WO2020162621A1 - ポリフェノール誘導体の製造方法、ポリフェノール誘導体、及びポリフェノール誘導体含有樹脂組成材料 - Google Patents

ポリフェノール誘導体の製造方法、ポリフェノール誘導体、及びポリフェノール誘導体含有樹脂組成材料 Download PDF

Info

Publication number
WO2020162621A1
WO2020162621A1 PCT/JP2020/004946 JP2020004946W WO2020162621A1 WO 2020162621 A1 WO2020162621 A1 WO 2020162621A1 JP 2020004946 W JP2020004946 W JP 2020004946W WO 2020162621 A1 WO2020162621 A1 WO 2020162621A1
Authority
WO
WIPO (PCT)
Prior art keywords
lignin
polyphenol
derivative
producing
polyphenol derivative
Prior art date
Application number
PCT/JP2020/004946
Other languages
English (en)
French (fr)
Inventor
啓人 小山
田代 裕統
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to JP2020571310A priority Critical patent/JPWO2020162621A1/ja
Priority to BR112021014870-1A priority patent/BR112021014870A2/pt
Priority to EP20752574.2A priority patent/EP3922654A4/en
Priority to CN202080012883.1A priority patent/CN113396171A/zh
Priority to US17/427,313 priority patent/US20220119575A1/en
Publication of WO2020162621A1 publication Critical patent/WO2020162621A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/20Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07GCOMPOUNDS OF UNKNOWN CONSTITUTION
    • C07G1/00Lignin; Lignin derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H6/00Macromolecular compounds derived from lignin, e.g. tannins, humic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L97/00Compositions of lignin-containing materials
    • C08L97/005Lignin

