WO2013035576A1 - 含油排水処理システム - Google Patents

含油排水処理システム Download PDF

Info

Publication number
WO2013035576A1
WO2013035576A1 PCT/JP2012/071628 JP2012071628W WO2013035576A1 WO 2013035576 A1 WO2013035576 A1 WO 2013035576A1 JP 2012071628 W JP2012071628 W JP 2012071628W WO 2013035576 A1 WO2013035576 A1 WO 2013035576A1
Authority
WO
WIPO (PCT)
Prior art keywords
membrane
oil
tank
separation
separation tank
Prior art date
Application number
PCT/JP2012/071628
Other languages
English (en)
French (fr)
Inventor
健一 牛越
森田 徹
井田 清志
貞三 水谷
Original Assignee
住友電工ファインポリマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ファインポリマー株式会社 filed Critical 住友電工ファインポリマー株式会社
Priority to US13/976,584 priority Critical patent/US20130264254A1/en
Priority to CN201280004398.5A priority patent/CN103298750B/zh
Priority to AU2012305529A priority patent/AU2012305529A1/en
Priority to CA2823920A priority patent/CA2823920A1/en
Publication of WO2013035576A1 publication Critical patent/WO2013035576A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/0084Enhancing liquid-particle separation using the flotation principle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/02Settling tanks with single outlets for the separated liquid
    • B01D21/04Settling tanks with single outlets for the separated liquid with moving scrapers
    • B01D21/06Settling tanks with single outlets for the separated liquid with moving scrapers with rotating scrapers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/24Feed or discharge mechanisms for settling tanks
    • B01D21/2427The feed or discharge opening located at a distant position from the side walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/147Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/16Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/031Two or more types of hollow fibres within one bundle or within one potting or tube-sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/24Feed or discharge mechanisms for settling tanks
    • B01D21/2433Discharge mechanisms for floating particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/24Feed or discharge mechanisms for settling tanks
    • B01D21/2488Feed or discharge mechanisms for settling tanks bringing about a partial recirculation of the liquid, e.g. for introducing chemical aids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/06Submerged-type; Immersion type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases
    • B01D2321/185Aeration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/36Polytetrafluoroethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil

