WO2013031039A1 - 変性リグニンおよびそれを含有するフェノール樹脂成形材料 - Google Patents

変性リグニンおよびそれを含有するフェノール樹脂成形材料 Download PDF

Info

Publication number
WO2013031039A1
WO2013031039A1 PCT/JP2011/079369 JP2011079369W WO2013031039A1 WO 2013031039 A1 WO2013031039 A1 WO 2013031039A1 JP 2011079369 W JP2011079369 W JP 2011079369W WO 2013031039 A1 WO2013031039 A1 WO 2013031039A1
Authority
WO
WIPO (PCT)
Prior art keywords
lignin
modified lignin
modified
molding material
phenol resin
Prior art date
Application number
PCT/JP2011/079369
Other languages
English (en)
French (fr)
Inventor
剛士 扇
石橋 良晃
宏司 山野
木村 肇
松本 明博
大塚 恵子
Original Assignee
ハリマ化成株式会社
地方独立行政法人 大阪市立工業研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ハリマ化成株式会社, 地方独立行政法人 大阪市立工業研究所 filed Critical ハリマ化成株式会社
Publication of WO2013031039A1 publication Critical patent/WO2013031039A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H6/00Macromolecular compounds derived from lignin, e.g. tannins, humic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/005Lignin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/02Lignocellulosic material, e.g. wood, straw or bagasse