Definitions

  • the present invention relates to a method for producing a polyphenol derivative, a polyphenol derivative, and a resin composition material containing a polyphenol derivative.
  • the plant-derived substances mainly include sugar-derived cellulose, hemicellulose, and polyphenols such as lignin.
  • polyphenols such as lignin have an aromatic ring, an aliphatic hydroxyl group and an aromatic hydroxyl group, and thus are desired to be usefully used as a plastic material.
  • a simple and economical method for separating and purifying polyphenols such as lignin has not been established, and (b) polyphenols such as lignin are hardly biodegradable, hardly soluble in a solvent, and have a high softening point.
  • Patent Document 2 a modified lignin in which a benzoxazine skeleton is introduced into lignin without lowering the molecular weight of lignin to impart reactivity, and the modified lignin are described.
  • a technique relating to a molding material in which the mechanical strength and the like of a molded product is improved by containing it is disclosed.
  • Patent Document 3 after lignin and phenols are reacted in the presence of a catalyst to be phenolized, the lignin is heated with an alkali to give an alkalized lignin, and an aldehyde is further added thereto to give a hydroxymethylated lignin.
  • Patent Document 4 discloses a phenol-modified lignin resin and the like in which curability is improved and resin strength is improved by a manufacturing method in which lignin, phenols and aldehydes are reacted in the presence of an acid.
  • the present invention can inexpensively produce a polyphenol derivative that improves reactivity with an existing plastic material, has good compatibility with a resin, and can give a molded article having improved physical properties such as bending strength. It is an object of the present invention to provide a lignin derivative and a lignin derivative-containing resin composition material capable of giving the above-mentioned molded article.
  • the present inventors separate polyphenol as a polyphenol derivative by causing an aromatic compound having an ortho-para orienting group to act on a polyphenol-containing composition such as biomass in a solvent.
  • a polyphenol-containing composition such as biomass in a solvent.
  • a method for producing a polyphenol derivative which comprises a step of reacting a polyphenol-containing composition with an aromatic compound having ortho-para orientation in a solvent.
  • a lignin derivative having a weight average molecular weight of less than 5,000 and an abundance of molecular weights LogM2.15 to 2.20 of less than 0.7% by mass.
  • a polyphenol derivative that improves reactivity with an existing plastic material, has good compatibility with a resin, and can give a molded product having improved physical properties such as bending strength at low cost is obtained.
  • a method for producing, a lignin derivative and a lignin derivative-containing resin composition material capable of giving the above-mentioned molded article can be provided.
  • the method for producing a polyphenol derivative of the present invention has a step of reacting a polyphenol-containing composition with an aromatic compound having an ortho-para orienting group in a solvent.
  • the “polyphenol derivative” refers to a polyphenol-derived reaction product obtained by reacting the polyphenol contained in the polyphenol-containing composition with an aromatic compound.
  • examples of the polyphenol in the polyphenol-containing composition include brown coal, lignin, tannin, catechin, anthocyanin, rutin, isoflavone, lignan, curcumin, and chlorogenic acid.
  • the polyphenol contained in the polyphenol-containing composition is preferably lignin from the viewpoint of its usefulness as a plastic material. Therefore, the polyphenol derivative is preferably a lignin derivative.
  • the polyphenol contained in the polyphenol-containing composition is a lignin, and the polyphenol derivative will be specifically described by way of example as a lignin derivative. It is not limited to these lignins and lignin derivatives.
  • lignin is a polymer compound obtained by polymerizing three types of lignin monomers, which are p-hydroxycinnamic alcohols, and has a basic skeleton represented by the following formula (2).
  • the substituents R 3 and R 4 represent a hydrogen atom or a methoxy group.
  • R 3 and R 4 are both hydrogen atoms, it is a p-hydroxyphenyl nucleus (H-type skeleton), and when one of R 3 and R 4 is hydrogen atom, it is a guaiacyl nucleus (G-type skeleton), R 3 and A compound in which both R 4 are not hydrogen atoms is called a syringyl nucleus (S-type skeleton).
  • X represents a carbon atom
  • Y represents a hydrogen atom or a carbon atom.
  • reaction point a carbon atom bonded to R 3 and R 4 becomes a highly reactive reaction point (hereinafter, may be simply referred to as “reaction point”), but R 3 and R 4 are methoxy groups. In some cases, the reactivity of the carbon atom becomes poor. Therefore, in order to react with lignin, R 3 and R 4 are preferably hydrogen atoms.
  • the lignin contains not only the above-mentioned aromatic moieties but also aliphatic moieties, and the hydroxyl groups present in the aliphatic moieties have poor oxidative stability (aliphatic hydroxyl groups are converted to aldehydes or carboxylic acids by oxidation).
  • the number of hydroxyl groups existing in the aliphatic moiety is as small as possible so that the reactivity with the existing plastic material is high.
  • the lignin derivative improves the mixing property by lowering the softening point without significantly lowering the molecular weight, and improves the reactivity with the existing plastic material. That is, the lignin derivative is assumed to have many highly reactive H-type skeletons, G-type skeletons, and these two types of skeletons, and has a small amount of aliphatic hydroxyl groups, and more preferably a low softening point without significantly decreasing the molecular weight. If possible, it will be highly reactive and suitable as a plastic material.
  • the substituents R 3 and R in the lignin basic skeleton represented by the above formula (2) in the polyphenol-containing composition are mixed by mixing the polyphenol-containing composition and the aromatic compound in a solvent. 4 is used to obtain a lignin derivative suitable for the above plastic material by utilizing the substitution reaction of transferring to an aromatic compound.
  • the polyphenol-containing composition used as a raw material one or more kinds of biomass and biomass residue can be used.
  • the biomass residue include those derived from plant biomass such as woody biomass and herbaceous biomass.
  • saccharification residue and fermentation residue second generation ethanol saccharification residue and second generation ethanol fermentation residue
  • black liquor sulfite lignin, craft lignin, soda lignin, etc.
  • tannin etc.
  • any one or more of these can be used.
  • Non-edible plant biomass examples include woody biomass and herbaceous biomass. Examples of woody biomass include cedar, cypress, hiba, cherry, eucalyptus, beech, bamboo and other conifers and hardwoods.
  • Herbaceous biomass includes trunks and bunches of palm palms, fibers and seeds of palm palm fruits, bagasse (sucrose and high-biomass sugarcane slag), cane tops (top and leaves of sugarcane), energy canes, rice straw, straw, Corn cobs, foliage and residues (corn stover, corn cob, corn hull), sorghum (including sweet sorghum) residues, jatropha seed and shell, cashew husks, switchgrass, Elianthus, high biomass yield crops, energy crops, etc. Are listed.
  • herbaceous biomass empty palm palm, straw, corn cobs/stems/residue (corn stover , Corn cob, corn hull), bagasse, cane top, energy cane, residues after extraction of those useful components are more preferable, and corn cobs, foliage, and residues (corn stover, corn cob, corn hull), bagasse, cane top, energy cane are More preferable.
  • the useful ingredients include, for example, hemicellulose, sugars, minerals, water and the like. Bagasse contains about 5 to 30 mass% of lignin.
  • lignin in bagasse contains all of H nucleus, G nucleus, and S nucleus as a basic skeleton.
  • the plant-based biomass may be crushed one. Further, it may be in any form of a block, a chip, a powder, or a water-containing material containing water.
  • organosolv method for bagasse, corn stover, etc., organosolv method, pressurized hot water method, steam explosion method, ammonia treatment method, ammonia explosion method, acid treatment method, alkali treatment method, oxidative decomposition method, thermal decomposition method, microwave heating method, etc.
  • the enzyme After the treatment, preferably acid treatment, ammonia blasting, steam blasting or the like to separate the hemicellulose into the solution side, the enzyme also separates the cellulose as glucose into the solution side or does not separate the hemicellulose. As it is, it is saccharified with cellulose and separated to the solution side, and the remaining solid is the second generation ethanol saccharification residue.
  • the saccharides are not separated, and separated as ethanol by fermentation to the solution side, and the remaining solid is the second-generation ethanol fermentation residue.
  • the second-generation ethanol saccharification residue contains lignin as a main component and contains decomposed organic substances, catalysts, enzymes, ash, cellulose and the like.
  • the second-generation ethanol fermentation residue contains lignin as a main component and contains decomposed organic substances, catalysts, enzymes, yeast, ash, cellulose and the like.
  • a more specific example of an embodiment of the production method of the present invention is shown in Examples described later, and is as follows, for example.
  • At least one of the second generation ethanol saccharification residue and the second generation ethanol fermentation residue is used as a raw material, and a solvent and an aromatic compound are added.
  • the heating liquid contains insoluble matter. 2 Filter while hot using filter paper. Filtered solids are unreacted and inorganic contaminants.
  • the filtrate is distilled under reduced pressure to remove the solvent and unreacted aromatic compounds.
  • Aromatic compounds that cannot be completely removed by distillation are removed by vacuum drying or, if necessary, dissolving them in acetone and repeating reprecipitation with water as a poor solvent.
  • the solid separated is the already modified lignin derivative. If the aromatic compound remaining during the distillation does not cause a problem in the post reaction, it can be used as it is as a plastic material.
  • an organosolv method for example, an organosolv method, a pressurized hot water method, a steam explosion method, an ammonia treatment method, an ammonia explosion method, an acid treatment method, an alkali treatment method, an oxidative decomposition from a non-edible plant biomass is used.
  • the separated lignin after it has been subjected to treatments such as the method, thermal decomposition and microwave heating.
  • the lignin contained in the non-edible plant biomass is eluted in the solvent by treatment at high temperature, the lignin-containing solution is filtered to cellulose. It is also possible to use the separated lignin by removing the above substances and concentrating the solution to dryness.
  • the aromatic compound having an ortho-para orienting group may be an aromatic compound having one or more ortho-para orienting groups.
  • the ortho-para orienting group is an electron-donating substituent and includes functional groups such as a hydroxyl group, a methoxy group, an aliphatic hydrocarbon group, an amino group and a halogen group, and a hydroxyl group is preferable. That is, the aromatic compound is preferably a phenol compound.
  • at least one of the 2-position, 4-position and 6-position, which is the position of the substituent with respect to the ortho-para orientation group is a hydrogen atom, and preferably a compound represented by the following formula (A): Can be mentioned.
  • W is an ortho-para orienting group
  • R 1 and R 2 each independently represent a hydrogen atom, a hydroxyl group or an alkyl group having 1 to 15 carbon atoms
  • R 1 and R 2 May be the same or different.
  • the alkyl group having 1 to 15 carbon atoms may be linear or branched.
  • the alkyl group having 1 to 15 carbon atoms is preferably a linear or branched alkyl group having 1 to 15 carbon atoms, more preferably a linear or branched alkyl group having 1 to 5 carbon atoms, More preferably, it is a linear alkyl group having 1 to 3 carbon atoms.
  • Examples of the aromatic compound represented by the above formula (A) include phenol, anisole, toluene, ethylbenzene, n-propylbenzene, isopropylbenzene, n-butylbenzene, isobutylbenzene, t-butylbenzene, aniline, -methylaniline, N,N-dimethylaniline, chlorobenzene, m-cresol, p-cresol, o-cresol, m-methoxyphenol, m-xylene, 1,3-diethylbenzene, 3-methylaniline, 3-methyl-N-methylaniline, 3-methyl-N,N-dimethylaniline, m-dichlorobenzene, m-chlorotoluene, 3,5-dimethylphenol, 3,5-dimethylanisole, mesitylene, 3,5-dimethylaniline, 3,5-dimethyl Examples thereof include -N-methylaniline, 3,5-dimethyl-N,
  • the aromatic compound is preferably a phenol compound in which the ortho-para orienting group is a hydroxyl group.
  • the phenol compound is preferably a phenol compound in which at least one of the 2-position, 4-position and 6-position, which is the position of the substituent with respect to the hydroxyl group, is a hydrogen atom.
  • the above-mentioned phenol compound in which the 2-position, 4-position and 6-position (that is, the ortho-position and the para-position) are hydrogen atoms is particularly suitable as a saucer for a substituent by a substitution reaction with lignin due to its orientation.
  • the reason is that the polyphenol-containing composition and the phenol compound are mixed in a solvent so that the substituents of R 3 and R 4 in the basic skeleton of the lignin represented by the above formula (2) in the polyphenol-containing composition are reduced. , Because it is transferred to the above-mentioned 2-position, 4-position or 6-position of the phenol compound.
  • R 3 or R 4 or both of the above lignin becomes a hydrogen atom, and a lignin derivative having an increased number of reaction points can be obtained. Therefore, the substitution reaction reduces the S-type skeleton in the lignin, increases the G-type skeleton and the H-type skeleton, and improves the reactivity.
  • the substitution reaction modifies the molecular chain of lignin, resulting in a decrease in the molecular weight and improving the miscibility of the lignin derivative.
  • the phenol compounds may be used alone or in combination of two or more.
  • the phenol compound is preferably a compound represented by the following formula (1), wherein W in the above formula (A) is a hydroxyl group.
  • W in the above formula (A) is a hydroxyl group.
  • R 1 and R 2 have the same meanings as R 1 and R 2 in the formula (A).
  • the phenol compound represented by the above formula (1) include 3-alkylphenols such as phenol, resorcinol, phloroglucin, m-cresol, 3-ethylphenol, and 3-propylphenol; 5-methylresorcinol, 5-ethylresorcinol, And 5-alkylresorcinols such as 5-propylresorcinol; and 3,5-dialkylphenols such as 3,5-dimethylphenol, 3-methyl-5-ethyl-phenol, and 3,5-diethylphenol.
  • a phenol compound in which at least one of R 1 and R 2 is a hydroxyl group is used. can do.
  • Specific examples of such a phenol compound include resorcinol, phloroglucin, 5-alkylresonocinol (5-methylresorcinol, 5-ethylresorcinol, etc.) and the like.
  • the reaction between the polyphenol-containing composition and the aromatic compound is performed in a solvent.
  • the polyphenol in the polyphenol-containing composition reacts with the aromatic compound, but the reaction proceeds if the solvent is not used in the reaction, but the amount of the aromatic compound used is larger than that in the case of using the solvent. Further, since the solubility of polyphenol is increased by using a solvent, the above reaction suitably proceeds, and even if the amount of the aromatic compound used is relatively small, there is no fear of an extreme decrease in yield, and the yield of a certain amount or more is obtained. It is preferable from the viewpoint of economic efficiency because it can realize the rate.
  • the solvent preferably contains a polar solvent from the viewpoint of increasing the solubility of polyphenol such as lignin in the raw material. Further, the solvent preferably contains at least one selected from alcohols, ketones, ethers, aromatics, and water from the viewpoint of solubility and economic efficiency of polyphenol such as lignin in the raw material. Specific examples of these solvents include alcohols such as methanol, ethanol and isopropyl alcohol, ketones such as acetone and methyl ethyl ketone, ethers such as tetrahydrofuran, organic solvents such as aromatics, and water. That is all.
  • the above-mentioned organic solvent preferably has a softening point not too high, and is easily made into a suitable range, and from the viewpoint of solubility and economic efficiency of polyphenols such as lignin, it preferably has 1 to 6 carbon atoms, more preferably 1 to 4 carbon atoms, More preferably, it has 1 to 3 carbon atoms.
  • the mass ratio [organic solvent:water] is preferably 95:5 to 5:95 from the viewpoint of low softening point, high yield and economical efficiency of polyphenol derivatives such as lignin derivatives. , 95:5 to 20:80, more preferably 95:5 to 30:70, further preferably 95:5 to 40:60, further preferably 95:5 to 50:50, further preferably 90:10. It is more preferably about 50:50.
  • the aromatic compound can be used in an amount of 4 to 95% by mass based on the total amount of the aromatic compound and the solvent.
  • the amount of the aromatic compound used exceeds 95% by mass, the molecular weight decreases, the strength tends to decrease, and the economical efficiency decreases.
  • the amount of the aromatic compound used is 4% by mass or more, the softening point of the polyphenol derivative such as the lignin derivative does not become too high, the compatibility with the resin becomes good, and the yield decreases. There is no danger of causing it.
  • the amount of the aromatic compound used is 4% by mass or more, it can be expected that the reaction between the polyphenol-containing composition and the aromatic compound having the ortho-para orienting group in the solvent effectively proceeds. ..
  • the amount of the aromatic compound used is preferably 10 to 70% by mass, more preferably 10 to 50% by mass, and further preferably 20 to 40% by mass.
  • the mass ratio of the aromatic compound to the polyphenol such as lignin in the polyphenol-containing composition [aromatic compound/polyphenol such as lignin] is usually about 0.1 to 15.
  • the above mass ratio is preferably 0.1 to 10, more preferably 0.1 to 5, still more preferably 0.1 to 4, and 0.1 to 10 from the viewpoints of economical efficiency and favorable progress of the substitution reaction. 3 is more preferable, 0.1 to 2 is still more preferable, 0.1 to 1 is still more preferable, 0.1 to 0.7 is still more preferable, and 0.1 to 0.5 is even more preferable.
  • the reaction between the polyphenol-containing composition and the aromatic compound is preferably no catalyst, or preferably more than 0 to 5 with respect to the total amount of the polyphenol such as lignin and the aromatic compound in the polyphenol-containing composition.
  • the reaction is preferably carried out in the presence of 0.0% by mass of the acid catalyst, and further in the presence of 0.1 to 3.0% by mass of the acid catalyst.
  • the reaction can proceed without a catalyst depending on the aromatic compound used in the reaction. Since the reaction proceeds without catalyst, for example, post-treatment (refining process) after the reaction process can be omitted, and physical properties such as bending strength of a molded product using the obtained polyphenol derivative as a plastic material can be improved. Can be expected.
  • the acid catalyst examples include inorganic acids such as phosphoric acid, phosphoric acid ester, hydrochloric acid, sulfuric acid, and sulfuric acid ester, organic acids such as acetic acid, formic acid, oxalic acid, and p-toluenesulfonic acid.
  • the acid catalyst may be used alone or in combination of two or more.
  • there is no particular upper limit as long as the amount of the acid catalyst used is usually more than 0 relative to the total amount of polyphenols such as lignin and the aromatic compound in the polyphenol-containing composition, but the acid catalyst is added.
  • the reaction is usually performed in the presence of 0.01 to 5.0% by mass of an acid catalyst, and 0.1 to 3.0% by mass. %, more preferably 0.2 to 3.0% by mass, still more preferably 0.2 to 2.6% by mass.
  • the amount of the acid catalyst used is in the above range, the above-mentioned reaction can be favorably progressed.
  • the amount of the acid catalyst used exceeds the above range, the concentration of sulfate radicals increases as the hydrolysis of cellulose and hemicellulose contained in the biomass and the biomass residue as the polyphenol-containing composition progresses, and the impurities increase.
  • the cost of purification may increase.
  • the reaction temperature is not particularly limited as long as it is usually 100° C. or higher, but is usually about 140° C. or higher and 350° C. or lower, preferably 140° C. or higher and 300° C. or lower, more preferably 140° C. or higher and 270° C. or lower, 140 It is more preferably higher than 250°C and lower than 250°C, even more preferably 150 to 230°C, even more preferably 180 to 230°C. If it exceeds 140°C, the lignin derivative can be dissolved to allow the reaction to proceed, and if it is 300°C or less, the reverse reaction can be prevented from proceeding.
  • the reaction time is usually about 0.1 to 15 hours, but it is preferably 0.5 hours or more, and more preferably 1 hour or more, from the viewpoint that the reaction can sufficiently proceed to modify the polyphenol. More preferably, the upper limit is preferably 10 hours or less, more preferably 1 hour or more and 8 hours or less, and more preferably 2 hours or more and 8 hours or less, from the viewpoint that reaction progress cannot be expected even if the reaction time is too long. Is more preferable.
  • the reaction pressure is not particularly limited as long as it is usually 0.05 MPa or more, but is usually preferably 0.1 MPa or more and 30 MPa or less.
  • the preferable range of the pressure of the reaction system is influenced by the amount of the solvent and the temperature, and thus may be appropriately set.
  • the reaction can be carried out under ambient atmosphere.
  • the reaction is particularly preferably carried out in an atmosphere in which oxygen is reduced by purging with nitrogen in order to suppress polymerization due to the oxidation reaction.
  • the reaction system in the reaction is not particularly limited, but stationary or stirring treatment can be mentioned.
  • a general batch reactor, a semi-batch reactor or the like can be used.
  • the polyphenol derivative of the present invention is produced by performing the above-mentioned reaction step. Therefore, the lignin derivative produced by the method for producing a polyphenol derivative that undergoes a reaction step can be used as it is as a plastic material, but a purification step may be performed after the reaction step.
  • the method for producing a polyphenol derivative preferably has a solid-liquid separation step in addition to the above reaction step. ⁇ Solid-liquid separation> After the above reaction, the polyphenol derivative is dissolved in the solvent and the aromatic compound, but the unreacted substance and the inorganic residue are present in the liquid as a solid. These are preferably removed by filtration (when hot).
  • the reaction solution is NO. 5C or NO.
  • a pressure (hot) filter equipped with a filter paper such as 2 and the like, and it is about 20 to 100° C., about 20 to 70° C., usually about 20 to 50° C., about 0.1 to 0.99 MPa, usually 0.1.
  • Pressure filtration is performed at about 1 to 0.4 MPa.
  • the filtered solid may be diluted and/or washed with a solvent as appropriate and filtered. In the filtration, the polyphenol derivative is contained in the filtrate.
  • the reaction product liquid is diluted with at least one of water, acetone, ketones such as methyl ethyl ketone, alcohols such as methanol, ethanol and isopropyl alcohol, low boiling point general-purpose solvents such as ethers such as tetrahydrofuran, and/or the like.
  • it may be washed and solid-liquid separated.
  • the polyphenol derivative is contained in the solution.
  • the method of performing solid-liquid separation is not particularly limited, and examples thereof include filtration, filter pressing, centrifugation, dehydrator and the like.
  • a solution containing the above polyphenol derivative is distilled under reduced pressure at a temperature of about 40 to 200° C., usually about 50 to 150° C., about 3 to 20 kPa, usually about 5 to 10 kPa, and a solvent and an aroma. It can be performed by removing the group compound.
  • the polyphenol derivative is obtained as a solid.
  • the low boiling point general-purpose solvent is removed by vacuum distillation, and then the aromatic compound is removed by the same method as above. Can be done by In the distillation, the polyphenol derivative is obtained as a solid.
  • the polyphenol derivative obtained by distillation may be usually heated to 50 to 200° C. and vacuum dried in a solid or molten state to remove the aromatic compound after the reaction for purification. Further, the heated and fluidized polyphenol derivative after distillation may be subjected to the same vacuum drying as it is to remove the aromatic compound after the reaction for purification.
  • ⁇ Reprecipitation> When the aromatic compound remains in the polyphenol derivative obtained by distillation or vacuum drying, the polyphenol derivative obtained by the above distillation is further dissolved in a solvent such as acetone and ion exchange is performed as a poor solvent for the polyphenol derivative. You may refine
  • the filtration, distillation, reduced pressure drying and reprecipitation may be repeated, or any one or a combination of two or more may be performed.
  • the aromatic compound remaining in the polyphenol derivative is not particularly limited, but is usually less than 30%, preferably less than 10%, more preferably less than 5%, still more preferably less than 1%.
  • the production method of the polyphenol derivative of the present invention is not limited as long as the effects of the present invention are not impaired, but the polyphenol derivative produced by the above-mentioned production method of the polyphenol derivative is preferable.
  • lignin can have an H-type skeleton, a G-type skeleton, and an S-type skeleton.
  • the polyphenol derivative of the present invention has twice the relative abundance H(%) of the H-type skeleton relative to the relative abundance S(%) of the S-type skeleton obtained from the integrated value measured by 31 P-NMR, and the G-type skeleton.
  • the total ratio [(2H+G)/S] of the relative abundance G (%) can be 2.3 or more, and the aliphatic hydroxyl group and aromatic group obtained from the integrated value similarly measured by 31 P-NMR are used.
  • the abundance ratio of the aliphatic hydroxyl groups to the total abundance ratio of hydroxyl groups can be less than 27%.
