WO2013029510A1 - 三轴磁场传感器 - Google Patents

三轴磁场传感器 Download PDF

Info

Publication number
WO2013029510A1
WO2013029510A1 PCT/CN2012/080600 CN2012080600W WO2013029510A1 WO 2013029510 A1 WO2013029510 A1 WO 2013029510A1 CN 2012080600 W CN2012080600 W CN 2012080600W WO 2013029510 A1 WO2013029510 A1 WO 2013029510A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
field sensor
axis
mtj
bridge
Prior art date
Application number
PCT/CN2012/080600
Other languages
English (en)
French (fr)
Inventor
雷啸锋
张小军
黎伟
薛松生
王建国
Original Assignee
江苏多维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏多维科技有限公司 filed Critical 江苏多维科技有限公司
Priority to US14/239,786 priority Critical patent/US9733316B2/en
Priority to EP12828008.8A priority patent/EP2752676B1/en
Priority to JP2014527479A priority patent/JP6076345B2/ja
Publication of WO2013029510A1 publication Critical patent/WO2013029510A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/0206Three-component magnetometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0005Geometrical arrangement of magnetic sensor elements; Apparatus combining different magnetic sensor types
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0052Manufacturing aspects; Manufacturing of single devices, i.e. of semiconductor magnetic sensor chips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/098Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/028Electrodynamic magnetometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/096Magnetoresistive devices anisotropic magnetoresistance sensors