Definitions

  • the present invention relates to a modified lignin and a phenolic resin molding material containing the same.
  • Plant-derived components mainly include cellulose, hemicellulose, lignin and the like.
  • lignin is not easily decomposed by microorganisms, is insoluble in solvents, and is infusible, so that it is difficult to handle, and it has poor reactivity with various plastic materials. Therefore, lignin has not found a useful use so far in terms of effective use for plastic materials.
  • Patent Document 1 even when natural lignin is mixed with a phenol resin, which is one of thermosetting plastics, as it is, the molding material has poor moldability and is difficult to mold. .
  • Patent Document 1 describes a method for producing a lignin-modified novolak-type phenol resin obtained by reacting lignin, phenol or a derivative thereof, and aldehydes in the presence of an organic acid.
  • lignin is acid-decomposed to reduce its molecular weight to give reactivity, and is combined with a phenol resin.
  • lowering the molecular weight of lignin requires complicated operations such as neutralization in the case of acid decomposition and appropriate equipment, and generally requires enormous energy (cost) and large-scale equipment.
  • a resin molding material or a molded product using lignin having a low molecular weight cannot be practically used.
  • An object of the present invention is to obtain a simple manufacturing method in which a raw material is heated for a short time without using a solvent, and to reduce the moldability of a molding material when used as a component of a phenol resin molding material. And to provide a modified lignin having reactivity to improve the mechanical strength and water resistance of the molded product.
  • (9) A molded product obtained by molding the modified lignin-containing phenol resin molding material according to (7) or (8).
  • (10) A method for producing a modified lignin having a benzoxazine ring in the molecule, comprising a step of reacting lignin, an amine and an aldehyde. (11) The production method according to (10), wherein 3 to 10 mol of amines and 6 to 20 mol of aldehydes are used with respect to 1 mol of lignin. (12) The production method according to (10) or (11), wherein the lignin is lignin in a dry powder form.
  • a modified lignin having reactivity in an intact state can be obtained by a simple production method without reducing the molecular weight of lignin, and the phenol resin molding material containing the modified lignin is obtained by molding a molding material.
  • the effect of improving the mechanical strength and water resistance of the molded product can be obtained without reducing the properties.
  • the phenol resin molding material of this invention is a thermosetting resin containing the biomass which aimed at the effective utilization of the lignin which was almost discarded until now, it is useful also for environmental conservation.
  • the lignin can be used as it is without reducing its molecular weight, the lignin can be used at low cost.
  • the modified lignin of the present invention has a benzoxazine ring in the molecule.
  • the lignin used as the raw material of the modified lignin of the present invention (that is, the lignin before modification) is not particularly limited as long as it can be modified.
  • the benzoxazine ring is represented by the following formula (I).
  • Lignin is contained in a waste liquid called “black liquor” discharged when producing paper from pulp, for example, pulp production by a soda method.
  • the basic skeleton of lignin mainly includes G type, S type and H type.
  • the arrow (->) in a formula shows a highly reactive carbon atom.
  • lignin obtained from coniferous pulp waste liquor has G-type basic skeleton
  • lignin obtained from hardwood pulp waste liquor has G-type and S-type basic skeleton. That is, lignin derived from woody plants does not contain lignin having H-type basic skeleton.
  • herbaceous plant-derived lignin includes all of H-type, G-type and S-type, and differs in basic skeleton from wood-based plant-derived lignin in that it contains H-type.
  • the G type has one methoxy group (—OCH 3 ) at the ortho position of the phenol skeleton, and the S type has two methoxy groups at the ortho position, whereas the H type has the ortho position. It does not have a methoxy group.
  • the modification of the phenolic hydroxyl group by the benzoxazine ring requires that the ortho position of the phenol skeleton is vacant. Therefore, since the lignin derived from herbaceous plants containing H-type has less modification of the ortho position of the aromatic nucleus than the lignin derived from woody plants not containing H-type, a more reactive modified lignin is produced. Can do.
  • the lignin used in the present invention is preferably a lignin derived from a herbaceous plant, more preferably a lignin derived from wheat straw, rice straw or the like.
  • the lignin used in the present invention preferably contains an H-type basic skeleton in a proportion of 5% by mass or more, more preferably 10% by mass or more. As the proportion of H-type increases, a benzoxazine-modified lignin having high reactivity as described above is easily obtained (the phenol skeleton portion is easily modified (cyclized)).
  • the lignin used in the present invention is not limited to lignin derived from herbaceous plants. A lignin derived from a herbaceous plant and a lignin derived from a woody plant may be mixed and used. Although the reactivity is slightly inferior, only a lignin derived from a woody plant may be used.
  • the lignin used as a raw material is used in the form of a dry powder, for example.
  • the drying method is not particularly limited, and may be performed before or after powdering. For example, drying may be performed at 100 to 200 ° C. for about 20 minutes to 2 hours using a drying furnace.
  • Lignin powdering is not limited to normal mills such as ball mills, hammer mills, roll mills, but also jet mills (for example, swirling jet mills, opposed jet mills, wall impingement jet mills, etc.), ong mills, mortars, multistages You may perform using a mortar type kneading extruder.
  • the powdered lignin preferably has an average particle size of 0.1 to 1000 ⁇ m, more preferably 0.1 to 500 ⁇ m.
  • the modified lignin of the present invention has a benzoxazine ring in the lignin molecule, the reactivity with various resins is improved. That is, since the reactivity of the phenolic hydroxyl group (—OH) in the lignin molecule is poor, the modified lignin of the present invention improves the reactivity by modifying this hydroxyl group to a benzoxazine ring. Therefore, when lignin is used, complicated work such as acid decomposition to lower the molecular weight becomes unnecessary.
  • the benzoxazine ring is preferably present on the surface of the lignin particle.
  • the benzoxazine ring is formed at the phenol skeleton in the lignin molecule.
  • a cyclization reaction proceeds at the phenol skeleton, and a benzoxazine ring represented by the above formula (I) is formed.
  • amines used include primary amines, and alkyl monoamines such as methylamine, ethylamine, n-propylamine, n-butylamine, n-dodecylamine, n-nonylamine, cyclopentylamine, cyclohexylamine and allylamine.
  • alkenyl monoamines aniline, p-cyanoaniline, p-bromoaniline, o-toluidine, m-toluidine, p-toluidine, 2,4-xylidine, 2,5-xylidine, 3,4-xylidine, ⁇ - And aromatic monoamines such as naphthylamine, ⁇ -naphthylamine and 3-aminophenylacetylene.