  • the ratio [(2H+G)/S] is 2.3 or more, the reactivity with the existing plastic material tends to be good.
  • the abundance ratio of the aliphatic hydroxyl group is less than 27%, the reactivity with the existing plastic material tends to be good.
  • the ratio [(2H+G)/S] is preferably 2.4 or more, 0.5 or more is more preferable, and 2.6 or more is further preferable.
  • the upper limit of the ratio [(2H+G)/S] is not limited as long as the effects of the present invention are not impaired, but from the viewpoint of productivity, it is preferably 10.0 or less, more preferably 7.0 or less, and 5.0 or less. Is more preferable.
  • the abundance ratio of the aliphatic hydroxyl group is preferably less than 25%, more preferably less than 23%, further preferably less than 20%, and the closer to 0%, the more preferable.
  • the relative abundance of the aliphatic hydroxyl group amount of S-type backbone, H-type skeleton and G-type skeleton is a value determined from the integral value measured by 31 P-NMR, and more particularly about 31 P-NMR measurements , MAGNETIC RESONANCE IN CHEMISTRY, VOL. 33, 375-382 (1995). In the present invention, more specifically, it can be measured by the method described in Examples below.
  • the molecular weight of the polyphenol derivative of the present invention is lowered because the molecular chains of R 3 and R 4 are modified by the above-mentioned substitution reaction.
  • lignin is taken out as a polyphenol derivative with high efficiency by lowering the molecular weight, and at the same time, the mixing property (kneading property or stirring property) with other resin materials is improved, and the physical properties such as bending strength are further improved. It can be expected to give molded products.
  • the aromatic compound is inserted into the substitution site in the polyphenol derivative of the present invention, even if the molecular weight is lowered, the softening point is not so lowered.
  • the polyphenol derivative of the present invention can have a softening point of preferably 90°C or higher, more preferably 130°C or higher, and further preferably 150°C or higher.
  • the softening point of the polyphenol derivative is preferably 210° C. or lower, more preferably 200° C. or lower, further preferably 190° C. or lower, still more preferably 180° C. or lower, still more preferably 160. It is below °C.
  • the softening point is 210° C. or lower, the resin composition material containing the polyphenol derivative becomes easier to handle.
  • the polyphenol derivative of the present invention has a weight average molecular weight of less than 5,000 and an abundance of molecular weights LogM2.15 to 2.20 of less than 0.7% by mass.
  • the weight average molecular weight of the polyphenol derivative is preferably 3,000 or more and 4,000 or less, the weight average molecular weight is preferably 2,000 or more and less than 3,000, and the weight average molecular weight is 1,000 or more and 2,000.
  • the weight average molecular weight is preferably 600 or more and less than 1,000.
  • the abundance of the polyphenol derivative having a molecular weight of LogM2.15 to 2.20 is 0.7% by mass or more, problems such as swelling may occur during molding and post-curing of the resin composition material containing the polyphenol derivative.
  • the polyphenol derivative preferably has an abundance of molecular weights of Log M2.15 to 2.20 of 0.5% by mass or less, more preferably 0.25% by mass or less, and the smaller the abundance, the more preferable.
  • the polyphenol derivative of the present invention preferably has a softening point of 140° C. or higher and 210° C. or lower if the weight average molecular weight is 3,000 or higher and 4,000 or lower, When the weight average molecular weight is 2,000 or more and less than 3,000, the softening point is preferably 120° C. or higher and 190° C. or lower, When the weight average molecular weight is 1,000 or more and less than 2,000, the softening point is preferably 100° C. or higher and 170° C. or lower, When the weight average molecular weight is 600 or more and less than 1,000, the softening point is preferably 90°C or higher and 170°C or lower.
  • the weight average molecular weight can be measured by the method described in Examples below.
  • the method for producing a polyphenol derivative of the present invention it is preferable that 50 mass% or more of the lignin content in the second generation ethanol fermentation residue or the second generation ethanol saccharification residue is extracted as a polyphenol derivative. , 60% by mass or more is more preferably taken out as a polyphenol derivative, 70% by mass or more is more preferably taken out as a polyphenol derivative, and 80% by mass or more is more preferably taken out as a polyphenol derivative, It is even more preferable that 90% by mass or more is taken out as a polyphenol derivative.
  • the method for calculating the polyphenol content in the second-generation ethanol fermentation residue and the second-generation ethanol saccharification residue will be specifically described in Examples below.
  • the present invention uses a polyphenol derivative produced by the method for producing a polyphenol derivative described above and a polyphenol derivative-containing material containing at least one polyphenol derivative of the above-mentioned polyphenol derivative, particularly a polyphenol derivative-containing resin composition material, and the same.
  • the polyphenol derivative-containing resin composition material may contain, in addition to the polyphenol derivative obtained by the above-mentioned production method, one or more kinds of resin components such as thermosetting resins and thermoplastic resins, and aldehydes. Components other than the polyphenol derivative will be described below.
  • the polyphenol derivative-containing resin composition material may further contain a thermosetting resin.
  • thermosetting resin examples include other general thermosetting resins such as phenol resin, epoxy resin, polyurethane resin, melamine resin, urea resin, unsaturated polyester resin, silicone resin and alkyd resin.
  • the phenol resin is preferable because it has a phenolic hydroxyl group like the polyphenol derivative, can react with the polyphenol derivative, and can be used as a diluent for the polyphenol derivative.
  • the phenol resins novolac-based phenol resins and resol-based phenol resins are more preferable.
  • These thermosetting resins may be used alone or in combination of two or more.
  • the content of the thermosetting resin in the polyphenol derivative-containing plastic material may be determined according to the purpose, but from the viewpoint of obtaining good physical properties and moldability, it is preferably 100 to 300 with respect to 100 parts by mass of the polyphenol derivative. Parts by mass, more preferably 150 to 250 parts by mass.
  • the polyphenol derivative-containing resin composition material can further contain aldehydes.
  • a resin composition material containing a polyphenol derivative and a polyphenol derivative containing aldehydes can be used as a self-curing molding material.
  • the aldehydes include formaldehyde, paraformaldehyde, acetaldehyde, propionaldehyde, furfural, benzaldehyde, phenylacetaldehyde, saltylaldehyde and the like, and of these, formaldehyde is preferable.
  • the molar ratio of the phenol group and formaldehyde contained in the polyphenol derivative [formaldehyde/phenol group] is preferably 1.0 to 2.5, and more preferably 1.2 to 2.0. When the molar ratio is within the above range, there is no fear that the curing rate during the reaction will decrease. It is preferable to use an alkali from the viewpoint of accelerating the curing reaction between the polyphenol derivative and the aldehyde.
  • the alkali sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, ammonia, tetramethylammonium hydroxide, alkylamine and the like can be used.
  • the temperature and reaction time during the curing reaction of the polyphenol derivative and the aldehydes are not limited, but are usually about 60 to 130° C., and the reaction time is usually about 0.5 to 5 hours.
  • the polyphenol derivative-containing resin composition material may further contain one or more selected from thermosetting resins and aldehydes in combination.
  • the polyphenol derivative-containing resin composition material may further contain a filler.
  • the filler may be an inorganic filler or an organic filler.
  • the inorganic filler spherical or crushed fused silica, silica powder such as crystalline silica, alumina powder, glass powder, glass fiber, glass flakes, mica, talc, calcium carbonate, alumina, hydrated alumina, boron nitride, nitriding Examples thereof include aluminum, silicon nitride, silicon carbide, titanium nitride, zinc oxide, tungsten carbide, magnesium oxide and the like.
  • the organic filler include carbon fiber, aramid fiber, paper powder, wood powder, cellulose fiber, cellulose powder, chaff powder, fruit shell/nut powder, chitin powder, starch and the like.
  • the inorganic filler and the organic filler may be used alone or in combination of two or more, and the content thereof is determined according to the purpose.
  • the content of the inorganic filler and/or the organic filler is appropriate in order to obtain good physical properties and moldability.
  • the content of the inorganic filler and/or the organic filler is preferably 50 to 200 parts by mass, more preferably 80 to 150 parts by mass with respect to 100 parts by mass of the polyphenol derivative.
  • the polyphenol derivative-containing resin composition material may further contain a curing agent.
  • the curing agent include hexamethylenetetramine, hexaformaldehyde, paraformaldehyde and the like. These may be used alone or in combination of two or more.
  • inorganic bases such as calcium hydroxide, sodium hydroxide, potassium hydroxide, calcium oxide, and magnesium oxide; Lewis acids such as zinc chloride and zinc acetate, in order to further enhance the curing speed and degree of curing.
  • a catalyst such as triethylamine may be used. These may be used alone or in combination of two or more.
  • Various additives can be added to the polyphenol derivative-containing resin composition material according to the present embodiment within a range that does not impair the characteristics of a molded article obtained from the resin composition material. Further, depending on the purpose, a compatibilizer, a surfactant and the like can be further added.
  • a compatibilizer a resin obtained by adding a polar group by adding maleic anhydride or epoxy to a thermoplastic resin, for example, maleic anhydride modified polyethylene resin, maleic anhydride modified polypropylene resin, various commercially available compatibilizers are used in combination. May be.
  • the surfactant examples include linear fatty acids such as stearic acid, palmitic acid and oleic acid, and branched and cyclic fatty acids with rosins, but are not particularly limited thereto.
  • a flexibilizer such as stearic acid, palmitic acid and oleic acid, and branched and cyclic fatty acids with rosins, but are not particularly limited thereto.
  • a flexibilizer such as stearic acid, palmitic acid and oleic acid, and branched and cyclic fatty acids with rosins, but are not particularly limited thereto.
  • a flexibilizer such as stearic acid, palmitic acid and oleic acid, and branched and cyclic fatty acids with rosins, but are not particularly limited thereto.
  • a flexibilizer such as stearic acid, palmitic acid and oleic acid, and branched and cyclic fatty acids with rosins, but are not particularly limited thereto.
  • thermoplastic resin The thermoplastic resin that can be blended with the polyphenol derivative-containing resin composition material is preferably an amorphous thermoplastic resin having a glass transition temperature of 200° C. or lower, or a crystalline thermoplastic resin having a melting point of 200° C. or lower. ..
  • thermoplastic resin examples include polycarbonate resin, styrene resin, polystyrene elastomer, polyethylene resin, polypropylene resin, polyacrylic resin (polymethylmethacrylate resin, etc.), polyvinyl chloride resin, cellulose acetate resin, polyamide resin, Low melting point polyester resin (PET, PBT, etc.) represented by a polyester of a combination of terephthalic acid and ethylene glycol, terephthalic acid and 1,4-butanediol, polylactic acid and/or a copolymer containing polylactic acid, acrylonitrile-butadiene -Styrene resin (ABS resin), polyphenylene oxide resin (PPO), polyketone resin, polysulfone resin, polyphenylene sulfide resin (PPS), fluororesin, silicon resin, polyimide resin, polybenzimidazole resin, polyamide elastomer, etc., and others And a copolymer with the above mono
  • the content of the thermoplastic resin in the polyphenol derivative resin composition material is 30% by mass or more and 99.9% by mass or less with respect to the total amount of the resin composition material from the viewpoint of obtaining remarkable fluidity and strength. Is more preferable, 40 mass% or more and 99.9 mass% or less is more preferable, 45 mass% or more and 99.9 mass% or less is further preferable, and 50 mass% or more and 99.9 mass% or less is particularly preferable.
  • the polyphenol derivative-containing resin composition material may contain, in addition to the above-mentioned thermoplastic resin, a resin compatible with the resin composition material, an additive, and a filler.
  • (Kneading and molding) Compounding and kneading of each component used in the polyphenol derivative-containing resin composition material, commonly used equipment, for example, preliminary mixing with a ribbon blender, a drum tumbler, a Henschel mixer, a Banbury mixer, a single screw extruder, It can be carried out by a method using a twin-screw extruder, a multi-screw extruder, a roll kneader, a kneader or the like.
  • the heating temperature at the time of kneading is usually appropriately selected within the range of 100 to 300°C.
  • the method for molding the polyphenol derivative-containing resin composition material is not particularly limited.
  • a press molding method for example, a press molding method, an injection molding method, a transfer molding method, a medium-sized molding method, an FRP molding method and the like can be mentioned.
  • the resin composition material is a thermoplastic resin composition material
  • examples of the method for molding into a predetermined shape include an extrusion molding method and an injection molding method.
  • Examples of molded articles using the polyphenol derivative-containing resin composition material include those obtained by curing a resin composition material in which a polyphenol derivative and a curing agent are mixed, various fillers and industrially obtained general phenols. Resin further compounded as required, molded into a predetermined shape and then cured, or cured and then molded, and resin composition material obtained by mixing a polyphenol derivative with a thermoplastic resin and molded. Etc. can be mentioned.
  • a molded article using such a polyphenol derivative-containing resin composition material for example, a heat insulating material for a house, an electronic component, a resin for flak sand, a resin for coated sand, a resin for impregnation, a resin for lamination, a resin for FRP molding,
  • a heat insulating material for a house for example, an electronic component, a resin for flak sand, a resin for coated sand, a resin for impregnation, a resin for lamination, a resin for FRP molding
  • Examples include automobile parts, reinforcing materials for automobile tires, office automation equipment, machines, information communication equipment, and industrial materials.
  • the polyphenol derivative may be used as a material containing a polyphenol derivative in addition to the resin composition material.
  • the polyphenol derivative-containing material other than the polyphenol derivative-containing resin composition material include carbon materials such as carbon black and carbon fiber, lubricants such as grease base materials, foods/cosmetics such as antioxidant and antibacterial properties, and cement additives.
  • Examples include growth promoters for organisms and food discoloration inhibitors.
  • the monosaccharide in the filtrate was quantified by high performance liquid chromatography.
  • the C6 polysaccharide (mainly glucan) was defined as cellulose, and the C5 polysaccharide (mainly xylan) was defined as hemicellulose.
  • [Lignin] The residue obtained by filtering in the process of constituent sugar analysis was dried at 105° C., weighed, and the decomposition residue rate was calculated. Furthermore, the lignin content was calculated by correcting the ash content.
  • the correlation coefficient R 2 is calculated from the composite function (linear sum) of N Gaussian functions and the y-axis of the GPC chart: dw/dLogM, and the three variables A of each Gaussian function are set so that R 2 becomes maximum, S and X were operated. Specifically, it was performed using a solver of spreadsheet software such as Excel. Here, it is necessary to appropriately operate A, S, and X of each function so that R 2 is at least 0.9999 or more. By performing this operation, the ratio of the composite function of a plurality of Gaussian functions existing in the molecular weight LogM2.15 to 2.20 to the composition of the entire Gaussian function was defined as the abundance ratio of the molecular weight LogM2.15 to 2.20 components.
  • ⁇ Pulse width 30° ⁇ Repeat time: 2 seconds ⁇ Measurement range: -60 to 200 ppm -Number of integrations: 200 times
  • the internal standard cyclohexanol-derived signal was set to 145.2 ppm, 144.0 to 142.0 ppm was identified as the S-type skeleton, and 141.0 to 136.6 ppm was identified as the G-type skeleton, and from the integrated value
  • the relative abundance percentage of each basic skeleton was calculated.
  • the relative abundance of the H-type skeleton was calculated by subtracting the relative abundances of the S-type skeleton and the G-type skeleton from the total amount of aromatic hydroxyl groups.
  • Example 2 Lignin derivative 2 (amount of lignin derivative 52.9 g, yield 96%) was obtained in the same manner as in Example 1 except that 37 parts by mass of phenol and 183 parts by mass of ethanol were used.
  • Example 3 Lignin derivative 3 (amount of lignin derivative 26.4 g, yield 48%) was obtained in the same manner as in Example 1 except that 10 parts by mass of phenol and 210 parts by mass of ethanol were used.
  • Example 4 Lignin derivative 4 (amount of lignin derivative 52.1 g, yield 95%) was obtained in the same manner as in Example 1 except that 51 parts by mass of phenol and 169 parts by mass of ethanol were used.
  • Example 5 Lignin derivative 5 (amount of lignin derivative 47.6 g, yield 86%) was obtained in the same manner as in Example 1 except that 20 parts by mass of phenol, 100 parts by mass of ethanol and 100 parts by mass of water were used.
  • Example 6 Lignin derivative 6 (amount of lignin derivative 37.3 g, yield 68%) was obtained in the same manner as in Example 3 except that 180 parts by mass of ethanol and 20 parts by mass of water were used.
  • Example 7 Lignin derivative 7 (amount of lignin derivative 39.8 g, yield 72%) was obtained in the same manner as in Example 3 except that 160 parts by mass of ethanol and 40 parts by mass of water were used.
  • Example 8 Lignin derivative 8 (amount of lignin derivative 37.8 g, yield 69%) was obtained in the same manner as in Example 1 except that 0.2 part by mass of sulfuric acid was added and the reaction time was changed to 2 hours.
  • Example 9 The same procedure as in Example 1 was carried out except that 44 parts by mass of phenol, 154 parts by mass of ethanol, 22 parts by mass of water, a reaction temperature of 220° C. and a reaction time of 2 hours were used, and the lignin derivative 9 (the lignin derivative amount of 42. 4 g, yield 77%) was obtained.
  • Lignin derivative 10 (amount of lignin derivative 37.8 g, yield 69%) was obtained in the same manner as in Example 9 except that the reaction temperature was 200° C. and the reaction time was 4 hours.
  • Example 11 Lignin derivative 11 (amount of lignin derivative 43.6 g, yield 79%) was obtained in the same manner as in Example 10 except that 0.2 part by mass of sulfuric acid was added.
  • Example 12 A lignin derivative 12 (amount of lignin derivative 36.8 g, yield 67%) was obtained in the same manner as in Example 10 except that anisole was used as the phenol.
  • Example 13 A lignin derivative 13 (amount of lignin derivative 39.7 g, yield 72%) was obtained in the same manner as in Example 11 except that phenol was anisole.
  • Example 14 Lignin derivative 14 (amount of lignin derivative 35.1 g, yield 64%) was obtained in the same manner as in Example 11 except that phenol was used as toluene. [Example 15] Lignin derivative 14 (amount of lignin derivative 46.3 g, yield 84%) was obtained in the same manner as in Example 10 except that 66 parts by mass of phenol and 132 parts by mass of ethanol were used.
  • Comparative Example 1 As Comparative Example 1, the properties of lignin in the second-generation ethanol saccharification residue as a raw material were analyzed, but since the lignin in the second-generation ethanol saccharification residue was only slightly soluble in various organic solvents, it was not possible to analyze by the above method. It was impossible.
  • Comparative example 2 As Comparative Example 2, craft lignin (Lignin, alkali (product number 370959) manufactured by SIGMA-ALDRICH) was used. The properties of kraft lignin were analyzed. Since kraft lignin contains many components insoluble in various organic solvents, the analysis by the above-mentioned method was limited to a part.
  • Comparative Example 3 Comparative lignin 1 (amount of lignin derivative 25.9 g, yield 47%) was obtained in the same manner as in Example 8 except that 220 parts by mass of ethanol was used without adding phenol.
  • Comparative Example 4 Comparative lignin 2 (amount of lignin derivative 43.3 g, yield 79%) was obtained in the same manner as in Example 1 except that phenol was not added and ethanol was 110 parts by mass and water was 110 parts by mass.
  • the lower the softening point of the lignin derivative the easier the mixing with the resin tends to be. Furthermore, the smaller the amount of aliphatic hydroxyl groups in the lignin derivative and the larger the ratio [(2H+G)/S] that is an index of reactivity, the easier the reactivity with the resin tends to be. Furthermore, since the molecular weight of the lignin derivative is not too small and has a certain size, physical properties such as bending strength tend to be good when it is used as a molded product.
  • the raw material of the second generation ethanol saccharification residue of Comparative Example 1 and the kraft lignin of Comparative Example 2 cannot be used as they are as the resin composition material, whereas according to the production method of the present invention, the resin composition is actually used.
  • a lignin derivative is obtained which can be used as a material.
  • Examples 16 to 18 35 parts by mass of a novolac type phenol resin (Sumitomo Bakelite Co., Ltd., PR-53195), 50 parts by mass of wood flour, and 15 parts by mass of each of the lignin derivatives 2, 6, 8 of Examples 2, 6, 8 above, Hexamethylenetetramine (7 parts by mass) as a curing agent and zinc stearate (1 part by mass) as an internal mold release agent are mixed and kneaded in a two-roll kneader at 110 to 120° C. for 3 minutes to prepare a resin composition containing a lignin derivative. Got the material.
  • a novolac type phenol resin Suditomo Bakelite Co., Ltd., PR-53195
  • Hexamethylenetetramine 7 parts by mass
  • zinc stearate 1 part by mass
  • the lignin derivative-containing resin composition material obtained above is press-fitted into a heated mold cavity, molded by a transfer molding method under molding conditions of 175° C. for 3 minutes, and then cured in an oven at 180° C. for 8 hours to mold.
  • Got the body Table 3 shows the results of the above evaluations of the resin composition material and the molded body.
  • Examples 19 to 21 In a 0.5 L separable flask equipped with a reflux device and a stirring blade, 50 parts by mass (50.0 g) of each of the lignin derivatives 2, 6, 8 of the above Examples 2, 6, 8 and 40% by mass formaldehyde aqueous solution. 30 parts by mass was added and stirred. The molar ratio of formaldehyde to phenol in the lignin derivative was 1.5. While gradually adding 35 parts by mass of a 50% by mass aqueous sodium carbonate solution, the mixture was heated at 100° C. for 2 hours to obtain a liquid composition. Further, 54 parts by mass of wood powder was added and stirred until uniform, whereby a resin composition material containing a lignin derivative was obtained.
  • the lignin derivative-containing resin composition material obtained above was depressurized to remove water, press-molded at a surface pressure of 0.2 MPa and 180° C. for 10 minutes, and then cured in an oven at 200° C. for 4 hours to obtain a molded body. Obtained.
  • Table 4 shows the results of the above evaluations of the resin composition material and the molded body.
  • Comparative Examples 7, 8, 11, and 12 using Comparative Lignin 1 or 2 obtained without reacting with an aromatic compound the kneading property, stirring property, and bending strength were all unsatisfactory.
  • the lignin derivative obtained in the present invention has excellent kneading properties and stirring properties during the reaction, and thus it is understood that the mixing properties are improved.
  • the bending properties of the molded products obtained in the examples it can be seen that a molded product having good physical properties was obtained. From Comparative Examples 5, 6, 9 and 10, it is understood that it is difficult to use the raw material second generation ethanol saccharification residue and kraft lignin as the resin composition material as they are.
  • the polyphenol derivative obtained by the production method of the present invention has a low softening point and is excellent in kneading property and stirring property, so that it can be easily mixed with the resin, and the reaction point having high reactivity is obtained. Since it can be easily reacted with the resin because it has excellent bending strength, and by adjusting the use ratio of the aromatic compound and the selection and the use ratio of the solvent to be used, a more excellent low softening point, high yield and It can be seen that both good economy can be achieved.
  • the polyphenol derivative obtained by the production method of the present invention is (i) inexpensive, (ii) can be prepared in a large amount, (iii) easily mixed with a resin, and (iv) easily reacted with a resin. It is useful as a plastic material that satisfies one of the three conditions.
  • the polyphenol derivative of the present invention has a low molecular weight to improve the mixing property with other plastic materials and to increase the reaction points. It is possible to improve the physical properties of the molded product by improving the mixing property and the number of reaction points, and it is also possible to eliminate the need for a large-scale device which is costly when manufacturing the cured member because the mixing is facilitated. In addition, since lignin, which has been mostly disposed of until now, can be effectively used, it is also effective for environmental protection.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Abstract

