WO2013027532A1 - 摩擦攪拌接合方法 - Google Patents

摩擦攪拌接合方法 Download PDF

Info

Publication number
WO2013027532A1
WO2013027532A1 PCT/JP2012/068931 JP2012068931W WO2013027532A1 WO 2013027532 A1 WO2013027532 A1 WO 2013027532A1 JP 2012068931 W JP2012068931 W JP 2012068931W WO 2013027532 A1 WO2013027532 A1 WO 2013027532A1
Authority
WO
WIPO (PCT)
Prior art keywords
friction stir
stir welding
joining
joining step
metal members
Prior art date
Application number
PCT/JP2012/068931
Other languages
English (en)
French (fr)
Inventor
伸城 瀬尾
堀 久司
Original Assignee
日本軽金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011179586A external-priority patent/JP5957719B2/ja
Priority claimed from JP2011187916A external-priority patent/JP5957720B2/ja
Application filed by 日本軽金属株式会社 filed Critical 日本軽金属株式会社
Priority to KR1020157009000A priority Critical patent/KR20150044975A/ko
Priority to EP12825873.8A priority patent/EP2745972B1/en
Priority to CN201280040287.XA priority patent/CN103747914B/zh
Priority to KR1020147006880A priority patent/KR101602079B1/ko
Priority to EP16174472.7A priority patent/EP3098015B1/en
Priority to US14/237,998 priority patent/US9095927B2/en
Priority to KR1020167036271A priority patent/KR20170002686A/ko
Publication of WO2013027532A1 publication Critical patent/WO2013027532A1/ja
Priority to US14/750,163 priority patent/US9566661B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1225Particular aspects of welding with a non-consumable tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1245Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding characterised by the apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/1265Non-butt welded joints, e.g. overlap-joints, T-joints or spot welds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • B23K20/122Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding
    • B23K20/128Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding using a non-consumable tool, e.g. friction stir welding making use of additional material