Definitions

  • the present invention relates to an oil-containing wastewater treatment system, and more specifically, in an oil-containing wastewater treatment system that combines separation in the previous process by flotation and sedimentation and membrane filtration in the subsequent process, efficient processing by combining the functions of the preceding and following processes. It is intended.
  • a pretreatment such as filtration or activated carbon treatment is generally performed after a pretreatment such as coagulation sedimentation or pressurized levitation.
  • a pretreatment such as coagulation sedimentation or pressurized levitation.
  • the amount of treated water decreases as the post-treatment is performed, and the treatment of oil-containing wastewater discharged in large quantities cannot catch up.
  • precise separation means are not suitable in terms of treatment speed.
  • a membrane separation apparatus comprising a hollow fiber membrane which removes oil by membrane filtration in a treatment after pretreatment such as coagulation sedimentation and pressurized flotation in Japanese Patent Application Laid-Open No. 2010-36183.
  • the membrane separation apparatus uses a hollow fiber membrane having alkali resistance selected from PTFE, PSF, and PES. Since the hollow fiber membrane is a chemically and physically tough membrane, efficient cleaning is possible. This has the advantage that a large amount of waste water can be treated by increasing the processing speed.
  • the present invention has been made in view of the above-mentioned problems, and combines a post-process membrane filtration apparatus for performing a microfiltration treatment and a pre-process separation apparatus by flotation / sedimentation in an efficient manner on the operation and on the apparatus.
  • An object is to simplify the apparatus.
  • the present invention provides a separation tank that floats and separates oil in a raw water supply path made of oil-containing wastewater, and a membrane separation module made of a hollow fiber membrane or a flat membrane downstream of the separation tank. And a membrane filtration tank provided with an air diffuser for generating bubbles below the membrane separation module, and supplying raw water from the separation tank to the membrane filtration tank via a circulation pump.
  • An oil-containing wastewater treatment system is provided that includes a supply pipe and a return pipe that returns the unfiltered water containing the oil and bubbles from the membrane filtration tank to the separation tank.
  • an air diffuser that generates air bubbles is disposed below the membrane separation module in the membrane filtration tank, and air bubbles are generated by bubbling air for air diffusion.
  • the underwater bubbling imparts vibrations to the separation membrane, and at the same time generates an upward flow of bubbles, peeling off foreign matter including oil adhering to the surface of the separation membrane, reducing clogging and reducing the flow rate of membrane filtration. It is preventing.
  • the fine oil separated on the surface of the separation membrane accumulates by itself due to the continuous separation, and this becomes a large oil droplet and floats in the membrane filtration tank. Further, the flow rate by the circulation pump has an effect of peeling off oil and solids deposited on the film surface.
  • the oil component that has floated is sent to the separation tank through the return pipe, and becomes floating oil in the separation tank and can be separated.
  • unfiltered water containing bubbles flows into the separation tank from the return pipe, and the bubbles are supplied at an appropriate position in the separation tank, thereby generating an upward flow of bubbles and attaching oil in the separation tank to the bubbles.
  • the oil component can be efficiently separated in the separation tank. At this time, when the unfiltered water is mixed with newly supplied raw water prior to supply into the separation tank, the oil can be separated more efficiently.
  • the separation tank and the membrane filtration tank are connected by the return pipe, and the clogging of the membrane is reduced by the coarse bubbles generated by the air diffuser in the membrane filtration tank in the subsequent process, and the fine bubbles are introduced in the front. It can be returned to the separation tank of the process, and the facilities and operations of the preceding and following processes can be functionally combined to simplify the process and reduce the installation area.
  • the supply pipe that connects the separation tank and the membrane filtration tank communicates with the upper and lower middle region of the separation tank and communicates with the lower part of the membrane filtration tank, and the return pipe communicates with the upper part of the membrane filtration tank.
  • a part of the circulating water supplied from the separation tank to the membrane filtration tank becomes treated water that has been membrane filtered, and the remainder becomes unfiltered water and is returned to the separation tank.
  • the greater the flow rate of circulating water the greater the effect of reducing clogging of the membrane in the membrane filtration tank, but in that case, the flow rate of unfiltered water returned to the separation tank increases.
  • the liquid level in the separation tank may fluctuate greatly, and the floating oil and the aggregated sediment that settles may be stirred and difficult to separate.
  • a configuration in which a guide cylinder is arranged with a gap in the outer periphery of each of the membrane separation modules or the outer periphery of the plurality of membrane separation modules, and air bubbles and raw water are allowed to flow in from the lower end opening of the guide cylinder and flow out from the upper end opening. It is preferable to do. If it is the said structure, a bubble raise can be made efficient in a guide cylinder, and dissipation of a bubble can be prevented. As a result, the vibration effect on the membrane becomes more effective, the circulation flow rate, that is, the return flow rate from the membrane filtration tank to the separation tank can be reduced accordingly, and the circulation rate of the treated water by the circulation pump can be reduced. In addition, it is possible to prevent disturbance of the liquid in the separation tank, and even if the necessary cross-sectional area of the separation tank is reduced, it is possible to easily remove the floating oil and sediment, thereby reducing the initial cost of the separation tank. It becomes possible.
  • the separation tank In the separation tank, foreign matter with small oil content and specific gravity floats near the liquid level to be stored, and sludge with large specific gravity accumulates at the bottom of the separation tank. It is preferable to provide a raw water outlet. Moreover, in the membrane filtration tank, it is preferable to take out bubbles rising in the water after acting on the separation membrane, and therefore it is preferable to provide an outlet of the return pipe on the upper side of the membrane filtration tank.
  • the air diffuser disposed in the membrane filtration tank supplies pressure air from an air source to an air diffuser pipe arranged below the membrane separation module, and performs membrane separation with bubbles generated from an injection hole of the air diffuser pipe. Apply vibration to the hollow fiber membrane or flat membrane of the module. There are also minute bubbles in the bubbles, and this has the effect of floating the minute oil in the tank.
  • a separate fine bubble diffusing device having a hole with a smaller diameter may be provided separately to consciously generate fine bubbles, to float the fine oil in the membrane separation tank and to guide it to the return pipe.
  • One diffuser tube may be provided with a hole for coarse bubbles and a hole for fine bubbles.
  • the air source for supplying the pressure air to the air diffuser is a blower or a compressor.
  • a scum skimmer is connected to the motor drive shaft at the liquid surface position of the separation tank, the floating oil is collected and discharged by the scum skimmer, and a sludge scraper is attached to the lower end of the motor drive shaft. It is preferable that the sludge scraping tool is connected to the bottom surface of the separation tank so that the settling sludge is collected and discharged.
  • the filtration membrane of the membrane separation module disposed in the membrane filtration tank may be either a hollow fiber membrane or a flat membrane, but a hollow fiber membrane is particularly preferable in order to exert a peeling effect due to membrane vibration. Even a flat membrane can be suitably used if it is a flexible flat membrane.
  • a porous membrane having alkali resistance selected from PTFE (polytetrafluoroethylene), PSF (polysulfone) and PES (polyethersulfone) is preferably used. Therefore, it is desirable to have a strength that can withstand vibration caused by air diffusion or pressure caused by backwashing. Specifically, the tensile strength is desirably 30 N or more.
  • a membrane separation module using a hollow fiber membrane or a flat membrane of a porous separation membrane selected from PTFE, PSF, and PES has extremely excellent water-insoluble oil removal performance and chemical resistance, in particular, alkali resistance, and Combines durability (long service life for normal filtration performance).
  • the water-insoluble oil adhering to the membrane surface can be dissolved and removed by chemical cleaning with an alkaline aqueous solution and repeatedly regenerated. Filtration can be sustained for a long time.
  • the oil-containing wastewater treatment system of the present invention can be used as an oil-containing wastewater treatment system in any field, such as for oil field accompanying water and factory wastewater containing oil. Further, when desalinating seawater, it is particularly effective when seawater contains oil. For example, when a nuclear power plant is destroyed due to tsunami damage caused by the earthquake, radioactive wastewater is generated and treatment is required. In that case, it is necessary to remove the oil in the seawater as a pre-treatment prior to the removal of the radioactive material. Even at that time, the oil can be stably removed with high accuracy, and post-treatment such as adsorption of the radioactive material. Can increase the efficiency.
  • a return pipe is installed between the upstream separation tank and the downstream membrane filtration tank, and the circulation flow is supplied to the membrane separation module existing in the membrane filtration tank.
  • the stable filtration capacity of the membrane is maintained, and the floating oil content from the membrane filtration tank to the separation tank is maintained. Is removed to remove oil in the membrane separation tank.
  • unfiltered water containing bubbles is circulated from the membrane filtration tank to the separation tank, the bubbles exist in the separation tank without providing an air diffuser in the separation tank, and oil is bubbled when the bubbles rise.
  • the process can be simplified and the installation area can be reduced.
  • by vibrating the separation membrane with coarse bubbles generated in the membrane filtration tank it is possible to exfoliate foreign matter adhering to the surface of the membrane and suppress the reduction in filtration performance, and to circulate the fine bubbles in the separation tank. It can contribute effectively to the floating separation of oil.
  • a membrane filtration tank is disposed downstream of the separation tank that performs separation by specific gravity and membrane filtration is performed using the separation membrane, the quality of treated water can be improved and the stability of operation can be enhanced.
  • FIG. 1 is an overall view of an oil-containing wastewater treatment system according to an embodiment of the present invention. It is an enlarged view of the membrane filtration tank shown in FIG. It is a principal part enlarged view of the modification of an air diffuser. It is drawing which shows the 1st modification of a membrane separation module. It is drawing which shows arrangement
  • reference numeral 1 denotes a separation tank for separating and separating foreign matters
  • 2 is a membrane filtration tank for membrane-filtering foreign matters.
  • a hollow fiber membrane module (membrane separation module) 3 is accommodated in the membrane filtration tank 2, and an air diffuser 4 for generating bubbles is accommodated in the lower part of the hollow fiber membrane module 3.
  • the upper and lower intermediate region of the separation tank 1 and the lower region of the membrane filtration tank 2 are connected by a supply pipe 6 having a pump 5 interposed therebetween, and the upper region of the membrane filtration tank 2 and the upper region of the separation tank 1 are communicated.
  • a return pipe 7 is provided, and unfiltered water containing bubbles is returned from the return pipe 7 to the separation tank 1 for circulation.
  • the raw water W1 composed of oil-containing wastewater supplied to the separation tank 1 is temporarily stored in a chemical mixing tank 8, and a pH adjuster, an adsorbent, a flocculant, etc., if necessary, from the chemical injection apparatus 9 in the chemical mixing tank 8. Injecting.