ポリフェノール含有組成物及びオルト-パラ配向性基を有する芳香族化合物を溶媒中で反応させる工程を有するポリフェノール誘導体の製造方法、該ポリフェノール誘導体の製造方法で製造されるポリフェノール誘導体、及び該ポリフェノール誘導体を含むポリフェノール誘導体含有樹脂組成材料。

Description

ポリフェノール誘導体の製造方法、ポリフェノール誘導体、及びポリフェノール誘導体含有樹脂組成材料
 本発明は、ポリフェノール誘導体の製造方法、ポリフェノール誘導体、及びポリフェノール誘導体含有樹脂組成材料に関する。
 温室効果ガス削減の観点からカーボンニュートラルである植物由来物質のプラスチック材料への利用が期待されている。植物由来物質には、主として糖由来のセルロース、ヘミセルロース、さらにリグニン等のポリフェノールが含まれる。このうち、リグニン等のポリフェノールは、芳香環や、脂肪族水酸基及び芳香族水酸基を有していることからプラスチック材料として有用利用が望まれる。しかし、(a)簡便で経済的なリグニン等のポリフェノールの分離精製手法が確立されていないこと、及び(b)リグニン等のポリフェノールは生分解されにくく、溶剤に殆ど溶けず、また軟化点が高いため取り扱いにくいだけでなく、既存のプラスチック材料との反応性に乏しいこと、のこれら(a)及び(b)の2つの問題がありリグニン等のポリフェノールの、プラスチック材料としての用途が殆ど見出されていない。そのため、リグニン等のポリフェノールをプラスチック材料として好適なものとするため適切な分離精製を行い、改質を施し、さらにこの改質したリグニン等のポリフェノールを利用する技術の検討がなされている。
 バイオマス残渣からのリグニン等のポリフェノールの分離に関し、古くはパルプ工業の残渣である黒液からのリグニン等のポリフェノールの分離が挙げられる。しかし、黒液は無機塩等の夾雑物が多いため、燃料等の産業上価値の低いものへ利用されていた。最近は特許文献1の様にPEG(ポリエチレングリコール)等を黒液に含まれるリグニンに反応させる等の変性を行って分離し、産業上の価値を向上させる取り組みが知られている。
 さらに、分離されたリグニン等の利用に関しては、例えば、特許文献2にはリグニンを低分子化することなくベンゾオキサジン骨格をリグニンへ導入して反応性を付与させた変性リグニン、及び当該変性リグニンを含有することにより成形品の機械的強度等を向上させた成形材料に関する技術が開示されている。
 また、特許文献3では、リグニンとフェノール類を触媒の存在下で反応させてフェノール化した後、アルカリと共に加熱することでアルカリ化リグニンとし、さらにそこへアルデヒド類を加えることでヒドロキシメチル化リグニンとしてリグニンの反応性を上げる技術、及び当該反応性を上げたリグニンを結合剤組成物へ利用する技術が開示されている。
 また、特許文献4にはリグニン、フェノール類及びアルデヒド類を酸の存在下で反応させる製法により、硬化性を向上させて樹脂強度を改良させたフェノール変性リグニン樹脂等が開示されている。
特表2015-519452号公報 特許5671430号公報 特表2016-540058号公報 国際公開第2015/147165号
 リグニン等のポリフェノールをプラスチック材料として利用することで上記の様に温室効果ガスの低減を目指す場合、(i)安価で、(ii)大量に用意でき、(iii)容易に樹脂と混合し、(iv)容易に樹脂と反応する、これら4つの条件を満たさなければならないという課題がある。しかしながら、現行のリグニン原料と目されるパルプ産業から排出された黒液等から得られるサルファイトリグニンやクラフトリグニン、ソーダリグニンは(i)及び(ii)の条件は満足できるものの、サルファイトリグニンは含有硫黄濃度が高いことから(iv)が困難であり、水溶性であるため(iii)も思わしくない。また、クラフトリグニン、ソーダリグニンも分子量が高いため(iii)及び(iv)を達成することができない。最近、有機溶媒に可溶なオルガノソルブリグニン(特許文献1のPEGリグニンもその一例である)が報告され、上記の課題を克服できるとされているが、(i)及び(ii)の解決に問題がある。
 そこで本発明は、既存のプラスチック材料との反応性を向上し、樹脂との相容性が良好であり、さらに曲げ強度等の物性が向上した成形品を与えることができるポリフェノール誘導体を安価に製造する方法、上記成形品を与えることができるリグニン誘導体及びリグニン誘導体含有樹脂組成材料を提供することを課題とする。
 上記課題を解決すべく鋭意検討した結果、本発明者らは溶媒中でオルト-パラ配向性基を有する芳香族化合物をバイオマス等のポリフェノール含有組成物に作用させることでポリフェノール誘導体としてポリフェノールを分離するとともに、ポリフェノール由来軽質成分の削減、さらには低分子量化を一つの反応で達成することで、上記課題を解決できることを見出した。
 すなわち、本発明は下記のとおりである。
[1]ポリフェノール含有組成物とオルト-パラ配向性を有する芳香族化合物を溶媒中で反応させる工程を有するポリフェノール誘導体の製造方法。
[2]重量平均分子量が5000未満であり、分子量LogM2.15~2.20の存在率が0.7質量%未満であるリグニン誘導体。
[3]前記ポリフェノール誘導体の製造方法で製造されるリグニン誘導体又は前記リグニン誘導体を含むリグニン誘導体含有樹脂組成材料。
 本発明によれば、既存のプラスチック材料との反応性を向上し、樹脂との相容性が良好であり、さらに曲げ強度等の物性が向上した成形品を与えることができるポリフェノール誘導体を安価に製造する方法、上記成形品を与えることができるリグニン誘導体及びリグニン誘導体含有樹脂組成材料を提供することができる。
[ポリフェノール誘導体の製造方法]
 本発明のポリフェノール誘導体の製造方法は、ポリフェノール含有組成物とオルト-パラ配向性基を有する芳香族化合物を溶媒中で反応させる工程を有する。
 ここで、本発明において「ポリフェノール誘導体」とは、ポリフェノール含有組成物に含まれるポリフェノールが芳香族化合物と反応することにより得られるポリフェノール由来の反応物をいう。
 本発明においてポリフェノール含有組成物におけるポリフェノールとしては、褐炭、リグニン、タンニン、カテキン、アントシアニン、ルチン、イソフラボン、リグナン、クルクミン、及びクロロゲン酸等が挙げられる。
 特に本発明のポリフェノール誘導体の製造方法において、上記ポリフェノール含有組成物中に含まれるポリフェノールは、プラスチック材料としての有用性の観点から、リグニンであることが好ましい。したがって、上記ポリフェノール誘導体は、好ましくはリグニン誘導体である。
 以下本明細書において、上記ポリフェノール含有組成物中に含まれるポリフェノールがリグニンであって、ポリフェノール誘導体がリグニン誘導体である場合を例にして具体的に説明するが、本発明のポリフェノール誘導体の製造方法はこれらリグニン及びリグニン誘導体に限定されるものではない。
 ここでリグニンとは、p-ヒドロキシケイ皮アルコール類である3種類のリグニンモノマーが重合した高分子化合物であり、下記式(2)で表される基本骨格を有する。
Figure JPOXMLDOC01-appb-C000002
 上記式(2)において、置換基であるR及びRは水素原子又はメトキシ基を示す。R及びRの両方が水素原子のものはp-ヒドロキシフェニル核(H型骨格)、R及びRのいずれか一方が水素原子のものはグアイアシル核(G型骨格)、R及びRの両方が水素原子でないものはシリンギル核(S型骨格)と称される。
 なお、上記式(2)中のXは炭素原子、Yは水素又は炭素原子に結合していることを示す。
 リグニンの基本骨格においてR及びRと結合する炭素原子が反応性の高い反応点(以下、単に「反応点」と称すことがある。)となるが、R及びRがメトキシ基である場合当該炭素原子の反応性が乏しくなる。そのためリグニンを反応させるためには、R及びRは水素原子であることが望ましい。
 また、リグニンには上記芳香族部位だけではなく脂肪族部位も存在し、脂肪族部位に存在する水酸基は酸化安定性に乏しい(脂肪族水酸基は酸化によりアルデヒドやカルボン酸に変化する)。そのため、脂肪族部位に存在する水酸基は、できるだけ少ない方が既存プラスチック材料との反応性が好適である。
 さらに、リグニン誘導体は、分子量を大きく降下させることなく低軟化点化させることで混合性が向上し、既存プラスチック材料との反応性が向上する。
 すなわち、リグニン誘導体は、反応性に富むH型骨格、G型骨格、これら2種の骨格が多く存在するものとし、脂肪族水酸基が少なく、さらに好ましくは分子量を大きく降下させずに低軟化点化できれば、反応性に富みプラスチック材料として好適なものとなる。
 そこで本発明の製造方法では、ポリフェノール含有組成物と芳香族化合物を溶媒中で混合させることで、ポリフェノール含有組成物中の上記式(2)で表されるリグニン基本骨格における置換基R及びRが芳香族化合物へ転移する置換反応を利用し、上記プラスチック材料に好適なリグニン誘導体を得るものである。
≪反応工程≫
〈ポリフェノール含有組成物〉
 本発明のポリフェノール誘導体の製造方法において、原料として用いられるポリフェノール含有組成物として、バイオマス及びバイオマス残渣のいずれか1種以上を使用することができる。
 バイオマス残渣としては、木本系バイオマス及び草本系バイオマスの植物系バイオマス由来のものが挙げられる。
 またバイオマス残渣としては、リグノセルロース系バイオマスの糖化残渣及び発酵残渣(第2世代エタノール糖化残渣及び第2世代エタノール発酵残渣)、黒液(サルファイトリグニン、クラフトリグニン、ソーダリグニン等)、及びタンニン等が挙げられ、これらのいずれか1種以上を使用することができる。これらの中でも、入手容易性、ポリフェノール誘導体の品質、及び経済性の観点から、ポリフェノール含有組成物として、第2世代エタノール糖化残渣及び第2世代エタノール発酵残渣のいずれか1種以上を使用することができる。
(リグノセルロース系バイオマス)
 非食系植物バイオマスとしては、木本系バイオマス、草本系バイオマスが挙げられる。木本系バイオマスとしては、スギ、ヒノキ、ヒバ、サクラ、ユーカリ、ブナ、タケ等の針葉樹、広葉樹が挙げられる。
 草本系バイオマスとしては、パームヤシの樹幹・空房、パームヤシ果実の繊維及び種子、バガス(さとうきび及び高バイオマス量さとうきびの搾り滓)、ケーントップ(さとうきびのトップ及びリーフ)、エナジーケーン、稲わら、麦わら、トウモロコシの穂軸・茎葉・残渣(コーンストーバー、コーンコブ、コーンハル)、ソルガム(スイートソルガムを含む)残渣、ヤトロファ種の皮及び殻、カシュー殻、スイッチグラス、エリアンサス、高バイオマス収量作物、エネルギー作物等が挙げられる。
 これらのなかでも、入手容易性や本発明において適用する製造方法との適合性の観点から、草本系バイオマスであることが好ましく、パームヤシの空房、麦わら、トウモロコシの穂軸・茎葉・残渣(コーンストーバー、コーンコブ、コーンハル)、バガス、ケーントップ、エナジーケーン、それら有用成分抽出後の残渣がより好ましく、トウモロコシの穂軸・茎葉・残渣(コーンストーバー、コーンコブ、コーンハル)、バガス、ケーントップ、エナジーケーンがより好ましい。なお、上記有用成分には、例えば、ヘミセルロース、糖質、ミネラル、水分等が含まれる。
 バガスには、5~30質量%程度のリグニンが含まれる。また、バガス中のリグニンは基本骨格として、H核、G核及びS核の全てを含む。
 植物系バイオマスは、粉砕されたものを用いることもできる。また、ブロック、チップ、粉末、また水が含まれた含水物のいずれの形態でもよい。
 バガスやコーンストーバー等に、オルガノソルブ法、加圧熱水法、水蒸気爆砕法、アンモニア処理法、アンモニア爆砕法、酸処理法、アルカリ処理法、酸化分解法、熱分解及びマイクロ波加熱法等の処理をして、好ましくは酸処理やアンモニア爆砕や水蒸気爆砕等の処理をして、溶液側へヘミセルロースを分離した後、酵素によってセルロースをグルコースとしてこれも溶液側へ分離する、もしくはヘミセルロースを分離しないままセルロースと共に糖化して溶液側へ分離し、残った固体が第2世代エタノール糖化残渣である。もしくは糖類を分離せずに、発酵によりエタノールとして溶液側へ分離し、残った固体が第2世代エタノール発酵残渣である。
 第2世代エタノール糖化残渣は、リグニンを主成分とし、分解有機物や触媒、酵素、灰分、セルロース等が含まれている。また、第2世代エタノール発酵残渣は、リグニンを主成分とし、分解有機物や触媒、酵素、酵母、灰分、セルロース等が含まれている。
 本発明の製造方法のより具体的な実施の態様例は後述の実施例に示すが、例えば次のとおりである。第2世代エタノール糖化残渣及び第2世代エタノール発酵残渣のいずれか1種以上を原料とし、溶媒及び芳香族化合物を添加する。約2~4時間加熱を継続した後、加熱液は不溶物を含んでいるため、No.2濾紙を用いて熱時濾過する。濾過固体は未反応物と無機夾雑物である。濾過液は減圧下で蒸留し、溶媒及び未反応芳香族化合物を除去する。蒸留で除去しきれない芳香族化合物は真空乾燥、あるいは必要に応じてアセトンに溶解させ、貧溶媒である水で再沈殿等を繰り返すことで除去される。分離される固体は既に改質されたリグニン誘導体である。蒸留時に残る芳香族化合物が後反応で問題にならなければそのままプラスチック材料として使用することも可能である。
 また、原料として用いられるポリフェノール含有組成物として、非食系植物バイオマスからオルガノソルブ法、加圧熱水法、水蒸気爆砕法、アンモニア処理法、アンモニア爆砕法、酸処理法、アルカリ処理法、酸化分解法、熱分解及びマイクロ波加熱法等の処理をして、分離したリグニンを用いることもできる。具体的には、例えば、有機溶媒又は有機溶媒及び水を含む溶媒を用い、高温で処理することで非食系植物バイオマスに含まれるリグニンを溶媒に溶出させ、当該リグニン含有溶液を濾過してセルロース等を除去した後、溶液を濃縮、乾固することにより、分離したリグニンを用いることもできる。
〈芳香族化合物〉
 オルト-パラ配向性基を有する芳香族化合物(以下、単に「芳香族化合物」と称すことがある。)としては、1つ以上のオルト-パラ配向性基を有する芳香族化合物であればよい。
 オルト-パラ配向性基としては、電子供与性置換基であり、水酸基、メトキシ基、脂肪族炭化水素基、アミノ基、ハロゲン基等の官能基が挙げられ、好ましくは水酸基である。すなわち、芳香族化合物は、フェノール化合物であることが好ましい。
 また芳香族化合物は、オルト-パラ配向性基に対する置換基の位置である2位、4位及び6位のうち少なくとも1つが水素原子であり、好ましくは下記式(A)で表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000003
 上記式(A)において、Wはオルト-パラ配向性基であり、R1及びR2はそれぞれ独立して、水素原子、水酸基又は炭素数1~15のアルキル基を示し、R1及びR2は同一でも異なっていてもよい。
 炭素数1~15のアルキル基としては、直鎖状であってもよく分岐状であってよい。炭素数1~15のアルキル基として好ましくは炭素数1~15の直鎖状又は分岐状のアルキル基であり、より好ましくは炭素数1~5の直鎖状又は分岐状のアルキル基であり、さらに好ましくは炭素数1~3の直鎖状のアルキル基である。
 上記式(A)で表される芳香族化合物としては、フェノール、アニソール、トルエン、エチルベンゼン、n-プロピルベンゼン、イソプロピルベンゼン、n-ブチルベンゼン、イソブチルベンゼン、t-ブチルベンゼン、アニリン、-メチルアニリン、N,N-ジメチルアニリン、クロロベンゼン、m-クレゾール、p-クレゾール、o-クレゾール、m-メトキシフェノール、m-キシレン、1,3-ジエチルベンゼン、3-メチルアニリン,3-メチル-N-メチルアニリン、3-メチル-N,N-ジメチルアニリン、m-ジクロルベンゼン、m-クロロトルエン、3,5-ジメチルフェノール、3,5-ジメチルアニソール、メシチレン、3,5-ジメチルアニリン、3,5-ジメチル-N-メチルアニリン、3,5-ジメチル-N,N-ジメチルアニリン、3-クロロ-m-キシレン、3,5-ジクロロトルエン等が挙げられる。
[フェノール化合物]
 上記したように芳香族化合物は、オルト-パラ配向性基が水酸基であるフェノール化合物であることが好ましい。
 またフェノール化合物としては、水酸基に対する置換基の位置である2位、4位及び6位のうち少なくとも1つが水素原子であるフェノール化合物であることが好ましい。
 上記2位、4位及び6位の位置(即ち、オルト位及びパラ位)が水素原子であるフェノール化合物は、その配向性によりリグニンとの置換反応による置換基の受け皿として特に好適である。その理由は、ポリフェノール含有組成物とフェノール化合物を溶媒中で混合させることで、ポリフェノール含有組成物中の前述の式(2)で表されるリグニンの基本骨格におけるR及びRの置換基が、フェノール化合物の上記2位又は4位又は6位へ転移するからである。当該置換反応により、上記リグニンのR又はR又は両方が水素原子となり、前述の反応点が増加したリグニン誘導体とすることができる。
 したがって、当該置換反応によりリグニン中のS型骨格が減少し、G型骨格及びH型骨格が増加して反応性が改善される。また、前述のとおり当該置換反応によりリグニンの分子鎖が改変されることで分子量の低下が起こり、かつ、リグニン誘導体の混合性が改良されることとなる。
 フェノール化合物は、1種又は2種以上を併用してもよい。
 また、フェノール化合物は、上記式(A)におけるWが水酸基である、下記式(1)で表される化合物であることが好ましい。当該フェノール化合物であることにより、上記置換基の受け皿が少なくとも3箇所となるため置換反応を良好に進行させることができる。
Figure JPOXMLDOC01-appb-C000004
 上記式(1)において、R1及びR2は上記式(A)におけるR1及びR2と同義である。
 上記式(1)で表されるフェノール化合物としては、フェノール、レゾルシノール、フロログルシン、m-クレゾール、3-エチルフェノール、及び3-プロピルフェノール等の3-アルキルフェノール;5-メチルレゾルシノール、5-エチルレゾルシノール、及び5-プロピルレゾルシノール等の5-アルキルレゾルシノール;3,5-ジメチルフェノール、3-メチル-5-エチル-フェノール、及び3,5-ジエチルフェノール等の3,5-ジアルキルフェノール等が挙げられる。