Definitions

  • the invention relates to the design of a bridge type magnetic field sensor, in particular to a three-axis magnetic field sensor.
  • the tunnel junction magnetoresistive sensor is a new type of magnetoresistance effect sensor that has been used in industrial applications in recent years. It utilizes the tunnel magnetoresistance (TMR) of magnetic multilayer film materials, mainly in magnetic properties. In the multilayer film material, the resistance of the magnetic multilayer film changes significantly with the change of the magnitude and direction of the external magnetic field. It has a larger resistance change rate than the previously discovered AMR (anisotropic magnetoresistance). At the same time, it has better temperature stability than Hall effect materials.
  • TMR tunnel magnetoresistance
  • the MTJ magnetic field sensor has the advantages of large resistance change rate, large output signal amplitude, high resistivity, low power consumption and high temperature stability.
  • the magnetic field sensor made of MTJ has higher sensitivity, lower power consumption, better linearity, wider dynamic range, better temperature characteristics and stronger anti-interference ability than AMR, GMR and Hall devices.
  • MTJ can be easily integrated into existing chip micromachining processes to facilitate the creation of small integrated magnetic field sensors.
  • multi-axis magnetic field sensors have higher integration than single-axis sensors, and better orthogonality, which can be easily applied to multi-axis or vector sensor applications.
  • the magnetic field itself is a vector field, so the multi-axis magnetic field measuring sensor has a very wide range of applications, especially the electronic compass, geomagnetic measurement, etc. are measured by two-axis or three-axis magnetic field, therefore, production, high integration, single chip and more Axial magnetic field sensors are a very real requirement.
  • the mainstream GMR triaxial sensor is realized by encapsulating the X, Y and X-axis GMR magnetic field sensors of three chips, which is bulky, high in packaging cost, and has the disadvantages of low sensitivity and high power consumption compared with the MTJ magnetic field sensor.
  • the existing three-axis magnetic field sensor using AMR, Hall, GMR components has the disadvantages of large volume, high power consumption, low sensitivity, and the MTJ three-axis magnetic field sensor, especially the MTJ of a single chip.
  • Axial magnetic field sensors are difficult to design in design.
  • the present invention provides a three-axis magnetic field sensor that reduces the volume of the three-axis sensor, improves sensitivity, and reduces power consumption.
  • a three-axis magnetic field sensor comprising a substrate on which a biaxial magnetic field sensor, a Z-axis magnetic field sensor with a sensitive direction of Z axis, and an ASIC are integrated Yuan
  • the dual-axis magnetic field sensor includes an X-axis bridge magnetic field sensor with a sensitive direction of the X-axis and a Y-axis bridge magnetic field sensor with a sensitive Y-axis.
  • the biaxial magnetic field sensor and the Z-axis magnetic field sensor are connected to the ASIC.
  • the X axis, the Y axis, and the Z axis intersect at two.
  • the X-axis bridge magnetic field sensor and the Y-axis bridge magnetic field sensor are MTJ bridge magnetic field sensors
  • the X-axis bridge magnetic field sensor is a reference bridge magnetic field sensor
  • the Y-axis bridge magnetic field sensor is a push-pull bridge magnetic field sensor
  • the biaxial magnetic field sensor may be disposed on a single chip or on different chips.
  • the biaxial magnetic field sensor is electrically connected to the ASIC element via a gold wire.
  • the biaxial magnetic field sensor is electrically connected to the ASIC element through a solder ball.
  • the Z-axis magnetic field sensor is an MTJ magnetic field sensor, and the MTJ sensor is horizontally disposed on the substrate by a solder ball, and the sensitive direction is perpendicular to the film surface.
  • the Z-axis magnetic field sensor is an MTJ magnetic field sensor, and the MTJ sensor is vertically disposed on the substrate by a solder ball, and the sensitive direction thereof is parallel to the film surface.
  • the Z-axis magnetic field sensor is an MTJ magnetic field sensor, and the MTJ sensor is disposed on the substrate by a solder ball tilt.
  • the Z-axis magnetic field sensor is a Hall or giant Hall magnetic field sensor.
  • a single-chip three-axis magnetic field sensor includes a substrate on which a three-axis magnetic field sensor unit and an ASIC element are integrated, the three-axis magnetic field sensor unit including an X-axis bridge magnetic field sensor with a sensitive direction of an X-axis,
  • the Y-axis bridge magnetic field sensor with the sensitive direction is the Y-axis and the Z-axis magnetic field sensor with the sensitive direction of the Z-axis, wherein the X-axis, the Y-axis and the Z-axis are orthogonal to each other.
  • the X-axis bridge magnetic field sensor and the Y-axis bridge magnetic field sensor are MTJ bridge type magnetic field sensors.
  • the triaxial magnetic field sensor unit, the passivation layer, the ASIC element and the substrate are stacked, and the passivation layer is provided with a copper conduit to realize the triaxial magnetic field sensor unit and the Electrical interconnection between ASIC components.
  • the passivation layer, the ASIC element, the substrate, and the triaxial magnetic field sensor unit are stacked, and the substrate is provided with a copper conduit to implement the triaxial magnetic field sensor unit and the ASIC component. Electrical interconnection between.
  • the copper conduit is implemented by a through silicon perforation technique.
  • the Z-axis magnetic field sensor is a perpendicular anisotropic MTJ magnetic field sensor, the sensor is horizontally disposed, and its sensitive direction is perpendicular to the film surface.
  • the Z-axis magnetic field sensor is a Hall or giant Hall magnetic field sensor.
  • the Z-axis magnetic field sensor is an MTJ magnetic field sensor, and the MTJ sensor is obliquely disposed to electrically interconnect the ASIC element through a copper conduit.
  • the invention adopts the above structure, has high integration degree, higher sensitivity, lower power consumption, better linearity, wider dynamic range, better temperature characteristics and stronger anti-interference ability.
  • FIG. 1 is a schematic diagram of a tunnel junction magnetoresistance (MTJ) component.
  • MTJ tunnel junction magnetoresistance
  • Figure 2 is a schematic diagram of a perpendicular magnetic anisotropy MTJ element.
  • Figure 3 is an ideal output plot of the MTJ component.
  • Figure 4 is an ideal output plot of a perpendicular anisotropic MTJ component.
  • Figure 5 is a schematic diagram of the MTJ elements connected in series to form an MTJ magnetoresistance.
  • Figure 6 is a schematic diagram of the principle of a Hall or giant Hall element.
  • Figure 7 is an ideal output plot of the Hall element.
  • Figure 8 is a schematic diagram of the MTJ push-pull bridge sensor.
  • Figure 9 shows the analog output of the MTJ push-pull bridge sensor.
  • Figure 10 is a schematic diagram of the MTJ reference bridge sensor.
  • Figure 11 shows the analog output of the MTJ reference bridge sensor.
  • Figure 12 is a schematic illustration of a single-chip MTJ dual-axis magnetic field sensor prepared in one shot.
  • Figure 13 is a schematic diagram of the Z-axis magnetic field sensor fixing the MTJ sensor on the slope.
  • Figure 14 is a schematic diagram of the MTJ bridge sensor with the Z-axis magnetic field sensor vertically mounted.
  • Figure 15 is a schematic diagram of a three-axis magnetic field sensor implemented by chip stacking and wire bonding processes.
  • Figure 16 is a schematic diagram of a three-axis magnetic field sensor implemented by chip stacking and flip chip process.
  • Figure 17 is a schematic diagram of a single chip MTJ three-axis magnetic field sensor.
  • Figure 18 is a schematic illustration of another single chip MTJ triaxial magnetic field sensor.
  • FIG. 1 is a schematic diagram of a tunnel junction magnetoresistance (MTJ) component.
  • a standard MTJ component 1 includes a magnetic free layer 6, a magnetic pinning layer 2, and a tunnel barrier layer 5 between the two magnetic layers.
  • the magnetic free layer 6 is composed of a ferromagnetic material, and the magnetization direction 7 of the magnetic free layer changes as the external magnetic field changes.
  • the magnetic pinning layer 2 is a magnetic layer fixed in the magnetization direction, and the magnetization direction 8 of the magnetic pinning layer is pinned in one direction, and does not change under normal conditions.
  • the magnetic pinning layer is usually formed by depositing a ferromagnetic layer 4 above or below the antiferromagnetic layer 3.
  • the MTJ structure is usually deposited over the conductive seed layer 11, while the upper electrode layer 12 is above the MTJ structure, and the measured resistance value 13 between the MTJ element seed layer 11 and the upper electrode layer 12 represents the magnetic free layer 6 and the magnetic nail.
  • Figure 2 is a schematic illustration of a perpendicular magnetic anisotropy MTJ element.
  • the difference from the conventional MTJ element is that the magnetization direction 8 of the magnetic pinning layer of the perpendicular magnetic anisotropic MTJ element and the magnetization direction 7 of the magnetic free layer are in the direction perpendicular to the film surface, that is, the sensitive direction thereof is perpendicular to the film surface.
  • the measured resistance value 13 between the seed layer 11 and the upper electrode layer 12 represents the relative magnetization direction between the magnetic free layer 6 and the magnetic pinning layer 2.
  • Figure 3 is an ideal output plot of the MTJ component.
  • the output curve is saturated in the low-impedance state 14 and the high-impedance state 15, and RL and R H represent the resistance values of the low-resistance state 14 and the high-impedance state 15, respectively.
  • the measured resistance value 13 of the entire element is in a low resistance state; when the magnetization direction 7 of the magnetic free layer is opposite to the magnetization direction 8 of the magnetic pinning layer When parallel, the measured resistance value 13 of the entire component is in the high impedance state 15.
  • the resistance of the MTJ element 1 can vary linearly between the high resistance state and the low resistance state with the applied magnetic field, and the magnetic field range between the saturation field -Hs and Hs is the measurement range of the MTJ element.
  • Figure 4 is an ideal output diagram of a perpendicular magnetic anisotropy MTJ element.
  • the output curve of the perpendicular magnetic anisotropy MTJ element has an ultra-high sensitivity and a low saturation field.
  • the component of the external field along the plane of the parallel film is not zero, although under these conditions the perpendicular magnetic anisotropy MTJ components and standards
  • the sensitivity of the MTJ component is lower, and the saturation field Hs value is larger, but it has a great advantage over the Hall and giant Hall components.
  • Figure 5 is a schematic diagram of the MTJ elements connected in series to form an MTJ magnetoresistance.
  • the MTJ component 1 connected in series forms the MTJ magnetoresistance to reduce noise and improve the stability of the sensor.
  • the bias voltage of each MTJ element 1 decreases as the number of magnetic tunnel junctions increases.
  • the reduction in current requires a large voltage output, which reduces shot noise, and increases the ESD stability of the sensor as the number of magnetic tunnel junctions increases.
  • the noise of the MTJ magnetoresistance decreases correspondingly because the uncorrelated random behavior of each individual MTJ component is averaged out.
  • Figure 6 is a schematic illustration of a Hall or giant Hall element.
  • Iin+ and Iin- are current input and output terminals
  • VI and V2 are voltage output terminals.
  • the steady current I flows from the current terminal Iin+ to Iin-, if there is an applied magnetic field 9 whose direction is perpendicular to the plane composed of the current terminal and the voltage terminal, it acts on the Hall or giant Hall element, then the voltage terminal VI and V2 will produce a voltage difference, and its ideal output curve is shown in Figure 7.
  • Figure 8 is a schematic diagram of an MTJ push-pull full-bridge sensor.
  • Four MTJ magnetoresistors Rl, R2, R3, and R4 are fully bridged, and each MTJ magnetoresistance consists of one or more MTJ components 1 connected in series ( Figure 2).
  • the magnetic pinning layers of the four magnetoresistive elements have the same magnetic moment direction, and the magnetization direction of the magnetic free layer of each magnetoresistive element is at an angle 9 (between 30 and 90 degrees) to the magnetization direction of the magnetic pinning layer.
