WO2013031430A1 - 熱処理装置 - Google Patents

熱処理装置 Download PDF

Info

Publication number
WO2013031430A1
WO2013031430A1 PCT/JP2012/068616 JP2012068616W WO2013031430A1 WO 2013031430 A1 WO2013031430 A1 WO 2013031430A1 JP 2012068616 W JP2012068616 W JP 2012068616W WO 2013031430 A1 WO2013031430 A1 WO 2013031430A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
heat treatment
induction heating
gas
processing
Prior art date
Application number
PCT/JP2012/068616
Other languages
English (en)
French (fr)
Inventor
中尾 賢
英介 森崎
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to KR1020147005442A priority Critical patent/KR20140057575A/ko
Priority to US14/236,955 priority patent/US20140174364A1/en
Publication of WO2013031430A1 publication Critical patent/WO2013031430A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4587Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially vertically
    • C23C16/4588Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially vertically the substrate being rotated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation

Definitions

  • the present invention relates to a heat treatment apparatus for performing heat treatment on a substrate using induction heating.
  • a heat treatment such as a film forming process or an oxidation process is performed on a substrate such as a semiconductor wafer
  • a plurality of substrates are arranged in a quartz processing container, and the substrate is heated by a resistance heating type heater or a heating lamp.
  • a batch-type heat treatment apparatus for heating is widely used.
  • a technique capable of heating to a high temperature exceeding 1000 ° C. a technique is known in which a high-frequency induction heating coil is arranged outside the container and a plurality of substrates held by a susceptor provided inside the container are induction heated. (For example, see FIG. 4 of Patent Document 1).
  • an object of the present invention is to provide a heat treatment apparatus using induction heating that can uniformly perform heat treatment while eliminating the influence of an induced current on a substrate.
  • the present invention is a heat treatment apparatus that performs heat treatment on a plurality of substrates, a processing container that houses the plurality of substrates to be heat-treated, a substrate holding member that holds the plurality of substrates in the processing container, and the processing An induction heating coil for forming an induction magnetic field in the container for induction heating; a high-frequency power source for applying high-frequency power to the induction heating coil; a gas supply mechanism for supplying a processing gas into the processing container; and the processing An exhaust mechanism that exhausts the inside of the container, and is provided between the induction heating coil and the substrate holding member so as to surround the substrate holding member in the processing container, and is heated by an induction current formed by the induction magnetic field.
  • An induction heating element that heats the substrate held by the substrate holding member with the radiant heat, and the induction heating element prevents an induced current from flowing through the substrate. Subjected to.
  • At least one of the thickness of the induction heating element, the frequency of the high-frequency power, and the distance between the induction heating coil and the substrate so that the induction heating element prevents the induction current from flowing to the substrate is adjusted.
  • the processing container is made of a dielectric, and the induction heating coil can be wound around the outer periphery of the processing container.
  • the substrate holding member may be a polygonal column extending in the vertical direction of the processing container, and the substrate may be held on the side surface.
  • the induction heating element is preferably made of graphite.
  • the gas supply mechanism may have a shower head for introducing a processing gas into the processing container in a shower shape.
  • a film forming process for forming a predetermined film by reacting a processing gas on the substrate is exemplified, and the film forming process includes a silicon carbide (SiC) film or a gallium nitride (GaN) film. Examples include film formation.
  • the heat treatment is a film forming process for forming a compound film using a plurality of processing gases, and further includes a rotation mechanism for rotating the substrate holding member, and the gas supply mechanism includes the process steps described above. Gas is supplied to different regions of the processing container, and the substrate holding member is rotated by the rotation mechanism so that the substrate sequentially passes through the regions, and the plurality of processing gases are sequentially adsorbed on the substrate. can do.
  • the gas supply mechanism has a plurality of shower heads for introducing the processing gases into different regions of the processing container in a shower shape.
  • the compound film is a SiC film, and a gas using Si source gas, C source gas, and reducing gas can be cited as the plurality of processing gases.
  • FIG. 2 is a cross-sectional view of the heat treatment apparatus of FIG. 1 in which three zones are provided in the height direction of the processing vessel, each of which is provided with a separate heating coil, and the high frequency power of each zone is controlled.
  • FIG. 1 is a sectional view showing a heat treatment apparatus according to the first embodiment of the present invention.
  • the heat treatment apparatus 1 has a vertical processing container 2 having a cylindrical shape extending in the vertical direction.
  • the processing container 2 has a top wall 2a that closes its upper end, and its lower end is open.
  • the processing container 2 is made of a dielectric material having heat resistance and transmitting electromagnetic waves (high frequency power), for example, quartz.
  • the susceptor 3 as a substrate holding member that holds a plurality of substrates S can be inserted into the processing container 2 from below.
  • the susceptor 3 is a barrel type having a polygonal column extending in the vertical direction of the processing container 2 and is made of, for example, graphite. A plurality of substrates S are held on the side surface of the susceptor 3. Examples of the shape of the susceptor 3 include a hexagonal prism as shown in FIG. 2 and a triangular prism as shown in FIG. Of course, other polygonal columns may be used.
  • the susceptor 3 is rotated in the direction of the arrow by a rotation mechanism 4 provided below the susceptor 3.
  • the rotation mechanism 4 is supported by a lid body 5, and the lid body 5, the rotation mechanism 4, and the susceptor 3 are integrally lifted and lowered by a lifting mechanism (not shown).
  • a lifting mechanism not shown
  • the susceptor 3 is loaded and unloaded.
  • the lid 5 closes the lower end opening of the processing container 2, and the lid 5 and the bottom of the processing container 2 are sealed by a seal ring (not shown).
  • the lid 5 is made of a heat resistant material such as quartz.
  • a cylindrical heat insulating material 6 made of, for example, high-purity carbon is disposed inside the processing container 2 along the inner wall of the processing container 2.
  • a cylindrical induction heating element 7 is provided inside the heat insulating material 6 so as to surround the loaded susceptor 3. As will be described later, the induction heating element 7 generates heat when an induced current flows, and is made of a highly emissive conductive material, for example, graphite.
  • a gas inlet 8 for introducing a processing gas is formed in the top wall 2a of the processing vessel 2.
  • a gas supply pipe 9 is connected to the gas inlet 8, and a gas supply section is connected to the gas supply pipe 9. 10 is connected. Then, one or a plurality of process gases are supplied from the gas supply unit 10 through the gas supply pipe 9 and the gas introduction port 8 while controlling the flow rate by a flow rate controller (not shown). It has become.
  • An exhaust port 11 is formed at the bottom of the processing vessel 2, and an exhaust pipe 12 is connected to the exhaust port 11.