Definitions

  • the present invention relates to a friction stir welding method.
  • Patent Document 1 discloses a technique in which friction stir welding is performed from the front side and the back side of the abutting portion between metal members, and the plasticizing regions formed by the friction stir welding are brought into contact with each other so that the abutting portion is joined without a gap. Is disclosed. According to this technique, the airtightness and watertightness of the joined metal members can be improved.
  • Patent Document 2 discloses a technique in which a friction stir welding is performed by inserting an inner corner friction stir welding rotary tool into the inner corners of two metal members abutted at right angles.
  • FIG. 37 is a cross-sectional view showing a conventional friction stir welding method.
  • the inner corner friction stir welding rotary tool 110 includes a pressing block 111 that has a triangular prism shape, and a stirring pin 112 that can rotate with respect to the pressing block 111 while passing through the pressing block 111.
  • the stirring pin 112 is rotated in a state where the pressing block 111 is in contact with the side surfaces of the metal members 101 and 102.
  • the press block 111 is joined to the metal members 101 and 102 while being pressed. There is a possibility that 101 and 102 may be scraped off. Moreover, since there is the pressing block 111, the joint portion could not be visually recognized.
  • an object of the present invention is to provide a friction stir welding method capable of joining to a deep position of a butt portion by reducing a load applied to the friction stirrer. It is another object of the present invention to provide a friction stir welding method capable of suppressing damage to metal members during joining and suitably joining them.
  • the present invention is a friction stir welding method for joining two metal members using a rotary tool equipped with a stirring pin, and the stirring that is rotated at the abutting portion between the metal members
  • the method includes a main joining step of inserting a pin and performing friction stir welding in a state where only the stirring pin is in contact with the metal member.
  • the friction between the metal member and the rotating tool can be reduced compared to the conventional friction stir welding method in which the shoulder is pressed against the metal member by making only the stirring pin the portion to be brought into contact with the metal member.
  • the load applied to the friction stirrer can be reduced. That is, according to the present invention, since the stirring pin can be inserted to a deep position of the metal member, even a metal member having a large plate thickness can be joined to a deep position.
  • a friction stir welding method for joining two metal members using a rotary tool equipped with a stirring pin the rotated stirring pin is inserted into the abutting portion between the metal members, only the stirring pin Including a main joining step in which friction stir welding is performed in a state of being in contact with the metal member, and in the main joining step, a first main joining step in which friction stir welding is performed from the surface side of the metal member, and a back surface of the metal member.
  • a second main joining step in which friction stir welding is performed from the side, and the plasticized region formed in the first main joining step and the plasticized region formed in the second main joining step are brought into contact with each other It is characterized by making it.
  • the friction between the metal member and the rotating tool can be reduced compared to the conventional friction stir welding method in which the shoulder is pressed against the metal member by making only the stirring pin the portion to be brought into contact with the metal member.
  • the load applied to the friction stirrer can be reduced. That is, according to the present invention, since the stirring pin can be inserted to a deep position of the metal member, even a metal member having a large plate thickness can be joined to a deep position. Moreover, since friction stir welding can be performed with respect to the entire length of the abutting portion in the thickness direction, airtightness and watertightness can be improved.
  • an arrangement step of arranging an auxiliary member on the plasticized region formed in the main joining step It is preferable to perform an auxiliary member joining step for joining the metal member and the auxiliary member. According to this method, the metal shortage due to the main joining step can be supplemented.
  • a temporary joining step for temporarily joining the metal members before performing the main joining step. According to this method, it is possible to prevent the metal members from being separated from each other during the main joining step.
  • the main joining step by arranging a tab material beside the abutting portion and providing a prepared hole in the tab material, and then inserting the stirring pin into the prepared hole. According to this method, it is possible to reduce the press-fit resistance when the rotary tool is pushed into the metal member.
  • the present invention is a friction stir welding method for joining two metal members using a rotary tool provided with a stirring pin, and abutting step of forming a butted portion by butting the metal members at an angle; Inserting the rotated stirring pin into the inner corner of the metal members, and performing the friction stir welding of the abutting portion in a state where only the stirring pin is in contact with the two metal members. It is characterized by.
  • the invention is a friction stir welding method for joining two metal members using a rotary tool equipped with a stirring pin, and abutting step of abutting the metal members at an angle to form a butting portion; and A first main joining step of inserting the rotated stirring pin into an inner corner of the metal members and performing friction stir welding of the abutting portion in a state where only the stirring pin is in contact with the two metal members; The stirrer pin is inserted into the surface side constituting the outer corners of the metal members, and the second main joining is performed in which the stirrer is friction stir welded in a state where only the stirrer pin is in contact with the two metal members. And a process.
  • the plasticized region formed in the first main joining step overlaps the plasticized region formed in the second main joining step. According to this method, since the gap between the abutting portions is eliminated, air tightness and water tightness can be improved.
  • the side surface of one metal member and the end surface of the other metal member are abutted, and the angle of the inner corner formed by the side surface of the one metal member and the side surface of the other metal member is In the case of ⁇ , in the first main joining step, an angle formed between the rotation center axis of the rotary tool inserted at the intersection line between the side surfaces and the side surface passing through the intersection line is ⁇ / 2. It is preferable to be located between the virtual reference plane and the side surface of the one metal member.
  • the stirring pin can be inserted to a deep position of the abutting portion by tilting the rotary tool toward one of the metal members, it is possible to join the deep position of the abutting portion.
  • a pre-joining step of inserting the rotated rotary tool on the surface side constituting the outer corners of the metal members and pre-joining the butted portions before the main joining step is included. According to this joining method, when performing this joining process, it can prevent that metal members separate.
  • the plasticized region formed in the temporary joining step overlaps the plasticized region formed in the main joining step. According to this joining method, since the gap between the butt portions is eliminated by overlapping the plasticized regions, the airtightness and the watertightness can be improved.
  • the friction stir welding method according to the present invention it is possible to join up to a deep portion of the butt portion by reducing the load applied to the friction stirrer. Moreover, according to the friction stir welding method which concerns on this invention, while joining the metal member at the time of joining, it can suppress suitably.
  • (A) is the side view which showed the rotation tool for this joining of 1st embodiment
  • (b) is the schematic cross section which showed the joining form of the rotation tool for this joining.
  • (A) is the side view which showed the rotary tool for temporary joining of 1st embodiment
  • (b) is the schematic cross section which showed the joining form of the rotary tool for temporary joining.
  • FIG. 6 is a side view showing a basic shape of a main rotating tool used in Examples 4 to 6.
  • FIG. 7 is a side view showing a series 1 and 2 series of main rotating tools used in Examples 4 to 6;
  • FIG. 6 is a side view showing 3 series and 4 series of main rotating tools used in Examples 4 to 6;
  • (A) is a schematic diagram which shows the fillet part thickness reduction amount of an Example.
  • FIG. (B) is a schematic diagram showing a screw cross-sectional area of the example. It is sectional drawing which showed the result of 1 series in Example 4, and 2 series. It is sectional drawing which showed the result of 3 series in Example 4, and 4 series.
  • FIG. 6 is a cross-sectional view showing the results of 1 series and 2 series in Example 5.
  • 10 is a cross-sectional view showing the results of 3 series and 4 series in Example 5.
  • FIG. It is the graph which showed the relationship between the screw cross-sectional area in Example 4, and a fillet part thickness reduction amount. It is the graph which showed the relationship between the screw cross-sectional area in Example 5, and a fillet part thickness reduction amount.
  • Sectional drawing which shows the result at the time of setting the rotation speed of this rotation tool B-1 to 1000 rpm in Example 6 and setting the joining speed to 100 mm / min, 200 mm / min, 300 mm / min, 500 mm / min. It is. Sectional drawing which shows the result in Example 6 when the rotation speed of this rotation tool C-1 is set to 1000 rpm and the welding speed is set to 100 mm / min, 200 mm / min, 300 mm / min, and 500 mm / min. It is.
  • Example 6 Sectional drawing which shows the result at the time of setting the rotational speed of this rotation tool A-4 for Example 1000 to 1000 rpm, and setting the joining speed to 100 mm / min, 200 mm / min, 300 mm / min, 500 mm / min in Example 6. It is.
  • Example 6 it is sectional drawing which shows the result at the time of fixing a rotation speed to 1000 rpm and setting joining speed to 100 mm / min.
  • Example 6 it is sectional drawing which shows the result at the time of fixing a rotation speed to 1000 rpm and setting joining speed to 200 mm / min.
  • Example 6 it is sectional drawing which shows the result at the time of fixing a rotation speed to 1000 rpm and setting joining speed to 300 mm / min.
  • Example 6 it is sectional drawing which shows the result at the time of fixing rotation speed to 1000 rpm and setting joining speed to 500 mm / min. It is sectional drawing which shows the conventional friction stir welding method.
  • the main rotating tool for joining F includes a connecting portion F1 and a stirring pin F2.
  • the main rotating tool F for joining is formed of, for example, tool steel.
  • the connection part F1 is a part connected to the rotating shaft D of the friction stirrer shown in FIG.
  • the connecting portion F1 has a cylindrical shape, and is formed with screw holes B and B to which bolts are fastened.
  • the stirring pin F2 hangs down from the connecting part F1, and is coaxial with the connecting part F1.
  • the stirring pin F2 is tapered as it is separated from the connecting portion F1.
  • a spiral groove F3 is formed on the outer peripheral surface of the stirring pin F2.
  • the temporary joining rotary tool G is composed of a shoulder portion G1 and a stirring pin G2.
  • the temporary joining rotary tool G is made of, for example, tool steel.
  • the shoulder portion G1 is a portion that is connected to the rotating shaft D of the friction stirrer and is a portion that holds the plastic fluidized metal.
  • the shoulder portion G1 has a cylindrical shape.
  • the lower end surface of the shoulder portion G1 has a concave shape in order to prevent the fluidized metal from flowing out.
  • the stirring pin G2 is suspended from the shoulder part G1, and is coaxial with the shoulder part G1.
  • the stirring pin G2 is tapered as it is separated from the shoulder portion G1.
  • a spiral groove G3 is formed on the outer peripheral surface of the stirring pin G2.
  • the first preliminary process, the first main joining process, and the first repair process are executed from the surface side of the metal member 1, and the second preliminary process, the second main joining process, and the first repair process are performed.
  • the second repair process is a process executed from the back side of the metal member 1.
  • the first tab member 2 and the second tab member 3 are disposed on both sides of the butting portion J1 of the metal members 1 and 1, the butting step of butting the metal members 1 and 1 to be joined.
  • the metal members 1 and 1 to be joined are arranged in an L shape, and the end surface of the other metal member 1 is brought into close contact with the side surface of the one metal member 1.
  • the metal member 1 should just be a metal which can be friction-stirred, in this embodiment, an aluminum alloy is used.
  • the first tab material 2 is arranged on one end side (outside) of the abutting portion J1 of the metal members 1 and 1, and the contact surface 21 of the first tab material 2 (see FIG. 3B). Is brought into contact with the outer side surfaces of the metal members 1 and 1, and the second tab member 3 is disposed on the other end side of the abutting portion J1 so that the contact surfaces 31 and 31 of the second tab member 3 (in FIG. b) is brought into contact with the inner side surfaces of the metal members 1, 1.
  • the metal members 1 and 1 are combined in an L shape
  • one of the first tab material 2 and the second tab material 3 (the second tab material 3 in the present embodiment) is used by the metal members 1 and 1. It arrange
  • the corners 2a, 2a formed by the metal member 1 and the first tab material 2 are welded to join the metal member 1 and the first tab material 2, and the metal member 1 and the second tab material.
  • the metal corners 1 a and the second tab member 3 are joined by welding the corners 3 a and 3 a formed by 3.
  • the metal members 1, 1, the first tab material 2 and the second tab material 3 are placed on a frame of a friction stirrer (not shown) and cannot be moved using a jig (not shown) such as a clamp. To be restrained.
  • the first preliminary process includes a first tab material joining step for joining the abutting portion J2 between the metal members 1, 1 and the first tab material 2, and a temporary joining step for temporarily joining the abutting portion J1 of the metal members 1, 1. And a second tab material joining step for joining the butted portion J3 of the metal members 1, 1 and the second tab material 3, and a pilot hole formation for forming a pilot hole at the friction stirring start position in the first main joining step Process.
  • one temporary joining rotary tool G is moved so as to form a one-stroke movement trajectory (bead), and the butt portions J1, J2, J3 are moved. Then, friction stir is performed continuously.
  • the stirring pin G2 of the rotary tool G for temporary joining is rotated counterclockwise and inserted into a start position SP provided at an appropriate position of the first tab member 2 to start frictional stirring.
  • the relative movement is made toward the starting point s2 of the material joining step.
  • friction agitation is performed on the abutting portion J2 between the first tab material 2 and the metal members 1 and 1.
  • a friction stir route is set on the joint between the metal members 1, 1 and the first tab member 2, and the temporary joining rotary tool G is relatively moved along the route, whereby the abutting portion J 2. Friction agitation is performed.
  • the friction stir is continuously performed from the start point s2 to the end point e2 of the first tab member joining step without causing the temporary joining rotary tool G to be detached.
  • the friction stir is continuously performed to the start point s1 of the temporary joining step without ending the friction stirring at the end point e2, and the temporary joining step is performed as it is. Transition.
  • the friction stir route from the end point e2 of the first tab material joining process to the start point s1 of the temporary joining process is set to the first tab material 2.
  • friction stirring is performed on the abutting portion J1 of the metal members 1 and 1.
  • a friction stir route is set on the joint between the metal members 1 and 1, and the temporary joining rotary tool G is relatively moved along the route, whereby the stir portion J1 is friction stir.
  • the friction stir is continuously performed from the start point s1 to the end point e1 of the temporary joining step without causing the temporary joining rotary tool G to be detached on the way.
  • the process proceeds to the second tab material joining process as it is. That is, the process proceeds to the second tab material joining step without detaching the temporary joining rotary tool G at the end point e1 of the temporary joining step which is also the starting point s3 of the second tab material joining step.
  • the second tab material joining step friction agitation is performed on the abutting portions J3 and J3 between the metal members 1 and 1 and the second tab material 3.
  • the start point s3 of the second tab material joining step is located in the middle of the abutting portions J3 and J3, it is turned back to the friction stir route from the start point s3 to the end point e3 of the second tab material joining step.
  • the temporary joining rotary tool G is moved from the turning point m3 to the end point e3.
  • the friction stir is continuously performed from the start point s3 to the end point e3 of the second tab material joining step. That is, after the rotary tool G for temporary joining is reciprocated between the start point s3 and the turning point m3, the temporary tool rotary tool G is moved from the end point e3 to the end point e3 of the second tab material joining step. Friction stirring is performed continuously. Note that the friction stir route from the start point s3 to the turning point m3 and the friction stir route from the turning point m3 to the end point e3 are set on the joint between the metal member 1 and the second tab member 3, respectively.
  • the positional relationship among the start point s3, the turning point m3, and the end point e3 is not particularly limited. However, when the temporary joining rotary tool G is rotated counterclockwise as in this embodiment, at least friction from the turning point m3 to the end point e3.
  • the positions of the start point s3, the turning point m3, and the end point e3 of the second tab material joining step may be set so that the metal members 1 and 1 are located on the left side in the traveling direction of the temporary joining rotary tool G in the stirring route. desirable.
  • a friction stir route is set on the joint between the metal member 1 and the second tab member 3 in both the forward path and the return path, and a temporary joining book is set along the route. It is desirable to move the rotating tool for joining.
  • the metal member 1 is positioned on the right side in the traveling direction of the temporary bonding rotary tool G between the start point s3 and the turning point m3, and a bonding defect occurs on the metal member 1 side, In the subsequent frictional stirring from the turning point m3 to the end point e3, the metal member 1 is located on the left side in the direction of travel of the temporary joining rotary tool G, so that the above-described joining defects are corrected and high-quality joining is achieved.
  • the body can be obtained.
  • the metal members 1 and 1 are positioned on the right side in the traveling direction of the temporary joining rotary tool G in the friction stir route from the turning point to the end point. It is desirable to set the position of the start point, the turning point, and the end point of the second tab material joining step. Specifically, although illustration is omitted, a turn is provided at the position of the end point e3 when the temporary joining rotary tool G is rotated counterclockwise, and the turning point m3 when the temporary joining rotary tool G is rotated counterclockwise is provided. An end point may be provided at the position.
  • the pilot hole forming step is a step of forming a pilot hole at the friction stirring start position in the first main joining step.
  • a pilot hole may be newly formed, in this embodiment, the diameter of the punched hole formed when the stirring pin G2 of the rotary tool G for temporary bonding is removed is increased by a drill or the like to form the pilot hole. Form. In this way, it is possible to omit or simplify the work for preparing the pilot hole, so that the work time can be shortened. In addition, you may utilize the above-mentioned punch hole as a pilot hole as it is.
  • the stirring pin F2 is moved to the start position SM1 while rotating the main welding rotating tool F to the right (that is, the end position EP shown in FIG. 4B). And start friction stir.
  • the main welding rotary tool F When the main welding rotary tool F reaches the end position EM1, the main welding rotary tool F is raised while rotating to disengage the stirring pin F2 from the end position EM1. Note that if the stirring pin F2 is separated upward at the end position EM1, a punch hole having substantially the same shape as the stirring pin F2 is inevitably formed, but in this embodiment, it is left as it is.
  • the first repairing step is performed on the plasticized region W1 formed on the metal member 1 by the first main joining step.
  • the first repair process according to the present embodiment as shown in FIGS. 6 and 7, a groove forming process for forming the groove M, a disposing process for arranging the auxiliary member 4 in the groove M, and a metal member.
  • An auxiliary member joining step for joining 1 and the auxiliary member 4 is performed.
  • the concave groove M is formed on the surface of the plasticized region W1 formed along with the movement of the main welding rotary tool F.
  • the surface of the burr or plasticized region W1 is cut using an end mill or the like to form a concave groove M having a rectangular cross-sectional view.
  • the auxiliary member 4 is arranged in the groove M.
  • the auxiliary member 4 is a metal plate made of the same material as the metal member 1.
  • the auxiliary member 4 has the same shape as the concave groove M.
  • the thickness of the auxiliary member 4 is substantially equal to the depth of the concave groove M.
  • auxiliary member joining step friction stir is applied to the abutting portion J4, which is the abutting portion of the auxiliary member 4, the metal member 1, the first tab material 2, and the second tab material 3.
