WO2015158243A1 - 一种单芯片三轴线性磁传感器及其制备方法 - Google Patents

一种单芯片三轴线性磁传感器及其制备方法 Download PDF

Info

Publication number
WO2015158243A1
WO2015158243A1 PCT/CN2015/076517 CN2015076517W WO2015158243A1 WO 2015158243 A1 WO2015158243 A1 WO 2015158243A1 CN 2015076517 W CN2015076517 W CN 2015076517W WO 2015158243 A1 WO2015158243 A1 WO 2015158243A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
magnetic flux
sensor
magnetic
chip
Prior art date
Application number
PCT/CN2015/076517
Other languages
English (en)
French (fr)
Inventor
迪克⋅詹姆斯⋅G
Original Assignee
江苏多维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏多维科技有限公司 filed Critical 江苏多维科技有限公司
Priority to JP2016563090A priority Critical patent/JP6474833B2/ja
Priority to US15/304,770 priority patent/US9891292B2/en
Priority to EP15779547.7A priority patent/EP3133412B1/en
Publication of WO2015158243A1 publication Critical patent/WO2015158243A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/0206Three-component magnetometers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/20Resistors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0011Arrangements or instruments for measuring magnetic variables comprising means, e.g. flux concentrators, flux guides, for guiding or concentrating the magnetic flux, e.g. to the magnetic sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0052Manufacturing aspects; Manufacturing of single devices, i.e. of semiconductor magnetic sensor chips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/04Measuring direction or magnitude of magnetic fields or magnetic flux using the flux-gate principle
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices

Definitions

  • the invention relates to a linear magnetic sensor, in particular to a single chip three-axis linear magnetic sensor and a preparation method thereof.
  • the X-axis and Y-axis magnetic field components can be measured by orthogonalizing the two sensors, thereby realizing the XY two-axis magnetic field test system, but
  • One solution for the Z-axis magnetic field component is to mount a discrete single-axis planar magnetic sensor on a two-axis planar sensor, as disclosed in the patent No. 201110251902.9 entitled "Triaxial Magnetic Field Sensor".
  • Axial magnetic field sensor This approach has the following deficiencies:
  • the X, Y two-axis magnetic sensor and the Z single-axis magnetic sensor are separate components before installation, and the integrated manufacturing of the three-axis magnetic sensor cannot be realized, thereby increasing the complexity of the manufacturing process;
  • the Z-axis of the three-axis magnetic sensor is increased in size, thereby increasing the device size and packaging difficulty.
  • Another solution is to detect the magnetic signal in the Z direction by means of a ramp-arranged magnetic sensor unit disclosed in the patent CN202548308U "Triaxial Magnetic Sensor".
  • the angle of the slope formed in the sensor of this structure is not easy to control, on the slope
  • the deposition of the magnetoresistive film also tends to cause shadowing effects, thereby degrading the performance of the magnetic sensor element, and an algorithm is required to calculate the magnetic signal in the Z-axis direction.
  • a three-axis magnetic sensor is mainly prepared by etching a substrate on a substrate layer to form a slope, depositing a magnetoresistive material film on the slope, and performing double deposition, for example, as disclosed in the patent CN202548308U "Triaxial Magnetic Sensor".
  • the preparation process of the sensor is generally to first etch two slopes on the substrate layer of the wafer, and then make a measurement of the XZ direction and the YZ direction by double-depositing a thin film of magnetoresistance material on both slopes and double annealing. Sensor unit.
  • a method of preparing a three-axis sensor is also disclosed in the European patent application EP 2 267 470 B1, which also forms a ramp by etching on a substrate and then fabricating a sensor unit for measuring the magnetic field component in the Z-axis direction on the slope.
  • the slope of the slope etched in these two patent applications is not easy to control, and it is also difficult to deposit a film of magnetoresistance material on the slope, which is not suitable for practical implementation.
  • a method for integrating a three-axis magnetic field is disclosed in the patent application CN102918413A "Process Integration of Single-Chip Three-Axis Magnetic Field Sensor" by Avo Sibin Technology Co., Ltd., which comprises: etching first in the first dielectric layer And a second plurality of grooves, each of the first and second plurality of grooves having a bottom and a side; depositing a first high permeability material on at least a side of each of the first plurality of grooves, Depositing a second material in the first plurality of trenches and depositing a third conductive material in the second plurality of trenches; depositing a second dielectric layer on the first dielectric layer and the first and second plurality of trenches; Forming a first plurality of conductive vias through the second dielectric layer to the third material in the first portion of the trench; forming a first plurality of thin film magnetoresistive magnetic fields positioned adjacent the sides of the first plurality of trenches on the second di
  • a three-axis magnetic sensor is also formed by using a flux concentrator, but the magnetization direction of the pinned layer of the magnetoresistive element is not the same, and it is difficult to implement.
  • the present invention proposes a single-chip three-axis linear magnetic sensor and a method of fabricating the same.
  • the single-chip three-axis linear magnetic sensor can directly output magnetic signals in three directions of X, Y, and Z, so there is no need to use an algorithm for calculation.
  • the preparation does not require a groove to form a slope, and does not require double deposition.
  • the X-axis sensor, the Y-axis sensor, and the Z-axis sensor have the same pinning layer in the direction of the pinning layer, both along the X axis. direction.
  • the invention provides a single-chip three-axis linear magnetic sensor, which comprises:
  • a substrate located in the XY plane the substrate is integrally provided with an X-axis sensor and a Y-axis sensing And a Z-axis sensor each comprising one or more identical magnetoresistive sensing elements electrically connected to each other for detecting components of the magnetic field in the X-axis direction, the Y-axis direction, and the Z-axis direction;
  • the X-axis sensor includes a reference bridge and at least two X-magnetic flux controllers, the reference arm and the sensing arm of the reference bridge are alternately arranged, and each includes the one or more identical electrical connections a magnetoresistive sensing element;
  • the magnetoresistive sensing element on the reference arm is located above or below the X-magnetic flux controller, and is arranged along the length direction of the X-magnetic flux controller to form a reference component string;
  • a magnetoresistive sensing element on the sensing arm is located at a gap between two adjacent X-magnetic flux controllers, and is arranged along the length direction of the X-magnetic flux controller to form a sensing element string;
  • the Y-axis sensor includes a push-pull bridge, and each of the push arm and the arm of the push-pull bridge is correspondingly provided with at least two Y-magnetic flux controllers, and the push arm and the pull arm are alternately arranged.
  • the Z-axis sensor includes a push-pull bridge and at least one Z-magnetic flux controller, and the push arm and the arm of the push-pull bridge are alternately arranged, each of which includes the one or more identical electrical connections a magnetoresistive sensing element; the magneto-resistive sensing elements on the push arm and the arm are respectively located on two sides or upper sides of the Z-magnetic flux controller, and are controlled along the Z-magnetic flux Arranging the length direction of the device; the pinning layers of all of the magnetoresistive sensing elements of the X-axis sensor, the Y-axis sensor, and the Z-axis sensor have the same magnetization direction, and in the absence of the magnetic flux controller, all of the magnetic The sensing direction of the resistance sensing element is the X-axis direction;
  • the X-axis, the Y-axis, and the Z-axis are orthogonal to each other.
  • the magnetoresistive sensing element is a GMR spin valve element or a TMR sensing element.
  • the X-magnetic flux controller, the Y-magnetic flux controller and the Z-magnetic flux controller are both rectangular strip arrays, and the constituent materials are all soft ferromagnetic alloys.
  • a distance between each of the reference element strings and an adjacent one of the sensing element strings is L; when the number of the X-magnetic flux controllers is an even number, the positive of the X-axis sensor There are two reference element strings in the middle adjacent to each other with a pitch of 2L; when the number of the X-magnetic flux controller is an odd number, there are two pairs of the sensing elements in the middle of the X-axis sensor Neighbors have a spacing of 2L, where L is a natural number.
  • the gain coefficient of the magnetic field at the gap between the X-magnetic flux controllers is 1 ⁇ Asns ⁇ 100
  • the attenuation coefficient of the magnetic field above or below the X-magnetic flux controller is 0 ⁇ Aref ⁇ 1.
  • the number of Y-magnetic flux controllers on the push arm and the pull arm is the same; the angle ⁇ between the Y-magnetic flux controller and the positive X-axis of the push arm is 0° ⁇ 90°, the angle ⁇ between the Y-magnetic flux controller and the X-axis positive direction of the arm is ⁇ 90° ⁇ 0°; or; the Y-magnetic flux controller and the X-axis positive on the push arm
  • the angle ⁇ is -90° to 0°, and the angle between the Y-magnetic flux controller on the arm and the positive X-axis is ⁇ °°° to 90°, where
  • the number of the magnetoresistive sensing elements on the push arm and the arm is the same and the magnetoresistive sensing elements in the opposite positions are parallel to each other; the push arm and the The magnetoresistive sensing elements on the arm are the same in the same angle of rotation, but in different directions.
  • the number of magnetoresistive sensing elements on the push arm and the arm of the push-pull bridge is the same.
  • the ratio of the length to the width of the magnetoresistive sensing element of the Z-axis sensor is greater than one.
  • the spacing S between two adjacent Z-magnetic flux controllers is not less than the width Lx of the Z-magnetic flux controller.
  • the spacing between adjacent two Z-magnetic flux controllers is S>2Lx.
  • the magnetoresistive sensing element in the Z-axis sensor is located outside the upper or lower side edges of the Z-magnetic flux controller.
  • reducing the spacing of the magnetoresistive sensing element in the Z-axis sensor from the lower edge of the Z-magnetic flux controller, or increasing the thickness Lz of the Z-magnetic flux controller, or reducing the The width Lx of the Z-magnetic flux controller can increase the sensitivity of the Z-axis sensor.
  • the magnetoresistive sensing element causes the magnetization direction of the magnetic free layer and the magnetization direction of the pinned layer by permanent magnet bias, double exchange action, shape anisotropy or any combination thereof. vertical.
  • the reference bridge and the push-pull bridge are both a half bridge, a full bridge or a quasi-bridge structure.
  • an ASIC chip is integrated on the substrate, or the substrate is electrically connected to a separate ASIC chip.
  • the semiconductor package method of the single-chip triaxial magnetic sensor comprises pad wire bonding, flip chip, ball grid array package (BGA), wafer level package (WLP) or chip on board Packed (COB).
  • BGA ball grid array package
  • WLP wafer level package
  • COB chip on board Packed
  • the X-axis sensor, the Y-axis sensor, and the Z-axis sensor have the same sensitivity.
  • the invention also provides a method for preparing a single-chip three-axis linear magnetic sensor, the method comprising the following steps:
  • the pinned layer of the magnetoresistive material film stack is pinned with an antiferromagnetic material having a blocking temperature of TB1, and the free layer is biased with a second antiferromagnetic material having a blocking temperature of TB2, wherein TB1 >TB2;
  • thermal annealing in a magnetic field is a two-step thermomagnetic annealing comprising the steps of first annealing the wafer in a magnetic field of temperature T1, where T1 > TB1; followed by a temperature of T2 Cooling in a magnetic field, where TB1 > T2 > TB2; after the wafer temperature is cooled to T2, the direction of the wafer or the applied magnetic field is rotated by 90 degrees; then the wafer is cooled to a temperature T3, and removed An external magnetic field is applied, where TB2 > T3; the wafer is finally cooled to room temperature.
  • an X-axis sensor and a Y-axis sensor are simultaneously constructed on the magneto-resistive material film stack by photolithography, ion etching, reactive ion etching, wet etching, stripping or hard masking. Magnetoresistive sensing elements in the Z-axis sensor.
  • the through hole is formed by photolithography, ion etching, reactive ion etching or wet etching in the step (3).
  • the through hole in the step (3) is a self-aligned contact hole formed by a lift off process or a hard mask process.
  • depositing an insulating layer II over the top metal layer comprises: depositing a first sub-insulating layer over the top metal layer; depositing a conductor for constructing an electromagnetic coil on the first sub-insulating layer And depositing a second sub-insulating layer on the electromagnetic coil, the first sub-insulating layer, the second sub-insulating layer and the conductor constituting the insulating layer II; the depositing on the insulating layer II
  • a layer of soft ferromagnetic alloy material includes: depositing the layer of soft ferromagnetic alloy material on the second sub-insulating layer.
  • FIG. 1 is a schematic structural view of a single-chip three-axis linear magnetic sensor in the present invention.
  • FIG. 2 is a schematic diagram of a digital signal processing circuit of a single-chip three-axis linear magnetic sensor in the present invention.
  • FIG. 3 is a schematic structural view of an X-axis sensor.
  • FIG. 4 is a magnetic field distribution diagram around a magnetoresistive element in an X-axis sensor.
  • Figure 5 is a plot of the position of the MTJ component in the X-axis sensor versus the induced magnetic field strength.
  • Figure 6 shows the response curve of the X-axis sensor.
  • Figure 7 is a circuit diagram of the X-axis sensor.
  • Fig. 8 is a schematic structural view of a Y-axis sensor.
  • Fig. 9 is a schematic view showing another structure of the Y-axis sensor.
  • Fig. 10 is a magnetic field distribution diagram of the Y-axis sensor in the magnetic field in the Y-axis direction.
  • Figure 11 is a magnetic field distribution diagram of the Y-axis sensor in the X-axis direction magnetic field.
  • Figure 12 shows the response curve of the Y-axis sensor.
  • Figure 13 is a schematic diagram of the circuit principle of the Y-axis sensor.
  • Figure 14 is a schematic view showing the structure of a Z-axis sensor.
  • Figure 15 is a diagram showing the magnetic field distribution around the magnetic flux controller of the Z-axis sensor in the Z-direction magnetic field.
  • Figure 16 is a schematic diagram of the circuit principle of the Z-axis sensor.
  • Figure 17 is a magnetic field distribution diagram of the magnetic flux controller around the Z-axis sensor in the X-direction magnetic field.
  • Figure 18 is a magnetic field distribution diagram of the magnetic flux controller around the Z-axis sensor in the Y-direction magnetic field.
  • Figure 19 shows the response curve of the Z-axis sensor.
  • 20 is a schematic flow chart of a method for preparing a single-chip three-axis linear magnetic sensor according to the present invention.
  • Figure 21 is a schematic cross-sectional view of a single-chip, three-axis linear magnetic sensor.
  • the X-axis sensor 3 includes an inductive element string 11, a reference element string 12, and an X-magnetic flux controller 8, wherein the reference element string 12 is located below the X-magnetic flux controller 8, and the inductive element string 11 is located adjacent to two X-flux control At the gap between the devices 8. Both the sensing element string 11 and the reference element string 12 are electrically connected by one or more identical magnetoresistive sensing elements.
  • the Y-axis sensor 4 includes magnetic Y-flux controllers 23, 24, magnetoresistive sensing elements 13, 14 in which magnetoresistive sensing elements 13 are arranged in a row at the gap between two adjacent Y-magnetic flux controllers 23
  • the magnetoresistive sensing elements 14 are arranged in a row at the gaps of two adjacent Y-magnetic flux controllers 24, wherein the number of the magnetoresistive sensing elements 13 and the magnetoresistive sensing elements 14 are the same, and the Y-magnetic flux controller 23
  • the number of Y-magnetic flux controllers 24 is the same, the Y-magnetic flux controller 23 is at a positive angle with the positive X-axis, and the Y-magnetic flux controller 24 is at a negative angle with the positive X-axis.