  • the exhaust pipe 12 is provided with an automatic pressure control valve (APC) 13 and an exhaust device 14 including a vacuum pump. By exhausting the exhaust device 14 while adjusting the opening degree of the automatic pressure control valve 13, processing is performed.
  • the inside of the container 2 can be controlled to a predetermined degree of vacuum.
  • An induction heating coil 15 is provided outside the processing container 2.
  • the induction heating coil 15 has a metal pipe spirally wound around the outer periphery of the processing container 2 along the vertical direction, and the winding area in the vertical direction is wider than the placement area of the substrate S. Yes. Copper can be suitably used as the metal pipe constituting the induction heating coil 15.
  • the induction heating coil 15 is supplied with high-frequency power from a high-frequency power supply 16 via a power supply line 18.
  • a matching circuit 17 for impedance matching is provided in the middle of the power supply line 18.
  • the high frequency of the high frequency power supply 16 is set within a range of 17 kHz or more, for example.
  • the induction heating element 7 Since induction current is consumed by induction heating of the induction heating element 7, the amount of induction current that passes through the induction heating element 7 and reaches the substrate S decreases, and the induction heating element 7 induces an induction current in the substrate S. Is prevented from flowing. Since the magnitude of the induced current that passes through the induction heating element 7 varies depending on the thickness of the induction heating element 7, the frequency of the high frequency power, and the distance between the induction heating coil 15 and the substrate S, in this embodiment, the substrate S At least one of these is adjusted so as to prevent the induced current from flowing into the. For example, when the frequency of the high frequency power and the distance between the induction heating coil 15 and the substrate S are fixed, only the thickness of the induction heating element 7 is adjusted.
  • the frequency of the high frequency power and the thickness of the induction heating element 7 are adjusted.
  • the thickness of the induction heating element and the distance between the induction heating coil 15 and the substrate S are fixed, only the frequency of the high frequency power is adjusted.
  • the induced current flowing in the substrate S is allowed to be a slight value that does not affect the uniformity of processing.
  • the control unit 20 includes a controller including a microprocessor, a keyboard for an operator to input commands for managing the heat treatment apparatus 1, a user interface including a display for visualizing and displaying the operation status of the heat treatment apparatus 1, and the like. And a storage unit storing a control program for realizing various processes executed by the heat treatment apparatus 1 under the control of the controller and a process recipe for causing the heat treatment apparatus 1 to execute a predetermined process according to the processing conditions And have.
  • the processing recipe and the like are stored in a storage medium, and are read from the storage medium and executed in the storage unit.
  • the storage medium may be a hard disk or a semiconductor memory, or may be a portable medium such as a CD-ROM, DVD, or flash memory. Recipes and the like are read from the storage unit according to instructions from the user interface as necessary, and are executed by the controller, so that desired processing in the heat treatment apparatus 1 is performed under the control of the controller.
  • the substrate S on the susceptor is heated by turning on the high frequency power supply 16 and applying high frequency power to the induction heating coil 15.
  • an induction magnetic field is formed in the processing container 2 by applying high-frequency power to the induction heating coil 15, an induced current flows through the induction heating element 7 by the induction magnetic field, and the induction heating element 7 generates heat.
  • the substrate S on the susceptor 3 is heated by the radiant heat of the induction heating element 7.
  • the processing gas necessary for the heat treatment is supplied from the gas supply unit 10 into the processing container 2 while controlling the flow rate, and the automatic pressure control valve (APC) 13 is controlled.
  • the exhaust device 14 exhausts air from the exhaust port 11 to maintain the inside of the processing container 2 at a predetermined pressure, and the rotating mechanism 4 rotates the susceptor 3.
  • the temperature of the substrate S is measured by a thermocouple (not shown) provided in the processing container 2, and the power of the high frequency power is controlled based on the temperature.
  • a predetermined heat treatment is performed on the substrate S with a predetermined processing gas while controlling the temperature of the substrate S to a predetermined process temperature.
  • Examples of the heat treatment include a film forming process for forming a predetermined film by reacting a processing gas on the substrate, and an oxidizing process for oxidizing the substrate surface.
  • a compound film such as a silicon carbide (SiC) film or a gallium nitride (GaN) film is used.
  • Film formation can be given as a typical example.
  • SiC silicon carbide
  • SiN gallium nitride
  • single-crystal SiC may be formed by epitaxial growth using Si or SiC as the substrate S, or polycrystalline SiC may be formed by CVD.
  • single-crystal GaN may be formed by epitaxial growth using sapphire or GaN as the substrate S, or polycrystalline GaN may be formed by CVD.
  • a Si gas such as SiH 4 is used as a processing gas
  • a hydrocarbon gas such as C 3 H 8 gas is used as a C source
  • a H 2 gas is used as a reducing gas.
  • examples of the Ga source include an organic gallium compound such as trimethyl gallium (TMGa), and examples of the N source and the reducing gas include NH 3 .
  • TMGa trimethyl gallium
  • examples of the N source and the reducing gas include NH 3 .
  • the induced current is applied to the susceptor 3 to heat the substrate S with the heat.
  • the induced current also flows through the substrate S, It was difficult to perform uniform processing.
  • the film thickness, film composition, and the like are not uniform.
  • the induction heating element 7 is provided between the induction heating coil 15 and the substrate S, the induced current is applied to the induction heating element 7 to generate heat, and the substrate is generated by the radiant heat of the induction heating element 7 at that time. S is heated.
  • the induced current is consumed by the induction heating element 7, and the induction current that passes through the induction heating element 7 and flows to the substrate S can be remarkably reduced. Can be blocked.
  • the magnitude of the induction current that is transmitted without being consumed by the induction heating element 7 varies depending on the thickness of the induction heating element 7, the frequency of the high-frequency power, and the distance between the induction heating coil 15 and the substrate S.
  • the induced current reaching the substrate S is sufficiently blocked.
  • the induced current is permissible as long as it does not affect the uniformity of processing.
  • a shower head 30 may be provided instead of the top wall 2a as shown in FIG. 4 from the viewpoint of supplying the processing gas to the substrate S with good uniformity.
  • the shower head 30 is provided in the upper part of the main body 31, the gas introduction port 32 to which the gas supply pipe 9 is connected, the gas diffusion space 33 formed horizontally in the main body 31, and the gas diffusion space. And a plurality of gas discharge holes 34 penetrating from 33 to the lower surface of the main body 31. Then, the processing gas is discharged from the plurality of gas discharge holes 34 into the processing container 2 in a shower shape. As a result, the processing gas is uniformly supplied into the processing container 2.
