WO2013024668A1 - 位置ずれ検出装置、発光装置、照明装置、プロジェクタ、車両用前照灯および位置ずれ調整方法 - Google Patents

位置ずれ検出装置、発光装置、照明装置、プロジェクタ、車両用前照灯および位置ずれ調整方法 Download PDF

Info

Publication number
WO2013024668A1
WO2013024668A1 PCT/JP2012/068632 JP2012068632W WO2013024668A1 WO 2013024668 A1 WO2013024668 A1 WO 2013024668A1 JP 2012068632 W JP2012068632 W JP 2012068632W WO 2013024668 A1 WO2013024668 A1 WO 2013024668A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
excitation light
emitting unit
light source
Prior art date
Application number
PCT/JP2012/068632
Other languages
English (en)
French (fr)
Inventor
里奈 佐藤
克彦 岸本
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011177215A external-priority patent/JP2013039868A/ja
Priority claimed from JP2011245923A external-priority patent/JP5204885B2/ja
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US14/235,914 priority Critical patent/US9074877B2/en
Publication of WO2013024668A1 publication Critical patent/WO2013024668A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/143Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/0017Devices integrating an element dedicated to another function
    • B60Q1/0023Devices integrating an element dedicated to another function the element being a sensor, e.g. distance sensor, camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q11/00Arrangement of monitoring devices for devices provided for in groups B60Q1/00 - B60Q9/00
    • B60Q11/005Arrangement of monitoring devices for devices provided for in groups B60Q1/00 - B60Q9/00 for lighting devices, e.g. indicating if lamps are burning or not
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/147Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device
    • F21S41/148Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device the main emission direction of the LED being perpendicular to the optical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/16Laser light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/176Light sources where the light is generated by photoluminescent material spaced from a primary light generating element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/14Measuring arrangements characterised by the use of optical techniques for measuring distance or clearance between spaced objects or spaced apertures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/08Combinations of only two kinds of elements the elements being filters or photoluminescent elements and reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • F21V7/06Optical design with parabolic curvature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0078Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for frequency filtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0087Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for illuminating phosphorescent or fluorescent materials, e.g. using optical arrangements specifically adapted for guiding or shaping laser beams illuminating these materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02257Out-coupling of light using windows, e.g. specially adapted for back-reflecting light to a detector inside the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength

Definitions

  • the present invention relates to a light-emitting device that combines an excitation light source such as a semiconductor laser and a light-emitting unit such as a phosphor, an illumination device including the light-emitting device, a projector, and a vehicle headlamp.
  • an excitation light source such as a semiconductor laser
  • a light-emitting unit such as a phosphor
  • an illumination device including the light-emitting device
  • a projector and a vehicle headlamp.
  • the present invention relates to a position shift detection device and a position shift adjustment method.
  • LEDs light emitting diodes
  • LDs semiconductor lasers
  • the light source device disclosed in Patent Document 1 includes a semiconductor laser, a collimator that uses the laser beam from the semiconductor laser as a parallel beam bundle, a capacitor that collects the laser beam of the parallel beam bundle from the collimator, and a condenser.
  • This light source device employs a configuration having a laser light reflecting mirror so that coherent laser light does not leak. In this light source device, the incoherent light emitted from the phosphor is reflected in a certain direction by the visible light reflecting mirror to become illumination light.
  • the light source device disclosed in Patent Document 2 is optically connected to a semiconductor laser, an optical fiber that guides excitation light from the semiconductor laser, and an optical fiber emission end, and is excited from the emission end.
  • a wavelength converting member that is, a light emitting unit
  • receives light and emits light having different wavelengths and a holding member for holding the wavelength converting member and the light diffusing means disposed on the optical path of the excitation light. is doing.
  • the distance between the optical fiber emitting end part and the light diffusing means such as the lens and the wavelength converting member, and the light diffusing means and the wavelength converting member The effective range is optimized.
  • Patent Document 3 a GaN-based semiconductor laser that emits laser light (excitation light) having a wavelength of 450 nm is used as an excitation light source, and fluorescence (non-excitation light) in the visible range is excited by the laser light from the excitation light source.