  • the two clamps The absolute values of the angles are the same.
  • the Y-magnetic flux controller 23 may also be at a negative angle to the positive X-axis, and the Y-magnetic flux controller 24 may be at a positive angle to the positive X-axis.
  • the Z-axis sensor includes a Z-magnetic flux controller 10 and magnetoresistive sensing elements 15, 16 in which the magnetoresistive sensing elements 15, 16 are electrically connected in a row, arranged on both sides below the Z-magnetic flux controller 10.
  • the magnetoresistive sensing element constituting the reference element string 12 in the X-axis sensor may also be located above the X-magnetic flux controller 8, at which time the magnetoresistive sensing elements 15, 16 in the Z-axis sensor are located in the Z-magnetic flux control. On both sides above the device 10.
  • All magnetoresistive sensing elements are GMR spin valves or TMR sensing elements, and the shape can be Square, diamond or elliptical, but not limited to the above shape, the magnetization directions 6 of the pinned layers of all the magnetoresistive sensing elements are the same, all along the X-axis direction. In the absence of an applied magnetic field, the magnetoresistive sensing element causes the magnetization direction of the magnetic free layer to be perpendicular to the magnetization direction of the pinned layer by permanent magnet biasing, double switching, shape anisotropy, or any combination thereof.
  • All magnetic flux controllers are rectangular strip arrays, and their constituent materials are soft ferromagnetic alloys, which may include one or several elements of Ni, Fe, Co, Si, B, Ni, Zr, and Al. , but not limited to the above elements.
  • the pad 2 includes input and output connection pads in the X-axis sensor, the Y-axis sensor, and the Z-axis sensor.
  • the substrate 1 may contain an ASIC or be electrically connected to another ASIC chip, the ASIC not being shown.
  • the single-chip triaxial magnetic sensor can be packaged by pad wire bonding, flip chip, ball grid array package (BGA), wafer level package (WLP), and chip on board package (COB).
  • the X axis, the Y axis, and the Z axis are orthogonal to each other.
  • the X-axis sensor 3, the Y-axis sensor 4, and the Z-axis sensor 5 have the same sensitivity.
  • the digital signal processing circuit 50 is a schematic diagram of a digital signal processing circuit of a single-chip three-axis linear magnetic sensor.
  • the magnetic field signals sensed by the X-axis sensor 3, the Y-axis sensor 4, and the Z-axis sensor 5 are subjected to analog digital signal conversion by the ADC 41 in the digital signal processing circuit 50, and the converted digital signal is supplied to the data processor 42.
  • the processed signal is output through the I/O 43 to measure the external magnetic field.
  • the digital signal processing circuit 50 may be located on the substrate 1, or may be located on another ASIC chip, which is electrically connected to the substrate 1.
  • the X-axis sensor is a reference full-bridge structure including a reference arm and a sensing arm, wherein the reference arm includes a plurality of reference component strings 12 under the X-magnetic flux controller, and the sensing arm includes a plurality of gaps for the X-magnetic flux controller
  • the sensing element string 11, the sensing element string 11 and the reference element string are alternately discharged along the length direction of the X-magnetic flux controller, and between each sensing element string 11 and the adjacent reference element string 12 Separated by a distance L.
  • X-magnetic flux controllers as shown in FIG.
  • two reference element strings 12 are adjacent in the middle with a spacing of 2L therebetween. If the X-magnetic flux controller is an odd number, there will be two sensing element strings 11 adjacent in the middle, and the adjacent spacing is also 2L, which is not shown in the figure.
  • the pitch L is small, preferably 20 to 100 ⁇ m.
  • the sensing arm, the reference arm, and the pads 17-20 may be connected by an electrical connection conductor 21.
  • the pads 17-20 serve as input terminals Vbias, ground terminals GND, and output terminals V1, V2, respectively, corresponding to the leftmost four pads in FIG.
  • FIG. 4 is a magnetic field distribution around the sensing element string 11 and the reference element string 12 of FIG.
  • the amplitude of the magnetic field induced by the sensing element string 11 located at the gap of the X-magnetic flux controller 8 is increased, and the amplitude of the magnetic field induced by the reference element string 12 located below the X-magnetic flux controller 8 is lowered.
  • the X-magnetic flux controller 8 can function to attenuate the magnetic field.
  • B sns 34 is the magnetic field strength induced by the sensing element string 11
  • B ref 35 is the reference element.
  • Figure 6 is a graph showing the relationship between the output voltage of the X-axis sensor of Figure 3 and the applied magnetic field.
  • the X-axis sensor can only sense the magnetic field component in the X-axis direction
  • the output voltage Vx36 does not respond to the magnetic field components in the Y-axis and Z-axis directions, and the voltages Vy 37 and Vz 38 are both zero, and Vx36 is symmetric about the origin 0.
  • Figure 7 is a circuit diagram of the X-axis sensor of Figure 3.
  • the two sensing arms 52, 52' and the two reference arms 53, 53' are connected to each other to form a full bridge, and the output voltage of the full bridge is
  • FIG. 8 is a schematic structural view of the Y-axis sensor of FIG. 1.
  • the sensor is a push-pull full bridge structure comprising a plurality of obliquely disposed Y-magnetic flux controllers 23, 24 and magnetoresistive sensing elements 13, 14 electrically connecting the push arms and the pull arms.
  • the magnetoresistive sensing element 13 is located at a gap between two adjacent Y-magnetic flux controllers 23, and the magnetoresistive sensing element 14 is located at a gap between two adjacent Y-magnetic flux controllers 24, the Y-magnetic flux controller 23
  • the angle between 24 and the X axis is ⁇ 25 and ⁇ 26, respectively, preferably,
  • the number of the magnetoresistive sensing elements 13 and 14 is the same and the magnetoresistive sensing elements 13 and 14 in the relative positions are parallel to each other, and they are also rotatable, and the angles of rotation of the two are the same, but the directions are different.
  • the input and output pads of the Y-axis sensor are not shown in the drawing, and correspond to the four most intermediate pads in the pad 2 in FIG.
  • Fig. 9 is a schematic view showing another structure of the Y-axis sensor.
  • the magnetoresistive elements 13, 14 in Fig. 8 are rotated by ⁇ 45°, respectively, to obtain the structure shown in the figure, which is different from Fig. 8 in that the magnetoresistive elements 13, 14 and the Y-magnetic flux controllers 23, 24, respectively. parallel.
  • Fig. 10 is a magnetic field distribution diagram of the Y-axis sensor in the magnetic field in the Y-axis direction.
  • the direction 101 of the applied magnetic field is parallel to the Y-axis, and the measurement direction 100 is parallel to the X-axis.
  • the applied magnetic field entering the sensor is biased by the Y-magnetic flux controllers 23, 24, wherein the direction of the magnetic field at the gap of the Y-magnetic flux controller 23 is 102, in the Y-magnetic flux control
  • the direction of the magnetic field at the gap of the device 24 is 103.
  • the magnetic field directions 102 and 103 are symmetrical about the Y axis.
  • the applied magnetic field By 100G
  • the measured X-axis magnetic field size B X+ 90G
  • B X- -90G
  • Fig. 11 is a view showing the distribution of the Y-axis sensor in the magnetic field in the X-axis direction.
  • the direction in which the applied magnetic field is applied and the direction of measurement are all in the direction 100 parallel to the X-axis.
  • the direction of the magnetic field at the gap of the Y-magnetic flux controller 23 is 104
  • the direction of the magnetic field at the gap of the Y-magnetic flux controller 24 is 105.
  • the magnetic field directions 104 and 105 are symmetrical about the X axis.
  • the applied magnetic field Bx 100G
  • the measured X-axis magnetic field size B X+ 101G
  • B X- -101G the measured X-axis magnetic field size
  • Figure 12 is a graph showing the relationship between the output voltage of the Y-axis sensor and the applied magnetic field.
  • the Y-axis sensor can only sense the magnetic field component in the Y-axis direction, and the output voltage Vy 37 does not respond to the magnetic field components in the X-axis and Z-axis directions, and the voltages Vx 36 and Vz 38 are zero.
  • Vy 37 is symmetric about the origin 0.
  • Figure 13 is a circuit diagram of the Y-axis sensor.
  • a plurality of magnetoresistive sensing elements 13 are electrically connected to form equivalent magnetoresistances R39 and R39', and a plurality of magnetoresistive sensing elements 14 are electrically connected to form equivalent magnetoresistances R40 and R40', which form a full bridge.
  • Their magnetic pinning layers have the same magnetization direction, and the relative positions of the magnetoresistance (R39 and R39', R40 and R40') have the same magnetization direction of the magnetic free layer, and the adjacent magnetoresistance (R39 and R40, R39 and R40)
  • the magnetic free layers of ', R39' and R40, R39' and R40') have different magnetization directions.
  • FIG 14 is a schematic view showing the structure of a Z-axis sensor.
  • the Z-axis sensor is a push-pull full bridge structure including a plurality of magnetoresistive sensing elements 15 and 16, a plurality of Z-magnetic flux controllers 10, electrical connection conductors 27 and pads 28-30, pads 28 -31 is used as the power supply terminal V Bias , the ground terminal GND, and the voltage output terminals V+, V-, respectively, corresponding to the four rightmost pads in the pad 2 in FIG. All the magnetoresistive sensing elements 15 are electrically connected to each other to form a full-bridge push arm.
  • All the magnetoresistive sensing elements 16 are electrically connected to each other to form a full-bridge arm, and the push arm and the arm are arranged at intervals, and the push arm and the arm are arranged. And the pads 28-30 are connected by an electrical connection conductor 27 to form a push-pull full bridge.
  • the magnetoresistive sensing elements 15, 16 are arranged along the long axis direction of the Z-magnetic flux controller 10. In Fig. 14, the magnetoresistive sensing elements 15, 16 are arranged in rows on both sides below the Z-magnetic flux controller 10, and are covered by the Z-magnetic flux controller 10.
  • a row of push arm magnetoresistive sensing elements 15 and a row of arm magnetoresistive sensing elements are arranged on each of the lower sides of each Z-magnetic flux controller 10.
  • Element 16 if necessary, magnetoresistive sensing elements 15, 16 may also be arranged beneath the three Z-magnetic flux controllers 10.
  • Figure 15 is a magnetic field distribution diagram of the Z-axis sensor in the applied magnetic field 106 in the Z-axis direction.
  • the applied magnetic field is distorted in the vicinity of the Z-magnetic flux controller 10, thereby generating a magnetic field component in the X-axis direction
  • the magnetoresistive sensing element 15 located under the Z-magnetic flux controller 10 and 16 can detect this component just right, but the magnetic field components detected by the two are opposite in direction, 107 and 108 respectively.
  • the magnitude of the applied applied magnetic field can be known by the detected X-axis magnetic field component.
  • Figure 16 is a circuit diagram of a Z-axis sensor.
  • a plurality of magnetoresistive sensing elements 15 are electrically connected to form equivalent magnetoresistances R2 and R2', and a plurality of magnetoresistive sensing elements 16 are electrically connected to form two equivalent magnetoresistors R3 and R3'. bridge.
  • the output voltage of the circuit can be obtained from Figure 15:
  • Fig. 17 is a magnetic field distribution diagram of the Z-axis sensor in the applied magnetic field 100 in the X-axis direction.
  • the magnetic fields detected by the magnetoresistive sensing elements 15 and 16 are the same, which causes the resistance values of the magnetoresistances R2, R2' and R3, R3' to be the same, thereby failing to form a push-pull output. So the sensor will not respond.
  • Fig. 18 is a magnetic field distribution diagram of the Z-axis sensor in the applied magnetic field 101 in the Y-axis direction.
  • the Z-magnetic flux controller 10 completely shields the applied magnetic field in the Y-axis direction, and the magnetoresistive sensing elements 15, 16 are insensitive to the magnetic field in the Y-axis direction, so the magnetoresistive sensing elements 15, 16 No magnetic field component is detected and the Z-axis sensor does not produce any response.
  • Figure 19 is a graph showing the relationship between the output voltage of the Z-axis sensor and the applied magnetic field.
  • the Z-axis sensor can only sense the magnetic field component in the Z-axis direction, and the output voltage Vz38 does not respond to the magnetic field components in the X-axis and Y-axis directions.
  • the voltages Vx36 and Vy37 are both 0, and Vz38. About origin 0 symmetry.
  • 20 is a method of fabricating a single-chip triaxial magnetic sensor according to the present invention, the method comprising the steps of: (1) depositing a stack of a thin film of magnetoresistive material on a wafer, and then setting the magnetic wave by a related process;
  • the magnetization direction of the pinned layer on the thin film stack of the resistive material is preferably thermally annealed in a magnetic field to set the magnetization direction of the pinned layer in the same direction, and set its electrical and magnetic properties, including impedance, threshold voltage, magnetic Hysteresis, anisotropy and saturation magnetic field, etc., in which the magnetic properties are for the pinning layer and the free layer, and the electrical properties are for the tunnel junction.
  • the pinned layer of the magnetoresistive material film stack is pinned with an antiferromagnetic material having a blocking temperature of TB1, and the free layer is biased with a second antiferromagnetic material having a blocking temperature of TB2, where TB1 > TB2.
  • Thermal annealing in a magnetic field may also be a two-step thermomagnetic annealing comprising the steps of first annealing the wafer in a magnetic field of temperature T1, where T1 > TB1; followed by a magnetic field at a temperature of T2 Cooling, wherein TB1>T2>TB2; after the wafer temperature is cooled to T2, the direction of the wafer or the applied magnetic field is rotated by 90 degrees; then the wafer is cooled to a temperature T3, and the addition is removed.
  • the magnetic field where TB2 > T3; finally the wafer is cooled to room temperature.
  • the magnetoresistive material film includes a seed layer on which a GMR or TMR element can be formed.
  • the via holes may be self-aligned contact holes formed by a lift-off process or a hard mask process.
  • FIG. 1 A schematic cross-sectional view of the single-chip three-axis linear magnetic sensor after the above steps is completed is shown in FIG.
  • the X-axis sensor, the Y-axis sensor, and the Z-axis sensor in order from left to right in FIG.
  • the left and right bridge arms in the Y-axis sensor are symmetrical, only the Y-magnetic flux controller 23 on one of the bridge arms and the magnetoresistive sensing element 13 at the gap thereof are shown.
  • the magnetoresistive element in the above step is an MTJ element.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