  • the induction heating coil may be divided into a plurality of zones, and the high frequency power may be controlled respectively.
  • the zone A is divided into three zones A, B, and C, and the induction heating coil 15a is wound around the zone A so that the high frequency power is supplied from the high frequency power source 16a.
  • the induction heating coil 15b is wound to supply high-frequency power from the high-frequency power supply 16b
  • the induction heating coil 15c is wound to the zone C to supply high-frequency power from the high-frequency power supply 16c.
  • the number of zones is not limited to three, and may be two or four or more.
  • 17a, 17b, and 17c are the matching circuits of each zone
  • 18a, 18b, and 18c are the feeding lines of each zone.
  • an induction heating element is provided between the induction heating coil and the susceptor so as to surround the susceptor that is the substrate holding member in the processing container, and is formed by the induction magnetic field in the processing container.
  • the induction heating element is heated by the induced current, the substrate held by the susceptor is heated by the radiant heat, and the induction heating element prevents the induction current from flowing to the substrate, thereby eliminating the influence of the induction current on the substrate. Heat treatment can be performed uniformly.
  • FIG. 6 is a cross-sectional view showing a heat treatment apparatus according to the second embodiment of the present invention
  • FIG. 7 is a schematic diagram showing a concept when a SiC film is formed using the heat treatment apparatus according to the second embodiment of the present invention.
  • the top wall of the processing vessel 2 is constituted by a shower head 40 having a split disk shape.
  • the shower head 40 is divided into a first shower head 40a, a second shower head 40b, and a third shower head 40c in the circumferential direction (see FIG. 7).
  • the first shower head 40a includes a main body 41a, a gas introduction port 42a provided at an upper portion of the main body 41a, a gas diffusion space 43a formed horizontally inside the main body 41a, and a lower surface of the main body 41a from the gas diffusion space 43a.
  • the second shower head 40b includes a main body 41b, a gas introduction port 42b provided in an upper portion of the main body 41b, a gas diffusion space 43b formed horizontally inside the main body 41b, and a lower surface of the main body 41b from the gas diffusion space 43b. And a plurality of gas discharge holes 44b penetrating therethrough.
  • the third shower head 40c includes a main body 41c, a gas introduction port 42c provided in an upper portion of the main body 41c, a gas diffusion space 43c formed horizontally in the main body 41c, and a lower surface of the main body 41c from the gas diffusion space 43c. And a plurality of gas discharge holes 44c penetrating therethrough.
  • Gas supply pipes 9a, 9b, and 9c are connected to the gas inlets 42a, 42b, and 42c.
  • the gas supply pipes 9a, 9b, and 9c are respectively connected to the first gas source 10a and the first gas source 10a of the gas supply unit 10.
  • the second gas source 10b and the third gas source 10c are connected.
  • the first gas source 10a supplies the first shower head 40a with the first gas
  • the second gas source 10b supplies the second gas to the second shower head 40b
  • the third gas source 10c supplies the second gas.
  • the third shower head 40c is supplied with a third gas and discharges the first gas from the first shower head 40a, the second gas from the second shower head 40b, and the third gas from the third shower head 40c. It has come to be.
  • the gas supply pipes 9a, 9b, and 9c are provided with valves and flow controllers, and supply and stop of the first gas, the second gas, and the third gas, and these Flow control is possible.
  • a plurality of substrates S are mounted on the susceptor 3 with the susceptor 3 lowered, as in the first embodiment, and the substrates S are mounted.
  • the lifted susceptor is lifted by the elevating mechanism and loaded into the processing container 2, and the lower end opening of the processing container 2 is closed by the lid 5 so that the processing container 2 is sealed.
  • the high frequency power supply 16 is turned on, high frequency power is applied to the induction heating coil 15, an induction magnetic field is formed in the processing container 2, and an induction current is caused to flow through the induction heating element 7 by the induction magnetic field.
  • the heating element 7 generates heat, and the substrate S on the susceptor 3 is heated by the radiant heat.
  • the first shower head 40a, the second shower head 40b, and the third shower head 40c are supplied to the first shower head 40a, the second shower head 40b, and the third shower head 40c, and the first gas, the second gas, and the third gas are respectively discharged into the processing container 2 from these.
  • the first gas, the second gas, and the third gas are supplied while controlling the flow rate, exhausted from the exhaust port 11 by the exhaust device 14 while controlling the automatic pressure control valve (APC) 13,
  • the inside of the processing container 2 is maintained at a predetermined pressure.
  • the temperature of the substrate S is measured by a thermocouple (not shown) provided in the processing container 2, and the power of the high frequency power is controlled based on the temperature to control the temperature of the substrate S to a predetermined process temperature.
  • the region (region I in FIG. 7) corresponding to the first shower head 40a in the processing container 2 becomes the atmosphere of the first gas
  • the region corresponding to the first shower head 40b in the processing container 2 (FIG. 7).
  • the region II) of FIG. 7 becomes the atmosphere of the second gas
  • the region (region III of FIG. 7) corresponding to the third shower head 40c in the processing container 2 becomes the atmosphere of the third gas.
  • ALD Atomic Layer Deposition
  • C 3 H 8 gas as a C source SiH 4 gas as the Si source, using H 2 gas as the reduction gas, a C 3 H 8 gas from the first shower head 40a as the first gas
  • the SiH 4 gas is discharged as the second gas from the second shower head 40b
  • the H 2 is discharged as the third gas from the third shower head 40c, whereby the region I in the processing container 2 is C 3.
  • H 8 C 3 H 8 to form a gas atmosphere as a gas supply area, to form a SiH 4 gas atmosphere region II as SiH 4 gas supply area, to form a H 2 gas atmosphere region III as the H 2 gas supply region,
  • the SiC film is formed by an ALD method so that the substrate S sequentially passes through these regions (see FIG. 7).
  • the number of gas introduction portions and the number of regions are not limited to three, but are determined by the number of processing gases for forming a compound film.
  • the present invention is not limited to the above embodiment and can be variously modified.
  • the susceptor 3 has a polygonal barrel type, but is not limited to this, and various types such as a cross-sectional star shape as shown in FIG. 8 and a cross-shaped cross shape as shown in FIG. Things can be used.
  • a film formation process particularly a film formation process for a compound film, is preferable. Included in the heat treatment of the present invention.
  • various substrates such as a semiconductor substrate, a sapphire substrate, a ZnO substrate, and a glass substrate can be used according to processing, and are not particularly limited.
  • graphite is exemplified as the material of the induction heating element.
  • the present invention is not limited to this, and conductive ceramics such as SiC can also be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 熱処理装置(1)は、熱処理が施される複数の基板(S)を収容する処理容器(2)と、処理容器(2)内で複数の基板を保持する基板保持部材(3)と、処理容器(2)内に誘導磁界を形成して誘導加熱するための誘導加熱コイル(15)と、誘導加熱コイル(15)に高周波電力を印加する高周波電源(16)と処理容器(2)内に処理ガスを供給するガス供給機構(8,9,10)と、処理容器(2)内を排気する排気機構(11,12,14)と、処理容器(2)内で基板保持部材(3)を囲うように誘導加熱コイル(15)と基板保持部材(3)との間に設けられ、誘導磁界によって形成された誘導電流により加熱され、その輻射熱で基板保持部材(3)に保持された基板(S)を加熱する誘導発熱体(7)とを具備する。誘導発熱体(7)により、基板(S)へ誘導電流が流れることが阻止される。

