need for an excellent protective material that has little moisture-proof deterioration under long-term use or high-temperature conditions.
  • a polyester adhesive is used for a moisture-proof film having a water vapor transmission rate of 0.22 [g / (m 2 ⁇ day)] based on a biaxially stretched polyester film
  • a protective material for solar cells by laminating a weather-resistant polyester film and a polypropylene film on the back, evaluate moisture resistance after a 1000 hour test at 85 ° C and 85% humidity, and propose a proposal to prevent moisture resistance deterioration.
  • a polyurethane adhesive layer is provided on both sides of a moisture-proof film having a water vapor transmission rate of 1 to 2 [g / (m 2 ⁇ day)] based on a biaxially stretched polyester film.
  • the surface protection material for solar cells was manufactured by laminating weather-resistant polyester films on both sides, and the barrier performance and interlayer strength after 1000 hours accelerated test at 85 ° C and 85% humidity were evaluated to prevent deterioration of both characteristics. I am making a proposal.
  • Patent Document 3 a PVF film using a two-component curable polyurethane adhesive on a moisture-proof film having a water vapor transmission rate of 0.5 [g / (m 2 ⁇ day)] which is also based on a biaxially stretched polyester film.
  • PCT pressure cooker test
  • each of the techniques disclosed in Patent Documents 1 to 3 above relates to a laminate having a moisture-proof film having a water vapor transmission rate of 0.1 [g / (m 2 ⁇ day)] or more.
  • surface protection materials for solar cells such as compound-based power generation element solar cell modules that require high moisture resistance
  • long-term maintenance of moisture resistance can be substituted for accelerated durability tests such as the pressure cooker test (PCT). It was not enough.
  • a plurality of moisture-proof films in which an inorganic thin film is deposited on a base film may be laminated using an adhesive or an adhesive.
  • This is a laminating method that uses a reactive adhesive or pressure-sensitive adhesive for adhesion between the layers to be laminated, and the reactive adhesive reacts while strong adhesion between layers is obtained.
  • Accompanying bubbles may be mainly composed of carbon dioxide. Since the bubbles generated between the layers usually pass through the inside of the layer made of the resin sheet and are discharged to the outside, the bubbles generated between the layers naturally disappear by providing an appropriate aging period after lamination.
  • the problem to be solved by the present invention is to prevent foaming during vacuum lamination for a solar cell protective material including a moisture-proof film having a water vapor permeability of less than 0.1 [g / (m 2 ⁇ day)].
  • An object of the present invention is to provide a protective material for a solar cell that can prevent the deterioration of the performance of the solar cell and is effective in improving the durability of the solar cell.
  • Another object of the present invention is to realize a solar cell protective material that does not deteriorate in moisture resistance over a long period of time and is excellent in flexibility and moisture resistance, and at the same time prevents the deterioration of the performance of the solar cell, and the durability of the solar cell.
  • An object of the present invention is to provide a solar cell protective material effective in improving the temperature.
  • a moisture-proof film having a metal oxide layer on at least one surface of the substrate and having a water vapor transmission rate of less than 0.1 [g / (m 2 ⁇ day)] is 2
  • the solar cell protective material characterized in that it can prevent foaming at the time of vacuum lamination, and further, it can satisfy the prevention of deterioration of moisture resistance in long-term use in a high temperature and high humidity environment. It came to be completed.
  • the present invention (1) A solar cell protective material having a metal oxide layer on at least one surface of a substrate and having two or more moisture-proof films having a water vapor transmission rate of less than 0.1 [g / (m 2 ⁇ day)].
  • the moisture-proof film is laminated through an adhesive layer made of a polyurethane adhesive using a polyurethane polyol having a viscosity of 200 to 1000 mPa ⁇ s at 25 ° C.
  • Material (2) Further, it has a fluororesin film, and the fluororesin film and the moisture-proof film have a tensile storage elastic modulus of 5.0 ⁇ 10 4 to 5 at 100 ° C., a frequency of 10 Hz, and a strain of 0.1%.
  • a protective material for a solar cell according to (1) which is laminated via an adhesive layer of 0.0 ⁇ 10 5 Pa, (3)
  • the solar cell protective material according to any one of (5) The solar cell protective material according to any one of (1) to (4) above, wherein the adhesive layer has a thickness of 4 to 12 ⁇ m.
  • PEN polyethylene naphthalate
  • the present invention it is possible to provide a highly moisture-proof solar cell protective material that is free from air bubbles during vacuum lamination, simultaneously prevents deterioration of the performance of the solar cell, and is effective in improving the durability of the solar cell. it can.
  • a protective material for a solar cell that has no moisture-proof deterioration for a long period of time and that is excellent in flexibility and moisture-proofing can be achieved, and the performance of the solar cell can be prevented at the same time. It is possible to provide a highly moisture-proof solar cell protective material effective for improvement.
  • an adhesive diluted with a solvent is applied to a plastic film to be laminated to a predetermined thickness, and the solvent is evaporated by drying in the range of 70 to 140 ° C. After forming an adhesive layer on top, it repeats pasting other plastic films toward the adhesive side, and finally it is made through curing at a predetermined temperature. Curing is performed, for example, in the range of 30 to 80 ° C. for 1 day to 1 week.
  • the lamination step heat and bonding tension act on each film, and residual strain is accumulated in the solar cell protective material.
  • the produced solar cell protective material is heated and melted by vacuum lamination together with the solar cell element and the sealing material, and is integrated into the solar cell.
  • This vacuum lamination process is usually performed in the range of 130 to 180 ° C.
  • the solar cell protective material is subjected to a heat treatment in the range of 130 to 180 ° C., which is a temperature much higher than the drying and curing temperature of the adhesive in the vacuum lamination process.
  • the residual strain accumulated in the above-described lamination process acts as stress on each lamination interface during storage in a high temperature and high humidity environment.
  • the film shrinks due to the temperature in a high-temperature and high-humidity environment, stress acts on the metal oxide layer, and serious deterioration of the metal oxide layer may occur. is there.
  • the present inventors have suppressed foaming by reducing the moisture and air that affect foaming by controlling the viscosity of the adhesive used, or by sufficiently promoting curing, for the lamination of moisture-proof films.
  • the pressure-sensitive adhesive layer preferably has a specific tensile storage modulus on the moisture-proof film. It has been found that a protective material for a solar cell that lowers the stress acting on the metal oxide layer of the moisture-proof film in a high-temperature and high-humidity environment and maintains a high moisture-proof property for a long period of time is provided.
  • the pressure-sensitive adhesive layer used for bonding by vacuum lamination is a flexible layer having a sufficiently low tensile elastic modulus and the stress is absorbed by deformation of the pressure-sensitive adhesive layer.
  • the protective material for solar cells of the present invention comprises at least two moisture-proof films having a metal oxide layer on at least one surface of a substrate and having a water vapor transmission rate of less than 0.1 [g / (m 2 ⁇ day)].
  • the moisture-proof films are laminated via an adhesive layer made of a polyurethane adhesive using a polyurethane polyol having a viscosity at 25 ° C. of 200 to 1000 mPa ⁇ s.
  • the solar cell protective material of the present invention comprises a moisture-proof film having a metal oxide layer on at least one surface of a substrate and having a water vapor transmission rate of less than 0.1 [g / (m 2 ⁇ day)], 25
  • An adhesive layer comprising a polyurethane adhesive using a polyurethane polyol having a viscosity at 200 ° C. of 200 to 1000 mPa ⁇ s, a metal oxide layer on at least one surface of the substrate, and a water vapor transmission rate of 0.1 [g / (M 2 ⁇ day)] is a solar cell protective material having a moisture-proof film of less than this order.
  • the moisture-proof film has a metal oxide layer on at least one surface of the substrate, and its water vapor transmission rate is less than 0.1 [g / (m 2 ⁇ day)]. Since the present invention relates to a solar cell protective material that is desired to maintain high moisture resistance for a long period of time, the initial moisture resistance needs to be a certain level or more. Therefore, in the present invention, the moisture-proof film has a water vapor transmission rate of less than 0.1 [g / (m 2 ⁇ day)], preferably 0.05 [g / (m 2 ⁇ day)] or less, More preferably, it is 0.03 [g / m 2 ⁇ day] or less.
  • the moisture-proof film is preferably transparent when used as a solar cell protective material, particularly as a front sheet used on the light-receiving surface side.
  • the water vapor transmission rate can be adjusted by appropriately adjusting the selection of the base material, the selection of the metal oxide constituting the metal oxide layer, the thickness of the metal oxide layer, the oxidation number of the metal oxide, and the like.
  • the solar cell protective material of the present invention has two or more moisture-proof films from the viewpoint of moisture resistance. As the number of moisture-proof films increases, the moisture-proof property is improved. However, from the viewpoint of lowering transparency and suppressing foaming, the upper limit is usually preferably 4 sheets.
  • a thermoplastic resin film is preferable, and as the material thereof, any resin that can be used for a normal solar cell material can be used without particular limitation.
  • polyolefins such as homopolymers or copolymers such as ethylene, propylene and butene, amorphous polyolefins such as cyclic polyolefins, polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), nylon 6 , Nylon 66, nylon 12, polyamide such as copolymer nylon, ethylene-vinyl acetate copolymer partial hydrolyzate (EVOH), polyimide, polyetherimide, polysulfone, polyethersulfone, polyetheretherketone, polycarbonate, polyvinyl Examples include butyral, polyarylate, fluororesin, acrylic resin, and biodegradable resin.
  • polyesters, polyamides, and polyolefins are preferable from the viewpoints of film properties and cost.
  • polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) are particularly preferable from the viewpoints of surface smoothness, film strength, heat resistance, and the like.
  • the base material is a known additive such as an antistatic agent, a light blocking agent, an ultraviolet absorber, a plasticizer, a lubricant, a filler, a colorant, a stabilizer, a lubricant, a crosslinking agent, an antiblocking agent, an oxidation agent.
  • An inhibitor or the like can be contained.
  • the base material may be unstretched or stretched.
  • a substrate can be produced by a conventionally known method. For example, a raw material resin is melted by an extruder, extruded by an annular die or a T die, and rapidly cooled to be substantially amorphous and not oriented. An unstretched film can be manufactured. Further, by using a multilayer die, it is possible to produce a single layer film made of one kind of resin, a multilayer film made of one kind of resin, a multilayer film made of various kinds of resins, and the like.
  • the unstretched film is subjected to a known method such as uniaxial stretching, tenter sequential biaxial stretching, tenter simultaneous biaxial stretching, tubular simultaneous biaxial stretching, or the like.
  • a film stretched in a uniaxial direction or a biaxial direction can be produced by stretching in a direction (horizontal axis) perpendicular thereto.
  • the draw ratio can be arbitrarily set, the 150 ° C. heat shrinkage ratio is preferably 0.01 to 5%, more preferably 0.01 to 2%.
  • biaxially stretched polyethylene naphthalate film biaxially stretched polyethylene terephthalate, polyethylene terephthalate and / or coextruded biaxially stretched film of polyethylene naphthalate and other plastics are preferable.
  • the thickness of the substrate is generally about 5 to 100 ⁇ m, preferably 8 to 50 ⁇ m, more preferably 10 to 30 ⁇ m, and particularly preferably 12 to 25 ⁇ m from the viewpoint of productivity and ease of handling.
  • anchor coating agent examples include solvent-based or aqueous polyester resins, isocyanate resins, urethane resins, acrylic resins, modified vinyl resins, vinyl alcohol resins, vinyl butyral resins, ethylene vinyl alcohol resins, nitrocellulose resins, oxazoline group-containing resins, carbodiimides.
  • a group-containing resin, a melamine group-containing resin, an epoxy group-containing resin, a modified styrene resin, a modified silicone resin, or the like can be used alone or in combination of two or more.
  • silane coupling agents titanium coupling agents, alkyl titanates, light blockers, ultraviolet absorbers, stabilizers, lubricants, antiblocking agents, antioxidants, etc.
  • a copolymer obtained by copolymerization with can be used.
  • the thickness of the anchor coat layer is preferably 10 to 200 nm, and more preferably 10 to 100 nm, from the viewpoint of improving the adhesion with the metal oxide layer.
  • a known coating method is appropriately adopted as the formation method. For example, any method such as a reverse roll coater, a gravure coater, a rod coater, an air doctor coater, or a coating method using a spray can be used.
  • the substrate may be immersed in a coating agent solution. After coating, the solvent can be evaporated using a known drying method such as hot air drying at a temperature of about 80 to 200 ° C., heat drying such as hot roll drying, or infrared drying.
  • the crosslinking process by electron beam irradiation can also be performed.
  • the formation of the anchor coat layer may be a method performed in the middle of the substrate production line (inline) or a method performed after the substrate production (offline).
  • Metal oxide layer examples of the material constituting the metal oxide layer of the moisture-proof film include silicon, aluminum, magnesium, zinc, tin, nickel, titanium and other oxides, oxide carbides, oxynitrides, oxycarbonitrides, and mixtures thereof.
  • silicon oxide, silicon oxide carbide, silicon oxynitride, silicon oxycarbonitride from the point that there is no fear of leakage of current when applied to solar cells, and transparency and high moisture resistance can be stably maintained.
  • Metal oxides such as aluminum oxide, aluminum oxide carbide and aluminum oxynitride and mixtures thereof are preferred.
  • any method such as a vapor deposition method and a coating method can be used, but the vapor deposition method is preferable in that a uniform metal oxide layer having a high gas barrier property can be obtained.
  • This vapor deposition method includes any method such as physical vapor deposition (PVD) or chemical vapor deposition (CVD). Examples of physical vapor deposition include vacuum vapor deposition, ion plating, and sputtering, and chemical vapor deposition includes plasma CVD using plasma and a catalyst that thermally decomposes a material gas using a heated catalyst body. Examples include chemical vapor deposition (Cat-CVD).
  • the thickness of the metal oxide layer is preferably 40 to 1000 nm, more preferably 50 to 800 nm, and still more preferably 50 to 600 nm from the viewpoint of stable moisture resistance.
  • the polyurethane adhesive in the present invention constitutes a layer for bonding moisture-proof films together.
  • the thickness of the polyurethane adhesive is preferably 4 to 12 ⁇ m, and from the viewpoint of maintaining moisture resistance, the adhesive layer made of the polyurethane adhesive has a thickness of 100 ° C., a frequency of 10 Hz, and a strain of 0.1%.
  • the tensile storage elastic modulus is preferably 5.0 ⁇ 10 4 to 5.0 ⁇ 10 5 Pa, more preferably 7.0 ⁇ 10 4 to 5.0 ⁇ 10 5 Pa, and further preferably 1.0 ⁇ 10 5 Pa. 5 to 5.0 ⁇ 10 5 Pa.
  • the adhesive layer made of polyurethane adhesive has a tensile storage elastic modulus of 1.0 ⁇ 10 6 Pa at 20 ° C., a frequency of 10 Hz, and a strain of 0.1% from the viewpoint of maintaining adhesive strength at room temperature (20 ° C.).
  • the above is preferable.
  • the tensile storage elastic modulus in this invention is measured by the method as described in the below-mentioned Example.
  • the viscosity of the polyurethane adhesive is very important from the viewpoint of suppressing foaming.
  • the adhesive viscosity refers to the viscosity [Pa ⁇ s] measured at 25 ° C. with a B-type viscometer when the diluent solvent is ethyl acetate and the solid content concentration is 50 mass%.
  • the generation of bubbles in vacuum lamination is caused by the high temperature of moisture contained in the adhesive or residual solvent, air taken in during lamination or carbon dioxide accompanying the reaction during adhesive curing, etc. This is due to active movement and aggregation.
  • the viscosity of the polyurethane adhesive is 1000 mPa ⁇ s or less. From the above viewpoint, the viscosity of the polyurethane adhesive is 200 to 1000 mPa ⁇ s, preferably 300 to 900 mPa ⁇ s, and more preferably 400 to 800 mPa ⁇ s.
  • a polyurethane polyol is used as the main component of the polyurethane adhesive.
  • Specific examples include compositions containing polycarbonate polyols, polyether polyols, acrylic polyols, or polyester polyols. From the viewpoints of thermal stability, humidity stability, and the like, compositions containing polycarbonate polyols are more preferable.
  • the polycarbonate polyol in the composition is preferably contained in an amount of 50% by mass or more.
  • the polycarbonate polyol can be obtained, for example, by copolymerizing methylene carbonate, ethylene carbonate or diphenyl carbonate and a diol such as ethylene glycol, propylene glycol, butanediol, neopentyl glycol (NPG), or cyclohexanediol. It can also be obtained by copolymerizing polycaprolactone polyol and polycarbonate diol.
  • the polyether polyol can be obtained, for example, by subjecting an alkylene oxide such as ethylene oxide, propylene oxide, and tetrahydrofuran to ring-opening polymerization using an alkali catalyst or an acid catalyst as a catalyst.
  • polyhydric alcohols such as ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol can be used.
  • the polyacryl polyol can be obtained by copolymerizing a (meth) acrylic acid ester having a hydroxyl group and another monomer.
  • examples of the (meth) acrylic acid ester having a hydroxyl group include hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxybutyl acrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate, and hydroxybutyl methacrylate.
  • examples of other monomers include methyl methacrylate, butyl methacrylate, and cyclohexyl methacrylate having an alicyclic structure.
  • polyester polyol examples include dicarboxylic acid compounds such as succinic acid, glutaric acid, adipic acid, isophthalic acid (IPA), and terephthalic acid (TPA), and diols such as ethylene glycol, propylene glycol, butanediol, neopentyl glycol, and cyclohexanediol. Alternatively, it can be obtained by copolymerizing with polytetramethylene glycol or the like.
  • dicarboxylic acid compounds such as succinic acid, glutaric acid, adipic acid, isophthalic acid (IPA), and terephthalic acid (TPA)
  • diols such as ethylene glycol, propylene glycol, butanediol, neopentyl glycol, and cyclohexanediol.
  • IPA isophthalic acid
  • TPA terephthalic acid
  • diols such as ethylene glycol, prop
  • diisocyanate is preferable, and any of aliphatic diisocyanate, aromatic diisocyanate and alicyclic diisocyanate can be preferably used.
  • aliphatic diisocyanate include hexamethylene diisocyanate (HDI).
  • aromatic diisocyanate include xylylene diisocyanate (XDI) and diphenylmethane diisocyanate (MDI).
  • alicyclic diisocyanate include isophorone diisocyanate (IPDI) and dicyclohexylmethane diisocyanate (H12MDI).
  • XDI which is an aromatic diisocyanate
  • IPDI which is an alicyclic diisocyanate
  • IPDI is more preferable.
  • the main component contains polycarbonate polyol, it is excellent in terms of high heat resistance and high moisture resistance, but from the viewpoint of obtaining a sufficient crosslinking density even during curing, HDI having a flexible methylene chain is combined as a curing agent. It is preferable. Moreover, in order to obtain a more thermally stable adhesive layer, it is preferable to use a material containing an epoxy compound as a main component.
  • the polyurethane adhesive in the present invention preferably contains an ultraviolet absorber.
  • ultraviolet absorbers that can be used include various types such as benzophenone-based, benzotriazole-based, triazine-based, salicylic acid ester-based, and various commercially available products can be applied.
  • benzophenone ultraviolet absorbers include 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-2′-carboxybenzophenone, 2-hydroxy-4-octoxybenzophenone, 2-hydroxy-4-n.