  • the liquid is fed from the chemical mixing tank 8 to the liquid level adjusting tank 10, and the raw water W 1 is supplied from the liquid level adjusting tank 10 to the separation tank 1 through the raw water supply pipe 11.
  • the separation tank 1 is a tank that floats oil and foreign substances to the liquid surface side according to the specific gravity and separates the oil and foreign substances by sedimentation to the bottom side.
  • a scum skimmer 12 that collects foreign matter that has floated to the top of the separation tank 1 is disposed on the liquid surface.
  • the scum skimmer 12 fixes the scum skimmer 12 to a drive shaft 13a suspended from a motor 13 mounted on the upper side, and collects foreign matter including oil components that are horizontally rotated by the motor 13 and floated.
  • the lower end of the drive shaft 13a is positioned on the bottom wall 1a protruding in the conical shape of the separation tank 1, and is connected to the sludge scraping tool 14 arranged along the bottom wall 1a. The sludge that is driven to rotate and settles on the upper surface side of the bottom wall 1a is scraped to the lowermost end of the center.
  • a scum discharge pipe 15 is opened on the lower surface side of the scum skimmer 12 and piped, and a sludge discharge pipe 16 is opened at the lowermost end of the separation tank 1 to connect the scum discharge pipe 15 and the sludge discharge pipe 16. The other end is connected to a scum / sludge tank 17.
  • the raw water supply pipe 11 for supplying the raw water W1 from the liquid level adjusting tank 10 is opened at a position on the lower surface side of the scum skimmer 12 of the separation tank 1.
  • the return pipe 7 is communicated with the raw water supply pipe 11, and unfiltered water containing bubbles circulating through the return pipe 7 and the raw water W 1 are merged and supplied to the upper region of the separation tank 1.
  • the oil component is attached to the air bubbles so that the oil component can be easily floated, and the oil component is easily attached to the scum skimmer 12.
  • the separation tank 1 has a side wall opposite to the side wall to which the raw water supply pipe 11 is connected, and an intermediate region excluding the vertical position where the scum skimmer 12 and the sludge scraper 14 are disposed.
  • the outlet is open. Since the pump 5 is provided in the supply pipe 6, the separation liquid in the separation tank 1 is sucked into the supply pipe 6 and supplied into the membrane filtration tank 2 from the opening provided in the lower part of the side wall of the membrane filtration tank 2. Yes.
  • the discharge pressure of the pump 5 is 50 to 300 kPa.
  • the membrane filtration tank 2 is an immersion tank provided with an air valve and the like.
  • the hollow fiber membrane module 3 is accommodated therein, and a diffuser 4 for generating bubbles is accommodated in the lower part of the hollow fiber membrane module 3.
  • the hollow fiber membrane module 3 and the air diffuser 4 are immersed in the raw water W1 supplied from the pipe 6.
  • the hollow fiber membrane module 3 is an immersion type module that permeates the raw water W1 from the outside to the inside of the hollow fiber membrane 20 by sucking the raw water W1 from the inside of the hollow fiber membrane 20.
  • the hollow fiber membrane module 3 includes a converging body 21 in which a plurality of hollow fiber membranes 20 (3500 in this embodiment) are bundled, and the lower end opening of each hollow fiber membrane 20 is closed with a fixing material 40.
  • the upper end of the hollow fiber membrane 20 is opened and fixed with a fixing material 23, and an upper cap 24 is attached to the fixing material 23.
  • the fixing member 23 and the fixing member 40 are connected by a support rod 41, and a skirt member 42 protruding downward is fixed to the fixing member 40.
  • a lead-out port that communicates the inside of the upper cap 24 with the hollow portion of each hollow fiber membrane 20 is provided, and the lead-out port is connected to the filtered liquid outlet pipe 25.
  • the filtered liquid W2 is led out to the post-treatment tank 27 by providing a suction pump 26 in the filtered liquid extraction pipe 25.
  • a suction pump 26 in the filtered liquid extraction pipe 25.
  • activated carbon adsorption, biological treatment / precipitation treatment, reverse osmosis membrane treatment, or the like may be added.
  • An air vent pipe 28 is attached to the upper wall of the membrane filtration tank 2.
  • a discharge port of untreated water that has not been filtered is provided in the upper part of the side wall of the membrane filtration tank 2, and the discharge port communicates with the return pipe 7.
  • the air diffuser 4 disposed at the lower part of the hollow fiber membrane module 3 includes an air diffuser air introduction pipe 30 connected to a blower 31.
  • An injection hole 32 provided in the air introduction pipe 30 for aeration is arranged below the hollow fiber membrane module 3 so that air is injected into the skirt material 42 from the injection hole 32.
  • a plurality of injection holes 32 having the same diameter are provided. Coarse bubbles K1 and some fine bubbles K2 are generated by the air injected from one injection hole 32.
  • the injection hole 32 may be provided with a large diameter hole 32a for generating coarse bubbles and a small diameter hole 32b for generating fine bubbles.
  • a hydrophobic porous membrane pipe, membrane material or the like is preferably used.
  • the air diffuser 4 always diffuses from below during filtration operation, diffuses toward each hollow fiber membrane 20 of the focusing body 21, and generates coarse bubbles K1 and fine bubbles K2 upward in the raw water W1. .
  • the coarse bubble K1 mainly vibrates the hollow fiber membrane 20 and peels off foreign matter adhering to the membrane surface of the hollow fiber membrane 20 so that the hollow fiber membrane 20 is not clogged.
  • the coarse bubbles K1 are discharged to the atmosphere through the air vent pipe 28.
  • the fine bubbles K2 are led out from the return pipe 7 disposed above and circulated in the separation tank 1.
  • the hollow fiber membrane 20 used in the present embodiment is a porous multilayer hollow provided with a support layer made of a porous expanded PTFE tube, and a filtration layer made of a porous membrane expanded PTFE sheet on the outer surface of the support layer. It consists of a yarn membrane. Furthermore, what was hydrophilized with hydrophilic polymer etc. can be used.
  • the average maximum length of each of the pores present in large numbers on the outer peripheral surface of the filtration layer is set to be smaller than the average maximum length of each of the pores surrounded by the fibrous skeleton present in the support layer.
  • the average length of the pores in the filtration layer is preferably 1% to 30% of the average length of the pores in the support layer, and is preferably as small as possible.
  • transmittance from the outer peripheral surface side to an inner peripheral surface side can be improved.
  • the area occupation ratio of the pores with respect to the total surface area of the outer surface is 30% to 90% as measured by image processing. Even if the maximum length of the holes is small, if the area occupation ratio of the holes is large to some extent, the flow rate is not reduced and the filtration performance can be improved efficiently.
  • the porosity of the filtration layer is 30% to 80%, and the porosity of the support layer is 50% to 85%.
  • transmittance from the outer peripheral surface side of a hollow fiber membrane to an inner peripheral surface side can further be improved, maintaining a balance with intensity
  • the thickness of the filtration layer is 5 ⁇ m to 100 ⁇ m. If it is smaller than the above range, it is difficult to form a filtration layer.
  • the thickness of the support layer is 0.1 mm to 5 mm. As a result, good strength can be obtained in any of the axial direction, radial direction, and circumferential direction, and durability against internal / external pressure, bending, and the like can be improved.
  • the inner diameter of the support layer is 0.3 mm to 12 mm.
  • the filter layer has an average pore diameter of 0.01 to 1 ⁇ m.
  • the hollow fiber membrane 20 has an inner diameter of 0.3 to 12 mm, an outer diameter of 0.8 to 14 mm, a bubble point of 50 to 400 kPa, a film thickness of 0.2 to 1 mm, a porosity of 30 to 90%, and a maximum. It is preferable that the allowable transmembrane pressure has a pressure resistance of 0.1 to 1.0 MPa.
  • the hollow fiber membrane 20 has a tensile strength of 30 N or more.
  • the tensile strength was based on JIS K 7161, and the hollow fiber membrane itself was used as a test body.
  • the tensile speed during the test was 100 mm / min, and the distance between the marked lines was 50 mm.
  • the thermal deformation temperature of the hollow fiber membrane 20 is 100 ° C. or higher, thermal deterioration is unlikely to occur even when used over time.
  • the dimensional average value between the hollow fiber membranes 20 in the converging body 21 is relatively wide as 0.5 mm to 5 mm, and the cross-sectional area of the converging body 21 is increased.
  • the filling rate of the hollow fiber membrane 20 to 20% to 60%.
  • the fine bubbles K2 are mixed with the unfiltered raw water W1 that has not been filtered and led to the return pipe 7. Since the return pipe 7 is merged with the raw water supply pipe 11, the raw air W1 of unfiltered water that has not been filtered and the fine bubbles K2 are mixed with the raw water W1 and introduced into the separation tank 1. In this way, by introducing the fine bubbles K2 into the separation tank 1, oil adheres to the fine bubbles K2 in the separation tank 1, and the oil easily floats together with the fine bubbles K2, so that the scum skimmer 12 is efficient. Can be collected.
  • the raw water W1 is supplied to the membrane filtration tank 2 and thus membrane filtration.
  • Foreign matter consisting of oil and sludge adhering to the surface of the hollow fiber membrane 20 of the hollow fiber membrane module 3 disposed in the tank 2 can be reduced.
  • the membrane filtration performance of the hollow fiber membrane 20 does not deteriorate, and the reduction of the amount of treated water can be prevented.
  • the bubble generated with the diffuser 4 used for the membrane filtration tank 2 is circulated to the separation tank 1 and used functionally, the separation function in the separation tank 1 can be enhanced.
  • the facilities can be simplified and the installation area can be reduced.
  • FIGS. 4A and 4B show a first modification of the membrane filtration tank 2.
  • Each of the plurality of hollow fiber membrane modules 3 immersed in the membrane filtration tank 2 is covered with a guide tube 45 with a gap around the outer periphery of the converging body 21 of the hollow fiber membrane 20.
  • the guide tube 45 has openings 45a and 45b at both upper and lower ends, and the raw water W1 flows into the guide tube 45 through the opening 45b at the lower end and is filtered by the hollow fiber membrane 20, and the unfiltered raw water W1 that has not been filtered is the upper end. It flows out through the opening 45a of the guide tube 45, flows downward on the outer peripheral side of the guide tube 45, and circulates. Further, the air injected from the air diffuser 4 is also injected into the guide tube 45 from the lower end opening 45b.
  • the guide tube 45 that is, the vicinity of the membrane surface of the converging body 21 of the hollow fiber membrane 20 is formed.
  • the linear velocity of the flowing raw water W1 increases, and the solid content and oil content deposited on the membrane surface of the hollow fiber membrane 20 can be more efficiently separated.
  • the generated bubbles can be efficiently loaded on the surface of the hollow fiber membrane 20 to shake the hollow fiber membrane, and the amount of air supply can be reduced to reduce the running cost.
  • the cross-sectional area of the separation tank necessary for realizing rapid sedimentation can be reduced, and the initial cost can be reduced. It becomes possible.
  • FIG. 5 shows a second modification.
  • a plurality of hollow fiber membrane modules 3 immersed in the membrane filtration tank 2 are divided into a plurality of groups (in the embodiment, 24 hollow fiber membrane modules 3 arranged in parallel in the vertical and horizontal directions are divided into four groups), Each is covered with one guide tube 48.
  • the hollow fiber membrane modules 3 when the hollow fiber membrane modules 3 are arranged relatively densely and covered with one guide tube 48, the hollow fiber membrane modules can be arranged in the membrane filtration tank 2 with high density.
  • the hollow fiber membrane converging body is used as the hollow fiber membrane module 3 installed in the membrane filtration tank 2, but a flat membrane may be used instead of the hollow fiber membrane. Even when the flat membrane is used, an air diffuser for generating bubbles is disposed below the flat membrane as in the above embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Physical Water Treatments (AREA)
  • Removal Of Floating Material (AREA)