  • a light emitting device in which a phosphor (light emitting unit) is combined with the excitation light source is disclosed.
  • a light emitting device that obtains illumination light by using a laser light source as an excitation light source and causing a light emitting unit such as a phosphor to emit light.
  • a light emitting unit such as a phosphor
  • the case where the light emitting unit is irradiated with an optical member for condensing laser light as represented by a convex lens is typical.
  • the relative positional relationship among the three members of the laser light source, the optical member, and the light emitting unit is very important.
  • the condensing state of the laser light by the optical member may change.
  • the light density of the laser light applied to the light emitting unit becomes higher than a desired state, or conversely, becomes lower.
  • the relative positional shift as described above causes the following problems.
  • (1) Increased danger to eyes (2) Degradation of light emitting part (3) Variation in light emission intensity, chromaticity and light distribution characteristics of light emitting part High energy light emitted from a light source having a small light emitting point
  • the light source image is narrowed down to the size of the small light emitting point on the retina.
  • the energy density at the imaging location may become extremely high.
  • the laser light emitted from the semiconductor laser element may have a light emitting point size smaller than 10 ⁇ m square, and the light emitted from such a light source is directly or via an optical member such as a lens or a mirror.
  • the imaging location on the retina may be damaged.
  • the size of the light emitting point must be increased to a certain finite size or larger (specifically, depending on the light density, specifically, for example, 1 mm ⁇ 1 mm or more).
  • the size of the emission point in a typical high-power semiconductor laser is, for example, 1 ⁇ m ⁇ 10 ⁇ m.
  • the image size on the retina can be increased by increasing the size of the light emitting point. This makes it possible to reduce the energy density on the retina even when light of the same energy is incident on the eye.
  • the luminance of light it must be within a range where the required luminance can be obtained while ensuring safety for the eyes.
  • the light source device disclosed in Patent Document 1 irradiates a phosphor with coherent light from a laser diode and converts it into incoherent light. This conversion ensures safety for human eyes. Furthermore, laser light that is not converted into incoherent light by the phosphor and that passes through the phosphor is projected onto the illumination light irradiation side (in the direction toward the human eye) using a reflecting mirror. It avoids being done.
  • the excitation light from the excitation light source is emitted when the light emitting part is displaced from a predetermined location at some time, or when the optical axis of the excitation light source is shifted and the excitation light from the excitation light source does not hit the light emission part. Is emitted to the outside of the apparatus and the excitation light is irradiated to the human eye, the human eye may be harmed.
  • Patent Document 1 when a positional deviation occurs between the semiconductor laser and the phosphor, the laser beam is concentrated on the phosphor as described above, and is irradiated at a high light density. Is not disclosed. In the first place, Patent Document 1 does not assume that the positions of the semiconductor laser and the phosphor are shifted.
  • the light source device disclosed in Patent Document 2 includes an optical fiber exit end, a light diffusing means such as a lens, and a wavelength conversion member in order to increase the use efficiency of excitation light and reduce the size of the illumination light exit.
  • a light diffusing means such as a lens
  • a wavelength conversion member in order to increase the use efficiency of excitation light and reduce the size of the illumination light exit. The distance and the range of the effective region of the light diffusing means and the wavelength conversion member are optimized.
  • Patent Documents 2 and 3 are not intended to solve the problems (1) to (3) described above. Each position cannot be adjusted.
  • the excitation light source is a semiconductor laser
  • an excitation light source that does not have characteristics specific to a semiconductor laser such as a light emitting diode (LED)
  • LED light emitting diode
  • Patent Document 4 discloses a light receiving element that measures the emission intensity of a phosphor and light detected by the light receiving element in order to suppress the coherent laser light emitted from the semiconductor laser element from being emitted to the outside.
  • a light emitting device including a control unit that stops driving of the laser element when the intensity (the value of the current flowing through the light receiving element) becomes a predetermined value or less.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to emit non-excitation light from a light emitting unit by irradiating the light emitting unit with excitation light from an excitation light source, and
  • the illumination device used as illumination light in order to ensure safety for human eyes, when the light emitting part is shifted or the position of the excitation light source is shifted and the excitation light from the excitation light source does not hit the light emitting part,
  • An object of the present invention is to provide a position shift detection device, a position shift adjustment method, and a projector that detect a shift in the relative positional relationship between the light emitting units.
