WO2015144073A1 - 一种单芯片三轴磁场传感器及其制备方法 - Google Patents

一种单芯片三轴磁场传感器及其制备方法 Download PDF

Info

Publication number
WO2015144073A1
WO2015144073A1 PCT/CN2015/075146 CN2015075146W WO2015144073A1 WO 2015144073 A1 WO2015144073 A1 WO 2015144073A1 CN 2015075146 W CN2015075146 W CN 2015075146W WO 2015144073 A1 WO2015144073 A1 WO 2015144073A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
sensor
magnetic field
axis sensor
magnetoresistive
Prior art date
Application number
PCT/CN2015/075146
Other languages
English (en)
French (fr)
Inventor
迪克·詹姆斯·G
李丹
Original Assignee
江苏多维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏多维科技有限公司 filed Critical 江苏多维科技有限公司
Priority to US15/300,068 priority Critical patent/US10107871B2/en
Priority to JP2017501453A priority patent/JP6496005B2/ja
Priority to EP15768352.5A priority patent/EP3124989B1/en
Publication of WO2015144073A1 publication Critical patent/WO2015144073A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0011Arrangements or instruments for measuring magnetic variables comprising means, e.g. flux concentrators, flux guides, for guiding or concentrating the magnetic flux, e.g. to the magnetic sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R3/00Apparatus or processes specially adapted for the manufacture or maintenance of measuring instruments, e.g. of probe tips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0052Manufacturing aspects; Manufacturing of single devices, i.e. of semiconductor magnetic sensor chips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/0206Three-component magnetometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • the invention relates to the field of magnetic field sensors, and in particular to a single chip three-axis magnetic field sensor and a preparation method thereof.
  • the XY two-axis magnetic field test system can be realized by measuring the magnetic field in the plane of the film by orthogonalizing the two sensors to achieve the in-plane X and Y-axis magnetic field components.
  • One solution for the Z-axis magnetic field component is to mount a discrete single-axis planar magnetic field sensor on a two-axis planar sensor, as disclosed in the patent No. 201110251902.9 entitled "Triaxial Magnetic Field Sensor". Axial magnetic field sensor. This approach has the following deficiencies:
  • the X- and Y-axis magnetic field sensors and the Z-axis magnetic field sensor are separate components before installation, and the integrated manufacturing of the three-axis magnetic field sensor cannot be realized, thereby increasing the complexity of the manufacturing process;
  • Another solution is to detect the magnetic signal in the Z direction by means of a slope setting magnetic field sensor unit disclosed in the patent CN202548308U "Triaxial Magnetic Field Sensor".
  • the angle of the slope formed in the sensor of this structure is not easy to control, on the slope
  • the deposition of the magnetoresistive film also tends to cause shadowing effects, thereby reducing the performance of the magnetic field sensor element, and an algorithm is required to calculate the magnetic signal in the Z-axis direction.
  • a three-axis magnetic field sensor is mainly prepared by etching a slope on a substrate layer of a substrate, depositing a thin film of a magnetoresistive material on a slope, and performing double deposition, for example, a patent "CN202548308U "three-axis magnetic field sensor"
  • the disclosed sensor is generally prepared by first etching two slopes on the substrate layer of the wafer, and then making a measurement of the XZ direction and YZ by double-depositing a thin film of magnetoresistance material on both slopes and double annealing.
  • Directional sensor unit is mainly prepared by etching a slope on a substrate layer of a substrate, depositing a thin film of a magnetoresistive material on a slope, and performing double deposition.
  • a method of preparing a three-axis sensor is also disclosed in the European patent application EP 2 267 470 B1, which also forms a ramp by etching on a substrate and then fabricating a sensor unit for measuring the magnetic field component in the Z-axis direction on the slope.
  • the slope of the slope etched in these two patent applications is not easy to control, and it is also difficult to deposit a film of magnetoresistance material on the slope, which is not suitable for practical implementation.
  • the present invention proposes a single chip three-axis magnetic field sensor and a method of fabricating the same.
  • the single-chip three-axis magnetic field sensor can directly output magnetic signals in three directions of X, Y, and Z without using an algorithm for calculation.
  • the three-axis magnetic field sensor can be obtained by double deposition without the need for grooving to form a slope, and the X-axis sensor and the Y-axis sensor are perpendicular to each other, and they contain the pinned layer of the magnetoresistive sensing element.
  • the magnetization directions are also perpendicular to each other.
  • the invention provides a single-chip three-axis magnetic field sensor, which comprises:
  • a substrate located in the XY plane, wherein the substrate is integrally provided with an X-axis sensor, a Y-axis sensor and a Z-axis sensor for detecting components of the magnetic field in the X-axis direction, the Y-axis direction, and the Z-axis direction, respectively.
  • the X-axis sensor and the Y-axis sensor each include a reference bridge and at least two magnetic flux controllers, and the reference arm and the sensing arm of the reference bridge each include one or more identical electrical connections.
  • a magnetoresistive sensing element wherein the magnetoresistive sensing elements on the reference arm are located above or below the magnetic flux controller and are arranged along the length direction of the magnetic flux controller to form a reference element string on the sensing arm a magnetoresistive sensing element located at a gap between two adjacent ones of the magnetic flux controllers and arranged along the length direction of the magnetic flux controller to form an inductive element string; the reference element string and the sensing The component strings are alternately discharged, each of the reference component strings being adjacent to at least one of the sensing component strings, and each of the sensing component strings is also adjacent to at least one of the reference component strings;
  • the elements in the Y-axis sensor and the corresponding elements in the X-axis sensor are arranged perpendicular to each other;
  • a gain coefficient of a magnetic field at a gap between each of the X-axis sensor and the Y-axis sensor adjacent to the magnetic flux controller is 1 ⁇ A sns ⁇ 100, the X-axis sensor and the Y
  • the attenuation coefficient of the magnetic field above or below the magnetic flux controller of the shaft sensor is 0 ⁇ A ref ⁇ 1;
  • the Z-axis sensor includes a push-pull bridge and at least one magnetic flux controller, and the push arm and the arm of the push-pull bridge are alternately arranged, each of which includes the one or more identical electrical connections.
  • Magnetoresistance sensor And the magnetoresistive sensing elements on the push arm and the arm are arranged along the length direction of the magnetic flux controller in the Z-axis sensor, respectively located on the lower sides of the magnetic flux controller of the Z-axis sensor Or both sides above;
  • the material of the pinned layer of the magnetoresistive sensing element on the X-axis sensor and the Y-axis sensor is different, and the magnetization direction of the pinning layer is perpendicular; the Z-axis sensor and the pinning layer of the X-axis sensor
  • the magnetization directions are the same; in the absence of an applied magnetic field, the magnetization directions of the magnetic free layers of all of the magnetoresistive sensing elements are perpendicular to the magnetization direction of the pinning layer;
  • the X-axis, the Y-axis, and the Z-axis are orthogonal to each other.
  • the magnetoresistive sensing element is a GMR spin valve element or a TMR sensing element.
  • the magnetic flux controller is a rectangular strip array having a length perpendicular to a magnetization direction of the magnetoresistive sensing element pinning layer greater than a length along a magnetization direction of the magnetoresistive sensing element pinning layer, and a composition thereof
  • the material is a soft ferromagnetic alloy.
  • the number of the magneto-resistance sensing elements on the sensing arm and the reference arm of the X-axis sensor and the Y-axis sensor are the same; the push-pull bridge on the Z-axis sensor The number of magnetoresistive sensing elements on the push arm and the arm is the same.
  • the magnetoresistive sensing element has a length perpendicular to the magnetization direction of the pinning layer greater than a length along the magnetization direction of the pinning layer.
  • the spacing S between two adjacent magnetic flux controllers of the Z-axis sensor is not less than the smallest one of the three-dimensional dimensions of the magnetic flux controller of the Z-axis sensor.