Abstract

含油排水処理システムに用いる各工程の相違を効率よく組み合わせて装置の簡素化を図る。 含油排水からなる原水の供給経路に、油分を浮上分離させる分離槽と、該分離槽の下流に、中空糸膜または平膜からなる膜分離モジュールを槽内に配置すると共に該膜分離モジュールの下方に気泡を発生させる散気装置を設置した膜濾過槽とを配置し、前記分離槽から前記膜濾過槽へ循環ポンプを介設して原水を供給する供給管と、該膜濾過槽から前記分離槽へ前記油分および気泡を含む未濾過水を返送する返送管を設けている。

Description

含油排水処理システム
 本発明は、含油排水処理システムに関し、詳しくは、浮上と沈降による前工程の分離と、後工程の膜濾過とを組み合わせた含油排水処理システムにおいて、前後工程の機能を組み合わせて効率的な処理を図るものである。
 従来から含油排水から油分を除去する処理装置および処理方法が種々提供されている。該含油排水処理として、一般的に凝集沈殿・加圧浮上等による前処理を経た後、濾過や活性炭処理等の後工程処理がなされている。しかしながら、これらの複数の排水処理工程を連続させた処理システムでは、後処理になればなる程、処理水量が低下し、大量に排出される含油排水の処理が追いつかなくなる問題があり、大量排出される含油排水処理においては精密な分離手段は、その処理速度の点から不適となっている。
 そこで、本出願人は特開2010-36183号公報で凝集沈殿・加圧浮上等による前処理後の処理で、膜濾過により油分を除去する中空糸膜からなる膜分離装置を提供している。該膜分離装置はPTFE、PSF、PESから選択される耐アルカリ性を備えた中空糸膜を用いており、該中空糸膜は化学的および物理的に強靭な膜であるため、効率的な洗浄が行え、処理速度を速めて大量の排水処理が可能となる利点を有する。
特開2010-36183号公報
 しかし、特許文献1の含油排水処理装置では、前工程の凝集沈殿、浮上分離、砂濾過の装置と後工程の膜濾過による膜分離装置とを配管を介して連続させているが、各装置内で行われる操作はそれぞれ独立で、前後工程の操作および設備は組み合わされていない。よって、設置面積が大きくなり、システム全体としての効率化の観点からまだ改善すべきところがある。
 本発明は前記問題に鑑みてなされたもので、精密濾過処理を行う後工程の膜濾過装置と浮上/沈降による前工程の分離装置とを、操作上および装置上で効率良く組み合わせて、操作および装置の簡素化を図ることを課題としている。
 前記課題を解決するため、本発明は、含油排水からなる原水の供給経路に、油分を浮上分離させる分離槽と、前記分離槽の下流に、中空糸膜または平膜からなる膜分離モジュールを槽内に配置すると共に前記膜分離モジュールの下方に気泡を発生させる散気装置を設置した膜濾過槽とを配置し、前記分離槽から前記膜濾過槽へ循環ポンプを介設して原水を供給する供給管と、前記膜濾過槽から前記分離槽へ前記油分および気泡を含む未濾過水を返送する返送管を設けていることを特徴とする含油排水処理システムを提供している。
 前記のように、膜濾過槽内の膜分離モジュールの下方に気泡を発生させる散気装置を配置し、散気用のエアーのバブリングにより気泡を発生させている。該水中バブリングにより粗大な気泡が分離膜に振動を付与すると同時に気泡上昇流を発生させ、分離膜表面に付着する油分を含む異物を剥離して、目詰まりを低減して膜濾過の流量低下を防止している。また、分離膜表面で分離された微小油分がその継続した分離によるそれ自体の堆積により、これが会合して大きな油滴となり膜濾過槽内で浮上する。また、循環ポンプによる流速は膜面に堆積した油分や固形分を剥離する効果をもたらす。さらに、該膜濾過槽から分離槽へ返送管を設けているため、浮上した油分が該返送管により分離槽に送液され、分離槽中で浮上油となり分離可能となる。一方、気泡を含んだ未濾過水を返送管から分離槽に流入させ、該気泡を分離槽の適切な位置で供給することで、気泡の上昇流を発生させ分離槽内の油分を気泡に付着させて浮上させ、分離槽中で油分を効率よく分離することができる。このとき未濾過水は分離槽内への供給に先立ち、新規に供給される原水と混合されると、油分をより効率よく分離することができる。
 このように、分離槽と膜濾過槽とを返送管で連結して、後工程の膜濾過槽内の散気装置で発生させる粗大な気泡で膜の目詰まりを低減するとともに微小な気泡を前工程の分離槽へ返送し、前後工程の設備および操作を機能的に組み合わせて、プロセスの単純化、設置面積の減少を図ることができる。
 前記分離槽と膜濾過槽とを連結する前記供給管は、前記分離槽の上下中間領域に連通させると共に前記膜濾過槽の下部に連通させ、前記返送管は膜濾過槽の上部に連通している。分離槽から膜濾過槽へ供給される循環水の一部は膜濾過された処理水となり、残りが未濾過水となり分離槽へ返送される。循環水の流量は多いほど、膜濾過槽の膜の目詰まりを低減する効果が大きいが、その場合、一方では分離槽へ返送される未濾過水の流量が大きくなる。その結果、分離槽の液面が大きく変動して浮上油分や沈降する凝集沈殿物が撹拌され分離しにくくなることがある。
 よって、前記各膜分離モジュールの外周または複数の膜分離モジュールの外周に隙間をあけてガイド筒を配置し、該ガイド筒の下端開口から気泡および原水を流入させると共に、上端開口から流出させる構成とすることが好ましい。
 前記構成とすると、ガイド筒内において気泡上昇を効率化でき、気泡の散逸を防ぐことができる。その結果、膜への振動効果等がより効果的になり、その分循環流量すなわち膜濾過槽から分離槽への返送流量も低減でき、循環ポンプによる処理水の循環量を低減することが可能となり、かつ、分離槽の液の乱れを防止でき、必要な分離槽の断面積を小さくしても、浮上油、沈殿物の除去を容易にすることができるため、分離槽のイニシャルコストを低減させることも可能になる。
 分離槽内では貯溜する液面付近に油分および比重の小さい異物が浮上し、分離槽内の底部に比重の大きな汚泥が堆積するため、多量の油分や異物が存在しない上下中間領域に前記供給管の原水取出口を設けることが好ましい。また、膜濾過槽内では水中を上昇する気泡を分離膜に作用させた後に取り出すことが好ましいため、膜濾過槽の上部側に前記返送管の取出口を設けることが好ましい。
 前記膜濾過槽内に配置する前記散気装置は、前記膜分離モジュールの下方に配管される散気管に空気源から圧力空気を送給し、該散気管の噴射穴から発生させる気泡で膜分離モジュールの中空糸膜または平膜に振動を付与する。気泡中に微小な気泡も存在しており、これが槽内の微小油分を浮上させる効果を担っている。望ましくは、より小さい径の穴を有する微細気泡散気装置を別に設け、意識的に微細気泡を発生させ、膜分離槽内の微小油分を浮上させるとともに前記返送管へ導出させるようにしてもよい。1つの散気管に粗大気泡用の穴と、微細気泡用の穴を設けてもよい。
 前記散気管に圧力空気を供給する前記空気源は、ブロアまたはコンプレッサーとしていることが好ましい。
 また、前記分離槽の液面位置にスカムスキマーをモータの駆動軸に連結して配置し、浮上する油分をスカムスキマーで集めて排出すると共に、前記モータの駆動軸の下端に汚泥掻き寄せ具を連結し、該汚泥掻き寄せ具を前記分離槽の底面上に配置し、沈降する汚泥を掻き集めて排出する構成とすることが好ましい。