  • the rotated rotary tool G for temporary joining is inserted into the start position SH1 set on the second tab member 3, and moved around the abutting portion J4 to the end position EH1.
  • the temporary joining rotary tool G is moved while pushing the shoulder portion G ⁇ b> 1 into the surface 12 of the metal member 1.
  • the stirring pin G2 of the temporary bonding rotary tool G is set longer than the thickness of the auxiliary member 4.
  • the groove forming step may be omitted.
  • the metal member 1 and the auxiliary member 4 may be joined by welding.
  • the second preliminary process includes a pilot hole forming process of forming a pilot hole (not shown) at the friction stirring start position in the second main joining process.
  • temporary joining may be performed on the abutting portion J1 from the back surface 13 side of the metal members 1 and 1.
  • Second main joining process When the second preliminary process is completed, as shown in FIG. 9A, friction stir welding is performed from the back surface 13 side of the metal member 1 to the abutting portion J ⁇ b> 1 using the main welding rotary tool F.
  • a 2nd main joining process is performed.
  • work substantially equivalent to the first main joining step is performed from the back surface 13 side.
  • only the stirring pin F2 is inserted into the metal member 1 while the connecting portion F1 of the main welding rotary tool F and the metal member 1 are separated from each other.
  • the friction stir welding is performed on the abutting portion J1
  • the friction stir is performed while the stirring pin F2 of the main welding rotating tool F is inserted into the plasticizing region W1 formed in the first main joining step.
  • Second repair process When the second main joining step is completed, the second repairing step is performed on the plasticized region W2 formed in the metal member 1 by the second main joining step. In the second repair process, work substantially equivalent to the first repair process is performed from the back surface 13 side. As shown in FIG. 9B, when the second repair process is performed, the entire auxiliary member 4 is covered with the two plasticized regions w3. Finally, the first tab material 2 and the second tab material 3 are cut from the metal members 1 and 1.
  • the portion to be brought into contact with the metal members 1 and 1 is only the stirring pin F2 of the rotating tool F for main joining, so that the metal member can be compared with the conventional one. 1 and 1 and the main rotating tool F can be reduced, and the load applied to the friction stirrer can be reduced. Since the load applied to the friction stirrer is reduced, the stirring pin F2 can be inserted to a deep position of the metal members 1 and 1.
  • the total length in the thickness direction of the abutting portion J1 is obtained. Since friction stir welding can be performed, airtightness and watertightness can be improved. Further, in the present embodiment, when performing the second main joining process, since the friction stir welding is performed while the stirring pin F2 is in contact with the plasticizing region W1, even if there is a joint defect in the plasticizing region W1. The junction defect can be repaired.
  • the surface 12 or the back surface 13 of the metal member 1 is performed by performing a repair process. Can be flattened.
  • the auxiliary member joining step at least the metal member 1 and the auxiliary member 4 may be joined, but the auxiliary member 4 is plasticized by joining the entire auxiliary member 4 as in the present embodiment. Covered with w2 and w3, the airtightness and watertightness can be further enhanced.
  • FIG. 10 is a diagram showing a modification of the repair process, in which (a) shows a groove forming process and (b) shows a build-up welding process.
  • the auxiliary member 4 may be replaced by overlay welding. That is, as shown in FIG. 10 (a), after forming the groove M on the plasticized region W1 formed in the first main joining step, overlay welding is performed on the groove M. Good. Thereby, since the weld metal N is filled in the groove M, the surface 12 of the metal members 1 and 1 can be flattened.
  • the concave groove forming step may be omitted.
  • the temporary joining process was performed by friction stir welding in the first embodiment, welding may be used.
  • the temporary bonding rotary tool G is used.
  • the auxiliary member 4 is thick, a larger rotating tool may be used.
  • you may join the auxiliary member 4 and the metal member 1 by welding.
  • the second embodiment of the present invention includes (1) a preparation step, (2) a preliminary step, (3) a main joining step, and (4) a repairing step.
  • the preparatory process according to the second embodiment includes a butting process of butting the metal members 201 and 202 to be joined, a tab material arranging process of placing the tab material 203 at the end of the butting part J1 of the metal members 201 and 202, and A welding process in which the tab material 203 is temporarily joined to the metal members 201 and 202 by welding.
  • the side surface 201b of the metal member 201 to be joined and the end surface 202a of the metal member 202 are abutted, and the end surface 201a of the metal member 201 and the side surface 202c of the metal member 202 are abutted.
  • the metal members 201 and 202 are abutted vertically so as to be L-shaped when viewed from the side.
  • the metal members 201 and 202 may be any metal that can be frictionally stirred, but in this embodiment, an aluminum alloy is used.
  • the tab material 203 is arranged on one end side of the abutting portion J1 of the metal members 201 and 202, and the tab material 203 is placed on the side surface 201d of the metal member 201 and the metal member. It is brought into contact with the side surface 202d of 202. It arrange
  • the metal members 201 and 202 and the tab material 203 are welded, and the metal members 201 and 202 and the tab material 203 are joined.
  • the metal members 201 and 202 and the tab material 203 are placed on a frame of a friction stirrer (not shown) and restrained so as not to move using a jig (not shown) such as a clamp.
  • the preliminary process includes a temporary joining process of temporarily joining the abutting portions J1 of the metal members 201 and 202.
  • the temporary bonding rotary tool G is inserted into the tab member 203, and the abutting portion J1 is formed from the outside (surface side constituting the outer corner) of the metal members 201 and 202. Friction stir welding is performed.
  • the temporary bonding step as shown in FIG. 2B, the temporary bonding rotary tool G is moved in a state where the lower surface of the shoulder portion G1 is pressed into the metal members 201 and 202.
  • the tab material 203 is cut from the metal members 201 and 202.
  • the temporary joining step is performed by friction stir welding, but the metal members 201 and 202 may be temporarily joined by welding, for example.
  • the backing material T is disposed on the surface constituting the outer corners of the metal members 201 and 202.
  • the backing material T is a metal member having an L-shape in plan view, and is brought into contact with the side surface 201c, the end surface 201a of the metal member 201, and the side surface 202c of the metal member 202.
  • the metal members 201 and 202 and the backing material T are placed on a frame of a friction stirrer (not shown) and restrained so as not to move using a jig (not shown) such as a clamp.
  • the rotated main tool F for rotation is inserted into the inner corners of the metal member 201 and the metal member 202 (the corners formed by the side surfaces 201b and 202b), and the mating portion J1 is inserted into the mating portion J1. Friction stir welding is performed.
  • the connecting portion F1 of the main welding rotary tool F and the metal members 201 and 202 are separated from each other, and only the stirring pin F2 is joined to the abutting portion J1. Insert into.
  • friction stir welding is performed by tilting the rotation center axis Fc of the main welding rotary tool F.
  • the plasticized region W1 formed in the main joining step is overlapped with the plasticizing region w formed in the temporary joining step.
  • the position of the rotation center axis Fc does not include a position overlapping the side surface 201b and the virtual reference plane C.
  • the upper surface (surface) of the plasticized region W1 tends to have a groove due to lack of metal by this joining process, the lack of metal can be supplemented by overlay welding. As shown in FIG. 13, it is preferable that the side surface 201b of the metal member 201 and the side surface 202b of the metal member 202 are flush with the weld metal N formed by overlay welding. In addition, before performing build-up welding, the upper surface of the plasticization area
  • the overlay welding is omitted, and the groove formed by the friction stir welding is performed by chamfering the side surface 201b of the metal member 201 and the side surface 202b of the metal member 202. It may be removed.
  • airtightness and water tightness can be improved by overlapping the plasticized region w formed in the temporary joining step and the plasticized region W1 formed in the main joining step. Further, by performing the temporary joining step using the temporary joining rotary tool G smaller than the main joining rotary tool F, it is possible to prevent the metal members 201 and 202 from being separated during the main joining step.
  • the stirring pin F2 is inserted along the virtual reference plane C shown in FIG. 12B by tilting the main welding rotating tool F toward the one metal member 201 side. That is, compared to the case where the angle formed by the side surfaces 201b and 202b and the rotation center axis Fc is 45 ° with respect to the vertical metal members 201 and 202, the stirring pin is deeper than the abutting portion J1. F2 can be inserted. Thereby, it can join to the deep position of the abutting part J1.
  • the third embodiment includes (1) a preparation step, (2) a preliminary step, (3) a first main joining step, (4) a second main joining step, and (5) a repairing step.
  • 3rd embodiment illustrates the case where the metal members 1 and 2 thicker than 2nd embodiment are joined.
  • the third embodiment is different from the second embodiment in that the main joining process is performed twice. Since (1) the preparation step and (2) the preliminary step are the same as those in the second embodiment, detailed description thereof is omitted.
  • Second Main Joining Step friction stir welding is performed using the main welding rotary tool F from the surface side that forms the outer corners of the metal members 201 and 202. Specifically, as shown in FIG. 14B, the agitation pin F2 of the rotation tool F for main joining rotated from the side of the end surface 201a of the metal member 201 and the side surface 202c of the metal member 202 is inserted, and the abutting portion J1 Move along. In the second main joining step, the connecting portion F1 of the main joining rotating tool F and the metal members 201 and 202 are separated from each other, and only the stirring pin F2 is inserted into the abutting portion J1.
  • the plasticized region W2 formed in the second main joining step is overlapped with the plasticizing region W1 formed in the first main joining step.
  • the stirring pin F2 reaches the plasticizing region W1. Thereby, the butt
  • friction stir welding may be performed by appropriately providing tab members on the metal members 201 and 202. You may utilize in the 2nd this joining process, without cutting and removing the tab material used in the case of a temporary joining process.
  • the stirring pin F2 can be inserted to a deep position while suppressing a load applied to the friction stirrer.
  • the 2nd main joining process was performed using the rotation tool F for this joining in this embodiment, it is not limited to this, For example, it is a rotary tool provided with the shoulder part and the stirring pin, A long stirring pin may be used.
  • the metal members 201 and 202 are abutted at a right angle, but may be abutted as many times as long as the angle formed between the side surface 201b of the metal member 201 and the side surface 202b of the metal member 202 is other than 180 degrees.
  • the end surface 201a of the metal member 1 and the end surface 202a of the metal member 202 may be cut out obliquely so that the metal members 201 and 202 are abutted.
  • a metal member 1 made of a flat aluminum alloy is used by using three kinds of main welding rotary tools FA, FB, and FC having different dimensions, and changing the rotational speed and pilot hole conditions of each rotary tool.
  • the surface 12 was moved by a predetermined length, and the cross section of the formed plasticized region was observed. Reference numerals and dimensions in the embodiments refer to FIG. 1 as appropriate.
  • the rotating tool for main welding was rotated to the right, the connecting portion F1 of the rotating tool for main welding and the metal member 1 were separated, and only the stirring pin F2 was inserted into the metal member 1.
  • FIG. 15 is a cross-sectional view of the conditions of Example 1 and each plasticized region.
  • the test body NO. The test was performed under each condition of 1-3.
  • the outer diameter X1 (see (a) of FIG. 1) of the connecting portion F1 of the main joining rotating tool FA is 140 mm, and the thickness X2 is 40 mm.
  • the length Y1 of the stirring pin F2 is 55 mm, the proximal end outer diameter Y2 is 32 mm, and the distal end outer diameter Y3 is 16 mm.
  • a left-handed spiral groove F3 is engraved with a depth of 2 mm and a pitch of 2 mm.
  • FIG. 16 is a cross-sectional view for explaining the first embodiment.
  • the insertion depth dimension t1 is the length from the tip of the pushed stirring pin F2 to the surface 12.
  • a step P is formed on the surface 12 of the metal member 1.
  • the step P becomes deeper toward the left side in the traveling direction of the main rotating tool for welding FA.
  • the level difference P is considered to be formed when metal plasticized by friction stir welding is scattered or becomes burrs L and flows out to the outside.
  • the burrs L are concentrated on the right side in the traveling direction of the main rotating tool FA.
  • the change in the rotation speed of the tool is not significantly affected.
  • FIG. 17 is a cross-sectional view of the conditions of Example 2 and each plasticized region.
  • the test body NO. The test was conducted under each condition of 4-7.
  • the outer diameter X1 (see FIG. 1A) of the connecting portion F1 of the main rotating tool FB is 140 mm, and the thickness X2 is 55 mm.
  • the length Y1 of the stirring pin F2 is 77 mm, the proximal end outer diameter Y2 is 38 mm, and the distal end outer diameter Y3 is 16 mm.
  • a left-handed spiral groove F3 is engraved with a depth of 2 mm and a pitch of 2 mm.
  • FIG. 18 is a cross-sectional view for explaining the second embodiment.
  • the insertion depth dimension t4 is the length from the tip of the agitated stirring pin F2 to the surface 12.
  • the pilot hole K includes a wide portion K1 and a narrow portion K2 formed on the bottom surface of the wide portion K1. Both the wide part K1 and the narrow part K2 have a cylindrical shape.
  • the diameter of the wide part K1 is t5, the depth dimension is t7, the diameter of the narrow part K2 is t6, and the depth dimension is t8.
  • a step P is formed on the surface 12 of the metal member 1.
  • the level difference P is considered to be formed when metal plasticized by friction stir welding is scattered or becomes burrs L and flows out to the outside.
  • NO. 4 and 5 it can be seen that the metal pattern is different between the upper part and the lower part of the plasticized region W. This is NO. In 4 and 5, since the number of rotations of the tool is high, it is considered that the metal on the upper side among the plastic fluidized metals tends to become high temperature. On the other hand, NO. In 6 and 7, since the number of rotations of the tool is low, the pattern of the plasticized region W is almost uniform. Specimen NO. In step 7, the level difference P was relatively small.
  • FIG. 19 is a cross-sectional view of the conditions of Example 3 and each plasticized region.
  • the test was performed under the conditions of the specimens 8 to 11 using the rotating tool for bonding FC.
  • the outer diameter X1 (see FIG. 1A) of the connecting portion F1 of the welding rotary tool FC is 140 mm, and the thickness X2 is 45 mm.
  • the length Y1 of the stirring pin F2 is 157 mm, the proximal end outer diameter Y2 is 54.7 mm, and the distal end outer diameter Y3 is 16 mm.
  • a left-handed spiral groove F3 is engraved with a depth of 2 mm and a pitch of 2 mm.
  • the specimen NO. Bonding defects were observed in the portion of the sign Q of 8 to 10 (left side in the traveling direction of the rotary tool).
  • a relatively large step P is formed on the surface 12 of the metal member 1.
  • the level difference P is considered to be formed when the metal plasticized by friction stir welding is scattered or becomes burrs and flows out.
  • specimen NO. In No. 11 the insertion depth was shortened (approximately half of the length of the stirring pin F2 was inserted), so there was almost no step.
  • Examples 4 to 6 In Examples 4 to 6, as shown in FIG. 20, a total of 20 main joints with 5 types of pin angles (angles between the rotating shaft and the outer peripheral surface of the stirring pin) and 4 types of screw depth and screw pitch are provided. Rotating tools were prepared, and the state of each joint was investigated.
  • the metal member Z to be joined is made of an aluminum alloy and has a V-shaped groove Za having a V-shaped cross section.
  • the angle of the V-shaped groove Za is 90 degrees.
  • only the stirring pin of each rotary tool for main joining was inserted into the V-shaped groove Za at a predetermined depth and moved in the longitudinal direction of the V-shaped groove Za by a predetermined length.
  • the insertion depth of the stirring pin was a common depth for each example.
  • the A series of the rotating tools for this joining has a pin angle of 9.5 degrees
  • the B series has a pin angle of 14 degrees
  • the C series has a pin angle of 18 degrees. .4 degrees
  • the D series has a pin angle of 23 degrees
  • the E series has a pin angle of 27.6 degrees.
  • the 1 series has a screw depth of 0.4 mm and a screw pitch of 0.5 mm
  • the 2 series has a screw depth of 1.0 mm and a screw pitch of 1.0 mm
  • the 3 series has a screw depth of 1.8 mm and a screw pitch of 2.0 mm
  • the 4 series has a screw depth of 2.5 mm and a screw pitch of 3.0 mm.
  • the “main rotating tool C-2” has a pin angle of 18.4 degrees, a screw depth of 1.0 mm, and a screw pitch of 1.0 mm.
  • the “fill thickness reduction amount (mm 2 )” described later refers to the upper surface Z1 of the plasticized region W after the friction stir welding and the metal member Z as shown in FIG. Means a cross-sectional area of a region surrounded by the side walls Z2 and Z2 of the V and the virtual extension line Z3 of the V-shaped groove Za.
  • region of this joining defect was also added as "fillet part thickness reduction amount (mm ⁇ 2 >)".
  • screw cross-sectional area (mm 2 ) is a section of a region surrounded by an imaginary line F4 passing through the outer peripheral surface of the stirring pin F2 and the spiral groove F3, as shown in FIG. It means the sum of areas (the part where hatches are drawn).
  • Example 4 In the fourth embodiment, the main welding rotating tools A-1 to A-4, the main welding rotating tools B-1 to B-4, the main welding rotating tools C-1 to C-4, and the main welding rotating tools are described. Using a total of 20 rotary tools for main welding, including tools D-1 to D-4 and rotary tools for main welding E-1 to E-4, the rotation speed is set to 1000 rpm and the welding speed (moving speed) is set to 100 mm / min. Then, friction stir welding was performed.
  • FIG. 25 shows that in the 4 series (A-4, B-4, C-4, D-4), the lower surface of the metal member Z is deformed so as to protrude downward. It can also be seen that many burrs are generated in the 1 and 4 series.
  • Example 5 friction stir welding was performed using the above-described 20 kinds of main rotating tools for welding and setting the number of rotations to 1000 rpm and the welding speed to 200 mm / min.
  • the bonding defect Q is formed in the main rotating tools for bonding A-1, B-1, C-1, D-1, B-2, and C-2. Recognize.
  • the present rotating tool A-2 has a large amount of thinning, resulting in poor bonding.
  • the other joining rotary tools have generally good joining conditions.
  • Example 4 and Example 5 are comprehensively observed, it can be seen that the rate of occurrence of the bonding defect Q is lower when the bonding speed is slower (Example 4). It can also be seen that as the screw depth and screw pitch increase, the amount of thinning increases, but the incidence of joint defects is low.
  • FIG. 28 is a graph showing the relationship between the screw cross-sectional area and the fillet thickness reduction in Example 4.
  • FIG. 29 is a graph showing the relationship between the screw cross-sectional area and the fillet thickness reduction in Example 5. If the screw cross-sectional area is too small, the joining defect Q tends to occur. On the other hand, if the screw cross-sectional area is too large, the fillet thickness reduction amount tends to increase. Accordingly, the screw cross-sectional area is preferably 50 to 180 mm 2 and more preferably 100 to 150 mm 2 .
  • Example 6 the cross section of the plasticized region formed by moving the 20 kinds of main welding rotary tools described above with respect to the flat metal member Z (without the V-shaped groove) was observed.
  • the number of revolutions was fixed at 1000 rpm, and the joining speed was varied to 100 mm / min, 200 mm / min, 300 mm / min, and 500 mm / min.
  • FIG. 30 shows the results when the rotational speed of the main rotating tool B-1 is set to 1000 rpm and the welding speed is set to 100 mm / min, 200 mm / min, 300 mm / min, and 500 mm / min in Example 6.
  • FIG. 31 shows the results in Example 6 when the rotation speed of the main rotating tool C-1 is set to 1000 rpm and the welding speed is set to 100 mm / min, 200 mm / min, 300 mm / min, and 500 mm / min.
  • FIG. 32 shows the results in Example 6 when the rotational speed of the main rotating tool A-4 is set to 1000 rpm and the welding speed is set to 100 mm / min, 200 mm / min, 300 mm / min, and 500 mm / min.
  • FIG. 32 shows the results in Example 6 when the rotational speed of the main rotating tool A-4 is set to 1000 rpm and the welding speed is set to 100 mm / min, 200 mm / min, 300 mm / min, and 500 mm / min.
  • FIG. 33 is a cross-sectional view showing the results when the rotation speed is fixed at 1000 rpm and the joining speed is 100 mm / min in Example 6.
  • FIG. 34 is a cross-sectional view showing the results when the rotational speed is fixed at 1000 rpm and the joining speed is 200 mm / min in Example 6.
  • FIG. 35 is a cross-sectional view showing the results when the rotation speed is fixed at 1000 rpm and the joining speed is 300 mm / min in Example 6.
  • FIG. 36 is a cross-sectional view showing the results when the rotation speed is fixed at 1000 rpm and the joining speed is 500 mm / min in Example 6.