  • the magnetoresistive sensing element realizes the magnetization direction of the magnetic free layer and the magnetization direction of the pinning layer by permanent magnet biasing, double switching action, shape anisotropy or any combination thereof. vertical.
  • the reference bridge and the push-pull bridge are both a half bridge, a full bridge or a quasi-bridge structure.
  • the single-chip triaxial magnetic field sensor further comprises at least 3 pads or at least 3 through-silicon vias on the X-axis sensor, the Y-axis sensor and the Z-axis sensor.
  • the invention also provides a method for preparing a single-chip three-axis linear magnetic field sensor, the method comprising the following steps:
  • the first magnetoresistive material film stack uses an antiferromagnetic layer having a blocking temperature of TB1 as a pinning layer thereof, and the first magnetoresistive material film stack is used to construct an X-axis sensor and a Z-axis sensor;
  • a second magnetoresistive material film stack on the semiconductor wafer, the second magnetoresistive material film stack using an antiferromagnetic layer having a blocking temperature of TB2 as a pinning layer thereof, the second magnetic A stack of resistive material films is used to construct a Y-axis sensor, where TB1 > TB2; the first high temperature is applied in an applied magnetic field having a temperature higher than TB1, the direction of the magnetic field is parallel to the magnetization direction of the pinned layer of the X-axis sensor and the Z-axis sensor Annealing, then lowering the temperature to a value between TB1 and TB2, rotating the applied magnetic field to the same direction as the pinning layer of the Y-axis sensor, then lowering the temperature to room temperature and reducing the applied magnetic field To zero magnetic field.
  • the self-alignment technique includes a lift off process; or using a photolithography and etching process to open a hole at the top end of the magnetoresistive sensing element through the insulating layer I;
  • a disk is sputtered or plated with a conductive metal at the top of the pad.
  • the semiconductor wafer is a silicon wafer doped with an integrated circuit, a silicon wafer that has been subjected to chemical mechanical polishing, or a blank silicon wafer containing a passivated smooth surface.
  • FIG. 1 is a schematic structural view of a single-chip three-axis magnetic field sensor in the present invention.
  • FIG. 2 is a schematic diagram of a digital signal processing circuit of a single-chip three-axis magnetic field sensor in the present invention.
  • FIG. 3 is a schematic structural view of an X-axis sensor and a Y-axis sensor.
  • FIG. 4 is a magnetic field distribution diagram around a magnetoresistive element in an X-axis sensor.
  • Figure 5 is a plot of the position of the MTJ component in the X-axis sensor versus the induced magnetic field strength.
  • Figure 6 shows the response curve of the X-axis sensor.
  • Figure 7 is a circuit diagram of the X-axis sensor.
  • Fig. 8 is a schematic structural view of a Z-axis sensor.
  • Figure 9 is a magnetic field distribution diagram of the magnetic flux controller around the Z-axis sensor in the Z-direction magnetic field.
  • Figure 10 is a schematic diagram of the circuit principle of the Z-axis sensor.
  • Figure 11 is a magnetic field distribution diagram of the magnetic flux controller around the Z-axis sensor in the X-direction magnetic field.
  • Figure 12 is a magnetic field distribution diagram of the magnetic flux controller around the Z-axis sensor in the Y-direction magnetic field.
  • Figure 13 shows the response curve of the Z-axis sensor.
  • FIG. 14 is a schematic flow chart of a method for preparing a single-chip three-axis magnetic field sensor according to the present invention.
  • 15 is a schematic view showing the magnetization direction of the pinned layer on the X-axis sensor, the Y-axis sensor, and the Z-axis sensor after double deposition of the wafer.
  • Figure 16 is a schematic cross-sectional view of a single-chip three-axis magnetic field sensor fabricated.
  • FIG. 17 is a schematic structural view of the upper three-axis magnetic field sensor before the wafer completes the cutting process.
  • the sensor includes a substrate 1 on which an X-axis sensor 3, a Y-axis sensor 4, a Z-axis sensor 5, and a plurality of pads 2 for input and output are integrated, wherein the X-axis sensor 3 and the Y-axis
  • the structure of the sensor 4 is the same except that the arrangement direction is different and the two are perpendicular to each other.
  • the elements in the X-axis sensor 3 are arranged longitudinally, while the elements in the Y-axis sensor 4 are arranged laterally, but the elements in the X-axis sensor 3 can also be arranged laterally, in which case the elements in the Y-axis sensor 4 Arrange in a vertical direction.
  • the X-axis sensor 3 includes an inductive element string 11, a reference element string 12, and an X-magnetic flux controller 8, the Y-axis sensor 4 including an inductive element string 13, a reference element string 14, and a Y-magnetic flux controller 9, wherein the reference element string 12, 14 are respectively located below the X-magnetic flux controller 8, the Y-magnetic flux controller 9, and the sensing element strings 11, 13 are respectively located at the gap between the adjacent two X-magnetic flux controllers 8 and adjacent two Y-magnetic fluxes At the gap of the controller, the sensing element strings 11, 13 and the reference element strings 12, 14 are each electrically connected by one or more identical magnetoresistive sensing elements.
  • the Z-axis sensor includes a Z-magnetic flux controller 10 and magnetoresistive sensing elements 15, 16 in which the magnetoresistive sensing elements 15, 16 are electrically connected in a row, arranged on both sides below the Z-magnetic flux controller 10. Further, the magnetoresistive sensing elements constituting the reference element strings 12, 14 may also be located above the X-magnetic flux controller 8 and the Y-magnetic flux controller 9, respectively, at this time, the magnetoresistive sensing element 15 in the Z-axis sensor, 16 is located on either side of the Z-magnetic flux controller 10.
  • All of the magnetoresistive sensing elements are GMR spin valves or TMR sensing elements, which may be square, diamond or elliptical in shape, but are not limited to the above shapes.
  • the magnetization direction 6 of the pinned layer of the magnetoresistive sensing element in the X-axis sensor 3 and the Z-axis sensor 5 is the same, both in the X-axis direction, but the pinning of the magnetoresistive sensing element in the X-axis sensor 3 and the Y-axis sensor 4
  • the magnetization directions 6 and 7 of the layers are perpendicular to each other.
  • the magnetoresistive sensing element causes the magnetization direction of the magnetic free layer to be perpendicular to the magnetization direction of the pinned layer by permanent magnet biasing, double switching, shape anisotropy, or any combination thereof.
  • All magnetic flux controllers are rectangular strip arrays whose length in the direction perpendicular to the magnetization direction of the pinned layer of the magnetoresistive sensing element is greater than the length along the magnetization direction of the pinned layer of the magnetoresistive sensing element, and the constituent materials thereof are A soft ferromagnetic alloy which may include one or several elements of Ni, Fe, Co, Si, B, Ni, Zr, and Al, but is not limited to the above elements.
  • the pad 2 includes input and output connection pads in the X-axis sensor 3, the Y-axis sensor 4, and the Z-axis sensor 5.
  • the substrate 1 may contain an ASIC, or The external independent ASIC chips are electrically connected, and the ASIC is not shown.
  • pad wire bonding is used for packaging, and through-silicon via, flip chip, ball grid array package (BGA), wafer level package (WLP), and chip-on-chip package ( The single-chip triaxial magnetic field sensor is packaged by technologies such as COB).
  • FIG. 2 is a schematic diagram of a digital signal processing circuit of a single-chip three-axis linear magnetic field sensor.
  • the magnetic field signals sensed by the X-axis sensor 3, the Y-axis sensor 4, and the Z-axis sensor 5 are subjected to analog digital signal conversion by the ADC 41 in the digital signal processing circuit 50, and the converted digital signal is supplied to the data processor 42.
  • the processed signal is output through the I/O to measure the external magnetic field.
  • the digital signal processing circuit 50 may be located on the substrate 1, or may be located on another ASIC chip, which is electrically connected to the substrate 1.
  • the X-axis sensor is a reference full-bridge structure including a reference arm and a sensing arm, wherein the reference arm includes a plurality of reference component strings 12 under the X-magnetic flux controller, and the sensing arm includes a plurality of gaps for the X-magnetic flux controller
  • the sensing element string 11 at the 9th, the sensing element string 11 and the reference element string are alternately discharged, arranged along the long axis direction of the X-magnetic flux controller, and each reference element string 12 is adjacent to at least one sensing element string 11