 前記膜濾過槽内に配置する膜分離モジュールの濾過膜として中空糸膜または平膜のいずれでも良いが、特に膜の振動による剥離効果を出すためには中空糸膜がよい。平膜でもフレキシブルな平膜なら好適に利用できる。また膜の材質面では、PTFE(ポリテトラフルオロエチレン)、PSF(ポリスルホン)およびPES(ポリエーテルスルホン)から選択される耐アルカリ性を備えた多孔質膜が好適に用いられ、中でも処理流量を維持するために行う散気による振動あるいは逆洗による圧力に耐えうる強度を有するものが望ましい。具体的には抗張力は30N以上であることが望ましい。
 PTFE、PSF、PESから選択される多孔質分離膜の中空糸膜または平膜を用いた膜分離モジュールは、極めて優れた非水溶性油分除去性能と耐薬品性、特に、耐アルカリ性を備え、かつ耐久性(正常な濾過性能を発揮する使用可能期間が長い)とを兼ね備える。その結果、非水溶性油分含有量を低減できる高性能濾過を実現しながら、膜面に付着した非水溶性油分をアルカリ性水溶液による化学洗浄により溶解除去して繰り返し再生が可能であるので、高性能濾過を長期に渡り持続させることができる。
 本発明の含油排水処理システムは油田随伴水用、油分を含有する工場排水等、いずれの分野の含油排水処理システムとしても用いることができる。また海水を淡水化する際、海水中に油分が含まれる場合などに特に有効である。例えば震災に伴う津波の被害などで原子力発電所が破壊された際に、放射性排水が発生し、その処理が必要となる。その場合、放射性物質の除去に先立ち、前処理として海水中の油分の除去が必要となるが、その際にも精度のよい油分除去を安定して行うことができ、放射性物質の吸着等後処理の効率を上げることができる。
 前述したように、本発明の含油排水処理システムによれば、上流側の分離槽と下流側の膜濾過槽との間に返送管を設置し、膜濾過槽に存在する膜分離モジュールに循環流を供給し、かつ膜分離モジュールの下部より散気による気泡上昇流および振動による膜面の浄化作用を付加させることにより、膜の安定したろ過能力を維持し、膜濾過槽から分離槽へ浮上油分を移送させることで膜分離槽内の油分を除去する。かつ、膜濾過槽から気泡を含む未濾過水を分離槽に循環させているため、分離槽内に散気装置を設けなくとも分離槽内に気泡を存在させ、その気泡の上昇時に油分を気泡に付着させて効率良く浮上分離することができる。このように、分離槽と膜濾過槽とを返送管および前記供給管を介して連結して組み合わせることで、プロセスを単純化し、設置面積を減少できる。
 特に、膜濾過槽内で発生させる粗大気泡で分離膜を振動させることにより、膜表面に付着する異物を剥離させて濾過性能の低下を抑制でき、かつ、微細気泡を分離槽に循環させることで油分の浮上分離に有効に寄与させることができる。 また、比重により分離を行う前記分離槽の下流に膜濾過槽を配置し、分離膜を用いて膜濾過を行うため、処理水質を向上できると共に、運転の安定性を高めることができる。
本発明の実施形態の含油排水処理システムの全体図である。 図1に示す膜濾過槽の拡大図である。 散気装置の変形例の要部拡大図である。 膜分離モジュールの第1変形例を示す図面である。 膜分離モジュールの第1変形例で、モジュールとガイド筒の配置を示す図面である。 膜分離モジュールの第2変形例を示す図面である。
 本発明の実施形態を図面を参照して説明する。
 図1および図2に本発明の実施形態を示す。
 図1に示す全体構成図において、1は異物を浮上および沈降させて分離する分離槽、2は異物を膜濾過する膜濾過槽である。
 膜濾過槽2内に中空糸膜モジュール(膜分離モジュール)3を収容すると共に、該中空糸膜モジュール3の下部に気泡を発生させる散気装置4を収容している。
 前記分離槽1の上下中間領域と膜濾過槽2の下部領域とをポンプ5を介設した供給管6で連続すると共に、膜濾過槽2の上部領域と分離槽1の上部領域とを連通する返送管7を設け、該返送管7から気泡を含む未濾過水を分離槽1へ返送し循環させている。
 前記分離槽1へ供給される含油排水からなる原水W1は、一旦、薬品混和槽8で貯溜し、該薬品混和槽8で薬品注入装置9から必要に応じpH調整剤、吸着剤、凝集剤等を注入している。薬品混和槽8から液位調整槽10へ送給し、該液位調整槽10から前記分離槽1へ原水W1を原水供給管11を通して供給している。
 分離槽1は油分や異物を比重に応じて液面側へ浮上させると共に、底部側へ沈降させて分離する槽としている。
 分離槽1の上部へ浮上した異物を集めるスカムスキマー12を液面に配置している。該スカムスキマー12は、上方に搭載するモータ13から垂下した駆動軸13aにスカムスキマー12を固定して、モータ13により水平回転させて浮上した油分を含む異物を集めるようにしている。また、駆動軸13aの下端を分離槽1の円錐形状に突出させた底壁1aに位置させ、該底壁1aに沿って配置する汚泥掻き寄せ具14に連結し、該汚泥掻き寄せ具14を回転駆動させて底壁1aの上面側に沈降する汚泥を中央最下端部に掻き寄せるようにしている。
 前記スカムスキマー12の下面側にスカム排出管15を開口させて配管すると共に、分離槽1の最下端部に汚泥排出管16を開口させて配管し、これらスカム排出管15および汚泥排出管16の他端をスカム・汚泥受槽17に連結している。
 前記液位調整槽10から原水W1を供給する前記原水供給管11は分離槽1のスカムスキマー12の下面側の位置に開口させている。該原水供給管11に前記返送管7を連通し、返送管7を通して循環する気泡を含む未濾過水と原水W1とを合流させて、分離槽1の上部領域に供給している。このように、分離槽1へ気泡を供給することで油分を気泡に付着させて油分を浮上させやすくし、スカムスキマー12に油分を付着させやすくしている。なお、原水供給管11に返送管7を合流させずに、別々に分離槽1に接続してもよい。
 前記分離槽1には、原水供給管11を連結した側壁と反対側の側壁で、かつ、前記スカムスキマー12と汚泥掻き寄せ具14を配置した上下位置を除く中間領域に、前記供給管6の取出口を開口している。供給管6にポンプ5を介設しているため、分離槽1内の分離液を供給管6に吸引し、膜濾過槽2の側壁下部に設けた開口から膜濾過槽2内に供給している。本実施形態では前記ポンプ5の吐出圧力は50~300kPaとしている。
 膜濾過槽2は空気弁等を設けた浸漬槽とし、その内部に中空糸膜モジュール3を収容すると共に該中空糸膜モジュール3の下部に気泡を発生させる散気装置4を収容し、前記供給管6から供給する原水W1内に中空糸膜モジュール3および散気装置4を浸漬している。
 中空糸膜モジュール3は、中空糸膜20の内側から原水W1を吸引することにより中空糸膜20の外側から内側に向けて原水W1を透過させる浸漬型のモジュールとしている。
 中空糸膜モジュール3は中空糸膜20を複数本(本実施形態では3500本)束ねた集束体21を備え、各中空糸膜20の下端開口を固定材40で閉鎖している。中空糸膜20の上端は開口状態として、固定材23で固定し、固定材23に上部キャップ24を取り付けている。該固定材23と前記固定材40とを支持ロッド41で連結し、かつ、固定材40に下向きに突出するスカート材42を固定している。
 前記上部キャップ24の内部を各中空糸膜20の中空部と連通させた導出口を設け、該導出口を濾過済み液取出配管25と接続している。該濾過済み液取出配管25に吸引ポンプ26を介設して、濾過済み液W2を後処理槽27へ導出している。該後処理槽27として活性炭吸着、生物処理・沈殿処理、逆浸透膜処理等を付加する場合もある。
 また、前記膜濾過槽2の上壁にエアベント管28を取り付けている。かつ、膜濾過槽2の側壁上部に、濾過されなかった未処理水の排出口を設け、該排出口を前記返送管7と連通している。