  • each magnetoresistive element is the same size, and the magnetic free elements of the magnetoresistive elements (R1 and R3, R2 and R4) at the opposite positions have the same magnetization direction (41 and 43, 42 and 44), located at The magnetic free layers of the magnetoresistive elements (R1 and R2, R3 and R4) in adjacent positions have different magnetization directions (41 and 42, 43 and 44).
  • the sensitive direction of the full bridge structure 10 is perpendicular to the magnetization direction 8 of the magnetic pinning layer.
  • the magnetic pinning layer of the design has the same magnetization direction 8.
  • the push-pull full-bridge sensor can be directly formed on the same chip by one process, without using a multi-chip packaging process or laser-heated local auxiliary thermal annealing.
  • the magnetic field component in the sensitive direction 10 increases the resistance of the relative positions of the magnetoresistors R1 and R3 while the resistance values of the other two magnetoresistors R2 and R4 at the relative positions correspond. Decreasing the ground, changing the direction of the external field will reduce the resistance of R1 and R3, and the resistance of R2 and R4 will increase accordingly.
  • the combination of two pairs of magnetoresistors will measure the external field with opposite response. The other pair of resistors is reduced - this increases the response of the bridge circuit and is therefore referred to as a "push-pull" bridge circuit.
  • n _ 2 ⁇ 2- -( ⁇ l ⁇ )
  • R2 + RI bms realizes the output of the push-pull full bridge, and the simulation result of the output curve is shown in Fig. 9.
  • the angle between the magnetic free layer and the magnetic pinning layer can be achieved by the following means or a combination of the following:
  • Shape anisotropy energy The magnetization direction of the magnetic free layer is biased by the anisotropy energy of the MTJ element, and the long axis of the MTJ element is an easy magnetization axis, and the shape can be set by setting the length to the axial ratio of the element.
  • Permanent magnet bias a permanent magnet is placed around the MTJ element to bias the magnetization direction of the free layer
  • Figure 10 is a schematic diagram of an MTJ reference full bridge sensor.
  • Four MTJ magnetoresistors Rl, R2, R3, and R4 are connected in full bridge, and each magnetoresistance is composed of one or more MTJ elements connected in series ( Figure 2).
  • the output curves of the magnetoresistive elements R1 and R3 strongly depend on the applied magnetic field 9, which is called the sensing arm, and the output curves of the corresponding magnetoresistive elements R2 and R4 are weakly dependent on the applied magnetic field 9, which is called the reference arm.
  • the sensitive direction 10 of the full bridge structure is parallel to the magnetization direction 8 of the magnetic pinning layer.
  • the magnetic pinning layer of the design has the same direction, and the push-pull full-bridge sensor can be directly formed on the same chip by one process, without using a multi-chip packaging process or laser-heated local auxiliary thermal annealing.
  • the magnetic field component in the sensitive direction 10 increases or decreases the resistance of the inductive arm magnetoresistances R1 and R3, while the reference arm magnetoresistors R2 and R4 are in the saturation field of the inductive arm magnetoresistance.
  • the variation in the Hs range is small.
  • the linear region of the MTJ reference full-bridge sensor is sufficiently wide, and the simulation result of the output curve is shown in Fig. 11.
  • the sensitivity of a magnetoresistive element is defined as the resistance function of the resistance as a function of the applied magnetic field -
  • Magnetic shielding depositing a high permeability ferromagnetic layer on the reference arm to attenuate the effect of the applied magnetic field;
  • Shape anisotropy energy Since the reference element and the sensing element have different sizes, they have different shape anisotropy energies. The most common practice is to make the long axis length of the reference element larger than the long axis length of the MTJ sensing element, and the short axis length is smaller than the short axis length of the sensing element, so the demagnetization effect of the reference element parallel to the sensitive direction is much larger than the sensing element. ;
  • the MTJ elements deposited on the same silicon wafer have the same magnetic field strength required for the magnetic moment to reverse. Therefore, the magnetoresistance elements on the same silicon wafer have the same magnetization direction after the annealing.
  • a two-axis magnetic field sensor can be realized by a combination of two bridge magnetic field sensors at a 90° angle. Below we will explain the implementation of a single-chip dual-axis magnetic field sensor.
  • the single chip MTJ dual-axis magnetic field sensor can be designed by the following methods or a combination of several methods:
  • Method 1 Laser heating assisted magnetic domain local inversion method.
  • the MTJ elements are annealed in the same strong magnetic field so that the magnetic moments of the pinned layers of the different bridge arms are the same. Then, the laser is used to locally heat the silicon wafer to assist the magnetic moment to reverse, thereby realizing the preparation of the biaxial magnetic field sensor on the single silicon wafer;
  • Method 2 Using multiple film forming processes, the magnetoresistive elements with different orientations of the pinned layers are deposited separately.
  • Method 3 Prepare a single-chip MTJ dual-axis magnetic field sensor in one time (as shown in Figure 12). The MTJ push-pull full-bridge sensor with sensitive Y-axis and the MTJ reference full-bridge sensor with sensitive X-axis are on the same substrate. The same process is prepared, and the magnetization direction 8 of the magnetic pinning layer is the same direction.
  • the MTJ three-axis magnetic field sensor includes a substrate on which a biaxial magnetic field sensor 29, a Z-axis magnetic field sensor 24 having a sensitive direction of Z-axis, and an ASIC element 19 are integrated, the biaxial magnetic field sensor 29 including an integrated arrangement
  • the X-axis bridge magnetic field sensor 22 on the substrate 18 and the Y-axis bridge magnetic field sensor 23 in the sensitive direction are the Y-axis, and the biaxial magnetic field sensor 29 and the Z-axis magnetic field sensor 24 are connected in the ASIC.
  • the role of the ASIC component is to condition the signal.
  • the ASIC element 19 is provided with a biaxial magnetic field sensor 29 and a Z-axis magnetic field sensor 24, and the biaxial magnetic field sensor 29 is provided with an X-axis bridge magnetic field sensor. 22 and Y-axis bridge type magnetic field sensor 23.
  • the biaxial magnetic field sensor 29 and the Z-axis magnetic field sensor 24 are superposed on the surface of the ASIC element 19, and the biaxial magnetic field sensor 29, the Z-axis magnetic field sensor 24, and the ASIC element 19 are connected by a gold wire 25.
  • the 16 is a three-axis magnetic field sensor realized by a chip stacking and flip chip process.
  • the ASIC element 19 is provided with a biaxial magnetic field sensor 29 and a Z-axis magnetic field sensor 24, and the biaxial magnetic field sensor 29 is provided with an X-axis bridge magnetic field sensor. 22 and Y-axis bridge type magnetic field sensor 23.
  • a two-axis magnetic field sensor 29 and a Z-axis magnetic field sensor 24 are superimposed on the surface of the ASIC element 19, and the biaxial magnetic field sensor 29 and the Z-axis magnetic field sensor 24 are connected to the ASIC element 19 by solder balls 26.
  • the setting of the Z-axis magnetic field sensor 24 sensitive along the Z-axis is the focus of its implementation.
  • the following methods can be used:
  • Fig. 13 is a schematic view showing the MTJ bridge sensor fixed on the inclined surface, and the component in the direction of the slope in the direction of the sensitive Z-axis is measured to measure the magnetic field in the Z-axis direction.
  • Embodiment 1 As shown in FIG. 13, the substrate 18 is prepared by wet etching to prepare a bevel groove, and then four MTJ magnetoresistances are prepared on the opposite slopes, and the solder balls are connected to the ASIC element 19, and the oppositely disposed MTJ
  • the magnetoresistance can cancel the interference of the X and Y axis signals to the maximum extent, and improve its sensitivity to the Z axis direction.
  • the four MTJ magnetoresistance full bridges are connected as push-pull full-bridge sensors (as shown in Figure 8), or they can be connected to the whole bridge. Refer to the full bridge sensor ( Figure 10).
  • Embodiment 2 As shown in FIG. 13, the substrate 18 is prepared by wet etching to prepare a bevel groove, and then two MTJ bridge magnetic field sensors are prepared on opposite inclined surfaces, and the solder balls are connected to the ASIC element 19, and are relatively disposed.
  • the MTJ bridge magnetic field sensor can cancel the interference of the X and Y axis signals to the maximum extent and improve its sensitivity to the Z axis direction.
  • the two MTJ bridge magnetic field sensors can be push-pull full-bridge sensors ( Figure 8) or reference full-bridge sensors (such as (2)
  • a vertically vertical MTJ bridge sensor as shown in FIG. Figure 14 is a schematic diagram of a vertically vertical MTJ bridge sensor.
  • a bump 21 is formed at the edge of the MTJ bridge sensor 20, and the MTJ bridge sensor 20 is loaded onto the ASIC component 19 in a 90° vertical manner, through the bumps. 21 is connected to the pads of the ASIC component 19 to sense the magnetic field in the Z-axis direction.
  • the bridge magnetic field sensor of the perpendicular magnetic anisotropy MTJ element as shown in Fig. 2 may be a push-pull bridge sensor or a reference bridge sensor.
  • Vertical magnetic anisotropy The MTJ bridge sensor is superimposed on and connected to the ASIC component 19;
  • a magnetic field sensor using Hall or giant Hall elements As shown in Figure 6, the output of the Hall or giant Hall element is perpendicular to the plane of the input current and the plane of the applied magnetic field 9, so we can set the output terminals VI, V2 parallel to the membrane surface and perpendicular to the input current direction. At both ends of the direction, the magnetic field in the Z-axis direction is sensed.
  • Figure 17 is a schematic diagram of a single chip MTJ three-axis magnetic field sensor. As shown in Fig. 17, an ASIC element 19 is prepared on a substrate 18 having an oxide passivation layer 27 thereon. After chemical polishing, a triaxial magnetic field sensor unit 30 and an ASIC element 19 are prepared on the passivation layer 27.
  • the three-axis magnetic field sensor unit 30 includes an X-axis bridge magnetic field sensor 22, a Y-axis bridge magnetic field sensor 23, a Z-axis magnetic field sensor 24, an ASIC element 19, an X-axis bridge magnetic field sensor 22, and a Y-axis bridge magnetic field sensor 23,
  • the Z-axis magnetic field sensor 24 is connected by a copper conduit 28 which can be realized by a developer processing, exposure, electroplating (deposition), and a double exposure process of a semiconductor processing process.
  • the X-axis bridge magnetic field sensor with the sensitive direction of the X-axis and the Y-axis bridge magnetic field sensor 23 with the sensitive direction of the Y-axis are the MTJ bridge sensor 20, and the sensitive component is the MTJ component 1. See Figure 12 for a detailed description.
  • the Z-axis magnetic field sensor 24 whose sensitive direction is the Z-axis may be an MTJ magnetic field sensor fixed on the inclined surface (as shown in FIG. 13), or a perpendicular magnetic anisotropy MTJ magnetic field sensor (as shown in FIG. 2), or may be a Hall or Giant Hall magnetic field sensor ( Figure 7).
  • Figure 18 is a schematic diagram of another single chip MTJ triaxial magnetic field sensor.
  • an ASIC device 19 is prepared on a substrate 18 having an oxide passivation layer 27 on the surface of the ASIC device 19, a triaxial magnetic field sensor unit 30 on the back side of the substrate 18, and a triaxial magnetic field sensor unit 30 including X-axis bridge magnetic field sensor 22, Y-axis bridge magnetic field sensor 23, Z-axis magnetic field sensor 24, ASIC element 19 and X-axis bridge magnetic field sensor 22, Y-axis bridge magnetic field sensor 23, Z-axis magnetic field sensor 24 through copper conduit
  • the 28-phase connection, copper conduit 28 can be achieved by through-silicon perforation (wet or dry etching), electroplating (deposition), and etching processes in semiconductor processing.
  • the X-axis bridge magnetic field sensor with the sensitive direction of the X-axis and the Y-axis bridge magnetic field sensor 23 with the sensitive direction of the Y-axis are the MTJ bridge sensor 20, and the sensitive component is the MTJ element 1.
  • DETAILED DESCRIPTION OF THE INVENTION See Figure 6.
  • the Z-axis magnetic field sensor 24 whose sensitive direction is the Z-axis may be an MTJ magnetic field sensor fixed on the inclined surface (as shown in FIG. 13), or a perpendicular magnetic anisotropy MTJ magnetic field sensor (as shown in FIG. 2), or may be a Hall or Giant Hall magnetic field sensor ( Figure 7).