  • benzylamine, 2-amino-benzylamine, 1,3-diaminopropane, 1,4-diaminobutane, 1,10-diaminodecane, 2,7-diaminofluorene, 1,4-diaminocyclohexane, 9,10 -Diaminophenanthrene, 1,4-diaminopiperazine, p-phenylenediamine, 4,4'-diaminobenzophenone, 4,4'-diaminodiphenylsulfone, 4,4'-diaminodiphenylmethane, 4,4'-diaminobiphenyl, 4 4,4'-oxydianiline, fluorenetetraamine, tetraaminediphenyl ether, melamine, and the like can also be used.
  • aniline, methylamine and the like are preferable, and aniline is more preferable.
  • Aniline has a phenyl,
  • the aldehyde used is not particularly limited, and examples include formaldehyde.
  • formaldehydes include formalin, which is an aqueous solution of formaldehyde, and paraformaldehyde, trioxane, which are polymers thereof.
  • the state of the aldehyde used is not limited to solid or liquid. In particular, paraformaldehyde is preferable because it is solid (powder) at room temperature.
  • amines and aldehydes react as side reactions, it is preferable to use amines and aldehydes excessively in order to sufficiently modify lignin.
  • the amine is used in a proportion of 3 to 20 mol, preferably 3 to 10 mol
  • the aldehyde is used in a proportion of 6 to 40 mol, preferably 6 to 20 mol, per 1 mol of lignin.
  • the reaction temperature is preferably about 50 to 200 ° C., more preferably about 100 to 150 ° C.
  • the reaction time is preferably about 5 minutes to 1 hour, more preferably about 20 minutes to 1 hour.
  • the reaction of lignin, amines, and aldehydes can be performed by a solventless method without using a solvent, and a step of removing the solvent after the reaction is not necessary. As a result, the modified lignin of the present invention can be produced by a simpler method.
  • Japanese Patent Application Laid-Open No. 2003-206390 describes an example of a benzoxazine cyclization reaction using a primary amine and formalin, which has nothing to do with the use of lignin.
  • the phenol resin molding material of the present invention contains a phenol resin and the modified lignin.
  • the phenol resin is not particularly limited, and may be a novolak type or a resol type, and these may be used alone or in combination.
  • the content of the phenol resin and the modified lignin contained in the molding material of the present invention is not particularly limited.
  • the modified lignin of the present invention is contained in an amount of preferably 10 to 300 parts by mass, more preferably 20 to 200 parts by mass with respect to 100 parts by mass of the phenol resin.
  • the viscosity of the molding material is hardly increased and the moldability is excellent, and the mechanical strength and water resistance of the obtained molded product can be further improved.
  • Modified lignin is used, for example, in the form of a dry powder.
  • the drying method is not particularly limited, and may be performed before or after powdering. For example, it may be dried at 50 to 150 ° C. for about 20 minutes to 2 hours using a drying furnace.
  • the molding material of the present invention generally comprises a filler (wood flour, pulp, etc.), a curing agent (hexamethylenetetramine), a colorant, a plasticizer, a stabilizer, a release agent (stearin) that is added to the phenol resin composition.
  • An additive such as zinc acid or metal soap may be contained.
  • the content of the additive is not particularly limited as long as it does not impair the effects of the present invention.
  • the filler is contained in an amount of preferably 10 to 300 parts by mass, more preferably 20 to 200 parts by mass with respect to 100 parts by mass of the phenol resin.
  • the molding material of the present invention is processed into a molded product by a general molding method such as transfer molding or compression molding as in the case of ordinary thermosetting resins.
  • the obtained molded product has excellent mechanical strength, water resistance, and the like.
  • a herbaceous lignin having an average particle size of about 40 ⁇ m (containing 10% by mass of an H-type basic skeleton) was obtained from the waste liquid produced in the pulp production process using straw as a raw material.
  • the reaction vessel was then held at 100 ° C. for 30 minutes.
  • modified lignin when analyzed by Fourier transform infrared spectroscopy (FT-IR), near 1360 cm -1 and near 1496 cm -1, appears characteristic absorption derived from the benzoxazine ring It was. Further, by differential scanning calorimetry (DSC) of the modified lignin, an exothermic peak due to a reaction not observed in the herbaceous lignin was observed. From the above analysis results, it was confirmed that herbaceous lignin was modified to lignin having a benzoxazine ring. In this way, a reactive modified lignin having a benzoxazine ring was obtained.
  • FT-IR Fourier transform infrared spectroscopy
  • DSC differential scanning calorimetry
  • Example 1 300 parts by weight of novolak phenol resin, 150 parts by weight of wood flour and 150 parts by weight of the modified lignin, 54 parts by weight of hexamethylenetetramine as a curing agent, and 4.5 parts by weight of zinc stearate as an internal mold release agent The mixture was mixed and kneaded for 3 minutes at 100 to 110 ° C. with two rolls to obtain a phenol resin molding material.
  • Examples 2 and 3 and Comparative Examples 1 to 3 A phenol resin molding material was obtained in the same manner as in Example 1 except that the components described in Table 1 were mixed in the proportions described in Table 1.
  • the molding materials obtained in Examples 1 to 3 and Comparative Examples 1 to 3 were molded using a transfer molding method at 170 ° C. for 15 minutes to obtain molded products.
  • Heat resistance Heat resistance was evaluated by measuring the glass transition temperature (Tg). First, solid dynamic viscoelasticity was measured using a DMS110 manufactured by SII Nanotechnology (frequency 1 Hz, temperature rising rate 2 ° C./min). The peak temperature of the tan ⁇ curve obtained from the solid dynamic viscoelasticity measurement was defined as Tg.
  • Tg glass transition temperature
  • Mechanical strength was evaluated by measuring bending strength. That is, in accordance with JIS K6911, the bending strength was measured at a crosshead speed of 3 mm / min and a span of 100 mm.
  • Electrical insulation Electrical insulation was evaluated by measuring volume resistivity. That is, according to JIS K6911, volume resistivity ( ⁇ ⁇ cm) was measured using HP4339A manufactured by Yokogawa-Hewlett-Packard.
  • Water resistance was evaluated by measuring water absorption. That is, the mass of the molded product and the mass of the molded product after being immersed in boiling water for 2 hours were measured, and the water absorption was calculated from the ratio. The lower the water absorption, the less water is absorbed and the better the water resistance.
  • Example 1 using modified lignin has almost the same electrical insulation as Comparative Example 1 using unmodified lignin, but has good heat resistance and excellent mechanical strength and water resistance. It can be seen that
  • Example 2 and Comparative Example 2 Example 3 and Comparative Example 3 were also compared. It can be seen that Example 2 using modified lignin has better heat resistance and superior mechanical strength, electrical insulation and water resistance than Comparative Example 2 using unmodified lignin. Furthermore, Example 3 using modified lignin has almost the same heat resistance as Comparative Example 3 using unmodified lignin, but has excellent mechanical strength, electrical insulation and water resistance. Recognize.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Abstract