Description

熱処理装置
 本発明は、誘導加熱を利用して基板に熱処理を施す熱処理装置に関する。
 例えば、半導体ウエハ等の基板に対して成膜処理や酸化処理等の熱処理を行う場合には、石英製の処理容器内に、複数の基板を配置し、抵抗発熱型のヒーターや加熱ランプにより基板を加熱するバッチ式の熱処理装置が広く用いられている。
 最近では、バッチ式の熱処理装置にてSiCやGaN等の化合物を成膜することが検討されている。このような化合物の成膜には基板を1000℃を超える高温に加熱することが求められるが抵抗発熱型のヒーターや加熱ランプにより基板を加熱する熱処理装置の場合には、加熱温度が1000℃程度で限界であり、このような化合物の成膜の用途には対応が困難である。
 1000℃を超えるような高温に加熱することができる技術としては、容器の外側に高周波誘導加熱コイルを配置し、その内部に設けられたサセプタに保持された複数の基板を誘導加熱するものが知られている(例えば、特許文献1の図4参照)。
特開平5-21359号公報
 ところで、このような誘導加熱を利用して基板を加熱した場合には、基板にも誘導電流が流れて処理の均一性が悪化する等の悪影響を及ぼす。
 したがって、本発明の目的は、基板に対する誘導電流の影響を排除して均一に熱処理を行うことができる、誘導加熱を利用した熱処理装置を提供することにある。
 本発明は、複数の基板に熱処理を施す熱処理装置であって、熱処理が施される複数の基板を収容する処理容器と、前記処理容器内で複数の基板を保持する基板保持部材と、前記処理容器内に誘導磁界を形成して誘導加熱するための誘導加熱コイルと、前記誘導加熱コイルに高周波電力を印加する高周波電源と、前記処理容器内に処理ガスを供給するガス供給機構と、前記処理容器内を排気する排気機構と、前記処理容器内で前記基板保持部材を囲うように前記誘導加熱コイルと前記基板保持部材との間に設けられ、前記誘導磁界によって形成された誘導電流により加熱され、その輻射熱で前記基板保持部材に保持された基板を加熱する誘導発熱体とを具備し、前記誘導発熱体により、基板に誘導電流が流れることが阻止される熱処理装置を提供する。
 本発明において、前記誘導発熱体により、基板へ誘導電流が流れることが阻止されるように、前記誘導発熱体の厚さ、前記高周波電力の周波数、および誘導加熱コイルと基板との距離のうち少なくとも一つが調整されることが好ましい。
 本発明において、前記処理容器は誘電体からなり、前記誘導加熱コイルは前記処理容器の外周に巻回される構成をとることができる。また、前記基板保持部材は、前記処理容器の上下方向に延在する多角柱をなし、その側面に基板が保持される構成をとることができる。さらに、前記誘導発熱体はグラファイトで構成されていることが好ましい。
 本発明において、前記ガス供給機構は、前記処理容器内にシャワー状に処理ガスを導入するシャワーヘッドを有する構成とすることができる。また、前記基板保持部材を回転させる回転機構をさらに具備することが好ましい。さらに、前記熱処理として、基板上で処理ガスを反応させて所定の膜を成膜する成膜処理が例示され、前記成膜処理としては、炭化珪素(SiC)膜または窒化ガリウム(GaN)膜の成膜を挙げることができる。
 本発明において、前記熱処理は、複数の処理ガスを用いて化合物膜を成膜する成膜処理であり、前記基板保持部材を回転させる回転機構をさらに具備し、前記ガス供給機構は、前記各処理ガスを前記処理容器の異なる領域に供給し、前記回転機構により前記基板保持部材を回転させて、基板が前記各領域を順次通過するようにし、基板に前記複数の処理ガスを順次吸着させるようにすることができる。この場合に、前記ガス供給機構は、前記各処理ガスをそれぞれ前記処理容器の異なる領域にシャワー状に導入するための複数のシャワーヘッドを有することが好ましい。また、一例として、前記化合物膜はSiC膜であり、前記複数の処理ガスとしてSi源ガス、C源ガス、還元ガスを用いるものを挙げることができる。
本発明の第1の実施形態に係る熱処理装置を示す断面図である。 図1の熱処理装置に用いるバレル型のサセプタの一例を示す模式図である。 図1の熱処理装置に用いるバレル型のサセプタの他の例を示す模式図である。 図1の熱処理装置について、処理容器内に処理ガスを導入するためのシャワーヘッドを設けたものの要部を示す断面図である。 図1の熱処理装置について、処理容器の高さ方向に3つのゾーンを設けてそれぞれに別個の加熱コイルを設け、それぞれのゾーンの高周波パワーを制御するようにしたものを示す断面図である。 本発明の第2の実施形態に係る熱処理装置を示す断面図である。 本発明の第2の実施形態に係る熱処理装置を用いてSiC膜を成膜する際の概念を示す模式図である。 サセプタの他の例を示す模式図である。 サセプタのさらに他の例を示す模式図である。
 以下、添付図面を参照して本発明の実施形態について具体的に説明する。
 <第1の実施形態>
 まず、第1の実施形態について説明する。
 図1は本発明の第1の実施形態に係る熱処理装置を示す断面図である。図1に示すように、熱処理装置1は、上下方向に延びる円筒状をなす縦型の処理容器2を有している。処理容器2はその上端を塞ぐ天壁2aを有しており、下端は開放されている。この処理容器2は、耐熱性を有し、電磁波(高周波電力)を透過する誘電体材料、例えば石英で構成されている。
 この処理容器2内部には、その下方から、複数の基板Sを保持する基板保持部材としてのサセプタ3が挿入可能となっている。サセプタ3は、処理容器2の上下方向に延在する多角柱をなすバレル型であり、例えばグラファイトで構成されている。そして、サセプタ3の側面に基板Sが複数枚ずつ保持されている。サセプタ3の形状としては、図2のような六角柱や、図3のような三角柱が例示される。もちろん他の多角柱であってもよい。
 サセプタ3はその下に設けられた回転機構4により矢印方向に回転されるようになっている。回転機構4は蓋体5に支持されており、蓋体5と回転機構4とサセプタ3は、昇降機構(図示せず)により一体的に昇降されるようになっている。これにより、サセプタ3がロードおよびアンロードされる。サセプタ3を処理容器2内にロードした状態では蓋体5が処理容器2の下端開口部を塞ぎ、蓋体5と処理容器2の底部とはシールリング(図示せず)によりシールされる。蓋体5は、石英等の耐熱材料で構成されている。
 処理容器2の内部には、処理容器2の内壁に沿って、例えば高純度カーボンからなる円筒状の断熱材6が配置されている。断熱材6の内側には、ロードされたサセプタ3を囲うように円筒状の誘導発熱体7が設けられている。誘導発熱体7は、後述するように誘導電流が流れて発熱するようになっており、高輻射率の導電性材料、例えばグラファイトで構成されている。
 処理容器2の天壁2aには、処理ガスを導入するためのガス導入口8が形成されており、ガス導入口8にはガス供給配管9が接続され、ガス供給配管9にはガス供給部10が接続されている。そして、ガス供給部10からガス供給配管9およびガス導入口8を介して処理容器2内に1または複数の処理ガスが、流量制御器(図示せず)により流量を制御しつつ供給されるようになっている。
 処理容器2の底部には排気口11が形成されており、排気口11には排気配管12が接続されている。排気配管12には自動圧力制御バルブ(APC)13および真空ポンプを含む排気装置14が介装されており、自動圧力制御バルブ13の開度を調節しつつ排気装置14により排気することにより、処理容器2内を所定の真空度に制御することが可能となっている。