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Hall/Mr Elements (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

一种三轴磁场传感器,包括一基片(18),该基片(18)上集成设置有双轴磁场传感器(29)、敏感方向为Z轴的Z轴磁场传感器(24)和ASIC元件(19),双轴磁场传感器(29)包括X轴桥式传感器(22)、Y轴桥式传感器(23)、双轴磁场传感器(29)和Z轴磁场传感器(24)连接设置在ASIC元件(19)上。一种单一芯片三轴磁场传感器,包括一基片(18),该基片(18)集成设置有三轴磁场传感器和ASIC元件(19),三轴磁场传感器包括X轴桥式传感器(22)、Y轴桥式传感器(23)和Z轴磁场传感器(24)。采用以上结构,集成度高,灵敏度更高,功耗更低,线性更好,动态范围更宽,温度特性更好,抗干扰能力更强。

Description

三轴磁场传感器
技术领域
本发明涉及桥式磁场传感器的设计, 特别的是一种三轴磁场传感器。
背景技术
隧道结磁电阻传感器(MTJ,Magnetic Tunnel Junction)是近年来开始工业应用的新型磁 电阻效应传感器, 它利用的是磁性多层膜材料的隧道磁电阻效应 (TMR, Tunnel Magnetoresistance) ,主要表现在磁性多层膜材料中随着外磁场大小和方向的变化,磁性多层 膜的电阻发生明显变化, 它比之前所发现并实际应用的 AMR (各向异性磁电阻) 具有更 大的电阻变化率, 同时相对于霍尔效应材料具有更好的温度稳定性。 MTJ磁场传感器具有 电阻变化率大, 输出信号幅值大, 电阻率高, 功耗低, 温度稳定性高的优点。 用 MTJ制成 的磁场传感器比 AMR、 GMR、 霍尔器件具有灵敏度更高, 功耗更低, 线性更好, 动态范 围更宽, 温度特性更好, 抗干扰能力更强的优点。此外 MTJ还能方便的集成到现有的芯片 微加工工艺当中, 便于制成体积很小的集成磁场传感器。
通常多轴磁场传感器具有比单轴传感器更高的集成度, 更好的正交性, 可以非常方便 的应用于多轴或是矢量传感器场合。 而磁场本身就是一个矢量场, 因而多轴磁场测量传感 器具有非常广泛的应用, 特别是电子罗盘, 地磁测量等都采用双轴或三轴磁场测量, 因此, 生产, 集成度高的, 单一芯片多轴磁场传感器是一种非常现实的需求。
通常沉积在同一硅片上的 GMR或 MTJ元件, 由于其磁矩翻转所需要的磁场强度大小 相同, 因而在同一个硅片上的磁电阻元件, 在进行退火之后, 钉扎层磁化方向通常都相同, 这使得制作推挽桥式传感器存在很大困难。 目前主流的 GMR三轴传感器是将三个芯片的 X、 Y、 Ζ轴的 GMR磁场传感器封装在一起实现的, 体积大, 封装成本高, 较之 MTJ磁场 传感器具有灵敏度低, 功耗高等缺点。
从以上方法可以看出, 现有的采用 AMR、 霍尔、 GMR元件的三轴磁场传感器具有体 积大, 功耗高, 灵敏度低等缺点, 且 MTJ三轴磁场传感器, 特别是单一芯片的 MTJ三轴 磁场传感器在设计上难以实现。
发明内容
针对上述问题, 本发明提供一种三轴磁场传感器, 使三轴传感器縮小体积, 提高灵敏 度和减少功耗。
为解决上述技术问题, 本发明采用的技术方案为: 一种三轴磁场传感器, 它包括一基 片, 该基片上集成设置有双轴磁场传感器、 敏感方向为 Z轴的 Z轴磁场传感器和 ASIC元 件, 所述双轴磁场传感器包括敏感方向为 X轴的 X轴桥式磁场传感器、 敏感方向为 Y轴 的 Y轴桥式磁场传感器,所述双轴磁场传感器和 Z轴磁场传感器连接设置在 ASIC元件上, 其中 X轴、 Y轴和 Z轴两两相交。
优选地, 所述 X轴桥式磁场传感器和所述 Y轴桥式磁场传感器为 MTJ桥式磁场传感 器
优选地, X轴桥式磁场传感器为参考桥式磁场传感器, Y轴桥式磁场传感器为推挽桥 式磁场传感器。
优选地, 所述双轴磁场传感器可设置在单一芯片上, 也可以设置在不同芯片上。
优选地, 所述双轴磁场传感器通过金线与 ASIC元件相电连。
优选地, 所述双轴磁场传感器通过焊锡球与 ASIC元件相电连。
优选地, 所述 Z轴磁场传感器为 MTJ磁场传感器, 该 MTJ传感器通过焊锡球水平设 置在基片上, 并且其敏感方向垂直于膜面。
优选地, 所述 Z轴磁场传感器为 MTJ磁场传感器, 该 MTJ传感器通过焊锡球垂直设 置在基片上, 并且其敏感方向平行于膜面。
优选地, 所述 Z轴磁场传感器为 MTJ磁场传感器, 该 MTJ传感器通过焊锡球倾斜设 置在基片上。
优选地, 所述 Z轴磁场传感器为霍尔或巨霍尔磁场传感器。
一种单一芯片三轴磁场传感器, 它包括一基片, 该基片上集成设置有三轴磁场传感器 单元和 ASIC元件,所述三轴磁场传感器单元包括敏感方向为 X轴的 X轴桥式磁场传感器、 敏感方向为 Y轴的 Y轴桥式磁场传感器和敏感方向为 Z轴的 Z轴磁场传感器,其中 X轴、 Y轴和 Z轴两两相互正交。
优选地, 所述 X轴桥式磁场传感器和所述 Y轴桥式磁场传感器为 MTJ桥式磁场传感 器。
优选地, 所述三轴磁场传感器单元、 所述钝化层、 所述 ASIC元件和基片相层叠设置, 所述钝化层上设置有铜导管以实现所述三轴磁场传感器单元与所述 ASIC元件之间的电学 互联。
优选地, 所述钝化层、 所述 ASIC元件、 所述基片和所述三轴磁场传感器单元相层叠 设置, 所述基片上设置有铜导管以实现所述三轴磁场传感器单元与 ASIC元件之间的电学 互联。
优选地, 所述铜导管通过硅穿孔技术实现。 优选地, 所述 Z轴磁场传感器为垂直各向异性 MTJ磁场传感器, 该传感器水平设置, 并且其敏感方向垂直于膜面。
优选地, 所述 Z轴磁场传感器为霍尔或巨霍尔磁场传感器。
优选地, 所述 Z轴磁场传感器为 MTJ磁场传感器, 该 MTJ传感器倾斜设置通过铜导 管实现与 ASIC元件的电学互联。
本发明采用以上结构, 集成度高, 灵敏度更高, 功耗更低, 线性更好, 动态范围更宽, 温度特性更好, 抗干扰能力更强。
附图说明
图 1 是一个隧道结磁电阻 (MTJ) 元件的示意图。
图 2 是垂直磁各向异性 MTJ元件的示意图。
图 3 是 MTJ元件的理想输出曲线图。
图 4 是垂直各向异性 MTJ元件的理想输出图。
图 5 是 MTJ元件串联而形成 MTJ磁电阻的示意图。
图 6 是霍尔或巨霍尔元件的原理示意图。
图 7 是霍尔元件的理想输出曲线图。
图 8 是 MTJ推挽桥式传感器的示意图。
图 9 是 MTJ推挽桥式传感器的模拟输出结果。
图 10 是 MTJ参考桥式传感器的示意图。
图 11 是 MTJ参考桥式传感器的模拟输出结果。
图 12 是一次性制备单一芯片 MTJ双轴磁场传感器的示意图。
图 13 是 Z轴磁场传感器在斜面上固定 MTJ传感器的示意图。
图 14 是 Z轴磁场传感器垂直竖装的 MTJ桥式传感器的示意图。
图 15 是通过芯片堆叠和引线键合工艺实现的三轴磁场传感器的示意图。
图 16 是通过芯片堆叠和芯片倒装工艺实现的三轴磁场传感器的示意图。
图 17 是一种单一芯片 MTJ三轴磁场传感器的示意图。
图 18 是另一种单一芯片 MTJ三轴磁场传感器的示意图。 附图中: 1、 MTJ元件; 2、 磁性钉扎层; 3、 反铁磁层; 4、 铁磁层; 5、 隧道势垒层; 6、 磁性自由层; 7、 磁性自由层的磁化方向; 8、 磁性钉扎层的磁化方向; 9、 外加磁场; 10、 敏感方向; 11、 种子层; 12、 上电极层; 13、 测量电阻值; 14、 低阻态; 15、 高阻态; 16、 电流方向; 17、 永磁铁; 18、 基片; 19、 ASIC元件; 20、 MTJ桥式传感器; 21、 凸 点; 22、 X轴桥式磁场传感器; 23、 Y轴桥式磁场传感器; 24、 Z轴磁场传感器; 25、 金 线; 26、 锡焊球; 27、 钝化层; 28、 铜导管; 29、 双轴磁场传感器; 30、 三轴磁场传感器 单元; 41、 R1的磁性自由层的磁化方向; 42、 R2的磁性自由层的磁化方向; 43、 R3的磁 性自由层的磁化方向; 44、 R4的磁性自由层的磁化方向。
具体实施方式
下面结合附图 1-18之一对本发明的较佳实施例进行详细阐述,以使本发明的优点和特 征能更易于被本领域的技术人员理解, 从而对本发明的保护范围作出更为清楚明确的界 定。
隧道结磁电阻概述:
图 1是一个隧道结磁电阻(MTJ)元件的示意图。 一个标准的 MTJ元件 1包括磁性自 由层 6, 磁性钉扎层 2以及两个磁性层之间的隧道势垒层 5。 磁性自由层 6由铁磁材料构 成, 磁性自由层的磁化方向 7随外部磁场的改变而变化。 磁性钉扎层 2是一个磁化方向固 定的磁性层, 磁性钉扎层的磁化方向 8被钉扎在一个方向, 在一般条件不会发生改变。 磁 性钉扎层通常是在反铁磁层 3的上方或下方沉积铁磁层 4构成。 MTJ结构通常是沉积在导 电的种子层 11的上方, 同时 MTJ结构的上方为上电极层 12, MTJ元件种子层 11和上电 极层 12之间的测量电阻值 13代表磁性自由层 6和磁性钉扎层 2之间的相对磁化方向。
图 2是垂直磁各向异性 MTJ元件的示意图。 和普通 MTJ元件的区别在于, 垂直磁各 向异性 MTJ元件的磁性钉扎层的磁化方向 8和磁性自由层磁化方向 7是沿垂直膜面方向 的, 即其的敏感方向垂直于膜面。和标准 MTJ元件相同, 种子层 11和上电极层 12之间的 测量电阻值 13代表磁性自由层 6和磁性钉扎层 2之间的相对磁化方向。
图 3是 MTJ元件的理想输出曲线图, 输出曲线在低阻态 14和高阻态 15时饱和, RL 和 RH分别代表低阻态 14和高阻态 15的阻值。 当磁性自由层的磁化方向 Ί与磁性钉扎层 的磁化方向 8平行时, 整个元件的测量电阻值 13在低阻态; 当磁性自由层的磁化方向 7 与磁性钉扎层的磁化方向 8反平行时, 整个元件的测量电阻值 13在高阻态 15。 通过已知 的技术, MTJ元件 1的电阻可随着外加磁场在高阻态和低阻态间线性变化, 饱和场 -Hs和 Hs之间的磁场范围就是 MTJ元件的测量范围。
图 4是垂直磁各向异性 MTJ元件的理想输出图。 当外加场沿平行膜面方向的分量为 0 时,垂直磁各向异性 MTJ元件的输出曲线具有超高灵敏度和低饱和场。但是在通常情况下, 外场沿平行膜面方向的分量不为 0, 虽然在这种条件下垂直磁各向异性 MTJ 元件和标准 MTJ元件相比灵敏度偏低, 且饱和场 Hs值偏大, 不过相对于霍尔和巨霍尔元件还是具有 很大的优势。
图 5是 MTJ 元件串联而形成 MTJ磁电阻的示意图。串联起来的 MTJ元件 1形成 MTJ 磁电阻能降低噪声, 提高传感器的稳定性。 在 MTJ磁电阻 24中, 每个 MTJ元件 1的偏置 电压随磁隧道结数量的增加而降低。 电流的降低需要产生一个大的电压输出, 从而降低了 散粒噪声, 随着磁隧道结的增多同时也增强了传感器的 ESD稳定性。 此外, 随着 MTJ元 件 1数量的增多 MTJ磁电阻的噪声相应地降低, 这是因为每一个独立的 MTJ元件的互不 相关的随机行为被平均掉。
图 6是霍尔或巨霍尔元件的示意图。 Iin+和 Iin-是电流输入输出端, VI和 V2是电压 输出端。 当稳恒电流 I由电流端 Iin+流向 Iin-时, 如果有外加磁场 9 (其方向垂直于电流端 和电压端组成的平面) 作用在霍尔或巨霍尔元件上, 这时电压端 VI和 V2将产生电压差, 其理想输出曲线如图 7所示。
推挽全桥传感器的设计:
图 8是一种 MTJ推挽全桥传感器的示意图。 四个 MTJ磁电阻 Rl、 R2、 R3、 R4全桥 联接, 每个 MTJ磁电阻由一个或多个 MTJ元件 1串联组成 (如图 2)。 四个磁电阻元件的 磁性钉扎层的磁矩方向相同, 每个磁电阻元件的磁性自由层磁化方向和磁性钉扎层磁化方 向呈一夹角 9 (可以为 30° 到 90° 之间), 且每个磁电阻元件的这一夹角 Θ大小相同, 位 于相对位置的磁电阻元件(R1和 R3, R2和 R4)的磁性自由层磁化方向相同(41和 43,42 和 44), 位于相邻位置的磁电阻元件(R1和 R2, R3和 R4)的磁性自由层的磁化方向不同 (41和 42,43和 44)。 该全桥结构的敏感方向 10垂直于磁性钉扎层的磁化方向 8。 该设计 的磁性钉扎层的磁化方向 8相同, 可以在同一芯片上通过一次工艺直接形成推挽全桥传感 器, 不需要采用多芯片封装工艺, 也不需要进行激光加热局部辅助热退火。
当对推挽全桥传感器施加一外场时, 沿敏感方向 10 的磁场分量使相对位置的磁电阻 R1和 R3阻值增加的同时另外两个处于相对位置的磁电阻 R2和 R4的阻值会相应地减小, 改变外场的方向会使 R1和 R3阻值减小的同时 R2和 R4的阻值会相应地增加, 使用两对 磁电阻的组合测量外场有相反的响应一一一对阻值增加另一对阻值降低——这样可以增 加桥式电路的响应, 因此被称为 "推挽式 "桥式电路。 在理想情况下, 若电阻 R1 的阻值 变为 (R1+ A R), 贝 IJ相应的 R3 的阻值为 (R1+ A R), R2禾口 R4的阻值为 (R1- A R), 贝 lj输 出为: n_ 2 = ^2- -(^l± )
R2 + RI b,as (i)
理想情况下, R1=R2〉AR, 则化简后可得:
Vl-V2,^-Vbias (2)
R2 + RI bms 即实现推挽全桥的输出, 其输出曲线的模拟结果见图 9。
磁性自由层和磁性钉扎层的夹角可由以下方式或以下方式的结合实现:
(1)形状各向异性能: 利用 MTJ元件的各向异性能对磁性自由层磁化方向进行偏置, MTJ元件的长轴是易磁化轴, 通过设置元件的长短轴比可以设置其形状各项异性;
(2) 永磁体偏置: 在 MTJ元件周围设置永磁体对此性自由层磁化方向进行偏置;
(3) 电流线偏置: 在 MTJ元件上层或下层沉积金属导线产生磁场, 从而实现对磁性 自由层磁化方向的偏置;
(4) 奈尔耦合: 利用磁性钉扎层和磁性自由层间的奈尔耦合场对磁性自由层磁化方 向进行偏置;
(5) 交换偏置: 该技术是通过 MTJ元件自由层和相邻的弱反铁磁层的交换耦合作用 创建一个有效的垂直于敏感方向的外场。可以在自由层和交换偏置层间设置 Cu或 Ta的隔 离层来降低交换偏置强度。
参考全桥传感器的设计:
图 10是一种 MTJ参考全桥传感器的示意图。 四个 MTJ磁电阻 Rl、 R2、 R3、 R4全 桥联接, 每个磁电阻由一个或多个 MTJ元件串联组成 (如图 2)。 其中磁电阻元件 R1和 R3 的输出曲线强烈依赖外加磁场 9, 被称为感应臂, 与之相对应的磁电阻元件 R2和 R4 的输出曲线弱依赖于外加磁场 9, 被称为参考臂。 该全桥结构的敏感方向 10平行于磁性钉 扎层的磁化方向 8。 该设计的磁性钉扎层方向相同, 可以在同一芯片上通过一次工艺直接 形成推挽全桥传感器, 不需要采用多芯片封装工艺, 也不需要进行激光加热局部辅助热退 火。
当对推挽全桥传感器施加一外场时, 沿敏感方向 10的磁场分量使感应臂磁电阻 R1和 R3阻值增加或减小,而参考臂磁电阻 R2和 R4在感应臂磁电阻的饱和场 Hs范围内变化很 小, 在实际情况下, MTJ参考全桥传感器的线性区域是足够宽的, 其输出曲线的模拟结果 见图 11。
对于构建参考桥式传感器来说, 很重要的一点是设置参考臂的灵敏度。 磁阻元件的灵 敏度被定义为电阻随外加磁场的作用变化的电阻函数-
6
替换页 (细则第 26条)
Figure imgf000009_0001
(3)
减少参考臂和与之相关的感应臂的磁阻是不实际的, 所以改变的灵敏度的最佳方式是 改变 Hs。 这可以是由下面一种或几种不同的方法的组合来实现:
( 1 ) 磁屏蔽: 将高磁导率铁磁层沉积在参考臂上以削弱外加磁场的作用;
(2) 形状各向异性能: 由于参考元件和传感元件有不同的尺寸因此具有不同的形状 各向异性能。最普遍的做法是使参考元件的长轴长度大于 MTJ传感元件的长轴长度, 短轴 长度小于传感元件的短轴长度, 因此参考元件平行于敏感方向的退磁效应要远大于传感元 件;
(3) 交换偏置: 该技术是通过 MTJ元件自由层和相邻的弱反铁磁层的交换耦合作用 创建一个有效的垂直于敏感方向的外场。 可以在自由层和交换偏置层间设置 Cu 或 Ta 的 隔离层来降低交换偏置强度;
(4)散场偏置: 在该技术中, Fe、 Co、 Cr和 Pt等永磁合金材料被沉积到传感元件表 面或磁隧道结上,用于提供散磁场以偏置 MTJ元件的输出曲线。永磁偏置的一个优势是可 以在电桥构成以后的使用一个大的磁场初始化永磁体。 另外一个非常重要的优势是偏置场 可以消除 MTJ元件的磁畴以稳定和线性化 MTJ元件的输出。 该设计的巨大优点在于其在 设计调整上具有很大的灵活性。
单一芯片 MTJ双轴磁场传感器的设计:
通常沉积在同一硅片上的 MTJ元件由于其磁矩翻转所需要的磁场强度大小相同,因而 在同一个硅片上的磁电阻元件, 在进行退火之后, 钉扎层磁化方向通常都相同。 通常双轴 磁场传感器可以由两个桥式磁场传感器呈 90° 角组合设置来实现, 以下我们将阐述单一芯 片的双轴磁场传感器的实现。单一芯片 MTJ双轴磁场传感器的设计可通过以下方法或几种 方法的组合实现:
方法一: 激光加热辅助磁畴局部翻转法。将 MTJ元件在同一强磁场中退火来使不同桥 臂的被钉扎层磁矩方向相同。 之后采用激光对硅片进行局部加热辅助磁矩翻转, 从而实现 地单一硅片上制备双轴磁场传感器;
方法二: 采用多次成膜工艺, 分多次分别沉积被钉扎层方向不同的磁电阻元件。 方法三: 一次性制备单一芯片 MTJ双轴磁场传感器 (如图 12所示)。 敏感方向为 Y 轴的 MTJ推挽全桥传感器和敏感方向为 X轴的 MTJ参考全桥传感器在同一基片上采用相 同的工序制备而成, 磁性钉扎层的磁化方向 8为同一方向。
三轴磁场传感器的设计:
MTJ三轴磁场传感器包括一基片, 该基片上集成设置有双轴磁场传感器 29、敏感方向 为 Z轴的 Z轴磁场传感器 24和 ASIC 元件 19, 所述双轴磁场传感器 29包括集成设置在 该基片 18上的敏感方向为 X轴的 X轴桥式磁场传感器 22、 敏感方向为 Y轴的 Y轴桥式 磁场传感器 23, 所述双轴磁场传感器 29和 Z轴磁场传感器 24连接设置在 ASIC元件 19 上, 其中 X轴、 Y轴和 Z轴两两相交。 其中 ASIC元件的作用是调理信号。
图 15是通过芯片堆叠和引线键合工艺实现的三轴磁场传感器, ASIC元件 19上设置 有双轴磁场传感器 29和 Z轴磁场传感器 24, 双轴磁场传感器 29上设置有 X轴桥式磁场 传感器 22和 Y轴桥式磁场传感器 23。 双轴磁场传感器 29和 Z轴磁场传感器 24叠加在 ASIC元件 19表面, 采用金线 25将双轴磁场传感器 29、 Z轴磁场传感器 24和 ASIC元件 19连接。
图 16是通过芯片堆叠和芯片倒装工艺实现的三轴磁场传感器, ASIC元件 19上设置 有双轴磁场传感器 29和 Z轴磁场传感器 24, 双轴磁场传感器 29上设置有 X轴桥式磁场 传感器 22和 Y轴桥式磁场传感器 23。 如图 16所示, 双轴磁场传感器 29和 Z轴磁场传感 器 24叠加在 ASIC元件 19表面, 采用锡焊球 26将双轴磁场传感器 29、 Z轴磁场传感器 24与 ASIC元件 19相连接。
沿 Z轴方向敏感的 Z轴磁场传感器 24的设置是其实现的重点,对于采用敏感方向为 Z 轴磁场的设计, 可以采用以下方式:
( 1 )如图 13所示的在斜面上固定 MTJ桥式传感器。 图 13是在斜面上固定 MTJ桥式 传感器的示意图, 以敏感 Z轴方向的外加场沿斜面方向的分量以测量 Z轴方向的磁场。
实施方式一: 如图 13所示, 基片 18通过湿法腐蚀制备出斜面凹槽, 然后在相对的斜 面上制备 4个 MTJ磁电阻, 通过锡焊球与 ASIC 元件 19连接, 相对安置的 MTJ磁电阻可 以最大范围抵消 X、 Y轴信号的干扰, 提高其对 Z轴方向的敏感度, 4个 MTJ磁电阻全桥 连接为推挽全桥传感器 (如图 8), 也可以全桥连接为参考全桥传感器 (如图 10)。
实施方式二: 如图 13所示, 基片 18通过湿法腐蚀制备出斜面凹槽, 然后在相对的斜 面上制备两个 MTJ桥式磁场传感器, 通过锡焊球与 ASIC元件 19连接, 相对安置的 MTJ 桥式磁场传感器可以最大范围抵消 X、 Y轴信号的干扰, 提高其对 Z轴方向的敏感度。 两 个 MTJ桥式磁场传感器可以是推挽全桥传感器 (如图 8), 也可以是参考全桥传感器 (如 ( 2)如图 14所示的垂直竖装的 MTJ桥式传感器。 图 14是垂直竖装的 MTJ桥式传感 器的示意图, 在 MTJ桥式传感器 20的边缘制作凸点 21, 采用 90° 竖装的方式将 MTJ桥 式传感器 20装载到 ASIC元件 19上, 通过凸点 21与 ASIC元件 19的焊盘实现连接, 以 敏感 Z轴方向的磁场。
( 3 ) 如附图 2所示垂直磁各向异性 MTJ元件的桥式磁场传感器, 可以是推挽桥式传 感器, 也可以是参考桥式传感器。 垂直磁各向异性 MTJ桥式传感器叠加在 ASIC元件 19 上并与之连接;
( 4) 采用霍尔或巨霍尔元件的磁场传感器。 如图 6所示, 霍尔或巨霍尔元件的输出 端垂直于输入电流方向和外加磁场 9构建的平面, 因此我们可以将输出端 VI、 V2设置在 平行于膜面且与输入电流方向垂直的方向两端, 进而感知 Z轴方向的磁场。
单一芯片 MTJ三轴磁场传感器的设计:
图 17是一种单一芯片 MTJ三轴磁场传感器的示意图。 如图 17所示, 在基片 18上制 备 ASIC元件 19, ASIC 元件的表面为氧化物钝化层 27, 经过化学研磨抛光后在钝化层 27 上制备三轴磁场传感器单元 30和 ASIC元件 19,三轴磁场传感器单元 30包括 X轴桥式磁 场传感器 22、 Y轴桥式磁场传感器 23、 Z轴磁场传感器 24, ASIC元件 19和 X轴桥式磁 场传感器 22、 Y轴桥式磁场传感器 23、 Z轴磁场传感器 24通过铜导管 28连接, 铜导管 28可通过半导体加工工艺的涂显影剂, 曝光, 电镀 (沉积), 二次曝光工序实现。
敏感方向为 X轴的 X轴桥式磁场传感器和敏感方向为 Y轴的 Y轴桥式磁场传感器 23 为 MTJ桥式传感器 20, 其敏感元件为 MTJ元件 1。 具体实施方式参见图 12。
敏感方向为 Z轴的 Z轴磁场传感器 24可以是在斜面上固定的 MTJ磁场传感器(如图 13), 也可以是垂直磁各向异性 MTJ磁场传感器(如图 2), 也可以是霍尔或巨霍尔磁场传 感器 (如图 7)。
如图 18是另一种单一芯片 MTJ三轴磁场传感器的示意图。 如图 17所示, 在基片 18 上制备 ASIC元件 19, 氧化物钝化层 27在 ASIC 元件 19的表面上, 三轴磁场传感器单元 30位于基片 18的背面, 三轴磁场传感器单元 30包括 X轴桥式磁场传感器 22、 Y轴桥式 磁场传感器 23、 Z轴磁场传感器 24, ASIC元件 19 和 X轴桥式磁场传感器 22、 Y轴桥式 磁场传感器 23、 Z轴磁场传感器 24通过铜导管 28相连接, 铜导管 28可通过半导体加工 工艺中的硅穿孔 (湿法腐蚀或干法腐蚀), 电镀 (沉积), 腐蚀工序实现。
敏感方向为 X轴的 X轴桥式磁场传感器和敏感方向为 Y轴的 Y轴桥式磁场传感器 23 为 MTJ桥式传感器 20, 其敏感元件为 MTJ元件 1。 具体实施方式参见图 6。 敏感方向为 Z轴的 Z轴磁场传感器 24可以是在斜面上固定的 MTJ磁场传感器(如图 13), 也可以是垂直磁各向异性 MTJ磁场传感器(如图 2), 也可以是霍尔或巨霍尔磁场传 感器 (如图 7)。
以上对本发明的特定实施例结合图示进行了说明, 很明显, 在不离开本发明的范围和 精神的基础上, 可以对现有技术和工艺进行很多修改。 在本发明的所属技术领域中, 只要 掌握通常知识, 就可以在本发明的技术要旨范围内, 进行多种多样的变更。