  • benzotriazole ultraviolet absorber examples include hydroxyphenyl-substituted benzotriazole compounds such as 2- (2-hydroxy-5-methylphenyl) benzotriazole and 2- (2-hydroxy-5-tert-butylphenyl).
  • Benzotriazole 2- (2-hydroxy-3,5-dimethylphenyl) benzotriazole, 2- (2-methyl-4-hydroxyphenyl) benzotriazole, 2- (2-hydroxy-3-methyl-5-t- Butylphenyl) benzotriazole, 2- (2-hydroxy-3,5-di-t-amylphenyl) benzotriazole, 2- (2-hydroxy-3,5-di-t-butylphenyl) benzotriazole, etc. be able to.
  • triazine ultraviolet absorbers examples include 2- [4,6-bis (2,4-dimethylphenyl) -1,3,5-triazin-2-yl] -5- (octyloxy) phenol, 2- ( Examples include 4,6-diphenyl-1,3,5-triazin-2-yl) -5- (hexyloxy) phenol.
  • salicylic acid esters include phenyl salicylate and p-octylphenyl salicylate.
  • the content of the ultraviolet absorber in the polyurethane adhesive is usually about 0.01 to 2.0% by mass, preferably 0.05 to 0.5% by mass.
  • Hindered amine light stabilizers can be used as a weather stabilizer that imparts weather resistance in addition to the above ultraviolet absorbers.
  • a hindered amine light stabilizer does not absorb ultraviolet rays like an ultraviolet absorber, but exhibits a remarkable synergistic effect when used together with an ultraviolet absorber.
  • hindered amine light stabilizers include dimethyl-1- (2-hydroxyethyl) succinate-4-hydroxy-2,2,6,6-tetramethylpiperidine polycondensate, poly [ ⁇ 6- (1,1 , 3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl ⁇ ⁇ (2,2,6,6-tetramethyl-4-piperidyl) imino ⁇ hexamethylene ⁇ (2, 2,6,6-tetramethyl-4-piperidyl) imino ⁇ ], N, N′-bis (3-aminopropyl) ethylenediamine-2,4-bis [N-butyl-N- (1,2,2, 6,6-pentamethyl-4-piperidyl) amino] -6-chloro-1,3,5-triazine condensate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, 2- (3 , 5-Di-tert-4 Hydroxybenzyl) -2
  • the polyurethane adhesive can be provided by, for example, a roll coating method, a gravure roll coating method, a kiss coating method, other coating methods, a printing method, or the like.
  • the coating amount is 0.1 to 10 g / m 2. (Dry state) is desirable.
  • the polyurethane adhesive can be directly applied to the metal oxide layer or substrate film surface of the moisture-proof film having the pre-metal oxide layer.
  • the polyurethane adhesive is preferably applied in the form of an organic solvent-based, emulsion-based or solvent-free coating solution, and an organic solvent-based coating solution is preferred for applications such as solar cell members that require water resistance.
  • the organic solvent used in the organic solvent-based coating liquid include toluene, xylene, methanol, ethanol, isobutanol, n-butanol, acetone, methyl ethyl ketone, ethyl acetate, and tetrahydrofuran. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • the coating liquid is preferably prepared using these organic solvents so that the solid content concentration is in the range of 10 to 50% by mass.
  • Coating of the coating liquid is, for example, a conventionally known coating method such as bar coating method, roll coating method, knife coating method, roll knife coating method, die coating method, gravure coating method, air doctor coating method, doctor blade coating method, etc. Can be performed.
  • the adhesive layer is formed by drying treatment usually at a temperature of 70 to 110 ° C. for about 1 to 5 minutes.
  • the thickness of the adhesive layer is preferably 4 ⁇ m or more, more preferably 6 ⁇ m or more, from the viewpoint of obtaining sufficient adhesive strength.
  • the thickness is preferably 12 ⁇ m or less, more preferably 10 ⁇ m. It is as follows.
  • the protective material for solar cells of the present invention preferably has a fluororesin film in order to provide hydrolysis resistance and weather resistance and to provide long-term durability.
  • the fluororesin film preferably has weather resistance.
  • examples of the fluororesin include polytetrafluoroethylene (PTFE), 4-fluoroethylene-perchloroalkoxy copolymer (PFA), 4-fluoroethylene- 6-fluoropropylene copolymer (FEP), 2-ethylene-4-fluoroethylene copolymer (ETFE), poly-3-fluoroethylene chloride (PCTFE), polyvinylidene fluoride (PVDF), and polyvinyl fluoride ( PVF) and the like are preferably used.
  • PTFE polytetrafluoroethylene
  • PFA 4-fluoroethylene-perchloroalkoxy copolymer
  • FEP 4-fluoroethylene- 6-fluoropropylene copolymer
  • ETFE 2-ethylene-4-fluoroethylene copolymer
  • the fluororesins include 2-ethylene-4-fluorinated ethylene copolymer (ETFE) and 4-fluorinated ethylene-6-fluorinated propylene copolymer (FEP).
  • ETFE 2-ethylene-4-fluorinated ethylene copolymer
  • FEP 4-fluorinated ethylene-6-fluorinated propylene copolymer
  • the fluorine resin film it is preferable that its characteristic change is small even in the temperature and humidity changes during vacuum lamination and storage at high temperature and high humidity. It is preferable to use a film in which the shrinkage ratio is reduced by the above.
  • the fluororesin film preferably contains an ultraviolet absorber.
  • the ultraviolet absorber that can be used the same ultraviolet absorbers contained in the above-mentioned adhesive can be used.
  • the thickness of the fluororesin film is generally about 20 to 200 ⁇ m, preferably 20 to 100 ⁇ m, more preferably 20 to 50 ⁇ m from the viewpoint of film handling and cost.
  • a solar cell protective material excellent in flexibility is obtained, and when the solar cell module is bent, the solar cell module The protective material can follow the bending and is preferable because delamination between the protective material for solar cell and the sealing material hardly occurs.
  • the thickness of the base material of all moisture-proof films constituting the protective material for solar cells is thinner than the thickness of the fluororesin film for the reasons described above.
  • the moisture-proof film and the fluororesin film are laminated via an adhesive layer.
  • the pressure-sensitive adhesive layer preferably has a tensile storage elastic modulus of 5.0 ⁇ 10 4 Pa or more and 5.0 ⁇ 10 5 Pa or less at 100 ° C., a frequency of 10 Hz, and a strain of 0.1%. That is, if the tensile storage modulus at 100 ° C., frequency 10 Hz, and strain 0.1% is 5.0 ⁇ 10 4 Pa or more, the pressure-sensitive adhesive layer does not flow during heating such as vacuum lamination, and the layer thickness is kept uniform.
  • the metal oxide layer can be obtained by absorbing the stress generated by the shrinkage of the opposing film through the pressure-sensitive adhesive layer. It is possible to prevent damage to the battery, which is preferable.
  • the tensile storage elastic modulus of the pressure-sensitive adhesive layer at 100 ° C., frequency 10 Hz, and strain 0.1% is more preferably 7.0 ⁇ 10 4 to 5.0 ⁇ 10 5 Pa. It is more preferable that it is ⁇ 10 5 to 5.0 ⁇ 10 5 Pa.
  • the pressure-sensitive adhesive used for the pressure-sensitive adhesive layer the tensile storage elastic modulus at 100 ° C., frequency 10 Hz, and strain 0.1% is set to 5 ⁇ 10 5 Pa or less and the adhesive strength is maintained.
  • those containing an acrylic adhesive are preferred, and those containing an acrylic adhesive as the main component are more preferred.
  • the main component is a purpose that allows other components to be contained within a range that does not impede the effects of the present invention, and does not limit the specific content, but is generally an adhesive layer.
  • the total component is 100 parts by mass, it is 50 parts by mass or more, preferably 65 parts by mass or more, more preferably 80 parts by mass or more and occupies a range of 100 parts by mass or less.
  • the pressure-sensitive adhesive layer has a tensile storage elastic modulus of 1.0 ⁇ 10 6 Pa or more at 20 ° C., a frequency of 10 Hz, and a strain of 0.1% from the viewpoint of maintaining the adhesive strength at normal temperature (20 ° C.). preferable.
  • acrylic pressure-sensitive adhesive examples include a main monomer component having a low glass transition point (Tg) that imparts tackiness, a comonomer component having a high Tg that imparts adhesiveness and cohesive force, and a functional group-containing monomer for improving crosslinking and adhesion.
  • Tg glass transition point
  • comonomer component having a high Tg that imparts adhesiveness and cohesive force
  • a functional group-containing monomer for improving crosslinking and adhesion examples of the acrylic pressure-sensitive adhesive.
  • a polymer or copolymer mainly composed of components hereinafter referred to as “acrylic (co) polymer” is preferred.
  • alkyl acrylate esters such as ethyl acrylate, butyl acrylate, amyl acrylate, 2-ethylhexyl acrylate, octyl acrylate, cyclohexyl acrylate, benzyl acrylate, and the like.
  • alkyl methacrylates such as butyl methacrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate, and benzyl methacrylate. These may be used alone or in combination of two or more.
  • Examples of the comonomer component of the acrylic pressure-sensitive adhesive include methyl acrylate, methyl methacrylate, ethyl methacrylate, vinyl acetate, styrene, acrylonitrile and the like. These may be used alone or in combination of two or more.
  • Examples of the functional group-containing monomer component of the acrylic pressure-sensitive adhesive include carboxyl group-containing monomers such as acrylic acid, methacrylic acid, maleic acid, and itaconic acid, 2-hydroxyethyl (meth) acrylate, and 2-hydroxypropyl (methacrylic acid). ) Hydroxyl group-containing monomers such as acrylate and N-methylolacrylamide, acrylamide, methacrylamide, glycidyl methacrylate and the like. These may be used alone or in combination of two or more.
  • the initiator used for polymerization of the monomer component of the acrylic pressure-sensitive adhesive examples include azobisisobutylnitrile, benzoyl peroxide, di-t-butyl peroxide, cumene hydroperoxide, and the like.
  • the copolymerization form of the acrylic (co) polymer used as the main component of the said acrylic adhesive Any of a random, a block, and a graft copolymer may be sufficient.
  • the molecular weight when the acrylic pressure-sensitive adhesive is the above-mentioned acrylic (co) polymer is preferably 300,000 to 1,500,000 in terms of mass average molecular weight, and more preferably 400,000 to 1,000,000. preferable. By setting the mass average molecular weight within the above range, adhesion to the adherend and adhesion durability can be ensured, and floating and peeling can be suppressed.
  • the content of the functional group-containing monomer component unit is preferably in the range of 1 to 25% by mass. By making this content within the above range, the adhesion to the adherend and the degree of crosslinking are ensured.
  • the tensile storage elastic modulus of the pressure-sensitive adhesive layer is 100 ° C., frequency 10 Hz, strain 0.1%. The value can be in the range of 5.0 ⁇ 10 4 to 5.0 ⁇ 10 5 Pa.
  • the pressure-sensitive adhesive layer in the present invention preferably contains an ultraviolet absorber.
  • an ultraviolet absorber that can be used, the same ultraviolet absorbers contained in the above-mentioned polyurethane adhesive can be used.
  • the pressure-sensitive adhesive layer may be formed by directly applying to the metal oxide layer or substrate of the moisture-proof film, or the pressure-sensitive adhesive may be applied to the release-treated surface of the release sheet subjected to the release treatment. And can be formed by bonding it to the metal oxide layer or substrate of the moisture-proof film.
  • the effect of the pressure-sensitive adhesive layer is remarkable when it is applied to the metal oxide layer side of the moisture-proof film.
  • the pressure-sensitive adhesive is preferably applied as a coating liquid, and there are organic solvent-based, emulsion-based, and solvent-free coating liquids. A coating solution is desirable.
  • organic solvent used in the organic solvent-based coating liquid examples include toluene, xylene, methanol, ethanol, isobutanol, n-butanol, acetone, methyl ethyl ketone, ethyl acetate, and tetrahydrofuran. These may be used individually by 1 type and may be used in combination of 2 or more type.
  • the coating liquid is preferably prepared using these organic solvents so that the solid content concentration is in the range of 10 to 50% by mass.
  • Coating of the coating liquid is, for example, a conventionally known coating method such as bar coating method, roll coating method, knife coating method, roll knife coating method, die coating method, gravure coating method, air doctor coating method, doctor blade coating method, etc. Can be performed.
  • the pressure-sensitive adhesive layer is formed by drying treatment usually at a temperature of 70 to 110 ° C. for about 1 to 5 minutes.
  • the thickness of the pressure-sensitive adhesive layer is preferably 10 ⁇ m or more from the viewpoint of obtaining sufficient adhesive force, more preferably 13 ⁇ m or more, more preferably 15 ⁇ m or more, more preferably 18 ⁇ m or more, and further preferably 20 ⁇ m or more. . Further, from the viewpoint of providing a coatable thickness, the thickness is preferably 100 ⁇ m or less, and more preferably 50 ⁇ m or less.
  • the protective material for solar cells of the present invention uses a fluorine-based resin film, it has a fluorine-based resin film, an adhesive layer, a moisture-proof film, an adhesive layer and a moisture-proof film in this order, and when used for a solar cell, Use a fluororesin film on the exposed side.
  • Each layer constituting the solar cell protective material of the present invention has various physical properties (flexibility, heat resistance, transparency, adhesiveness, etc.), molding processability, economic efficiency, etc. within a range not departing from the gist of the present invention.
  • polyolefin resins and various elastomers olefins, styrenes, etc.
  • polar groups such as carboxyl groups, amino groups, imide groups, hydroxyl groups, epoxy groups, oxazoline groups, thiol groups, silanol groups, etc.
  • Modified resins and tackifying resins can be contained.
  • the tackifying resin examples include petroleum resins, terpene resins, coumarone-indene resins, rosin resins, and hydrogenated derivatives thereof.
  • the petroleum resin includes cyclopentadiene or an alicyclic petroleum resin derived from a dimer thereof and an aromatic petroleum resin derived from a C 9 component
  • the terpene resin includes terpene resin and terpene derived from ⁇ -pinene.
  • -Phenol resin, and examples of rosin resins include rosin resins such as gum rosin and wood rosin, esterified rosin resins modified with glycerin, pentaerythritol, and the like.
  • the tackifying resin can be obtained mainly having various softening temperatures depending on the molecular weight, and hydrogenated derivatives of alicyclic petroleum resins having a softening temperature of 100 to 150 ° C, preferably 120 to 140 ° C are particularly preferable.
  • 20 mass% or less is preferable, and 10 mass% or less is still more preferable.
  • additives can be added to each layer of the solar cell protective material as necessary, as described above.
  • the additive include a silane coupling agent, an antioxidant, a weather resistance stabilizer, a light diffusing agent, a nucleating agent, a pigment (for example, a white pigment), a flame retardant, and a discoloration preventing agent.
  • a silane coupling agent for example, an antioxidant, an ultraviolet absorber, and a weathering stabilizer
  • a crosslinking agent and / or a crosslinking aid may be blended.
  • silane coupling agent examples include compounds having a hydrolyzable group such as an alkoxy group together with an unsaturated group such as a vinyl group, an acryloxy group, and a methacryloxy group, an amino group, an epoxy group, and the like.
  • Specific examples of the silane coupling agent include N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltrimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane, and ⁇ -aminopropyltriethoxy.
  • Examples thereof include silane, ⁇ -glycidoxypropyltrimethoxysilane, and ⁇ -methacryloxypropyltrimethoxysilane.
  • ⁇ -glycidoxypropyltrimethoxysilane and ⁇ -methacryloxypropyltrimethoxysilane are preferably used because of good adhesiveness and little discoloration such as yellowing.
  • the amount of the silane coupling agent added is usually about 0.1 to 5% by mass, preferably 0.2 to 3% by mass, in each layer constituting the protective material for solar cells.
  • a coupling agent such as an organic titanate compound can also be used effectively.
  • antioxidant various commercial products can be applied, and various types such as monophenol type, bisphenol type, polymer type phenol type, sulfur type and phosphite type can be exemplified.
  • monophenols include 2,6-di-tert-butyl-p-cresol, butylated hydroxyanisole, 2,6-di-tert-butyl-4-ethylphenol, and the like.
  • Bisphenols include 2,2′-methylene-bis- (4-methyl-6-tert-butylphenol), 2,2′-methylene-bis- (4-ethyl-6-tert-butylphenol), 4,4 '-Thiobis- (3-methyl-6-tert-butylphenol), 4,4'-butylidene-bis- (3-methyl-6-tert-butylphenol), 3,9-bis [ ⁇ 1,1-dimethyl- 2- ⁇ - (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy ⁇ ethyl ⁇ 2,4,9,10-tetraoxaspiro] 5,5-undecane.
  • Examples of the high molecular phenolic group include 1,1,3-tris- (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 1,3,5-trimethyl-2,4,6-tris (3 , 5-di-tert-butyl-4-bidoxybenzyl) benzene, tetrakis- ⁇ methylene-3- (3 ′, 5′-di-tert-butyl-4′-hydroxyphenyl) propionate ⁇ methane, bis ⁇ (3,3′-bis-4′-hydroxy-3′-tert-butylphenyl) butyric acid ⁇ glycol ester, 1,3,5-tris (3 ′, 5′-di-tert-butyl-4 Examples include '-hydroxybenzyl) -s-triazine-2,4,6- (1H, 3H, 5H) trione, triphenol (vitamin E), and the like.
  • sulfur-based compounds include dilauryl thiodipropionate, dimyr
  • phosphites include triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, 4,4′-butylidene-bis (3-methyl-6-tert-butylphenyl-di-tridecyl) phosphite, Crick neopentanetetrayl bis (octadecyl phosphite), tris (mono and / or di) phenyl phosphite, diisodecyl pentaerythritol diphosphite, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10- Oxide, 10- (3,5-di-tert-butyl-4-hydroxybenzyl) -9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10-decyloxy-9,10 pho
  • phenol-based and phosphite-based antioxidants are preferably used in view of the effect of the antioxidant, thermal stability, economy and the like, and it is more preferable to use a combination of both.
  • the addition amount of the antioxidant is usually about 0.1 to 1% by mass, preferably 0.2 to 0.5% by mass, in each layer constituting the protective material for solar cells.
  • each resin layer excluding the pressure-sensitive adhesive layer and adhesive layer constituting the solar cell protective material of the present invention known methods such as a single-screw extruder, a multi-screw extruder, a Banbury mixer, a kneader, etc.
  • an extrusion casting method using a T die, a calendar method, or the like can be adopted.
  • An extrusion casting method using a die is preferably used.
  • the molding temperature in the extrusion casting method using a T-die is appropriately adjusted depending on the flow characteristics and film forming properties of the resin composition used, but is generally 130 to 300 ° C, preferably 150 to 250 ° C.
  • additives such as silane coupling agents, antioxidants, UV absorbers, and weathering stabilizers may be dry blended with the resin in advance and then supplied to the hopper.
  • the master batch may be supplied after being prepared, or a master batch in which only the additive is previously concentrated in the resin may be prepared and supplied.
  • the protective material for a solar cell of the present invention is obtained by applying an adhesive or a pressure-sensitive adhesive to each of the above-mentioned films formed, and drying the adhesive or the pressure-sensitive adhesive for about 1 to 5 minutes at a temperature of 70 to 110 ° C., for example. And can be produced by bonding at a temperature of 0 to 80 ° C. From the viewpoint of allowing the adhesive layer or the pressure-sensitive adhesive layer to sufficiently reach the saturation crosslinking degree, the obtained protective material for solar cells is preferably cured at a temperature of 30 to 80 ° C. for 1 to 7 days.
  • the solar cell protective material of the present invention is excellent in flexibility and moisture resistance, in which moisture resistance and interlayer strength do not deteriorate even after heat treatment under a high heat environment, that is, heat lamination conditions.
  • the thickness of the solar cell protective material is not particularly limited, but is usually about 200 to 350 ⁇ m, preferably about 230 to 320 ⁇ m, and more preferably about 250 to 300 ⁇ m.
  • the protective material for a solar cell of the present invention uses a moisture-proof film having a metal oxide layer on the base material and having a water vapor transmission rate of less than 0.1 [g / (m 2 ⁇ day)].
  • the initial moisture resistance of the protective material is preferably 0.1 [g / (m 2 ⁇ day)] or less, more preferably 0.05 [g / (m 2 ⁇ day)] or less in terms of water vapor transmission rate, More preferably, it is 0.03 [g / (m 2 ⁇ day)] or less.
  • the protective material for solar cells of the present invention is a protective material for solar cells that is excellent in initial moisture resistance and excellent in moisture resistance and prevention of delamination even when stored in a high temperature and high humidity environment.
  • the moisture resistance thereof is determined by the degree of deterioration due to the continuous high-temperature and high-humidity environment by the vacuum lamination and the pressure cooker test according to JIS C 60068-2-66, that is, (pressure cooker The water vapor transmission rate of the solar cell protective material after the test / the initial water vapor transmission rate of the solar cell protective material) can be preferably 2 or less, more preferably 1.6 or less.