 中空糸膜モジュール3の下部に配置する前記散気装置4は、ブロア31と接続した散気用空気導入管30を備えている。該散気用空気導入管30に設けた噴射穴32を中空糸膜モジュール3の下方に配置し、噴射穴32から前記スカート材42内にエアが噴射されるようにしている。該噴射穴32は同一径のものを複数設けている。1つの噴射穴32から噴射されるエアにより、粗大気泡K1といくらかの微細気泡K2が発生する。
 なお、図3の変形例に示すように、噴射穴32は粗大気泡を発生させる大径穴32aと微細気泡を発生させる小径穴32bを設けてもよい。該小径穴32bを形成するために、例えば、疎水性多孔質膜のパイプ、膜材などが好適に用いられる。
 散気装置4は、濾過運転時に常時下方から散気し、集束体21の各中空糸膜20に向けて散気し、粗大気泡K1と微細気泡K2を原水W1中に上向きに発生させている。これら気泡のうち、主として粗大気泡K1は中空糸膜20を振動させ、該中空糸膜20の膜表面に付着した異物を剥離して、中空糸膜20に目詰まりを発生させないようにしている。かつ、粗大気泡K1は前記エアベント管28により大気に放出している。一方、微細気泡K2は上方に配置した返送管7より導出させ、分離槽1に循環させるようにしている。
 本実施形態で用いる前記中空糸膜20は、多孔質延伸PTFE製のチューブからなる支持層と、該支持層の外表面に多孔質膜延伸PTFEシートからなる濾過層を備えた多孔質複層中空糸膜からなる。さらに親水性高分子等で親水化したものを用いることができる。 前記濾過層の外周面に多数存在する各空孔の平均最大長さは、支持層中に多数存在する繊維状骨格により囲まれた各空孔の平均最大長さより小さくしている。具体的には、濾過層の空孔の平均長さを、前記支持層の空孔の平均長さの1%~30%としているのが良く、できるだけ小さくしている方が良い。これにより、外周面側から内周面側への透過性を高めることができる。
 濾過層の外表面において、該外表面の全表面積に対する前記空孔の面積占有率が、画像処理で測定して、30%~90%としている。空孔の最大長さが小さくても、空孔の面積占有率がある程度大きいと、流量を減らすこともなく、効率良く、濾過性能を向上することができる。
 具体的には、濾過層の空孔率は30%~80%、支持層の空孔率は50%~85%としている。これにより、強度とのバランスを保ちながら、中空糸膜の外周面側から内周面側への透過性をさらに高めることができる。
 前記濾過層の厚みは5μm~100μmとしている。前記範囲より小さいと濾過層の形成が困難であり、前記範囲より大きくしても濾過性能向上への影響は望み難いためである。支持層の厚みは0.1mm~5mmとしている。これにより、軸方向、径方向、周方向のいずれにおいても良好な強度を得ることができ、内外圧や屈曲等に対する耐久性を向上することができる。なお、支持層の内径は0.3mm~12mmとしている。
 前記濾過層の平均空孔径は0.01~1μmとしている。
 また、中空糸膜20は、中空糸膜全体で内径0.3~12mm、外径0.8~14mm、バブルポイント50~400kPa、膜厚0.2~1mm、気孔率30~90%、最大許容膜間差圧は0.1~1.0MPaの耐圧性を備えたものとすることが好ましい。
 また、中空糸膜20は抗張力が30N以上の強度を備えたものとしている。
 なお、抗張力はJIS K 7161に準拠し、試験体としては中空糸膜そのものを用いた。試験時の引張速度は100mm/分、標線間距離は50mmとして測定した。また、該中空糸膜20の熱変形温度は100℃以上であるため、経年使用しても熱劣化が発生しにくいものとしている。
 中空糸膜20の集束体21からなる中空糸膜モジュール3では、集束体21における中空糸膜20間の寸法平均値を0.5mm~5mmと比較的広くし、かつ、集束体21の断面積に対する中空糸膜20の充填率が20%~60%としている。
 本実施形態では、濾過運転時に、膜濾過槽2内では、常時、散気装置4から空気を噴射して粗大気泡K1と微細気泡K2を発生させている。これら気泡を槽50内の含油排水からなる原水W1中でバブリングさせながら上昇させ、循環流を発生させている。
 その際、前記のように、粗大気泡K1で中空糸膜20を振動しつつ、中空糸膜20の膜面に付着している非水溶性油分および固形分をふるい剥ぎ取っている。
 微細気泡K2は濾過されなかった未濾過水の原水W1と混合されて返送管7に導出される。返送管7を原水供給管11と合流させているため、前記微細気泡K2と濾過されなかった未濾過水の原水W1は原水W1と混合されて分離槽1に導入される。このように、微細気泡K2が分離槽1内に導入されることで、分離槽1内で微細気泡K2に油分が付着し、油分が微細気泡K2と共に浮上しやすくなり、スカムスキマー12で効率よく集めることができる。
 このように、油分の浮上分離と汚泥の沈降分離とにより含油排水から油分と汚泥からなる異物を分離槽1内で分離した後に、膜濾過槽2へ原水W1を供給しているため、膜濾過槽2内に配置した中空糸膜モジュール3の中空糸膜20の表面に付着する油分および汚泥からなる異物を低減できる。これにより中空糸膜20の膜濾過の性能が低下せず、処理水量の低減を防止できる。かつ、膜濾過槽2に用いる散気装置4で発生させる気泡を分離槽1へ循環させて機能的に利用しているため、分離槽1における分離機能を高めることができる。さらに、分離槽に気泡を発生させる散気装置を設ける必要はないため、設備の簡素化が図れ、設置面積を縮小できる。
 図4A、図4Bに膜濾過槽2の第1変形例を示す。
 膜濾過槽2に浸漬する複数の中空糸膜モジュール3にはそれぞれ、中空糸膜20の集束体21の外周に隙間をあけてガイド筒45を被せている。このガイド筒45は上下両端を開口45a、45bとし、下端の開口45bより原水W1がガイド筒45内部に流入して中空糸膜20で濾過され、濾過されなかった未濾過水の原水W1が上端の開口45aから流出し、ガイド筒45の外周側を下向きに流れて循環するようにしている。また、散気装置4から噴射するエアも下端の開口45bからガイド筒45内に噴射されるようにしている。
 前記のように、ガイド筒45内にエア及び原水W1を流入させると、原水W1の循環流量を低くしても、ガイド筒45内、すなわち、中空糸膜20の集束体21の膜面付近を流れる原水W1の線速は大きくなり、中空糸膜20の膜面に堆積した固形分、油分をより効率よく剥離させることができる。また、発生させる気泡を中空糸膜20の表面に効率よく負荷して中空糸膜を揺らすことができ、エアの供給量を低減してラニングコストを低下できる。さらに、膜濾過槽2から分離槽1へ返送される未濾過水の流量が少なくなるので、速やかな沈降を実現するために必要な分離槽の断面積を小さくでき、イニシャルコストを低減させることも可能になる。
 図5に第2変形例を示す。
 第2変形例では、膜濾過槽2内に浸漬する複数の中空糸膜モジュール3を複数組に分けて(実施形態では縦横並列した24個の中空糸膜モジュール3を4組に分ける)、組ごとに1つのガイド筒48で覆っている。このように、中空糸膜モジュール3を比較的密に配置して、1つのガイド筒48で覆うと、膜濾過槽2内に高密度に中空糸膜モジュールを配置することができる。
 前記実施形態および変形例では膜濾過槽2内に設置する中空糸膜モジュール3として中空糸膜の集束体を用いているが、中空糸膜に変えて平膜を用いてもよい。該平膜を用いた場合も、その下方に前記実施形態と同様に気泡を発生させる散気装置を配置している。
 1 分離槽
 2 膜濾過槽
 3 中空糸膜モジュール
 4 散気装置
 6 供給管
 7 返送管
 K1 粗大気泡
 K2 微細気泡
 W1 原水
 W2 濾過済み液