一种单芯片三轴线性磁传感器及其制备方法,其中传感器包括一X轴传感器(3)、Y轴传感器(4)和Z轴传感器(5)。其中X轴传感器(3)包含有一参考电桥和至少两个X-磁通量控制器(8),Y轴传感器(4)包含有一推挽电桥和至少两个Y-磁通量控制器(23,24),Z轴传感器(5)包含有一推挽电桥和至少一个Z-磁通量控制器(10)。参考电桥、推挽电桥的桥臂均由一个或多个磁电阻传感元件(13,14,15,16)电连接构成,磁电阻传感元件(13,14,15,16)的敏感轴方向和钉扎层的磁化方向(6)均沿X轴方向。该制备方法,即先在晶片上沉积一层磁电阻薄膜,然后通过使用磁退火、光刻、刻蚀、镀膜等技术便得到最终的传感器。该单芯片三轴线性磁传感器具有成本低、制作简单、线性度好、灵敏度高等优点。

Description

一种单芯片三轴线性磁传感器及其制备方法 技术领域
本发明涉及一种线性磁传感器,尤其涉及一种单芯片三轴线性磁传感器及其制备方法。
背景技术
随着磁传感器技术的发展,其从初期的单轴磁传感器到后来的双轴磁传感器,再到如今的三轴磁传感器,使得其可全面检测空间X、Y、Z轴三个方向上的磁场信号。
对于AMR、GMR和TMR等磁传感器,由于磁场敏感方向在薄膜平面内,可以通过将两个传感器正交来实现平面内X、Y轴磁场分量的测量,从而实现XY二轴磁场测试系统,但对于Z轴磁场分量,其中一种解决方案是将一个分立单轴平面磁传感器竖立安装在二轴平面传感器上,如申请号为201110251902.9,名称为“三轴磁场传感器”的专利中所公开的三轴磁场传感器。这种方式存在以下不足之处:
1)X、Y二轴磁传感器和Z单轴磁传感器在安装之前为各自为分立元件,无法实现三轴磁传感器的集成制造,从而增加了制造工艺的复杂程度;
2)相对于集成制造系统,采用组装方法制造的三轴磁传感器系统内各元件的位置精度降低,影响传感器的测量精度;
3)由于Z单轴磁传感器的敏感轴垂直于X,Y二轴磁传感器,因此三轴磁传感器Z向尺寸增加,从而增加了器件尺寸和封装难度。
另一种解决方案是专利CN202548308U“三轴磁传感器”中公开的采用斜坡设置磁传感器单元的方式来探测Z方向上的磁信号,这种结构的传感器中形成斜坡的角度不容易控制,在斜坡上沉积磁电阻薄膜的过程中还容易造成遮蔽效应(shadowing effects),从而降低了磁传感器元件的性能,并且还需要算法来计算才能得到Z轴方向的磁信号。
还有一种方案是专利申请201310202801.1“一种三轴数字指南针”中所公开的解决方案,其利用通量集中器对磁场的扭曲作用,将垂直于平面的Z轴磁场分量转变成XY平面内的磁场分量,从而实现Z轴方向上磁信号的测量。但这种结构的磁传感器需要一个ASIC芯片或者通过算法来计算才能得到X、Y和 Z轴三个方向的磁信号。
目前,主要是通过在基片的衬底层上刻蚀形成斜坡,在斜坡上沉积磁电阻材料薄膜,双次沉积等方法来制备三轴磁传感器,例如专利CN202548308U“三轴磁传感器”中所公开的传感器的制备过程大致是先在晶圆的衬底层上刻蚀出两个斜坡,然后分别在两个斜坡上通过双次沉积磁电阻材料薄膜、双次退火来制作测量XZ方向和YZ方向的传感器单元。欧洲专利申请EP 2267470 B1也公开了一种制备三轴传感器的方法,其也是通过在基片上刻蚀形成斜坡,然后在斜坡上制作测量Z轴方向磁场分量的传感器单元。这两个专利申请中所刻蚀的斜坡的坡度不易控制,在斜坡上沉积磁电阻材料薄膜也有一定难度,不利于实际实施。此外,美国艾沃思宾技术公司的专利申请CN102918413A“单芯片三轴磁场传感器的工艺集成”中也公开了一种集成三轴磁场的方法,该方法包括:在第一电介质层中蚀刻第一和第二多个槽,第一和第二多个槽中的每个槽具有底部和侧面;在至少该第一多个槽中的每个的侧面上沉积第一高磁导率材料,在第一多个槽中沉积第二材料且在第二多个槽中沉积第三导电材料;在该第一电介质层以及该第一和第二多个槽上沉积第二电介质层;在第二槽的第一部分中形成穿过第二电介质层到第三材料的第一多个导电通路;在第二电介质层上形成邻近第一多个槽的侧面定位的第一多个薄膜磁致电阻磁场传感器元件,第一多个薄膜磁致电阻磁场传感器元件中的每一个电耦接到第一多个通路之一以及在第二电介质层以及第一多个薄膜磁致电阻磁场传感器元件上沉积第三电介质层。这个方法比较复杂,操作过程还不易于控制。现有技术中还有通过使用通量集中器来形成三轴磁传感器的,但其磁电阻元件的钉扎层的磁化方向并不相同,实施起来也比较困难。
发明内容
为了解决以上问题,本发明提出了一种单芯片三轴线性磁传感器及其制备方法。该单芯片三轴线性磁传感器能直接输出X、Y、Z三个方向的磁信号,因此无需使用算法来进行计算。此外,其制备无需刻槽形成斜坡,也不需进行双次沉积,其含有的X轴传感器、Y轴传感器和Z轴传感器中的磁电阻传感元件的钉扎层方向相同,均沿X轴方向。
本发明提供的一种单芯片三轴线性磁传感器,其包括:
一位于XY平面内的基片,所述基片上集成设置有一X轴传感器、一Y轴传感 器和一Z轴传感器,各自均包括一个或多个相同的相互电连接的磁电阻传感元件,分别用于检测磁场在X轴方向、Y轴方向、Z轴方向上的分量;
所述X轴传感器包含有一参考电桥和至少两个X-磁通量控制器,所述参考电桥的参考臂和感应臂交替排列,并且各自均包括所述一个或多个相同的相互电连接的磁电阻传感元件;所述参考臂上的磁电阻传感元件位于所述X-磁通量控制器的上方或下方,并沿着所述X-磁通量控制器的长度方向排列形成参考元件串;所述感应臂上的磁电阻传感元件位于相邻两个所述X-磁通量控制器之间的间隙处,并沿着所述X-磁通量控制器的长度方向排列形成感应元件串;
所述Y轴传感器包含有一推挽电桥,所述推挽电桥的推臂和挽臂上各自对应设置有至少两个Y-磁通量控制器,所述推臂和所述挽臂交替排列,各自均包括所述一个或多个相同的相互电连接的磁电阻传感元件,所述磁电阻传感元件分别位于对应的两个相邻所述Y-磁通量控制器之间的间隙处;
所述Z轴传感器包含有一推挽电桥和至少一个Z-磁通量控制器,所述推挽电桥的推臂和挽臂交替排列,各自均包括所述一个或多个相同的相互电连接的磁电阻传感元件;所述推臂和所述挽臂上的磁电阻传感元件分别位于所述Z-磁通量控制器的下方两侧或上方两侧,并均沿着所述Z-磁通量控制器的长度方向排列;所述X轴传感器、Y轴传感器和Z轴传感器中的所有所述磁电阻传感元件的钉扎层的磁化方向均相同,在没有磁通量控制器时,所有所述磁电阻传感元件的感应方向为X轴方向;
其中,X轴、Y轴和Z轴两两正交。
优选的,所述磁电阻传感元件为GMR自旋阀元件或者TMR传感元件。
优选的,X-磁通量控制器、Y-磁通量控制器和Z-磁通量控制器均为矩形长条阵列,其组成材料均为软铁磁合金。
优选的,每个所述参考元件串与相邻的所述感应元件串之间的间距均为L;当所述X-磁通量控制器的个数为偶数时,在所述X轴传感器的正中间有两个所述参考元件串相邻,其间距为2L;当所述X-磁通量控制器的个数为奇数时,在所述X轴传感器的正中间有两个所述感应元件串相邻,其间距为2L,其中L为自然数。
优选的,所述X-磁通量控制器之间的间隙处的磁场的增益系数为1<Asns <100,所述X-磁通量控制器上方或者下方处的磁场的衰减系数为0<Aref<1。
优选的,对于所述Y轴传感器,所述推臂和所述挽臂上的Y-磁通量控制器的数量相同;所述推臂上Y-磁通量控制器与X轴正向的夹角α为0°~90°,所述挽臂上Y-磁通量控制器与X轴正向的夹角β为-90°~0°;或;所述推臂上Y-磁通量控制器与X轴正向的夹角α为-90°~0°,所述挽臂上Y-磁通量控制器与X轴正向的夹角为β为0°~90°,其中,|α|=|β|。
优选的,对于所述Y轴传感器,所述推臂和所述挽臂上的磁电阻传感元件的数量相同并且相对位置上的磁电阻传感元件之间相互平行;所述推臂和所述挽臂上的磁电阻传感元件彼此的旋转角度的幅度相同,但方向不同。
优选的,对于所述Z轴传感器,所述推挽电桥的推臂和挽臂上的磁电阻传感元件的数量相同。
优选的,所述Z轴传感器的磁电阻传感元件的长度与宽度之间的比值大于1。
优选的,相邻两个所述Z-磁通量控制器之间的间距S不小于所述Z-磁通量控制器的宽度Lx。
优选的,相邻两个所述Z-磁通量控制器之间的间距S>2Lx。
优选的,所述Z轴传感器中的磁电阻传感元件位于所述Z-磁通量控制器上方或下方两侧边缘的外侧。
优选的,减小所述Z轴传感器中的磁电阻传感元件与所述Z-磁通量控制器的下方边缘的间距,或者增大所述Z-磁通量控制器的厚度Lz,或者减小所述Z-磁通量控制器的宽度Lx均能增加所述Z轴传感器的灵敏度。
优选的,在没有外加磁场时,所述磁电阻传感元件通过永磁偏置、双交换作用、形状各向异性或者它们的任意结合来使磁性自由层的磁化方向与钉扎层的磁化方向垂直。
优选的,所述参考电桥、所述推挽电桥均为半桥、全桥或者准桥结构。
优选的,所述基片上集成有一ASIC芯片,或者所述基片与一独立的ASIC芯片相电连接。
优选的,所述单芯片三轴线性磁传感器的半导体封装方法包括焊盘引线键合、倒装芯片、球栅阵列封装(BGA)、晶圆级封装(WLP)或板上芯片封 装(COB)。
优选的,所述X轴传感器、所述Y轴传感器和所述Z轴传感器具有相同的灵敏度。
本发明还提供了一种单芯片三轴线性磁传感器的制备方法,该方法包括以下步骤:
(1)将磁电阻材料薄膜堆叠沉积在一晶圆上,并通过在磁场中进行热退火来设置所述磁电阻材料薄膜堆叠中钉扎层的磁化方向、钉扎层的磁学特性、自由层的磁学特性以及隧道结的电学特性;
(2)构建底部电极,并在所述磁电阻材料薄膜堆叠上同时构建X轴传感器、Y轴传感器和Z轴传感器中的磁电阻传感元件;
(3)在所述磁电阻传感元件上方沉积一绝缘层I,并在所述绝缘层I上形成为磁电阻传感元件提供电连接通道的通孔;
(4)在所述通孔上方沉积一顶部金属层,将所述顶部金属层构建成顶部电极,并在各元件之间进行布线;
(5)在所述顶部金属层上方沉积一绝缘层II,再在所述绝缘层II上方沉积一软铁磁合金材料层,在所述软铁磁合金材料层上同时构建出X-磁通量控制器、Y-磁通量控制器和Z-磁通量控制器;
(6)在所有的所述X-磁通量控制器、Y-磁通量控制器和Z-磁通量控制器的上方同时沉积一钝化层,再在对应所述底部电极和所述顶部电极的位置上对所述钝化层进行刻蚀、通孔,形成对外连接的焊盘。
优选的,所述磁电阻材料薄膜堆叠中钉扎层用阻挡温度为TB1的反铁磁材料来进行钉扎,自由层用阻挡温度为TB2的第二反铁磁材料来进行偏置,其中TB1>TB2;在磁场中进行热退火为双步骤热磁退火,其包括以下步骤:首先是在温度为T1的磁场中将所述晶圆进行退火,其中T1>TB1;接着是在温度为T2的磁场中进行冷却,其中TB1>T2>TB2;在所述晶圆温度冷却到T2之后,将所述晶圆或者外加磁场的方向旋转90度;再接着将所述晶圆冷却至温度T3,撤去外加磁场,其中TB2>T3;最后将晶圆冷却至室温。
优选的,步骤(2)中通过光刻、离子刻蚀、反应离子刻蚀、湿式蚀刻、剥离或者硬掩膜在所述磁电阻材料薄膜堆叠上同时构建X轴传感器、Y轴传感 器和Z轴传感器中的磁电阻传感元件。
优选的,在步骤(3)中通过光刻、离子刻蚀、反应离子刻蚀或者湿式蚀刻来形成所述通孔。
优选的,步骤(3)中的所述通孔为自对准接触孔,所述自对准接触孔通过剥离(lift off)工艺或硬掩膜工艺形成。
优选的,在所述顶部金属层上方沉积一绝缘层II包括:在所述顶部金属层上方沉积一第一子绝缘层;在所述第一子绝缘层上沉积一用于构建电磁线圈的导体;再在所述电磁线圈上沉积一第二子绝缘层,所述第一子绝缘层、第二子绝缘层和所述导体构成所述绝缘层II;所述在所述绝缘层II上方沉积一软铁磁合金材料层包括:在所述第二子绝缘层上沉积有所述软铁磁合金材料层。
附图说明
为了更清楚地说明本发明实施例技术中的技术方案,下面将对实施例技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明中的单芯片三轴线性磁传感器的结构示意图。
图2为本发明中的单芯片三轴线性磁传感器的数字信号处理电路原理图。
图3为X轴传感器的结构示意图。
图4为X轴传感器中磁电阻元件周围的磁场分布图。
图5为X轴传感器中MTJ元件所在位置与所感应磁场强度的关系曲线。
图6为X轴传感器的响应曲线。
图7为X轴传感器的电路示意图。
图8为Y轴传感器的结构示意图。
图9为Y轴传感器的另一种结构示意图。
图10为Y轴传感器在Y轴方向磁场中的磁场分布图。
图11为Y轴传感器在X轴方向磁场中的磁场分布图。
图12为Y轴传感器的响应曲线。
图13为Y轴传感器的电路原理示意图。
图14为Z轴传感器的结构示意图。
图15为Z轴传感器在Z方向磁场中的磁通量控制器周围的磁场分布图。
图16为Z轴传感器的电路原理示意图。
图17为Z轴传感器在X方向磁场中的磁通量控制器周围的磁场分布图。
图18为Z轴传感器在Y方向磁场中的磁通量控制器周围的磁场分布图。
图19为Z轴传感器的响应曲线。
图20为本发明中单芯片三轴线性磁传感器的制备方法流程示意图。
图21为制备的单芯片三轴线性磁传感器的剖面示意图。
具体实施方式
下面将参考附图并结合实施例,来详细说明本发明。
实施例1
图1为本发明中的单芯片三轴线性磁传感器在XY平面内的结构示意图。该传感器包括基片1,在基片1上集成设置有X轴传感器3、Y轴传感器4、Z轴传感器5以及多个用于输入输出的焊盘2。X轴传感器3包括感应元件串11、参考元件串12以及X-磁通量控制器8,其中参考元件串12位于X-磁通量控制器8的下方,感应元件串11位于相邻两个X-磁通量控制器8之间的间隙处。感应元件串11和参考元件串12均由一个或多个相同的磁电阻传感元件电连接构成。Y轴传感器4包括磁Y-通量控制器23,24,磁电阻传感元件13,14,其中磁电阻传感元件13成列排布于相邻两个Y-磁通量控制器23的间隙处,磁电阻传感元件14成列排布于相邻两个Y-磁通量控制器24的间隙处,其中磁电阻传感元件13与磁电阻传感元件14的数量相同,Y-磁通量控制器23与Y-磁通量控制器24的数量也相同,Y-磁通量控制器23与X轴正向成正夹角,Y-磁通量控制器24与X轴正向成负夹角,优选的,这两个夹角的绝对值相同。此外,Y-磁通量控制器23也可以与X轴正向成负夹角,而Y-磁通量控制器24与X轴正向成正夹角。Z轴传感器包括Z-磁通量控制器10、磁电阻传感元件15,16,其中磁电阻传感元件15,16分别电连接成列,排布于Z-磁通量控制器10下方的两侧。此外,构成X轴传感器中参考元件串12的磁电阻传感元件也可以位于X-磁通量控制器8的上方,此时,Z轴传感器中的磁电阻传感元件15,16位于Z-磁通量控制器10上方的两侧。