 また、フェノール化合物が複数の水酸基を有することにより化合物の酸性度が上がり、触媒不要で反応が進行することが期待できる観点から、R1及びR2のうち少なくとも一方が水酸基であるフェノール化合物を使用することができる。このようなフェノール化合物として具体的には、レゾルシノール、フロログルシン、5-アルキルレゾノシノール(5-メチルレゾルシノール、5-エチルレゾルシノール等)等が挙げられる。
〈溶媒〉
 ポリフェノール含有組成物と芳香族化合物の反応は、溶媒中で行われる。
 ポリフェノール含有組成物中のポリフェノールは芳香族化合物と反応するが、該反応において溶媒を用いない場合反応は進行するものの、溶媒を用いる場合と比べて芳香族化合物の使用量が多くなる。また、溶媒を用いることによってポリフェノールの溶解性が高まるため上記反応が好適に進行し、芳香族化合物の使用量が比較的少なくても極端な収率低下のおそれが生じることなく、一定以上の収率を実現でき経済性の観点からも好ましい。
 溶媒としては、原料中のリグニン等のポリフェノールの溶解性を上げる観点から、極性溶媒を含むことが好ましい。また、溶媒は原料中のリグニン等のポリフェノールの溶解性及び経済性の観点から、アルコール類、ケトン類、エーテル類、芳香族類、及び水のいずれか1種以上を含むことが好ましい。これら溶媒は、具体的には、メタノール、エタノール、イソプロピルアルコール等のアルコール類、アセトン、メチルエチルケトン等のケトン類、テトラヒドロフラン等のエーテル類、及び芳香族類等の有機溶媒、及び水のいずれか1種以上である。
 上記有機溶媒は、軟化点が高くなり過ぎず好適な範囲にしやすく、またリグニン等のポリフェノールの溶解性及び経済性の観点から、炭素数1~6が好ましく、炭素数1~4がより好ましく、炭素数1~3がさらに好ましい。
 上記溶媒の中でも、リグニン誘導体等のポリフェノール誘導体の低軟化点、高収率及び経済性の観点から、エタノール、アセトン、水のいずれか1種以上を用いることが好ましく、エタノール、水のいずれか1種以上を用いることがより好ましく、エタノール、又は、エタノール及び水の組み合わせを用いることがさらに好ましい。特に、溶媒として水と有機溶媒を併用することにより高収率が期待できる。
 有機溶媒と水を併用する場合、リグニン誘導体等のポリフェノール誘導体の低軟化点、高収率及び経済性の観点から、その質量比[有機溶媒:水]は、95:5~5:95が好ましく、95:5~20:80がより好ましく、95:5~30:70がさらに好ましく、95:5~40:60がよりさらに好ましく、95:5~50:50がよりさらに好ましく、90:10~50:50がさらに好ましい。
 また、芳香族化合物及び溶媒の合計量に対し、芳香族化合物を4~95質量%用いることができる。上記芳香族化合物の使用量が95質量%を超えると、分子量が低下し、強度が低下する方向となり、経済性が低下する。また、上記芳香族化合物の使用量が4質量%以上であれば、リグニン誘導体等のポリフェノール誘導体の軟化点が高くなり過ぎず、樹脂との相容性が良好となって、収率の低下を引き起こすおそれがない。さらに上記芳香族化合物の使用量が4質量%以上であれば、ポリフェノール含有組成物とオルト-パラ配向性基を有する芳香族化合物との溶媒中での反応が効果的に進行することが期待できる。上記芳香族化合物の使用量は、経済性の観点から、10~70質量%が好ましく、10~50質量%がより好ましく、20~40質量%がさらに好ましい。
〈質量比[芳香族化合物/リグニン]〉
 本発明の製造方法において、ポリフェノール含有組成物中のリグニン等のポリフェノールに対する芳香族化合物の質量比[芳香族化合物/リグニン等のポリフェノール]は通常0.1~15程度であればよい。上記質量比は、経済性及び上述の置換反応を良好に進行させる観点から、0.1~10が好ましく、0.1~5がより好ましく、0.1~4がさらに好ましく、0.1~3がよりさらに好ましく、0.1~2がよりさらに好ましく、0.1~1がよりさらに好ましく、0.1~0.7がよりさらに好ましく、0.1~0.5がよりさらに好ましい。
〈酸触媒〉
 本発明の製造方法において、ポリフェノール含有組成物と芳香族化合物との反応は、無触媒、又は、ポリフェノール含有組成物中のリグニン等のポリフェノール及び芳香族化合物の合計量に対し好ましくは0超~5.0質量%の酸触媒の存在下、さらには0.1~3.0質量%の酸触媒の存在下で反応が行われることが好ましい。
 上述のとおり反応に用いる芳香族化合物によって無触媒で反応を進行させることができる。反応が無触媒で進行することによって、例えば反応工程後の後処理(精製工程)を省略することが可能となり、また得られたポリフェノール誘導体をプラスチック材料として用いた成形品の曲げ強度等の物性向上を期待することができる。
 また、酸触媒としては、リン酸、リン酸エステル、塩酸、硫酸、及び硫酸エステル等の無機酸、酢酸、ギ酸、シュウ酸、及びp-トルエンスルホン酸等の有機酸等が挙げられる。酸触媒は、1種又は2種以上を併用してもよい。
 上記反応に酸触媒を用いる場合、ポリフェノール含有組成物中のリグニン等のポリフェノール及び芳香族化合物の合計量に対し酸触媒の使用量は通常0超であれば特に上限はないが、酸触媒を添加することによる効果を良好に発揮でき、ポリフェノール誘導体中に残存する不純物の観点から通常0.01~5.0質量%の酸触媒の存在下で反応が行われ、0.1~3.0質量%が好ましく、0.2~3.0質量%がより好ましく、0.2~2.6質量%がさらに好ましい。酸触媒の使用量が上記範囲であれば、上述の反応を良好に進行させることができる。酸触媒の使用量が上記範囲を超える場合、ポリフェノール含有組成物としてのバイオマス及びバイオマス残渣に含まれるセルロースやヘミセルロース等の加水分解が進行すると共に硫酸根の濃度が上昇し、不純物が増加することで精製のコストが上昇する恐れがある。
〈反応温度及び時間〉
 反応温度は通常100℃以上であれば特に限定されないが、通常140℃超及び350℃以下程度であるが、140℃超及び300℃以下が好ましく、140℃超及び270℃以下がより好ましく、140℃超及び250℃以下がさらに好ましく、150~230℃がよりさらに好ましく、180~230℃がよりさらに好ましい。140℃超であればリグニン誘導体を溶解して反応を進行させることができ、また300℃以下であれば逆反応の進行を防ぐことができる。
 反応時間は通常0.1~15時間程度であるが、反応が十分に進行し上記ポリフェノールを改質することができる観点から0.5時間以上であることが好ましく、1時間以上であることがより好ましく、また反応時間が長すぎても反応進行が期待できない観点から上限は10時間以下であることが好ましく、1時間以上8時間以下であることがより好ましく、2時間以上8時間以下であることがさらに好ましい。
〈反応圧力〉
 反応圧力は通常0.05MPa以上であれば特に限定されないが、通常0.1MPa以上及び30MPa以下程度が望ましい。但し、反応系の圧力の好ましい範囲は、溶媒の量と温度によって影響されるため適宜設定すればよい。また、反応は、周囲雰囲気下で行うことができる。なお、反応は、酸化反応による重合を抑えるために、窒素パージを行って酸素を減らした雰囲気下で行われることが特に好ましい。
 反応における反応方式に特に制限はないが、静置あるいは撹拌処理を挙げることができる。例えば、一般的な回分式反応器、半回分式反応器などを利用することができる。また、バイオマス及びバイオマス残渣と、溶媒とからなるスラリーをスクリュー又はポンプ等で押し出しながら処理する方式も適用可能である。
≪精製工程≫
 本発明のポリフェノール誘導体は、上述の反応工程を行うことにより製造される。よって、反応工程を経るポリフェノール誘導体の製造方法で製造されるリグニン誘導体をそのままプラスチック材料として用いることが可能であるが、反応工程の後に精製工程を行ってもよい。例えば、ポリフェノール誘導体の製造方法は、上記反応工程に加え、さらに固液分離工程を有することが好ましい。
〈固液分離〉
 上述の反応後、ポリフェノール誘導体は溶媒及び芳香族化合物に溶解しているが、未反応物や無機残渣は固体として液中に存在している。これらは濾過(熱時)により除去することが好ましい。例えば、反応液はNO.5CあるいはNO.2等の濾紙を取り付けた加圧(熱時)濾過器に入れ、20~100℃程度、20~70℃程度、通常20~50℃程度で、0.1~0.99MPa程度、通常0.1~0.4MPa程度で加圧濾過する。濾過固体は適宜溶媒で希釈及び/又は洗浄し、濾過してもよい。当該濾過においてポリフェノール誘導体は濾液中に含まれる。また、例えば、反応生成液を水、アセトン、メチルエチルケトン等のケトン類、メタノール、エタノール、イソプロピルアルコール等のアルコール類、テトラヒドロフラン等のエーテル類等の低沸点汎用溶媒のいずれか1種以上で希釈及び/又は洗浄し、固液分離してもよい。当該固液分離においてポリフェノール誘導体は溶液中に含まれる。
 固液分離を行う方法は特に限定されないが、濾過、フィルタープレス、遠心分離、脱水機等を挙げることができる。
〈蒸留〉
 蒸留は、例えば、上記ポリフェノール誘導体を含有する溶液を、40~200℃程度、通常50~150℃程度の温度、3~20kPa程度、通常5~10kPa程度の減圧下、減圧蒸留して溶媒及び芳香族化合物を除去して行うことができる。当該蒸留においてポリフェノール誘導体は固体として得られる。また、例えば、その他の希釈溶媒を用いる場合は、溶媒の沸点を考慮した適当な温度で、減圧蒸留して低沸点汎用溶媒を除去し、その後、上記と同様の方法で芳香族化合物を除去して行うことができる。当該蒸留においてポリフェノール誘導体は固体として得られる。
〈減圧乾固〉
 蒸留により得られたポリフェノール誘導体を、通常50~200℃に加熱して、固体あるいは溶融状態で、真空乾燥することにより、反応後の芳香族化合物を除去して精製してもよい。また、蒸留後の加熱された流動状態にあるポリフェノール誘導体を、そのまま同様の真空乾燥をすることにより、反応後の芳香族化合物を除去して精製してもよい。
〈再沈殿〉
 蒸留あるいは減圧乾固により得られたポリフェノール誘導体に芳香族化合物が残留している場合は、さらに上記蒸留により得られたポリフェノール誘導体をアセトン等の溶媒に溶解させ、ポリフェノール誘導体の貧溶媒であるイオン交換水等を加えて再沈殿させることにより反応後の芳香族化合物を除去して精製してもよい。
 また、精製工程において、上記濾過、蒸留、減圧乾固及び再沈殿は繰り返し行ってもよく、いずれか1つ又は2つ以上を組み合わせて行ってもよい。
 なお、ポリフェノール誘導体中に残留する芳香族化合物は、特に限定されないが、通常30%未満であり、10%未満が好ましく、5%未満がより好ましく、1%未満がさらに好ましい。
[ポリフェノール誘導体]
 本発明のポリフェノール誘導体は、本発明の効果を損なわない限りにおいてその製造方法に制限はないが、上述のポリフェノール誘導体の製造方法で製造されるポリフェノール誘導体であることが好ましい。
 前述したように、リグニンにはH型骨格、G型骨格、及びS型骨格が存在し得る。本発明のポリフェノール誘導体は、31P-NMRで測定される積分値から求めたS型骨格の相対存在率S(%)に対するH型骨格の相対存在率H(%)の2倍及びG型骨格の相対存在率G(%)の合計の比[(2H+G)/S]を2.3以上とすることができ、同じく31P-NMRで測定される積分値から求めた脂肪族水酸基及び芳香族水酸基の存在率の合計に対する該脂肪族水酸基の存在率を27%未満とすることができる。上記比[(2H+G)/S]が2.3以上であれば、既存のプラスチック材料との反応性が良好となる傾向にある。同様に、上記脂肪族水酸基の存在率が27%未満であれば、既存のプラスチック材料との反応性が良好となる傾向にある。
 また、ポリフェノール誘導体の反応性をさらに向上させ、曲げ強度等の物性が向上した成形品を与えることが期待できる観点から、上記比[(2H+G)/S]は、2.4以上が好ましく、2.5以上がより好ましく、2.6以上がさらに好ましい。上記比[(2H+G)/S]の上限は、本発明の効果を損なわない限りにおいて制限されないが、生産性の観点から10.0以下が好ましく、7.0以下がより好ましく、5.0以下がさらに好ましい。また、同観点から、脂肪族水酸基の上記存在率は、25%未満が好ましく、23%未満がより好ましく、20%未満がさらに好ましく、0%に近付くほど好ましい。
 なお、S型骨格、H型骨格及びG型骨格の相対存在率と脂肪族水酸基量は、31P-NMRで測定される積分値から求めた値であり、31P-NMR測定についてより詳しくは、MAGNETIC RESONANCE IN CHEMISTRY, VOL. 33, 375-382 (1995) に記載のとおりである。本発明において、より具体的には、後述する実施例に記載する方法により測定することができる。
〈分子量と軟化点〉
 本発明のポリフェノール誘導体は、前述した置換反応により、R及びRの分子鎖が改変されるため分子量が低下する。このように、リグニンは低分子量化されることによって高効率にポリフェノール誘導体として取出され、同時に他の樹脂材料との混合性(混練性又は攪拌性)が向上し、さらに曲げ強度等の物性が向上した成形品を与えることが期待できる。
 また、本発明のポリフェノール誘導体は置換部位に芳香族化合物が挿入されるため、低分子量化が起こってもさほど軟化点の低下は起こらない。
 したがって、本発明のポリフェノール誘導体は、軟化点が好ましくは90℃以上であり、より好ましくは130℃以上であり、さらに好ましくは150℃以上となることが可能である。上記軟化点が90℃以上であればポリフェノール誘導体を含有する樹脂組成材料の成形・後硬化時に膨れ等の不具合が生じにくくなる。また、ポリフェノール誘導体の軟化点は、好ましくは210℃以下であり、より好ましくは200℃以下であり、さらに好ましくは190℃以下であり、よりさらに好ましくは180℃以下であり、よりさらに好ましくは160℃以下である。上記軟化点が210℃以下であればポリフェノール誘導体を含有する樹脂組成材料をより取扱いやすくなる。
 また、本発明のポリフェノール誘導体は、重量平均分子量が5000未満であり、分子量LogM2.15~2.20の存在率が0.7質量%未満である。
 ポリフェノール誘導体の重量平均分子量が5000以上であると、成形品の曲げ強度等の物性を向上させることが困難になる。
 ポリフェノール誘導体の重量平均分子量は3,000以上4,000以下であることが好ましく、重量平均分子量は2,000以上3,000未満であることが好ましく、重量平均分子量は1,000以上2,000未満であることが好ましく、重量平均分子量は600以上1,000未満であることが好ましい。
 また、ポリフェノール誘導体は分子量LogM2.15~2.20の存在率が0.7質量%以上であると、該ポリフェノール誘導体含む樹脂組成材料の成形・後硬化時に膨れ等の不具合が生じるおそれがある。ポリフェノール誘導体は分子量LogM2.15~2.20の存在率は、0.5質量%以下が好ましく、0.25質量%以下がより好ましく、存在率が少なくなるほど好ましい。
 また、本発明のポリフェノール誘導体は、例えば
重量平均分子量が3,000以上4,000以下であれば軟化点は140℃以上210℃以下であることが好ましく、
重量平均分子量が2,000以上3,000未満であれば軟化点は120℃以上190℃以下であることが好ましく、
重量平均分子量が1,000以上2,000未満であれば軟化点は100℃以上170℃以下であることが好ましく、
重量平均分子量が600以上1,000未満であれば軟化点は90℃以上170℃以下であることが好ましい。
 反応させる既存プラスチック材料の性質によってこれらを使い分けることが可能であり、混合性の改善によりポリフェノール誘導体の反応性を向上させ、曲げ強度等の物性が向上した成形品を与えることが期待できる。
 なお、上記重量平均分子量は、後述する実施例に記載する方法により測定することができる。
 また、本発明のポリフェノール誘導体の製造方法により、第2世代エタノール発酵残渣や、第2世代エタノール糖化残渣に含まれるリグニンの含有量のうち、50質量%以上がポリフェノール誘導体として取出されることが好ましく、60質量%以上がポリフェノール誘導体として取出されることがより好ましく、70質量%以上がポリフェノール誘導体として取出されることがさらに好ましく、80質量%以上がポリフェノール誘導体として取出されることがよりさらに好ましく、90質量%以上がポリフェノール誘導体として取出されることがよりさらに好ましい。
 第2世代エタノール発酵残渣中や、第2世代エタノール糖化残渣のポリフェノール含有量の算出方法については、後述の実施例において具体的に説明する。
[ポリフェノール誘導体含有樹脂組成材料及び成形品]
 本発明は、前述のポリフェノール誘導体の製造方法で製造されるポリフェノール誘導体及び前述のポリフェノール誘導体のいずれか1以上のポリフェノール誘導体を含むポリフェノール誘導体含有材料、特にポリフェノール誘導体含有樹脂組成材料、及びそれを用いた成形品をも提供する。またポリフェノール誘導体含有樹脂組成材料は、上記製造方法により得られたポリフェノール誘導体以外に、熱硬化性樹脂、熱可塑性樹脂等の樹脂成分やアルデヒド類等を1種以上含んでいてもよい。ポリフェノール誘導体以外の成分について、以下に説明する。
(熱硬化性樹脂)
 上記ポリフェノール誘導体含有樹脂組成材料は、熱硬化性樹脂をさらに含有することができる。
 熱硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、ポリウレタン樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル樹脂、シリコーン樹脂、アルキド樹脂等の他の一般的な熱硬化性樹脂が挙げられる。これらの中でも、ポリフェノール誘導体と同様に、フェノール性水酸基を有しており、ポリフェノール誘導体と反応することができ、ポリフェノール誘導体の希釈剤としても使用可能であることから、フェノール樹脂が好ましい。フェノール樹脂の中でもノボラック系フェノール樹脂及びレゾール系フェノール樹脂がより好ましい。これら熱硬化性樹脂は、1種又は2種以上を併用してもよい。
 前記ポリフェノール誘導体含有プラスチック材料における熱硬化性樹脂の含有量は、目的に応じて決定すればよいが、良好な物性や成形性を得る観点から、ポリフェノール誘導体100質量部に対し、好ましくは100~300質量部、より好ましくは150~250質量部である。
(アルデヒド類)
 また、上記ポリフェノール誘導体含有樹脂組成材料は、アルデヒド類をさらに含有することができる。