 処理容器2の外側には誘導加熱コイル15が設けられている。誘導加熱コイル15は、金属製パイプを処理容器2の外周に上下方向に沿って螺旋状に巻回してなっており、上下方向におけるその巻回領域は基板Sの載置領域よりも広くなっている。誘導加熱コイル15を構成する金属製パイプとしては銅を好適に用いることができる。この誘導加熱コイル15には、高周波電源16から給電ライン18を介して高周波源力が供給されるようになっている。また、給電ライン18の途中には、インピーダンス整合を行うためのマッチング回路17が設けられている。
 誘導加熱コイル15に高周波電力を印加することにより、誘導加熱コイル15から高周波が放射され、それが処理容器2の壁部を透過してその内部に至り、誘導磁界が形成される。そして、その誘導磁界によって生じる誘導電流が誘導発熱体7に流れて誘導発熱体7が発熱し、その輻射熱により基板Sを加熱するようになっている。この高周波電源16の高周波の周波数は、例えば17kHz以上の範囲内に設定される。
 誘導発熱体7が誘導加熱されることにより誘導電流が消費されるため、誘導発熱体7を透過して基板Sに到達する誘導電流の量が減少し、誘導発熱体7により基板Sに誘導電流が流れることが阻止される。誘導発熱体7を透過する誘導電流の大きさは、誘導発熱体7の厚さ、高周波電力の周波数、および誘導加熱コイル15と基板Sとの距離によって変化するから、本実施形態では、基板Sへ誘導電流が流れることを阻止するように、これらの少なくとも一つを調整する。例えば、高周波電力の周波数および誘導加熱コイル15と基板Sとの距離が固定されている場合には、誘導発熱体7の厚さのみを調整する。誘導加熱コイル15と基板Sとの距離のみが固定されている場合には、高周波電力の周波数および誘導発熱体7の厚さを調整する。誘導発熱体の厚さおよび誘導加熱コイル15と基板Sとの距離が固定されている場合には、高周波電力の周波数のみを調整する。このとき、基板Sに誘導電流が流れないように条件を調整することが好ましい。ただし、基板Sに流れる誘導電流は、処理の均一性に影響を与えない程度の僅かな値であれば許容される。
 熱処理装置1の各構成部は、制御部(コンピュータ)20により制御される。制御部20はマイクロプロセッサを備えたコントローラと、オペレータが熱処理装置1を管理するためのコマンドの入力操作等を行うキーボードや、熱処理装置1の稼働状況を可視化して表示するディスプレイ等からなるユーザーインターフェースと、熱処理装置1で実行される各種処理をコントローラの制御にて実現するための制御プログラムや、処理条件に応じて熱処理装置1に所定の処理を実行させるための処理レシピが格納された記憶部とを有している。処理レシピ等は記憶媒体に記憶されおり、記憶部において記憶媒体から読み出して実行される。記憶媒体は、ハードディスクや半導体メモリであってもよいし、CD-ROM、DVD、フラッシュメモリ等の可搬性のものであってもよい。レシピ等は、必要に応じてユーザーインターフェースからの指示等にて記憶部から読み出し、コントローラに実行させることで、コントローラの制御下で、熱処理装置1での所望の処理が行われる。
 次に、以上のように構成された熱処理装置1を用いて行なわれる熱処理について説明する。
 サセプタ3を下降させた状態で、サセプタ3上に複数の基板Sを搭載し、基板Sが搭載されたサセプタを昇降機構により上昇させて、処理容器2内へロードする。このとき、蓋体5が上昇して処理容器2の下端開口部を塞ぎ、蓋体5と処理容器2の底部とはシールリング(図示せず)によりシールされて処理容器2内は密閉された状態となる。
 このとき、高周波電源16をオンにして誘導加熱コイル15に高周波電力を印加することによりサセプタ上の基板Sが加熱される。具体的には、誘導加熱コイル15に高周波電力を印加することにより処理容器2内に誘導磁界が形成され、その誘導磁界によって誘導発熱体7に誘導電流が流れ、誘導発熱体7が発熱する。そして、誘導発熱体7の輻射熱によりサセプタ3上の基板Sが加熱される。
 このようにして基板Sが加熱されるのと同時に、ガス供給部10から処理容器2内に熱処理に必要な処理ガスを流量制御しつつ供給し、自動圧力制御バルブ(APC)13を制御しながら排気装置14により排気口11から排気して、処理容器2内を所定の圧力に維持するとともに、回転機構4によりサセプタ3を回転させる。このとき、基板Sの温度を処理容器2内に設けた図示しない熱電対により測定し、その温度に基づいて高周波電力のパワーを制御する。これにより、基板Sの温度を所定のプロセス温度に制御しつつ所定の処理ガスにより基板Sに対して所定の熱処理を行う。
 熱処理としては、処理ガスを基板上で反応させて所定の膜を成膜する成膜処理や基板表面を酸化させる酸化処理等を挙げることができる。特に、抵抗加熱やランプ加熱では適用が困難である1000℃を超える加熱が必要な熱処理に好適であり、このような熱処理として炭化珪素(SiC)膜や窒化ガリウム(GaN)膜等の化合物膜の成膜を典型的な例として挙げることができる。SiCの場合には、基板SとしてSiまたはSiCを用いてエピタキシャル成長により単結晶のSiCを形成してもよいし、CVDにより多結晶のSiCを形成してもよい。また、GaNの場合には、基板SとしてサファイアまたはGaNを用いてエピタキシャル成長により単結晶のGaNを形成してもよいし、CVDにより多結晶のGaNを形成してもよい。
 SiC膜を成膜する場合には、処理ガスとして、Si源として例えばSiHのようなシラン系ガス、C源として例えばCガスのような炭化水素ガス、還元ガスとして例えばHガスを用いることができる。
 また、GaN膜を成膜する場合には、Ga源として例えばトリメチルガリウム(TMGa)のような有機ガリウム化合物、N源および還元ガスとして例えばNHを挙げることができる。
 誘導加熱により基板Sを加熱する場合には、従来、誘導電流をサセプタ3に作用させてその熱で基板Sを加熱していたが、このような場合には基板Sにも誘導電流が流れ、均一な処理を行うことが困難であった。特に、化合物膜の成膜の場合には、膜厚や膜組成等の不均一につながる。
 そこで、本実施形態では、誘導加熱コイル15と基板Sとの間に誘導発熱体7を設け、誘導電流を誘導発熱体7に作用させて発熱させ、その際の誘導発熱体7の輻射熱により基板Sを加熱するようにする。これにより、誘導電流は誘導発熱体7で消費され、誘導発熱体7を透過して基板Sに流れる誘導電流を著しく減少させることができ、誘導発熱体7により基板Sに誘導電流が流れることを阻止することができる。誘導発熱体7で消費されずに透過する誘導電流の大きさは、誘導発熱体7の厚さ、高周波電力の周波数、および誘導加熱コイル15と基板Sとの距離によって変化するから、本実施形態では、基板Sへ到達する誘導電流が十分に阻止されるように、これらのうち少なくとも一つを調整する。このとき、基板Sに誘導電流が流れないように条件を規定することが好ましいが、誘導電流は、処理の均一性に影響を与えない程度の僅かな値であれば許容される。
 このように、本実施形態では処理容器2の内部に発生する誘導電流がほとんど基板Sに流れないようにされるため、誘導電流が流れることによる処理の均一性の悪化を生じさせずに均一な熱処理を実現することができる。
 熱処理が成膜処理の場合には、処理ガスを均一性よく基板Sに供給する観点から、図4に示すように、天壁2aの代わりにシャワーヘッド30を設けてもよい。シャワーヘッド30は、本体31と、本体31の上部に設けられ、ガス供給配管9が接続されたガス導入口32と、本体31の内部に水平に形成されたガス拡散空間33と、ガス拡散空間33から本体31の下面に貫通する複数のガス吐出孔34とを有する。そして、処理ガスがこれら複数のガス吐出孔34から処理容器2内にシャワー状に吐出される。これにより、処理容器2内に処理ガスが均一に供給される。