所有磁电阻传感元件为GMR自旋阀或者TMR传感元件,其形状可以为 方形、菱形或者椭圆形,但并不限于以上形状,所有磁电阻传感元件的钉扎层的磁化方向6均相同,均沿X轴方向。在没有外加磁场时,所述磁电阻传感元件通过永磁偏置、双交换作用、形状各向异性或者它们的任意结合来使磁性自由层的磁化方向与钉扎层的磁化方向垂直。所有磁通量控制器均为矩形长条阵列,并且其组成材料均为软铁磁合金,该合金可包括Ni、Fe、Co、Si、B、Ni、Zr和Al中的一种元素或几种元素,但并不限于以上元素。焊盘2里包括了X轴传感器、Y轴传感器和Z轴传感器中的输入输出连接焊盘。基片1上可含有ASIC,或者与另外的ASIC芯片相电连接,图中未示出ASIC。可用焊盘引线键合、倒装芯片、球栅阵列封装(BGA)、晶圆级封装(WLP)以及板上芯片封装(COB)等方法对该单芯片三轴线性磁传感器进行封装。
X轴、Y轴和Z轴两两正交。X轴传感器3、Y轴传感器4、Z轴传感器5有相同的灵敏度。
图2为单芯片三轴线性磁传感器的数字信号处理电路原理图。X轴传感器3、Y轴传感器4和Z轴传感器5感测到的磁场信号通过数字信号处理电路50中的ADC 41进行模拟数字信号转换,并将转换后的数字信号输送给数据处理器42,处理后的信号通过I/O 43输出,从而实现对外磁场的测量。该数字信号处理电路50可能位于基片1上,也有可能位于另外一个ASIC芯片上,该ASIC芯片与基片1相互电连接。
图3为图1中X轴传感器的结构示意图。该X轴传感器为参考全桥结构,包括参考臂和感应臂,其中参考臂上包括多个位于X-磁通量控制器下方的参考元件串12,感应臂上包括多个对于X-磁通量控制器间隙9处的感应元件串11,感应元件串11和参考元件串相互交错排放,沿着X-磁通量控制器的长度方向排布,每个感应元件串11与相邻的参考元件串12之间均相隔间距L。但对于如图2所示的偶数个(8个)X-磁通量控制器,正中间有两个参考元件串12相邻,其之间间距为2L。如果X-磁通量控制器为奇数个,则正中间会有两个感应元件串11相邻,相邻间距也为2L,图中没显示此种情形。间距L很小,优选地为20~100微米。感应臂、参考臂和焊盘17-20之间可以用电连接导体21连接。焊盘17-20分别作为输入端Vbias、接地端GND以及输出端V1,V2,对应于图1中最左边的四个焊盘。
图4为图3中的感应元件串11和参考元件串12周围的磁场分布。从图中可以看出,位于X-磁通量控制器8间隙处的感应元件串11所感应到的磁场幅度增强,而位于X-磁通量控制器8下方的参考元件串12所感应到的磁场幅度降低,由此可见,X-磁通量控制器8能起到衰减磁场的作用。
图5为图3中的感应元件串11与参考元件串12的所在位置与所感应磁场强度的关系曲线,其中,Bsns34为感应元件串11所感应的磁场强度,Bref35为参考元件串12所感应的磁场强度,外加磁场的强度Bext=100G。从图中可以得到:Bsns=160G,Bref=25G。根据下面的公式(1)与(2),便可得知相应的增益系数Asns和衰减系数Aref的大小。
Bsns=Asns*Bext          (1)
Bref=Aref*Bext                 (2)
将Bext=100G,Bsns=160G,Bref=25G代入上面两式中,便可算出:
1<Asns=1.6<100,0<Aref=0.25<1。Asns/Aref的比值越大,则意味着传感器的灵敏度越高,一般理想的是Asns/Aref>5,此时传感器就有高灵敏度。本设计中Asns/Aref=1.6/0.25=6.4>5,由此可见本申请中的X轴传感器具有高灵敏度。
图6为图3中X轴传感器的输出电压和外加磁场的关系曲线。从图中可以看出,X轴传感器只能感测到X轴方向的磁场分量,输出电压Vx36,对Y轴和Z轴方向的磁场分量没有响应,电压Vy 37和Vz 38均为零,并且Vx36关于原点0对称。
图7为图3中X轴传感器的电路示意图。图中,两个感应臂52,52’和两个参考臂53,53’相间隔连接构成一全桥,该全桥的输出电压为
Figure PCTCN2015076517-appb-000001
则此X轴传感器的灵敏度可表示为
Figure PCTCN2015076517-appb-000002
对于很小的外加磁场,即磁场强度B很小,则上式(4)可近似化为
Figure PCTCN2015076517-appb-000003
图8为图1中的Y轴传感器的结构示意图。该传感器为推挽全桥结构,其包括多个倾斜设置的Y-磁通量控制器23,24以及电连接构成推臂和挽臂的磁电阻传感元件13,14。其中,磁电阻传感元件13位于相邻两个Y-磁通量控制器23的间隙处,磁电阻传感元件14位于相邻两个Y-磁通量控制器24的间隙处,Y-磁通量控制器23和24与X轴的夹角分别为α25和β26,优选的,|α|=|β|,α、β的取值范围分别为0°~90°、-90°~-0°,在本实施例中为α=45°,β=-45°。磁电阻传感元件13和14的数量相同并且相对位置上的磁电阻传感元件13和14相互平行,它们也还可以旋转,二者彼此的旋转角度的幅度相同,但方向不同。该Y轴传感器的输入输出焊盘在图中未显示,对应于图1中的焊盘2中最中间的四个焊盘。
图9为Y轴传感器的另一种结构示意图。图8中的磁电阻元件13,14分别旋转±45°便得到了本图所示的结构,该图与图8的区别在于,磁电阻元件13,14分别与Y-磁通量控制器23,24平行。
图10为Y轴传感器在Y轴方向磁场中的磁场分布图。图中外加磁场的方向101与Y轴平行,测量方向100与X轴平行。从图中可以看出,进入到传感器里面的外加磁场被Y-磁通量控制器23,24进行了偏置,其中,在Y-磁通量控制器23间隙处的磁场方向为102,在Y-磁通量控制器24间隙处的磁场方向为103。磁场方向102与103关于Y轴对称。在本实施例中,外加磁场By=100G,所测得的X轴磁场大小BX+=90G,BX-=-90G,则增益系数Axy=Bx/By=(BX+-BX-)/By=180/100=1.8。
图11为Y轴传感器在X轴方向磁场中的分布图。图中外加磁场的方向以及测量方向均为与X轴平行的方向100。在Y-磁通量控制器23间隙处的磁场方向为104,在Y-磁通量控制器24间隙处的磁场方向为105。磁场方向104与105关于X轴对称。在本实施例中,外加磁场Bx=100G,所测得的X轴磁场大小BX+=101G,BX--101G,则增益系数Axx=(BX+-BX-)/Bx=(101-101)/100=0,由此可见两个桥臂上的磁场在X轴分量相互抵消,将不能检测到X轴磁场信号。
图12为Y轴传感器的输出电压和外加磁场的关系曲线。从图中可以看出,Y轴传感器只能感测到Y轴方向的磁场分量,输出电压Vy 37,对X轴和Z轴方向的磁场分量没有响应,其电压Vx 36和Vz 38均为零,并且Vy 37关于原点0对称。
图13为Y轴传感器的电路示意图。若干个磁电阻传感元件13电连接构成等效磁电阻R39和R39’,若干个磁电阻传感元件14电连接构成等效磁电阻R40和R40’,这四个磁电阻连接构成全桥。它们的磁性钉扎层的磁化方向相同,相对位置的磁电阻(R39和R39’,R40和R40’)的磁性自由层的磁化方向相同,相邻位置的磁电阻(R39和R40,R39和R40’,R39’和R40,R39’和R40’)的磁性自由层的磁化方向不同。当沿着磁电阻传感元件13和14的敏感方向施加外磁场时,磁电阻R39和R39’的阻值变化情况会与磁电阻R40和R40’的阻值变化相反,从而构成推挽输出。该全桥的输出电压为
Figure PCTCN2015076517-appb-000004
一般情况下,R39=R39’,R40=R40’,则上式可简化为:
Figure PCTCN2015076517-appb-000005
则此Y轴传感器的灵敏度可表示为:
Figure PCTCN2015076517-appb-000006
图14为Z轴传感器的结构示意图。该Z轴传感器为推挽全桥结构,该Z轴传感器包括多个磁电阻传感元件15和16,多个Z-磁通量控制器10,电连接导体27以及焊盘28-30,焊盘28-31分别作为电源供应端VBias,接地端GND,电压输出端V+,V-,对应于图1中的焊盘2中最右边的四个焊盘。所有磁电阻传感元件15相互电连接构成了全桥的推臂,所有磁电阻传感元件16相互电连接构成了全桥的挽臂,推臂与挽臂相间隔排列,推臂、挽臂以及焊盘28-30之间通过电连接导体27连接形成推挽全桥。磁电阻传感元件15,16沿着Z-磁通量控制器10的长轴方向排列。在图14中,磁电阻传感元件15,16分别成行排布于Z-磁通量控制器10下方的两侧,被Z-磁通量控制器10覆盖。除了上下两端和最中间的这三 个Z-磁通量控制器10,每一Z-磁通量控制器10下方两侧均排布有一行推臂磁电阻传感元件15和一行挽臂磁电阻传感元件16,如果有必要,这三个Z-磁通量控制器10下方也可以排布有磁电阻传感元件15,16。图15为Z轴传感器在Z轴方向的外加磁场106中的磁场分布图。从图中磁力线的分布情况可以看出,外加磁场在Z-磁通量控制器10附近产生扭曲,从而产生了X轴方向的磁场分量,位于Z-磁通量控制器10下方的磁电阻传感元件15和16正好能检测到此分量,但二者所检测到的磁场分量的方向相反,分别为107和108。通过所检测到的X轴磁场分量,便能得知所施加的外加磁场的大小。
图16为Z轴传感器的电路示意图。若干个磁电阻传感元件15电连接构成等效磁电阻R2和R2’,若干个磁电阻传感元件16电连接构成两个等效磁电阻R3和R3’,这四个磁电阻连接构成全桥。当施加Z轴方向的外磁场时,磁电阻R2、R2’和R3、R3’的阻值变化情况会相反,从而构成推挽输出。一般来说,R2’=R2,R3’=R3。从图15中可以得到,该电路的输出电压:
Figure PCTCN2015076517-appb-000007
则其灵敏度为
Figure PCTCN2015076517-appb-000008
图17为Z轴传感器在X轴方向的外加磁场100中的磁场分布图。从图中可以看出,磁电阻传感元件15和16所检测到的磁场相同,这样就会导致磁电阻R2、R2’和R3、R3’的阻值变化情况相同,从而不能形成推挽输出,这样传感器就不会产生响应。
图18为Z轴传感器在Y轴方向的外加磁场101中的磁场分布图。从图中可以看出,Z-磁通量控制器10将Y轴方向的外加磁场完全屏蔽,并且磁电阻传感元件15,16对Y轴方向的磁场不敏感,所以磁电阻传感元件15,16没有检测到任何磁场分量,从而Z轴传感器也不会产生任何响应。
图19为Z轴传感器的输出电压与外加磁场的关系曲线。从图中可以看出,Z轴传感器只能感测到Z轴方向的磁场分量,输出电压Vz38,对X轴和Y轴方向的磁场分量不产生响应,电压Vx36和Vy37均为0,并且Vz38关于原点0 对称。
以上讨论的是X轴传感器、Y轴传感器和Z轴传感器中的电桥为全桥的情形,由于半桥和准桥的工作原理与全桥相同,在此就不再赘述,上述所得到的结论也同样适用于半桥和准桥结构的单芯片三轴线性磁传感器。
实施例2
图20为本发明中的单芯片三轴线性磁传感器的制备方法,该方法包括以下步骤:(1)将一磁电阻材料薄膜的堆叠沉积在一晶圆上,然后通过相关工艺来设置该磁电阻材料薄膜堆叠上钉扎层的磁化方向,优选的,是在磁场中进行热退火来设置钉扎层的磁化方向沿相同方向,并设置其电学特性和磁性特性,包括阻抗、阈值电压、磁滞、各向异性及饱和磁场等,其中磁性特性是针对钉扎层和自由层,电学特性是针对隧道结的。该磁电阻材料薄膜堆叠中钉扎层用阻挡温度为TB1的反铁磁材料来进行钉扎,自由层用阻挡温度为TB2的第二反铁磁材料来进行偏置,其中TB1>TB2。在磁场中进行热退火也可以为双步骤热磁退火,其包括以下步骤:首先是在温度为T1的磁场中将所述晶圆进行退火,其中T1>TB1;接着是在温度为T2的磁场中进行冷却,其中TB1>T2>TB2;在所述晶圆温度冷却到T2之后,将所述晶圆或者外加磁场的方向旋转90度;再接着将所述晶圆冷却至温度T3,撤去外加磁场,其中TB2>T3;最后将晶圆冷却至室温。
该磁电阻材料薄膜上包括有种子层,在该种子层上可生成GMR或者TMR元件。
(2)在沉积有磁电阻材料薄膜的堆叠的晶圆上构建底部电极,并通过使用光刻、离子刻蚀、反应离子刻蚀、湿式蚀刻、剥离或者硬掩膜等工艺来在相同磁电阻材料薄膜上在同一工艺过程中同时构建出X轴传感器、Y轴传感器和Z轴传感器中磁电阻传感元件;
(3)在磁电阻传感元件上方沉积一绝缘层I,并通过光刻、离子刻蚀、反应离子刻蚀或者湿式蚀刻等工艺来形成为磁电阻传感元件形成电连接的通孔,该通孔可为自对准接触孔,通过剥离工艺或者硬掩膜工艺来形成。
(4)在通孔上沉积一顶部金属层,将该顶部金属层构建成顶部电极,并在各元件之间进行布线;
(5)在顶部金属层上沉积一绝缘层II,再在绝缘层II上沉积上一软铁磁合金材。 料层(例如NiFe),如有需要,也可在绝缘层II上先沉积一用于构建电磁线圈的导体,再在电磁线圈上沉积绝缘层III,接着在绝缘层III上沉积一软铁磁合金材料层,再在软铁磁合金材料层上同时构建出X-磁通量控制器、Y-磁通量控制器和Z-磁通量控制器;
(6)在所有X-磁通量控制器、Y-磁通量控制器和Z-磁通量控制器的上方同时沉积一钝化层,再在对应底部电极和顶部电极的位置上对钝化层进行刻蚀、通孔,形成对外连接的焊盘。
完成上述步骤后的单芯片三轴线性磁传感器的剖面示意图如图21所示。图21中从左往右依次对应的是X轴传感器、Y轴传感器和Z轴传感器。其中,由于Y轴传感器中的左右桥臂对称,所以只显示了其中一个桥臂上的Y-磁通量控制器23以及其间隙处的磁电阻传感元件13。在本实施例中,上述步骤中的磁电阻元件为MTJ元件。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (24)