 本発明の変性リグニンは、分子中にベンゾオキサジン環を有し、好ましくはリグニンが、草本系植物由来である。本発明の変性リグニンは、例えばリグニンと、アミン類と、アルデヒド類とを反応させて得られる。さらに、本発明のフェノール樹脂成形材料は、フェノール樹脂および上記変性リグニンを含有する。

Description

変性リグニンおよびそれを含有するフェノール樹脂成形材料
 本発明は、変性リグニンおよびそれを含有するフェノール樹脂成形材料に関する。
 近年、環境保全の観点から植物由来原料のプラスチック材料への有効利用が期待されている。植物由来成分には、主としてセルロース、ヘミセルロース、リグニンなどが含まれる。このうち、リグニンは、微生物などによって分解されにくく、溶剤に不溶で、かつ不融であるため取り扱いにくいだけでなく、各種プラスチック材料との反応性に乏しい。そのため、リグニンは、プラスチック材料への有効利用という点では、これまで有用な用途が見出されていない。例えば、特許文献1にも記載のように、天然リグニンをそのままの状態で熱硬化性プラスチックの1つであるフェノール樹脂と混合しても、その成形材料は成形性が悪く、成形が困難である。
 そこで、特許文献1には、リグニンと、フェノールまたはその誘導体と、アルデヒド類とを有機酸の存在下で反応させて得られるリグニン変性ノボラック型フェノール樹脂の製造方法が記載されている。
 特許文献1では、リグニンを酸分解し低分子量化して反応性を持たせ、フェノール樹脂と複合化させている。しかし、リグニンの低分子量化には、酸分解の場合は中和するなど煩雑な作業や相応の設備が必要であり、一般的には膨大なエネルギー(コスト)や大規模な設備が必要なため、低分子量化したリグニンを用いた樹脂成形材料や成形品は現実的に使用できるものではない。
特開2008-156601号公報
 本発明の課題は、溶媒を用いることなく、原料を短時間加熱するだけという簡易な製造方法で得られ、かつフェノール樹脂成形材料の成分として用いた場合に、成形材料の成形性を低下させることなく、成形品の機械的強度や耐水性を向上させる反応性を有する変性リグニンを提供することである。
 本発明者らは、上記課題を解決するべく鋭意検討を行った結果、以下の構成からなる解決手段を見出し、本発明を完成するに至った。
 (1)分子中にベンゾオキサジン環を有する、変性リグニン。
 (2)前記ベンゾオキサジン環のオキサジン環部分が、アミン類およびアルデヒド類由来のオキサジン環である、(1)に記載の変性リグニン。
 (3)変性前のリグニンが、草本系植物由来である、(1)または(2)に記載の変性リグニン。
 (4)変性前のリグニンが、H型の基本骨格を5質量%以上の割合で含有する、(1)~(3)のいずれかの項に記載の変性リグニン。
 (5)前記アミン類が、アニリンである、(2)~(4)のいずれかの項に記載の変性リグニン。
 (6)前記アルデヒド類が、パラホルムアルデヒドである、(2)~(5)のいずれかの項に記載の変性リグニン。
 (7)フェノール樹脂および(1)~(6)のいずれかの項に記載の変性リグニンを含有する、フェノール樹脂成形材料。
 (8)前記フェノール樹脂100質量部に対して、変性リグニンを10~300質量部の割合で含有する、(7)に記載のフェノール樹脂成形材料。
 (9)上記(7)または(8)に記載の変性リグニン含有フェノール樹脂成形材料を成形して得られる、成形品。
 (10)リグニンと、アミン類と、アルデヒド類とを反応させる工程を含む、分子中にベンゾオキサジン環を有する変性リグニンの製造方法。
 (11)前記リグニン1モルに対して、アミン類が3~10モル、アルデヒド類が6~20モルの割合で用いられる、(10)に記載の製造方法。
 (12)前記リグニンが、乾燥粉末形態のリグニンである、(10)または(11)に記載の製造方法。
 本発明によれば、リグニンを低分子化することなく、そのままの状態で反応性を有する変性リグニンが簡易な製造方法で得られ、この変性リグニンを含有するフェノール樹脂成形材料は、成形材料の成形性を低下させることなく、成形品の機械的強度や耐水性が向上するという効果が得られる。また、本発明のフェノール樹脂成形材料は、これまで殆ど廃棄処分されていたリグニンの有効利用を図ったバイオマスを含む熱硬化性樹脂であるため、環境保全にも役立つ。さらに、リグニンを低分子化することなくそのままの状態で用いることができるため、リグニンの低コストでの利用が可能になる。
 本発明の変性リグニンは、分子中にベンゾオキサジン環を有する。本発明の変性リグニンの原料となるリグニン(すなわち、変性前のリグニン)は、変性可能であれば、特に限定されない。なお、ベンゾオキサジン環は、下記式(I)で示される。
Figure JPOXMLDOC01-appb-C000001
 リグニンは、例えば、ソーダ法によるパルプ製造など、パルプから紙を製造する際に排出される「黒液」と称する廃液中に含まれる。リグニンの基本骨格は、主としてG型、S型およびH型が存在する。なお、式中の矢印(→)は、反応性の高い炭素原子を示す。
Figure JPOXMLDOC01-appb-C000002
 一般的に、針葉樹のパルプ廃液から得られるリグニンは、G型を基本骨格とし、広葉樹のパルプ廃液から得られるリグニンは、G型およびS型を基本骨格とする。すなわち、木本系植物由来のリグニンは、H型を基本骨格とするリグニンを含まない。
 一方、草本系植物由来のリグニンは、H型、G型およびS型の全てを含み、H型を含有する点で木本系植物由来のリグニンと基本骨格が異なる。