  • the “initial moisture resistance” of the protective material for solar cells in the present invention refers to moisture resistance before the member receives a history of heat, etc. in a high temperature and high humidity environment such as vacuum lameet conditions. It means the value before sex degradation occurs.
  • the performance of the pressure-sensitive adhesive greatly affects the degree of moisture-proof deterioration, particularly when the pressure-sensitive adhesive layer is in contact with the metal oxide layer side of the moisture-proof film.
  • the moisture-proof deterioration of the pressure-sensitive adhesive itself can be mentioned. For this, it is effective to select an adhesive that is difficult to hydrolyze. Another cause is deterioration of moisture resistance due to damage to the metal oxide layer surface.
  • the inventors of the present invention designed the pressure-sensitive adhesive layer by paying attention to not deteriorating the metal oxide layer of the moisture-proof film under high temperature and high humidity, and obtained the above solar cell protective material.
  • Degradation of the metal oxide layer of the moisture-proof film can be attributed to the formation of a strong chemical bond between the metal oxide layer and the pressure-sensitive adhesive layer. This is considered to be due to the fact that a large stress is applied.
  • the adhesion between the metal oxide layer and the pressure-sensitive adhesive layer is weak, the stress due to the change in physical properties of the pressure-sensitive adhesive layer is reduced, so that deterioration of moisture resistance is prevented.
  • the reason why the metal oxide layer and the pressure-sensitive adhesive layer form a chemical bond is considered to be due to, for example, a reaction between a defective portion of the SiOx layer and a hydroxyl group in the pressure-sensitive adhesive layer. What is necessary is just to reduce the number of the reactive functional groups in an agent, First, restraining the number of the unreacted functional groups after application
  • the adhesive layer has a certain degree of softness and thickness and is adhered by van der Waals force from the viewpoint of protecting the metal oxide layer of the moisture-proof film and preventing the moisture-proof deterioration. If the pressure-sensitive adhesive layer is too hard, it tends to be subjected to stress between films due to shrinkage and the like, and the metal oxide layer is likely to deteriorate.
  • Each moisture-proof property in the present invention is evaluated by the method described in the examples in accordance with various conditions of JIS Z0222 “Method of testing moisture permeability of moisture-proof packaging container” and JIS Z0208 “Method of testing moisture permeability of moisture-proof packaging material (cup method)”. can do.
  • the solar cell protective material of the present invention is used particularly for a compound-based power generation element solar cell module or a solar cell surface protection member of a flexible solar cell module, which generates bubbles, deteriorates a power generation element due to moisture permeation, It is preferable because rusting of the lead wires and electrodes can be prevented and retention of electromotive force over a long period can be achieved.
  • the protective material for solar cells can suppress the generation of bubbles by laminating moisture-proof films with the configuration of the protective material for solar cells, in particular, through a specific adhesive layer. Therefore, it is possible to provide a surface protective material for a highly moisture-proof solar cell that is effective in preventing the performance of the solar cell from decreasing and improving the durability of the solar cell.
  • the solar cell is excellent in moisture-proof property and interlayer strength without deterioration for a long time even under high temperature conditions.
  • the solar cell surface protective material may be a sealing material / surface protective material integrated type formed by laminating a sealing material.
  • the solar cell protective material can be used as a solar cell surface protective material as it is or after being bonded to a glass plate or the like. What is necessary is just to produce by the well-known method, in order to manufacture the solar cell module and / or solar cell of this invention using the protective material for solar cells of this invention.
  • a solar cell module can be produced by using the solar cell protective material of the present invention in a layer structure of a surface protective material such as a solar cell front sheet or back sheet, and fixing the solar cell element together with a sealing material.
  • a solar cell module various types can be exemplified.
  • the solar cell protective material of the present invention is used as a front surface protective material, a sealing material, a solar cell element, and a solar cell module produced using a back surface protective material, specifically, a front surface protective material (protective material for solar cell of the present invention) / sealing material (sealing resin layer) / solar cell element.
  • a solar cell element formed on the inner peripheral surface of a front protective material (protective material for solar cell of the present invention), for example, an amorphous solar cell on a fluororesin-based transparent protective material Sealing material on top of the device made by sputtering etc. And the like can be mentioned configuration, such as to form a surface protective material. It is optional to attach a glass plate to the outside of the solar cell protective material of the present invention as the front protective material. In addition, when using the above-mentioned sealing material / surface protective material integrated surface protective material, the above-mentioned sealing material may not be used.
  • solar cell elements examples include single crystal silicon type, polycrystalline silicon type, amorphous silicon type, gallium-arsenic, copper-indium-selenium, copper-indium-gallium-selenium, cadmium-tellurium, etc.
  • II-VI group compound semiconductor type, dye sensitized type, organic thin film type and the like can be mentioned.
  • the other members constituting the solar cell module produced using the solar cell protective material of the present invention are not particularly limited, but examples of the sealing material include ethylene-vinyl acetate copolymer. Coalescence can be mentioned.
  • the front surface protective material and the back surface protective material in addition to the solar cell protective material of the present invention, it is a single layer or multilayer sheet such as an inorganic material or various thermoplastic resin films, for example, metal such as tin, aluminum, stainless steel, etc. Examples thereof include inorganic materials such as glass and glass, polyesters, inorganic vapor-deposited polyesters, fluorine-containing resins, and single-layer or multilayer protective materials such as polyolefins.
  • the surface of the front surface protective material and / or the back surface protective material can be subjected to a known surface treatment such as a primer treatment or a corona treatment in order to improve the adhesion to the sealing material or other members.
  • Front surface protective material (protective material for solar cell of the present invention) / sealing material / solar cell element / sealing material / back surface protective material described above for a solar cell module produced using the solar cell protective material of the present invention
  • the solar cell protective material, sealing material, solar cell element, sealing material, and back surface protective material of the present invention are laminated in order from the sunlight receiving side, and a junction box (solar cell) is further formed on the bottom surface of the back surface protective material.
  • a terminal box for connecting wiring for taking out electricity generated from the element to the outside is bonded.
  • the solar cell elements are connected by wiring in order to conduct the generated current to the outside. The wiring is taken out through a through hole provided in the back surface protective material and connected to the junction box.
  • a known manufacturing method can be applied, and it is not particularly limited, but in general, the solar cell protective material, sealing material, solar cell element, sealing of the present invention.
  • the step of vacuum suction and thermocompression bonding is, for example, a vacuum laminator, the temperature is preferably 130 to 180 ° C., more preferably 130 to 150 ° C., the degassing time is 2 to 15 minutes, and the press pressure is 0.05 to 1 atm.
  • the pressing time is preferably 8 to 45 minutes, and more preferably 10 to 40 minutes.
  • batch type manufacturing equipment, roll-to-roll type manufacturing equipment, and the like can be applied.
  • the solar cell module manufactured using the solar cell protective material of the present invention is a small solar cell represented by a mobile device, a large solar cell installed on a roof or a roof, depending on the type and module shape of the applied solar cell.
  • the battery can be applied to various uses regardless of whether it is indoors or outdoors.
  • high moisture resistance is required for use as a protective material for solar cells for flexible solar cell modules such as compound-based power generation element solar cell modules and amorphous silicon, and for use in electronic paper. Therefore, it is effectively used as a protective material for solar cells in consideration of this continuous high heat treatment. Therefore, the solar cell module manufactured using the solar cell protective material of the present invention is particularly preferably used as the surface protective material of the electronic device.
  • the obtained sample was vibrated at a frequency of 10 Hz, a strain of 0.1%, and a temperature rising rate of 3 ° C. / The stress against the strain applied to the sample was measured from ⁇ 100 ° C. to 180 ° C. in the transverse direction with 25 mm between the chucks, and the tensile storage elastic modulus at 100 ° C. was determined from the obtained data.
  • the obtained sample using a viscoelasticity measuring device manufactured by IT Measurement Co., Ltd., trade name “Viscoelastic Spectrometer DVA-200”, vibration frequency 10 Hz, strain 0.1%, temperature rising rate 3 ° C./min
  • the stress against the strain applied to the sample was measured from ⁇ 100 ° C. to 180 ° C. in the transverse direction with a chuck spacing of 25 mm, and the tensile storage elastic modulus at 100 ° C. was determined from the obtained data.
  • the tensile storage elastic modulus was set to 0 when the measurement at 100 ° C. was difficult due to the sample shape change at the time of temperature rise.
  • PC Pressure cooker
  • Foaming suppression test A solar cell protective material was cut into a 30 cm square and laminated so that glass, a sealing material, and a solar cell protective material (the fluororesin film was on the outside) in this order, 150 ° C., 15 After vacuum lamination under the conditions of 0.1 MPa and 0.1 MPa, the presence or absence of foaming was confirmed. A state where no bubbles were present in the 30 cm square solar cell protective material was evaluated as ⁇ , and when one or more bubbles were present, it was evaluated as ⁇ .
  • the moisture-proof property of the moisture-proof film (C-1, C-2) is determined by JIS Z 0222 “Method of testing moisture permeability of moisture-proof packaging containers” after storing the moisture-proof film for one week at 40 ° C., JIS Z In accordance with the conditions of 0208 “Test method for moisture permeability of moisture-proof packaging material (cup method)”, the measurement was carried out by the following method.
  • JIS Z 0222 “Moisture permeability test method for moisture-proof packaging containers”
  • JIS Z 0208 “Moisture permeability test method for moisture-proof packaging materials (cup)
  • the measured value of water vapor transmission rate measured by the following method in accordance with the various conditions of “Method)” was defined as the initial water vapor transmission rate.
  • the measured value of the water vapor transmission rate of each solar cell protective material measured by the following method is the water vapor transmission rate after the pressure cooker test. did.
  • (Adhesive coating solution) B-1 Using a reactor equipped with a thermometer, a stirrer, a reflux condenser, and a nitrogen gas introduction tube, 90 parts by mass of butyl acrylate, 10 parts by mass of acrylic acid, 75 parts by mass of ethyl acetate, and 75 parts by mass of toluene 0.3 parts by mass of azobisisobutyronitrile was added to the mixed solution, and polymerization was performed at 80 ° C. for 8 hours in a nitrogen gas atmosphere. After completion of the reaction, the solid content was adjusted to 30% by mass with toluene to obtain a resin having a mass average molecular weight of 500,000.
  • B-2 Using a reactor equipped with a thermometer, a stirrer, a reflux condenser, and a nitrogen gas inlet tube, 70 parts by mass of 2-ethylhexyl acrylate, 10 parts by mass of methyl acrylate, 5 parts by mass of acrylic acid, ethyl acetate To a mixed solution of 20 parts by mass and 20 parts by mass of toluene, 0.3 part by mass of azobisisobutyronitrile was added, and polymerization was performed at 80 ° C. for 8 hours in a nitrogen gas atmosphere. After completion of the reaction, the solid content was adjusted to 30% by mass with toluene to obtain a resin having a mass average molecular weight of 500,000.
  • B-3 Using a reactor equipped with a thermometer, a stirrer, a reflux condenser, and a nitrogen gas introduction tube, 40 parts by mass of butyl acrylate, 10 parts by mass of isobutyl acrylate, 40 parts by mass of methyl acrylate, 10 parts of acrylic acid 0.3 parts by mass of azobisisobutyronitrile was added to a mixed solution of parts by mass, 75 parts by mass of ethyl acetate and 75 parts by mass of toluene, and polymerized at 80 ° C. for 8 hours in a nitrogen gas atmosphere. After completion of the reaction, the solid content was adjusted to 30% by mass with toluene to obtain a resin having a mass average molecular weight of 500,000.
  • Coating solution “GOHSENOL” manufactured by Nihon Gosei Co., Ltd. (polyvinyl alcohol resin having a saponification degree of 97.0 to 98.8 mol% and a polymerization degree of 2400) was added to 2810 g of ion-exchanged water and dissolved in an aqueous solution. While stirring at ° C., 645 g of 35 mol% hydrochloric acid was added. Subsequently, 3.6 g of butyraldehyde was added with stirring at 10 ° C., and after 5 minutes, 143 g of acetaldehyde was added dropwise with stirring to precipitate resin fine particles.
  • C-2 Tech barrier LX manufactured by Mitsubishi Plastics Co., Ltd., in which silica was deposited on a 12 ⁇ m polyethylene terephthalate resin film, was used as moisture-proof film C-2. Further, the water vapor transmission rate measured by the above-described method was 0.2 [g / (m 2 ⁇ day)].
  • (Adhesive coating solution) D-1 As a main component containing a polycarbonate polyol component, HD1013 manufactured by Rock Paint Co., Ltd. having a viscosity at 25 ° C. of 800 mPa ⁇ s when the dilution solvent is ethyl acetate and the solid content is 50% by mass is aliphatic. As a curing agent containing a hexamethylene diisocyanate component, H62 manufactured by Rock Paint Co., Ltd. was used and mixed so that the weight ratio was 15: 1, and ethyl acetate was added so that the solid content concentration was 35% by mass.
  • the adhesive coating solution D-1 was prepared by diluting with
  • D-2 Polycaprolactone polyol having an average molecular weight of 1000 (Placcel 210N manufactured by Daicel Chemical Industries, Ltd.) and a polycarbonate diol having an average molecular weight of 1000 (Placcel CD CD210 manufactured by Daicel Chemical Industries, Ltd.) as main ingredients including a polyurethane polyol component.
  • the mixture was mixed to a mass ratio of 60:40 and dissolved in ethyl acetate to obtain a polyol solution having a solid content of 50% by mass and a viscosity at 25 ° C. of 400 mPa ⁇ s.
  • D-3 As a main component containing a polycarbonate polyol component, LIS601 manufactured by Toyo Morton Co., Ltd., which has a viscosity of 400 mPa ⁇ s at 25 ° C. when the dilution solvent is ethyl acetate and the solid content is 50 mass%, is aliphatic. CR901 made by Toyo Morton Co., Ltd. was used as a curing agent containing the hexamethylene diisocyanate component, and mixed so that the weight ratio was 10: 1, and the solid content concentration was 35% by mass with ethyl acetate. By diluting, an adhesive coating solution D-3 was prepared.
  • LIS601 manufactured by Toyo Morton Co., Ltd. which has a viscosity of 400 mPa ⁇ s at 25 ° C. when the dilution solvent is ethyl acetate and the solid content is 50 mass%, is aliphatic.
  • D-4 Polycaprolactone polyol having an average molecular weight of 530 (Placcel 205U manufactured by Daicel Chemical Industries, Ltd.) and polycarbonate diol having an average molecular weight of 500 (Placcel CD CD205 manufactured by Daicel Chemical Industries, Ltd.) as the main components containing a polyurethane polyol component.
  • the mixture was mixed to a mass ratio of 60:40 and dissolved in ethyl acetate to obtain a polyol solution having a solid content of 50% by mass and a viscosity at 25 ° C. of 100 mPa ⁇ s.
  • D-5 Polycaprolactone polyol having an average molecular weight of 2000 (Placcel 220 manufactured by Daicel Chemical Industries, Ltd.) and a polycarbonate diol having an average molecular weight of 500 (Placcel CD CD220 manufactured by Daicel Chemical Industries, Ltd.) as main ingredients including a polyurethane polyol component.
  • the mixture was mixed to a mass ratio of 60:40 and dissolved in ethyl acetate to obtain a polyol solution having a solid content of 50% by mass and a viscosity at 25 ° C. of 1300 mPa ⁇ s.
  • ⁇ Encapsulant> An ethylene-vinyl acetate sealing material (EVASKY S11 manufactured by Bridgestone Corporation, thickness 500 ⁇ m, melting point 69.6 ° C.) was used.
  • EVASKY S11 manufactured by Bridgestone Corporation, thickness 500 ⁇ m, melting point 69.6 ° C.
  • Example 1 The pressure-sensitive adhesive coating liquid B-1 was applied to a 38 ⁇ m silicone release PET film so that the thickness after drying was 20 ⁇ m and dried to form a pressure-sensitive adhesive layer.
  • the SiOx surface of the moisture-proof film C-1 was bonded to the formed pressure-sensitive adhesive layer surface, then the silicone release PET film was peeled off, and a fluorine resin film was bonded.
  • the adhesive coating liquid D-1 was applied to the polyethylene naphthalate film surface of the laminated moisture-proof film so that the thickness after drying was 8 ⁇ m, and dried to form an adhesive layer.
  • the SiOx surface of the moisture-proof film C-1 was bonded to the formed adhesive layer surface, and then cured at 40 ° C. for 5 days to prepare a 102 ⁇ m solar cell protective material E-1.
  • Various evaluations were performed using the obtained solar cell protective material E-1, and the results are shown in Table 1.
  • Example 2 A solar cell protective material E-2 having a thickness of 102 ⁇ m was produced in the same manner as in Example 1 except that the adhesive coating liquid D-1 in Example 1 was changed to D-2. Various evaluations were performed using the obtained solar cell protective material E-2, and the results are shown in Table 1.
  • Example 3 A solar cell protective material E-3 having a thickness of 102 ⁇ m was produced in the same manner as in Example 1 except that the pressure-sensitive adhesive coating liquid B-1 in Example 1 was changed to B-2. Various evaluations were performed using the obtained solar cell protective material E-3, and the results are shown in Table 1.
  • Example 4 A solar cell protective material E-4 having a thickness of 102 ⁇ m was produced in the same manner as in Example 1 except that the adhesive coating liquid D-1 in Example 1 was changed to D-3. Various evaluations were performed using the obtained solar cell protective material E-4, and the results are shown in Table 1.
  • Example 5 A protective material E-5 for a solar cell having a thickness of 102 ⁇ m was produced in the same manner as in Example 1 except that the adhesive coating liquid B-1 in Example 1 was changed to B-3. Various evaluations were performed using the obtained solar cell protective material E-5, and the results are shown in Table 1.
  • Comparative Example 1 A protective material E-6 for solar cells having a thickness of 102 ⁇ m was produced in the same manner as in Example 1 except that the adhesive coating liquid D-1 in Example 1 was changed to D-4. Various evaluations were performed using the obtained solar cell protective material E-6, and the results are shown in Table 1.
  • Comparative Example 2 A protective material E-7 for solar cells having a thickness of 102 ⁇ m was produced in the same manner as in Example 1 except that the adhesive coating liquid D-1 in Example 1 was changed to D-5. Various evaluations were performed using the obtained solar cell protective material E-7, and the results are shown in Table 1.
  • Comparative Example 3 A solar cell having a thickness of 102 ⁇ m in the same manner as in Example 1 except that the adhesive coating liquid D-1 of Example 1 is D-5 and the moisture-proof film C-1 to be bonded to the adhesive layer surface is C-2.
  • Protective material E-8 was prepared. Various evaluations were performed using the obtained solar cell protective material E-8, and the results are shown in Table 1.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Laminated Bodies (AREA)