  • Each of the sensing element strings 11 is also adjacent to at least one reference element string 12.
  • Each of the sensing element strings 11 and the adjacent reference element strings 12 are spaced apart by a distance L, and the pitch L is small, preferably 20 to 100 ⁇ m.
  • the sensing arm, the reference arm, and the pads 17-20 may be connected by an electrical connection conductor 21.
  • the pads 17-20 serve as input terminals Vbias, ground terminals GND, and output terminals V1, V2, respectively, corresponding to the leftmost four pads in FIG.
  • FIG. 4 is a magnetic field distribution around the sensing element string 11 and the reference element string 12 of FIG.
  • the amplitude of the magnetic field induced by the sensing element string 11 located at the gap of the X-magnetic flux controller 8 is increased, and the amplitude of the magnetic field induced by the reference element string 12 located below the X-magnetic flux controller 8 is lowered.
  • the X-magnetic flux controller 8 can function to attenuate the magnetic field.
  • B sns 34 is the magnetic field strength induced by the sensing element string 11
  • B ref 35 is the reference element.
  • Figure 6 is a graph showing the relationship between the output voltage of the X-axis sensor of Figure 3 and the applied magnetic field.
  • the X-axis sensor can only sense the magnetic field component in the X-axis direction
  • the output voltage Vx36 does not respond to the magnetic field components in the Y-axis and Z-axis directions, and the voltages Vy 37 and Vz 38 are both zero, and Vx36 is symmetric about the origin 0.
  • Figure 7 is a circuit diagram of the X-axis sensor of Figure 3.
  • the two sensing arms 52, 52' and the two reference arms 53, 53' are connected to each other to form a full bridge, and the output voltage of the full bridge is
  • the structure of the Y-axis sensor 4 and the X-axis sensor 3 are the same, so the working principle, the surrounding magnetic field distribution, and the response curve are the same as those of the X-axis sensor 3, and will not be described here.
  • Fig. 8 is a schematic structural view of a Z-axis sensor.
  • the Z-axis sensor is a push-pull full bridge structure including a plurality of magnetoresistive sensing elements 15 and 16, a plurality of Z-magnetic flux controllers 10, electrical connection conductors 27 and pads 28-30, pads 28 -30 as the power supply terminal V Bias , the ground terminal GND, and the voltage output terminals V+, V- respectively correspond to the four rightmost pads in the pad 2 in FIG. All the magnetoresistive sensing elements 15 are electrically connected to each other to form a full-bridge push arm.
  • All the magnetoresistive sensing elements 16 are electrically connected to each other to form a full-bridge arm, and the push arm and the arm are arranged at intervals, and the push arm and the arm are arranged. And the pads 28-30 are connected by an electrical connection conductor 27 to form a push-pull full bridge.
  • the magnetoresistive sensing elements 15, 16 are arranged along the length direction of the Z-magnetic flux controller 10. In FIG. 8, the magnetoresistive sensing elements 15, 16 are arranged in rows on both sides below the Z-magnetic flux controller 10, and are covered by the Z-magnetic flux controller 10.
  • a row of push arm magnetoresistive sensing elements 15 and a row of arm magnetoresistive sensing elements are arranged on each of the lower sides of each Z-magnetic flux controller 10.
  • Element 16, if necessary, magnetoresistive sensing elements 15, 16 may also be arranged beneath the three Z-magnetic flux controllers 10.
  • FIG. 9 is a magnetic field distribution diagram of the Z-axis sensor in the applied magnetic field 106 in the Z-axis direction. It can be seen from the distribution of magnetic lines in the figure that the applied magnetic field is distorted near the Z-magnetic flux controller 10, thereby generating magnetic in the X-axis direction.
  • the field components, the magnetoresistive sensing elements 15 and 16 located below the Z-magnetic flux controller 10, are capable of detecting this component, but the magnetic field components detected by the two are opposite in direction, 107 and 108, respectively.
  • the magnitude of the applied applied magnetic field can be known by the detected X-axis magnetic field component.
  • Figure 10 is a circuit diagram of a Z-axis sensor.
  • a plurality of magnetoresistive sensing elements 15 are electrically connected to form equivalent magnetoresistances R2 and R2', and a plurality of magnetoresistive sensing elements 16 are electrically connected to form two equivalent magnetoresistors R3 and R3'. bridge.
  • Fig. 11 is a magnetic field distribution diagram of the Z-axis sensor in the applied magnetic field 100 in the X-axis direction.
  • the magnetic fields detected by the magnetoresistive sensing elements 15 and 16 are the same, which causes the resistance values of the magnetoresistances R2, R2' and R3, R3' to be the same, thereby failing to form a push-pull output. So the sensor will not respond.
  • Fig. 12 is a magnetic field distribution diagram of the Z-axis sensor in the applied magnetic field 101 in the Y-axis direction.
  • the Z-magnetic flux controller 10 completely shields the applied magnetic field in the Y-axis direction, and the magnetoresistive sensing elements 15, 16 are insensitive to the magnetic field in the Y-axis direction, so the magnetoresistive sensing elements 15, 16 No magnetic field component is detected and the Z-axis sensor does not produce any response.
  • Figure 13 is a graph showing the relationship between the output voltage of the Z-axis sensor and the applied magnetic field.
  • the Z-axis sensor can only sense the magnetic field component in the Z-axis direction, and the output voltage Vz38 does not respond to the magnetic field components in the X-axis and Y-axis directions.
  • the voltages Vx36 and Vy37 are both 0, and Vz38. About the origin 0 is symmetrical.
  • FIG. 14 is a process flow for preparing a single-chip three-axis magnetic field sensor according to the present invention, and a method for preparing the sensor includes The following steps:
  • the first magnetoresistive material film stack is used to construct the X-axis sensor and the Z-axis sensor;
  • the magnetization direction of the pinning layer of each sensor on the wafer is as shown in FIG. 15 , wherein the pinning layer of the X-axis sensor and the Z-axis sensor has a magnetization direction of 6, and the pinning layer direction of the Y-axis sensor is 7;
  • the subtractive process may include Wet etching, ion etching, and reactive ion etching;
  • (6) depositing a top conductive layer, forming a top electrode by using a photolithography and subtractive process, and routing between the elements, the top conductive layer and the top layer of the magnetoresistive sensing element being electrically connected to each other, a subtractive process For wet etching or ion etching;
  • a passivation layer is simultaneously plated over all of the X-magnetic flux controller, the Y-magnetic flux controller, and the Z-magnetic flux controller, and the passivation layer is etched at the positions corresponding to the bottom electrode and the top electrode.
  • the through holes form a pad for external connection.
  • the passivation layer and the coil layer may be through holes at positions corresponding to the top electrode and the bottom electrode to form a pad connected to the sensor chip.
  • it can be further
  • the top of the pad is sputtered or plated with a conductive metal.
  • FIG. 16 A schematic cross-sectional view of a single single-chip triaxial sensor after completion of the above steps is shown in FIG. 16, and a schematic diagram of the arrangement of all three-axis sensors on the wafer is shown in FIG.
  • the wafer in the above steps may be a silicon wafer doped with an integrated circuit, a silicon wafer that has been subjected to chemical mechanical polishing, or a blank silicon wafer containing a passivated smooth surface, and the wafer may also contain a coil.
  • the first magnetoresistive material film stack is different from the antiferromagnetic material on the pinned layer in the second magnetoresistive material film stack, and the first magnetoresistive material film stack has a structure of PtMn/SAF/tunnel barrier/free Layer/IrMn, the structure of the second magnetoresistive material film stack is IrMn/SAF/tunnel barrier/free layer/PtMn, and the two stacked structures are also interchangeable.
  • the blocking temperature TB1 of PtMn is higher than the blocking temperature TB2 of IrMn, so that the film for constructing the X-axis sensor and the Y-axis sensor can be annealed in the same step, or the magnetization of the cross-bias layer and the pinning layer can be simultaneously set. direction.
  • the two-step magnetic annealing performed in the step (2) means that the annealing is first performed in a high-temperature magnetic field having a temperature higher than TB1, and the applied magnetic field is along the X-axis direction, and then the temperature is located at TB1 and TB2. Annealing is performed in a low temperature magnetic field, where the direction of the magnetic field applied to the wafer is perpendicular to the direction of the high temperature magnetic field.