  1. 一种单芯片三轴线性磁传感器,其特征在于,该传感器包括:
    一位于XY平面内的基片,所述基片上集成设置有一X轴传感器、一Y轴传感器和一Z轴传感器,各自均包括一个或多个相同的相互电连接的磁电阻传感元件,分别用于检测磁场在X轴方向、Y轴方向、Z轴方向上的分量;
    所述X轴传感器包含有一参考电桥和至少两个X-磁通量控制器,所述参考电桥的参考臂和感应臂交替排列,并且各自均包括所述一个或多个相同的相互电连接的磁电阻传感元件;所述参考臂上的磁电阻传感元件位于所述X-磁通量控制器的上方或下方,并沿着所述X-磁通量控制器的长度方向排列形成参考元件串;所述感应臂上的磁电阻传感元件位于相邻两个所述X-磁通量控制器之间的间隙处,并沿着所述X-磁通量控制器的长度方向排列形成感应元件串;
    所述Y轴传感器包含有一推挽电桥,所述推挽电桥的推臂和挽臂上各自对应设置有至少两个Y-磁通量控制器,所述推臂和所述挽臂交替排列,各自均包括所述一个或多个相同的相互电连接的磁电阻传感元件,所述磁电阻传感元件分别位于对应的两个相邻所述Y-磁通量控制器之间的间隙处;
    所述Z轴传感器包含有一推挽电桥和至少一个Z-磁通量控制器,所述推挽电桥的推臂和挽臂交替排列,各自均包括所述一个或多个相同的相互电连接的磁电阻传感元件;所述推臂和所述挽臂上的磁电阻传感元件分别位于所述Z-磁通量控制器的下方两侧或上方两侧,并均沿着所述Z-磁通量控制器的长度方向排列;
    所述X轴传感器、Y轴传感器和Z轴传感器中的所有所述磁电阻传感元件的钉扎层的磁化方向均相同,在没有磁通量控制器时,所有所述磁电阻传感元件的感应方向为X轴方向;
    其中,X轴、Y轴和Z轴两两正交。
  2. 根据权利要求1所述的单芯片三轴线性磁传感器,其特征在于,所述磁电阻传感元件为GMR自旋阀元件或者TMR传感元件。
  3. 根据权利要求1所述的单芯片三轴线性磁传感器,其特征在于,所述X-磁通量控制器、Y-磁通量控制器和Z-磁通量控制器均为矩形长条阵列,其组成材料均为软铁磁合金。
  4. 根据权利要求1所述的单芯片三轴线性磁传感器,其特征在于,每个所 述参考元件串与相邻的所述感应元件串之间的间距均为L;当所述X-磁通量控制器的个数为偶数时,在所述X轴传感器的正中间有两个所述参考元件串相邻,其间距为2L;当所述X-磁通量控制器的个数为奇数时,在所述X轴传感器的正中间有两个所述感应元件串相邻,其间距为2L,其中L为自然数。
  5. 根据权利要求1所述的单芯片三轴线性磁传感器,其特征在于,所述X-磁通量控制器之间的间隙处的磁场的增益系数为1<Asns<100,所述X-磁通量控制器上方或者下方处的磁场的衰减系数为0<Aref<1。
  6. 根据权利要求1所述的单芯片三轴线性磁传感器,其特征在于,对于所述Y轴传感器,所述推臂和所述挽臂上的Y-磁通量控制器的数量相同;所述推臂上Y-磁通量控制器与X轴正向的夹角α为0°~90°,所述挽臂上Y-磁通量控制器与X轴正向的夹角β为-90°~0°;或;所述推臂上Y-磁通量控制器与X轴正向的夹角α为-90°~0°,所述挽臂上Y-磁通量控制器与X轴正向的夹角为β为0°~90°,其中,|α|=|β|。
  7. 根据权利要求6所述的单芯片三轴线性磁传感器,其特征在于,对于所述Y轴传感器,所述推臂和所述挽臂上的磁电阻传感元件的数量相同并且相对位置上的磁电阻传感元件之间相互平行;所述推臂和所述挽臂上的磁电阻传感元件彼此的旋转角度的幅度相同,但方向不同。
  8. 根据权利要求1所述的单芯片三轴线性磁传感器,其特征在于,对于所述Z轴传感器,所述推挽电桥的推臂和挽臂上的磁电阻传感元件的数量相同。
  9. 根据权利要求1所述的单芯片三轴线性磁传感器,其特征在于,所述Z轴传感器的磁电阻传感元件的长度与宽度之间的比值大于1。
  10. 根据权利要求1所述的单芯片三轴线性磁传感器,其特征在于,相邻两个所述Z-磁通量控制器之间的间距S不小于所述Z-磁通量控制器的宽度Lx。
  11. 根据权利要求10所述的单芯片三轴线性磁传感器,其特征在于,相邻两个所述Z-磁通量控制器之间的间距S>2Lx。
  12. 根据权利要求1所述的单芯片三轴线性磁传感器,其特征在于,所述Z轴传感器中的磁电阻传感元件位于所述Z-磁通量控制器上方或下方两侧边缘的外侧。
  13. 根据权利要求1所述的单芯片三轴线性磁传感器,其特征在于,减小所 述Z轴传感器中的磁电阻传感元件与所述Z-磁通量控制器的下方边缘的间距,或者增大所述Z-磁通量控制器的厚度Lz,或者减小所述Z-磁通量控制器的宽度Lx均能增加所述Z轴传感器的灵敏度。
  14. 根据权利要求1所述的单芯片三轴线性磁传感器,其特征在于,在没有外加磁场时,所述磁电阻传感元件通过永磁偏置、双交换作用、形状各向异性或者它们的任意结合来使磁性自由层的磁化方向与钉扎层的磁化方向垂直。
  15. 根据权利要求1所述的单芯片三轴线性磁传感器,其特征在于,所述参考电桥、所述推挽电桥均为半桥、全桥或者准桥结构。
  16. 根据权利要求1所述的单芯片三轴线性磁传感器,其特征在于,所述基片上集成有一ASIC芯片,或者所述基片与一独立的ASIC芯片相电连接。
  17. 根据权利要求1所述的单芯片三轴线性磁传感器,其特征在于,所述单芯片三轴线性磁传感器的半导体封装方法包括焊盘引线键合、倒装芯片、球栅阵列封装(BGA)、晶圆级封装(WLP)或板上芯片封装(COB)。
  18. 根据权利要求1或13所述的单芯片三轴线性磁传感器,所述X轴传感器、所述Y轴传感器和所述Z轴传感器具有相同的灵敏度。
  19. 一种单芯片三轴线性磁传感器的制备方法,其特征在于,该方法包括以下步骤:
    (1)将磁电阻材料薄膜堆叠沉积在一晶圆上,并通过在磁场中进行热退火来设置所述磁电阻材料薄膜堆叠中钉扎层的磁化方向、钉扎层的磁学特性、自由层的磁学特性以及隧道结的电学特性;
    (2)构建底部电极,并在所述磁电阻材料薄膜堆叠上同时构建X轴传感器、Y轴传感器和Z轴传感器中的磁电阻传感元件;
    (3)在所述磁电阻传感元件上方沉积一绝缘层I,并在所述绝缘层I上形成为磁电阻传感元件提供电连接通道的通孔;
    (4)在所述通孔上方沉积一顶部金属层,将所述顶部金属层构建成顶部电极,并在各元件之间进行布线;
    (5)在所述顶部金属层上方沉积一绝缘层II,再在所述绝缘层II
    上方沉积一软铁磁合金材料层,在所述软铁磁合金材料层上同时构建出X-磁通量控制器、Y-磁通量控制器和Z-磁通量控制器;
    (6)在所有的所述X-磁通量控制器、Y-磁通量控制器和Z-磁通量控制器的上方同时沉积一钝化层,再在对应所述底部电极和所述顶部电极的位置上对所述钝化层进行刻蚀、通孔,形成对外连接的焊盘。
  20. 根据权利要求19所述的制备方法,其特征在于,所述磁电阻材料薄膜堆叠中钉扎层用阻挡温度为TB1的反铁磁材料来进行钉扎,自由层用阻挡温度为TB2的第二反铁磁材料来进行偏置,其中TB1>TB2;在磁场中进行热退火为双步骤热磁退火,其包括以下步骤:首先是在温度为T1的磁场中将所述晶圆进行退火,其中T1>TB1;接着是在温度为T2的磁场中进行冷却,其中TB1>T2>TB2;在所述晶圆温度冷却到T2之后,将所述晶圆或者外加磁场的方向旋转90度;再接着将所述晶圆冷却至温度T3,撤去外加磁场,其中TB2>T3;最后将晶圆冷却至室温。
  21. 根据权利要求19所述的制备方法,其特征在于,步骤(2)中通过光刻、离子刻蚀、反应离子刻蚀、湿式蚀刻、剥离或者硬掩膜在所述磁电阻材料薄膜堆叠上同时构建X轴传感器、Y轴传感器和Z轴传感器中的磁电阻传感元件。
  22. 根据权利要求19所述的制备方法,其特征在于,在步骤(3)中通过光刻、离子刻蚀、反应离子刻蚀或者湿式蚀刻来形成所述通孔。
  23. 根据权利要求19所述的制备方法,其特征在于,步骤(3)中的所述通孔为自对准接触孔,所述自对准接触孔通过剥离(lift off)工艺或硬掩膜工艺形成。
  24. 根据权利要求19所述的制备方法,其特征在于,在所述顶部金属层上方沉积一绝缘层II包括:在所述顶部金属层上方沉积一第一子绝缘层;在所述第一子绝缘层上沉积一用于构建电磁线圈的导体;再在所述电磁线圈上沉积一第二子绝缘层,所述第一子绝缘层、第二子绝缘层和所述导体构成所述绝缘层II;所述在所述绝缘层II上方沉积一软铁磁合金材料层包括:在所述第二子绝缘层上沉积有所述软铁磁合金材料层。
PCT/CN2015/076517 2014-04-17 2015-04-14 一种单芯片三轴线性磁传感器及其制备方法 WO2015158243A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016563090A JP6474833B2 (ja) 2014-04-17 2015-04-14 モノリシック三軸リニア磁気センサ及びその製造方法
US15/304,770 US9891292B2 (en) 2014-04-17 2015-04-14 Monolithic three-axis linear magnetic sensor and manufacturing method thereof
EP15779547.7A EP3133412B1 (en) 2014-04-17 2015-04-14 A monolithic three-axis linear magnetic sensor and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410155003.2 2014-04-17
CN201410155003.2A CN103954920B (zh) 2014-04-17 2014-04-17 一种单芯片三轴线性磁传感器及其制备方法