Abstract

 基材の少なくとも一方の面に金属酸化物層を有し水蒸気透過率が0.1[g/(m2・日)]未満の防湿フィルムを2枚以上有する太陽電池用保護材であって、前記防湿フィルム同士が、25℃における粘度が200~1000mPa・sであるポリウレタンポリオールを用いたポリウレタン接着剤からなる接着剤層を介して積層されている太陽電池用保護材。

Description

太陽電池用保護材
 本発明は、太陽電池等に用いられる保護材に関し、特に、防湿性が保持され、真空ラミネーション時の発泡の発生を防止しうる太陽電池用保護材に関する。
 近年、資源の有効利用や環境汚染の防止等の面から、太陽光を直接電気エネルギーに変換する太陽電池が注目され、開発が進められている。太陽電池は前面保護フィルム(受光面側)と裏面保護フィルムとの間にエチレン-酢酸ビニル共重合体などの封止材により太陽電池用セルを封止した構成とされている。
 このような太陽電池は、通常、前面保護フィルム、封止材、発電素子、封止材及び裏面保護フィルムをこの順で積層し、加熱溶融させることにより接着一体化することで製造される。太陽電池の前面保護フィルム及び/又は裏面保護フィルムである太陽電池用保護材としては、紫外線に対する耐久性に優れることが要求されるが、加えて、湿気ないし水の透過による内部の導線や電極の発錆を防止するために、防湿性に優れることが極めて重要な要件となる。さらには長期使用や高温条件下における防湿性の劣化が少ない優れた保護材が求められている。
 例えば、特許文献1では、二軸延伸ポリエステルフィルムを基材とする水蒸気透過率が0.22[g/(m2・日)]の防湿フィルムにポリエステル系接着剤を用い、無機蒸着面側に耐候性ポリエステルフィルム、背面にポリプロピレンフィルムと張り合わせることにより太陽電池用保護材を作製し85℃、85%湿度下で、1000時間試験後の防湿性を評価して、防湿性低下防止の提案を行なっている。
 また、特許文献2の実施例では、二軸延伸ポリエステルフィルムを基材とする水蒸気透過率が1~2[g/(m2・日)]の防湿フィルムの両側にポリウレタン系接着剤層を設け、その両側に耐候性ポリエステルフィルムを積層し太陽電池用表面保護材を製作し、85℃、85%湿度下で1000時間加速試験後のバリア性能と層間強度を評価し、両特性の劣化防止の提案を行なっている。
 特許文献3では、同じく二軸延伸ポリエステルフィルムを基材とする水蒸気透過率が0.5[g/(m2・日)]の防湿フィルムに二液硬化型ポリウレタン系接着剤を用いてPVFフィルムを貼り合わせた後、プレッシャークッカー試験(PCT)(高温高圧による過酷環境試験、105℃ 92時間)前後の防湿性と層間強度を評価、特性の劣化防止の提案を行なっている。
特開2007-150084号公報 特開2009-188072号公報 特開2009-49252号公報
 しかしながら、上記特許文献1~3の各々に開示される技術は、いずれも水蒸気透過率が0.1[g/(m2・日)]以上の防湿フィルムを有する積層体に関するものであり、より高い防湿性が要求される化合物系発電素子太陽電池モジュールなどの太陽電池の表面保護材などに適用した場合、前記プレッシャークッカー試験(PCT)等の加速耐久試験に代替される防湿性の長期維持が十分ではなかった。
 一方、表面保護材の防湿性を向上させるために、無機薄膜が基材フィルムに蒸着された防湿フィルムを粘着剤や接着剤を用い複数積層させることがある。これは積層させようとする層と層との接着に反応性の接着剤や粘着剤を使用する積層方法であり、層間の強固な接着が得られる一方で、反応性接着剤が反応することに伴う二酸化炭素を主成分とする気泡が発生することがある。層間に発生した気泡は、通常は、樹脂シートからなる層の内部を透過して外部へ放出されるので、積層後に適切なエージング期間を設けることにより、層間に発生した気泡は自然に消滅する。
 しかしながら、表面保護材の防湿性を向上させるために、無機薄膜からなる薄膜層が樹脂シートに積層された防湿フィルムを複数積層させた場合、層と層との間に発生した気泡が無機酸化物からなる無機薄膜層を透過できずに、層と層との間、特に、防湿フィルムの無機薄膜層に面した層間に残留することがある。この場合、気泡の存在による応力の影響で、無機薄膜層に亀裂を生じ、防湿性が低下する要因となる。特に積層防湿フィルムとして高い防湿性能を得るため水蒸気透過率が低い高防湿フィルムを複数使用し、高防湿フィルム同士を積層させた場合、残留溶剤による発泡の傾向が顕著である。このため、特に水蒸気透過率が0.1[g/(m2・日)]未満の高防湿フィルムの場合、該フィルム同士を単純に複数積層させるのみでは真空ラミネーション時の発泡防止を両立させることは困難であり、また、得られる積層防湿フィルムの防湿性の維持も困難である。
 すなわち、本発明が解決しようとする課題は、水蒸気透過率が0.1[g/(m2・日)]未満の防湿フィルムを含む太陽電池用保護材に関して、真空ラミネーション時の発泡を防止することができ、かつ太陽電池の性能低下を防止し、太陽電池の耐久性の向上に有効な太陽電池用保護材を提供することにある。
 また、本発明の課題は、長期に防湿性が劣化せず、柔軟性と防湿性に優れた太陽電池用保護材を実現し、太陽電池の性能低下を同時に防止し、かつ太陽電池の耐久性の向上に有効な太陽電池用保護材を提供することにある。
 本発明者らは、検討を重ねた結果、基材の少なくとも一方の面に金属酸化物層を有し水蒸気透過率が0.1[g/(m2・日)]未満の防湿フィルムを2枚以上有する太陽電池用保護材であって、前記防湿フィルム同士を、25℃における粘度が200~1000mPa・sであるポリウレタンポリオールを用いたポリウレタン接着剤からなる接着剤層を介して積層されていることを特徴とする太陽電池用保護材が、真空ラミネーション時の発泡を防止することができ、更に、高温高湿環境下での長期使用において防湿性の劣化防止を満足できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、
(1)基材の少なくとも一方の面に金属酸化物層を有し水蒸気透過率が0.1[g/(m2・日)]未満の防湿フィルムを2枚以上有する太陽電池用保護材であって、前記防湿フィルム同士が、25℃における粘度が200~1000mPa・sであるポリウレタンポリオールを用いたポリウレタン接着剤からなる接着剤層を介して積層されていることを特徴とする太陽電池用保護材、
(2)更に、フッ素系樹脂フィルムを有し、該フッ素系樹脂フィルムと前記防湿フィルムとが、100℃、周波数10Hz、歪0.1%における引張り貯蔵弾性率が5.0×104~5.0×105Paの粘着剤層を介して積層されている、上記(1)に記載の太陽電池用保護材、
(3)前記ポリウレタンポリオールがポリカーボネートポリオールである、上記(1)又は(2)に記載の太陽電池用保護材、
(4)前記接着剤層の引張り貯蔵弾性率が100℃、周波数10Hz、歪み0.1%において5.0×104~5.0×105Paである、上記(1)~(3)のいずれかに記載の太陽電池用保護材、
(5)前記接着剤層の厚みが4~12μmである、上記(1)~(4)のいずれかに記載の太陽電池用保護材、
(6)前記防湿フィルムの基材がポリエチレンナフタレート(PEN)フィルムである、上記(1)~(5)のいずれかに記載の太陽電池用保護材、
(7)前記粘着剤がアクリル粘着剤である、上記(2)~(6)のいずれかに記載の太陽電池用保護材、
(8)前記防湿フィルムの基材の厚みが、前記フッ素系樹脂フィルムの厚みより薄い上記(1)~(7)のいずれかに記載の太陽電池用保護材、
 (9)前記防湿フィルムの水蒸気透過率が0.03[g/(m2・日)]以下である、上記(1)~(8)のいずれかに記載の太陽電池用保護材、
(10)水蒸気透過率の劣化度が2以下である、上記(1)~(9)のいずれかに記載の太陽電池用保護材、
(11)上記(1)~(10)のいずれかに記載の太陽電池用保護材を有する太陽電池モジュール、
を提供するものである。
 本発明によれば、真空ラミネーション時の気泡の発生がなく、太陽電池の性能低下を同時に防止し、かつ太陽電池の耐久性の向上に有効な高防湿性太陽電池用保護材を提供することができる。
 また、本発明によれば、長期に防湿性劣化がなく、柔軟性と防湿性に優れた太陽電池用保護材を実現し、太陽電池の性能低下を同時に防止し、かつ太陽電池の耐久性の向上に有効な高防湿太陽電池用保護材を提供することができる。
 以下、本発明を更に詳細に説明する。
 通常、太陽電池用保護材の製造においては、積層させるプラスチックフィルムに溶剤を用いて希釈した接着剤を所定の厚みに塗布し、通常70~140℃の範囲での乾燥により溶剤を蒸発させプラスチックフィルム上に接着剤層を形成した後、他のプラスチックフィルムを接着剤側に向けて貼合することを繰り返し、最後に所定の温度での養生を経て作製する。養生は例えば30~80℃の範囲で1日~1週間行なわれる。
 積層工程においては、熱や貼合の張力が各フィルムに作用し太陽電池用保護材に残留歪が蓄積される。作製された太陽電池用保護材は太陽電池素子や封止材と共に真空ラミネーションにより加熱溶融され一体化させ、太陽電池に組み込まれる。この真空ラミネーションプロセスは通常130~180℃の範囲で行なわれる。
 このように、太陽電池用保護材は、真空ラミネーションプロセスにおいて接着剤の乾燥、養生温度よりはるかに高い温度である130~180℃の範囲での熱処理を受けることとなる。上記の積層工程において蓄積された残留歪は、高温高湿環境下での保存において、各積層界面への応力となって作用する。特に、プラスチックフィルムに残留歪が蓄積した場合、高温高湿環境下での温度によりフィルムは収縮し、金属酸化物層に対して応力が作用し、金属酸化物層に重大な劣化を生じることがある。
 また、太陽電池用保護材の防湿性を向上させるために、無機薄膜が基材フィルムに蒸着された防湿フィルム同士を接着剤を用い複数積層させた場合、接着剤や残留溶剤に含まれている水分、積層時に貼り合せる際に取り込まれる空気、接着剤硬化中の反応に伴う二酸化炭素などが存在するため、高温になることでこれらの分子運動が活発になり凝集が起こり、真空ラミネーション時の発泡の傾向が顕著になる。特に、0.1[g/(m2・日)]未満程度の高い防湿性をもった防湿フィルム同士の貼り合せの場合、残留溶剤や接着剤中の水分の系外への拡散が著しく抑制されるため発泡は著しい。
 以上より、本発明者らは、防湿フィルム同士の積層に関して、用いる接着剤の粘度を制御することで発泡に影響する水分や空気を減少させることにより、または硬化を十分に促進させることで発泡抑制に優れたポリウレタン接着剤を用いることにより、真空ラミネーション工程における発泡を抑制し、かつフッ素系樹脂フィルムを用いる場合においては、好ましくはこれと防湿フィルム上に特定の引張り貯蔵弾性率を有する粘着剤層を設けることにより高温高湿環境下において防湿フィルムの金属酸化物層に作用する応力を低下させ、長期に高い防湿性を維持する太陽電池用保護材を実現することを見出すに至った。
 具体的には、高温高湿環境下において、プラスチックフィルム内の残留歪から生じる金属酸化物層に掛かる収縮による応力の伝達を低減するためには、0.1[g/(m2・日)]未満程度の高い防湿性をもった防湿フィルム同士の貼り合せに使用する接着剤は含水量が少なく、残留溶剤を低減する高固形分での塗工が可能なポリウレタン接着剤を用いることが重要であり、特に、ポリカーボネート系ウレタン接着剤を用いることが好ましい。また真空ラミネーションでの貼り合わせに使用する粘着剤層がその引張り弾性率が十分低い柔軟なものであり、粘着剤層が変形することにより応力を吸収してしまうことが好ましい。
 本発明の太陽電池用保護材は、基材の少なくとも一方の面に金属酸化物層を有し水蒸気透過率が0.1[g/(m2・日)]未満の防湿フィルムを2枚以上有する太陽電池用保護材であって、前記防湿フィルム同士が、25℃における粘度が200~1000mPa・sであるポリウレタンポリオールを用いたポリウレタン接着剤からなる接着剤層を介して積層されている。すなわち、本発明の太陽電池用保護材は、基材の少なくとも一方の面に金属酸化物層を有し水蒸気透過率が0.1[g/(m2・日)]未満の防湿フィルム、25℃における粘度が200~1000mPa・sであるポリウレタンポリオールを用いたポリウレタン接着剤からなる接着剤層、基材の少なくとも一方の面に金属酸化物層を有し水蒸気透過率が0.1[g/(m2・日)]未満の防湿フィルムをこの順に有する太陽電池用保護材である。
<太陽電池用保護材>
[防湿フィルム]
 本発明において、防湿フィルムは、基材の少なくとも一方の面に金属酸化物層を有するものであり、その水蒸気透過率は0.1[g/(m2・日)]未満である。本発明は、長期に高い防湿性を保持することが望まれる太陽電池用保護材に関するものであるため、初期の防湿性も一定以上のものである必要がある。したがって、本発明において、上記防湿フィルムは水蒸気透過率が0.1[g/(m2・日)]未満であり、好ましくは0.05[g/(m2・日)]以下であり、より好ましくは、0.03[g/m2・日]以下である。また、該防湿フィルムは、太陽電池用保護材、特に、受光面側に用いられるフロントシートとして使用される場合には、透明であることが好ましい。水蒸気透過率の調整は、基材の選択、金属酸化物層を構成する金属酸化物の選択、金属酸化物層の厚み及び金属酸化物の酸化数等を適宜調整することにより行うことができる。
 本発明の太陽電池用保護材は、防湿性の観点から、上記防湿フィルムを2枚以上有する。なお、防湿フィルムは多数重ねるほど、その防湿性は向上するが、透明性の低下や発泡抑制の観点から、その上限は、通常4枚とするのが好ましい。
(基材)
 上記防湿フィルムの基材としては、熱可塑性樹脂フィルムが好ましく、その材料としては、通常の太陽電池用材料に使用しうる樹脂であれば特に制限なく用いることができる。
 具体的には、エチレン、プロピレン、ブテン等の単独重合体又は共重合体等のポリオレフィン、環状ポリオレフィン等の非晶質ポリオレフィン、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ナイロン6、ナイロン66、ナイロン12、共重合ナイロン等のポリアミド、エチレン-酢酸ビニル共重合体部分加水分解物(EVOH)、ポリイミド、ポリエーテルイミド、ポリサルホン、ポリエーテルサルホン、ポリエーテルエーテルケトン、ポリカーボネート、ポリビニルブチラール、ポリアリレート、フッ素樹脂、アクリル樹脂、生分解性樹脂等が挙げられる。これらの中では、フィルム物性、コスト等の点から、ポリエステル、ポリアミド、ポリオレフィンが好ましい。中でも、表面平滑性、フィルム強度、耐熱性等の点から、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)が特に好ましい。
 また、上記基材は、公知の添加剤、例えば、帯電防止剤、光線遮断剤、紫外線吸収剤、可塑剤、滑剤、フィラー、着色剤、安定剤、潤滑剤、架橋剤、ブロッキング防止剤、酸化防止剤等を含有することができる。
 上記基材は、未延伸であってもよいし延伸したものであってもよい。
 かかる基材は、従来公知の方法により製造することができ、例えば、原料樹脂を押出機により溶融し、環状ダイやTダイにより押出して、急冷することにより実質的に無定型で配向していない未延伸フィルムを製造することができる。また、多層ダイを用いることにより、1種の樹脂からなる単層フィルム、1種の樹脂からなる多層フィルム、多種の樹脂からなる多層フィルム等を製造することができる。
 この未延伸フィルムを一軸延伸、テンター式逐次二軸延伸、テンター式同時二軸延伸、チューブラー式同時二軸延伸等の公知の方法により、フィルムの流れ(縦軸)方向又はフィルムの流れ方向とそれに直角な(横軸)方向に延伸することにより、一軸方向または二軸方向に延伸したフィルムを製造することができる。延伸倍率は任意に設定できるが、150℃熱収縮率が、0.01~5%であることが好ましく、0.01~2%であることがより好ましい。中でもフィルム物性の点から、二軸延伸ポリエチレンナフタレートフィルムや、二軸延伸ポリエチレンテレフタレート、ポリエチレンテレフタレート及び/又はポリエチレンナフタレートと他のプラスチックの共押出二軸延伸フィルムが好ましい。
 上記基材の厚みは、一般に5~100μm程度であり、生産性や取り扱いやすさの点から8~50μmが好ましく、10~30μmが更に好ましく、12~25μmが特に好ましい。
 なお、上記基材には、金属酸化物層との密着性向上のため、アンカーコート剤を塗布することが好ましい。アンカーコート剤としては、溶剤性又は水性のポリエステル樹脂、イソシアネート樹脂、ウレタン樹脂、アクリル樹脂、変性ビニル樹脂、ビニルアルコール樹脂、ビニルブチラール樹脂、エチレンビニルアルコール樹脂、ニトロセルロース樹脂、オキサゾリン基含有樹脂、カルボジイミド基含有樹脂、メラミン基含有樹脂、エポキシ基含有樹脂、変性スチレン樹脂及び変性シリコーン樹脂等を単独、あるいは2種以上を組み合わせて使用することができる。また、シラン系カップリング剤、チタン系カップリング剤、アルキルチタネート、光線遮断剤、紫外線吸収剤、安定剤、潤滑剤、ブロッキング防止剤、酸化防止剤等を含有したり、紫外線吸収剤を上記樹脂と共重合させたものを使用することができる。
 アンカーコート層の厚みは金属酸化物層との密着性向上の観点から、10~200nmであることが好ましく、10~100nmであることがより好ましい。その形成方法としては、公知のコーティング方法が適宜採択される。例えば、リバースロールコーター、グラビアコーター、ロッドコーター、エアドクタコーターまたはスプレイを用いたコーティング方法等の方法がいずれも使用できる。また、基材をコート剤液に浸漬して行ってもよい。塗布後は、80~200℃程度の温度での熱風乾燥、熱ロール乾燥等の加熱乾燥や、赤外線乾燥等の公知の乾燥方法を用いて溶媒を蒸発させることができる。また、耐水性、耐久性を高めるために、電子線照射による架橋処理を行うこともできる。また、アンカーコート層の形成は、基材の製造ラインの途中で行う方法(インライン)でも、基材製造後に行う方法(オフライン)でもよい。
(金属酸化物層)
 防湿フィルムの金属酸化物層を構成する物質としては、珪素、アルミニウム、マグネシウム、亜鉛、錫、ニッケル、チタン等の酸化物、酸化炭化物、酸化窒化物、酸化炭化窒化物及びこれらの混合物等が挙げられるが、太陽電池に適用した場合に電流がリークする等の恐れがない点、透明性及び高い防湿性が安定に維持できる点から、酸化珪素、酸化炭化珪素、酸化窒化珪素、酸化炭化窒化珪素、酸化アルミニウム、酸化炭化アルミニウム及び酸化窒化アルミニウム等の金属酸化物並びにこれらの混合物が好ましい。