  • the misregistration detection apparatus condenses excitation light emitted from an excitation light source through an optical member on a light emitting unit, and emits the light emitting unit.
  • determining means for determining whether or not.
  • the excitation light source, the optical member, and the light emitting unit are relatively A positional deviation of the positional relationship from the reference relative positional relationship between them can be detected by the detection device. For example, even when the relative positional relationship among the excitation light source, the optical member, and the light emitting unit is shifted due to the movement of a lighting fixture on which the light emitting device is mounted or the vehicle, it is possible to detect the shift.
  • a light-emitting device includes an excitation light source that emits excitation light, an optical member that collects excitation light emitted from the excitation light source, and the optical member.
  • a light emitting unit that emits light by the excited excitation light
  • a misalignment detection device that detects a misalignment in the relative positional relationship among the excitation light source, the optical member, and the light emitting unit, and a misalignment detected by the misalignment detection device
  • a displacement adjustment device for adjusting the displacement, the displacement detection device comprising: a detection means for detecting a relative positional relationship among the excitation light source, the optical member and the light emitting unit; and a detection result of the detection means;
  • the reference relative positional relationship to be used as a reference in the relative positional relationship between the excitation light source, the optical member, and the light emitting unit is compared, and the excitation light source, the optical member, and the light emitting unit are compared.
  • light is emitted by irradiating the light emitting unit with the excitation light emitted from the excitation light source and condensed via the optical member.
  • the positional deviation adjusting device When the relative positional relationship among the excitation light source, the optical member, and the light emitting unit is deviated, a deviation from the reference relative positional relationship is detected by the detecting unit, and the positional deviation adjusting device returns the reference positional relationship. For example, even when the relative positional relationship between the excitation light source, the optical member, and the light emitting unit is shifted due to the movement of a lighting fixture or a vehicle on which the light emitting device is mounted, the positional relative adjustment device returns the reference relative positional relationship again. become. For this reason, even when the above-described deviation occurs, it is possible to continuously irradiate the light emitting unit with the excitation light at a desired position and range.
  • eye safe refers to safety for human eyes.
  • a light-emitting device includes an excitation light source that emits excitation light, an optical member that collects excitation light emitted from the excitation light source, and the optical member. It is characterized by comprising a light emitting portion that emits light by the excited excitation light, and an elastic member that maintains a relative positional relationship among the excitation light source, the optical member, and the light emitting portion.
  • light is emitted by irradiating the light emitting unit with the excitation light emitted from the excitation light source and condensed via the optical member.
  • the relative positional relationship among the excitation light source, the optical member, and the light emitting unit is maintained by the elastic force of an elastic member such as a spring, for example. Specifically, even when the relative positional relationship among the excitation light source, the optical member, and the light emitting unit is shifted, the reference positional relationship is restored by the elastic force of the elastic member. For this reason, even when the above-described deviation occurs, it is possible to continuously irradiate the light emitting unit with the excitation light at a desired position and range.
  • the positional deviation adjustment method is a light emitting device that collects excitation light emitted from an excitation light source through an optical member on a light emitting unit and causes the light emitting unit to emit light.
  • a displacement detection step for detecting a displacement in a relative positional relationship among the excitation light source, the optical member, and the light emitting unit, and a displacement adjustment step for adjusting the displacement detected in the displacement detection step.
  • the displacement detection step includes a detection step of detecting a relative positional relationship between the excitation light source, the optical member, and the light emitting unit, a detection result in the detection step, the excitation light source, the optical member, and the In the relative positional relationship between the light emitting units, a reference relative positional relationship that should be used as a reference is compared, and when the detection is performed in the detection step among the excitation light source, the optical member, and the light emitting unit.
  • a determination step of determining whether or not the relative positional relationship is shifted from the reference relative positional relationship, wherein the positional shift adjustment step is performed when the shift detection is performed in the positional shift detection step.
  • the displacement detected in the displacement detection step is adjusted by returning the relative positional relationship among the excitation light source, the optical member, and the light emitting unit to the reference relative positional relationship.