 G型がフェノール骨格部分のオルト位にメトキシ基(-OCH3)を1つ有し、S型がオルト位にメトキシ基を2つ有しているのに対し、H型には、オルト位にメトキシ基を有していない。ベンゾオキサジン環によるフェノール性水酸基の変性には、フェノール骨格のオルト位が空いている必要がある。そのため、H型を含む草本系植物由来のリグニンは、H型を含まない木本系植物由来のリグニンよりも芳香核のオルト位の修飾が少ないため、より反応性の高い変性リグニンを作製することができる。
 したがって、本発明に用いられるリグニンは、草本系植物由来のリグニンが好ましく、麦わら、稲わらなど由来のリグニンがより好ましい。また、本発明に用いられるリグニンは、好ましくはH型の基本骨格を5質量%以上、より好ましくは10質量%以上の割合で含有する。H型の割合が多いほど、上記のように反応性が高いベンゾオキサジン変性リグニンが得られやすい(フェノール骨格部分が変性(環化)されやすい)。なお、本発明に用いられるリグニンは、草本系植物由来のリグニンに限定されるわけではない。草本系植物由来のリグニンと木本系植物由来のリグニンとを混合して用いてもよく、反応性は若干劣るものの、木本系植物由来のリグニンのみを用いてもよい。
 原料となるリグニンは、例えば、乾燥粉末の形態で用いられる。乾燥方法は特に限定されず、粉末化の前後いずれに行ってもよい。例えば、乾燥炉を用い、100~200℃で20分~2時間程度乾燥すればよい。
 リグニンの粉末化は、ボールミル、ハンマーミル、ロールミルなど通常の粉砕装置だけでなく、ジェットミル(例えば、旋回流型ジェットミル、対向型ジェットミル、壁衝突型ジェットミルなど)、オングミル、乳鉢、多段石臼型混練押出機などを用いて行ってもよい。粉末化されたリグニンは、好ましくは0.1~1000μm、より好ましくは0.1~500μmの平均粒径を有する。
 本発明の変性リグニンは、リグニン分子中にベンゾオキサジン環を有するため、各種樹脂との反応性が向上する。すなわち、リグニン分子中のフェノール性水酸基(-OH)の反応性が乏しいため、本発明の変性リグニンは、この水酸基をベンゾオキサジン環に改質して反応性を向上させている。そのため、リグニンを使用する際に、酸分解して低分子量化するなどの煩雑な作業が不要となる。ベンゾオキサジン環は、好ましくは、リグニン粒子の表面に存在している。
 ベンゾオキサジン環は、リグニン分子中のフェノール骨格部分に形成される。例えば、リグニン、アミン類およびアルデヒド類を混合して反応させることにより、フェノール骨格部分で環化反応が進行し、上記式(I)で示されるベンゾオキサジン環が形成される。
 使用されるアミン類としては、例えば1級アミンが挙げられ、メチルアミン、エチルアミン、n-プロピルアミン、n-ブチルアミン、n-ドデシルアミン、n-ノニルアミン、シクロペンチルアミン、シクロヘキシルアミン、アリルアミンなどのアルキルモノアミン類およびアルケニルモノアミン類、アニリン、p-シアノアニリン、p-ブロモアニリン、o-トルイジン、m-トルイジン、p-トルイジン、2,4-キシリジン、2,5-キシリジン、3,4-キシリジン、α-ナフチルアミン、β-ナフチルアミン、3-アミノフェニルアセチレンなどの芳香族モノアミン類などが挙げられる。さらに、ベンジルアミン、2-アミノ-ベンジルアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,10-ジアミノデカン、2,7-ジアミノフルオレン、1,4-ジアミノシクロヘキサン、9,10-ジアミノフェナントレン、1,4-ジアミノピペラジン、p-フェニレンジアミン、4,4’-ジアミノベンゾフェノン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノビフェニル、4,4’-オキシジアニリン、フルオレンテトラアミン、テトラアミンジフェニルエーテル、メラミンなども使用できる。これらの中でもアニリン、メチルアミンなどが好ましく、アニリンがより好ましい。アニリンは、分子中にフェニル基を有しており、そのフェニル基が、成形品の耐熱性をより向上させる。
 また、使用されるアルデヒド類としては、特に限定されず、ホルムアルデヒド類などが挙げられる。ホルムアルデヒド類としては、例えば、ホルムアルデヒドの水溶液であるホルマリン、あるいはその重合物であるパラホルムアルデヒド、トリオキサンなどが挙げられる。使用されるアルデヒド類は、固体や液体などその状態は限定されない。特に、パラホルムアルデヒドは常温で固体(粉末)のため扱いやすく好ましい。
 リグニン、アミン類およびアルデヒド類は、理論上、当モル用いればよい(モル比で、リグニン:アミン類:アルデヒド類=1:1:2)。しかし、副反応としてアミン類およびアルデヒド類が反応するため、リグニンを十分に変性するためには、アミン類およびアルデヒド類を過剰に用いることが好ましい。例えば、リグニン1モルに対して、アミン類が3~20モル、好ましくは3~10モル、アルデヒド類が6~40モル、好ましくは6~20モルの割合で用いられる。なお、アミン類およびアルデヒド類を過剰に用いても、過剰量のアミン類やアルデヒド類、アミン類とアルデヒド類との副生成物は、反応して硬化系中に取り込まれるため、本発明の効果にほとんど影響を及ぼさない。
 反応温度は、好ましくは50~200℃程度、より好ましくは100~150℃程度である。また反応時間は、好ましくは5分~1時間程度、より好ましくは20分~1時間程度である。リグニン、アミン類およびアルデヒド類の反応は、溶媒を用いない無溶媒法で行うことができ、反応後に溶媒を除去する工程が不要となる。その結果、本発明の変性リグニンは、より簡易な方法で製造することができる。例えば、特開2003-206390号公報には、リグニンの利用とは一切関係ないが、1級アミンとホルマリンとを用いたベンゾオキサジン環化反応の例が記載されている。
 さらに、本発明のフェノール樹脂成形材料(以下、単に「成形材料」と記載する場合がある)は、フェノール樹脂および上記変性リグニンを含有する。フェノール樹脂は特に限定されず、ノボラック型でもレゾール型でもいずれでもよく、これらを単独または併用して使用することができる。