Publications (1)

Publication Number Publication Date
WO2015158243A1 true WO2015158243A1 (zh) 2015-10-22

Family

ID=51332218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/076517 WO2015158243A1 (zh) 2014-04-17 2015-04-14 一种单芯片三轴线性磁传感器及其制备方法

Country Status (5)

Country Link
US (1) US9891292B2 (zh)
EP (1) EP3133412B1 (zh)
JP (1) JP6474833B2 (zh)
CN (1) CN103954920B (zh)
WO (1) WO2015158243A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3199963A1 (en) * 2016-01-26 2017-08-02 NXP USA, Inc. Magnetic field sensor with multiple sense layer magnetization orientations
EP3229035A1 (en) * 2016-04-07 2017-10-11 NXP USA, Inc. Magnetic field sensor with permanent magnet biasing
US9891292B2 (en) 2014-04-17 2018-02-13 MultiDimension Technology Co., Ltd. Monolithic three-axis linear magnetic sensor and manufacturing method thereof
US9897667B2 (en) 2016-01-26 2018-02-20 Nxp Usa, Inc. Magnetic field sensor with permanent magnet biasing
US9933496B2 (en) 2016-04-21 2018-04-03 Nxp Usa, Inc. Magnetic field sensor with multiple axis sense capability
US10545196B2 (en) 2016-03-24 2020-01-28 Nxp Usa, Inc. Multiple axis magnetic sensor
CN115728681A (zh) * 2022-11-15 2023-03-03 南方电网数字电网研究院有限公司 磁场传感器及其测试方法、装置、制备方法和计算机设备
US11953567B2 (en) 2020-09-08 2024-04-09 Analog Devices International Unlimited Company Magnetic multi-turn sensor and method of manufacture