Abstract

摩擦攪拌装置にかかる負荷を小さくすることで、突合部の深い位置まで接合することができる摩擦攪拌接合方法を提供することを課題とする。攪拌ピン(F2)を備えた本接合用回転ツール(F)を用いて二つの金属部材(1)を接合する摩擦攪拌接合方法であって、金属部材(1)同士を突き合わせて形成された突合部に回転した攪拌ピン(F2)を移動させて摩擦攪拌接合を行う本接合工程を含み、本接合工程では、攪拌ピン(F2)のみを金属部材(1)に接触させることを特徴とする。

Description

摩擦攪拌接合方法
 本発明は、摩擦攪拌接合方法に関する。
 特許文献1には、金属部材同士の突合部の表面側及び裏面側から摩擦攪拌接合を行い、摩擦攪拌接合によって形成された塑性化領域同士を接触させることで、突合部を隙間無く接合する技術が開示されている。この技術によれば、接合された金属部材同士の気密性及び水密性を向上させることができる。
 一方、特許文献2には、直角に突き合わせた二つの金属部材の内隅に内隅摩擦攪拌接合用回転ツールを挿入して摩擦攪拌接合する技術が開示されている。図37は、従来の摩擦攪拌接合方法を示す断面図である。従来の摩擦攪拌接合方法では、金属部材101の端面と、金属部材102の側面とを突き合わせて形成した突合部Jを内隅摩擦攪拌接合用回転ツール110によって摩擦攪拌接合する。内隅摩擦攪拌接合用回転ツール110は、三角柱を呈する押さえブロック111と、押さえブロック111を貫通した状態でこの押さえブロック111に対して回転可能な攪拌ピン112と、を備えている。接合する際には、押さえブロック111を金属部材101,102の各側面に当接させた状態で、攪拌ピン112を回転させる。
特開2008-87036号公報 特開平11-320128号公報
 従来の接合方法により、板厚が大きい金属部材同士を接合する場合には、攪拌ピンの長さ及び外径を大きくする必要があり、さらには、この攪拌ピンの大型化に伴って、ショルダ部の外径も大きくする必要がある。ところが、ショルダ部の外径を大きくすると、金属部材とショルダ部との摩擦が大きくなるため、摩擦攪拌装置にかかる負荷が大きくなるという問題がある。これにより、特に板厚の大きい金属部材の深い位置を接合することが困難になっていた。
 一方、従来の金属部材同士の内隅部を接合する摩擦攪拌接合では、図37を参照するように、押さえブロック111を金属部材101,102に押圧しながら接合するため、押さえブロック111によって金属部材101,102が削れてしまうおそれがあった。また、押さえブロック111があるため、接合部分を視認することができなかった。
 また、図37に示すように、金属部材101,102の内隅を接合する前に、外隅を構成する面側から仮接合を行うことも考えられる。金属部材101,102の厚さが大きい場合、仮接合によって形成された塑性化領域Waと、内隅に形成された塑性化領域Wbとの間に隙間ができてしまうという問題があった。
 このような観点から、本発明は、摩擦攪拌装置にかかる負荷を小さくすることで、突合部の深い位置まで接合することができる摩擦攪拌接合方法を提供することを課題とする。また、接合する際の金属部材の損傷を抑えるとともに好適に接合することができる摩擦攪拌接合方法を提供することを課題とする。
 このような課題を解決するために本発明は、攪拌ピンを備えた回転ツールを用いて二つの金属部材を接合する摩擦攪拌接合方法であって、前記金属部材同士の突合部に回転した前記攪拌ピンを挿入し、前記攪拌ピンのみを前記金属部材に接触させた状態で摩擦攪拌接合を行う本接合工程を含むことを特徴とする。
 かかる方法によれば、金属部材に接触させる部分を攪拌ピンのみにすることで、ショルダを金属部材に押し付ける従来の摩擦攪拌接合方法に比べて金属部材と回転ツールとの摩擦を軽減することができ、摩擦攪拌装置にかかる負荷を小さくすることができる。すなわち、本発明によれば、金属部材の深い位置まで攪拌ピンを挿入することができるようになるため、板厚の大きい金属部材であっても深い位置まで接合することができる。
 また、攪拌ピンを備えた回転ツールを用いて二つの金属部材を接合する摩擦攪拌接合方法であって、前記金属部材同士の突合部に回転した前記攪拌ピンを挿入し、前記攪拌ピンのみを前記金属部材に接触させた状態で摩擦攪拌接合を行う本接合工程を含み、前記本接合工程では、前記金属部材の表面側から摩擦攪拌接合を行う第一の本接合工程と、前記金属部材の裏面側から摩擦攪拌接合を行う第二の本接合工程と、を行い、前記第一の本接合工程で形成された塑性化領域と前記第二の本接合工程で形成された塑性化領域とを接触させることを特徴とする。
 かかる方法によれば、金属部材に接触させる部分を攪拌ピンのみにすることで、ショルダを金属部材に押し付ける従来の摩擦攪拌接合方法に比べて金属部材と回転ツールとの摩擦を軽減することができ、摩擦攪拌装置にかかる負荷を小さくすることができる。すなわち、本発明によれば、金属部材の深い位置まで攪拌ピンを挿入することができるようになるため、板厚の大きい金属部材であっても深い位置まで接合することができる。また、突合部の厚さ方向の全長に対して摩擦攪拌接合することができるため、気密性及び水密性を高めることができる。
 また、前記本接合工程で形成された塑性化領域の上に肉盛溶接を行うことが好ましい。かかる方法によれば、本接合工程による金属の不足分を補充することができる。
 また、前記本接合工程で形成された塑性化領域の上に補助部材を配置する配置工程と、
前記金属部材と前記補助部材とを接合する補助部材接合工程と、を行うことが好ましい。かかる方法によれば、本接合工程による金属の不足分を補充することができる。
 また、前記本接合工程を行う前に、前記金属部材同士の仮接合を行う仮接合工程を含むことが好ましい。かかる方法によれば、本接合工程の際に金属部材同士が離間するのを防ぐことができる。
 また、前記突合部の脇にタブ材を配置し前記タブ材に下穴を設けた後、前記下穴に前記攪拌ピンを挿入して前記本接合工程を行うことが好ましい。かかる方法によれば、回転ツールを金属部材に押し込む際の圧入抵抗を小さくすることができる。
 また、本発明は、攪拌ピンを備えた回転ツールを用いて二つの金属部材を接合する摩擦攪拌接合方法であって、前記金属部材同士を角度をつけて突き合わせて突合部を形成する突合工程と、回転した前記攪拌ピンを前記金属部材同士の内隅に挿入し、前記攪拌ピンのみを前記両金属部材に接触させた状態で前記突合部の摩擦攪拌接合を行う本接合工程と、を含むことを特徴とする。
 また、発明は、攪拌ピンを備えた回転ツールを用いて二つの金属部材を接合する摩擦攪拌接合方法であって、前記金属部材同士を角度をつけて突き合わせて突合部を形成する突合工程と、回転した前記攪拌ピンを前記金属部材同士の内隅に挿入し、前記攪拌ピンのみを前記両金属部材に接触させた状態で前記突合部の摩擦攪拌接合を行う第一の本接合工程と、回転した前記攪拌ピンを前記金属部材同士の外隅を構成する面側に挿入し、前記攪拌ピンのみを前記両金属部材に接触させた状態で前記突合部の摩擦攪拌接合を行う第二の本接合工程と、を含むことを特徴とする。
 かかる方法によれば、攪拌ピンのみを金属部材に接触させるため、接合する際の金属部材の側面の損傷を抑えることができる。また、従来のように回転ツールに押さえブロックを用いないため、接合部分を視認することができる。これにより、作業性を高めることができる。
 また、前記第一の本接合工程で形成された塑性化領域と、前記第二の本接合工程で形成された塑性化領域とを重複させることが好ましい。かかる方法によれば、突合部の隙間が無くなるため、気密性及び水密性を高めることができる。
 また、前記突合工程では、一方の前記金属部材の側面と、他方の前記金属部材の端面とを突き合わせ、一方の前記金属部材の側面と他方の前記金属部材の側面とでなす内隅の角度がαである場合に、前記第一の本接合工程では、前記側面同士の交線に挿入された前記回転ツールの回転中心軸が、前記交線を通り前記側面とのなす角度がα/2となる仮想基準面と前記一方の前記金属部材の側面との間に位置することが好ましい。
 かかる方法によれば、一方の前記金属部材側に回転ツールを傾かせることで、突合部の深い位置まで攪拌ピンを挿入することができるため、突合部の深い位置まで接合することができる。
 また、前記本接合工程の前に、回転した回転ツールを前記金属部材同士の外隅を構成する面側に挿入し、前記突合部の仮接合を行う仮接合工程を含むことが好ましい。かかる接合方法によれば、本接合工程を行う際に、金属部材同士が離間するのを防ぐことができる。
 また、前記本接合工程では、前記仮接合工程で形成された塑性化領域と前記本接合工程で形成された塑性化領域とを重複させることが好ましい。かかる接合方法によれば、塑性化領域同士を重複させることで、突合部の隙間が無くなるため気密性及び水密性を高めることができる。
 また、前記本接合工程で形成された塑性化領域の上に肉盛溶接を行うことが好ましい。かかる方法によれば、本接合工程による金属の不足分を補充することができる。
 本発明に係る摩擦攪拌接合方法によれば、摩擦攪拌装置にかかる負荷を小さくすることで、突合部の深い部分まで接合することができる。また、本発明に係る摩擦攪拌接合方法によれば、接合する際の金属部材の損傷を抑えるとともに好適に接合することができる。
(a)は第一実施形態の本接合用回転ツールを示した側面図であり、(b)は本接合用回転ツールの接合形態を示した模式断面図である。 (a)は第一実施形態の仮接合用回転ツールを示した側面図であり、(b)は仮接合用回転ツールの接合形態を示した模式断面図である。 第一実施形態の準備工程を示した図であって、(a)は斜視図、(b)は平面図である。 第一実施形態の第一の予備工程を示した平面図であって、(a)は接合途中、(b)は終了時を示す。 第一実施形態の第一の本接合工程を示した平面図であって、(a)は接合途中、(b)は終了時を示す。 第一実施形態の第一の補修工程を示した斜視図である。 第一実施形態の第一の補修工程における補修部材接合工程を示した図であって、(a)は平面図、(b)は断面図である。 第一実施形態の第一の補修工程後を示した断面図である。 (a)は第一実施形態の第二の本接合工程を示した断面図であり、(b)は本実施形態の第二の補修工程を示した断面図である。 補修工程の変形例を示した図であって、(a)は切削工程、(b)は肉盛り溶接工程を示す。 (a)は第二実施形態に係る準備工程を示した斜視図、(b)は第二実施形態に係る予備工程を示した斜視図である。 第二実施形態に係る本接合工程を示した図であって、(a)は斜視図であり、(b)は断面図である。 第二実施形態に係る補修工程を示した断面図である。 (a)は第三実施形態に係る第一の本接合工程を示す断面図であり、(b)は第三実施形態に係る第二の本接合工程を示す断面図である。 実施例1の条件と各塑性化領域の断面図である。 実施例1を説明するための断面図である。 実施例2の条件と各塑性化領域の断面図である。 実施例2,3を説明するための断面図である。 実施例3の条件と各塑性化領域の断面図である。 実施例4~6で用いる本接合用回転ツールの基本形状を示した側面図である。 実施例4~6で用いる本接合用回転ツールの1シリーズと2シリーズを示す側面図である。 実施例4~6で用いる本接合用回転ツールの3シリーズと4シリーズを示す側面図である。 (a)は実施例の隅肉部減肉量を示す模式図である。(b)は実施例のネジ断面積を示す模式図である。 実施例4における1シリーズと2シリーズの結果を示した断面図である。 実施例4における3シリーズと4シリーズの結果を示した断面図である。 実施例5における1シリーズと2シリーズの結果を示した断面図である。 実施例5における3シリーズと4シリーズの結果を示した断面図である。 実施例4におけるネジ断面積と隅肉部減肉量との関係を示したグラフである。 実施例5におけるネジ断面積と隅肉部減肉量との関係を示したグラフである。 実施例6において、本接合用回転ツールB-1の回転数を1000rpmに設定し、接合速度を100mm/min、200mm/min、300mm/min、500mm/minに設定した場合の結果を示す断面図である。 実施例6において、本接合用回転ツールC-1の回転数を1000rpmに設定し、接合速度を100mm/min、200mm/min、300mm/min、500mm/minに設定した場合の結果を示す断面図である。 実施例6において、本接合用回転ツールA-4の回転数を1000rpmに設定し、接合速度を100mm/min、200mm/min、300mm/min、500mm/minに設定した場合の結果を示す断面図である。 実施例6において、回転数を1000rpmに固定するとともに接合速度を100mm/minとした場合の結果を示す断面図である。 実施例6において、回転数を1000rpmに固定するとともに接合速度を200mm/minとした場合の結果を示す断面図である。 実施例6において、回転数を1000rpmに固定するとともに接合速度を300mm/minとした場合の結果を示す断面図である。 実施例6において、回転数を1000rpmに固定するとともに接合速度を500mm/minとした場合の結果を示す断面図である。 従来の摩擦攪拌接合方法を示す断面図である。
[第一実施形態]
 本発明の第一実施形態について、図面を参照して詳細に説明する。まずは、本実施形態で用いる本接合用回転ツール及び仮接合用回転ツールについて説明する。
 本接合用回転ツールFは、図1の(a)に示すように、連結部F1と、攪拌ピンF2とで構成されている。本接合用回転ツールFは、例えば工具鋼で形成されている。連結部F1は、図1の(b)に示す摩擦攪拌装置の回転軸Dに連結される部位である。連結部F1は円柱状を呈し、ボルトが締結されるネジ孔B,Bが形成されている。
 攪拌ピンF2は、連結部F1から垂下しており、連結部F1と同軸になっている。攪拌ピンF2は連結部F1から離間するにつれて先細りになっている。攪拌ピンF2の外周面には螺旋溝F3が刻設されている。
 図1の(b)に示すように、本接合用回転ツールFを用いて摩擦攪拌接合をする際には、金属部材1に回転した攪拌ピンF2のみを挿入し、金属部材1と連結部F1とは離間させつつ移動させる。言い換えると、攪拌ピンF2の基端部は露出させた状態で摩擦攪拌接合を行う。本接合用回転ツールFの移動軌跡には摩擦攪拌された金属が硬化することにより塑性化領域Wが形成される。
 仮接合用回転ツールGは、図2の(a)に示すように、ショルダ部G1と、攪拌ピンG2とで構成されている。仮接合用回転ツールGは、例えば工具鋼で形成されている。ショルダ部G1は、図2の(b)に示すように、摩擦攪拌装置の回転軸Dに連結される部位であるとともに、塑性流動化した金属を押える部位である。ショルダ部G1は円柱状を呈する。ショルダ部G1の下端面は、流動化した金属が外部へ流出するのを防ぐために凹状になっている。
 攪拌ピンG2は、ショルダ部G1から垂下しており、ショルダ部G1と同軸になっている。攪拌ピンG2はショルダ部G1から離間するにつれて先細りになっている。攪拌ピンG2の外周面には螺旋溝G3が刻設されている。
 図2の(b)に示すように、仮接合用回転ツールGを用いて摩擦攪拌接合をする際には、回転した攪拌ピンG2とショルダ部G1の下端を金属部材1に挿入しつつ移動させる。仮接合用回転ツールGの移動軌跡には摩擦攪拌された金属が硬化することにより塑性化領域wが形成される。
 次に、本実施形態の具体的な摩擦攪拌接合方法について説明する。本実施形態では、(1)準備工程、(2)第一の予備工程、(3)第一の本接合工程、(4)第一の補修工程、(5)第二の予備工程、(6)第二の本接合工程、(7)第二の補修工程を含んでいる。なお、第一の予備工程、第一の本接合工程及び第一の補修工程は、金属部材1の表面側から実行される工程であり、第二の予備工程、第二の本接合工程及び第二の補修工程は、金属部材1の裏面側から実行される工程である。
(1)準備工程 
 図3を参照して準備工程を説明する。本実施形態に係る準備工程は、接合すべき金属部材1,1を突き合せる突合工程と、金属部材1,1の突合部J1の両側に第一タブ材2と第二タブ材3を配置するタブ材配置工程と、第一タブ材2と第二タブ材3を溶接により金属部材1,1に仮接合する溶接工程とを具備している。
 突合工程では、接合すべき金属部材1,1をL字状に配置し、一方の金属部材1の側面に他方の金属部材1の端面を密着させる。金属部材1は、摩擦攪拌可能な金属であればよいが、本実施形態ではアルミニウム合金を用いる。
 タブ材配置工程では、金属部材1,1の突合部J1の一端側(外側)に第一タブ材2を
配置して第一タブ材2の当接面21(図3の(b)参照)を金属部材1,1の外側の側面に当接させるとともに、突合部J1の他端側に第二タブ材3を配置して第二タブ材3の当接面31,31(図3の(b)参照)を金属部材1,1の内側の側面に当接させる。なお、金属部材1,1をL字状に組み合わせた場合には、第一タブ材2及び第二タブ材3の一方(本実施形態では第二タブ材3)を、金属部材1,1により形成された入隅部(金属部材1,1の内側の側面により形成された角部)に配置する。
 溶接工程では、金属部材1と第一タブ材2とにより形成された入隅部2a,2aを溶接して金属部材1と第一タブ材2とを接合し、金属部材1と第二タブ材3とにより形成された入隅部3a,3aを溶接して金属部材1と第二タブ材3とを接合する。
 準備工程が終了したら、金属部材1,1、第一タブ材2及び第二タブ材3を図示せぬ摩擦攪拌装置の架台に載置し、クランプ等の図示せぬ治具を用いて移動不能に拘束する。
(2)第一の予備工程 