 本発明の成形材料に含有されるフェノール樹脂および変性リグニンの含有量は特に限定されない。例えば、フェノール樹脂100質量部に対して、本発明の変性リグニンは好ましくは10~300質量部、より好ましくは20~200質量部の割合で含有する。フェノール樹脂および変性リグニンをこのような割合で含有すると、成形材料の粘度も上昇しにくく良好な成形性を有し、さらに得られる成形品の機械的強度や耐水性もより向上させることができる。
 変性リグニンは、例えば、乾燥粉末の形態で用いられる。乾燥方法は特に限定されず、粉末化の前後いずれに行ってもよい。例えば、乾燥炉を用い、50~150℃で20分~2時間程度乾燥すればよい。
 本発明の成形材料は、一般的にフェノール樹脂組成物に添加される充填剤(木粉、パルプなど)、硬化剤(ヘキサメチレンテトラミン)、着色剤、可塑剤、安定剤、離型剤(ステアリン酸亜鉛、金属石鹸など)などの添加剤を含有してもよい。添加剤の含有量は、本発明の効果を阻害しない範囲であれば特に限定されない。例えば、充填剤は、フェノール樹脂100質量部に対して、好ましくは10~300質量部、より好ましくは20~200質量部の割合で含有する。
 本発明の成形材料は、通常の熱硬化性樹脂と同様、トランスファ成形、圧縮成形などの一般的な成形方法によって、成形品に加工される。得られた成形品は、優れた機械的強度、耐水性などを有する。
 以下、実施例および比較例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 (ベンゾオキサジン環を有する変性リグニンの調製)
 麦わらを原料とするパルプ製造過程で生成した廃液から、約40μmの平均粒径を有する草本系リグニン(H型の基本骨格を10質量%含有)を得た。次いで、得られた草本系リグニン、アニリンおよびパラホルムアルデヒドを、リグニン:アニリン:パラホルムアルデヒド=1:10:20のモル比となるように、反応容器に仕込んだ。次いで、反応容器を100℃で30分間保持した。
 得られた反応物(変性リグニン)を、フーリエ変換型赤外分光法(FT-IR)によって分析すると、1360cm-1付近および1496cm-1付近に、ベンゾオキサジン環に由来する特徴的な吸収が現れた。また、変性リグニンの示差走査熱量分析(DSC)により、草本系リグニンには観測されない反応による発熱ピークが観測された。以上の分析結果から、草本系リグニンが、ベンゾオキサジン環を有するリグニンに変性されていることを確認した。このようにして、ベンゾオキサジン環を有する反応性の変性リグニンを得た。
 (実施例1)
 300質量部のノボラック型フェノール樹脂、150質量部の木粉および150質量部の上記変性リグニン、硬化剤としてヘキサメチレンテトラミンを54質量部、および内部離型剤としてステアリン酸亜鉛を4.5質量部混合し、2本ロールにて100~110℃で3分間混練して、フェノール樹脂成形材料を得た。
 (実施例2、3および比較例1~3)
 表1に記載の成分を表1に記載の割合で混合したこと以外は、実施例1と同様にしてフェノール樹脂成形材料を得た。
 実施例1~3および比較例1~3で得られた成形材料を、トランスファ成形法を用いて、170℃で15分の条件で成形を行い、成形品を得た。
 <成形材料の成形性評価>
 実施例1~3および比較例1~3で得られた成形材料について、示差走査熱量分析(DSC)挙動、溶融粘弾性挙動および熱重量分析(TG-DTA)挙動を調べた。その結果、硬化特性に差は認められず、変性リグニンを含有するか否かに拘らず、得られるフェノール樹脂成形材料は成形性に優れていた。
 <成形品の物性評価>
 実施例1~3および比較例1~3で得られた成形材料を用いて得られた成形品について、(1)耐熱性、(2)機械的強度、(3)電気絶縁性および(4)耐水性を評価した。結果を表1に示す。
 (1)耐熱性
 耐熱性は、ガラス転移温度(Tg)を測定することによって評価した。まず、エスアイアイ・ナノテクノロジー(株)製のDMS110を用いて、固体動的粘弾性を測定した(周波数1Hz、昇温速度2℃/分)。固体動的粘弾性測定から得られるtanδ曲線のピーク温度を、Tgとした。
 (2)機械的強度
 機械的強度は、曲げ強度を測定することによって評価した。すなわち、JIS K6911に準じて、クロスヘッド速度3mm/分およびスパン100mmにて曲げ強度を測定した。
 (3)電気絶縁性
 電気絶縁性は、体積抵抗率を測定することによって評価した。すなわち、JIS K6911に準じて、横河-Hewlett-Packard社製のHP4339Aを用いて体積抵抗率(Ω・cm)を測定した。
 (4)耐水性
 耐水性は、吸水率を測定することによって評価した。すなわち、成形品の質量と、沸騰水に2時間浸漬した後の成形品の質量とを測定し、その比率によって吸水率を算出した。吸水率が低いほど水分が吸収されにくく、耐水性に優れることを示す。
Figure JPOXMLDOC01-appb-T000003
 変性リグニンを用いた実施例1は、未変性リグニンを用いた比較例1と比べて、電気絶縁性はほぼ同等であるが、良好な耐熱性を有し、かつ優れた機械的強度および耐水性を有することがわかる。
 同様に、実施例2および比較例2ならびに実施例3および比較例3についても、それぞれ比較した。変性リグニンを用いた実施例2は、未変性リグニンを用いた比較例2と比べて、良好な耐熱性を有し、かつ優れた機械的強度、電気絶縁性および耐水性を有することがわかる。さらに、変性リグニンを用いた実施例3は、未変性リグニンを用いた比較例3と比べて、耐熱性はほぼ同等であるが、優れた機械的強度、電気絶縁性および耐水性を有することがわかる。