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103412269B (zh) 2013-07-30 2016-01-20 江苏多维科技有限公司 单芯片推挽桥式磁场传感器
CN103995240B (zh) * 2014-05-30 2017-11-10 江苏多维科技有限公司 一种磁电阻z轴梯度传感器芯片
CN104197827B (zh) * 2014-08-18 2017-05-10 江苏多维科技有限公司 一种双z轴磁电阻角度传感器
CN104197828B (zh) * 2014-08-20 2017-07-07 江苏多维科技有限公司 一种单芯片偏轴磁电阻z‑x角度传感器和测量仪
CN104280700B (zh) * 2014-09-28 2017-09-08 江苏多维科技有限公司 一种单芯片差分自由层推挽式磁场传感器电桥及制备方法
CN104569870B (zh) * 2015-01-07 2017-07-21 江苏多维科技有限公司 一种单芯片具有校准/重置线圈的z轴线性磁电阻传感器
CN104776794B (zh) * 2015-04-16 2017-11-10 江苏多维科技有限公司 一种单封装的高强度磁场磁电阻角度传感器
US9778324B2 (en) * 2015-04-17 2017-10-03 Apple Inc. Yoke configuration to reduce high offset in X-, Y-, and Z-magnetic sensors
CN104880682B (zh) * 2015-06-09 2018-01-26 江苏多维科技有限公司 一种交叉指状y轴磁电阻传感器
CN108369260B (zh) * 2015-12-03 2020-07-28 阿尔卑斯阿尔派株式会社 磁检测装置
CN105371845A (zh) * 2015-12-17 2016-03-02 安徽寰智信息科技股份有限公司 一种惯性追踪模块
CN106871778B (zh) * 2017-02-23 2019-11-22 江苏多维科技有限公司 一种单芯片双轴磁电阻角度传感器
CN110573895B (zh) * 2017-04-25 2022-04-29 柯尼卡美能达株式会社 磁传感器
CN108413992A (zh) * 2018-01-30 2018-08-17 江苏多维科技有限公司 一种三轴预调制低噪声磁电阻传感器
CN108975265A (zh) * 2018-02-12 2018-12-11 黑龙江大学 一种单片集成空间磁矢量传感器及其制作工艺
US11579209B2 (en) * 2018-06-22 2023-02-14 Zhenghong Qian Three-axis magnetic sensor
US11162815B2 (en) * 2018-09-14 2021-11-02 Allegro Microsystems, Llc Angular magnetic field sensor and rotating target with stray field immunity
JP7033285B2 (ja) * 2018-11-03 2022-03-10 マグネデザイン株式会社 微細配線接合体およびその製造方法
US11774519B2 (en) * 2019-08-27 2023-10-03 Texas Instruments Incorporated Shielded sensor structure and method of making same
WO2021046354A2 (en) * 2019-09-06 2021-03-11 Lexmark International, Inc. A sensor array for reading a magnetic puf
US11170806B2 (en) * 2019-12-27 2021-11-09 Western Digital Technologies, Inc. Magnetic sensor array with single TMR film plus laser annealing and characterization
JP7107330B2 (ja) * 2020-03-27 2022-07-27 Tdk株式会社 磁気センサおよびその製造方法
CN112902853A (zh) * 2021-01-28 2021-06-04 四川恒诚达科技有限公司 一种水轮发电机转子磁极激光测距系统及方法
CN113030804B (zh) * 2021-03-01 2022-12-23 歌尔微电子股份有限公司 传感器和电子设备
CN113341354A (zh) * 2021-04-29 2021-09-03 北京航空航天大学 三轴磁阻磁场传感器及制作方法
CN113866690B (zh) * 2021-12-01 2022-10-11 北京芯可鉴科技有限公司 三轴隧穿磁电阻传感器及其制备方法、使用方法
CN114609560B (zh) * 2022-05-09 2022-07-29 四川永星电子有限公司 一种二维amr磁敏传感器及其制备工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59197874A (ja) * 1983-04-26 1984-11-09 Tohoku Metal Ind Ltd 三軸方式磁気検知器
CN101969098A (zh) * 2010-08-11 2011-02-09 上海腾怡半导体有限公司 一种磁阻传感器的制造方法
CN102385043A (zh) * 2011-08-30 2012-03-21 江苏多维科技有限公司 Mtj三轴磁场传感器及其封装方法
CN203480009U (zh) * 2013-09-10 2014-03-12 江苏多维科技有限公司 一种单芯片z轴线性磁电阻传感器
CN103913709A (zh) * 2014-03-28 2014-07-09 江苏多维科技有限公司 一种单芯片三轴磁场传感器及其制备方法
CN103954920A (zh) * 2014-04-17 2014-07-30 江苏多维科技有限公司 一种单芯片三轴线性磁传感器及其制备方法
CN203811787U (zh) * 2014-04-17 2014-09-03 江苏多维科技有限公司 一种单芯片三轴线性磁传感器
CN203811786U (zh) * 2014-03-28 2014-09-03 江苏多维科技有限公司 一种单芯片三轴磁场传感器

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004271481A (ja) * 2003-03-12 2004-09-30 Citizen Watch Co Ltd 3軸磁気センサー
US7126330B2 (en) 2004-06-03 2006-10-24 Honeywell International, Inc. Integrated three-dimensional magnetic sensing device and method to fabricate an integrated three-dimensional magnetic sensing device
JP2006194602A (ja) * 2005-01-11 2006-07-27 Shimadzu Corp 3軸磁気センサ
EP1860450B1 (en) * 2005-03-17 2011-06-08 Yamaha Corporation Magnetic sensor and manufacturing method thereof
JP2009162540A (ja) * 2007-12-28 2009-07-23 Alps Electric Co Ltd 磁気センサ及びその製造方法
JP2009175120A (ja) * 2007-12-28 2009-08-06 Alps Electric Co Ltd 磁気センサ及び磁気センサモジュール
US8390283B2 (en) * 2009-09-25 2013-03-05 Everspin Technologies, Inc. Three axis magnetic field sensor
WO2011068146A1 (ja) * 2009-12-02 2011-06-09 アルプス電気株式会社 磁気センサ
US8518734B2 (en) 2010-03-31 2013-08-27 Everspin Technologies, Inc. Process integration of a single chip three axis magnetic field sensor
JP2012063232A (ja) * 2010-09-16 2012-03-29 Mitsubishi Electric Corp 磁界検出装置の製造方法および磁界検出装置
JP5297442B2 (ja) * 2010-12-15 2013-09-25 アルプス電気株式会社 磁気センサ
CN202119390U (zh) * 2011-03-03 2012-01-18 江苏多维科技有限公司 一种独立封装的桥式磁场角度传感器
CN102226835A (zh) * 2011-04-06 2011-10-26 江苏多维科技有限公司 单一芯片双轴磁场传感器及其制备方法
CN102738385B (zh) * 2011-04-08 2014-11-05 美新半导体(无锡)有限公司 三轴磁传感器的封装方法及其封装结构
CN102426344B (zh) 2011-08-30 2013-08-21 江苏多维科技有限公司 三轴磁场传感器
US9116198B2 (en) * 2012-02-10 2015-08-25 Memsic, Inc. Planar three-axis magnetometer
CN202548308U (zh) 2012-04-23 2012-11-21 美新半导体(无锡)有限公司 三轴磁传感器
CN103267520B (zh) 2013-05-21 2016-09-14 江苏多维科技有限公司 一种三轴数字指南针
CN103267955B (zh) * 2013-05-28 2016-07-27 江苏多维科技有限公司 单芯片桥式磁场传感器
TWI493209B (zh) * 2013-07-05 2015-07-21 Voltafield Technology Corp 一種單晶片三軸磁阻感測裝置
CN103412269B (zh) * 2013-07-30 2016-01-20 江苏多维科技有限公司 单芯片推挽桥式磁场传感器
CN103901363B (zh) * 2013-09-10 2017-03-15 江苏多维科技有限公司 一种单芯片z轴线性磁电阻传感器
CN103645449B (zh) * 2013-12-24 2015-11-25 江苏多维科技有限公司 一种用于高强度磁场的单芯片参考桥式磁传感器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59197874A (ja) * 1983-04-26 1984-11-09 Tohoku Metal Ind Ltd 三軸方式磁気検知器
CN101969098A (zh) * 2010-08-11 2011-02-09 上海腾怡半导体有限公司 一种磁阻传感器的制造方法
CN102385043A (zh) * 2011-08-30 2012-03-21 江苏多维科技有限公司 Mtj三轴磁场传感器及其封装方法
CN203480009U (zh) * 2013-09-10 2014-03-12 江苏多维科技有限公司 一种单芯片z轴线性磁电阻传感器
CN103913709A (zh) * 2014-03-28 2014-07-09 江苏多维科技有限公司 一种单芯片三轴磁场传感器及其制备方法
CN203811786U (zh) * 2014-03-28 2014-09-03 江苏多维科技有限公司 一种单芯片三轴磁场传感器
CN103954920A (zh) * 2014-04-17 2014-07-30 江苏多维科技有限公司 一种单芯片三轴线性磁传感器及其制备方法
CN203811787U (zh) * 2014-04-17 2014-09-03 江苏多维科技有限公司 一种单芯片三轴线性磁传感器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3133412A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9891292B2 (en) 2014-04-17 2018-02-13 MultiDimension Technology Co., Ltd. Monolithic three-axis linear magnetic sensor and manufacturing method thereof
EP3199963A1 (en) * 2016-01-26 2017-08-02 NXP USA, Inc. Magnetic field sensor with multiple sense layer magnetization orientations
US9841469B2 (en) 2016-01-26 2017-12-12 Nxp Usa, Inc. Magnetic field sensor with multiple sense layer magnetization orientations
US9897667B2 (en) 2016-01-26 2018-02-20 Nxp Usa, Inc. Magnetic field sensor with permanent magnet biasing
US10545196B2 (en) 2016-03-24 2020-01-28 Nxp Usa, Inc. Multiple axis magnetic sensor
EP3229035A1 (en) * 2016-04-07 2017-10-11 NXP USA, Inc. Magnetic field sensor with permanent magnet biasing
US10145907B2 (en) 2016-04-07 2018-12-04 Nxp Usa, Inc. Magnetic field sensor with permanent magnet biasing
US9933496B2 (en) 2016-04-21 2018-04-03 Nxp Usa, Inc. Magnetic field sensor with multiple axis sense capability
US11953567B2 (en) 2020-09-08 2024-04-09 Analog Devices International Unlimited Company Magnetic multi-turn sensor and method of manufacture
CN115728681A (zh) * 2022-11-15 2023-03-03 南方电网数字电网研究院有限公司 磁场传感器及其测试方法、装置、制备方法和计算机设备
CN115728681B (zh) * 2022-11-15 2023-09-12 南方电网数字电网研究院有限公司 磁场传感器及其测试方法、装置、制备方法和计算机设备

Also Published As

Publication number Publication date
US20170123016A1 (en) 2017-05-04
CN103954920A (zh) 2014-07-30
US9891292B2 (en) 2018-02-13
EP3133412A4 (en) 2018-01-03
EP3133412A1 (en) 2017-02-22
JP6474833B2 (ja) 2019-02-27
CN103954920B (zh) 2016-09-14
JP2017516987A (ja) 2017-06-22
EP3133412B1 (en) 2022-04-06

Similar Documents

Publication Publication Date Title
WO2015158243A1 (zh) 一种单芯片三轴线性磁传感器及其制备方法
WO2015144073A1 (zh) 一种单芯片三轴磁场传感器及其制备方法
EP2752676B1 (en) Triaxial magnetic field sensor
US10066940B2 (en) Single-chip differential free layer push-pull magnetic field sensor bridge and preparation method
JP6438959B2 (ja) 単一チップz軸線形磁気抵抗センサ
EP2752675B1 (en) Mtj three-axis magnetic field sensor and encapsulation method thereof
US6946834B2 (en) Method of orienting an axis of magnetization of a first magnetic element with respect to a second magnetic element, semimanufacture for obtaining a sensor, sensor for measuring a magnetic field
US9702943B2 (en) Single chip push-pull bridge-type magnetic field sensor
US7872564B2 (en) Integrated lateral short circuit for a beneficial modification of current distribution structure for xMR magnetoresistive sensors
JP2014512003A (ja) シングルチッププッシュプルブリッジ型磁界センサ
CN203811786U (zh) 一种单芯片三轴磁场传感器
CN203811787U (zh) 一种单芯片三轴线性磁传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15779547

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016563090

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15304770

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015779547

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015779547

Country of ref document: EP