 上記金属酸化物層の形成方法としては、蒸着法、コーティング法等の方法がいずれも使用できるが、ガスバリア性の高い均一な金属酸化物層が得られるという点で蒸着法が好ましい。この蒸着法には、物理気相蒸着(PVD)、あるいは化学気相蒸着(CVD)等の方法がいずれも含まれる。物理気相蒸着法には、真空蒸着、イオンプレーティング、スパッタリング等が挙げられ、化学気相蒸着法には、プラズマを利用したプラズマCVD、加熱触媒体を用いて材料ガスを接触熱分解する触媒化学気相成長法(Cat-CVD)等が挙げられる。
 上記金属酸化物層の厚みは、安定な防湿性の発現の点から、40~1000nmであることが好ましく、50~800nmがより好ましく、50~600nmが更に好ましい。
[ポリウレタン接着剤]
 本発明におけるポリウレタン接着剤は、防湿フィルム同士を貼合させる層を構成するものである。十分な接着強度を得る観点からポリウレタン接着剤の厚みは4~12μmであることが好ましく、防湿性維持の観点からポリウレタン接着剤からなる接着剤層の100℃、周波数10Hz、歪0.1%における引張り貯蔵弾性率は5.0×104~5.0×105Paが好ましく、より好ましくは7.0×104~5.0×105Paであり、更に好ましくは1.0×105~5.0×105Paである。
 また、ポリウレタン接着剤からなる接着剤層は、常温(20℃)において接着強度を維持する観点から、20℃、周波数10Hz、歪0.1%における引張り貯蔵弾性率が1.0×106Pa以上であることが好ましい。
 本発明における引張り貯蔵弾性率は、後述の実施例に記載の方法で測定される。
 本発明において、発泡を抑制する観点から、ポリウレタン接着剤の粘度は非常に重要である。ここで、接着剤粘度とは希釈溶剤を酢酸エチル、固形分濃度を50質量%とした場合のB型粘度計で25℃で測定したときの粘度[Pa・s]を指す。真空ラミネーションでの気泡の発生は、接着剤や残留溶剤に含まれている水分、積層時に貼り合せる際に取り込まれる空気または接着剤硬化中の反応に伴う二酸化炭素等が、高温になることで分子運動が活発になり凝集が起こることに起因する。これらの凝集を防ぐためにポリウレタン接着剤を十分に硬化させる必要があるが、接着剤粘度が低すぎると硬化が不十分となり凝集を防ぐことができない点から、ポリウレタン接着剤の粘度は200mPa・s以上である。また、ポリウレタン接着剤の粘度が高すぎると貼り合せ時に最適な粘度へ調整する場合に希釈溶剤が多くなるため残留溶剤が多くなり水分の増加を引き起こし、また粘度が高いことで貼り合せ時に空気を過剰に取り込んでしまうなどの観点から、接着剤粘度は1000mPa・s以下である。上記観点から、ポリウレタン接着剤の上記粘度は、200~1000mPa・sであり、好ましくは300~900mPa・sであり、より好ましくは400~800mPa・sである。
(主剤及び硬化剤)
 ポリウレタン接着剤の主剤としては、ポリウレタンポリオールを用いる。具体的には、ポリカーボネートポリオール、ポリエーテルポリオール、アクリルポリオールまたはポリエステルポリオールを含む組成物等が挙げられるが、熱安定性、湿度安定性等の観点から、ポリカーボネートポリオールを含む組成物がより好ましい。該組成物中ポリカーボネートポリオールは50質量%以上含まれるのが好ましい。
 ポリカーボネートポリオールは、例えば、メチレンカーボネート、エチレンカーボネートまたはジフェニルカーボネートと、エチレングリコール、プロピレングリコール、ブタンジオール、ネオペンチルグリコール(NPG)、シクロヘキサンジオール等のジオールとを共重合させて得ることができる。また、ポリカプロラクトンポリオールとポリカーボネートジオールとを共重合させて得ることもできる。
 ポリエーテルポリオールは、例えばエチレンオキサイド、プロピレンオキサイド、テトラヒドロフラン等のアルキレンオキサイドを、アルカリ触媒又は酸触媒を触媒として開環重合を行うことで得ることができる。開環重合の出発物質となる活性水素含有化合物としてはエチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-へキサンジオール等の多価アルコールを用いることができる。
 ポリアクリルポリオールは、水酸基をもった(メタ)アクリル酸エステルと他のモノマーとを共重合させて得ることができる。水酸基をもった(メタ)アクリル酸エステルとしては、例えば、ヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレート、ヒドロキシブチルアクリレート、ヒドロキシエチルメタクリレート、ヒドロキシプロピルメタクリレート、ヒドロキシブチルメタクリレートが挙げられる。また他のモノマーとしては、メチルメタクリレート、ブチルメタクリレート、脂環式構造を有するシクロヘキシルメタクリレート等を挙げることができる。
 ポリエステルポリオールは、例えばコハク酸、グルタル酸、アジピン酸、イソフタル酸(IPA)、テレフタル酸(TPA)等のジカルボン酸化合物と、エチレングリコール、プロピレングリコール、ブタンジオール、ネオペンチルグリコール、シクロヘキサンジオール等のジオール、又はポリテトラメチレングリコール等とを共重合させて得ることができる。
 ポリウレタン接着剤の硬化剤としては、ジイソシアネートが好ましく、脂肪族系ジイソシアネート、芳香族系ジイソシアネート及び脂環系ジイソシアネートのいずれも好ましく使用できる。脂肪族系ジイソシアネートの具体例としては、ヘキサメチレンジイソシアネート(HDI)等が挙げられる。芳香族系ジイソシアネートの具体例としては、キシリレンジイソシアネート(XDI)、ジフェニルメタンジイソシアネート(MDI)等が挙げられる。脂環系ジイソシアネートの具体例としては、イソホロンジイソシアネート(IPDI)、ジシクロヘキシルメタンジイソシアネート(H12MDI)等が挙げられる。
 硬化後に高い耐熱性をもたせる観点からは、例えば芳香族系ジイソシアネートであるXDI、又は脂環系ジイソシアネートであるIPDI等が好ましい。更に、ポリウレタン接着剤の黄変を防ぐ観点からは、脂環系ジイソシアネートであるIPDI等がより好ましい。
 主剤がポリカーボネートポリオールを含む場合は、高い耐熱性、高い防湿性という点で優れているが、硬化時においても十分な架橋密度が得られる観点から、柔軟なメチレン鎖を有するHDIを硬化剤として組み合わせることが好ましい。
 また、より熱的に安定な接着剤層を得るために、主剤にエポキシ系化合物を含んだものを用いることが好ましい。
 本発明における接着剤の主剤と硬化剤との好ましい配合比は、主剤/硬化剤=5~25(質量比)、かつ-NCO基/-OH基=0.8~9(モル比)である。
 この配合比を前記範囲内にすることにより、被着体との密着性及び架橋度を確保し、本発明において接着剤の粘度を上記の特定の範囲の値にすることができる。
 本発明におけるポリウレタン接着剤には、紫外線吸収剤を含有することが好ましい。使用しうる紫外線吸収剤としては、ベンゾフェノン系、ベンゾトリアゾール系、トリアジン系、サリチル酸エステル系等各種タイプのものを挙げることができ、種々の市販品が適用できる。ベンゾフェノン系紫外線吸収剤としては、例えば、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-2’-カルボキシベンゾフェノン、2-ヒドロキシ-4-オクトキシベンゾフェノン、2-ヒドロキシ-4-n-ドデシルオキシベンゾフェノン、2-ヒドロキシ-4-n-オクタデシルオキシベンゾフェノン、2-ヒドロキシ-4-ベンジルオキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノン、2-ヒドロキシ-5-クロロベンゾフェノン、2,4-ジヒドロキシベンゾフェノン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’-ジメトキシベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン等を挙げることができる。
 ベンゾトリアゾール系紫外線吸収剤としては、ヒドロキシフェニル置換ベンゾトリアゾール化合物であって、例えば、2-(2-ヒドロキシ-5-メチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-t-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジメチルフェニル)ベンゾトリアゾール、2-(2-メチル-4-ヒドロキシフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3-メチル-5-t-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-t-アミルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-t-ブチルフェニル)ベンゾトリアゾール等を挙げることができる。
 またトリアジン系紫外線吸収剤としては、2-[4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル]-5-(オクチルオキシ)フェノール、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-(ヘキシルオキシ)フェノール等を挙げることができる。
 サリチル酸エステル系としては、フェニルサリチレート、p-オクチルフェニルサリチレート等を挙げることができる。
 ポリウレタン接着剤中の紫外線吸収剤の含有量は、通常0.01~2.0質量%程度であり、好ましくは0.05~0.5質量%である。
 上記の紫外線吸収剤以外に耐候性を付与する耐候安定剤として、ヒンダードアミン系光安定化剤を用いることができる。ヒンダードアミン系光安定化剤は、紫外線吸収剤のようには紫外線を吸収しないが、紫外線吸収剤と併用することによって著しい相乗効果を示す。
 ヒンダードアミン系光安定化剤としては、コハク酸ジメチル-1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン重縮合物、ポリ[{6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}]、N,N’-ビス(3-アミノプロピル)エチレンジアミン-2,4-ビス[N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ]-6-クロロ-1,3,5-トリアジン縮合物、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、2-(3,5-ジ-tert-4-ヒドロキシベンジル)-2-n-ブチルマロン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)等を挙げることができる。ポリウレタン接着剤中のヒンダードアミン系光安定化剤の含有量は、通常0.01~0.5質量%程度であり、好ましくは0.05~0.3質量%である。
 上記ポリウレタン接着剤は、例えば、ロールコート法、グラビアロールコート法、キスコート法、その他のコート法、あるいは、印刷法等によって設けることができ、その塗布量としては、0.1~10g/m2(乾燥状態)程度が望ましい。
 本発明において、ポリウレタン接着剤は、前金属酸化物層を有する防湿フィルムの金属酸化物層もしくは基材フィルム面に直接塗工することができる。
 前記ポリウレタン接着剤は、有機溶剤系、エマルション系、無溶剤系の塗液にして塗工するのが好ましく、耐水性が問われる太陽電池部材等の用途には有機溶剤系の塗液が好ましい。
 有機溶剤系の塗液に用いられる有機溶剤としては、例えば、トルエン、キシレン、メタノール、エタノール、イソブタノール、n-ブタノール、アセトン、メチルエチルケトン、酢酸エチル、テトラヒドロフラン等が挙げられる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 塗液は、塗工の利便さから、これらの有機溶剤を使用して、固形分濃度が10~50質量%の範囲になるように調製するのが好ましい。
 塗液の塗工は、例えば、バーコート法、ロールコート法、ナイフコート法、ロールナイフコート法、ダイコート法、グラビアコート法、エアドクターコート法、ドクターブレードコート法等、従来公知の塗工方法により行うことができる。
 塗工後、通常70~110℃の温度で1~5分程度乾燥処理することにより接着剤層が形成される。
 接着剤層の厚みは、十分な接着力を得る観点から4μm以上が好ましく、更に好ましくは6μm以上である。また、金属酸化物層を有する樹脂フィルム等の基材の金属酸化物層面への応力が増大して防湿性能が劣化するのを防止する観点から、上記厚みは12μm以下が好ましく、更に好ましくは10μm以下である。
[フッ素系樹脂フィルム]
 本発明の太陽電池用保護材は、耐加水分解性や耐候性を備え、長期の耐久性を付与するために、フッ素系樹脂フィルムを有することが好ましい。
 フッ素系樹脂フィルムは、耐候性を有するものが好ましく、フッ素樹脂としては例えば、ポリテトラフルオロエチレン(PTFE)、4-フッ化エチレン-パークロロアルコキシ共重合体(PFA)、4-フッ化エチレン-6-フッ化プロピレン共重合体(FEP)、2-エチレン-4-フッ化エチレン共重合体(ETFE)、ポリ3-フッ化塩化エチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)及びポリフッ化ビニル(PVF)等が好ましく用いられる。
 長期耐久性の観点からは、上記フッ素系樹脂としては、2-エチレン-4-フッ化エチレン共重合体(ETFE)、4-フッ化エチレン-6-フッ化プロピレン共重合体(FEP)がより好ましく用いられる。
 フッ素系樹脂フィルムとしては、真空ラミネーション時や高温高湿における保管時の温度や湿度変化においてもその特性変化が小さいことが好ましいことから、収縮率が大きいフッ素系フィルムであっても、事前の熱処理による低収縮率化等が行われたフィルムを使用することが好ましい。
 フッ素系樹脂フィルムは紫外線吸収剤を含有することが好ましい。使用しうる紫外線吸収剤としては、前述の接着剤に含有される紫外線吸収剤と同様のものが使用できる。
 前記フッ素系樹脂フィルムの厚みは、一般に20~200μm程度であり、フィルムの取り扱いやすさとコストの点から20~100μmが好ましく、20~50μmがより好ましい。
 更に、少なくとも一つの防湿フィルムの基材の厚みがフッ素系樹脂フィルムの厚みより薄いと、柔軟性に優れた太陽電池用保護材が得られ、太陽電池モジュールが曲げられた際に、太陽電池用保護材がその曲げに追従することができ、太陽電池用保護材と封止材とのデラミネーションが起こりにくいので、好ましい。特に太陽電池用保護材を構成する全ての防湿フィルムの基材の厚みが、フッ素系樹脂フィルムの厚みより薄いことが、前述の理由より、より好ましい。
[粘着剤層]
 本発明の太陽電池用保護材は、好ましくは、前記防湿フィルムと前記フッ素系樹脂フィルムとを粘着剤層を介して積層する。
 本発明において、上記粘着剤層は、100℃、周波数10Hz、歪0.1%における引張り貯蔵弾性率が5.0×104Pa以上、5.0×105Pa以下であることが好ましい。すなわち、100℃、周波数10Hz、歪0.1%における引張り貯蔵弾性率が5.0×104Pa以上であれば真空ラミネーションなどの加熱時に粘着剤層が流動せず、層厚みを均一に維持することが可能であり、また、5.0×105Pa以下であれば、該粘着剤層を介し対向するフィルムの収縮などにより発生する応力を粘着剤層で吸収することで金属酸化物層へのダメージを防ぐことが可能となり、好ましい。上記観点から、粘着剤層の100℃、周波数10Hz、歪0.1%における引張り貯蔵弾性率は、7.0×104~5.0×105Paであることがより好ましく、1.0×105~5.0×105Paであることが更に好ましい。
 本発明において、上記粘着剤層に用いられる粘着剤としては、100℃、周波数10Hz、歪0.1%での前記引張り貯蔵弾性率を5×105Pa以下としかつ接着強度を維持する観点から、アクリル系粘着剤を含むものが好ましく、アクリル系粘着剤を主成分とするものがさらに好ましい。
 本明細書において、主成分とは、本発明の効果を妨げない範囲で、他の成分を含むことを許容する趣旨であり、具体的な含有率を制限するものではないが、一般に粘着剤層の構成成分全体を100質量部とした場合、50質量部以上であり、好ましくは65質量部以上、さらに好ましくは80質量部以上であって100質量部以下の範囲を占める成分である。
 また、粘着剤層は、常温(20℃)において接着強度を維持する観点から、20℃、周波数10Hz、歪0.1%における引張り貯蔵弾性率が1.0×106Pa以上であることが好ましい。
 前記アクリル系粘着剤としては、粘着性を与える低ガラス転移点(Tg)の主モノマー成分、接着性や凝集力を与える高Tgのコモノマー成分、及び架橋や接着性改良のための官能基含有モノマー成分を主とする重合体または共重合体(以下、「アクリル系(共)重合体」という)よりなるものが好ましい。
 前記アクリル系粘着剤の主モノマー成分としては、例えば、アクリル酸エチル、アクリル酸ブチル、アクリル酸アミル、アクリル酸2-エチルヘキシル、アクリル酸オクチル、アクリル酸シクロヘキシル、アクリル酸ベンジル等のアクリル酸アルキルエステルや、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ベンジル等のメタクリル酸アルキルエステル等が挙げられる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 前記アクリル系粘着剤のコモノマー成分としては、アクリル酸メチル、メタクリル酸メチル、メタクリル酸エチル、酢酸ビニル、スチレン、アクリロニトリル等が挙げられる。
 これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 前記アクリル系粘着剤の官能基含有モノマー成分としては、例えば、アクリル酸、メタクリル酸、マレイン酸、イタコン酸等のカルボキシル基含有モノマーや、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、N-メチロールアクリルアミド等のヒドロキシル基含有モノマー、アクリルアミド、メタクリルアミド、グリシジルメタクリレート等が挙げられる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 前記アクリル系粘着剤のモノマー成分の重合に使用する開始剤の例としては、アゾビスイソブチルニトリル、ベンゾイルパーオキサイド、ジ-t-ブチルパーオキサイド、クメンハイドロパーオキサイド等が挙げられる。また、前記アクリル系粘着剤の主成分となる