Claims (12)

  1.  分子中にベンゾオキサジン環を有する、変性リグニン。
  2.  前記ベンゾオキサジン環のオキサジン環部分が、アミン類およびアルデヒド類由来のオキサジン環である、請求項1に記載の変性リグニン。
  3.  変性前のリグニンが、草本系植物由来である、請求項1または2に記載の変性リグニン。
  4.  変性前のリグニンが、H型の基本骨格を5質量%以上の割合で含有する、請求項1~3のいずれかの項に記載の変性リグニン。
  5.  前記アミン類が、アニリンである、請求項2~4のいずれかの項に記載の変性リグニン。
  6.  前記アルデヒド類が、パラホルムアルデヒドである、請求項2~5のいずれかの項に記載の変性リグニン。
  7.  フェノール樹脂および請求項1~6のいずれかの項に記載の変性リグニンを含有する、フェノール樹脂成形材料。
  8.  前記フェノール樹脂100質量部に対して、変性リグニンを10~300質量部の割合で含有する、請求項7に記載のフェノール樹脂成形材料。
  9.  請求項7または8に記載の変性リグニン含有フェノール樹脂成形材料を成形して得られる、成形品。
  10.  リグニンと、アミン類と、アルデヒド類とを反応させる工程を含む、分子中にベンゾオキサジン環を有する変性リグニンの製造方法。
  11.  前記リグニン1モルに対して、アミン類が3~10モル、アルデヒド類が6~20モルの割合で用いられる、請求項10に記載の製造方法。
  12.  前記リグニンが、乾燥粉末形態のリグニンである、請求項10または11に記載の製造方法。
PCT/JP2011/079369 2011-09-02 2011-12-19 変性リグニンおよびそれを含有するフェノール樹脂成形材料 WO2013031039A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-191553 2011-09-02
JP2011191553A JP5671430B2 (ja) 2011-09-02 2011-09-02 変性リグニンおよびそれを含有するフェノール樹脂成形材料

Publications (1)

Publication Number Publication Date
WO2013031039A1 true WO2013031039A1 (ja) 2013-03-07

Family

ID=47755577

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079369 WO2013031039A1 (ja) 2011-09-02 2011-12-19 変性リグニンおよびそれを含有するフェノール樹脂成形材料

Country Status (2)

Country Link
JP (1) JP5671430B2 (ja)
WO (1) WO2013031039A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027537A1 (ja) * 2014-08-18 2016-02-25 日立化成株式会社 樹脂組成物及び成形体
WO2016098667A1 (ja) * 2014-12-16 2016-06-23 ハリマ化成株式会社 含浸板、積層板および樹脂組成物
WO2016098666A1 (ja) * 2014-12-16 2016-06-23 ハリマ化成株式会社 含浸板、積層板および樹脂組成物
WO2016194600A1 (ja) * 2015-06-02 2016-12-08 ハリマ化成株式会社 樹脂組成物、樹脂組成物の製造方法、および、成形品
CN107001766A (zh) * 2014-11-20 2017-08-01 住友电木株式会社 木质素树脂组合物、固化物和成型物
CN107892752A (zh) * 2017-11-09 2018-04-10 武汉工程大学 一种多功能性木质素芳胺大分子抗氧剂及其制备方法和应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014084450A (ja) * 2012-10-26 2014-05-12 Harima Chemicals Group Inc 変性リグニンおよびそれを含有する熱硬化性樹脂成形材料
AU2018313534B2 (en) 2017-08-10 2022-08-25 Idemitsu Kosan Co.,Ltd. Modified lignin manufacturing method, modified lignin, and modified lignin-including resin composition material
US11518886B2 (en) 2017-08-10 2022-12-06 Idemitsu Kosan Co., Ltd. Modified lignin, modified polyphenol manufacturing method, and modified lignin-including resin composition material
JPWO2020162621A1 (ja) 2019-02-08 2021-12-09 出光興産株式会社 ポリフェノール誘導体の製造方法、ポリフェノール誘導体、及びポリフェノール誘導体含有樹脂組成材料

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57130994A (en) * 1981-02-04 1982-08-13 Sanyo Kokusaku Pulp Co Ltd Preparation of modified lignin sulfonic acid salt
JPS6291531A (ja) * 1985-10-03 1987-04-27 ウエストバコ・コ−ポレ−シヨン リグノスルホネ−トアミンの調製方法
JPS62169896A (ja) * 1986-01-21 1987-07-27 Sanyo Kokusaku Pulp Co Ltd 石炭・水スラリ−用分散剤
JPS6436623A (en) * 1987-07-23 1989-02-07 Westvaco Corp Lignin derivative and its utilization
JPH0360448A (ja) * 1989-07-26 1991-03-15 Sanyo Kokusaku Pulp Co Ltd Rcc用の混和剤
JPH06127998A (ja) * 1992-10-16 1994-05-10 Kao Corp 自己充填用コンクリート組成物
JPH09194244A (ja) * 1996-01-16 1997-07-29 Lion Corp セメント混和剤
JP2008156601A (ja) * 2006-12-01 2008-07-10 Toyota Auto Body Co Ltd リグニン変性ノボラック型フェノール系樹脂、その製造方法及びフェノール系樹脂成形材料
JP2009292952A (ja) * 2008-06-05 2009-12-17 Toyota Auto Body Co Ltd 成形材料用バインダー及び成形体