Abstract

一种单芯片三轴磁场传感器及其制备方法,该传感器包括在同一基片(1)上集成设置的X轴传感器(3)、Y轴传感器(4)和Z轴传感器(5),其中,X轴传感器(3)和Y轴传感器(4)的结构相同,均为参考桥式结构,参考臂上的磁电阻传感元件(12,14)位于相应磁通量控制器(8,9)的下方,感应臂上的磁电阻传感元件(11,13)位于相应磁通量控制器(8,9)之间的间隙处,但这两个传感器上所有元件的排布方向均相互垂直,并且磁电阻传感元件的钉扎层的磁化方向也相互垂直,Z轴传感器(5)为推挽桥式结构,其推臂和挽臂上的磁电阻传感元件(15,16)分别成列排布于其磁通量控制器(10)的上方或下方的两侧。还公开了一种该单芯片三轴磁场传感器的制备方法,该单芯片三轴磁场传感器具有制作简单、动态范围宽的优点。

Description

一种单芯片三轴磁场传感器及其制备方法 技术领域
本发明涉及磁场传感器领域,尤其涉及一种单芯片三轴磁场传感器及其制备方法。
背景技术
随着磁场传感器技术的发展,其从初期的单轴磁场传感器到后来的双轴磁场传感器,再到如今的三轴磁场传感器,使得其可全面检测空间X、Y、Z轴三个方向上的磁场信号。对于AMR、GMR和TMR等磁场传感器,由于磁场敏感方向在薄膜平面内,可以通过将两个传感器正交来实现平面内X、Y轴磁场分量的测量,从而实现XY二轴磁场测试系统,但对于Z轴磁场分量,其中一种解决方案是将一个分立单轴平面磁场传感器竖立安装在二轴平面传感器上,如申请号为201110251902.9,名称为“三轴磁场传感器”的专利中所公开的三轴磁场传感器。这种方式存在以下不足之处:
1)X、Y二轴磁场传感器和Z单轴磁场传感器在安装之前为各自为分立元件,无法实现三轴磁场传感器的集成制造,从而增加了制造工艺的复杂程度;
2)相对于集成制造系统,采用组装方法制造的三轴磁场传感器系统内各元件的位置精度降低,影响传感器的测量精度。
3)由于Z单轴磁场传感器的敏感轴垂直于X,Y二轴磁场传感器,因此三轴磁场传感器Z向尺寸增加,从而增加了器件尺寸和封装难度。
另一种解决方案是专利CN202548308U“三轴磁场传感器”中公开的采用斜坡设置磁场传感器单元的方式来探测Z方向上的磁信号,这种结构的传感器中形成斜坡的角度不容易控制,在斜坡上沉积磁电阻薄膜的过程中还容易造成遮蔽效应(shadowing effects),从而降低了磁场传感器元件的性能,并且还需要算法来计算才能得到Z轴方向的磁信号。
还有一种方案是专利申请201310202801.1“一种三轴数字指南针”中所公开的解决方案,其利用通量集中器对磁场的扭曲作用,将垂直于平面的Z轴磁场分量转变成XY平面内的磁场分量,从而实现Z轴方向上磁信号的测量。但这种结构的磁场传感器需要一个ASIC芯片或者通过算法来计算才能得到X、Y和Z轴三个方向的磁信号。
目前,主要是通过在基片的衬底层上刻蚀形成斜坡,在斜坡上沉积磁电阻材料薄膜,双次沉积等方法来制备三轴磁场传感器,例如专利CN202548308U“三轴磁场传感器”中 所公开的传感器的制备过程大致是先在晶圆的衬底层上刻蚀出两个斜坡,然后分别在两个斜坡上通过双次沉积磁电阻材料薄膜、双次退火来制作测量XZ方向和YZ方向的传感器单元。欧洲专利申请EP 2267470 B1也公开了一种制备三轴传感器的方法,其也是通过在基片上刻蚀形成斜坡,然后在斜坡上制作测量Z轴方向磁场分量的传感器单元。这两个专利申请中所刻蚀的斜坡的坡度不易控制,在斜坡上沉积磁电阻材料薄膜也有一定难度,不利于实际实施。
发明内容
为了解决以上问题,本发明提出了一种单芯片三轴磁场传感器及其制备方法。该单芯片三轴磁场传感器能直接输出X、Y、Z三个方向的磁信号,无需使用算法来进行计算。此外,其制备无需刻槽形成斜坡,直接通过双次沉积便能得到该三轴磁场传感器,其含有的X轴传感器和Y轴传感器相互垂直,它们含有的磁电阻传感元件的钉扎层的磁化方向也相互垂直。
本发明提供的一种单芯片三轴磁场传感器,其包括:
一位于XY平面内的基片,所述基片上集成设置有一X轴传感器、一Y轴传感器和一Z轴传感器,分别用于检测磁场在X轴方向、Y轴方向、Z轴方向上的分量;
所述X轴传感器和所述Y轴传感器各自均包含有一参考电桥和至少两个磁通量控制器,所述参考电桥的参考臂和感应臂均包含有一个或多个相同的相互电连接的磁电阻传感元件,所述参考臂上的磁电阻传感元件位于所述磁通量控制器的上方或下方,并沿着所述磁通量控制器的长度方向排列形成参考元件串,所述感应臂上的磁电阻传感元件位于相邻两个对应的所述磁通量控制器之间的间隙处,并沿着所述磁通量控制器的长度方向排列形成感应元件串;所述参考元件串和所述感应元件串相互交错排放,每个所述参考元件串至少与一个所述感应元件串相邻,每个所述感应元件串也至少与一个所述参考元件串相邻;
所述Y轴传感器中的各元件和所述X轴传感器中对应的元件排布方向相互垂直;
所述X轴传感器和所述Y轴传感器中各自两个相邻所述磁通量控制器之间的间隙处的磁场的增益系数均为1<Asns<100,所述X轴传感器和所述Y轴传感器的磁通量控制器的上方或者下方处的磁场的衰减系数均为0<Aref<1;
所述Z轴传感器为包含有一推挽电桥和至少一个磁通量控制器,所述推挽电桥的推臂和挽臂交替排列,各自均包含有所述一个或多个相同的相互电连接的磁电阻传感元 件,所述推臂和所述挽臂上的磁电阻传感元件均沿着所述Z轴传感器中磁通量控制器的长度方向排列,分别位于所述Z轴传感器中磁通量控制器的下方两侧或上方的两侧;
所述X轴传感器和所述Y轴传感器上的磁电阻传感元件的钉扎层的材料不同,并且钉扎层的磁化方向垂直;所述Z轴传感器和所述X轴传感器的钉扎层的磁化方向相同;在没有外加磁场时,所有所述磁电阻传感元件的磁性自由层的磁化方向与钉扎层的磁化方向均垂直;
其中,X轴、Y轴和Z轴两两相互正交。
优选的,所述磁电阻传感元件为GMR自旋阀元件或者TMR传感元件。
优选的,所述磁通量控制器为矩形长条阵列,其在垂直于磁电阻传感元件钉扎层磁化方向上的长度大于沿着磁电阻传感元件钉扎层磁化方向的长度,并且其组成材料为软铁磁合金。
优选的,所述X轴传感器和所述Y轴传感器各自的所述感应臂和所述参考臂上的磁电阻传感元件的数量相同;所述Z轴传感器的所述推挽电桥上的推臂和挽臂上的磁电阻传感元件的数量相同。
优选的,所述磁电阻传感元件在垂直于钉扎层磁化方向上的长度大于沿着钉扎层磁化方向的长度。
优选的,所述Z轴传感器的相邻两个所述磁通量控制器之间的间距S不小于所述Z轴传感器的所述磁通量控制器的三维尺寸中最小的一个。
优选的,在没有外加磁场时,所述磁电阻传感元件通过永磁偏置、双交换作用、形状各向异性或者它们的任意结合来实现磁性自由层的磁化方向与钉扎层的磁化方向垂直。
优选的,所述参考电桥和所述推挽电桥均为半桥、全桥或者准桥结构。
优选的,所述基片上集成有一ASIC芯片,或所述基片与一独立的ASIC芯片相电连接。优选的,所述单芯片三轴磁场传感器还包含有至少3个焊盘或所述X轴传感器、所述Y轴传感器和所述Z轴传感器上各自至少有3个硅通孔。
本发明还提供了一种单芯片三轴线性磁场传感器的制备方法,该方法包括以下步骤:
(1)将一第一磁电阻材料薄膜堆叠沉积在一半导体晶圆上,然后设置所述第一磁电阻材料薄膜堆叠的钉扎层的磁化方向;
或;
将一第一磁电阻材料薄膜堆叠沉积在一半导体晶圆上,然后通过退火来设置所述第 一磁电阻材料薄膜堆叠的钉扎层的磁化方向;
所述第一磁电阻材料薄膜堆叠使用阻挡温度为TB1的反铁磁层作为其钉扎层,所述第一磁电阻材料薄膜堆叠用于构建X轴传感器和Z轴传感器;
(2)在所述半导体晶圆上挑选一些区域,然后清除所选区域里的所述第一磁电阻材料薄膜堆叠;
(3)在所述半导体晶圆上沉积一第二磁电阻材料薄膜堆叠,所述第二磁电阻材料薄膜堆叠使用阻挡温度为TB2的反铁磁层作为其钉扎层,所述第二磁电阻材料薄膜堆叠用于构建Y轴传感器,其中TB1>TB2;在温度高于TB1、磁场方向平行于所述X轴传感器和Z轴传感器的钉扎层磁化方向的外加磁场中进行第一次高温退火,然后将温度降至TB1和TB2之间的某一值,旋转外加磁场使其方向与所述Y轴传感器的钉扎层磁化方向相同,接着将温度降至室温,并将外加磁场减小至零磁场。