 ポリフェノール誘導体とアルデヒド類を含むポリフェノール誘導体含有樹脂組成材料により自己硬化型の成形材料とすることができる。
 アルデヒド類としては、ホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、フルフラール、ベンズアルデヒド、フェニルアセトアルデヒド、サルチルアルデヒド等が挙げられ、これらの中でもホルムアルデヒドが好ましい。
 ポリフェノール誘導体中に含まれるフェノール基とホルムアルデヒドのモル比[ホルムアルデヒド/フェノール基]は、1.0~2.5であることが好ましく、1.2~2.0であることがより好ましい。モル比が上記範囲であれば反応時の硬化速度が低下するおそれがない。
 ポリフェノール誘導体とアルデヒド類の硬化反応を促進させる観点からアルカリを用いることが好ましい。アルカリとしては水酸化ナトリウム、水酸化カリウム、炭酸ナトリム、炭酸カリウム、アンモニア、テトラメチルアンモニウムヒドロキシド、アルキルアミン等を使用することができる。
 ポリフェノール誘導体とアルデヒド類の硬化反応時の温度及び反応時間に制限はないが、通常60~130℃程度であり、反応時間は通常0.5時間~5時間程度である。
 なお、上記ポリフェノール誘導体含有樹脂組成材料には、熱硬化性樹脂及びアルデヒド類から選ばれる1種又は2種以上を併用してさらに含有させてもよい。
(充填剤)
 上記ポリフェノール誘導体含有樹脂組成材料には、充填材をさらに含有させてもよい。充填材は、無機充填材であっても有機充填材であってもよい。
 無機充填材としては、球状又は破砕状の溶融シリカ、結晶シリカ等のシリカ粉末、アルミナ粉末、ガラス粉末、ガラス繊維、ガラスフレーク、マイカ、タルク、炭酸カルシウム、アルミナ、水和アルミナ、窒化ホウ素、窒化アルミニウム、窒化ケイ素、炭化ケイ素、窒化チタン、酸化亜鉛、炭化タングステン、酸化マグネシウム等が挙げられる。
 また有機充填材としては炭素繊維、アラミド繊維、紙粉、木粉、セルロース繊維、セルロース粉、籾殻粉、果実殻・ナッツ粉、キチン粉、澱粉等が挙げられる。
 無機充填材及び有機充填材は1種又は2種以上を併用してもよく、その含有量は目的に応じて決定される。無機充填材及び/又は有機充填材が含有される場合には、無機充填材及び/又は有機充填材の含有量が適量であることが良好な物性や成形性を得るために望ましい。この観点から、無機充填材及び/又は有機充填材の含有量は、ポリフェノール誘導体100質量部に対し、好ましくは50~200質量部、より好ましくは80~150質量部である。
(硬化剤)
 ポリフェノール誘導体含有樹脂組成材料には硬化剤をさらに含有させてもよい。
 硬化剤としては、ヘキサメチレンテトラミン、ヘキサホルムアルデヒド、及びパラホルムアルデヒド等が挙げられる。これらは、1種又は2種以上を併用してもよい。
 硬化剤に加え、さらに硬化速度及び硬化度を増進するためには、水酸化カルシウム、水酸化ナトリウム、水酸化カリウム、酸化カルシウム、及び酸化マグネシウム等の無機塩基、塩化亜鉛及び酢酸亜鉛等のルイス酸、トリエチルアミン等の触媒を用いてもよい。これらは、1種又は2種以上を併用してもよい。
(その他の添加剤)
 本実施形態に係るポリフェノール誘導体含有樹脂組成材料には、該樹脂組成材料から得られる成形品の特性を損ねない範囲で各種添加剤を添加することができる。また、目的に応じてさらに、相溶化剤、界面活性剤等を添加することができる。
 相溶化剤としては、熱可塑性樹脂に無水マレイン酸やエポキシ等を付加し極性基を導入した樹脂、例えば無水マレイン酸変性ポリエチレン樹脂、無水マレイン酸変性ポリプロピレン樹脂、市販の各種相溶化剤を併用してもよい。
 また、界面活性剤としては、ステアリン酸、パルミチン酸、オレイン酸等の直鎖脂肪酸、またロジン類との分岐・環状脂肪酸等が挙げられるが、特にこれに限定されない。
 さらに、上述したものの他に配合可能な添加剤としては、可撓化剤、熱安定剤、紫外線吸収剤、難燃剤、帯電防止剤、消泡剤、チキソトロピー性付与剤、離型剤、酸化防止剤、可塑剤、低応力化剤、カップリング剤、染料、光散乱剤、少量の熱可塑性樹脂などが挙げられる。これらは、1種又は2種以上を併用してもよい。
(熱可塑性樹脂)
 ポリフェノール誘導体含有樹脂組成材料に配合可能な熱可塑性樹脂としては、200℃以下のガラス転移温度を持つ非晶性熱可塑性樹脂、若しくは融点が200℃以下である結晶性熱可塑性樹脂であることが好ましい。熱可塑性樹脂としては、例えば、ポリカーボネート系樹脂、スチレン系樹脂、ポリスチレン系エラストマー、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアクリル系樹脂(ポリメチルメタクリレート樹脂等)、ポリ塩化ビニル樹脂、酢酸セルロース樹脂、ポリアミド樹脂、テレフタル酸とエチレングリコール、テレフタル酸と1,4-ブタンジオールの組み合わせのポリエステルに代表される低融点ポリエステル樹脂(PET、PBT等)、ポリ乳酸及び/又はポリ乳酸を含む共重合体、アクリロニトリル-ブタジエン-スチレン樹脂(ABS樹脂)、ポリフェニレンオキサイド樹脂(PPO)、ポリケトン樹脂、ポリスルホン樹脂、ポリフェニレンスルフィド樹脂(PPS)、フッ素樹脂、ケイ素樹脂、ポリイミド樹脂、ポリベンズイミダゾール樹脂、ポリアミドエラストマー等、及びこれらと他のモノマーとの共重合体が挙げられる。
 ポリフェノール誘導体を熱可塑性樹脂の添加剤として使用する場合、例えば、特開2014-15579、国際公開第2016/104634号等に挙げられる従来公知の手法を用いることができる。当該ポリフェノール誘導体樹脂組成材料における熱可塑性樹脂の含有量は、顕著な流動性及び強度を得る観点から、当該樹脂組成材料の全体量に対して、30質量%以上99.9質量%以下であることが好ましく、40質量%以上99.9質量%以下がより好ましく、45質量%以上99.9質量%以下が更に好ましく、50質量%以上99.9質量%以下が特に好ましい。
 前記ポリフェノール誘導体含有樹脂組成材料は、上述した熱可塑性樹脂のほかに、該樹脂組成材料と相溶可能な樹脂、添加剤、充填材が含まれていてもよい。
(混練及び成形)
 ポリフェノール誘導体含有樹脂組成材料に用いられる各成分の配合及び混練は、通常用いられている機器、例えば、リボンブレンダー、ドラムタンブラー等で予備混合して、ヘンシェルミキサー、バンバリーミキサー、単軸スクリュー押出機、二軸スクリュー押出機、多軸スクリュー押出機、ロール混練機、コニーダ等を用いる方法で行うことができる。混練の際の加熱温度は、通常100~300℃の範囲で適宜選択される。
 ポリフェノール誘導体含有樹脂組成材料を成形する方法としては特に限定されない。例えば、プレス成形法、射出成形法、トランスファ成形法、中型成形、FRP成形法等が挙げられる。また、樹脂組成材料が熱可塑性樹脂組成材料である場合は、所定形状に成形する方法には、押出成形法、射出成形法等が挙げられる。
 ポリフェノール誘導体含有樹脂組成材料を用いた成形品の一例としては、ポリフェノール誘導体と硬化剤とが配合されてなる樹脂組成材料を硬化させたもの、また各種の充填材や工業的に得られる一般のフェノール樹脂を必要に応じてさらに配合し、所定形状に成形した後に硬化させたもの、あるいは硬化させた後に成形加工したもの、ポリフェノール誘導体を熱可塑性樹脂と混合してなる樹脂組成材料を成形加工したもの等を挙げることができる。このようなポリフェノール誘導体含有樹脂組成材料を用いた成形品として、例えば、住宅用の断熱材、電子部品、フラックサンド用樹脂、コーテッドサンド用樹脂、含浸用樹脂、積層用樹脂、FRP成型用樹脂、自動車部品、自動車タイヤの補強材、OA機器、機械、情報通信機器、産業資材等が挙げられる。
 ポリフェノール誘導体は、樹脂組成材料以外にも、ポリフェノール誘導体含有材料への利用可能性がある。ポリフェノール誘導体含有樹脂組成材料以外のポリフェノール誘導体含有材料としては、例えば、カーボンブラック・炭素繊維等の炭素材料、グリース基材等の潤滑剤、抗酸化性・抗菌性等の食品・化粧品、セメント添加剤、コンクリート添加剤、バインダ、ゴム組成物、ガスバリアフィルム等の包装資材、植物活力剤・土壌改良剤等の農業資材、インク・トナー、接着剤、界面活性剤、紫外線吸収剤、蓄電池電極材料、水産生物等の成長促進剤、食品用変色防止剤等が挙げられる。
 以下、本発明を実施例及び比較例により具体的に説明するが、本発明はこれらに限定されるものではない。
<第2世代エタノール糖化残渣(原料)中のリグニン含有量の算出>
 実施例で用いたバイオマス残渣に含まれるリグニンの含有量の算出は、下記に示すように前処理を行った後、構成糖分析によって行った。
[前処理]
 前処理として、ウィレーミルを用いて原料を粉砕し、105℃で乾燥して試料とした。
[構成糖分析]
 上記試料を適量量りとり、72質量%硫酸を加え、30℃において、随時撹拌しながら1時間放置した。この反応液を純水と混釈しながら耐圧瓶に完全に移し、オートクレーブにて120℃で1時間処理した後、濾液と残渣とを、濾別した。濾液中の単糖については、高速液体クロマトグラフ法により定量を行った。なお、C6多糖類(主にグルカン)をセルロース、C5多糖類(主にキシラン)をヘミセルロースと定義した。
[リグニン]
 構成糖分析の過程で濾別して得られた残渣を105℃で乾燥し、重量を計測し、分解残渣率を算定した。さらに、灰分量補正することで、リグニンの含有量を算定した。
<リグニン誘導体及び原料中のリグニンの性状>
 また、各例で得られたリグニン誘導体又は原料中のリグニンについて、下記の方法で各種測定を行った。
[分子量測定]
 各例で得られたリグニン誘導体及び原料中のリグニンについて、重量平均分子量(Mw)をGPC(ゲルパーミエーションクロマトグラフィー)により標準ポリスチレン換算分子量で求めた。測定装置及び条件は、以下のとおりである。
・分離カラム :東ソー株式会社製 「TSKgel SuperMultiporeHZ-M2本」
・溶離液   :テトラヒドロフラン
・溶離液流量 :1.0mL/min
・検出器   :示唆屈折率(RI)
・測定温度  :40℃
[分子量LogM2.15~2.20成分の存在割合]
 GPC(ゲルパーミエーションクロマトグラフィー)で求めたリグニンの分子量のチャート(y軸はdw/dLogM、x軸はLogMがプロットされたもの)からピークトップあるいはショルダーピークなどにはピークの存在が予想される位置(LogM)を見出し、それぞれをガウス関数の平均(A)とした。このほか、分散(S)の値とそれぞれのガウス関数に任意の数(X)を存在確立として設定した。ガウス関数は予想されたピーク又はショルダーの数(N)だけ用意し、それぞれにA、S、X3つの変数を与えた。N個のガウス関数の合成関数(線形和)とGPCチャートのy軸:dw/dLogMから相関係数Rを算出し、Rが最大になるように設定した各ガウス関数の3変数A、S、Xを操作した。具体的にはエクセルなどの表計算ソフトのソルバーを用いて行った。ここでRは少なくとも0.9999以上になるように適宜各関数のA、S、Xを操作する必要がある。この操作を行い、分子量LogM2.15~2.20に存在する複数のガウス関数の合成関数の、全体のガウス関数の合成に対する比率を、分子量LogM2.15~2.20成分の存在割合とした。
[軟化点(℃)]
 各例で得られたリグニン誘導体又は原料(固体試料)を乳鉢で粉砕し、篩(40メッシュ)にかけて大きな粒子を取り除き、砕いた試料をアルミ製カップ(円形上部φ60、下部φ53×深さ15mm)に10~20mgに入れた。試料を入れたアルミ製カップをホットプレート(ASONE ND-2A)に置き、ガラス板(厚さ0.5mm)でふたをした。80℃まで加熱後、10℃刻みに温度を上げ、ガラス越しに目視観察を行い、目視により溶解した温度を軟化点として採用した。
[基本骨格の相対存在率(%)及び水酸基割合(%)]
(1)重クロロホルム、ピリジン、シクロヘキサノール(内部標準)を混合した溶媒を各例で得られたリグニン誘導体又は原料(固体試料)に加え、さらに、誘導体化試薬として2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholaneを添加し、50℃、1時間加熱した。その後、以下の測定条件で31P-NMR測定を実施した。
 なお、比較原料リグニン2は溶媒に全溶解しないため、可溶分のみ測定した。測定装置及び条件は、以下のとおりである。
・パルス幅:30°
・繰り返し時間:2秒
・測定範囲:-60~200ppm
・積算回数:200回
 内部標準であるシクロヘキサノール由来シグナルを145.2ppmとし、144.0~142.0ppmをS型骨格、141.0~136.6ppmをG型骨格と同定し、積分値から各基本骨格の相対存在率%を算出した。H型骨格の相対存在率は全芳香族水酸基量からS型骨格及びG型骨格の相対存在率を差引いて算出した。
 さらに、150.0~145.5ppmを脂肪族水酸基、144.7~136.6ppmを芳香族水酸基と同定し、積分曲線より脂肪族水酸基量(mol/g)、芳香族水酸基量(mol/g)を算出してそれぞれの水酸基割合%を求めた。
(2)存在率の比及び反応点
 上記各基本骨格の相対存在率%に基づき、
・S型骨格の相対存在率S(%)に対するH型骨格の相対存在率H(%)の2倍及びG型骨格の相対存在率G(%)の合計の比[(2H+G)/S]、
・H型骨格の相対存在率H(%)及びG型骨格の相対存在率G(%)に基づく反応点の合計[2H+G]、
を算出した。
〔リグニン誘導体〕
[実施例1]
(1)反応工程
 第2世代エタノール糖化残渣(リグニン含有量:55質量%)100.1質量部(100.1g、リグニンとして55.0g)、フェノール20質量部、エタノール200質量部を撹拌可能な1.0Lの耐圧容器に入れて、2.6MPa、200℃で4時間加熱・撹拌した。
(2)精製工程
(2-1)濾過
 No.2濾紙を組込んだ加圧濾過器を組立て、ここに上記反応工程で得られた反応液を入れ、圧縮空気又は窒素で0.1~0.4MPaに加圧し、濾過した。
(2-2)蒸留
 上記濾過した濾液を、エバポレーターを用い、減圧下(5~10kPa)、加熱(40~60℃)して減圧蒸留し、エタノール及びフェノールを除去した。
(2-3)減圧乾固
 上記蒸留で残留したフェノールを除去するため、減圧下(1.0~5.0kPa)、加熱(120~150℃)して真空乾燥し、フェノールを除去し、リグニン誘導体1(52.9g)を得た。
 上記仕込みリグニン量(計算値55.0g)に対する、算出したリグニン誘導体量(30.0g)を収率として下記式のとおり算出したところ54%であった。
 収率(%)=[(リグニン誘導体量)/(仕込みリグニン量)]×100
[実施例2]
 フェノールを37質量部、エタノールを183質量部とした以外は実施例1と同様に行い、リグニン誘導体2(リグニン誘導体量52.9g、収率96%)を得た。
[実施例3]
 フェノールを10質量部、エタノールを210質量部とした以外は実施例1と同様に行い、リグニン誘導体3(リグニン誘導体量26.4g、収率48%)を得た。
[実施例4]
 フェノールを51質量部、エタノールを169質量部とした以外は実施例1と同様に行い、リグニン誘導体4(リグニン誘導体量52.1g、収率95%)を得た。
[実施例5]
 フェノールを20質量部、エタノールを100質量部、水を100質量部とした以外は実施例1と同様に行い、リグニン誘導体5(リグニン誘導体量47.6g、収率86%)を得た。
[実施例6]
 エタノールを180質量部、水を20質量部とした以外は実施例3と同様に行い、リグニン誘導体6(リグニン誘導体量37.3g、収率68%)を得た。
[実施例7]
 エタノールを160質量部、水を40質量部とした以外は実施例3と同様に行い、リグニン誘導体7(リグニン誘導体量39.8g、収率72%)を得た。
[実施例8]
 硫酸を0.2質量部添加し、反応時間を2時間とした以外は実施例1と同様に行い、リグニン誘導体8(リグニン誘導体量37.8g、収率69%)を得た。
[実施例9]
 フェノールを44質量部、エタノールを154質量部、水を22質量部、反応温度を220℃、反応時間を2時間とした以外は実施例1と同様に行い、リグニン誘導体9(リグニン誘導体量42.4g、収率77%)を得た。
[実施例10]
 反応温度を200℃、反応時間を4時間とした以外は実施例9と同様に行い、リグニン誘導体10(リグニン誘導体量37.8g、収率69%)を得た。
[実施例11]
 硫酸を0.2質量部添加した以外は実施例10と同様に行い、リグニン誘導体11(リグニン誘導体量43.6g、収率79%)を得た。
[実施例12]
 フェノールをアニソールとした以外は実施例10と同様に行い、リグニン誘導体12(リグニン誘導体量36.8g、収率67%)を得た。
[実施例13]
 フェノールをアニソールとした以外は実施例11と同様に行い、リグニン誘導体13(リグニン誘導体量39.7g、収率72%)を得た。
[実施例14]
 フェノールをトルエンとした以外は実施例11と同様に行い、リグニン誘導体14(リグニン誘導体量35.1g、収率64%)を得た。
[実施例15]
 フェノールを66質量部、エタノールを132質量部とした以外は実施例10と同様に行い、リグニン誘導体14(リグニン誘導体量46.3g、収率84%)を得た。
 上記実施例1~15において得られたリグニン誘導体1~15の性状について、上述の方法で測定した結果を表1及び表2に示す。
 なお、分子量測定において、上記リグニン誘導体5の一部が溶離液に不溶であったため、実施例5の分子量測定(Mw)は分析不可とした。
[比較例1]
 比較例1として原料の第2世代エタノール糖化残渣中のリグニンの性状について分析したが、第2世代エタノール糖化残渣中のリグニンが各種有機溶媒にわずかしか溶解しないため、上述の方法により分析することは不可能であった。
[比較例2]
 比較例2としてクラフトリグニン(SIGMA-ALDRICH社製のLignin,alkali(製品番号370959))を用いた。クラフトリグニンの性状について分析したが、クラフトリグニンは各種有機溶媒に不溶な成分を多く含むため、上述の方法による分析は一部に留まった。
[比較例3]
 フェノールを添加せず、エタノールを220質量部とした以外は実施例8と同様に行い、比較リグニン1(リグニン誘導体量25.9g、収率47%)を得た。
[比較例4]
 フェノールを添加せず、エタノールを110質量部、水を110質量部とした以外は実施例1と同様に行い、比較リグニン2(リグニン誘導体量43.3g、収率79%)を得た。
Figure JPOXMLDOC01-appb-T000005