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57130994A (en) * 1981-02-04 1982-08-13 Sanyo Kokusaku Pulp Co Ltd Preparation of modified lignin sulfonic acid salt
JPS6291531A (ja) * 1985-10-03 1987-04-27 ウエストバコ・コ−ポレ−シヨン リグノスルホネ−トアミンの調製方法
JPS62169896A (ja) * 1986-01-21 1987-07-27 Sanyo Kokusaku Pulp Co Ltd 石炭・水スラリ−用分散剤
JPS6436623A (en) * 1987-07-23 1989-02-07 Westvaco Corp Lignin derivative and its utilization
JPH0360448A (ja) * 1989-07-26 1991-03-15 Sanyo Kokusaku Pulp Co Ltd Rcc用の混和剤
JPH06127998A (ja) * 1992-10-16 1994-05-10 Kao Corp 自己充填用コンクリート組成物
JPH09194244A (ja) * 1996-01-16 1997-07-29 Lion Corp セメント混和剤
JP2008156601A (ja) * 2006-12-01 2008-07-10 Toyota Auto Body Co Ltd リグニン変性ノボラック型フェノール系樹脂、その製造方法及びフェノール系樹脂成形材料
JP2009292952A (ja) * 2008-06-05 2009-12-17 Toyota Auto Body Co Ltd 成形材料用バインダー及び成形体

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016027537A1 (ja) * 2014-08-18 2016-02-25 日立化成株式会社 樹脂組成物及び成形体
CN107001766A (zh) * 2014-11-20 2017-08-01 住友电木株式会社 木质素树脂组合物、固化物和成型物
CN107001766B (zh) * 2014-11-20 2019-07-02 住友电木株式会社 木质素树脂组合物、固化物和成型物
WO2016098667A1 (ja) * 2014-12-16 2016-06-23 ハリマ化成株式会社 含浸板、積層板および樹脂組成物
WO2016098666A1 (ja) * 2014-12-16 2016-06-23 ハリマ化成株式会社 含浸板、積層板および樹脂組成物
WO2016194600A1 (ja) * 2015-06-02 2016-12-08 ハリマ化成株式会社 樹脂組成物、樹脂組成物の製造方法、および、成形品
CN107892752A (zh) * 2017-11-09 2018-04-10 武汉工程大学 一种多功能性木质素芳胺大分子抗氧剂及其制备方法和应用
CN107892752B (zh) * 2017-11-09 2020-10-23 武汉工程大学 一种多功能性木质素芳胺大分子抗氧剂及其制备方法和应用

Also Published As

Publication number Publication date
JP5671430B2 (ja) 2015-02-18
JP2013053205A (ja) 2013-03-21

Similar Documents

Publication Publication Date Title
JP5671430B2 (ja) 変性リグニンおよびそれを含有するフェノール樹脂成形材料
JP6541007B2 (ja) フェノール変性リグニン樹脂及びその製造方法、並びに、樹脂組成物、ゴム組成物、及び硬化物
JP5879027B2 (ja) リグニン添加熱硬化性樹脂
JP2023024831A (ja) 改質リグニンの製造方法及び改質リグニン、並びに改質リグニン含有樹脂組成材料
JP5703203B2 (ja) 水不溶性リグニンおよびそれを含有する熱硬化性樹脂成形材料
JP2023024830A (ja) 改質リグニン及び改質ポリフェノールの製造方法、並びに改質リグニンを用いた樹脂組成材料
TW201546162A (zh) 樹脂組成物及其製造方法
WO2015056757A1 (ja) 樹脂組成物、ゴム組成物、および硬化物
JP2020050815A (ja) フェノール変性リグニン樹脂を含有する樹脂材料の製造方法、それを用いた構造体の製造方法
JP2014196416A (ja) エポキシ化リグニン、その製造方法、その樹脂組成物およびその成形材料
JP6217064B2 (ja) 樹脂組成物および樹脂成形体
JP5920069B2 (ja) リグニン樹脂組成物およびリグニン樹脂成形材料
WO2006059903A1 (en) Hydroxy-aromatic compound, process for the preparation thereof, and use of the compound
WO2020162621A1 (ja) ポリフェノール誘導体の製造方法、ポリフェノール誘導体、及びポリフェノール誘導体含有樹脂組成材料
JP6645440B2 (ja) リグニン樹脂組成物、硬化物および成形物
JP6163761B2 (ja) 樹脂組成物および樹脂成形体
WO2014065182A1 (ja) 変性リグニンおよびそれを含有する熱硬化性樹脂成形材料
JP2011132339A (ja) 熱硬化性成形材料および成形品
JP6624884B2 (ja) バイオマスフェノール液化樹脂
JP2015193860A (ja) リグニン添加熱硬化性樹脂
JP4402499B2 (ja) 熱硬化性バイオマス樹脂組成物およびその成形品
JP7279865B2 (ja) リグニン変性ノボラック型フェノール樹脂の製造方法
BR102020006743A2 (pt) Desenvolvimento de resinas de benzoxazinas derivadas do líquido da casca da castanha de caju e do catecol como resinas termofixas renováveis de alto desempenho
JP6792105B2 (ja) フェノール液化樹脂
WO2023223232A1 (en) Improved bonding resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11871645

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11871645

Country of ref document: EP

Kind code of ref document: A1