(4)对所述第一磁电阻材料薄膜堆叠和所述第二磁电阻材料薄膜堆叠进行掩膜,并清除掉与所述第一磁电阻材料薄膜堆叠重合部分的所述第二磁电阻材料薄膜堆叠;
(5)构建底部电极,并在同一结构成型步骤中构建出X轴传感器、Y轴传感器和Z轴传感器中的磁电阻传感元件,其中构建底部电极在构建X轴传感器、Y轴传感器和Z轴传感器中磁电阻传感元件之前或之后;
(6)在所述磁电阻传感元件上沉积一绝缘层Ⅰ,并通过所述绝缘层Ⅰ在所述磁电阻传感元件的顶端制作出接触孔;所述接触孔通过一自对准技术来实现,所述自对准技术包括剥离(lift off)工艺;或使用光刻和刻蚀工艺通过所述绝缘层Ⅰ在所述磁电阻传感元件的顶端向下开孔来实现;
(7)沉积一顶部导电层,所述顶部导电层与所述磁电阻传感元件的顶层相电连接,使用成型工艺(patterning processes)来形成顶部电极,并在各元件之间进行布线;
(8)沉积一绝缘层Ⅱ;
或;
沉积一绝缘层Ⅲ,再在所述沉积一绝缘层Ⅲ上沉积一导电层,并将其构建成一电磁线圈层,在所述电磁线圈层的顶部沉积一绝缘层Ⅳ;
(9)在所述绝缘层Ⅱ或所述绝缘层Ⅳ的上方使用相同的软铁磁材料同步形成多个磁通量控制器;
(10)在所有所述磁通量控制器的上方,沉积一钝化层,对所述钝化层进行刻蚀, 并在对应所述顶部导体和底部电极的位置上进行通孔;
或;
在所有所述磁通量控制器的上方,沉积一钝化层,对所述钝化层进行刻蚀,并在对应所述顶部电极和底部电极的位置上进行通孔,形成跟传感器芯片连接的焊盘,在所述焊盘的顶端进行溅射或电镀一导电金属。
优选的,所述半导体晶圆为掺杂有集成电路的硅片、已经进行化学机械抛光的硅片或者是含有钝化光滑表面的空白硅片。
附图说明
为了更清楚地说明本发明实施例技术中的技术方案,下面将对实施例技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明中的单芯片三轴磁场传感器的结构示意图。
图2为本发明中的单芯片三轴磁场传感器的数字信号处理电路原理图。
图3为X轴传感器和Y轴传感器的结构示意图。
图4为X轴传感器中磁电阻元件周围的磁场分布图。
图5为X轴传感器中MTJ元件所在位置与所感应磁场强度的关系曲线。
图6为X轴传感器的响应曲线。
图7为X轴传感器的电路示意图。
图8为Z轴传感器的结构示意图。
图9为Z轴传感器在Z方向磁场中的磁通量控制器周围的磁场分布图。
图10为Z轴传感器的电路原理示意图。
图11为Z轴传感器在X方向磁场中的磁通量控制器周围的磁场分布图。
图12为Z轴传感器在Y方向磁场中的磁通量控制器周围的磁场分布图。
图13为Z轴传感器的响应曲线。
图14为本发明中单芯片三轴磁场传感器的制备方法流程示意图。
图15为晶圆双次沉积后X轴传感器、Y轴传感器和Z轴传感器上钉扎层的磁化方向示意图。
图16为制作的单芯片三轴磁场传感器的剖面示意图。
图17为晶圆完成切割工序之前,其上三轴磁场传感器的结构排列示意图。
具体实施方式
下面将参考附图并结合实施例,来详细说明本发明。
实施例1
图1为本发明中的单芯片三轴磁场传感器在XY平面内的结构示意图。该传感器包括基片1,在基片1上集成设置有X轴传感器3、Y轴传感器4、Z轴传感器5以及多个用于输入输出的焊盘2,其中,X轴传感器3和Y轴传感器4的结构相同,只是排布方向不同,二者相互垂直。在图1中,X轴传感器3中的元件纵向排布,而Y轴传感器4中的元件横向排布,但X轴传感器3中的元件也可以横向排布,此时Y轴传感器4中元件纵向排布即可。X轴传感器3包括感应元件串11、参考元件串12以及X-磁通量控制器8,Y轴传感器4包括感应元件串13、参考元件串14以及Y-磁通量控制器9,其中参考元件串12,14分别位于X-磁通量控制器8、Y-磁通量控制器9的下方,感应元件串11,13分别位于相邻两个X-磁通量控制器8之间的间隙处和相邻两个Y-磁通量控制器的间隙处,感应元件串11,13和参考元件串12,14均由一个或多个相同的磁电阻传感元件电连接构成。Z轴传感器包括Z-磁通量控制器10、磁电阻传感元件15,16,其中磁电阻传感元件15,16分别电连接成列,排布于Z-磁通量控制器10下方的两侧。此外,构成参考元件串12,14的磁电阻传感元件也可以分别位于X-磁通量控制器8和Y-磁通量控制器9的上方,此时,Z轴传感器中的磁电阻传感元件15,16位于Z-磁通量控制器10上方的两侧。
所有磁电阻传感元件为GMR自旋阀或者TMR传感元件,其形状可以为方形、菱形或者椭圆形,但并不限于以上形状。X轴传感器3和Z轴传感器5中磁电阻传感元件的钉扎层的磁化方向6相同,均沿X轴方向,但X轴传感器3和Y轴传感器4中磁电阻传感元件的钉扎层的磁化方向6和7相互垂直。在没有外加磁场时,所述磁电阻传感元件通过永磁偏置、双交换作用、形状各向异性或者它们的任意结合来使磁性自由层的磁化方向与钉扎层的磁化方向垂直。所有磁通量控制器均为矩形长条阵列,它们在垂直于磁电阻传感元件钉扎层磁化方向上的长度大于沿着磁电阻传感元件钉扎层磁化方向的长度,并且其组成材料均为软铁磁合金,该合金可包括Ni、Fe、Co、Si、B、Ni、Zr和Al中的一种元素或几种元素,但并不限于以上元素。焊盘2里包括了X轴传感器3、Y轴传感器4和Z轴传感器5中的输入输出连接焊盘。基片1上可含有ASIC,或者与另 外的独立的ASIC芯片相电连接,图中未示出ASIC。在本实施例中,采用的是焊盘引线键合来进行封装,也可采用硅通孔、倒装芯片、球栅阵列封装(BGA)、晶圆级封装(WLP)以及板上芯片封装(COB)等技术对该单芯片三轴线性磁场传感器进行封装。
图2为单芯片三轴线性磁场传感器的数字信号处理电路原理图。X轴传感器3、Y轴传感器4和Z轴传感器5感测到的磁场信号通过数字信号处理电路50中的ADC 41进行模拟数字信号转换,并将转换后的数字信号输送给数据处理器42,处理后的信号通过I/O输出,从而实现对外磁场的测量。该数字信号处理电路50可能位于基片1上,也有可能位于另外一个ASIC芯片上,该ASIC芯片与基片1相互电连接。
图3为图1中X轴传感器的结构示意图。该X轴传感器为参考全桥结构,包括参考臂和感应臂,其中参考臂上包括多个位于X-磁通量控制器下方的参考元件串12,感应臂上包括多个对于X-磁通量控制器间隙9处的感应元件串11,感应元件串11和参考元件串相互交错排放,沿着X-磁通量控制器的长轴方向排布,每个参考元件串12至少与一个感应元件串11相邻,每个感应元件串11也至少与一个参考元件串12相邻。每个感应元件串11与相邻的参考元件串12之间均相隔间距L,间距L很小,优选地为20~100微米。感应臂、参考臂和焊盘17-20之间可以用电连接导体21连接。焊盘17-20分别作为输入端Vbias、接地端GND以及输出端V1,V2,对应于图1中最左边的四个焊盘。
图4为图3中的感应元件串11和参考元件串12周围的磁场分布。从图中可以看出,位于X-磁通量控制器8间隙处的感应元件串11所感应到的磁场幅度增强,而位于X-磁通量控制器8下方的参考元件串12所感应到的磁场幅度降低,由此可见,X-磁通量控制器8能起到衰减磁场的作用。
图5为图3中的感应元件串11与参考元件串12的所在位置与所感应磁场强度的关系曲线,其中,Bsns34为感应元件串11所感应的磁场强度,Bref 35为参考元件串12所感应的磁场强度,外加磁场的强度Bext=100G。从图中可以得到:Bsns=160G,Bref=25G。根据下面的公式(1)与(2),便可得知相应的增益系数Asns和衰减系数Aref的大小。
Bsns=Asns*Bext                  (1)
Bref=Aref*Bext                    (2)
将Bext=100G,Bsns=160G,Bref=25G代入上面两式中,便可算出:
1<Asns=1.6<100,0<Aref=0.25<1。Asns/Aref的比值越大,则意味着传感器的灵敏度越高,一般理想的是Asns/Aref>5,此时传感器就有高灵敏度。本设计中 Asns/Aref=1.6/0.25=6.4>5,由此可见本申请中的X轴传感器具有高灵敏度。
图6为图3中X轴传感器的输出电压和外加磁场的关系曲线。从图中可以看出,X轴传感器只能感测到X轴方向的磁场分量,输出电压Vx36,对Y轴和Z轴方向的磁场分量没有响应,电压Vy 37和Vz 38均为零,并且Vx36关于原点0对称。
图7为图3中X轴传感器的电路示意图。图中,两个感应臂52,52’和两个参考臂53,53’相间隔连接构成一全桥,该全桥的输出电压为
Figure PCTCN2015075146-appb-000001
则此X轴传感器的灵敏度可表示为
Figure PCTCN2015075146-appb-000002
对于很小的外加磁场,即磁场强度B很小,则上式(4)可近似化为
Figure PCTCN2015075146-appb-000003
Y轴传感器4和X轴传感器3的结构相同,所以其工作原理、周围的磁场分布、响应曲线均与X轴传感器3相同,在此就不再赘叙。
图8为Z轴传感器的结构示意图。该Z轴传感器为推挽全桥结构,该Z轴传感器包括多个磁电阻传感元件15和16,多个Z-磁通量控制器10,电连接导体27以及焊盘28-30,焊盘28-30分别作为电源供应端VBias,接地端GND,电压输出端V+,V-,对应于图1中的焊盘2中最右边的四个焊盘。所有磁电阻传感元件15相互电连接构成了全桥的推臂,所有磁电阻传感元件16相互电连接构成了全桥的挽臂,推臂与挽臂相间隔排列,推臂、挽臂以及焊盘28-30之间通过电连接导体27连接形成推挽全桥。磁电阻传感元件15,16沿着Z-磁通量控制器10的长度方向排列。在图8中,磁电阻传感元件15,16分别成行排布于Z-磁通量控制器10下方的两侧,被Z-磁通量控制器10覆盖。除了上下两端和最中间的这三个Z-磁通量控制器10,每一Z-磁通量控制器10下方两侧均排布有一行推臂磁电阻传感元件15和一行挽臂磁电阻传感元件16,如果有必要,这三个Z-磁通量控制器10下方也可以排布有磁电阻传感元件15,16。
图9为Z轴传感器在Z轴方向的外加磁场106中的磁场分布图。从图中磁力线的分布情况可以看出,外加磁场在Z-磁通量控制器10附近产生扭曲,从而产生了X轴方向的磁 场分量,位于Z-磁通量控制器10下方的磁电阻传感元件15和16正好能检测到此分量,但二者所检测到的磁场分量的方向相反,分别为107和108。通过所检测到的X轴磁场分量,便能得知所施加的外加磁场的大小。
图10为Z轴传感器的电路示意图。若干个磁电阻传感元件15电连接构成等效磁电阻R2和R2’,若干个磁电阻传感元件16电连接构成两个等效磁电阻R3和R3’,这四个磁电阻连接构成全桥。当施加Z轴方向的外磁场时,磁电阻R2、R2’和R3、R3’的阻值变化情况会相反,从而构成推挽输出。一般来说,R2’=R2,R3’=R3。从图10中可以得到,该电路的输出电压:
Figure PCTCN2015075146-appb-000004
则其灵敏度为
Figure PCTCN2015075146-appb-000005
图11为Z轴传感器在X轴方向的外加磁场100中的磁场分布图。从图中可以看出,磁电阻传感元件15和16所检测到的磁场相同,这样就会导致磁电阻R2、R2’和R3、R3’的阻值变化情况相同,从而不能形成推挽输出,这样传感器就不会产生响应。
图12为Z轴传感器在Y轴方向的外加磁场101中的磁场分布图。从图中可以看出,Z-磁通量控制器10将Y轴方向的外加磁场完全屏蔽,并且磁电阻传感元件15,16对Y轴方向的磁场不敏感,所以磁电阻传感元件15,16没有检测到任何磁场分量,从而Z轴传感器也不会产生任何响应。
图13为Z轴传感器的输出电压与外加磁场的关系曲线。从图中可以看出,Z轴传感器只能感测到Z轴方向的磁场分量,输出电压Vz38,对X轴和Y轴方向的磁场分量不产生响应,电压Vx36和Vy37均为0,并且Vz38关于原点0对称。
以上讨论的是X轴传感器、Y轴传感器和Z轴传感器中的电桥为全桥的情形,由于半桥和准桥的工作原理与全桥相同,在此就不再赘述,上述所得到的结论也同样适用于半桥和准桥结构的单芯片三轴线性磁场传感器。
实施例2
图14为本发明中的单芯片三轴磁场传感器的工艺制备流程,该传感器的制备方法包括 以下步骤:
(1)将第一磁电阻材料薄膜的堆叠沉积在一晶圆上,然后通过相关工艺来设置第一磁电阻材料薄膜堆叠上钉扎层的磁化方向,优选的,是在磁场中进行高温退火来设置钉扎层的磁化方向;第一磁电阻材料薄膜堆叠用于构建X轴传感器和Z轴传感器;
(2)在晶圆上选择某一区域,通过使用光刻、离子刻蚀等技术来清除掉所选区域上的第一磁电阻材料薄膜堆叠并进行清理,以便于沉积第二磁电阻材料薄膜堆叠;第二磁电阻材料薄膜堆叠用于构建Y轴传感器。
(3)再在清除掉第一磁电阻材料薄膜的区域上沉积第二磁电阻材料薄膜堆叠,并通过进行双步骤磁退火来设置第二磁电阻材料薄膜堆叠的钉扎层磁化方向与第一磁电阻材料薄膜堆叠的钉扎层磁化方向垂直。
双次沉积后,晶圆上各传感器的钉扎层磁化方向如图15所示,其中X轴传感器和Z轴传感器的钉扎层磁化方向为6,Y轴传感器的钉扎层方向为7;
(4)进行掩膜,并清除掉与第一磁电阻材料薄膜重叠部分的第二磁电阻材料薄膜堆叠,优选的,是通过使用剥离(lift-off)工艺来清除重叠部分的第二磁电阻材料薄膜堆叠;
(5)构建底部电极,再在同一光刻、减成工艺(subtractive patterning)步骤中构建出X轴传感器、Y轴传感器和Z轴传感器中的磁电阻传感元件的图案,减成工艺可能包括湿式蚀刻、离子刻蚀以及反应离子刻蚀等方法;
(6)沉积一顶部导电层,通过使用光刻和减成工艺来形成顶部电极,并在各元件之间进行布线,该顶部导电层与磁电阻传感元件的顶层相互电连接,减成工艺为湿式蚀刻或者离子刻蚀;
(7)沉积一绝缘层,再在绝缘层上方使用相同的软铁磁合金材料同时电镀出X-磁通量控制器、Y-磁通量控制器和Z-磁通量控制器;如有需要,也可以先在绝缘层上沉积导电层然后构建成电磁线圈层,再在线圈层上镀上另一绝缘层,之后再电镀X-磁通量控制器、Y-磁通量控制器和Z-磁通量控制器。
(8)在所有X-磁通量控制器、Y-磁通量控制器和Z-磁通量控制器的上方同时镀上一钝化层,再在对应底部电极和顶部电极的位置上对钝化层进行刻蚀、通孔,便形成了对外连接的焊盘。在有线圈层时,可以在对应所述顶部电极和底部电极的位置上对所述钝化层和所述线圈层进行通孔,形成跟传感器芯片连接的焊盘。优选的,可以进一步在 焊盘的顶端进行溅射或电镀一导电金属。
完成上述步骤后的单个单芯片三轴传感器的剖面示意图如图16所示,晶圆上所有的三轴传感器结构排列示意图如图17所示。
上述步骤中的晶圆可以为掺杂有集成电路的硅片,已经进行化学机械抛光的硅片或者是含有钝化光滑表面的空白硅片,此晶圆也还可以包含有线圈。此外,第一磁电阻材料薄膜堆叠与第二磁电阻材料薄膜堆叠中钉扎层上的反铁磁材料不同,第一磁电阻材料薄膜堆叠的结构为PtMn/SAF/隧道结(barrier)/自由层/IrMn,第二磁电阻材料薄膜堆叠的结构为IrMn/SAF/隧道结(barrier)/自由层/PtMn,这两个堆叠结构也可以互换。其中,PtMn的阻挡温度TB1高于IrMn的阻挡温度TB2,这样用于构建X轴传感器和Y轴传感器的薄膜便可以在同一步骤中退火,也可以同时设置交叉偏置层和钉扎层的磁化方向。在步骤(2)中进行的双步骤磁退火,是指首先是在温度高于TB1的高温磁场中进行退火,这时所施加的磁场是沿着X轴方向,接着在温度位于TB1和TB2之间的低温磁场中进行退火,这时施加到晶圆上的磁场的方向与高温磁场的方向垂直。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种单芯片三轴磁场传感器,其特征在于,所述传感器包括:
    一位于XY平面内的基片,所述基片上集成设置有一X轴传感器、一Y轴传感器和一Z轴传感器,分别用于检测磁场在X轴方向、Y轴方向、Z轴方向上的分量;