Claims

权利要求书
1. 一种三轴磁场传感器, 其特征在于: 它包括一基片, 该基片上集成设置有双轴磁场 传感器、 敏感方向为 Z轴的 Z轴磁场传感器和 ASIC 元件, 所述双轴磁场传感器包括敏 感方向为 X轴的 X轴桥式磁场传感器、 敏感方向为 Y轴的 Y轴桥式磁场传感器, 所述 双轴磁场传感器和 Z轴磁场传感器连接设置在 ASIC 元件上,其中 X轴、 Y轴和 Z轴两 两相交。
2. 根据权利要求 1 所述的三轴磁场传感器,其特征在于 : X轴桥式磁场传感器和 Y轴 桥式磁场传感器为 MTJ桥式磁场传感器。
3. 根据权利要求 1 所述的三轴磁场传感器, 其特征在于: 所述双轴磁场传感器可设 置在单一芯片上, 也可设置在不同芯片上。
4. 根据权利要求 1 所述的三轴磁场传感器, 其特征在于: 所述双轴磁场传感器通过 金线与 ASIC 元件相电连。
5. 根据权利要求 1 所述的三轴磁场传感器, 其特征在于: 所述双轴磁场传感器通过 焊锡球与 ASIC 元件相电连。
6. 根据权利要求 1 所述的三轴磁场传感器, 其特征在于: X 轴桥式磁场传感器为参 考桥式磁场传感器, Y轴桥式磁场传感器为推挽桥式磁场传感器。
7. 根据权利要求 1 所述的三轴磁场传感器, 其特征在于: 所述 Z轴磁场传感器为垂 直磁各向异性 MTJ磁场传感器, 该 MTJ传感器水平设置在基片上, 并且其敏感方向垂直 于膜面。
8. 根据权利要求 1 所述的三轴磁场传感器, 其特征在于: 所述 Z轴磁场传感器为 MTJ磁场传感器, 该 MTJ传感器垂直设置在基片上, 通过焊锡球与 ASIC 元件连接, 并 且该 MTJ传感器的敏感方向平行于膜面。
9. 根据权利要求 1 所述的三轴磁场传感器, 其特征在于: 所述 Z轴磁场传感器为 MTJ磁场传感器, 该 MTJ传感器倾斜设置在基片上通过锡球焊接实现与 ASIC 元件的互 联和固定。
10. 根据权利要求 1 所述的三轴磁场传感器,其特征在于: 所述 z轴磁场传感器为霍 尔或巨霍尔磁场传感器。
11. 一种单一芯片三轴磁场传感器, 其特征在于: 它包括一基片, 该基片上集成设置 有三轴磁场传感器单元和 ASIC 元件,所述三轴磁场传感器单元包括敏感方向为 X轴的 X 轴桥式磁场传感器、 敏感方向为 Y轴的 Y轴桥式磁场传感器和敏感方向为 z轴的 Z轴 磁场传感器, 其中 X轴、 Y轴和 z轴两两相互正交。
12. 根据权利要求 11 所述的单一芯片三轴磁场传感器, 其特征在于: 所述 X轴桥式 磁场传感器和所述 Y轴桥式磁场传感器为 MTJ桥式磁场传感器。
13. 根据权利要求 11 所述的单一芯片三轴磁场传感器,其特征在于:所述三轴磁场传 感器单元、 所述钝化层、 所述 ASIC 元件和基片相层叠设置, 所述钝化层上设置有铜导管 以实现所述三轴磁场传感器单元与所述 ASIC 元件之间的电学互联。
14. 根据权利要求 11 所述的单一芯片三轴磁场传感器, 其特征在于: 所述钝化层、所 述 ASIC 元件、 所述基片和所述三轴磁场传感器单元相层叠设置, 所述基片上设置有铜导 管以实现所述三轴磁场传感器单元与 ASIC 元件之间的电学互联。
15. 根据权利要求 11 所述的单一芯片三轴磁场传感器, 其特征在于: 所述 Z轴磁场 传感器为垂直磁各向异性 MTJ 磁场传感器, 该传感器水平设置, 并且该垂直磁各向异性 MTJ磁场传感器敏感方向垂直于膜面。
16. 根据权利要求 11 所述的单一芯片三轴磁场传感器, 其特征在于: 所述 Z轴磁场 传感器为霍尔或巨霍尔磁场传感器。
17. 根据权利要求 11 所述的单一芯片三轴磁场传感器, 其特征在于: 所述 Z轴磁场 传感器为 MTJ磁场传感器,该 MTJ传感器倾斜设置通过铜导管实现与 ASIC 元件的电学 互联。
PCT/CN2012/080600 2011-08-30 2012-08-27 三轴磁场传感器 WO2013029510A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/239,786 US9733316B2 (en) 2011-08-30 2012-08-27 Triaxial magnetic field sensor
EP12828008.8A EP2752676B1 (en) 2011-08-30 2012-08-27 Triaxial magnetic field sensor
JP2014527479A JP6076345B2 (ja) 2011-08-30 2012-08-27 3軸磁場センサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110251902.9 2011-08-30
CN2011102519029A CN102426344B (zh) 2011-08-30 2011-08-30 三轴磁场传感器