Claims (6)

  1. 含油排水からなる原水の供給経路に、油分を浮上分離させる分離槽と、
    前記分離槽の下流に、中空糸膜または平膜からなる膜分離モジュールを槽内に配置すると共に前記膜分離モジュールの下方に気泡を発生させる散気装置を設置した膜濾過槽とを配置し、
    前記分離槽から前記膜濾過槽へ循環ポンプを介設して原水を供給する供給管と、
    前記膜濾過槽から前記分離槽へ前記油分および気泡を含む未濾過水を返送する返送管を設けていることを特徴とする含油排水処理システム。
  2.  前記各膜分離モジュールの外周または複数の膜分離モジュールの外周に隙間をあけてガイド筒を配置し、前記ガイド筒の下端開口から気泡および原水を流入させると共に、上端開口から流出させる構成としている請求項1に記載の含油排水処理システム。
  3.  前記膜濾過槽内に配置する前記膜分離モジュールの分離膜は、PTFE(ポリテトラフルオロエチレン)、PSF(ポリスルホン)およびPES(ポリエーテルスルホン)から選択される多孔質膜からなる請求項1または請求項2に記載の含油排水処理システム。
  4.  前記分離槽と前記膜濾過槽とを連結する前記供給管は、前記分離槽の上下中間領域に連通させると共に前記膜濾過槽の下部に連通させ、前記返送管は膜濾過槽の上部に連通している請求項1乃至請求項3のいずれか1項に記載の含油排水処理システム。
  5.  前記膜濾過槽内に配置する前記散気装置は、前記膜分離モジュールの下方に配管される散気管に空気源から圧力空気を送給し、該散気管に大径穴と小径穴を設け、大径穴から発生させる粗大気泡で膜分離モジュールの中空糸膜または平膜に振動を付与する一方、前記小径穴から微細気泡を前記返送管へ導出させている請求項1乃至請求項4のいずれか1項に記載の含油排水処理システム。
  6.  前記分離槽の液面位置にスカムスキマーをモータの駆動軸に連結して配置し、浮上する油分をスカムスキマーで集めて排出すると共に、前記モータの駆動軸の下端に汚泥掻き寄せ具を連結し、前記汚泥掻き寄せ具を前記分離槽の底面上に配置し、沈降する汚泥を掻き集めて排出する構成としている請求項1乃至請求項5のいずれか1項に記載の含油排水処理システム。
PCT/JP2012/071628 2011-09-05 2012-08-28 含油排水処理システム WO2013035576A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/976,584 US20130264254A1 (en) 2011-09-05 2012-08-28 Oil-containing wastewater treatment system
CN201280004398.5A CN103298750B (zh) 2011-09-05 2012-08-28 含油废水处理系统
AU2012305529A AU2012305529A1 (en) 2011-09-05 2012-08-28 Oil-containing wastewater treatment system
CA2823920A CA2823920A1 (en) 2011-09-05 2012-08-28 Oil-containing wastewater treatment system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011192916A JP5564021B2 (ja) 2011-09-05 2011-09-05 含油排水処理システム
JP2011-192916 2011-09-05

Publications (1)

Publication Number Publication Date
WO2013035576A1 true WO2013035576A1 (ja) 2013-03-14

Family

ID=47832026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071628 WO2013035576A1 (ja) 2011-09-05 2012-08-28 含油排水処理システム

Country Status (7)