    所述X轴传感器和所述Y轴传感器各自均包含有一参考电桥和至少两个磁通量控制器,所述参考电桥的参考臂和感应臂均包含有一个或多个相同的相互电连接的磁电阻传感元件,所述参考臂上的磁电阻传感元件位于所述磁通量控制器的上方或下方,并沿着所述磁通量控制器的长度方向排列形成参考元件串,所述感应臂上的磁电阻传感元件位于相邻两个所述磁通量控制器之间的间隙处,并沿着所述磁通量控制器的长度方向排列形成感应元件串;所述参考元件串和所述感应元件串相互交错排放,每个所述参考元件串至少与一个所述感应元件串相邻,每个所述感应元件串也至少与一个所述参考元件串相邻;所述Y轴传感器中的各元件和所述X轴传感器中对应的元件排布方向相互垂直;
    所述X轴传感器和所述Y轴传感器中各自两个相邻所述磁通量控制器之间的间隙处的磁场的增益系数均为1<Asns<100,所述X轴传感器和所述Y轴传感器的磁通量控制器的上方或者下方处的磁场的衰减系数均为0<Aref<1;
    所述Z轴传感器包含有一推挽电桥和至少一个磁通量控制器,所述推挽电桥的推臂和挽臂交替排列,各自均包含有所述一个或多个相同的相互电连接的磁电阻传感元件,所述推臂和所述挽臂上的磁电阻传感元件均沿着所述Z轴传感器中磁通量控制器的长度方向排列,分别位于所述Z轴传感器中磁通量控制器的下方两侧或上方两侧;
    所述X轴传感器和所述Y轴传感器上的磁电阻传感元件的钉扎层的材料不同,并且钉扎层的磁化方向垂直;所述Z轴传感器和所述X轴传感器的钉扎层的磁化方向相同;在没有外加磁场时,所有所述磁电阻传感元件的磁性自由层的磁化方向与钉扎层的磁化方向均垂直;
    其中,X轴、Y轴和Z轴两两相互正交。
  2. 根据权利要求1所述的单芯片三轴磁场传感器,其特征在于,所述磁电阻传感元件为GMR自旋阀元件或者TMR传感元件。
  3. 根据权利要求1所述的单芯片三轴磁场传感器,其特征在于,所述磁通量控制器为矩形长条阵列,其在垂直于所述磁电阻传感元件的钉扎层的磁化方向上的长度大于沿着所述磁电阻传感元件的钉扎层的磁化方向的长度,并且其组成材料为软铁磁合金。
  4. 根据权利要求1-3中的任一项所述的单芯片三轴磁场传感器,其特征在于,所述X轴传感器和所述Y轴传感器各自的所述感应臂和所述参考臂上的磁电阻传感元件的数量相同;所述Z轴传感器的所述推臂和所述挽臂上的磁电阻传感元件的数量相同。
  5. 根据权利要求1-3中的任一项所述的单芯片三轴磁场传感器,其特征在于,所述磁电阻传感元件在垂直于钉扎层磁化方向上的长度大于沿着钉扎层磁化方向的长度。
  6. 根据权利要求1-3中的任一项所述的单芯片三轴磁场传感器,其特征在于,所述Z轴传感器的相邻两个所述磁通量控制器之间的间距S不小于所述Z轴传感器的所述磁通量控制器的三维尺寸中最小的一个。
  7. 根据权利要求1-3中的任一项所述的单芯片三轴磁场传感器,其特征在于,在没有外加磁场时,所述磁电阻传感元件通过永磁偏置、双交换作用、形状各向异性或者它们的任意结合来实现磁性自由层的磁化方向与钉扎层的磁化方向垂直。
  8. 根据权利要求1-3中的任一项所述的单芯片三轴磁场传感器,其特征在于,所述参考电桥和所述推挽电桥均为半桥、全桥或者准桥结构。
  9. 根据权利要求1-3中的任一项所述的单芯片三轴磁场传感器,其特征在于,所述基片上集成有一ASIC芯片,或所述基片与一独立的ASIC芯片相电连接。
  10. 根据权利要求1-3中的任一项所述的单芯片三轴磁场传感器,其特征在于,所述单芯片三轴磁场传感器还包含有至少3个焊盘或所述X轴传感器、所述Y轴传感器和所述Z轴传感器上各自至少有3个硅通孔。
  11. 一种单芯片三轴线性磁场传感器的制备方法,其特征在于,该方法包括以下步骤:
    (1)将一第一磁电阻材料薄膜堆叠沉积在一半导体晶圆上,然后设置所述第一磁电阻材料薄膜堆叠的钉扎层的磁化方向;
    或;
    将一第一磁电阻材料薄膜堆叠沉积在一半导体晶圆上,然后通过退火来设置所述第一磁电阻材料薄膜堆叠的钉扎层的磁化方向;
    所述第一磁电阻材料薄膜堆叠使用阻挡温度为TB1的反铁磁层作为其钉扎层,所述第一磁电阻材料薄膜堆叠用于构建X轴传感器和Z轴传感器;
    (2)在所述半导体晶圆上挑选一些区域,然后清除所选区域里的所述第一磁电阻材料薄膜堆叠;
    (3)在所述半导体晶圆上沉积一第二磁电阻材料薄膜堆叠,所述第二磁电阻材料薄膜 堆叠使用阻挡温度为TB2的反铁磁层作为其钉扎层,所述第二磁电阻材料薄膜堆叠用于构建Y轴传感器,其中TB1>TB2;在温度高于TB1、磁场方向平行于所述X轴传感器和Z轴传感器的钉扎层磁化方向的外加磁场中进行第一次高温退火,然后将温度降至TB1和TB2之间的某一值,旋转外加磁场使其方向与所述Y轴传感器的钉扎层磁化方向相同,接着将温度降至室温,并将外加磁场减小至零磁场;
    (4)对所述第一磁电阻材料薄膜堆叠和所述第二磁电阻材料薄膜堆叠进行掩膜,并清除掉与所述第一磁电阻材料薄膜堆叠重合部分的所述第二磁电阻材料薄膜堆叠;
    (5)构建底部电极,并在同一结构成型步骤中构建出X轴传感器、Y轴传感器和Z轴传感器中的磁电阻传感元件,其中构建底部电极在构建X轴传感器、Y轴传感器和Z轴传感器中磁电阻传感元件之前或之后;
    (6)在所述磁电阻传感元件上沉积一绝缘层Ⅰ,并通过所述绝缘层Ⅰ在所述磁电阻传感元件的顶端制作出接触孔;所述接触孔通过一自对准技术来实现,所述自对准技术包括剥离(lift off)工艺;或使用光刻和刻蚀工艺通过所述绝缘层Ⅰ在所述磁电阻传感元件的顶端向下开孔来实现;
    (7)沉积一顶部导电层,所述顶部导电层与所述磁电阻传感元件的顶层相电连接,使用成型工艺(patterning processes)来形成顶部电极,并在各元件之间进行布线;
    (8)沉积一绝缘层Ⅱ;
    或;
    沉积一绝缘层Ⅲ,再在所述沉积一绝缘层Ⅲ上沉积一导电层,并将其构建成一电磁线圈层,在所述电磁线圈层的顶部沉积一绝缘层Ⅳ;
    (9)在所述绝缘层Ⅱ或所述绝缘层Ⅳ的上方使用相同的软铁磁材料同步形成多个磁通量控制器;
    (10)在所有所述磁通量控制器的上方,沉积一钝化层,对所述钝化层进行刻蚀,并在对应所述顶部电极和底部电极的位置上进行通孔,形成跟传感器芯片连接的焊盘;或;
    在所有所述磁通量控制器的上方,沉积一钝化层,对所述钝化层进行刻蚀,并在对应所述顶部电极和底部电极的位置上进行通孔,形成跟传感器芯片连接的焊盘,在所述焊盘的顶端进行溅射或电镀一导电金属。
  12. 根据权利要求11所述的制备方法,其特征在于,所述半导体晶圆为掺杂有集成电路的硅片、已经进行化学机械抛光的硅片或者是含有钝化光滑表面的空白硅片。
PCT/CN2015/075146 2014-03-28 2015-03-26 一种单芯片三轴磁场传感器及其制备方法 WO2015144073A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/300,068 US10107871B2 (en) 2014-03-28 2015-03-26 Monolithic three-axis magnetic field sensor and its manufacturing method
JP2017501453A JP6496005B2 (ja) 2014-03-28 2015-03-26 モノシリック3次元磁界センサ及びその製造方法
EP15768352.5A EP3124989B1 (en) 2014-03-28 2015-03-26 A monolithic three-axis magnetic field sensor and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410123285.8A CN103913709B (zh) 2014-03-28 2014-03-28 一种单芯片三轴磁场传感器及其制备方法
CN201410123285.8 2014-03-28