  • the positional adjustment method When the displacement of the relative positional relationship among the excitation light source, the optical member, and the light emitting unit is detected by the displacement from the reference relative positional relationship among them, the positional adjustment method returns the reference relative positional relationship. For example, even when the relative positional relationship between the excitation light source, the optical member, and the light emitting unit is shifted due to the movement of a lighting fixture on which the light emitting device is mounted or the vehicle, the reference relative positional relationship is restored by the position adjustment method. . For this reason, even when the above-described deviation occurs, it is possible to continuously irradiate the light emitting unit with the excitation light at a desired position and range.
  • a lighting device a projector, and a vehicle headlamp provided with the light emitting device are also included in the technical scope of the present invention.
  • the illumination device includes an excitation light source that emits excitation light in one direction, a light-emitting unit that emits non-excitation light upon receiving the excitation light, and the non-excitation And a reflection section that reflects light in an illumination direction that is different from the emission direction of the excitation light.
  • the excitation light from the excitation light source is converted into non-excitation light by the light emitting unit, and the non-excitation light is emitted as illumination light. Therefore, illumination light with high luminance can be obtained using the excitation light source.
  • the emission direction of the excitation light is set to a direction different from the illumination direction of the illumination light. Therefore, even if the position of the light emitting unit or the emission direction of the excitation light is shifted and the excitation light is separated from the light emitting unit, the excitation light is emitted in the illumination direction (that is, the excitation light is emitted as illumination light). Can be prevented.
  • a vehicle headlamp equipped with the above-described illumination device is also included in the technical scope of the present invention.
  • the presence of the vehicle can be confirmed from the surroundings even if the excitation light source is not irradiated onto the light emitting unit.
  • the light emitting device that condenses the excitation light emitted from the excitation light source through the optical member to the light emitting unit and causes the light emitting unit to emit light, between the excitation light source, the optical member, and the light emitting unit.
  • the illumination device of the present invention includes an excitation light source that emits excitation light in one direction, a light emitting unit that emits non-excitation light upon receiving the excitation light, and the non-excitation light as a light emission direction of the excitation light. And a reflecting portion that reflects in a different direction of illumination.
  • the excitation light is emitted in the illumination direction (that is, the excitation light is emitted as illumination light). The effect that can be prevented.
  • FIG. 2 is a diagram showing an external appearance of a semiconductor laser device. It is sectional drawing of a semiconductor laser apparatus. It is sectional drawing explaining the structure of the illuminating device which concerns on one Embodiment of this invention. It is sectional drawing explaining the excitation light termination
  • (A) is a schematic diagram showing a circuit diagram of a semiconductor laser
  • (b) is a perspective view showing a basic structure of the semiconductor laser. It is sectional drawing explaining the structure of the illuminating device which concerns on other embodiment of this invention. It is explanatory drawing explaining the positional relationship of a light emission part, a metal plate, and the opening part for excitation light discharge
  • the information terminal according to the present embodiment is realized as a mobile phone.
  • the information terminal according to the present embodiment is simply referred to as a mobile phone.
  • the present invention is not limited to mobile phones, and can be applied to information terminals having a security function in general.
  • FIGS. 1 and 2 An embodiment of the present invention will be described with reference to FIGS. 1 and 2 as follows.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a light emitting device 101 according to an embodiment of the present invention.
  • the light emitting device 101 includes a laser element (excitation light source, semiconductor laser) 2, a light emitting unit 3, a condenser lens (optical member) 4, and a laser element support member (excitation light source support member) 5.
  • the laser element 2 is a light emitting element that functions as an excitation light source that emits excitation light.
  • a plurality of laser elements 2 may be provided. In that case, laser light as excitation light is oscillated from each of the plurality of laser elements 2.
  • the laser element 2 may have one light emitting point on one chip, or may have a plurality of light emitting points on one chip.
  • the wavelength of the laser beam of the laser element 2 is, for example, 405 nm (blue purple) or 450 nm (blue), but is not limited thereto, and may be appropriately selected according to the type of phosphor included in the light emitting unit 3. .
  • LED light emitting diode
  • a semiconductor package in which 20 semiconductor laser chips having a wavelength of 405 nm and an output of 500 mW are arranged in one package is used.