 
Figure JPOXMLDOC01-appb-T000006

 
 前述したように、リグニン誘導体の軟化点は低くなるほど、樹脂との混合が容易となる傾向にある。さらに、リグニン誘導体は脂肪族水酸基量が少なくなるほど、また反応性の指標となる比[(2H+G)/S]が大きくなるほど、樹脂との反応性が容易となる傾向にある。さらに、リグニン誘導体の分子量は小さくなり過ぎずある程度の大きさを有することで、成形品とした場合に曲げ強度等の物性が良好となる傾向にある。
 上記観点から表1及び2を考察すると、実施例1~15と比較例3及び4との比較から、本発明の製造方法によれば、分子量が小さくなり過ぎずに軟化点が210℃以下のため樹脂との良好な相溶性を示し、また良好な反応性を示すリグニン誘導体を一定の収率で得られることが分かる。特に、芳香族化合物の使用割合や用いる溶媒の選択及び使用割合を調整することにより、より優れた低軟化点化及び高収率の両立が可能であることが分かる。また、芳香族化合物を用いない比較例3及び4では、分子量50~300成分の存在割合がそれぞれ0.70質量%,0.26質量%となり、樹脂組成材料として使用した場合に膨れ等の不具合が生じるおそれを有することが分かる。
 よって、表1及び2より実施例のリグニン誘導体は、分子量及び組成が改質されたことにより、リグニン誘導体含有材料、特に樹脂組成材料としての利用可能性が示された。
 また、原料である比較例1の第2世代エタノール糖化残渣及び比較例2のクラフトリグニンは、樹脂組成材料としてそのまま使用することができないのに対し、本発明の製造方法によれば実際に樹脂組成材料として使用することのできるリグニン誘導体が得られる。
〔硬化物〕
 次に、実施例2,6,8のリグニン誘導体2,6,8、比較例1の原料の第2世代エタノール糖化残渣(比較原料リグニン1)、比較例2のクラフトリグニン(比較原料リグニン2)、比較例3の比較リグニン1、及び比較例4の比較リグニン2を用い、次の各例において樹脂組成材料及びこれを用いてなる成形体を製造した。
 また、当該樹脂組成材料及び成形体について下記の方法で評価を行った。
(混練容易性)
 実施例16~18、比較例5~8において、混練時の容易性を次の指標に基づき評価した。
  A:混練容易
  B:困難だが混練可能
  C:混練不可能
(攪拌性)
 実施例19~21、比較例9~12において、反応時の攪拌容易性を次の指標に基づき評価した。
  A:攪拌容易
  B:困難だが攪拌可能
  C:攪拌不可能
(曲げ強度)
 各例において得られた成形体から、5mm×50mm×1mmの試料を切り出し、インストロンジャパン社製、インストロン5566型を用いて3点曲げモード、スパン30mm、速度2mm/分の条件で曲げ強度を測定し、指標に基づき評価した。
  A:試料が割れにくかった
  B:試料が割れた
  C:試料がすぐに割れた
  -:成形不良
[実施例16~18]
 35質量部のノボラック型フェノール樹脂(住友ベークライト株式会社製、PR-53195)、50質量部の木粉、15質量部の上記実施例2,6,8のリグニン誘導体2,6,8の各々、硬化剤としてヘキサメチレンテトラミンを7質量部、及び内部離型剤としてステアリン酸亜鉛を1質量部混合し、2本ロール混練機にて110~120℃で3分間混練して、リグニン誘導体含有樹脂組成材料を得た。
 上記得られたリグニン誘導体含有樹脂組成材料を、加熱した金型キャビティ内に圧入してトランスファ成形法により175℃、3分の成形条件にて成形後、オーブンで180℃、8時間硬化し、成形体を得た。
 上記樹脂組成材料及び成形体の上記評価の結果を表3に示す。
[比較例5]
 リグニン誘導体の代わりに原料の第2世代エタノール糖化残渣(比較原料リグニン1)を用いた以外は実施16と同様に行い樹脂組成材料及び成形体を得た。
 上記樹脂組成材料及び成形体の上記評価の結果を表3に示す。
[比較例6]
 リグニン誘導体の代わりにクラフトリグニン(比較原料リグニン2)を用いた以外は、実施例16と同様に行い樹脂組成材料及び成形体を得た。
 上記樹脂組成材料及び成形体の上記評価の結果を表3に示す。
[比較例7]
 リグニン誘導体の代わりに比較リグニン1を用いた以外は、実施例16と同様に行い樹脂組成材料及び成形体を得た。
[比較例8]
 リグニン誘導体の代わりに比較リグニン2を用いた以外は、実施例16と同様に行い樹脂組成材料及び成形体を得た。
 上記樹脂組成材料及び成形体の上記評価の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000007