Publications (1)

Publication Number Publication Date
WO2013029510A1 true WO2013029510A1 (zh) 2013-03-07

Family

ID=45960349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/080600 WO2013029510A1 (zh) 2011-08-30 2012-08-27 三轴磁场传感器

Country Status (5)

Country Link
US (1) US9733316B2 (zh)
EP (1) EP2752676B1 (zh)
JP (1) JP6076345B2 (zh)
CN (1) CN102426344B (zh)
WO (1) WO2013029510A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015190880A (ja) * 2014-03-28 2015-11-02 Dmg森精機株式会社 位置検出装置
US20170284830A1 (en) * 2014-03-10 2017-10-05 Dmg Mori Seiki Co., Ltd. Position detecting device
EP3124989A4 (en) * 2014-03-28 2017-12-06 Multidimension Technology Co., Ltd. Single-chip three-axis magnetic field sensor and preparation method therefor
EP3133412A4 (en) * 2014-04-17 2018-01-03 Multidimension Technology Co., Ltd. Single-chip and three-axis linear magnetic sensor and manufacturing method therefor

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102226835A (zh) * 2011-04-06 2011-10-26 江苏多维科技有限公司 单一芯片双轴磁场传感器及其制备方法
CN102385043B (zh) * 2011-08-30 2013-08-21 江苏多维科技有限公司 Mtj三轴磁场传感器及其封装方法
CN102426344B (zh) 2011-08-30 2013-08-21 江苏多维科技有限公司 三轴磁场传感器
CN104995525A (zh) * 2012-12-17 2015-10-21 地质研究院及核科学有限公司 宽动态范围磁强计
CN103885004A (zh) * 2012-12-21 2014-06-25 磁感科技香港有限公司 一种磁传感装置及其磁感应方法、制备工艺
CN103885005B (zh) * 2012-12-21 2018-11-02 上海矽睿科技有限公司 磁传感装置及其磁感应方法
CN104103753B (zh) * 2013-04-09 2017-09-08 昇佳电子股份有限公司 磁阻膜层结构以及使用此磁阻膜层结构的磁场传感器
CN104422906A (zh) * 2013-08-29 2015-03-18 上海矽睿科技有限公司 一种磁传感器及其制备工艺
CN104422905B (zh) * 2013-08-29 2018-05-01 上海矽睿科技有限公司 磁传感器及其制备工艺
US9459835B2 (en) * 2014-01-15 2016-10-04 HGST Netherlands B.V. Random number generator by superparamagnetism
CN105336847A (zh) * 2014-06-03 2016-02-17 中芯国际集成电路制造(上海)有限公司 一种三维磁阻传感器的制造方法和电子装置
CN104280700B (zh) * 2014-09-28 2017-09-08 江苏多维科技有限公司 一种单芯片差分自由层推挽式磁场传感器电桥及制备方法
CN104297705B (zh) * 2014-09-29 2017-10-13 杭州电子科技大学 一种新型的集成单体芯片三轴磁敏传感器
CN105044631B (zh) * 2015-08-28 2018-08-07 江苏多维科技有限公司 一种半翻转两轴线性磁电阻传感器
EP3385739B1 (en) * 2015-12-03 2021-10-06 Alps Alpine Co., Ltd. Magnetic detection device
US9739842B2 (en) 2016-01-26 2017-08-22 Nxp Usa, Inc. Magnetic field sensor with skewed sense magnetization of sense layer
US9897667B2 (en) 2016-01-26 2018-02-20 Nxp Usa, Inc. Magnetic field sensor with permanent magnet biasing
US9841469B2 (en) 2016-01-26 2017-12-12 Nxp Usa, Inc. Magnetic field sensor with multiple sense layer magnetization orientations
US10545196B2 (en) * 2016-03-24 2020-01-28 Nxp Usa, Inc. Multiple axis magnetic sensor
US10145907B2 (en) 2016-04-07 2018-12-04 Nxp Usa, Inc. Magnetic field sensor with permanent magnet biasing
US9933496B2 (en) 2016-04-21 2018-04-03 Nxp Usa, Inc. Magnetic field sensor with multiple axis sense capability
KR102182095B1 (ko) * 2016-07-12 2020-11-24 한양대학교 산학협력단 3축 자기 센서
CN106324534B (zh) * 2016-09-13 2023-10-31 江苏多维科技有限公司 用于激光写入系统的磁电阻传感器晶元版图及激光扫描方法
US10330742B2 (en) * 2016-12-23 2019-06-25 Biosense Webster (Israel) Ltd. Triple axis sensor on a single layer printed circuit
US20180220926A1 (en) * 2017-02-06 2018-08-09 Boston Scientific Scimed Inc. Electromagnetic navigation system with magneto-resistive sensors and application-specific integrated circuits
JP7262885B2 (ja) * 2017-06-16 2023-04-24 朝日インテック株式会社 超高感度マイクロ磁気センサ
JP7262886B2 (ja) 2017-07-21 2023-04-24 朝日インテック株式会社 超小型高感度磁気センサ
CN108259032B (zh) * 2017-12-14 2024-02-09 江苏多维科技有限公司 一种磁滞激光编程的单切片tmr开关传感器
US10509058B2 (en) 2018-01-12 2019-12-17 Allegro Microsystems, Llc Current sensor using modulation of or change of sensitivity of magnetoresistance elements
EP3514502B1 (en) * 2018-01-22 2021-07-14 Melexis Technologies SA Inductive position sensor
EP3514559B1 (en) 2018-01-22 2021-08-25 Melexis Technologies SA Sensor package
US11525701B2 (en) 2018-01-22 2022-12-13 Melexis Technologies Sa Inductive position sensor
CN108089139B (zh) * 2018-01-30 2024-02-27 江苏多维科技有限公司 一种可重置的双极型开关传感器
JP2020017692A (ja) * 2018-07-27 2020-01-30 Tdk株式会社 電子部品パッケージ
US10746820B2 (en) * 2018-10-11 2020-08-18 Allegro Microsystems, Llc Magnetic field sensor that corrects for the effect of a stray magnetic field using one or more magnetoresistance elements, each having a reference layer with the same magnetic direction
US10670669B2 (en) 2018-10-11 2020-06-02 Allegro Microsystems, Llc Magnetic field sensor for measuring an amplitude and a direction of a magnetic field using one or more magnetoresistance elements having reference layers with the same magnetic direction
DE102019000254A1 (de) 2019-01-16 2020-07-16 Infineon Technologies Ag Magnetfelderfassung
CN109883456B (zh) 2019-04-02 2024-06-28 江苏多维科技有限公司 一种磁电阻惯性传感器芯片
US10866287B1 (en) * 2019-07-10 2020-12-15 Allegro Microsystems, Llc Magnetic field sensor with magnetoresistance elements arranged in a bridge and having a common reference direction and opposite bias directions
CN111044951B (zh) * 2019-11-27 2022-06-24 北京航空航天大学青岛研究院 三轴磁场传感器及其制造方法
CN112097800A (zh) * 2020-08-31 2020-12-18 美新半导体(无锡)有限公司 360度磁角度传感器
CN112557972A (zh) * 2020-12-10 2021-03-26 珠海多创科技有限公司 Tmr磁场传感器
US11493567B2 (en) 2021-03-31 2022-11-08 Tdk Corporation Magnetic sensor device and magnetic sensor system
JP7332738B2 (ja) * 2021-07-08 2023-08-23 Tdk株式会社 磁気センサ装置および磁気センサシステム
US11686788B2 (en) 2021-07-08 2023-06-27 Tdk Corporation Magnetic sensor device and magnetic sensor system
CN113571632B (zh) * 2021-09-23 2021-12-10 南开大学 一种反常霍尔元件及其制备方法
JP7452562B2 (ja) 2022-03-01 2024-03-19 Tdk株式会社 磁気センサ、磁気式エンコーダ、レンズ位置検出装置および測距装置ならびに磁気センサの製造方法
CN115825826B (zh) * 2022-12-22 2023-09-15 南方电网数字电网研究院有限公司 一种三轴全桥电路变换式线性磁场传感器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080272771A1 (en) * 2007-05-02 2008-11-06 Magic Technologies, Inc. Magnetic tunnel junction (MTJ) based magnetic field angle sensor
US20090115405A1 (en) * 2007-11-01 2009-05-07 Magic Technologies, Inc. Magnetic field angular sensor with a full angle detection
CN101813479A (zh) * 2010-04-01 2010-08-25 王建国 Tmr电子罗盘
CN102385043A (zh) * 2011-08-30 2012-03-21 江苏多维科技有限公司 Mtj三轴磁场传感器及其封装方法
CN102426344A (zh) * 2011-08-30 2012-04-25 江苏多维科技有限公司 三轴磁场传感器
CN202210145U (zh) * 2011-08-30 2012-05-02 江苏多维科技有限公司 Mtj三轴磁场传感器
CN202362441U (zh) * 2011-08-30 2012-08-01 江苏多维科技有限公司 三轴磁场传感器