 アクリル系(共)重合体の共重合形態については特に制限はなく、ランダム、ブロック、グラフト共重合体のいずれであってもよい。
 また、前記アクリル系粘着剤が上述のアクリル系(共)重合体である場合の分子量としては、質量平均分子量で30万~150万であるものが好ましく、40万~100万であることがさらに好ましい。質量平均分子量を上記範囲にすることによって被着体に対する密着性や接着耐久性を確保し、浮きや剥がれなどを抑制することができる。
 さらに、前記アクリル系(共)重合体において、官能基含有モノマー成分単位の含有量は、1~25質量%の範囲が好ましい。この含有量を前記範囲内にすることにより、被着体との密着性および架橋度を確保し、本発明において粘着剤層の引張り貯蔵弾性率を、100℃、周波数10Hz、歪0.1%において5.0×104~5.0×105Paの範囲の値にすることができる。
 本発明における粘着剤層は、紫外線吸収剤を含有することが好ましい。使用しうる紫外線吸収剤としては、前述のポリウレタン接着剤に含有される紫外線吸収剤と同様のものが使用できる。
 本発明において、粘着剤層は、前記防湿フィルムの金属酸化物層あるいは基材に直接塗工することにより形成してもよいし、前記粘着剤を剥離処理された剥離シートの剥離処理面に塗工し、これを防湿フィルムの金属酸化物層あるいは基材に接合することにより形成することができる。特に、本発明においては、粘着剤層は、防湿フィルムの金属酸化物層側に塗工する場合、その効果が著しい。
 前記粘着剤は、塗液にして塗工するのが好ましく、有機溶剤系、エマルション系、無溶剤系の塗液があるが、耐水性が問われる太陽電池部材などの用途には有機溶剤系の塗液が望ましい。
 有機溶剤系の塗液に用いられる有機溶剤としては、例えば、トルエン、キシレン、メタノール、エタノール、イソブタノール、n-ブタノール、アセトン、メチルエチルケトン、酢酸エチル、テトラヒドロフラン等が挙げられる。これらは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 塗液は、塗工の利便さから、これらの有機溶剤を使用して、固形分濃度が10~50質量%の範囲になるように調製するのが好ましい。
 塗液の塗工は、例えば、バーコート法、ロールコート法、ナイフコート法、ロールナイフコート法、ダイコート法、グラビアコート法、エアドクターコート法、ドクターブレードコート法等、従来公知の塗工方法により行うことができる。
 塗工後、通常70~110℃の温度で1~5分程度乾燥処理することにより、粘着剤層が形成される。
 粘着剤層の厚みは、十分な接着力を得るとの観点から10μm以上とすることが好ましく、より好ましくは13μm以上、より好ましくは15μm以上、より好ましくは18μm以上、更に好ましくは20μm以上である。また、塗工可能な厚みとする観点から、上記厚みは100μm以下が好ましく、50μm以下であることがより好ましい。
[太陽電池用保護材]
 本発明の太陽電池用保護材は、フッ素系樹脂フィルムを用いる場合、フッ素系樹脂フィルム、粘着剤層、防湿フィルム、接着剤層及び防湿フィルムをこの順に有するものであり、太陽電池に用いる場合、フッ素系樹脂フィルムを暴露側にして用いる。
 本発明の太陽電池用保護材を構成する各層には、本発明の主旨を逸脱しない範囲で、諸物性(柔軟性、耐熱性、透明性、接着性等)や成形加工性あるいは経済性等を更に向上させる目的で、例えば、ポリオレフィン系樹脂や各種エラストマー(オレフィン系、スチレン系等)、カルボキシル基、アミノ基、イミド基、水酸基、エポキシ基、オキサゾリン基、チオール基、シラノール基等の極性基で変性された樹脂及び粘着付与樹脂等を含有することができる。
 該粘着付与樹脂としては、石油樹脂、テルペン樹脂、クマロン-インデン樹脂、ロジン系樹脂、又はそれらの水素添加誘導体等が挙げられる。具体的には、石油樹脂としては、シクロペンタジエン又はその二量体からの脂環式石油樹脂やC9成分からの芳香族石油樹脂があり、テルペン樹脂としてはβ-ピネンからのテルペン樹脂やテルペン-フェノール樹脂が、また、ロジン系樹脂としては、ガムロジン、ウッドロジン等のロジン樹脂、グリセリンやペンタエリスリトール等で変性したエステル化ロジン樹脂等を例示することができる。また、該粘着付与樹脂は主に分子量により種々の軟化温度を有するものが得られるが、軟化温度が100~150℃、好ましくは120~140℃の脂環式石油樹脂の水素添加誘導体が特に好ましく、通常、太陽電池用保護材を構成する各フィルム中、20質量%以下が好ましく、10質量%以下が更に好ましい。
(添加剤)
 また、太陽電池用保護材の各層には、前述したように必要に応じて、種々の添加剤を添加することができる。
 該添加剤としては、例えば、シランカップリング剤、酸化防止剤、耐候安定剤、光拡散剤、造核剤、顔料(例えば白色顔料)、難燃剤、変色防止剤等が挙げられる。本発明においては、シランカップリング剤、酸化防止剤、紫外線吸収剤、耐候安定剤から選ばれる少なくとも一種の添加剤が配合されていることが後述する理由等から好ましい。また、本発明においては、例えば、高度の耐熱性を要求される場合は架橋剤及び/又は架橋助剤を配合してもよい。
 シランカップリング剤の例としては、ビニル基、アクリロキシ基、メタクリロキシ基のような不飽和基、アミノ基、エポキシ基等とともに、アルコキシ基のような加水分解可能な基を有する化合物を挙げることができる。シランカップリング剤の具体例としては、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン等を例示することができる。本発明においては、接着性が良好であり、黄変等の変色が少ないこと等からγ-グリシドキシプロピルトリメトキシシランやγ-メタクリロキシプロピルトリメトキシシランが好ましく用いられる。該シランカップリング剤の添加量は、太陽電池用保護材を構成する各層中、通常、0.1~5質量%程度であり、0.2~3質量%添加することが好ましい。また、シランカップリング剤と同様に、有機チタネート化合物等のカップリング剤も有効に活用できる。
 酸化防止剤としては、種々の市販品が適用でき、モノフェノール系、ビスフェノール系、高分子型フェノール系、硫黄系、ホスファイト系等各種タイプのものを挙げることができる。モノフェノール系としては、例えば、2,6-ジ-tert-ブチル-p-クレゾール、ブチル化ヒドロキシアニゾール、2,6-ジ-tert-ブチル-4-エチルフェノール等を挙げることができる。ビスフェノール系としては、2,2’-メチレン-ビス-(4-メチル-6-tert-ブチルフェノール)、2,2’-メチレン-ビス-(4-エチル-6-tert-ブチルフェノール)、4,4’-チオビス-(3-メチル-6-tert-ブチルフェノール)、4,4’-ブチリデン-ビス-(3-メチル-6-tert-ブチルフェノール)、3,9-ビス〔{1,1-ジメチル-2-{β-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}エチル}2,4,9,10-テトラオキサスピロ〕5,5-ウンデカン等を挙げることができる。
 高分子フェノール系としては、1,1,3-トリス-(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-tert-ブチル-4-ビドロキシベンジル)ベンゼン、テトラキス-{メチレン-3-(3’,5’-ジ-tert-ブチル-4’-ヒドロキスフェニル)プロピオネート}メタン、ビス{(3,3’-ビス-4’-ヒドロキシ-3’-tert-ブチルフェニル)ブチリックアシッド}グルコールエステル、1,3,5-トリス(3’,5’-ジ-tert-ブチル-4’-ヒドロキシベンジル)-s-トリアジン-2,4,6-(1H,3H,5H)トリオン、トリフェノール(ビタミンE)等を挙げることができる。
 硫黄系としては、ジラウリルチオジプロピオネート、ジミリスチルチオジプロピオネート、ジステアリルチオプロピオネート等を挙げることができる。
 ホスファイト系としては、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、4,4’-ブチリデン-ビス(3-メチル-6-tert-ブチルフェニル-ジ-トリデシル)ホスファイト、サイクリックネオペンタンテトライルビス(オクタデシルホスファイト)、トリス(モノ及び/又はジ)フェニルホスファイト、ジイソデシルペンタエリスリトールジホスファイト、9,10-ジヒドロ-9-オキサ-10-ホスファフェナスレン-10-オキサイド、10-(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナンスレン-10-オキサイド、10-デシロキシ-9,10-ジヒドロ-9-オキサ-10-ホスファフェナンスレン、サイクリックネオペンタンテトライルビス(2,4-ジ-tert-ブチルフェニル)ホスファイト、サイクリックネオペンタンテトライルビス(2,6-ジ-tert-メチルフェニル)ホスファイト、2,2-メチレンビス(4,6-tert-ブチルフェニル)オクチルホスファイト等を挙げることができる。
 本発明においては、酸化防止剤の効果、熱安定性、経済性等からフェノール系及びホスファイト系の酸化防止剤が好ましく用いられ、両者を組み合わせて用いることが更に好ましい。該酸化防止剤の添加量は、太陽電池用保護材を構成する各層中、通常、0.1~1質量%程度であり、0.2~0.5質量%添加することが好ましい。
(製膜方法)
 本発明の太陽電池用保護材を構成する粘着剤層、接着剤層を除く各樹脂層の製膜方法としては、公知の方法、例えば単軸押出機、多軸押出機、バンバリーミキサー、ニーダー等の溶融混合設備を有し、Tダイを用いる押出キャスト法やカレンダー法等を採用することができ、特に限定されるものではないが、本発明においては、ハンドリング性や生産性等の面からTダイを用いる押出キャスト法が好適に用いられる。Tダイを用いる押出キャスト法での成形温度は、用いる樹脂組成物の流動特性や製膜性等によって適宜調整されるが、概ね130~300℃、好ましくは150~250℃である。シランカップリング剤、酸化防止剤、紫外線吸収剤、耐候安定剤等の各種添加剤は、予め樹脂とともにドライブレンドしてからホッパーに供給しても良いし、予め全ての材料を溶融混合してペレットを作製してから供給しても良いし、添加剤のみを予め樹脂に濃縮したマスターバッチを作製し供給してもかまわない。
 本発明の太陽電池用保護材は、上述の製膜された各フィルムに接着剤又は粘着剤を塗工し、例えば70~110℃の温度で1~5分程度接着剤又は粘着剤を乾燥させ、0~80℃の温度下、貼り合わせて製造することができる。接着剤層又は粘着剤層を十分飽和架橋度に到達させることの観点から、得られた太陽電池用保護材は30~80℃の温度で、1~7日間養生を行うことが好ましい。
 本発明の太陽電池用保護材は、高熱環境、すなわち、熱ラミネート条件での熱処理を経ても、防湿性及び層間強度が劣化しない柔軟性と防湿性に優れるものである。
 太陽電池用保護材の厚みは、特に限定されるものではないが、通常、200~350μm程度であり、好ましくは230~320μm程度あり、より好ましくは250~300μm程度である。
(太陽電池用保護材の防湿性)
 本発明の太陽電池用保護材は、上述の通り、基材に金属酸化物層を有する水蒸気透過率0.1[g/(m2・日)]未満の防湿フィルムを用いることにより、太陽電池用保護材の初期防湿性が、水蒸気透過率で好ましくは0.1[g/(m2・日)]以下であり、より好ましくは0.05[g/(m2・日)]以下、さらに好ましくは0.03[g/(m2・日)]以下であるものとすることができる。
 本発明の太陽電池用保護材は、初期防湿性に優れ、且つ、高温高湿環境下での保存においても防湿性やデラミネーション防止にも優れる太陽電池用保護材である。
 また、前記粘着剤およびポリウレタン接着剤を用いることにより、その防湿性は、真空ラミネーション及びJIS C 60068-2-66に準じるプレッシャークッカー試験による連続する高温高湿環境による劣化度、すなわち、(プレッシャークッカー試験後の太陽電池用保護材の水蒸気透過率/太陽電池用保護材の初期水蒸気透過率)を、好ましくは2以下、さらに好ましくは1.6以下とすることができる。
 なお、本発明における太陽電池用保護材の「初期防湿性」とは、部材が真空ラミート条件等の高温高湿環境下での熱等の履歴を受ける前の防湿性をいい、熱等による防湿性劣化が起こる前の値を意味する。よって、製造直後から高温高湿処理前までの経時的な変化を含むものである。例えば、100℃前後の高温高湿環境に置かれていない状態での防湿性や、130~180℃で10分~40分行われる熱ラミネーション処理等の熱処理が行われていない状態での防湿性の値を意味する。「初期水蒸気透過率」も同様である。
 太陽電池用保護材が高温高湿下に曝されると、特に防湿フィルムの金属酸化物層側に粘着剤層が接している場合、粘着剤の性能が防湿性の劣化度合いに大きく影響する。
 粘着剤層を有する太陽電池用保護材の防湿性の劣化の原因として、粘着剤自身の防湿性の劣化が挙げられる。これについては加水分解しにくい粘着剤を選択することが有効である。もう一つの原因として、金属酸化物層面が傷められることによる防湿性の劣化が挙げられる。
 本発明者らは、高温高湿下で防湿フィルムの金属酸化物層を劣化させないという点に着目して粘着剤層を設計し上記の太陽電池用保護材を得た。防湿フィルムの金属酸化物層の劣化は、金属酸化物層と粘着剤層が強い化学結合を形成すると、粘着剤層の粘弾性の変化や粘着剤層塗膜の分解、収縮によって金属酸化物層に大きな応力がかかることによると考えられる。これに対して、金属酸化物層と粘着剤層の密着度が弱いと、粘着剤層の物性変化による応力は軽減されるので防湿性の劣化が防止される。金属酸化物層と粘着剤層が化学結合を形成する要因は、例えばSiOx層の欠陥部分と粘着剤層中の水酸基等が反応することによると考えられるが、これを抑制するためには、粘着剤中の反応性官能基の数を減らせばよく、まず、粘着剤の塗布、硬化後の未反応官能基の数を抑えることが挙げられる。
 更に、粘着剤層の物性については、防湿フィルムの金属酸化物層を保護し防湿性の劣化を防止する観点から、ある程度柔らかさと厚みを持ち、ファンデルワールス力によって密着することが望ましい。粘着剤層が硬すぎると収縮等に伴うフィルム間の応力を受けやすく金属酸化物層の劣化が起こりやすいので、前述したように、100℃、周波数10Hz、歪0.1%での引張り貯蔵弾性率は5.0×104Pa以上、5.0×105Pa以下であることが好ましく、また粘着剤層の厚みは10μm以上であることが好ましいのである。
 このようにして、上記防湿性を満たすことにより、発電素子の劣化、内部の導線や電極の発錆を防止することができる。
 本発明における各防湿性はJIS Z0222「防湿包装容器の透湿度試験方法」、JIS Z0208「防湿包装材量の透湿度試験方法(カップ法)」の諸条件に準じ実施例に記載の方法で評価することができる。
(太陽電池用保護材の用途)
 本発明の太陽電池用保護材は、特に化合物系発電素子太陽電池モジュール又はフレキシブル太陽電池モジュールの太陽電池用表面保護部材に用いられることが、気泡の発生、湿気の透過による発電素子の劣化、内部の導線や電極の発錆を防止することができ、長期に渡る起電力の保持を達成できることから好ましい。
 太陽電池用保護材は、該太陽電池用保護材の構成、特に、特定の接着剤層を介して防湿フィルム同士を積層することにより、気泡の発生を抑制することができる。よって、太陽電池の性能低下を防止し、太陽電池の耐久性の向上に有効な高防湿太陽電池用表面保護材を提供することができる。また、防湿フィルムに前記特定の粘着剤層を介して前記フッ素系樹脂フィルムを積層することにより、高温条件下においても長期に防湿性、層間強度が劣化しない柔軟性と防湿性に優れた太陽電池用保護材を実現し、太陽電池の性能低下を同時に防止すること、及び太陽電池の耐久性の向上に有効な高防湿太陽電池用表面保護材を提供することができる。
 太陽電池用表面保護材は、封止材を積層してなる封止材・表面保護材一体型であってもよい。予め封止材を更に積層することにより、真空ラミネーション工程における裏面保護シート、封止材、発電素子、封止材、前面保護シートそれぞれを個々に積層する作業を低減でき、太陽電池モジュール製造の効率化を図ることができる。
<太陽電池モジュール、太陽電池の製造方法>
 前記太陽電池用保護材は、そのまま、あるいはガラス板等と貼り合わせて太陽電池用表面保護材として用いることができる。本発明の太陽電池用保護材を用いて本発明の太陽電池モジュール及び/又は太陽電池を製造するには、公知の方法により、作製すればよい。
 本発明の太陽電池用保護材を太陽電池用フロントシート、バックシート等の表面保護材の層構成に使用し、太陽電池素子を封止材とともに固定することにより太陽電池モジュールを製作することができる。このような太陽電池モジュールとしては、種々のタイプのものを例示することができ、好ましくは、本発明の太陽電池用保護材を前面保護材として使用した場合、封止材と、太陽電池素子と、裏面保護材とを用いて作製された太陽電池モジュールが挙げられ、具体的には、前面保護材(本発明の太陽電池用保護材)/封止材(封止樹脂層)/太陽電池素子/封止材(封止樹脂層)/裏面保護材の構成のもの、裏面保護材の内周面上に形成させた太陽電池素子上に封止材と前面保護材(本発明の太陽電池用保護材)を形成させるような構成のもの、前面保護材(本発明の太陽電池用保護材)の内周面上に形成させた太陽電池素子、例えばフッ素樹脂系透明保護材上にアモルファス太陽電池素子をスパッタリング等で作製したものの上に封止材と裏面保護材を形成させるような構成のもの等を挙げることができる。上記前面保護材として本発明の太陽電池用保護材の外側にガラス板を貼り合わせることは任意である。なお、前述の封止材・表面保護材一体型の表面保護材を用いる場合は、上記の封止材は用いなくてもよい場合がある。
 太陽電池素子としては、例えば、単結晶シリコン型、多結晶シリコン型、アモルファスシリコン型、ガリウム-砒素、銅-インジウム-セレン、銅-インジウム-ガリウム-セレン、カドミウム-テルル等のIII-V族やII-VI族化合物半導体型、色素増感型、有機薄膜型等が挙げられる。
 本発明の太陽電池用保護材を用いて作製された太陽電池モジュールを構成する他の各部材については、特に限定されるものではないが、封止材としては、例えば、エチレン-酢酸ビニル共重合体を挙げることができる。前面保護材及び裏面保護材としては、本発明の太陽電池用保護材の他、無機材料や各種熱可塑性樹脂フィルム等の単層もしくは多層のシートであり、例えば、錫、アルミ、ステンレス等の金属やガラス等の無機材料、ポリエステル、無機物蒸着ポリエステル、フッ素含有樹脂、ポリオレフィン等の単層もしくは多層の保護材を挙げることができる。前面保護材及び/又は裏面保護材の表面には、封止材や他の部材との接着性を向上させるためにプライマー処理やコロナ処理等公知の表面処理を施すことができる。