Country Link
US (1) US20130264254A1 (ja)
JP (1) JP5564021B2 (ja)
CN (1) CN103298750B (ja)
AU (1) AU2012305529A1 (ja)
CA (1) CA2823920A1 (ja)
MY (1) MY170503A (ja)
WO (1) WO2013035576A1 (ja)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192416A1 (ja) * 2013-05-30 2014-12-04 住友電気工業株式会社 濾過装置及びこれを用いた濾過方法
JP6110216B2 (ja) * 2013-06-03 2017-04-05 パナソニック株式会社 排水処理装置
JP5728532B2 (ja) * 2013-06-26 2015-06-03 株式会社神鋼環境ソリューション 含油水の処理装置及び処理方法
JP2015142902A (ja) * 2013-12-26 2015-08-06 住友電気工業株式会社 再生濾過モジュール、使用済みアルカリ脱脂液の再生装置及び使用済みアルカリ脱脂液の再生方法
JP2015199056A (ja) * 2014-03-31 2015-11-12 国立大学法人 筑波大学 懸濁水処理装置ならびに洗浄、分級および処理システム
JP2015202443A (ja) * 2014-04-11 2015-11-16 住友電気工業株式会社 油水分離処理システム及び油水分離処理方法
JP2016055236A (ja) * 2014-09-08 2016-04-21 住友電気工業株式会社 濾過装置及び濾過膜の洗浄方法
JP6580338B2 (ja) * 2015-02-16 2019-09-25 水ing株式会社 膜処理装置及び膜処理方法
CN104761021B (zh) * 2015-03-24 2016-09-07 曹辉 一种油水分离装置
WO2017200727A1 (en) * 2016-05-17 2017-11-23 Siemens Energy, Inc. Processes and systems for concentrated oil removal
KR101886215B1 (ko) * 2016-06-03 2018-08-07 재단법인 포항산업과학연구원 여과막 세정장치
CN106731205B (zh) * 2016-12-30 2018-03-13 吉林省宏君超滤设备有限公司 重力法处理采油污水装置及其工艺
JP7105431B2 (ja) * 2017-01-26 2022-07-25 オルガノ株式会社 有機物含有排水の処理方法及び処理装置
CN106823817A (zh) * 2017-04-06 2017-06-13 杭州瑞裕通膜技术有限公司 一种劣质含固油品的过滤净化装置及其使用方法
CN107235532A (zh) * 2017-05-16 2017-10-10 方明环保科技(漳州)有限公司 能分离油水的分离器
GB2569153A (en) * 2017-12-07 2019-06-12 Ide Tech Ltd Environmentally friendly water intake and pretreatment method and system
CN108278489B (zh) * 2018-01-26 2019-10-01 何银亚 一种变位除杂去气泡式石油导流装置
CN110803733B (zh) * 2018-08-04 2024-03-29 青岛海晏环境技术工程有限公司 一种预涂层膜分离技术及成套装置
CN110803813B (zh) * 2018-08-04 2023-09-22 青岛海晏环境技术工程有限公司 一种预涂层膜技术脱除延迟焦化污水中乳化焦粉的方法及成套装置
WO2020116005A1 (ja) 2018-12-07 2020-06-11 オルガノ株式会社 含油排水のろ過装置及びろ過方法並びにろ過膜装置の再生方法及び再生装置
CN110510771A (zh) * 2019-08-23 2019-11-29 杰瑞环保科技有限公司 一种胍胶体系压裂返排液处理方法及装置
CN111594095B (zh) * 2020-05-06 2022-03-25 甘肃中科聚合石油科技有限公司 一种含油污泥调剖堵水用装置
CN112237847A (zh) * 2020-09-02 2021-01-19 重庆电子工程职业学院 用于纳滤膜制备的酸洗装置
KR20220034591A (ko) * 2020-09-11 2022-03-18 주식회사 아모그린텍 Mbr 시스템
CN114618321B (zh) * 2020-12-11 2023-07-25 中国科学院大连化学物理研究所 一种中空纤维膜及制备和在液压油脱气中的应用
CN113003749B (zh) * 2021-03-26 2022-08-02 郑州科技学院 一种食品加工业的废水预处理装置
CN113387422B (zh) * 2021-06-18 2022-09-06 章丘市中润净水材料有限公司 一种含油污水污泥无害化处理设备及其使用方法
CN115321700A (zh) * 2022-09-23 2022-11-11 祁东县锋速钻探工具有限公司 一种用于钻头生产用废水处理装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04334530A (ja) * 1991-05-10 1992-11-20 Kubota Corp 濾過装置
JPH05245472A (ja) * 1992-03-03 1993-09-24 Toto Ltd 含油廃水の処理方法
JPH0731129U (ja) * 1993-11-04 1995-06-13 エヌオーケー株式会社 油水分離装置
JP2001269663A (ja) * 2000-03-24 2001-10-02 Ishigaki Co Ltd 固形物回収装置
JP2003164864A (ja) * 2001-11-29 2003-06-10 Sumiju Kankyo Engineering Kk 浮遊物掻寄装置
JP2005000904A (ja) * 2003-05-20 2005-01-06 Japan Organo Co Ltd 油水分離装置及び油水分離方法
JP2009233622A (ja) * 2008-03-28 2009-10-15 Hitachi Ltd 水処理装置
JP2009247965A (ja) * 2008-04-04 2009-10-29 Daicel Chem Ind Ltd 中空糸膜エレメントとそれを用いた中空糸膜モジュール
JP2010036183A (ja) * 2008-07-08 2010-02-18 Sumitomo Electric Fine Polymer Inc 含油排水処理用の分離膜モジュール、含油排水処理方法および含油排水処理装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1332124A (zh) * 2001-08-11 2002-01-23 杭州浙大华滤膜工程有限公司 集絮凝、气浮和膜分离于一体的高浊度水处理装置
TWI480231B (zh) * 2009-04-16 2015-04-11 Sumitomo Electric Industries 含油排水處理方法
CN201485304U (zh) * 2009-07-30 2010-05-26 孟广祯 膜加强的气浮沉淀装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04334530A (ja) * 1991-05-10 1992-11-20 Kubota Corp 濾過装置
JPH05245472A (ja) * 1992-03-03 1993-09-24 Toto Ltd 含油廃水の処理方法
JPH0731129U (ja) * 1993-11-04 1995-06-13 エヌオーケー株式会社 油水分離装置
JP2001269663A (ja) * 2000-03-24 2001-10-02 Ishigaki Co Ltd 固形物回収装置
JP2003164864A (ja) * 2001-11-29 2003-06-10 Sumiju Kankyo Engineering Kk 浮遊物掻寄装置
JP2005000904A (ja) * 2003-05-20 2005-01-06 Japan Organo Co Ltd 油水分離装置及び油水分離方法
JP2009233622A (ja) * 2008-03-28 2009-10-15 Hitachi Ltd 水処理装置
JP2009247965A (ja) * 2008-04-04 2009-10-29 Daicel Chem Ind Ltd 中空糸膜エレメントとそれを用いた中空糸膜モジュール
JP2010036183A (ja) * 2008-07-08 2010-02-18 Sumitomo Electric Fine Polymer Inc 含油排水処理用の分離膜モジュール、含油排水処理方法および含油排水処理装置

Also Published As

Publication number Publication date
CN103298750A (zh) 2013-09-11
JP5564021B2 (ja) 2014-07-30
US20130264254A1 (en) 2013-10-10
CA2823920A1 (en) 2013-03-14
JP2013052364A (ja) 2013-03-21
MY170503A (en) 2019-08-08
AU2012305529A1 (en) 2013-07-11
CN103298750B (zh) 2015-01-07

Similar Documents

Publication Publication Date Title
JP5564021B2 (ja) 含油排水処理システム
KR101363015B1 (ko) 막유니트 및 막분리장치
WO2019230295A1 (ja) スクラバ排水の浄化装置及び方法並びに塩分濃度差発電システム
JPH07155758A (ja) 廃水処理装置
KR101798551B1 (ko) 여과막 모듈 및 이것을 포함하는 여과 시스템
JP5853342B2 (ja) 固液分離モジュールおよび、固液分離方法
US20120223005A1 (en) Membrane module, membrane unit, and membrane separation device
CA2742251A1 (en) Method for the filtration of a bioreactor liquid from a bioreactor; cross-flow membrane module, and bioreactor membrane system
JP6580338B2 (ja) 膜処理装置及び膜処理方法
JP2006212486A (ja) 膜分離装置
JP6613323B2 (ja) 水処理装置及び水処理方法
JP5797874B2 (ja) 排水処理装置および排水処理方法
JPH09131517A (ja) 中空糸膜モジュールおよびその使用方法
WO2018051630A1 (ja) 膜分離活性汚泥処理システム
JP4925403B2 (ja) 排水処理装置および排水処理方法
JP2007000712A (ja) 固液分離装置
JP2016165772A (ja) 加工液処理システム
JP2011005361A (ja) 膜濾過装置
JP6609236B2 (ja) 水処理装置及び水処理方法
KR20110113795A (ko) 분리막을 이용한 단조 이형제 폐수 처리장치
JP7213711B2 (ja) 水処理装置および水処理方法
KR100679602B1 (ko) 가압 및 흡인압을 동시에 이용하는 수처리 방법 및 수처리장치
JP6910850B2 (ja) 散気装置、該散気装置を備える中空糸膜モジュール、及び水処理方法
KR101522320B1 (ko) 일체형 용존공기부상법을 이용한 방사성 폐액 처리시스템
KR20040051963A (ko) 침지형 분리막을 결합한 고효율 콤팩트 호기성 미생물반응기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12830709

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13976584

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2823920

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2012305529

Country of ref document: AU

Date of ref document: 20120828

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12830709

Country of ref document: EP

Kind code of ref document: A1