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6304082B1 (en) * 1999-07-13 2001-10-16 Honeywell International Inc. Printed circuit boards multi-axis magnetometer
JP2002324929A (ja) * 2001-04-26 2002-11-08 Canon Inc トンネル磁気抵抗効果素子
JP4500472B2 (ja) * 2001-08-13 2010-07-14 アルプス電気株式会社 磁気スイッチ及び磁気センサ
CN1234017C (zh) 2001-11-13 2005-12-28 北京科大天宇微电子材料技术开发有限公司 一种使用磁隧道结磁电阻材料的三维微弱磁场检测器件
JP4084036B2 (ja) * 2001-12-04 2008-04-30 株式会社リコー 磁気センサ及びこの磁気センサを用いた方位検知システム
JP5348080B2 (ja) * 2002-03-27 2013-11-20 ヤマハ株式会社 磁気センサおよびその製造方法
JP4214853B2 (ja) * 2002-07-29 2009-01-28 ヤマハ株式会社 磁気センサ
KR100533106B1 (ko) * 2002-08-06 2005-12-05 삼성전자주식회사 지자계 센서의 자세 오차 보상장치 및 방법
US6836971B1 (en) * 2003-07-30 2005-01-04 Honeywell International Inc. System for using a 2-axis magnetic sensor for a 3-axis compass solution
EP1697585A4 (en) * 2003-12-15 2009-04-08 Univ Yale MAGNETOELECTRONIC DEVICES BASED ON COLOSSAL MAGNETOESISTANT THIN FILMS
JP4798102B2 (ja) * 2004-03-30 2011-10-19 株式会社デンソー 縦型ホール素子
WO2006070305A1 (en) 2004-12-28 2006-07-06 Koninklijke Philips Electronics N.V. Bridge type sensor with tunable characteristic
WO2006098431A1 (ja) * 2005-03-17 2006-09-21 Yamaha Corporation 三軸磁気センサおよびその製造方法
KR20060111246A (ko) * 2005-04-21 2006-10-26 삼성전기주식회사 2축 지자기센서와 가속도센서를 이용한 기울임 보상 방법및 그 장치
CN100593122C (zh) 2005-12-09 2010-03-03 中国科学院物理研究所 一种平面集成的三维磁场传感器及其制备方法和用途
FR2903812B1 (fr) * 2006-07-13 2008-10-31 Commissariat Energie Atomique Circuit integre reparti sur au moins deux plans non paralleles et son procede de realisation
US7870678B2 (en) * 2006-09-06 2011-01-18 Samsung Electro-Mechanics Co., Ltd. Hybrid sensor module and sensing method using the same
JP2008270471A (ja) * 2007-04-19 2008-11-06 Yamaha Corp 磁気センサ及びその製造方法
EP2003462B1 (en) 2007-06-13 2010-03-17 Ricoh Company, Ltd. Magnetic sensor and production method thereof
US20090072823A1 (en) * 2007-09-17 2009-03-19 Honeywell International Inc. 3d integrated compass package
US7795862B2 (en) * 2007-10-22 2010-09-14 Allegro Microsystems, Inc. Matching of GMR sensors in a bridge
US7564237B2 (en) * 2007-10-23 2009-07-21 Honeywell International Inc. Integrated 3-axis field sensor and fabrication methods
JP5066579B2 (ja) * 2007-12-28 2012-11-07 アルプス電気株式会社 磁気センサ及び磁気センサモジュール
US8242776B2 (en) * 2008-03-26 2012-08-14 Everspin Technologies, Inc. Magnetic sensor design for suppression of barkhausen noise
WO2009119346A1 (ja) 2008-03-28 2009-10-01 アルプス電気株式会社 磁気センサパッケージ
US7965077B2 (en) 2008-05-08 2011-06-21 Everspin Technologies, Inc. Two-axis magnetic field sensor with multiple pinning directions
DE102009006368B3 (de) * 2009-01-28 2010-07-01 Asm Automation Sensorik Messtechnik Gmbh Neigungssensor
US8390283B2 (en) * 2009-09-25 2013-03-05 Everspin Technologies, Inc. Three axis magnetic field sensor
US20110147867A1 (en) * 2009-12-23 2011-06-23 Everspin Technologies, Inc. Method of vertically mounting an integrated circuit
US20110234218A1 (en) * 2010-03-24 2011-09-29 Matthieu Lagouge Integrated multi-axis hybrid magnetic field sensor
US8518734B2 (en) * 2010-03-31 2013-08-27 Everspin Technologies, Inc. Process integration of a single chip three axis magnetic field sensor
CN101893722B (zh) * 2010-06-29 2012-12-19 上海大学 一种基于巨磁阻传感器的地磁横滚角测量系统及方法
US8395381B2 (en) * 2010-07-09 2013-03-12 Invensense, Inc. Micromachined magnetic field sensors
CN201935997U (zh) * 2010-08-11 2011-08-17 上海腾怡半导体有限公司 磁场传感器芯片
US20120299587A1 (en) * 2011-05-26 2012-11-29 Honeywell International Inc. Three-axis magnetic sensors

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080272771A1 (en) * 2007-05-02 2008-11-06 Magic Technologies, Inc. Magnetic tunnel junction (MTJ) based magnetic field angle sensor
US20090115405A1 (en) * 2007-11-01 2009-05-07 Magic Technologies, Inc. Magnetic field angular sensor with a full angle detection
CN101813479A (zh) * 2010-04-01 2010-08-25 王建国 Tmr电子罗盘
CN102385043A (zh) * 2011-08-30 2012-03-21 江苏多维科技有限公司 Mtj三轴磁场传感器及其封装方法
CN102426344A (zh) * 2011-08-30 2012-04-25 江苏多维科技有限公司 三轴磁场传感器
CN202210145U (zh) * 2011-08-30 2012-05-02 江苏多维科技有限公司 Mtj三轴磁场传感器
CN202362441U (zh) * 2011-08-30 2012-08-01 江苏多维科技有限公司 三轴磁场传感器

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170284830A1 (en) * 2014-03-10 2017-10-05 Dmg Mori Seiki Co., Ltd. Position detecting device
US10024691B2 (en) 2014-03-10 2018-07-17 Dmg Mori Seiki Co., Ltd. Position detecting device
US10048093B2 (en) 2014-03-10 2018-08-14 Dmg Mori Seiki Co., Ltd. Position detecting device
JP2015190880A (ja) * 2014-03-28 2015-11-02 Dmg森精機株式会社 位置検出装置
EP3124989A4 (en) * 2014-03-28 2017-12-06 Multidimension Technology Co., Ltd. Single-chip three-axis magnetic field sensor and preparation method therefor
US10107871B2 (en) 2014-03-28 2018-10-23 MultiDimension Technology Co., Ltd. Monolithic three-axis magnetic field sensor and its manufacturing method
EP3133412A4 (en) * 2014-04-17 2018-01-03 Multidimension Technology Co., Ltd. Single-chip and three-axis linear magnetic sensor and manufacturing method therefor

Also Published As

Publication number Publication date
JP2014529743A (ja) 2014-11-13
CN102426344A (zh) 2012-04-25
EP2752676A1 (en) 2014-07-09
US20140247042A1 (en) 2014-09-04
JP6076345B2 (ja) 2017-02-08
EP2752676B1 (en) 2021-03-10
US9733316B2 (en) 2017-08-15
CN102426344B (zh) 2013-08-21
EP2752676A4 (en) 2015-12-02

Similar Documents

Publication Publication Date Title
WO2013029510A1 (zh) 三轴磁场传感器
JP6076346B2 (ja) Mtj三軸磁場センサおよびそのパッケージ方法
US9722175B2 (en) Single-chip bridge-type magnetic field sensor and preparation method thereof
JP6474833B2 (ja) モノリシック三軸リニア磁気センサ及びその製造方法
WO2015144073A1 (zh) 一种单芯片三轴磁场传感器及其制备方法
JP6426178B2 (ja) シングルチップ・プッシュプルブリッジ型磁界センサ
JP6420665B2 (ja) 磁場を測定する磁気抵抗センサ
US10060941B2 (en) Magnetoresistive gear tooth sensor
JP6474822B2 (ja) 高感度プッシュプルブリッジ磁気センサ
WO2012136158A2 (zh) 单片双轴桥式磁场传感器
JP2015511705A (ja) 磁気抵抗磁場勾配センサ
WO2015058632A1 (zh) 一种用于高强度磁场的推挽桥式磁传感器
JP2014512003A (ja) シングルチッププッシュプルブリッジ型磁界センサ
WO2015096744A1 (zh) 一种用于高强度磁场的单芯片参考桥式磁传感器
CN203811786U (zh) 一种单芯片三轴磁场传感器
CN202362441U (zh) 三轴磁场传感器
CN203811787U (zh) 一种单芯片三轴线性磁传感器
CN202210145U (zh) Mtj三轴磁场传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828008

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14239786

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014527479

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012828008

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012828008

Country of ref document: EP