 本発明の太陽電池用保護材を用いて作製された太陽電池モジュールを既述した前面保護材(本発明の太陽電池用保護材)/封止材/太陽電池素子/封止材/裏面保護材のような構成のものを例として説明する。太陽光受光側から順に、本発明の太陽電池用保護材、封止材、太陽電池素子、封止材、裏面保護材が積層されてなり、更に、裏面保護材の下面にジャンクションボックス(太陽電池素子から発電した電気を外部へ取り出すための配線を接続する端子ボックス)が接着されてなる。太陽電池素子は、発電電流を外部へ電導するために配線により連結されている。配線は、裏面保護材に設けられた貫通孔を通じて外部へ取り出され、ジャンクションボックスに接続されている。
 太陽電池モジュールの製造方法としては、公知の製造方法が適用でき、特に限定されるものではないが、一般的には、本発明の太陽電池用保護材、封止材、太陽電池素子、封止材、裏面保護材の順に積層する工程と、それらを真空吸引し加熱圧着する工程を有する。この真空吸引し加熱圧着する工程は、例えば、真空ラミネーターで、温度が好ましくは130~180℃、より好ましくは130~150℃、脱気時間が2~15分、プレス圧力が0.05~1atm、プレス時間が好ましくは8~45分、より好ましくは10~40分で加熱圧着することによりなる。
 また、バッチ式の製造設備やロール・ツー・ロール式の製造設備等も適用することができる。
 本発明の太陽電池用保護材を用いて作製された太陽電池モジュールは、適用される太陽電池のタイプとモジュール形状により、モバイル機器に代表される小型太陽電池、屋根や屋上に設置される大型太陽電池等屋内、屋外に関わらず各種用途に適用することができる。特に、電子デバイスの中でも、化合物系発電素子太陽電池モジュールやアモルファスシリコン系等のフレキシブル太陽電池モジュール用の太陽電池用保護材として、また、電子ペーパー等への使用においては、高防湿性が要求されることから、この連続する高熱処理を考慮した太陽電池用保護材として有効に用いられる。そのため、本発明の太陽電池用保護材を用いて作製された太陽電池モジュールは、特に前記電子デバイスの表面保護材として好ましく用いられる。
 以下に、本発明を実施例によりさらに具体的に説明するが、これらの実施例及び比較例により本発明は制限を受けるものではない。なお、種々の物性の測定および評価は次のようにして行った。
(物性測定)
(1)粘着剤層の引張り貯蔵弾性率
 シリコーン離型PETフィルム上に使用する粘着剤を、25g/m2となるよう塗布し、40℃で4日間養生し、更にその後150℃で30分保持し粘着剤層を形成した。
 その後当該粘着剤層のみを取り出し、該粘着剤層を複数枚重ねてサンプル(縦4mm、横60mm、厚み200μm)を作製した。得られたサンプルについて、アイティ計測(株)製の粘弾性測定装置(商品名「粘弾性スペクトロメーターDVA-200」)を用いて、振動周波数10Hz、歪0.1%、昇温速度3℃/分、チャック間25mmで横方向について、-100℃から180℃までサンプルに印加される歪に対する応力を測定し、得られたデータから100℃における引張り貯蔵弾性率を求めた。
(2)接着剤層の引張り貯蔵弾性率
 各接着剤塗液を、固形分塗工量が20g/m2となるようにシリコーン離型PETフィルムに塗布し、40℃で4日間養生し、更にその後150℃で30分保持し接着剤層を形成した。その後、接着剤層のみを取り出し、該接着剤層を複数枚重ねて、サンプル(縦4mm、横60mm、厚み200μm)を作製した。得られたサンプルについて、アイティ計測(株)製の粘弾性測定装置、商品名「粘弾性スペクトロメーターDVA-200」を用いて、振動周波数10Hz、歪0.1%、昇温速度3℃/分、チャック間25mmで横方向について、-100℃から180℃までサンプルに印加される歪に対する応力を測定し、得られたデータから100℃における引張り貯蔵弾性率を求めた。なお、昇温時にサンプル形状変化から100℃での測定が困難な場合、引張り貯蔵弾性率は0とした。
(3)接着剤の粘度
 固形分濃度が50質量%となるように接着剤を酢酸エチルで希釈し、この希釈液をB型粘度計で25℃で測定したときの粘度[Pa・s]を接着剤粘度とした。
(4)プレッシャークッカー(PC)試験(テスト)
 トミー精工社製プレッシャークッカー試験LSK-500を用い、105℃、湿度100%、48時間の試験条件(PC48)でプレッシャークッカー試験を行った。
(5)発泡抑制試験
 太陽電池用保護材を30cm角に切出し、ガラス、封止材、太陽電池用保護材(フッ素系樹脂フィルムが外側になる)の順になるように積層し、150℃、15分、圧力0.1MPaの条件で真空ラミネートを行った後、発泡の有無の確認を行なった。
 30cm角の太陽電池用保護材中に気泡が全くない状態を○、一つ以上存在する場合は×として評価した。
(6)防湿性
 防湿フィルム(C-1、C-2)の防湿性は、防湿フィルム作製後、一週間40℃で保管後に、JIS Z 0222「防湿包装容器の透湿度試験方法」、JIS Z 0208「防湿包装材料の透湿度試験方法(カップ法)」の諸条件に順じ、以下の手法で測定した。
 また、太陽電池用保護材(E-1~E-8)の防湿性については、JIS Z 0222「防湿包装容器の透湿度試験方法」、JIS Z 0208「防湿包装材料の透湿度試験方法(カップ法)」の諸条件に順じ、以下の手法で測定した水蒸気透過率の測定値を初期水蒸気透過率とした。更に、ガラス、封止材、太陽電池用保護材(フッ素系樹脂フィルムが封止材側と反対側になる)の順になるように積層し、150℃、15分、圧力0.1MPaの条件で真空ラミネートを行った後、上記(4)の条件でプレッシャークッカー試験を行った後に以下の手法で測定した各太陽電池用保護材の水蒸気透過率の測定値をプレッシャークッカー試験後の水蒸気透過率とした。
(防湿フィルムの水蒸気透過率)
 厚さ60μmの延伸ポリプロピレンフィルム(東洋紡績(株)製 P1146)の表面に、ウレタン系接着剤(東洋モートン(株)製AD900とCAT-RT85を10:1.5の割合で配合したもの)を塗布、乾燥し、厚さ約3μmの接着剤層を形成した。この接着剤層上に、作製後、一週間40℃で保管後の防湿フィルムの金属酸化物層側をラミネートし、積層体を得た。
 次に、該積層体からなる透湿面積10.0cm×10.0cm角の積層体各2枚用い、延伸ポリプロピレンフィルムが内側になるようにして、吸湿剤として無水塩化カルシウム約20gを入れ四辺を封じた袋を作製し、その袋を温度40℃相対湿度90%の恒温恒湿装置に入れ、72時間以上の間隔でおよそ200日目まで質量測定し、4日目以降の経過時間と袋質量との回帰直線の傾きから水蒸気透過率[g/(m2・日)]を算出した。
(太陽電池用保護材の水蒸気透過率および防湿性の劣化度)
 厚さ60μmの延伸ポリプロピレンフィルム(東洋紡績(株)製 P1146)の表面に、ウレタン系接着剤(東洋モートン(株)製AD900とCAT-RT85を10:1.5の割合で配合したもの)を塗布、乾燥し、厚さ約3μmの接着剤層を形成し、この接着剤層上に太陽電池用保護材の防湿フィルムの基材面側をラミネートし、積層体を得た。
 次に、該積層体からなる透湿面積10.0cm×10.0cm角の積層体各2枚用い、延伸ポリプロピレンフィルムが内側になるようにして、吸湿剤として無水塩化カルシウム約20gを入れ四辺を封じた袋を作製し、その袋を温度40℃相対湿度90%の恒温恒湿装置に入れ、72時間以上の間隔でおよそ200日目まで質量測定し、4日目以降の経過時間と袋質量との回帰直線の傾きから水蒸気透過率[g/(m2・日)]を算出し、太陽電池用保護材の初期水蒸気透過率とした。プレッシャークッカー試験後の防湿性評価についても、試験後の太陽電池用保護材を用いて上記と同様に積層体を作成し、該積層体からなる透湿面積10.0cm×10.0cm角の積層体各2枚を用い、上記と同様の方法で評価を行なった。
 得られた水蒸気透過率を用いて、水蒸気透過率の劣化度(防湿性劣化度ともいう)を次式により求めた。
 水蒸気透過率の劣化度=(プレッシャークッカー試験後の太陽電池用保護材の水蒸気透過率)/(太陽電池用保護材の初期水蒸気透過率)
<構成材>
(フッ素系樹脂フィルム)
 2-エチレン-4-フッ化エチレン共重合体(ETFE)フィルム(旭硝子(株)製 アフレックス50 MW1250DCS、厚み50μm)を使用した。
(粘着剤塗液)
 B-1:温度計、撹拌機、還流冷却管、窒素ガス導入管を備えた反応装置を用い、アクリル酸ブチル90質量部、アクリル酸10質量部、酢酸エチル75質量部、トルエン75質量部の混合溶液に、アゾビスイソブチロニトリル0.3質量部を加え、窒素ガス雰囲気下、80℃で8時間重合した。反応終了後、トルエンにて固形分30質量%に調製し、質量平均分子量50万である樹脂を得た。得られた樹脂100質量部に対して、イソシアナート系架橋剤として日本ポリウレタン工業(株)製コロネートL(固形分75質量%)1質量部を添加して、粘着剤B-1を調製した。100℃、周波数10Hz、歪0.1%における引張り貯蔵弾性率を測定した結果を表1に示す。
 B-2:温度計、撹拌機、還流冷却管、窒素ガス導入管を備えた反応装置を用い、アクリル酸2-エチルヘキシル70質量部、アクリル酸メチル10質量部,アクリル酸5質量部、酢酸エチル20質量部、トルエン20質量部の混合溶液に、アゾビスイソブチロニトリル0.3質量部を加え、窒素ガス雰囲気下、80℃で8時間重合した。反応終了後、トルエンにて固形分30質量%に調製し、質量平均分子量50万である樹脂を得た。得られた樹脂100質量部に対して、イソシアナート系架橋剤として日本ポリウレタン工業(株)製コロネートL(固形分75質量%)1質量部を添加して、粘着剤B-2を調製した。100℃、周波数10Hz、歪0.1%における引張り貯蔵弾性率を測定した結果を表1に示す。
 B-3:温度計、撹拌機、還流冷却管、窒素ガス導入管を備えた反応装置を用い、アクリル酸ブチル40質量部、アクリル酸イソブチル10質量部、アクリル酸メチル40質量部、アクリル酸10質量部、酢酸エチル75質量部、トルエン75質量部の混合溶液に、アゾビスイソブチロニトリル0.3質量部を加え、窒素ガス雰囲気下、80℃で8時間重合した。反応終了後、トルエンにて固形分30質量%に調製し、質量平均分子量50万である樹脂を得た。得られた樹脂100質量部に対して、イソシアナート系架橋剤として日本ポリウレタン工業(株)製コロネートL(固形分75質量%)1質量部を添加して、粘着剤B-3を調製した。100℃、周波数10Hz、歪0.1%における引張り貯蔵弾性率を測定した結果を表1に示す。
(防湿フィルム)
 C-1:基材として、厚み12μmの二軸延伸ポリエチレンナフタレートフィルム(帝人デュポン製、「Q51C12」)を用い、そのコロナ処理面に、下記のコート液を塗布乾燥して厚み0.1μmのコート層を形成した。
 次いで、真空蒸着装置を使用して1.33×10-3Pa(1×10-5Torr)の真空下でSiOを加熱蒸発させ、コート層上に厚み50nmのSiOx(x=1.5)の金属酸化物層を有する防湿フィルムC-1を得た。作製した防湿フィルムC-1の水蒸気透過率は0.01[g/(m2・日)]であった。
コート液
 日本合成(株)製「ゴーセノール」(ケン化度:97.0~98.8mol%、重合度:2400のポリビニルアルコール樹脂)220gをイオン交換水2810gに加え加温溶解した水溶液に、20℃で撹拌しながら35mol%塩酸645gを加えた。次いで、10℃でブチルアルデヒド3.6gを撹拌しながら添加し、5分後に、アセトアルデヒド143gを撹拌しながら滴下し、樹脂微粒子を析出させた。次いで、60℃で2時間保持した後、液を冷却し、炭酸水素ナトリウムで中和し、水洗、乾燥し、ポリビニルアセトアセタール樹脂粉末(アセタール化度75mol%)を得た。
 更に、架橋剤としてイソシアネート樹脂(住友バイエルウレタン(株)製「スミジュールN-3200」)を用い、水酸基に対するイソシアネート基の当量比が1:2になるように混合した。
 C-2:12μmポリエチレンテレフタレート樹脂フィルムにシリカを蒸着した三菱樹脂(株)製テックバリアLXを防湿フィルムC-2として使用した。また前述の方法で測定した水蒸気透過率は0.2[g/(m2・日)]であった。
(接着剤塗液)
 D-1:ポリカーボネートポリオール成分を含む主剤として、希釈溶剤が酢酸エチル、固形分50質量%のときの25℃における粘度が800mPa・sであるロックペイント(株)製HD1013を使用し、脂肪族系のヘキサメチレンジイソシアナート成分を含む硬化剤として、ロックペイント(株)製H62を使用し、重量比で15:1となるように混合し、固形分濃度が35質量%となるように酢酸エチルで希釈して接着剤塗液D-1を調製した。
 D-2:ポリウレタンポリオール成分を含む主剤として、平均分子量1000のポリカプロラクトンポリオール(ダイセル化学工業(株)製プラクセル210N)、平均分子量1000のポリカーボネートジオール(ダイセル化学工業(株)製プラクセルCD CD210)を質量比60:40となるように混合し、酢酸エチルに溶解させ、固形分50質量%、25℃における粘度が400mPa・sのポリオール溶液とした。硬化成分としてスミジュールN3300(住化バイエルウレタン(株)製)を(NCO/OH)=2.5となるように配合し、固形分濃度が35質量%となるように酢酸エチルで希釈して接着剤塗液D-2を調製した。
 D-3:ポリカーボネートポリオール成分を含む主剤として、希釈溶剤が酢酸エチル、固形分50質量%のときの25℃における粘度が400mPa・sである東洋モートン(株)製LIS601を使用し、脂肪族系のヘキサメチレンジイソシアナート成分を含む硬化剤として東洋モートン(株)製CR901を使用し、重量比で10:1となるように混合し、固形分濃度が35質量%となるように酢酸エチルで希釈して接着剤塗液D-3を調製した。
 D-4:ポリウレタンポリオール成分を含む主剤として、平均分子量530のポリカプロラクトンポリオール(ダイセル化学工業(株)製プラクセル205U)、平均分子量500のポリカーボネートジオール(ダイセル化学工業(株)製プラクセルCD CD205)を質量比60:40となるように混合し、酢酸エチルに溶解させ、固形分50質量%、25℃における粘度が100mPa・sのポリオール溶液とした。硬化成分としてスミジュールN3300(住化バイエルウレタン(株)製)を(NCO/OH)=2.5となるように配合し、固形分濃度が40質量%となるように酢酸エチルで希釈して接着剤塗液D-4を調製した。
 D-5:ポリウレタンポリオール成分を含む主剤として、平均分子量2000のポリカプロラクトンポリオール(ダイセル化学工業(株)製プラクセル220)、平均分子量500のポリカーボネートジオール(ダイセル化学工業(株)製プラクセルCD CD220)を質量比60:40となるように混合し、酢酸エチルに溶解させ、固形分50質量%、25℃における粘度が1300mPa・sのポリオール溶液とした。硬化成分としてスミジュールN3300(住化バイエルウレタン(株)製)を(NCO/OH)=2.5となるように配合し、固形分濃度が23質量%となるように酢酸エチルで希釈して接着剤塗液D-5を調製した。
<封止材>
 エチレン-酢酸ビニル製封止材(ブリヂストン(株)製EVASKY S11、厚み500μm、融点69.6℃)を使用した。
<ガラス>
 AGCファブリテック(株)製太陽電池専用カバーガラス TCB09331、サイズ150×150×3.2mmを使用した。
実施例1
 38μmシリコーン離型PETフィルムに、粘着剤塗液B-1を乾燥後の厚みが20μmとなるよう塗布し、乾燥して粘着剤層を形成した。形成した粘着剤層面に防湿フィルムC-1のSiOx面を貼り合せ、その後シリコーン離型PETフィルムを剥離し、フッ素系樹脂フィルムを貼り合せた。その後作製した積層体の防湿フィルムのポリエチレンナフタレートフィルム面に接着剤塗液D-1を乾燥後の厚みが8μmになるよう塗布し、乾燥して接着剤層を形成した。形成した接着剤層面に防湿フィルムC-1のSiOx面を貼り合せた後、40℃で5日間養生し、102μmの太陽電池用保護材E-1を作製した。得られた太陽電池用保護材E-1を用い、各種評価を行い、結果を表1に示した。
実施例2
 実施例1の接着剤塗液D-1をD-2としたこと以外は実施例1と同様にして、厚み102μmの太陽電池用保護材E-2を作製した。得られた太陽電池用保護材E-2を用い、各種評価を行い、結果を表1に示した。
実施例3
 実施例1の粘着剤塗液B-1をB-2としたこと以外は実施例1と同様にして、厚み102μmの太陽電池用保護材E-3を作製した。得られた太陽電池用保護材E-3を用い、各種評価を行い、結果を表1に示した。
実施例4
 実施例1の接着剤塗液D-1をD-3としたこと以外は実施例1と同様にして、厚み102μmの太陽電池用保護材E-4を作製した。得られた太陽電池用保護材E-4を用い、各種評価を行い、結果を表1に示した。
実施例5
 実施例1の粘着剤塗液B-1をB-3としたこと以外は実施例1と同様にして、厚み102μmの太陽電池用保護材E-5を作製した。得られた太陽電池用保護材E-5を用い、各種評価を行い、結果を表1に示した。
比較例1
 実施例1の接着剤塗液D-1をD-4としたこと以外は実施例1と同様にして、厚み102μmの太陽電池用保護材E-6を作製した。得られた太陽電池用保護材E-6を用い、各種評価を行い、結果を表1に示した。
比較例2
 実施例1の接着剤塗液D-1をD-5としたこと以外は実施例1と同様にして、厚み102μmの太陽電池用保護材E-7を作製した。得られた太陽電池用保護材E-7を用い、各種評価を行い、結果を表1に示した。
比較例3
 実施例1の接着剤塗液D-1をD-5とし、さらに接着剤層面に貼り合せる防湿フィルムC-1をC-2としたこと以外は実施例1と同様にして厚み102μmの太陽電池用保護材E-8を作製した。得られた太陽電池用保護材E-8を用い、各種評価を行い、結果を表1に示した。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から明らかなように、接着剤の粘度が本発明の範囲内にある実施例1~5はいずれも発泡抑制に優れ、特に、実施例1~4は防湿性が長期に優れたものであった。また、接着剤の粘度が本発明の範囲内にない比較例1、2はいずれも発泡抑制に劣り、初期の防湿性が低い防湿フィルムを用いた比較例3は、PC48後の太陽電池用部材の防湿性の劣化度は良好であるが、初期防湿性が低いものであった。