 第一の予備工程は、金属部材1,1と第一タブ材2との突合部J2を接合する第一タブ材接合工程と、金属部材1,1の突合部J1を仮接合する仮接合工程と、金属部材1,1と第二タブ材3との突合部J3を接合する第二タブ材接合工程と、第一の本接合工程における摩擦攪拌の開始位置に下穴を形成する下穴形成工程とを具備している。
 図4の(a)及び(b)に示すように、一の仮接合用回転ツールGを一筆書きの移動軌跡(ビード)を形成するように移動させて、突合部J1,J2,J3に対して連続して摩擦攪拌を行う。
 まず、仮接合用回転ツールGの攪拌ピンG2を左回転させながら第一タブ材2の適所に設けた開始位置SPに挿入して摩擦攪拌を開始し、仮接合用回転ツールGを第一タブ材接合工程の始点s2に向けて相対移動させる。
 仮接合用回転ツールGを相対移動させて第一タブ材接合工程の始点s2まで連続して摩擦攪拌を行ったら、始点s2で仮接合用回転ツールGを離脱させることなくそのまま第一タブ材接合工程に移行する。
 第一タブ材接合工程では、第一タブ材2と金属部材1,1との突合部J2に対して摩擦攪拌を行う。具体的には、金属部材1,1と第一タブ材2との継ぎ目上に摩擦攪拌のルートを設定し、当該ルートに沿って仮接合用回転ツールGを相対移動させることで、突合部J2に対して摩擦攪拌を行う。本実施形態では、仮接合用回転ツールGを途中で離脱させることなく第一タブ材接合工程の始点s2から終点e2まで連続して摩擦攪拌を行う。
 なお、仮接合用回転ツールGを左回転させた場合には、進行方向の右側に微細な接合欠陥が発生する虞があるので、仮接合用回転ツールGの進行方向の左側に金属部材1,1が位置するように第一タブ材接合工程の始点s2と終点e2の位置を設定することが望ましい。このようにすると、金属部材1側に接合欠陥が発生し難くなるので、高品質の接合体を得ることが可能となる。
 仮接合用回転ツールGが第一タブ材接合工程の終点e2に達したら、終点e2で摩擦攪拌を終了させずに仮接合工程の始点s1まで連続して摩擦攪拌を行い、そのまま仮接合工程に移行する。なお、本実施形態では、第一タブ材接合工程の終点e2から仮接合工程の始点s1に至る摩擦攪拌のルートを第一タブ材2に設定している。
 仮接合工程では、金属部材1,1の突合部J1に対して摩擦攪拌を行う。具体的には、金属部材1,1の継ぎ目上に摩擦攪拌のルートを設定し、当該ルートに沿って仮接合用回転ツールGを相対移動させることで、突合部J1に対して摩擦攪拌を行う。本実施形態では、仮接合用回転ツールGを途中で離脱させることなく仮接合工程の始点s1から終点e1まで連続して摩擦攪拌を行う。
 仮接合用回転ツールGが仮接合工程の終点e1に達したら、そのまま第二タブ材接合工程に移行する。すなわち、第二タブ材接合工程の始点s3でもある仮接合工程の終点e1で仮接合用回転ツールGを離脱させることなく第二タブ材接合工程に移行する。
 第二タブ材接合工程では、金属部材1,1と第二タブ材3との突合部J3,J3に対して摩擦攪拌を行う。本実施形態では、第二タブ材接合工程の始点s3が、突合部J3,J3の中間に位置しているので、第二タブ材接合工程の始点s3から終点e3に至る摩擦攪拌のルートに折返し点m3を設け、仮接合用回転ツールGを始点s3から折返し点m3に移動させた後に(図4の(a)参照)、仮接合用回転ツールGを折返し点m3から終点e3に移動させることで(図4の(b)参照)、第二タブ材接合工程の始点s3から終点e3まで連続して摩擦攪拌を行う。すなわち、仮接合用回転ツールGを始点s3~折返し点m3間で往復させた後に、仮接合用回転ツールGを終点e3まで移動させることで、第二タブ材接合工程の始点s3から終点e3まで連続して摩擦攪拌を行う。なお、始点s3から折返し点m3に至る摩擦攪拌のルート及び折返し点m3から終点e3に至る摩擦攪拌のルートは、それぞれ、金属部材1と第二タブ材3との継ぎ目上に設定する。
 始点s3、折返し点m3及び終点e3の位置関係に特に制限はないが、本実施形態の如く仮接合用回転ツールGを左回転させている場合には、少なくとも折返し点m3から終点e3に至る摩擦攪拌のルートにおいて仮接合用回転ツールGの進行方向の左側に金属部材1,1が位置するように、第二タブ材接合工程の始点s3、折返し点m3及び終点e3の位置を設定することが望ましい。この場合、始点s3~折返し点m3間においては、往路においても復路においても金属部材1と第二タブ材3との継ぎ目上に摩擦攪拌のルートを設定し、当該ルートに沿って仮接合用本接合用回転ツールを移動させることが望ましい。このようにすると、始点s3から折返し点m3に至るまでの間に、仮接合用回転ツールGの進行方向の右側に金属部材1が位置し、金属部材1側に接合欠陥が発生したとしても、その後に行われる折返し点m3から終点e3に至る摩擦攪拌において仮接合用回転ツールGの進行方向の左側に金属部材1が位置することになるので、前記した接合欠陥が是正され、高品質の接合体を得ることが可能となる。
 ちなみに、仮接合用回転ツールGを右回転させた場合には、折返し点から終点に至る摩擦攪拌のルートにおいて仮接合用回転ツールGの進行方向の右側に金属部材1,1が位置するように、第二タブ材接合工程の始点、折返し点及び終点の位置を設定することが望ましい。具体的には、図示は省略するが、仮接合用回転ツールGを左回転させた場合の終点e3の位置に折返しを設け、仮接合用回転ツールGを左回転させた場合の折返し点m3の位置に終点を設ければよい。
 図4の(b)に示すように、仮接合用回転ツールGが第二タブ材接合工程の終点e3に達したら、終点e3で摩擦攪拌を終了させずに、第二タブ材3に設けた終了位置EPまで連続して摩擦攪拌を行う。仮接合用回転ツールGが終了位置EPに達したら、仮接合用回転ツールGを回転させつつ上昇させて攪拌ピンG2を終了位置EPから離脱させる。
 続いて、下穴形成工程を実行する。下穴形成工程は、第一の本接合工程における摩擦攪拌の開始位置に下穴を形成する工程である。新たに下穴を形成してもよいが、本実施形態では、仮接合用回転ツールGの攪拌ピンG2を離脱させたときに形成される抜き穴を、ドリル等で拡径して下穴を形成する。このようにすると、下穴の加工作業を省略あるいは簡略化することが可能となるので、作業時間を短縮することが可能となる。なお、前記した抜き穴をそのまま下穴として利用してもよい。
(3)第一の本接合工程 
 第一の予備工程が終了したら、金属部材1,1の突合部J1を本格的に接合する第一の本接合工程を実行する。本実施形態に係る第一の本接合工程では、図1の(a)に示す本接合用回転ツールFを使用し、仮接合された状態の突合部J1に対して金属部材1の表面側から摩擦攪拌を行う。
 第一の本接合工程では、まず、図5に示すように、本接合用回転ツールFを右回転させつつ攪拌ピンF2を開始位置SM1(すなわち、図4の(b)に示す終了位置EP)に挿入し、摩擦攪拌を開始する。
 金属部材1,1の突合部J1の一端まで摩擦攪拌を行ったら、そのまま本接合用回転ツールFを突合部J1に突入させ、金属部材1,1の継ぎ目上に設定された摩擦攪拌のルートに沿って本接合用回転ツールFを相対移動させることで、突合部J1の一端から他端まで連続して摩擦攪拌を行う。ここでは、図1の(b)を参照するように、本接合用回転ツールFの連結部F1と金属部材1とを離間させて、攪拌ピンF2のみを突合部J1に挿入する。図5の(b)に示すように、突合部J1の他端まで本接合用回転ツールFを相対移動させたら、摩擦攪拌を行いながら突合部J2を横切らせ、そのまま終了位置EM1に向けて相対移動させる。
 本接合用回転ツールFが終了位置EM1に達したら、本接合用回転ツールFを回転させながら上昇させて攪拌ピンF2を終了位置EM1から離脱させる。なお、終了位置EM1において攪拌ピンF2を上方に離脱させると、攪拌ピンF2と略同形の抜き穴が不可避的に形成されることになるが、本実施形態では、そのまま残置する。
(4)第一の補修工程 
 第一の本接合工程が終了したら、第一の本接合工程により金属部材1に形成された塑性化領域W1に対して第一の補修工程を実行する。本実施形態に係る第一の補修工程では、図6及び図7に示すように、凹溝Mを形成する凹溝形成工程と、凹溝Mに補助部材4を配置する配置工程と、金属部材1と補助部材4とを接合する補助部材接合工程とを実行する。
 凹溝形成工程では、図6に示すように、本接合用回転ツールFの移動に伴って形成された塑性化領域W1の表面に凹溝Mを形成する。凹溝形成工程では、例えばエンドミル等を用いてバリや塑性化領域W1の表面を切削して、断面視矩形の凹溝Mを形成する。
 配置工程では、凹溝Mに補助部材4を配置する。補助部材4は、金属部材1と同等の材料からなる金属板である。補助部材4は、凹溝Mと同等の形状を呈する。補助部材4の厚さは、凹溝Mの深さと略同等になっている。
 補助部材接合工程では、図7の(a)に示すように、補助部材4と金属部材1、第一タブ材2及び第二タブ材3との突き合わせ部分である突合部J4に対して摩擦攪拌接合を行う。具体的には、回転した仮接合用回転ツールGを第二タブ材3に設定した開始位置SH1に挿入し、突合部J4に沿って一周させて終了位置EH1まで移動させる。図7の(b)に示すように、補助部材接合工程では、ショルダ部G1を金属部材1の表面12に押し込みながら仮接合用回転ツールGを移動させる。また、仮接合用回転ツールGの攪拌ピンG2は補助部材4の厚みよりも長く設定されている。
 図8に示すように、仮接合用回転ツールGを一周させて、補助部材4に対して二条の塑性化領域w2が形成されると、補助部材4は全て塑性化領域w2,w2で覆われる。また、塑性化領域W1と塑性化領域w2とが重複するため、より気密性及び水密性を高めることができる。
 第一の本接合工程後、金属部材1の表面12と塑性化領域W1の表面との段差が大きい場合には、凹溝形成工程は省略してもよい。また、補助部材接合工程では、金属部材1と補助部材4とを溶接で接合してもよい。
(5)第二の予備工程 
 第一の本接合工程を終えたら金属部材1,1を裏返し、第二の予備工程を実行する。本実施形態に係る第二の予備工程は、第二の本接合工程における摩擦攪拌の開始位置に下穴(図示略)を形成する下穴形成工程を具備している。なお、第二の予備工程では、金属部材1,1の裏面13側から突合部J1に対して仮接合を行ってもよい。
(6)第二の本接合工程 
 第二の予備工程が終了したら、図9の(a)に示すように、本接合用回転ツールFを使用して、突合部J1に対して金属部材1の裏面13側から摩擦攪拌接合を行う第二の本接合工程を実行する。第二の本接合工程は、第一の本接合工程と略同等の作業を裏面13側から行う。第二の本接合工程においても、本接合用回転ツールFの連結部F1と金属部材1とは離間させつつ、攪拌ピンF2のみを金属部材1に挿入する。突合部J1に対して摩擦攪拌接合を行う際には、第一の本接合工程で形成された塑性化領域W1に本接合用回転ツールFの攪拌ピンF2を入り込ませつつ摩擦攪拌を行う。
(7)第二の補修工程 
 第二の本接合工程が終了したら、第二の本接合工程により金属部材1に形成された塑性化領域W2に対して第二の補修工程を実行する。第二の補修工程は、第一の補修工程と略同等の作業を裏面13側から行う。図9の(b)に示すように、第二の補修工程を行うと、二条の塑性化領域w3によって補助部材4の全体が覆われる。最後に、第一タブ材2及び第二タブ材3を金属部材1,1から切断する。
 以上説明した摩擦攪拌接合によれば、摩擦攪拌接合を行う際に、金属部材1,1に接触させる部分を本接合用回転ツールFの攪拌ピンF2のみにすることで、従来に比べて金属部材1,1と本接合用回転ツールFとの摩擦を軽減することができ、摩擦攪拌装置にかかる負荷を小さくすることができる。摩擦攪拌装置にかかる負荷が小さくなるため、金属部材1,1の深い位置まで攪拌ピンF2を挿入することができる。
 また、第一の本接合工程で形成された塑性化領域W1と第二の本接合工程で形成された塑性化領域W2とを接触させることで、突合部J1の厚さ方向の全長に対して摩擦攪拌接合することができるため、気密性及び水密性を高めることができる。また、本実施形態では、第二の本接合工程を行う際に、塑性化領域W1に攪拌ピンF2を接触させつつ摩擦攪拌接合を行うため、仮に塑性化領域W1に接合欠陥があったとしても当該接合欠陥を補修することができる。
 また、第一の本接合工程及び第二の本接合工程によって、金属部材1の表面12又は裏面13に段差が形成されたとしても、補修工程を行うことで金属部材1の表面12又は裏面13を平坦にすることができる。また、補助部材接合工程では、少なくとも金属部材1と補助部材4とが接合すればよいが、本実施形態のように補助部材4の全体を摩擦攪拌接合することで、補助部材4が塑性化領域w2,w3で覆われてより気密性及び水密性を高めることができる。
 また、突合部J1の仮接合工程を行うことで、本接合工程を行う際に金属部材1,1が離間するのを防ぐことができる。また、タブ材を設けることにより、回転ツールの挿入及び離脱作業が容易になるとともに、このタブ材に下穴を設けることで回転ツールを押し込む際の圧入抵抗を小さくすることができる。
 以上本発明の第一実施形態について説明したが、本発明の趣旨に反しない範囲において設計変更が可能である。例えば、図10は、補修工程の変形例を示した図であって、(a)は凹溝形成工程、(b)は肉盛り溶接工程を示す。補修工程では、補助部材4に代えて、肉盛溶接で補修してもよい。つまり、図10の(a)に示すように、第一の本接合工程で形成された塑性化領域W1の上に凹溝Mを形成した後、この凹溝Mに肉盛り溶接を行ってもよい。これにより、凹溝Mに溶接金属Nが充填されるため、金属部材1,1の表面12を平坦にすることができる。なお、凹溝形成工程は省略してもよい。
 また、仮接合工程は、第一実施形態では摩擦攪拌接合で行ったが、溶接でもよい。また、補助部材4を用いた補修工程では、仮接合用回転ツールGを用いたが、補助部材4の厚みが大きい場合にはさらに大きな回転ツールを用いてもよい。また、補助部材4と金属部材1とは溶接で接合してもよい。
[第二実施形態]
 本発明の第二実施形態について詳細に説明する。第二実施形態では、(1)準備工程、(2)予備工程、(3)本接合工程、(4)補修工程を含んでいる。
(1)準備工程
 図11を参照して準備工程を説明する。第二実施形態に係る準備工程は、接合すべき金属部材201,202を突き合せる突合工程と、金属部材201,202の突合部J1の端部にタブ材203を配置するタブ材配置工程と、タブ材203を溶接により金属部材201,202に仮接合する溶接工程とを具備している。
 突合工程では、図11の(a)に示すように、接合すべき金属部材201の側面201bと金属部材202の端面202aとを突き合わせるとともに、金属部材201の端面201aと金属部材202の側面202cとが面一になるようにする。つまり、突合工程では、金属部材201,202を垂直に突き合わせ、側面視してL字状になるようにする。金属部材201,202は、摩擦攪拌可能な金属であればよいが、本実施形態ではアルミニウム合金を用いる。
 タブ材配置工程では、図11の(b)に示すように、金属部材201,202の突合部J1の一端側にタブ材203を配置してタブ材203を金属部材201の側面201d及び金属部材202の側面202dに当接させる。タブ材203の表面203aと、金属部材202の側面202c及び金属部材201の端面201aとが面一になるように配置する。
 溶接工程では、金属部材201,202とタブ材203とを溶接し、金属部材201,202とタブ材203とを接合する。
 準備工程が終了したら、金属部材201,202及びタブ材203を図示せぬ摩擦攪拌装置の架台に載置し、クランプ等の図示せぬ治具を用いて移動不能に拘束する。
(2)予備工程 
 予備工程は、金属部材201,202の突合部J1を仮接合する仮接合工程を具備している。具体的には、図11の(b)に示すように、タブ材203に仮接合用回転ツールGを挿入し、金属部材201,202の外側(外隅を構成する面側)から突合部J1に対して摩擦攪拌接合を行う。仮接合工程においては、図2の(b)を参照するように、ショルダ部G1の下面を金属部材201,202に押し込んだ状態で、仮接合用回転ツールGを移動させる。突合部J1の全部又は一部を接合したら、金属部材201,202からタブ材203を切削する。なお、本実施形態では仮接合工程を摩擦攪拌接合により行ったが、例えば溶接で金属部材201,202の仮接合を行ってもよい。
(3)本接合工程 
 予備工程が終了したら、金属部材201,202の突合部J1を本格的に接合する本接合工程を実行する。本実施形態に係る本接合工程では、まず、図12の(a)に示すように、金属部材201,202の外隅を構成する面に裏当材Tを配置する。裏当材Tは、平面視L字状を呈する金属製の部材であって、金属部材201の側面201c、端面201a及び金属部材202の側面202cに接触させる。そして、金属部材201,202及び裏当材Tを図示せぬ摩擦攪拌装置の架台に載置し、クランプ等の図示せぬ治具を用いて移動不能に拘束する。
 次に、本接合工程では、金属部材201と金属部材202の内隅(側面201bと側面202bとで構成される隅部)に回転した本接合用回転ツールFを挿入し、突合部J1に対して摩擦攪拌接合を行う。本接合工程では、図12の(a)及び(b)に示すように、本接合用回転ツールFの連結部F1と金属部材201,202とを離間させて、攪拌ピンF2のみを突合部J1に挿入する。