Publications (1)

Publication Number Publication Date
WO2015144073A1 true WO2015144073A1 (zh) 2015-10-01

Family

ID=51039536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/075146 WO2015144073A1 (zh) 2014-03-28 2015-03-26 一种单芯片三轴磁场传感器及其制备方法

Country Status (5)

Country Link
US (1) US10107871B2 (zh)
EP (1) EP3124989B1 (zh)
JP (1) JP6496005B2 (zh)
CN (1) CN103913709B (zh)
WO (1) WO2015144073A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10107871B2 (en) 2014-03-28 2018-10-23 MultiDimension Technology Co., Ltd. Monolithic three-axis magnetic field sensor and its manufacturing method
JP2018534571A (ja) * 2015-11-03 2018-11-22 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. Tmr高感度シングルチップ・ブッシュプル・ブリッジ磁場センサ
US10405995B2 (en) 2015-03-12 2019-09-10 Korea Works' Compensation & Welfare Service Artificial limb structure having magnetic lock device

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103954920B (zh) 2014-04-17 2016-09-14 江苏多维科技有限公司 一种单芯片三轴线性磁传感器及其制备方法
CN103995240B (zh) 2014-05-30 2017-11-10 江苏多维科技有限公司 一种磁电阻z轴梯度传感器芯片
CN104197828B (zh) * 2014-08-20 2017-07-07 江苏多维科技有限公司 一种单芯片偏轴磁电阻z‑x角度传感器和测量仪
CN104280700B (zh) * 2014-09-28 2017-09-08 江苏多维科技有限公司 一种单芯片差分自由层推挽式磁场传感器电桥及制备方法
CN104569870B (zh) * 2015-01-07 2017-07-21 江苏多维科技有限公司 一种单芯片具有校准/重置线圈的z轴线性磁电阻传感器
CN104698409B (zh) 2015-02-04 2017-11-10 江苏多维科技有限公司 一种单芯片具有校准线圈/重置线圈的高强度磁场x轴线性磁电阻传感器
CN104776794B (zh) * 2015-04-16 2017-11-10 江苏多维科技有限公司 一种单封装的高强度磁场磁电阻角度传感器
CN105044631B (zh) * 2015-08-28 2018-08-07 江苏多维科技有限公司 一种半翻转两轴线性磁电阻传感器
CN105371845A (zh) * 2015-12-17 2016-03-02 安徽寰智信息科技股份有限公司 一种惯性追踪模块
CN105389014A (zh) * 2015-12-17 2016-03-09 安徽寰智信息科技股份有限公司 一种三维人机交互系统
JP6724459B2 (ja) * 2016-03-23 2020-07-15 Tdk株式会社 磁気センサ
US10067201B2 (en) * 2016-04-14 2018-09-04 Texas Instruments Incorporated Wiring layout to reduce magnetic field
US10184991B2 (en) * 2016-05-11 2019-01-22 Texas Instruments Incorporated Dual-axis fluxgate device
CN107479010B (zh) * 2016-06-07 2019-06-04 江苏多维科技有限公司 一种具有补偿线圈的磁电阻传感器
JP6240994B1 (ja) * 2016-12-15 2017-12-06 朝日インテック株式会社 3次元磁界検出素子および3次元磁界検出装置
CN110573895B (zh) * 2017-04-25 2022-04-29 柯尼卡美能达株式会社 磁传感器
CN107422283B (zh) * 2017-04-26 2023-05-30 江苏多维科技有限公司 一种具有多层磁性调制结构的低噪声磁电阻传感器
CN109270474B (zh) * 2017-07-17 2021-12-14 爱盛科技股份有限公司 磁场感测元件以及磁场感测装置
JP6699635B2 (ja) * 2017-08-18 2020-05-27 Tdk株式会社 磁気センサ
US10677857B2 (en) 2017-12-15 2020-06-09 Biosense Webster (Israel) Ltd. Three-axial sensor including six single-axis sensors
US11237231B2 (en) 2017-12-26 2022-02-01 Robert Bosch Gmbh Z-axis magnetic sensor with distributed flux guides
CN111615636B (zh) * 2018-01-17 2022-07-08 阿尔卑斯阿尔派株式会社 磁检测装置及其制造方法
JP6978518B2 (ja) * 2018-01-17 2021-12-08 アルプスアルパイン株式会社 磁気検出装置およびその製造方法
CN108413992A (zh) * 2018-01-30 2018-08-17 江苏多维科技有限公司 一种三轴预调制低噪声磁电阻传感器
JP6538226B1 (ja) * 2018-03-23 2019-07-03 Tdk株式会社 磁気センサ
JP6620834B2 (ja) * 2018-03-27 2019-12-18 Tdk株式会社 磁気センサおよび磁気センサシステム
WO2019242175A1 (en) * 2018-06-22 2019-12-26 Zhenghong Qian A three-axis magnetic sensor
CN109522649B (zh) * 2018-11-16 2023-03-14 西安电子科技大学 基于正交试验的硅通孔tsv阵列温度优化方法
CN110297194B (zh) * 2019-07-24 2022-02-18 江西联创光电科技股份有限公司 一种支持三维气隙磁场测量的传感器的安装方法和设备
CN112305470B (zh) * 2019-07-29 2022-12-06 甘肃省科学院传感技术研究所 由磁化方向不同的巨磁阻结构构建的巨磁阻传感器的退火方法
US10775450B1 (en) 2020-03-28 2020-09-15 QuSpin, Inc. Zero field parametric resonance magnetometer with triaxial sensitivity
CN111596239B (zh) * 2020-06-15 2021-07-20 北京航空航天大学 一种单片集成三轴隧穿磁电阻的磁传感器及其制备方法
US11275130B2 (en) * 2020-06-25 2022-03-15 Western Digital Technologies, Inc. Magnetic sensor bridge using dual free layer
CN113777384B (zh) * 2021-09-28 2023-12-12 南方电网数字电网研究院有限公司 四分裂导线电流检测方法、装置、计算机设备和存储介质
CN114252817B (zh) * 2021-12-16 2023-04-11 北京微纳星空科技有限公司 一种高精度磁通门探头及其制作方法
WO2023217356A1 (en) * 2022-05-10 2023-11-16 Sensitec Gmbh Vectorial magnetic field sensor and manufacturing method of a vectorial magnetic field sensor
CN115728681B (zh) * 2022-11-15 2023-09-12 南方电网数字电网研究院有限公司 磁场传感器及其测试方法、装置、制备方法和计算机设备
CN115825826B (zh) * 2022-12-22 2023-09-15 南方电网数字电网研究院有限公司 一种三轴全桥电路变换式线性磁场传感器
CN116106801B (zh) * 2023-04-14 2023-06-20 珠海多创科技有限公司 磁阻传感器、磁传感装置及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090315554A1 (en) * 2008-06-20 2009-12-24 Honeywell International Inc. Integrated three-dimensional magnetic sensing device and method to fabricate an integrated three-dimensional magnetic sensing device
CN102292773A (zh) * 2009-09-25 2011-12-21 艾沃思宾技术公司 三轴磁场传感器
CN102426344A (zh) * 2011-08-30 2012-04-25 江苏多维科技有限公司 三轴磁场传感器
CN103267955A (zh) * 2013-05-28 2013-08-28 江苏多维科技有限公司 单芯片桥式磁场传感器
CN203480009U (zh) * 2013-09-10 2014-03-12 江苏多维科技有限公司 一种单芯片z轴线性磁电阻传感器
CN103913709A (zh) * 2014-03-28 2014-07-09 江苏多维科技有限公司 一种单芯片三轴磁场传感器及其制备方法
CN203811786U (zh) * 2014-03-28 2014-09-03 江苏多维科技有限公司 一种单芯片三轴磁场传感器

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7054114B2 (en) * 2002-11-15 2006-05-30 Nve Corporation Two-axis magnetic field sensor
US7126330B2 (en) 2004-06-03 2006-10-24 Honeywell International, Inc. Integrated three-dimensional magnetic sensing device and method to fabricate an integrated three-dimensional magnetic sensing device
JP4614061B2 (ja) * 2004-09-28 2011-01-19 ヤマハ株式会社 巨大磁気抵抗効果素子を用いた磁気センサ及び同磁気センサの製造方法
US7687284B2 (en) * 2005-01-13 2010-03-30 Yamaha Corporation Magnetic sensor and manufacturing method therefor
WO2006098367A1 (ja) * 2005-03-17 2006-09-21 Yamaha Corporation 磁気センサ及びその製造方法
CN100593122C (zh) * 2005-12-09 2010-03-03 中国科学院物理研究所 一种平面集成的三维磁场传感器及其制备方法和用途
JP4296180B2 (ja) * 2006-02-17 2009-07-15 株式会社東芝 磁気抵抗効果素子,磁気ヘッド,磁気再生装置,および磁気抵抗素子の製造方法
JP2009175120A (ja) * 2007-12-28 2009-08-06 Alps Electric Co Ltd 磁気センサ及び磁気センサモジュール
CN101599522B (zh) * 2009-06-30 2011-05-25 厦门市三安光电科技有限公司 一种采用绝缘介质阻挡层的垂直发光二极管及其制备方法
JP5297442B2 (ja) * 2010-12-15 2013-09-25 アルプス電気株式会社 磁気センサ
CN102810630B (zh) * 2011-05-30 2015-11-25 中国科学院物理研究所 各向异性可调制的磁性薄膜结构、磁敏传感器及制备方法
US9000760B2 (en) * 2012-02-27 2015-04-07 Everspin Technologies, Inc. Apparatus and method for resetting a Z-axis sensor flux guide
CN202548308U (zh) 2012-04-23 2012-11-21 美新半导体(无锡)有限公司 三轴磁传感器
CN103267520B (zh) 2013-05-21 2016-09-14 江苏多维科技有限公司 一种三轴数字指南针
CN103412269B (zh) 2013-07-30 2016-01-20 江苏多维科技有限公司 单芯片推挽桥式磁场传感器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090315554A1 (en) * 2008-06-20 2009-12-24 Honeywell International Inc. Integrated three-dimensional magnetic sensing device and method to fabricate an integrated three-dimensional magnetic sensing device
CN102292773A (zh) * 2009-09-25 2011-12-21 艾沃思宾技术公司 三轴磁场传感器
CN102426344A (zh) * 2011-08-30 2012-04-25 江苏多维科技有限公司 三轴磁场传感器
CN103267955A (zh) * 2013-05-28 2013-08-28 江苏多维科技有限公司 单芯片桥式磁场传感器
CN203480009U (zh) * 2013-09-10 2014-03-12 江苏多维科技有限公司 一种单芯片z轴线性磁电阻传感器
CN103913709A (zh) * 2014-03-28 2014-07-09 江苏多维科技有限公司 一种单芯片三轴磁场传感器及其制备方法
CN203811786U (zh) * 2014-03-28 2014-09-03 江苏多维科技有限公司 一种单芯片三轴磁场传感器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3124989A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10107871B2 (en) 2014-03-28 2018-10-23 MultiDimension Technology Co., Ltd. Monolithic three-axis magnetic field sensor and its manufacturing method
US10405995B2 (en) 2015-03-12 2019-09-10 Korea Works' Compensation & Welfare Service Artificial limb structure having magnetic lock device
JP2018534571A (ja) * 2015-11-03 2018-11-22 江▲蘇▼多▲維▼科技有限公司Multidimension Technology Co., Ltd. Tmr高感度シングルチップ・ブッシュプル・ブリッジ磁場センサ

Also Published As

Publication number Publication date
JP2017511489A (ja) 2017-04-20
US20170176545A1 (en) 2017-06-22
CN103913709A (zh) 2014-07-09
JP6496005B2 (ja) 2019-04-03
CN103913709B (zh) 2017-05-17
EP3124989B1 (en) 2019-05-29
US10107871B2 (en) 2018-10-23
EP3124989A4 (en) 2017-12-06
EP3124989A1 (en) 2017-02-01

Similar Documents

Publication Publication Date Title
WO2015144073A1 (zh) 一种单芯片三轴磁场传感器及其制备方法
WO2015158243A1 (zh) 一种单芯片三轴线性磁传感器及其制备方法
EP2752676B1 (en) Triaxial magnetic field sensor
US9893274B2 (en) Methods of manufacturing a magnetic field sensor
US10066940B2 (en) Single-chip differential free layer push-pull magnetic field sensor bridge and preparation method
JP6438959B2 (ja) 単一チップz軸線形磁気抵抗センサ
EP2752675B1 (en) Mtj three-axis magnetic field sensor and encapsulation method thereof
JP6426178B2 (ja) シングルチップ・プッシュプルブリッジ型磁界センサ
JP2014512003A (ja) シングルチッププッシュプルブリッジ型磁界センサ
CN203811786U (zh) 一种单芯片三轴磁场传感器
WO2014101622A1 (zh) 一种磁传感装置及其磁感应方法、制备工艺
CN203811787U (zh) 一种单芯片三轴线性磁传感器
CN104483637B (zh) 提高第三轴感应能力的磁传感器及其制备工艺
CN104459575B (zh) 一种磁传感装置及该磁传感装置的制备工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768352

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017501453

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15300068

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015768352

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015768352

Country of ref document: EP