 また、処理容器2内の高さ方向の温度均一性を向上させる観点から、図5に示すように、誘導加熱コイルを複数のゾーンに分けて、それぞれ高周波パワーを制御するようにしてもよい。図5の例では、高さ方向にA,B,Cの3つのゾーンに分けて、ゾーンAには誘導加熱コイル15aを巻回し、高周波電源16aから高周波電力を供給するようにし、ゾーンBには誘導加熱コイル15bを巻回し、高周波電源16bから高周波電力を供給するようにし、ゾーンCには誘導加熱コイル15cを巻回し、高周波電源16cから高周波電力を供給するようにし、各ゾーンの高周波パワーを制御するようにしている。ゾーンの数は3つに限らず、2つでも4つ以上でもよい。なお、17a,17b,17cは各ゾーンのマッチング回路であり、18a,18b,18cは各ゾーンの給電ラインである。
 以上のように、本実施形態によれば、処理容器内で基板保持部材であるサセプタを囲うように誘導加熱コイルとサセプタとの間に誘導発熱体を設け、処理容器内の誘導磁界によって形成された誘導電流により誘導発熱体を加熱し、その輻射熱でサセプタに保持された基板を加熱し、誘導発熱体により、基板へ誘導電流が流れることを阻止するので、基板に対する誘導電流の影響を排除して均一に熱処理を行うことができる。
 <第2の実施形態>
 次に、本発明の第2の実施形態について説明する。
 本実施形態は、化合物膜の成膜に好適な熱処理装置について示す。
 図6は本発明の第2の実施形態に係る熱処理装置を示す断面図、図7は本発明の第2の実施形態に係る熱処理装置を用いてSiC膜を成膜する際の概念を示す模式図である。
 図6、7において、第1の実施形態と同じものには同じ符号を付して説明を省略する。これらの図に示すように、本実施形態の熱処理装置1′では、処理容器2の天壁を分割タイプの円板状をなすシャワーヘッド40で構成する。この例では、シャワーヘッド40は、周方向に、第1シャワーヘッド40a、第2シャワーヘッド40b、第3シャワーヘッド40cに3分割されている(図7参照)。第1シャワーヘッド40aは、本体41aと、本体41aの上部に設けられたガス導入口42aと、本体41aの内部に水平に形成されたガス拡散空間43aと、ガス拡散空間43aから本体41aの下面に貫通する複数のガス吐出孔44aとを有する。第2シャワーヘッド40bは、本体41bと、本体41bの上部に設けられたガス導入口42bと、本体41bの内部に水平に形成されたガス拡散空間43bと、ガス拡散空間43bから本体41bの下面に貫通する複数のガス吐出孔44bとを有する。第3シャワーヘッド40cは、本体41cと、本体41cの上部に設けられたガス導入口42cと、本体41cの内部に水平に形成されたガス拡散空間43cと、ガス拡散空間43cから本体41cの下面に貫通する複数のガス吐出孔44cとを有する。ガス導入口42a,42b,42cには、ガス供給配管9a,9b,9cが接続されており、これらガス供給配管9a,9b,9cは、それぞれ、ガス供給部10の第1ガス源10a、第2ガス源10b、第3ガス源10cに接続されている。そして、第1ガス源10aから第1シャワーヘッド40aへは第1のガスが供給され、第2ガス源10bから第2シャワーヘッド40bには第2のガスが供給され、第3ガス源10cから第3シャワーヘッド40cは第3のガスが供給されて、第1シャワーヘッド40aから第1ガスが、第2シャワーヘッド40bから第2ガスが、第3シャワーヘッド40cから第3ガスが、それぞれ吐出されるようになっている。図示はしていないが、ガス供給配管9a,9b,9cにはバルブおよび流量制御器が設けられており、第1のガス、第2のガス、第3のガスの供給および停止、ならびにこれらの流量制御が可能となっている。
 このように構成される第2の実施形態の熱処理装置においては、第1の実施形態と同様、サセプタ3を下降させた状態で、サセプタ3上に複数の基板Sを搭載し、基板Sが搭載されたサセプタを昇降機構により上昇させて、処理容器2内へロードし、蓋体5により処理容器2の下端開口部を塞いで処理容器2内を密閉状態とする。
 このとき、高周波電源16をオンにして誘導加熱コイル15に高周波電力を印加して、処理容器2内に誘導磁界を形成し、その誘導磁界によって誘導発熱体7に誘導電流を流すことにより、誘導発熱体7を発熱させ、その輻射熱によりサセプタ3上の基板Sを加熱する。
 このようにして基板Sを加熱するのと同時に、ガス供給部10の第1ガス源10a、第2ガス源10b、第3ガス源10cから、それぞれ第1のガス、第2のガス、第3のガスを第1シャワーヘッド40a、第2シャワーヘッド40b、第3シャワーヘッド40cへ供給し、これらからそれぞれ第1のガス、第2のガスおよび第3のガスを処理容器2内に吐出させる。このとき、これら第1のガス、第2のガス、第3のガスを流量制御しつつ供給し、自動圧力制御バルブ(APC)13を制御しながら排気装置14により排気口11から排気して、処理容器2内を所定の圧力に維持する。基板Sの温度を処理容器2内に設けた図示しない熱電対により測定し、その温度に基づいて高周波電力のパワーを制御して、基板Sの温度を所定のプロセス温度に制御する。
 このとき、処理容器2内の第1シャワーヘッド40aに対応する領域(図7の領域I)は第1のガスの雰囲気となり、処理容器2内の第1シャワーヘッド40bに対応する領域(図7の領域II)は第2のガスの雰囲気となり、処理容器2内の第3シャワーヘッド40cに対応する領域(図7の領域III)は第3のガスの雰囲気となる。この状態で、回転機構4によりサセプタ3を回転させることにより、基板Sは各領域を通過し、第1のガス、第2のガス、第3のガスが繰り返し吸着され、ALD(Atomic Layer Deposition)的な形態で、所定の化合物膜が形成される。
 典型的な具体例としては、C源としてCガス、Si源としてSiHガス、還元ガスとしてHガスを用い、第1シャワーヘッド40aから第1のガスとしてCガスを吐出させ、第2シャワーヘッド40bから第2のガスとしてSiHガスを吐出させ、第3シャワーヘッド40cから第3のガスとしてHを吐出させることにより、処理容器2内の領域IをCガス供給領域としてCガス雰囲気を形成し、領域IIをSiHガス供給領域としてSiHガス雰囲気を形成し、領域IIIをHガス供給領域としてHガス雰囲気を形成し、サセプタ3を回転させることにより、基板Sがこれら領域を順次通過するようにして、ALD的な手法によりSiC膜を形成する(図7参照)。
 このようなALD的な手法を用いることにより、各ガスの反応性が高まり、より低温で純度の高い化合物膜を成膜することができる。
 このとき、ガス導入部分の数および領域の数は3つに限らず、化合物膜を成膜するための処理ガスの数で決定される。
 なお、本発明は上記実施形態に限定されることなく種々変形可能である。例えば、サセプタ3として多角柱のバレル型のものを示したが、これに限らず、図8に示すような断面星形のものや、図9に示すような断面十字型のもの等、種々のものを用いることができる。
 また、熱処理としては、成膜処理、特に化合物膜の成膜処理が好適であるが、酸化処理、アニール処理、拡散処理、改質処理等、処理ガスを供給しつつ基板を加熱する処理であれば本発明の熱処理に含まれる。
 さらに、基板についても、処理に応じて半導体基板、サファイア基板、ZnO基板、ガラス基板等種々のものを用いることができ、特に限定されるものではない。
 また、本実施形態では、誘導発熱体の材料として、グラファイトを例示したが、これに限定されず、SiC等の導電性セラミックスを用いることもできる。
 1;熱処理装置
 2;処理容器
 3;サセプタ
 4;回転機構
 5;蓋体
 7;誘導発熱体
 8,32,42a,42b,42c;ガス導入口
 9,9a,9b,9c;ガス供給配管
 10;ガス供給部
 11;排気口
 12;排気配管
 14;排気装置
 15;誘導加熱コイル
 16;高周波電源
 20;制御部
 30,40;シャワーヘッド
 40a;第1シャワーヘッド
 40b;第2シャワーヘッド
 40c;第3シャワーヘッド
 S;基板