Claims (11)

  1.  基材の少なくとも一方の面に金属酸化物層を有し水蒸気透過率が0.1[g/(m2・日)]未満の防湿フィルムを2枚以上有する太陽電池用保護材であって、前記防湿フィルム同士が、25℃における粘度が200~1000mPa・sであるポリウレタンポリオールを用いたポリウレタン接着剤からなる接着剤層を介して積層されていることを特徴とする太陽電池用保護材。
  2.  更に、フッ素系樹脂フィルムを有し、該フッ素系樹脂フィルムと前記防湿フィルムとが、100℃、周波数10Hz、歪0.1%における引張り貯蔵弾性率が5.0×104~5.0×105Paの粘着剤層を介して積層されている、請求項1に記載の太陽電池用保護材。
  3.  前記ポリウレタンポリオールがポリカーボネートポリオールである、請求項1又は2に記載の太陽電池用保護材。
  4.  前記接着剤層の引張り貯蔵弾性率が100℃、周波数10Hz、歪み0.1%において5.0×104~5.0×105Paである、請求項1~3のいずれかに記載の太陽電池用保護材。
  5.  前記接着剤層の厚みが4~12μmである、請求項1~4のいずれかに記載の太陽電池用保護材。
  6.  前記防湿フィルムの基材がポリエチレンナフタレート(PEN)フィルムである、請求項1~5のいずれかに記載の太陽電池用保護材。
  7.  前記粘着剤がアクリル粘着剤である、請求項2~6のいずれかに記載の太陽電池用保護材。
  8.  前記防湿フィルムの基材の厚みが、前記フッ素系樹脂フィルムの厚みより薄い請求項1~7のいずれかに記載の太陽電池用保護材。
  9.  前記防湿フィルムの水蒸気透過率が0.03[g/(m2・日)]以下である、請求項1~8のいずれかに記載の太陽電池用保護材。
  10.  水蒸気透過率の劣化度が2以下である、請求項1~9のいずれかに記載の太陽電池用保護材。
  11.  請求項1~10のいずれかに記載の太陽電池用保護材を有する太陽電池モジュール。
PCT/JP2012/073728 2011-09-16 2012-09-14 太陽電池用保護材 WO2013039234A1 (ja)

Applications Claiming Priority (20)

Application Number Priority Date Filing Date Title
JP2011-203160 2011-09-16
JP2011203160 2011-09-16
JP2011-209406 2011-09-26
JP2011209402 2011-09-26
JP2011-209402 2011-09-26
JP2011209406 2011-09-26
JP2011245857 2011-11-09
JP2011-245857 2011-11-09
JP2012183096 2012-08-22
JP2012-183096 2012-08-22
JP2012203025A JP2013084928A (ja) 2011-09-26 2012-09-14 太陽電池用保護材
JP2012-203025 2012-09-14
JP2012-203036 2012-09-14
JP2012203034A JP2013123036A (ja) 2011-11-09 2012-09-14 太陽電池用保護材
JP2012203027A JP2013084929A (ja) 2011-09-26 2012-09-14 太陽電池用保護材
JP2012203031A JP2013077818A (ja) 2011-09-16 2012-09-14 太陽電池用保護材
JP2012-203027 2012-09-14
JP2012-203034 2012-09-14
JP2012203036A JP6007037B2 (ja) 2012-08-22 2012-09-14 積層防湿フィルム、太陽電池用保護材、及び太陽電池
JP2012-203031 2012-09-14

Publications (1)

Publication Number Publication Date
WO2013039234A1 true WO2013039234A1 (ja) 2013-03-21

Family

ID=47883449

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2012/073727 WO2013039233A1 (ja) 2011-09-16 2012-09-14 太陽電池用保護材
PCT/JP2012/073728 WO2013039234A1 (ja) 2011-09-16 2012-09-14 太陽電池用保護材

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073727 WO2013039233A1 (ja) 2011-09-16 2012-09-14 太陽電池用保護材

Country Status (1)

Country Link
WO (2) WO2013039233A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6175935B2 (ja) * 2013-06-25 2017-08-09 日立化成株式会社 太陽電池用接続材料、これを用いた太陽電池モジュール及びその製造方法
JPWO2015008614A1 (ja) * 2013-07-17 2017-03-02 東レフィルム加工株式会社 太陽電池モジュール用裏面保護シート
JP6427459B2 (ja) * 2015-04-17 2018-11-21 富士フイルム株式会社 機能性フィルムおよび機能性フィルムの製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06204544A (ja) * 1992-12-28 1994-07-22 Canon Inc 太陽電池モジュール及び太陽電池
JP2009081394A (ja) * 2007-09-27 2009-04-16 Toppan Printing Co Ltd 太陽電池裏面封止用シート及びこれを用いた太陽電池モジュール
JP2009248377A (ja) * 2008-04-02 2009-10-29 Du Pont Mitsui Polychem Co Ltd 太陽電池用積層体シート及びそれを用いた太陽電池モジュール
JP2010016286A (ja) * 2008-07-07 2010-01-21 Toppan Printing Co Ltd 太陽電池裏面封止用シート

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008204997A (ja) * 2007-02-16 2008-09-04 Toppan Printing Co Ltd 太陽電池用裏面保護シート
JP2009135457A (ja) * 2007-11-05 2009-06-18 Techno Polymer Co Ltd 太陽電池用バックシート
JP2009200385A (ja) * 2008-02-25 2009-09-03 Toppan Printing Co Ltd 太陽電池用保護シート及びこれを用いた太陽電池モジュール
JP2010027815A (ja) * 2008-07-18 2010-02-04 Daio Paper Corp 太陽電池モジュール用裏面保護シート
JP2010238790A (ja) * 2009-03-30 2010-10-21 Lintec Corp 太陽電池モジュール用保護シートおよびそれを用いてなる太陽電池モジュール
JP2010263193A (ja) * 2009-04-08 2010-11-18 Nippon Shokubai Co Ltd 太陽電池モジュール用バックシート

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06204544A (ja) * 1992-12-28 1994-07-22 Canon Inc 太陽電池モジュール及び太陽電池
JP2009081394A (ja) * 2007-09-27 2009-04-16 Toppan Printing Co Ltd 太陽電池裏面封止用シート及びこれを用いた太陽電池モジュール
JP2009248377A (ja) * 2008-04-02 2009-10-29 Du Pont Mitsui Polychem Co Ltd 太陽電池用積層体シート及びそれを用いた太陽電池モジュール
JP2010016286A (ja) * 2008-07-07 2010-01-21 Toppan Printing Co Ltd 太陽電池裏面封止用シート

Also Published As

Publication number Publication date
WO2013039233A1 (ja) 2013-03-21

Similar Documents

Publication Publication Date Title
WO2012091122A1 (ja) 積層防湿フィルム
WO2012029466A1 (ja) 太陽電池用カバーフィルム及びそれを用いて作製された太陽電池モジュール
WO2012124742A1 (ja) 積層防湿フィルム
JP2012148560A (ja) 積層防湿フィルム
WO2012105512A1 (ja) 太陽電池用表面保護材及びそれを用いて作製された太陽電池モジュール
JP2014060390A (ja) 太陽電池用保護シート
JP5865739B2 (ja) 積層防湿フィルム
JP5359393B2 (ja) 太陽電池モジュール封止用シートおよび太陽電池モジュール
JP6007037B2 (ja) 積層防湿フィルム、太陽電池用保護材、及び太陽電池
WO2013039234A1 (ja) 太陽電池用保護材
JP2013211451A (ja) 太陽電池用封止材・表面保護シート積層体
WO2013100108A1 (ja) 太陽電池用保護材
JP2014041900A (ja) 太陽電池用保護材及び太陽電池
JP2012213937A (ja) 積層防湿シート
JP2012148561A (ja) 積層防湿フィルム
TW201318869A (zh) 太陽電池用保護材
JP2013077818A (ja) 太陽電池用保護材
JP2013123036A (ja) 太陽電池用保護材
JP2012214023A (ja) 積層防湿フィルム
JP2012158154A (ja) 透明積層防湿フィルム
JP2012213936A (ja) 積層防湿フィルム
JP2012148557A (ja) 太陽電池保護用積層体及びそれを用いて作製された太陽電池モジュール
JP5474171B1 (ja) 太陽電池用保護材
JP5449312B2 (ja) 太陽電池用保護材
JP2014058155A (ja) 積層シートの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12831381

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12831381

Country of ref document: EP

Kind code of ref document: A1