 また、本接合工程では、図12の(b)に示すように、本接合用回転ツールFの回転中心軸Fcを傾けて摩擦攪拌接合を行う。つまり、本接合工程では、側面201bと側面202bとの交線C1に挿入された本接合用回転ツールFの回転中心軸Fcが、交線C1を通り側面201bと側面202bとのなす角度がα/2(本実施形態ではα=90°)となる仮想基準面Cと金属部材201の側面201bとの間に位置するように設定する。本接合工程では、本接合工程で形成された塑性化領域W1と、仮接合工程で形成された塑性化領域wとが重複するようにする。なお、回転中心軸Fcの位置は、側面201b及び仮想基準面Cに重なる位置は含まない。
(4)補修工程 
 本接合工程が終了したら、本接合工程によって金属部材201,202に形成された塑性化領域W1に対して補修工程を実行する。本実施形態に係る補修工程では、図13に示すように、塑性化領域W1の上面に肉盛溶接を行う。
 本接合工程によって、塑性化領域W1の上面(表面)は金属が不足して溝ができる傾向にあるが、肉盛溶接を行うことで不足した金属を補充することができる。図13に示すように、金属部材201の側面201b及び金属部材202の側面202bと、肉盛溶接によって形成された溶接金属Nとが面一になるようにすることが好ましい。なお、肉盛溶接を行う前に、塑性化領域W1の上面を削って予め凹溝を形成し、この凹溝に肉盛溶接を行ってもよい。また、溝が比較的浅い場合には、肉盛溶接を省略して、金属部材201の側面201b及び金属部材202の側面202bに面削加工を施すことで、摩擦攪拌接合によって形成された溝を除去してもよい。
 以上説明した本実施形態に係る摩擦攪拌接合によれば、金属部材201,202の内隅を接合する本接合工程において、攪拌ピンF2のみを金属部材201,202に接触させるため、接合する際の金属部材201の側面201b及び金属部材202の側面202bの損傷を抑えることができる。また、従来のように押さえブロックを用いないため、接合部分を視認することができる。これにより、接合状況等を把握することができるため作業性を高めることができる。
 また、本接合工程では、仮接合工程で形成された塑性化領域wと本接合工程で形成された塑性化領域W1とを重複させることにより、気密性及び水密性を高めることができる。また、本接合用回転ツールFよりも小さい仮接合用回転ツールGを用いて仮接合工程を行うことで、本接合工程の際に、金属部材201,202が離間するのを防ぐことができる。
 また、本接合工程では、一方の金属部材201側に本接合用回転ツールFを傾かせることで、例えば、図12の(b)に示す仮想基準面Cに沿って攪拌ピンF2を挿入する場合、つまり、垂直である金属部材201,202に対して側面201b,202bと回転中心軸Fcとのなす角度が45°となるように挿入する場合に比べて、突合部J1の深い位置まで攪拌ピンF2を挿入することができる。これにより、突合部J1の深い位置まで接合することができる。
 また、本接合工程で形成された塑性化領域W2の上に肉盛溶接を行うことで、本接合工程における金属の不足分を補充することができる。
<第三実施形態> 
 次に、本発明の第三実施形態に係る摩擦攪拌接合方法について説明する。第三実施形態では、(1)準備工程、(2)予備工程、(3)第一の本接合工程、(4)第二の本接合工程、(5)補修工程を含んでいる。第三実施形態は、第二実施形態よりも厚い金属部材1,2を接合する場合を例示する。第三実施形態は、本接合工程を二回行う点で第二実施形態と相違する。なお、(1)準備工程、(2)予備工程は、第二実施形態と同等であるため、詳細な説明は省略する。
(3)第一の本接合工程
 第一の本接合工程では、図14の(a)に示すように、前記した第二実施形態の本接合工程と略同等の要領で、突合部J1に対して金属部材201,202の内隅に回転した本接合用回転ツールFを挿入して、摩擦攪拌接合を行う。第三実施形態では、金属部材201,202の厚さが大きいため、本接合用回転ツールFの挿入角度を金属部材201側に傾けたとしても、本接合工程で形成された塑性化領域W1と、仮接合工程で形成された塑性化領域wとを重複させることができない。
(4)第二の本接合工程
 第二の本接合工程では、金属部材201,202の外隅を構成する面側から本接合用回転ツールFを用いて摩擦攪拌接合を行う。具体的には、図14の(b)に示すように、金属部材201の端面201aと金属部材202の側面202c側から回転した本接合用回転ツールFの攪拌ピンF2を挿入し、突合部J1に沿って移動させる。第二の本接合工程では、本接合用回転ツールFの連結部F1と金属部材201,202とを離間させて、攪拌ピンF2のみを突合部J1に挿入する。第二の本接合工程で形成された塑性化領域W2は、第一の本接合工程で形成された塑性化領域W1と重複させる。本実施形態の第二の本接合工程では、塑性化領域W1に攪拌ピンF2が達するようにする。これにより、より確実に突合部J1を接合できる。
 なお、第二の本接合工程では、金属部材201,202にタブ材を適宜設けて摩擦攪拌接合を行ってもよい。仮接合工程の際に使用したタブ材を切削除去せずに、第二の本接合工程で利用してもよい。
(5)補修工程
 補修工程では、第二実施形態の補修工程と同じ要領で、第一の本接合工程で形成された塑性化領域W1と第二の本接合工程で形成された塑性化領域W2の上面に肉盛溶接を行って、不足した金属を補充する。
 以上説明した、第三実施形態によれば、第二実施形態と略同等の効果が得られるとともに、第二の本接合工程を行うことで、金属部材1,2が厚い場合であっても、突合部J1の全長に亘って摩擦攪拌接合を行うことができるため、気密性及び水密性を高めることができる。また、本接合用回転ツールFによれば、摩擦攪拌装置にかかる負荷を抑制しつつ、攪拌ピンF2を深い位置まで挿入することができる。
 なお、第二本接合工程は、本実施形態では本接合用回転ツールFを用いて行ったが、これに限定されるものではなく、例えば、ショルダ部及び攪拌ピンを備えた回転ツールであって、攪拌ピンの長さが長いものを用いてもよい。
 以上本発明の実施形態について説明したが、本発明の趣旨に反しない範囲において適宜設計変更が可能である。例えば、本実施形態では金属部材201,202を直角に突き合わせたが、金属部材201の側面201bと金属部材202の側面202bとのなす角度が180度以外であれば何度で突き合わせてもよい。また、例えば金属部材1の端面201aと金属部材202の端面202aとを斜めに切り欠いて金属部材201,202を突き合わせてもよい。
 実施例1~3では、寸法の異なる3種類の本接合用回転ツールFA,FB,FCを用い、各回転ツールの回転数や下穴の条件を変えて、平坦なアルミニウム合金である金属部材1の表面12を所定の長さ移動させて、形成された塑性化領域の断面を観察した。実施例での符号及び寸法は適宜図1を参照する。摩擦攪拌接合時は、本接合用回転ツールを右回転させ、本接合用回転ツールの連結部F1と金属部材1は離間させて、攪拌ピンF2のみを金属部材1に挿入させて行った。
<実施例1>
 図15は、実施例1の条件と各塑性化領域の断面図である。実施例1では、本接合用回転ツールFAを用いて、試験体NO.1~3の各条件で試験を行った。本接合用回転ツールFAの連結部F1の外径X1(図1の(a)参照)は140mm、厚みX2は40mmになっている。攪拌ピンF2の長さY1は55mm、基端外径Y2は32mm、先端外径Y3は16mmになっている。攪拌ピンF2の外周面には、深さ2mm、ピッチ2mmで左ネジの螺旋溝F3が刻設されている。
 図16は、実施例1を説明するための断面図である。挿入深さ寸法t1は、押し込んだ攪拌ピンF2の先端から表面12までの長さである。下穴Kは円柱状を呈し、直径t2=20mm、深さt3=45mmに設定されている。
 図15に示すように、実施例1の試験体NO.1~3ではいずれも接合欠陥は見られなかった。金属部材1の表面12には段差Pが形成されている。段差Pは、本接合用回転ツールFAの進行方向左側にいくほど深くなっている。段差Pは、摩擦攪拌接合によって塑性流動化した金属が散飛したりバリLとなって外部に流出したりすることで形成されると考えられる。バリLは本接合用回転ツールFAの進行方向右側に集中している。本接合用回転ツールFAでは、ツールの回転速度の変化にはさほど影響を受けていない。
<実施例2>
 図17は、実施例2の条件と各塑性化領域の断面図である。実施例2では、本接合用回転ツールFBを用いて、試験体NO.4~7の各条件で試験を行った。本接合用回転ツールFBの連結部F1の外径X1(図1の(a)参照)は140mm、厚みX2は55mmになっている。攪拌ピンF2の長さY1は77mm、基端外径Y2は38mm、先端外径Y3は16mmになっている。攪拌ピンF2の外周面には、深さ2mm、ピッチ2mmで左ネジの螺旋溝F3が刻設されている。
 図18は、実施例2を説明するための断面図である。挿入深さ寸法t4は、押し込んだ攪拌ピンF2の先端から表面12までの長さである。下穴Kは幅広部K1と、幅広部K1の底面に形成された幅狭部K2とで構成されている。幅広部K1及び幅狭部K2はいずれも円柱状を呈する。幅広部K1の直径をt5、深さ寸法をt7とし、幅狭部K2の直径をt6、深さ寸法をt8とする。
 図17に示すように、実施例2の試験体NO.4~7ではいずれも接合欠陥は見られなかった。金属部材1の表面12には段差Pが形成されている。段差Pは、摩擦攪拌接合によって塑性流動化した金属が散飛したりバリLとなって外部に流出したりすることで形成されると考えられる。NO.4,5では、塑性化領域Wの上部と下部で金属の模様が異なることがわかる。これは、NO.4,5ではツールの回転数が高いため、塑性流動化された金属のうち、上側の金属が高温になりやすいためであると考えられる。一方、NO.6,7では、ツールの回転数が低いため塑性化領域Wの模様はほぼ一様になっている。試験体NO.7では比較的段差Pが小さかった。
<実施例3>
 図19は、実施例3の条件と各塑性化領域の断面図である。実施例3では、本接合用回転ツールFCを用いて、試験体8~11の各条件で試験を行った。本接合用回転ツールFCの連結部F1の外径X1(図1の(a)参照)は140mm、厚みX2は45mmになっている。攪拌ピンF2の長さY1は157mm、基端外径Y2は54.7mm、先端外径Y3は16mmになっている。攪拌ピンF2の外周面には、深さ2mm、ピッチ2mmで左ネジの螺旋溝F3が刻設されている。
 図19に示すように、実施例3の試験体NO.8~10の符号Qの部分(回転ツールの進行方向左側)では接合欠陥が見られた。金属部材1の表面12には比較的大きな段差Pが形成されている。段差Pは、摩擦攪拌接合によって塑性流動化した金属が散飛したりバリとなって外部に流出したりすることで形成されると考えられる。一方、試験体NO.11では挿入深さを短くした(攪拌ピンF2の長さに対して略半分程度挿入した)ため、段差がほぼ無い状態になった。
<実施例4~6>
 実施例4~6では、図20に示すように、ピン角度(回転軸と攪拌ピンの外周面との角度)が5種類と、ネジの深さ及びネジピッチが4種類の合計20個の本接合用回転ツールを用意して、それぞれの接合状況について調査した。
 図20に示すように、接合する金属部材Zは、アルミニウム合金製であって、断面V字状のV字溝Zaが形成されている。V字溝Zaの角度は90度になっている。各実施例においては、V字溝Zaに各本接合用回転ツールの攪拌ピンのみを所定の深さで挿入し、V字溝Zaの長手方向に所定の長さで移動させた。攪拌ピンの挿入深さは各実施例ごとに共通の深さとした。
 図21及び図22の縦方向に示すように、本接合用回転ツールのAシリーズはピン角度が9.5度であり、Bシリーズはピン角度が14度であり、Cシリーズはピン角度が18.4度であり、Dシリーズはピン角度が23度であり、Eシリーズはピン角度が27.6度になっている。
 また、図21及び図22の横方向に示すように、1シリーズはネジ深さが0.4mm、ネジピッチが0.5mmであり、2シリーズはネジ深さが1.0mm、ネジピッチが1.0mmであり、3シリーズはネジ深さが1.8mm、ネジピッチが2.0mmであり、4シリーズはネジ深さが2.5mm、ネジピッチが3.0mmである。例えば、図21に示すように、「本接合用回転ツールC-2」は、ピン角度が18.4度、ネジ深さが1.0mm及びネジピッチが1.0mmになっている。
また、後記する「隅肉部減肉量(mm)」とは、図23の(a)に示すように、摩擦攪拌接合を行った後の塑性化領域Wの上面Z1と、金属部材Zの側壁Z2,Z2と、V字溝Zaの仮想延長線Z3とで囲まれた領域の断面積のことを意味する。なお、塑性化領域Wの内部に接合欠陥が存在する場合には、この接合欠陥の領域の断面積も「隅肉部減肉量(mm)」として加算した。
 また、後記する「ネジ断面積(mm)」とは、図23の(b)に示すように、攪拌ピンF2の外周面を通る仮想線F4と螺旋溝F3とで囲まれた領域の断面積の和(ハッチが描画された部分)のことを意味する。
<実施例4>
 実施例4では、前記した本接合用回転ツールA―1~A―4、本接合用回転ツールB―1~B―4、本接合用回転ツールC―1~C―4、本接合用回転ツールD―1~D―4、本接合用回転ツールE―1~E―4の合計20種類の本接合用回転ツールを用いて回転数1000rpm、接合速度(移動速度)100mm/minに設定して摩擦攪拌接合を行った。
 図24及び図25に示すように、ピン角度が大きくなるにつれて、塑性化領域Wの断面積が大きくなっていることがわかる。また、ネジ深さ及びネジピッチが大きくなるにつれて塑性化領域Wが深い位置に形成されるとともに、隅肉部減肉量が大きくなっていることがわかる。
 また、図24及び図25に示すように、本接合用回転ツールA-1では、接合欠陥Qが発生している。本接合用回転ツールB-2では、減肉量が多く接合不良になっている。本接合用回転ツールA-1、B-2以外は、接合状況が概ね良好であることがわかる。
 図25に示す、4シリーズ(A-4,B-4,C-4,D-4)では、金属部材Zの下面が下方に突出するように変形していることがわかる。また、1シリーズ及び4シリーズではバリが多く発生していることがわかる。
<実施例5>
 実施例5では、前記した20種類の本接合用回転ツールを用いて回転数1000rpm、接合速度200mm/minに設定して摩擦攪拌接合を行った。
 図26及び図27に示すように、本接合用回転ツールA-1、B-1、C-1、D-1、B-2、C-2では、接合欠陥Qが形成されていることがわかる。また、本接合用回転ツールA-2では減肉量が多く接合不良になっていることがわかる。その他の本接合用回転ツールについては接合状況が概ね良好であることがわかる。
 実施例4と実施例5を総合的に観察すると、接合速度が遅い方(実施例4)が、接合欠陥Qの発生率が低いことがわかる。また、ネジ深さ及びネジピッチが大きくなるにつれて、減肉量は多くなってしまうが、接合欠陥の発生率が低いことが分かる。
 図28は、実施例4におけるネジ断面積と隅肉部減肉量との関係を示したグラフである。図29は、実施例5におけるネジ断面積と隅肉部減肉量との関係を示したグラフである。ネジ断面積が小さすぎると接合欠陥Qが発生しやすい傾向がある。一方、ネジ断面積が大き過ぎると隅肉部減肉量が大きくなる傾向がある。したがって、ネジ断面積は50~180mmが好ましく、100~150mmであるとより好ましい。
<実施例6>
 実施例6では、平板状の金属部材Z(V字溝無し)に対して前記した20種類の本接合用回転ツールを移動させて形成された塑性化領域の断面を観察した。実施例6では、回転数を1000rpmに固定するとともに接合速度を100mm/min、200mm/min、300mm/min、500mm/minに可変させた。
 図30は、実施例6において、本接合用回転ツールB-1の回転数を1000rpmに設定し、接合速度を100mm/min、200mm/min、300mm/min、500mm/minに設定した場合の結果を示す断面図である。
 図31は、実施例6において、本接合用回転ツールC-1の回転数を1000rpmに設定し、接合速度を100mm/min、200mm/min、300mm/min、500mm/minに設定した場合の結果を示す断面図である。
 図32は、実施例6において、本接合用回転ツールA-4の回転数を1000rpmに設定し、接合速度を100mm/min、200mm/min、300mm/min、500mm/minに設定した場合の結果を示す断面図である。
 図30及び図31を見ると、接合速度が上がるほど、接合欠陥Qが大きくなることがわかる。また、図30~32を見ると、接合速度が上がるほどバリの量が多くなることがわかる。
 図33は、実施例6において、回転数を1000rpmに固定するとともに接合速度を100mm/minとした場合の結果を示す断面図である。
 図34は、実施例6において、回転数を1000rpmに固定するとともに接合速度を200mm/minとした場合の結果を示す断面図である。
 図35は、実施例6において、回転数を1000rpmに固定するとともに接合速度を300mm/minとした場合の結果を示す断面図である。
 図36は、実施例6において、回転数を1000rpmに固定するとともに接合速度を500mm/minとした場合の結果を示す断面図である。
 図33~36を総合的に判断すると、接合速度については遅い方が好ましく、ネジ深さ及びネジピッチについては大きい方が好ましいことがわかる。
 1   金属部材
 2   第一タブ材
 3   第二タブ材
 4   補助部材
 12  表面
 13  裏面
 F   本接合用回転ツール
 F1  連結部
 F2  攪拌ピン
 G   仮接合用回転ツール
 G1  ショルダ部
 G2  攪拌ピン
 J1~J4  突合部
 K   下穴
 M   凹溝
 W1  塑性化領域
 w1~w3  塑性化領域