Claims (12)

  1.  複数の基板に熱処理を施す熱処理装置であって、
     熱処理が施される複数の基板を収容する処理容器と、
     前記処理容器内で複数の基板を保持する基板保持部材と、
     前記処理容器内に誘導磁界を形成して誘導加熱するための誘導加熱コイルと、
     前記誘導加熱コイルに高周波電力を印加する高周波電源と、
     前記処理容器内に処理ガスを供給するガス供給機構と、
     前記処理容器内を排気する排気機構と、
     前記処理容器内で前記基板保持部材を囲うように前記誘導加熱コイルと前記基板保持部材との間に設けられ、前記誘導磁界によって形成された誘導電流により加熱され、その輻射熱で前記基板保持部材に保持された基板を加熱する誘導発熱体と
    を具備し、
     前記誘導発熱体により、基板に誘導電流が流れることが阻止される、熱処理装置。
  2.  前記誘導発熱体により、基板へ誘導電流が流れることが阻止されるように、前記誘導発熱体の厚さ、前記高周波電力の周波数、および誘導加熱コイルと基板との距離のうち少なくとも一つが調整される、請求項1に記載の熱処理装置。
  3.  前記処理容器は誘電体からなり、前記誘導加熱コイルは前記処理容器の外周に巻回される、請求項1に記載の熱処理装置。
  4.  前記基板保持部材は、前記処理容器の上下方向に延在する多角柱をなし、その側面に基板が保持されている、請求項1に記載の熱処理装置。
  5.  前記誘導発熱体はグラファイトで構成されている、請求項1に記載の熱処理装置。
  6.  前記ガス供給機構は、前記処理容器内にシャワー状に処理ガスを導入するシャワーヘッドを有している、請求項1に記載の熱処理装置。
  7.  前記基板保持部材を回転させる回転機構をさらに具備する、請求項1に記載の熱処理装置。
  8.  前記熱処理は、基板上で処理ガスを反応させて所定の膜を成膜する成膜処理である、請求項1に記載の熱処理装置。
  9.  前記成膜処理は、炭化珪素(SiC)膜または窒化ガリウム(GaN)膜を成膜するものである、請求項8に記載の熱処理装置。
  10.  前記熱処理は、複数の処理ガスを用いて化合物膜を成膜する成膜処理であり、前記基板保持部材を回転させる回転機構をさらに具備し、前記ガス供給機構は、前記各処理ガスを前記処理容器の異なる領域に供給し、前記回転機構により前記基板保持部材を回転させて、基板が前記各領域を順次通過するようにし、基板に前記複数の処理ガスを順次吸着させる、請求項1に記載の熱処理装置。
  11.  前記ガス供給機構は、前記各処理ガスをそれぞれ前記処理容器の異なる領域にシャワー状に導入するための複数のシャワーヘッドを有する、請求項10に記載の熱処理装置。
  12.  前記化合物膜はSiC膜であり、前記複数の処理ガスとしてSi源ガス、C源ガス、還元ガスを用いる、請求項10に記載の熱処理装置。
PCT/JP2012/068616 2011-09-02 2012-07-23 熱処理装置 WO2013031430A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147005442A KR20140057575A (ko) 2011-09-02 2012-07-23 열처리 장치
US14/236,955 US20140174364A1 (en) 2011-09-02 2012-07-23 Heat treatment device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011191900A JP2013055201A (ja) 2011-09-02 2011-09-02 熱処理装置
JP2011-191900 2011-09-02