 
[実施例19~21]
 還流装置と攪拌羽根を備えた0.5Lのセパラブルフラスコに、上記実施例2,6,8のリグニン誘導体2,6,8の各々を50質量部(50.0g)、40質量%ホルムアルデヒド水溶液30質量部を加え攪拌した。ホルムアルデヒドとリグニン誘導体中のフェノールのモル比は1.5であった。50質量%炭酸ナトリウム水溶液35質量部を徐々に滴下しながら、100℃で2時間加熱し、液状の組成物を得た。
 さらに、木粉54質量部を加え均一になるまで攪拌し、リグニン誘導体含有樹脂組成材料を得た。
 上記得られたリグニン誘導体含有樹脂組成材料を、減圧して水分を除去し、面圧0.2MPa、180℃、10分でプレス成形した後、オーブンで200℃、4時間硬化し、成形体を得た。
 上記樹脂組成材料及び成形体の上記評価の結果を表4に示す。
[比較例9]
 リグニン誘導体の代わりに原料の第2世代エタノール糖化残渣(比較原料リグニン1)を用いた以外は実施例19と同様に行い樹脂組成材料及び成形体を得た。
 上記樹脂組成材料及び成形体の上記評価の結果を表4に示す。
[比較例10]
 リグニン誘導体の代わりにクラフトリグニン(比較原料リグニン2)を用いた以外は、実施例19と同様に行い成形体を得た。
 上記樹脂組成材料及び成形体の上記評価の結果を表4に示す。
[比較例11]
 リグニン誘導体の代わりに比較リグニン1を用いた以外は、実施例19と同様に行い成形体を得た。
[比較例12]
 リグニン誘導体の代わりに比較リグニン2を用いた以外は、実施例19と同様に行い成形体を得た。
 上記樹脂組成材料及び成形体の上記評価の結果を表4に示す。
Figure JPOXMLDOC01-appb-T000008

 
 芳香族化合物を反応させずに得られた比較リグニン1又は2を用いた比較例7,8,11,12では混練性、攪拌性、及び曲げ強度の全てに優れることができない結果となった。これに対し、表3及び4に示すとおり、本発明で得られるリグニン誘導体は、優れた混練性、反応時の撹拌性が得られていることから、混合性について改良されていることが分かる。また、実施例で得られた成形体の曲げ物性からも、良好な物性を有する成形体が得られていることが分かる。なお、比較例5,6,9,10から、原料の第2世代エタノール糖化残渣及びクラフトリグニンは樹脂組成材料としてそのまま使用することが困難なことが分かる。
 したがって、本発明の製造方法により得られるポリフェノール誘導体は、表1~4から、低軟化点化されており混練性及び攪拌性に優れることから容易に樹脂と混合でき、また反応性の高い反応点を有しかつ曲げ強度に優れることから容易に樹脂と反応でき、また芳香族化合物の使用割合や用いる溶媒の選択及び使用割合を調整することにより、より優れた低軟化点化、高収率及び良好な経済性の両立を達成できることが分かる。
 すなわち、本発明の製造方法により得られるポリフェノール誘導体は、(i)安価で、(ii)大量に用意でき、(iii)容易に樹脂と混合し、(iv)容易に樹脂と反応する、これら4つの条件を満たすプラスチック材料として有用である。
 本発明のポリフェノール誘導体は、低分子量化されて他のプラスチック材料との混合性が向上し、反応点が増加したものである。混合性の向上と反応点の増加により成形品の物性向上が期待でき、さらに混合が容易になることで硬化部材を製造するときにコストがかかる大掛かりな装置を不要とすることも可能である。また、これまでほとんど廃棄処分されていたリグニン等が有効利用できるため、環境保全にも効果的である。

Claims (21)

  1.  ポリフェノール含有組成物とオルト-パラ配向性基を有する芳香族化合物を溶媒中で反応させる工程を有するポリフェノール誘導体の製造方法。
  2.  前記ポリフェノール含有組成物が、バイオマス及びバイオマス残渣のいずれか1種以上である、請求項1に記載のポリフェノール誘導体の製造方法。
  3.  前記ポリフェノール含有組成物が、第2世代エタノール糖化残渣及び第2世代エタノール発酵残渣のいずれか1種以上である、請求項1に記載のポリフェノール誘導体の製造方法。
  4.  前記芳香族化合物が、フェノール化合物である、請求項1~3のいずれかに記載のポリフェノール誘導体の製造方法。
  5.  前記フェノール化合物が、水酸基に対する置換基の位置である2位、4位及び6位のうち少なくとも1つが水素原子である、請求項4に記載のポリフェノール誘導体の製造方法。
  6.  前記フェノール化合物が下記式(1)で表される、請求項4又は5に記載のポリフェノール誘導体の製造方法。
    Figure JPOXMLDOC01-appb-C000001

    (式(1)において、R1及びR2はそれぞれ独立して、水素原子、水酸基又は炭素数1~15のアルキル基を示し、R1及びR2は同一でも異なっていてもよい。)
  7.  前記溶媒が、極性溶媒を含む、請求項1~6のいずれかに記載のポリフェノール誘導体の製造方法。
  8.  前記溶媒が、アルコール類、ケトン類、エーテル類、芳香族類、及び水のいずれか1種以上を含む、請求項1~7のいずれかに記載のポリフェノール誘導体の製造方法。
  9.  前記芳香族化合物及び前記溶媒の合計量に対し、前記芳香族化合物を10~50質量%用いる、請求項1~8に記載のいずれかに記載のポリフェノール誘導体の製造方法。
  10.  前記ポリフェノール含有組成物中のリグニンに対する前記芳香族化合物の質量比[芳香族化合物/リグニン]が0.1~2である、請求項1~9のいずれかに記載のポリフェノール誘導体の製造方法。
  11.  前記反応が、無触媒、又は、前記ポリフェノール含有組成物中のリグニン及び前記芳香族化合物の合計量に対し0超~5.0質量%の酸触媒の存在下で行われる、請求項1~10のいずれかに記載のポリフェノール誘導体の製造方法。
  12.  前記反応が、無触媒、又は、前記ポリフェノール含有組成物中のリグニン及び前記芳香族化合物の合計量に対し0.1~3.0質量%の酸触媒の存在下で行われる、請求項1~10のいずれかに記載のポリフェノール誘導体の製造方法。
  13.  前記反応が、反応温度140℃超及び350℃以下で行われる、請求項1~12のいずれかに記載のポリフェノール誘導体の製造方法。
  14.  前記反応が、反応温度140℃超及び250℃以下で行われる、請求項1~13のいずれかに記載のポリフェノール誘導体の製造方法。
  15.  前記反応が、反応時間1時間以上8時間以下で行われる、請求項1~14のいずれかに記載のポリフェノール誘導体の製造方法。
  16.  さらに固液分離工程を有する、請求項1~15のいずれかに記載のポリフェノール誘導体の製造方法。
  17.  重量平均分子量が5000未満であり、分子量LogM2.15~2.20の存在率が0.7質量%未満であるリグニン誘導体。
  18.  請求項1~16のいずれかに記載のポリフェノール誘導体の製造方法で製造されるリグニン誘導体及び請求項17に記載のリグニン誘導体のうちいずれか1以上のリグニン誘導体を含むリグニン誘導体含有材料。
  19.  請求項1~16のいずれかに記載のポリフェノール誘導体の製造方法で製造されるリグニン誘導体及び請求項17に記載のリグニン誘導体のうちいずれか1以上のリグニン誘導体を含むリグニン誘導体含有樹脂組成材料。
  20.  熱硬化性樹脂及びアルデヒド類のいずれか1種以上をさらに含有する、請求項19に記載のリグニン誘導体含有樹脂組成材料。
  21.  請求項19及び20のいずれかに記載のリグニン誘導体含有樹脂組成材料のうちいずれか1以上を用いてなる成形品。
PCT/JP2020/004946 2019-02-08 2020-02-07 ポリフェノール誘導体の製造方法、ポリフェノール誘導体、及びポリフェノール誘導体含有樹脂組成材料 WO2020162621A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020571310A JPWO2020162621A1 (ja) 2019-02-08 2020-02-07 ポリフェノール誘導体の製造方法、ポリフェノール誘導体、及びポリフェノール誘導体含有樹脂組成材料
BR112021014870-1A BR112021014870A2 (pt) 2019-02-08 2020-02-07 Método para produção de derivado de polifenol, derivado de polifenol e material de composição de resina contendo derivado de polifenol
EP20752574.2A EP3922654A4 (en) 2019-02-08 2020-02-07 PROCESS FOR PREPARING A POLYPHENOL DERIVATE, POLYPHENOL DERIVATE AND POLYPHENOL DERIVATE RESIN COMPOSITION
CN202080012883.1A CN113396171A (zh) 2019-02-08 2020-02-07 聚酚衍生物的制造方法、聚酚衍生物、和含有聚酚衍生物的树脂组成材料
US17/427,313 US20220119575A1 (en) 2019-02-08 2020-02-07 Method for producing polyphenol derivative, polyphenol derivative, and polyphenol derivative-containing resin composition material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019021762 2019-02-08
JP2019-021762 2019-02-08

Publications (1)

Publication Number Publication Date
WO2020162621A1 true WO2020162621A1 (ja) 2020-08-13

Family

ID=71948305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004946 WO2020162621A1 (ja) 2019-02-08 2020-02-07 ポリフェノール誘導体の製造方法、ポリフェノール誘導体、及びポリフェノール誘導体含有樹脂組成材料

Country Status (6)

Country Link
US (1) US20220119575A1 (ja)
EP (1) EP3922654A4 (ja)
JP (1) JPWO2020162621A1 (ja)
CN (1) CN113396171A (ja)
BR (1) BR112021014870A2 (ja)
WO (1) WO2020162621A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022250012A1 (ja) * 2021-05-24 2022-12-01 出光興産株式会社 硬化性組成物、ポリウレタン樹脂組成物及びポリウレタン成形体
KR102642243B1 (ko) * 2023-09-29 2024-02-29 (주)코코베리 초본계 바이오차 제조 방법

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261358A (ja) * 1985-05-14 1986-11-19 Oji Paper Co Ltd 木材などリグノセルロ−ス物質の溶液の製造法
JP2010184233A (ja) * 2009-01-15 2010-08-26 Mariko Yoshioka 液化バイオマス、その製造方法及び熱硬化性樹脂
US20130115653A1 (en) * 2011-11-09 2013-05-09 Thesis Chemistry, Llc Method for producing biobased chemicals from woody biomass
WO2013068092A1 (en) * 2011-11-08 2013-05-16 Eth Zurich Use of carbonium ion scavengers in the treatment of lignocellulosic biomass
JP2014015579A (ja) 2012-07-11 2014-01-30 Idemitsu Kosan Co Ltd 熱可塑性樹脂組成物
JP2014037354A (ja) * 2012-08-10 2014-02-27 Idemitsu Kosan Co Ltd フェノール類の製造方法
JP5671430B2 (ja) 2011-09-02 2015-02-18 ハリマ化成株式会社 変性リグニンおよびそれを含有するフェノール樹脂成形材料
JP2015048359A (ja) * 2013-08-30 2015-03-16 住友ベークライト株式会社 リグニン樹脂組成物、樹脂成形体および成形材料
JP2016050200A (ja) * 2014-08-29 2016-04-11 日本化薬株式会社 低分子リグニンの製造方法
WO2016104634A1 (ja) 2014-12-25 2016-06-30 出光ライオンコンポジット株式会社 熱可塑性樹脂組成物及びその成形体

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3666784A4 (en) * 2017-08-10 2021-04-14 Idemitsu Kosan Co.,Ltd. PROCESS FOR THE MANUFACTURING OF MODIFIED LIGNIN AND MODIFIED POLYPHENOL, AND MATERIAL OF COMPOSITION OF RESIN CONTAINING MODIFIED LIGNIN

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61261358A (ja) * 1985-05-14 1986-11-19 Oji Paper Co Ltd 木材などリグノセルロ−ス物質の溶液の製造法
JP2010184233A (ja) * 2009-01-15 2010-08-26 Mariko Yoshioka 液化バイオマス、その製造方法及び熱硬化性樹脂
JP5671430B2 (ja) 2011-09-02 2015-02-18 ハリマ化成株式会社 変性リグニンおよびそれを含有するフェノール樹脂成形材料
WO2013068092A1 (en) * 2011-11-08 2013-05-16 Eth Zurich Use of carbonium ion scavengers in the treatment of lignocellulosic biomass
US20130115653A1 (en) * 2011-11-09 2013-05-09 Thesis Chemistry, Llc Method for producing biobased chemicals from woody biomass
JP2014015579A (ja) 2012-07-11 2014-01-30 Idemitsu Kosan Co Ltd 熱可塑性樹脂組成物
JP2014037354A (ja) * 2012-08-10 2014-02-27 Idemitsu Kosan Co Ltd フェノール類の製造方法
JP2015048359A (ja) * 2013-08-30 2015-03-16 住友ベークライト株式会社 リグニン樹脂組成物、樹脂成形体および成形材料
JP2016050200A (ja) * 2014-08-29 2016-04-11 日本化薬株式会社 低分子リグニンの製造方法
WO2016104634A1 (ja) 2014-12-25 2016-06-30 出光ライオンコンポジット株式会社 熱可塑性樹脂組成物及びその成形体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3922654A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022250012A1 (ja) * 2021-05-24 2022-12-01 出光興産株式会社 硬化性組成物、ポリウレタン樹脂組成物及びポリウレタン成形体
KR102642243B1 (ko) * 2023-09-29 2024-02-29 (주)코코베리 초본계 바이오차 제조 방법

Also Published As

Publication number Publication date
EP3922654A4 (en) 2022-12-21
EP3922654A1 (en) 2021-12-15
CN113396171A (zh) 2021-09-14
US20220119575A1 (en) 2022-04-21
BR112021014870A2 (pt) 2021-10-05
JPWO2020162621A1 (ja) 2021-12-09

Similar Documents

Publication Publication Date Title
CN110914341B (zh) 改质木质素的制造方法和改质木质素、以及含改质木质素的树脂组成材料
US11518886B2 (en) Modified lignin, modified polyphenol manufacturing method, and modified lignin-including resin composition material
WO2017051911A1 (ja) 精製リグニンの製造方法、精製リグニン、樹脂組成物及び成形体
JP6920317B2 (ja) リグニン含有樹脂組成物の製造方法及びリグニン含有樹脂成形品
US20160215143A1 (en) Resin composition, molded body, and production method
WO2020162621A1 (ja) ポリフェノール誘導体の製造方法、ポリフェノール誘導体、及びポリフェノール誘導体含有樹脂組成材料
Qiao et al. Preparation and characterization of a Phenol-formaldehyde resin Adhesive obtained From Bio-ethanol Production residue
JP6931878B2 (ja) 二段プロセスによる植物系バイオマス由来生成物の製造方法
JP4402499B2 (ja) 熱硬化性バイオマス樹脂組成物およびその成形品
Zhang et al. Effect of starch and lignin on physico‐chemical properties of phenol–starch resin and its resin core sand
JPWO2018047928A1 (ja) 耐熱性リグニンの製造方法
JP2021123716A (ja) ノボラック型フェノール樹脂および樹脂組成物
EP4321300A1 (en) Lignin-modified novolac-type phenol resin, method for producing same, molding material, resin composition, and grindstone
JP2014051573A (ja) ゴム組成物、硬化物およびタイヤ
KR20230127208A (ko) 리그닌 조성물 및 그의 사용
JP2014024933A (ja) リグニンを用いた自己硬化型樹脂
KR20230170071A (ko) 페놀 화합물이 없는 결합제 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20752574

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020571310

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021014870

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020752574

Country of ref document: EP

Effective date: 20210908

ENP Entry into the national phase

Ref document number: 112021014870

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210728