Claims (13)

  1.  攪拌ピンを備えた回転ツールを用いて二つの金属部材を接合する摩擦攪拌接合方法であって、
     前記金属部材同士の突合部に回転した前記攪拌ピンを挿入し、前記攪拌ピンのみを前記金属部材に接触させた状態で摩擦攪拌接合を行う本接合工程を含むことを特徴とする摩擦攪拌接合方法。
  2.  攪拌ピンを備えた回転ツールを用いて二つの金属部材を接合する摩擦攪拌接合方法であって、
     前記金属部材同士の突合部に回転した前記攪拌ピンを挿入し、前記攪拌ピンのみを前記金属部材に接触させた状態で摩擦攪拌接合を行う本接合工程を含み、
     前記本接合工程では、
     前記金属部材の表面側から摩擦攪拌接合を行う第一の本接合工程と、
     前記金属部材の裏面側から摩擦攪拌接合を行う第二の本接合工程と、を行い、
     前記第一の本接合工程で形成された塑性化領域と前記第二の本接合工程で形成された塑性化領域とを接触させることを特徴とする摩擦攪拌接合方法。
  3.  前記本接合工程で形成された塑性化領域の上に肉盛溶接を行うことを特徴とする請求の範囲第1項又は第2項に記載の摩擦攪拌接合方法。
  4.  前記本接合工程で形成された塑性化領域の上に補助部材を配置する配置工程と、
     前記金属部材と前記補助部材とを接合する補助部材接合工程と、を行うことを特徴とする請求の範囲第1項又は第2項に記載の摩擦攪拌接合方法。
  5.  前記本接合工程を行う前に、前記金属部材同士の仮接合を行う仮接合工程を含むことを特徴とする請求の範囲第1項又は第2項に記載の摩擦攪拌接合方法。
  6.  前記突合部の脇にタブ材を配置し前記タブ材に下穴を設けた後、前記下穴に前記攪拌ピンを挿入して前記本接合工程を行うことを特徴とする請求の範囲第1項又は第2項に記載の摩擦攪拌接合方法。
  7.  攪拌ピンを備えた回転ツールを用いて二つの金属部材を接合する摩擦攪拌接合方法であって、
     前記金属部材同士を角度をつけて突き合わせて突合部を形成する突合工程と、
     回転した前記攪拌ピンを前記金属部材同士の内隅に挿入し、前記攪拌ピンのみを前記両金属部材に接触させた状態で前記突合部の摩擦攪拌接合を行う本接合工程と、を含むことを特徴とする摩擦攪拌接合方法。
  8.  攪拌ピンを備えた回転ツールを用いて二つの金属部材を接合する摩擦攪拌接合方法であって、
     前記金属部材同士を角度をつけて突き合わせて突合部を形成する突合工程と、
     回転した前記攪拌ピンを前記金属部材同士の内隅に挿入し、前記攪拌ピンのみを前記両金属部材に接触させた状態で前記突合部の摩擦攪拌接合を行う第一の本接合工程と、
     回転した前記攪拌ピンを前記金属部材同士の外隅を構成する面側に挿入し、前記攪拌ピンのみを前記両金属部材に接触させた状態で前記突合部の摩擦攪拌接合を行う第二の本接合工程と、を含むことを特徴とする摩擦攪拌接合方法。
  9.  前記第一の本接合工程で形成された塑性化領域と、前記第二の本接合工程で形成された塑性化領域とを重複させることを特徴とする請求の範囲第8項に記載の摩擦攪拌接合方法。
  10.  前記突合工程では、一方の前記金属部材の側面と、他方の前記金属部材の端面とを突き合わせ、一方の前記金属部材の側面と他方の前記金属部材の側面とでなす内隅の角度がαである場合に、
     前記第一の本接合工程では、前記側面同士の交線に挿入された前記回転ツールの回転中心軸が、前記交線を通り前記側面とのなす角度がα/2となる仮想基準面と前記一方の前記金属部材の側面との間に位置することを特徴とする請求の範囲第8項に記載の摩擦攪拌接合方法。
  11.  前記本接合工程の前に、回転した回転ツールを前記金属部材同士の外隅を構成する面側に挿入し、前記突合部の仮接合を行う仮接合工程を含むことを特徴とする請求の範囲第7項又は第8項に記載の摩擦攪拌接合方法。
  12.  前記本接合工程では、前記仮接合工程で形成された塑性化領域と前記本接合工程で形成された塑性化領域とを重複させることを特徴とする請求の範囲第11項に記載の摩擦攪拌接合方法。
  13.  前記本接合工程で形成された塑性化領域の上に肉盛溶接を行うことを特徴とする請求の範囲第7項又は第8項に記載の摩擦攪拌接合方法。
PCT/JP2012/068931 2011-08-19 2012-07-26 摩擦攪拌接合方法 WO2013027532A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020157009000A KR20150044975A (ko) 2011-08-19 2012-07-26 마찰 교반 접합 방법
EP12825873.8A EP2745972B1 (en) 2011-08-19 2012-07-26 Friction stir welding method
CN201280040287.XA CN103747914B (zh) 2011-08-19 2012-07-26 摩擦搅拌接合方法
KR1020147006880A KR101602079B1 (ko) 2011-08-19 2012-07-26 마찰 교반 접합 방법
EP16174472.7A EP3098015B1 (en) 2011-08-19 2012-07-26 Friction stir welding method
US14/237,998 US9095927B2 (en) 2011-08-19 2012-07-26 Friction stir welding method
KR1020167036271A KR20170002686A (ko) 2011-08-19 2012-07-26 마찰 교반 접합 방법
US14/750,163 US9566661B2 (en) 2011-08-19 2015-06-25 Friction stir welding method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-179586 2011-08-19
JP2011179586A JP5957719B2 (ja) 2011-08-19 2011-08-19 摩擦攪拌接合方法
JP2011187916A JP5957720B2 (ja) 2011-08-30 2011-08-30 摩擦攪拌接合方法
JP2011-187916 2011-08-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/237,998 A-371-Of-International US9095927B2 (en) 2011-08-19 2012-07-26 Friction stir welding method
US14/750,163 Continuation US9566661B2 (en) 2011-08-19 2015-06-25 Friction stir welding method

Publications (1)

Publication Number Publication Date
WO2013027532A1 true WO2013027532A1 (ja) 2013-02-28

Family

ID=47746283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068931 WO2013027532A1 (ja) 2011-08-19 2012-07-26 摩擦攪拌接合方法

Country Status (6)

Country Link
US (2) US9095927B2 (ja)
EP (2) EP3098015B1 (ja)
KR (3) KR101602079B1 (ja)
CN (2) CN106994555B (ja)
TW (1) TWI579083B (ja)
WO (1) WO2013027532A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015068463A1 (ja) * 2013-11-05 2015-05-14 武蔵精密工業株式会社 異材接合方法
EP2995413A1 (en) * 2014-01-27 2016-03-16 Nippon Light Metal Company Ltd. Joining method
US20170001257A1 (en) * 2014-01-28 2017-01-05 Nippon Light Metal Company, Ltd. Friction stir welding method
US9821419B2 (en) 2012-10-10 2017-11-21 Nippon Light Metal Company, Ltd. Method for manufacturing heat exchanger plate and method for friction stir welding
US20180043465A1 (en) * 2015-02-19 2018-02-15 Nippon Light Metal Company, Ltd. Joining method and method for manufacturing composite rolled material

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8632850B2 (en) 2005-09-26 2014-01-21 Schultz-Creehan Holdings, Inc. Friction fabrication tools
US9266191B2 (en) * 2013-12-18 2016-02-23 Aeroprobe Corporation Fabrication of monolithic stiffening ribs on metallic sheets
US9511445B2 (en) 2014-12-17 2016-12-06 Aeroprobe Corporation Solid state joining using additive friction stir processing
US9511446B2 (en) 2014-12-17 2016-12-06 Aeroprobe Corporation In-situ interlocking of metals using additive friction stir processing
USD762253S1 (en) * 2011-07-29 2016-07-26 Japan Transport Engineering Company Friction stir welding tool
GB2505195B (en) * 2012-08-21 2018-12-12 Bae Systems Plc Joint configuration
CN105658370B (zh) * 2013-10-21 2018-05-01 日本轻金属株式会社 传热板的制造方法及接合方法
CN105899321B (zh) * 2014-01-14 2018-10-02 日本轻金属株式会社 液冷套的制造方法
JP6655868B2 (ja) 2014-08-28 2020-03-04 三菱重工エンジニアリング株式会社 摩擦撹拌接合用のエンドタブ、及び接合材の製造方法
JP6287751B2 (ja) * 2014-10-17 2018-03-07 日本軽金属株式会社 摩擦攪拌接合方法
JP2016128178A (ja) * 2015-01-09 2016-07-14 株式会社Ihi 摩擦撹拌接合方法
KR20170129930A (ko) * 2015-05-18 2017-11-27 가부시키가이샤 아이에이치아이 마찰 교반 접합 장치 및 마찰 교반 접합 방법
WO2017033923A1 (ja) * 2015-08-26 2017-03-02 日本軽金属株式会社 接合方法、液冷ジャケットの製造方法及び液冷ジャケット
US20170304933A1 (en) * 2016-04-20 2017-10-26 Brigham Young University Friction stir additive processing and methods thereof
CA3033957A1 (en) * 2016-08-22 2018-03-01 Novelis Inc. Components and systems for friction stir welding and related processes
JP6836153B2 (ja) * 2017-01-26 2021-02-24 アイシン精機株式会社 摩擦攪拌接合方法
JP2019025490A (ja) 2017-07-25 2019-02-21 日本軽金属株式会社 接合方法
JP6885263B2 (ja) * 2017-08-22 2021-06-09 日本軽金属株式会社 液冷ジャケットの製造方法
JP2019058933A (ja) 2017-09-27 2019-04-18 日本軽金属株式会社 液冷ジャケットの製造方法
JP2019058934A (ja) 2017-09-27 2019-04-18 日本軽金属株式会社 液冷ジャケットの製造方法
JP6809436B2 (ja) * 2017-10-27 2021-01-06 日本軽金属株式会社 接合方法及び複合圧延材の製造方法
KR102273514B1 (ko) 2017-10-31 2021-07-06 멜드 매뉴팩쳐링 코포레이션 고체-상태의 첨가제 제조 시스템 및 재료 조성물 및 구조
JP2019089109A (ja) * 2017-11-15 2019-06-13 日本軽金属株式会社 接合方法
JP6769427B2 (ja) 2017-12-18 2020-10-14 日本軽金属株式会社 液冷ジャケットの製造方法
EP3726989A1 (en) 2017-12-20 2020-10-28 Bayer Aktiengesellschaft Use of fungicides for controlling mosaic scab in apples
FR3075675B1 (fr) * 2017-12-22 2020-01-03 Constellium Issoire Outil pour realiser une soudure par friction malaxage
JP6927068B2 (ja) 2018-02-01 2021-08-25 日本軽金属株式会社 液冷ジャケットの製造方法
JP6927067B2 (ja) 2018-02-01 2021-08-25 日本軽金属株式会社 液冷ジャケットの製造方法
US10596658B1 (en) * 2018-02-28 2020-03-24 Seagate Technology Llc Friction stir welding tool and related methods
JP6927128B2 (ja) * 2018-04-02 2021-08-25 日本軽金属株式会社 液冷ジャケットの製造方法
JP2019181473A (ja) 2018-04-02 2019-10-24 日本軽金属株式会社 液冷ジャケットの製造方法
JP7070389B2 (ja) 2018-12-19 2022-05-18 日本軽金属株式会社 接合方法
JP7272465B2 (ja) * 2019-12-16 2023-05-12 日本軽金属株式会社 液冷ジャケットの製造方法
JP7347234B2 (ja) * 2020-01-24 2023-09-20 日本軽金属株式会社 液冷ジャケットの製造方法及び摩擦攪拌接合方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1150266A (ja) * 1997-07-30 1999-02-23 Showa Alum Corp 母材の局部的改質方法
JPH1147961A (ja) * 1997-08-04 1999-02-23 Showa Alum Corp プレート型ヒートパイプの製造方法
JPH11320128A (ja) 1998-05-22 1999-11-24 Nippon Light Metal Co Ltd 内すみ摩擦攪拌接合用プローブおよびこれを用いた内すみ摩擦攪拌接合方法
JP2001321965A (ja) * 2000-05-19 2001-11-20 Nissho Iwai Hitetsu Hanbai Kk 摩擦撹拌接合によるすみ接合法
JP2002059289A (ja) * 2001-06-14 2002-02-26 Hitachi Ltd 摩擦攪拌接合部の補修方法
JP2003311441A (ja) * 2002-04-24 2003-11-05 Toyota Motor Corp 摩擦攪拌接合方法
JP2006239734A (ja) * 2005-03-03 2006-09-14 Showa Denko Kk 溶接継手およびその形成方法
WO2007119343A1 (ja) * 2006-03-16 2007-10-25 Showa Denko K.K. 摩擦攪拌接合用工具および摩擦攪拌接合方法
JP2008087036A (ja) 2006-10-02 2008-04-17 Nippon Light Metal Co Ltd 接合方法
JP2008284607A (ja) * 2007-04-17 2008-11-27 Nippon Light Metal Co Ltd 接合方法
JP2010201441A (ja) * 2009-03-02 2010-09-16 Nippon Light Metal Co Ltd 接合方法
JP2011079031A (ja) * 2009-10-09 2011-04-21 Nippon Light Metal Co Ltd 内隅接合用回転ツール及びこれを用いた内隅接合方法
JP2012020288A (ja) * 2010-07-12 2012-02-02 Nippon Light Metal Co Ltd 空隙形成用回転ツール及び空隙形成方法