Publications (1)

Publication Number Publication Date
WO2013031430A1 true WO2013031430A1 (ja) 2013-03-07

Family

ID=47755936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068616 WO2013031430A1 (ja) 2011-09-02 2012-07-23 熱処理装置

Country Status (5)

Country Link
US (1) US20140174364A1 (ja)
JP (1) JP2013055201A (ja)
KR (1) KR20140057575A (ja)
TW (1) TW201327681A (ja)
WO (1) WO2013031430A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015153983A (ja) * 2014-02-18 2015-08-24 東京エレクトロン株式会社 基板処理装置
CN106129271B (zh) * 2016-07-13 2018-01-19 信利(惠州)智能显示有限公司 有源矩阵显示基板的退火方法及装置
CN107454700A (zh) * 2017-08-22 2017-12-08 苏州三桓电子科技有限公司 非接触式电感加热体于制备雾和/或烟生成装置中的用途

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06135795A (ja) * 1992-10-26 1994-05-17 Sumitomo Electric Ind Ltd 化合物半導体の有機金属気相成長装置及び気相成長方法
JP2005294508A (ja) * 2004-03-31 2005-10-20 Toyo Tanso Kk サセプタ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60236216A (ja) * 1984-05-09 1985-11-25 Toshiba Mach Co Ltd 気相成長装置
JPS61191015A (ja) * 1985-02-20 1986-08-25 Hitachi Ltd 半導体の気相成長方法及びその装置
JPH0350185A (ja) * 1989-07-18 1991-03-04 Furukawa Electric Co Ltd:The 気相薄膜成長装置
JP3659564B2 (ja) * 1999-10-26 2005-06-15 財団法人電力中央研究所 半導体結晶の製造方法およびこれを利用する製造装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06135795A (ja) * 1992-10-26 1994-05-17 Sumitomo Electric Ind Ltd 化合物半導体の有機金属気相成長装置及び気相成長方法
JP2005294508A (ja) * 2004-03-31 2005-10-20 Toyo Tanso Kk サセプタ

Also Published As

Publication number Publication date
TW201327681A (zh) 2013-07-01
US20140174364A1 (en) 2014-06-26
JP2013055201A (ja) 2013-03-21
KR20140057575A (ko) 2014-05-13

Similar Documents

Publication Publication Date Title
US8658951B2 (en) Heat treatment apparatus
US9171734B1 (en) Substrate processing apparatus, method of manufacturing semiconductor device and non-transitory computer-readable recording medium
KR101860203B1 (ko) 반도체 장치의 제조 방법, 기판 처리 장치, 기억 매체 및 프로그램
JP6773880B2 (ja) 基板処理装置、半導体装置の製造方法、コンピュータプログラムおよび処理容器
JP6091932B2 (ja) 炭化珪素の成膜装置および炭化珪素の成膜方法
KR101991574B1 (ko) 성막 장치, 및 그것에 이용하는 가스 토출 부재
US9396930B2 (en) Substrate processing apparatus
JP5938491B1 (ja) 基板処理装置、半導体装置の製造方法、プログラムおよび記録媒体
KR100964045B1 (ko) 반도체 처리용의 성막 방법 및 장치 및 컴퓨터로 판독 가능한 매체
JP2008159947A (ja) 成膜装置および成膜方法
JP5202839B2 (ja) 成膜装置および成膜方法
WO2011125703A1 (ja) プラズマ窒化処理方法
JP2007146252A (ja) 熱処理方法、熱処理装置及び記憶媒体
WO2016125626A1 (ja) 基板処理装置および反応管
JP2014216540A (ja) 成膜装置のクリーニング方法および成膜装置
JP2018170407A (ja) エッチング方法およびエッチング装置
WO2013031430A1 (ja) 熱処理装置
JP2018170408A (ja) 凹部の埋め込み方法および処理装置
JP6529996B2 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
TWI801963B (zh) 基板處理裝置、半導體裝置的製造方法及電漿生成裝置
CN104821348A (zh) 氮化镓系结晶的生长方法和热处理装置
CN113192831A (zh) 蚀刻方法、基片处理装置和基片处理系统
JP2020088355A (ja) 基板処理方法
JP2009152233A (ja) 半導体製造装置
JP7199497B2 (ja) 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12826851

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14236955

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147005442

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12826851

Country of ref document: EP

Kind code of ref document: A1