Family Cites Families (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3081804B2 (ja) 1997-01-22 2000-08-28 昭和アルミニウム株式会社 摩擦撹拌接合法
JP3825140B2 (ja) 1997-06-27 2006-09-20 昭和電工株式会社 摩擦撹拌接合法
JP3070735B2 (ja) 1997-07-23 2000-07-31 株式会社日立製作所 摩擦攪拌接合方法
US6029879A (en) * 1997-09-23 2000-02-29 Cocks; Elijah E. Enantiomorphic friction-stir welding probe
JP3296417B2 (ja) * 1997-12-24 2002-07-02 日本軽金属株式会社 摩擦攪拌接合方法
US5971247A (en) 1998-03-09 1999-10-26 Lockheed Martin Corporation Friction stir welding with roller stops for controlling weld depth
KR19990083213A (ko) 1998-04-16 1999-11-25 구마모토 마사히로 진공챔버부재와 그 제조방법
GB9808607D0 (en) * 1998-04-22 1998-06-24 Welding Inst Corrosion resistant enclosure and methods for its manufacture
US5971252A (en) * 1998-04-30 1999-10-26 The Boeing Company Friction stir welding process to repair voids in aluminum alloys
US6053391A (en) * 1998-05-14 2000-04-25 Tower Automotive, Inc. Friction stir welding tool
JP4092794B2 (ja) 1998-11-02 2008-05-28 日本軽金属株式会社 接合方法
JP3459193B2 (ja) * 1999-05-26 2003-10-20 株式会社日立製作所 摩擦攪拌接合部の補修方法および鉄道車両の製作方法
JP3575748B2 (ja) * 2000-03-06 2004-10-13 株式会社日立製作所 摩擦攪拌接合方法
JP4827359B2 (ja) * 2000-05-08 2011-11-30 ブリガム ヤング ユニバーシティ 高耐摩耗性工具を使用する摩擦撹拌接合
US6352193B1 (en) * 2000-08-01 2002-03-05 General Electric Company Apparatus for joining electrically conductive materials
US6769595B2 (en) * 2000-12-20 2004-08-03 Alcoa Inc. Friction plunge riveting
JP3761786B2 (ja) * 2001-01-17 2006-03-29 株式会社日立製作所 摩擦攪拌接合方法および装置
JP3960755B2 (ja) 2001-01-31 2007-08-15 株式会社神戸製鋼所 接合容器の製造方法
US20040074949A1 (en) * 2001-03-07 2004-04-22 Masayuki Narita Friction agitation joining method flat material for plastic working and closed end sleeve like body
JP2002273579A (ja) * 2001-03-15 2002-09-25 Hitachi Ltd 鉄基材料の接合方法およびその構造物
JP3492650B2 (ja) 2001-06-14 2004-02-03 アイシン軽金属株式会社 構造部材の接合方法
US6726084B2 (en) * 2001-06-15 2004-04-27 Lockheed Martin Corporation Friction stir heating/welding with pin tool having rough distal region
JP2003001440A (ja) * 2001-06-25 2003-01-08 Hitachi Ltd すみ摩擦攪拌接合用部材及びその接合方法
JP3747834B2 (ja) 2001-10-15 2006-02-22 マツダ株式会社 シリンダヘッドの表面処理方法及び該表面処理を施したシリンダヘッド
JP3510612B2 (ja) * 2001-11-27 2004-03-29 川崎重工業株式会社 摩擦撹拌接合方法
US6676008B1 (en) * 2002-04-30 2004-01-13 Edison Welding Institute Friction stir welding of corner configurations
JP4195578B2 (ja) 2002-05-09 2008-12-10 三菱重工業株式会社 摩擦攪拌による複数列部材の接合体
JP3865686B2 (ja) * 2002-11-05 2007-01-10 住友軽金属工業株式会社 摩擦撹拌接合方法及びそれに用いられるタブ板
JP4407113B2 (ja) 2002-11-18 2010-02-03 日本軽金属株式会社 接合方法
JP3820393B2 (ja) * 2002-12-06 2006-09-13 本田技研工業株式会社 円筒体製造用治具
DE10303623B4 (de) * 2003-01-30 2005-08-04 Gkss-Forschungszentrum Geesthacht Gmbh Verfahren und Vorrichtung zum Verbinden von wenigstens zwei aneinanderliegenden Werkstücken nach der Methode des Reibrührschweißens
JP4273846B2 (ja) 2003-06-06 2009-06-03 日本軽金属株式会社 厚肉被接合材の接合方法及び接合構造
JP4404052B2 (ja) * 2003-06-12 2010-01-27 株式会社日立製作所 摩擦攪拌接合方法
US7163136B2 (en) * 2003-08-29 2007-01-16 The Boeing Company Apparatus and method for friction stir welding utilizing a grooved pin
JP2005111533A (ja) 2003-10-09 2005-04-28 Kawasaki Heavy Ind Ltd 摩擦撹拌接合方法
JP4281510B2 (ja) * 2003-10-30 2009-06-17 日本軽金属株式会社 真空容器の製造方法
US20050246884A1 (en) * 2004-02-27 2005-11-10 Chan-Tung Chen Friction welding structure for striking plate of golf club head and method therefor
TWI335251B (en) * 2004-03-25 2011-01-01 Univ Nihon Method ana apparatus of joining metallic plates by frictional pressure welding
US7281647B2 (en) * 2004-06-22 2007-10-16 Alcoa Inc. Friction stir weld repair
ITRM20040319A1 (it) * 2004-06-30 2004-09-30 Micromec S R L Unipersonale Apparato e metodo di confezionamento in film.
US7078647B2 (en) * 2004-10-21 2006-07-18 Wisconsin Alumni Research Foundation Arc-enhanced friction stir welding
US7416102B1 (en) * 2004-10-22 2008-08-26 Edison Welding Institute, Inc. Method of friction stir welding and multi-section faced shoulderless retractable variable penetration friction stir welding tool for same
JP4729921B2 (ja) * 2004-12-24 2011-07-20 マツダ株式会社 摩擦点接合方法およびその装置
GB0502067D0 (en) * 2005-02-01 2005-03-09 Airbus Uk Ltd Friction stir welding tool
JP4774256B2 (ja) 2005-09-01 2011-09-14 富士重工業株式会社 摩擦攪拌接合のバリ取り装置
US7628876B2 (en) * 2005-10-25 2009-12-08 Gm Global Technology Operations, Inc. Friction stir weld bonding of metal-polymer-metal laminates
DE202005017524U1 (de) * 2005-11-09 2005-12-29 Ejot Gmbh & Co. Kg Befestigungselement für eine Reibschweißverbindung
KR100711779B1 (ko) 2005-12-26 2007-04-30 재단법인 포항산업과학연구원 마찰 교반 점 용접장치
JP4873404B2 (ja) * 2006-03-10 2012-02-08 国立大学法人大阪大学 金属材の加工方法および構造物
GB0616571D0 (en) * 2006-08-21 2006-09-27 H C Stark Ltd Refractory metal tooling for friction stir welding
CN102248277B (zh) * 2006-10-02 2013-04-24 日本轻金属株式会社 摩擦搅拌方法
US7942306B2 (en) * 2007-04-13 2011-05-17 Wichita State University Friction stir welding tool having a counterflow pin configuration
US8365408B2 (en) * 2007-04-16 2013-02-05 Nippon Light Metal Company, Ltd. Heat transfer plate and method of manufacturing the same
JP4882867B2 (ja) 2007-05-23 2012-02-22 日本軽金属株式会社 接合方法
JP5044294B2 (ja) 2007-06-11 2012-10-10 日軽金アクト株式会社 接合方法
JP4913676B2 (ja) 2007-06-11 2012-04-11 日軽金アクト株式会社 接合用治具
WO2008152997A1 (ja) 2007-06-14 2008-12-18 Nippon Light Metal Company, Ltd. 接合方法
US20080308610A1 (en) * 2007-06-15 2008-12-18 United Technologies Corporation Hollow structures formed with friction stir welding
KR101145447B1 (ko) * 2007-08-10 2012-05-15 니폰게이긴조쿠가부시키가이샤 접합 구조물의 제조 방법
JP2009220138A (ja) 2008-03-14 2009-10-01 Nippon Light Metal Co Ltd 接合方法
JP2009136881A (ja) 2007-12-03 2009-06-25 Nippon Light Metal Co Ltd 接合方法
US20090148719A1 (en) * 2007-12-07 2009-06-11 Alcoa Inc. Friction-stir weldments and systems and methods for producing the same
JP5233557B2 (ja) * 2008-09-30 2013-07-10 日本軽金属株式会社 接合方法
JP5223326B2 (ja) 2007-12-21 2013-06-26 日本軽金属株式会社 接合方法
JP2009172653A (ja) 2008-01-25 2009-08-06 Nippon Light Metal Co Ltd 接合方法
WO2009104432A1 (ja) * 2008-02-18 2009-08-27 日本軽金属株式会社 接合方法
WO2009104426A1 (ja) * 2008-02-21 2009-08-27 日本軽金属株式会社 伝熱板の製造方法
US7857191B2 (en) * 2008-06-16 2010-12-28 Embraer-Empresa Brasileira De Aeronautica S.A. Friction stir welding (FSW) methods and systems and friction stir welded components made thereby
JP5195098B2 (ja) 2008-07-10 2013-05-08 日本軽金属株式会社 伝熱板の製造方法
US20100081005A1 (en) * 2008-09-26 2010-04-01 Jong-Ning Aoh Friction Stir Welding Tool and Weld Metal Structure with Plural Onion Rings
JP5163419B2 (ja) 2008-10-10 2013-03-13 日本軽金属株式会社 伝熱板の製造方法
US20100089977A1 (en) * 2008-10-14 2010-04-15 Gm Global Technology Operations, Inc. Friction stir welding of dissimilar metals
JP2010125495A (ja) 2008-11-28 2010-06-10 Nippon Light Metal Co Ltd 接合方法
US8544715B2 (en) * 2009-01-06 2013-10-01 GM Global Technology Operations LLC Repairing a friction stir welded assembly
JP2010188367A (ja) 2009-02-17 2010-09-02 Honda Motor Co Ltd 摩擦撹拌接合のツール挿入方法
JP5262822B2 (ja) * 2009-02-23 2013-08-14 日本軽金属株式会社 液冷ジャケットの製造方法
JP5381344B2 (ja) * 2009-06-01 2014-01-08 日本軽金属株式会社 接合方法
JP2010284693A (ja) * 2009-06-12 2010-12-24 Mitsubishi Heavy Ind Ltd 冷却板およびその製造方法
JP2010284704A (ja) 2009-06-15 2010-12-24 Nippon Light Metal Co Ltd 接合方法及び蓋付構造体の製造方法
JP2010284706A (ja) 2009-06-15 2010-12-24 Nippon Light Metal Co Ltd 接合方法及び蓋付構造体の製造方法
JP5654219B2 (ja) 2009-07-14 2015-01-14 富士重工業株式会社 摩擦攪拌接合用回転ツール
JP5267381B2 (ja) 2009-08-19 2013-08-21 日本軽金属株式会社 伝熱板の製造方法
CN102085599A (zh) * 2009-12-03 2011-06-08 鸿富锦精密工业(深圳)有限公司 摩擦搅拌接合方法及摩擦搅拌接合产品
US7866532B1 (en) * 2010-04-06 2011-01-11 United Launch Alliance, Llc Friction stir welding apparatus, system and method
JP5740871B2 (ja) * 2010-08-31 2015-07-01 スズキ株式会社 異種金属材料の接合方法及び異種金属材料接合体
JP5022502B2 (ja) 2011-02-07 2012-09-12 川崎重工業株式会社 摩擦撹拌接合装置
WO2013043877A1 (en) * 2011-09-23 2013-03-28 Burford Dwight A Mandrel tool probe for friction stir welding
EP2849913A1 (en) * 2012-05-14 2015-03-25 Megastir Technologies LLC Friction stir joining of curved surfaces
US9027630B2 (en) * 2012-07-03 2015-05-12 Apple Inc. Insert casting or tack welding of machinable metal in bulk amorphous alloy part and post machining the machinable metal insert
US9033205B2 (en) * 2012-07-27 2015-05-19 Alfredo CASTILLO Friction stir welding with temperature control
US8556156B1 (en) * 2012-08-30 2013-10-15 Apple Inc. Dynamic adjustment of friction stir welding process parameters based on weld temperature
US8857696B1 (en) * 2014-04-01 2014-10-14 King Fahd University Of Petroleum And Minerals Method and tool for friction stir welding

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1150266A (ja) * 1997-07-30 1999-02-23 Showa Alum Corp 母材の局部的改質方法
JPH1147961A (ja) * 1997-08-04 1999-02-23 Showa Alum Corp プレート型ヒートパイプの製造方法
JPH11320128A (ja) 1998-05-22 1999-11-24 Nippon Light Metal Co Ltd 内すみ摩擦攪拌接合用プローブおよびこれを用いた内すみ摩擦攪拌接合方法
JP2001321965A (ja) * 2000-05-19 2001-11-20 Nissho Iwai Hitetsu Hanbai Kk 摩擦撹拌接合によるすみ接合法
JP2002059289A (ja) * 2001-06-14 2002-02-26 Hitachi Ltd 摩擦攪拌接合部の補修方法
JP2003311441A (ja) * 2002-04-24 2003-11-05 Toyota Motor Corp 摩擦攪拌接合方法
JP2006239734A (ja) * 2005-03-03 2006-09-14 Showa Denko Kk 溶接継手およびその形成方法
WO2007119343A1 (ja) * 2006-03-16 2007-10-25 Showa Denko K.K. 摩擦攪拌接合用工具および摩擦攪拌接合方法
JP2008087036A (ja) 2006-10-02 2008-04-17 Nippon Light Metal Co Ltd 接合方法
JP2008284607A (ja) * 2007-04-17 2008-11-27 Nippon Light Metal Co Ltd 接合方法
JP2010201441A (ja) * 2009-03-02 2010-09-16 Nippon Light Metal Co Ltd 接合方法
JP2011079031A (ja) * 2009-10-09 2011-04-21 Nippon Light Metal Co Ltd 内隅接合用回転ツール及びこれを用いた内隅接合方法
JP2012020288A (ja) * 2010-07-12 2012-02-02 Nippon Light Metal Co Ltd 空隙形成用回転ツール及び空隙形成方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9821419B2 (en) 2012-10-10 2017-11-21 Nippon Light Metal Company, Ltd. Method for manufacturing heat exchanger plate and method for friction stir welding
US10518369B2 (en) 2012-10-10 2019-12-31 Nippon Light Metal Company, Ltd. Method for manufacturing heat exchanger plate and method for friction stir welding
WO2015068463A1 (ja) * 2013-11-05 2015-05-14 武蔵精密工業株式会社 異材接合方法
EP2995413A1 (en) * 2014-01-27 2016-03-16 Nippon Light Metal Company Ltd. Joining method
EP3254797A1 (en) 2014-01-27 2017-12-13 Nippon Light Metal Company, Ltd. Joining method
EP2898981B1 (en) * 2014-01-27 2018-09-12 Nippon Light Metal Company, Ltd. Joining method
US20170001257A1 (en) * 2014-01-28 2017-01-05 Nippon Light Metal Company, Ltd. Friction stir welding method
EP3100817A4 (en) * 2014-01-28 2017-12-13 Nippon Light Metal Co., Ltd. Friction stir welding method
CN111421220A (zh) * 2014-01-28 2020-07-17 日本轻金属株式会社 摩擦搅拌接合方法
US10906127B2 (en) 2014-01-28 2021-02-02 Nippon Light Metal Company, Ltd. Friction stir welding method
CN111421220B (zh) * 2014-01-28 2022-01-25 日本轻金属株式会社 摩擦搅拌接合方法
US20180043465A1 (en) * 2015-02-19 2018-02-15 Nippon Light Metal Company, Ltd. Joining method and method for manufacturing composite rolled material

Also Published As

Publication number Publication date
CN103747914B (zh) 2017-05-03
CN106994555A (zh) 2017-08-01
US20140166731A1 (en) 2014-06-19
EP3098015B1 (en) 2018-12-12
US9566661B2 (en) 2017-02-14
US9095927B2 (en) 2015-08-04
EP2745972A4 (en) 2015-12-16
KR20170002686A (ko) 2017-01-06
EP2745972B1 (en) 2021-11-10
US20150290739A1 (en) 2015-10-15
KR20140049067A (ko) 2014-04-24
EP2745972A1 (en) 2014-06-25
KR101602079B1 (ko) 2016-03-17
TWI579083B (zh) 2017-04-21
KR20150044975A (ko) 2015-04-27
EP3098015A1 (en) 2016-11-30
CN106994555B (zh) 2020-07-14
CN103747914A (zh) 2014-04-23
TW201332689A (zh) 2013-08-16

Similar Documents

Publication Publication Date Title
WO2013027532A1 (ja) 摩擦攪拌接合方法
JP5957719B2 (ja) 摩擦攪拌接合方法
JP5957720B2 (ja) 摩擦攪拌接合方法
WO2010140428A1 (ja) 接合方法
JP5915802B2 (ja) 摩擦攪拌接合方法
JP6112175B2 (ja) 摩擦攪拌接合方法
JP6164337B2 (ja) 摩擦攪拌接合方法
JP5962807B2 (ja) 摩擦攪拌接合方法
WO2009104432A1 (ja) 接合方法
JP6153964B2 (ja) 摩擦攪拌接合方法
JP6399139B2 (ja) 摩擦攪拌接合方法
JP6283328B2 (ja) 摩擦攪拌接合方法
JP5915796B2 (ja) 摩擦攪拌接合方法
JP6080890B2 (ja) 摩擦攪拌接合方法
JP5915799B2 (ja) 摩擦攪拌接合方法
JP2009172650A (ja) 接合構造物の製造方法
JP6112133B2 (ja) 摩擦攪拌接合方法
JP4957568B2 (ja) 接合方法
JP2012071353A (ja) 接合方法
JP2009190044A (ja) 接合構造物の製造方法
JP2012071352A (ja) 接合方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12825873

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14237998

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147006880

Country of ref document: KR

Kind code of ref document: A