  • the laser element 2 is supported by a laser element support member 5. Specifically, the laser element 2 is disposed on a laser element support surface (excitation light source support surface) 5 a which is a main surface facing the light emitting part 3 of the laser element support member 5. A laser beam is emitted.
  • the laser element support member 5 includes, for example, a drive circuit (not shown) for driving the laser element 2, and this drive circuit supplies a drive current to the laser element 2 to drive the laser element 2.
  • the light emitting unit 3 emits fluorescence by receiving the laser light emitted from the laser element 2 and collected by the condenser lens 4.
  • the light emitting unit 3 includes a phosphor (fluorescent material) that emits light upon receiving laser light.
  • the light-emitting unit 3 includes a phosphor dispersed in a sealing material, a phosphor that has been pressed and solidified, a product that has been pressed and heat-treated, or a phosphor. It is deposited and subjected to appropriate post-treatment such as heat treatment.
  • the light emitting unit 3 can be said to be a wavelength conversion element because it converts laser light into fluorescence.
  • the light emitting unit 3 is disposed on the heat sink 7 and at a substantially focal position of the reflecting mirror 9. For this reason, the fluorescence emitted from the light emitting unit 3 is reflected on the reflection curved surface of the reflecting mirror 9 to control the optical path.
  • An antireflection structure for preventing reflection of light from the excitation light source may be formed on the upper surface and side surfaces of the light emitting unit 3.
  • the irradiation range of the illumination light may be intentionally widened or narrowed by arranging the light emitting unit 3 at a position shifted from the focal position.
  • an oxynitride phosphor for example, sialon phosphor: SiAlON
  • a nitride phosphor for example, cousin phosphor: CASN
  • a group III-V compound semiconductor nanoparticle phosphor for example, indium phosphorus: InP
  • These phosphors have high heat resistance against high-power (and / or light density) laser light emitted from the laser element 2, and are optimal for laser illumination light sources.
  • the phosphor of the light emitting unit 3 is not limited to the above-described phosphor, and may be other phosphors such as an oxide phosphor and a sulfide phosphor.
  • blue, green and red phosphors are included in the light emitting unit 3 and irradiated with a laser beam of 405 nm, white light is generated.
  • a yellow phosphor or green and red phosphor
  • a so-called blue laser having a peak wavelength in a wavelength range of 450 nm (blue) to 450 nm (blue) or 440 nm to 490 nm.
  • White light can also be obtained by irradiating light.
  • the sealing material of the light emitting unit 3 is, for example, a resin material such as a glass material (inorganic glass or organic-inorganic hybrid glass) or silicone resin. Low melting glass may be used as the glass material.
  • the sealing material is preferably highly transparent in the wavelength region near 405 nm, which is the wavelength of the excitation light, and in the wavelength region of the emission spectrum region of the phosphor, and has high heat resistance when the laser beam has a high output. Those are preferred.
  • CASN Eu, which is a nitride phosphor
  • Ca- ⁇ SiAlON: Ce which is an oxynitride phosphor
  • the phosphor deposit is covered with a low melting point glass powder so that the surface of the phosphor deposit is covered, and the phosphor deposit is sealed by performing a heat treatment at a temperature equal to or higher than the glass softening point of the low melting point glass. Obtained.
  • the light emitting unit 3 is supported by a metal base 6 through a heat sink 7. Specifically, the light emitting unit 3 is disposed on the light emitting unit support surface 6 a facing the laser element 2 of the metal base 6. The light emitting unit 3 receives the laser light emitted from the laser element 2 and emits light by the laser light.
  • a hole for embedding the heat sink 7 is provided in the light emitting part support surface 6a.
  • the light emitting unit 3 is arranged so as to be in direct contact with the heat radiating plate 7.
  • the heat radiating plate 7 plays a role of radiating heat generated from the light emitting unit 3 due to irradiation of the laser light emitted from the laser element 2.
  • Copper was used as the heat sink 7.
  • the size of the copper used was a rectangular parallelepiped of 20 mm square and 2 mm thickness.
  • an aluminum block having a hole for embedding the heat radiating plate 7 was used as the metal base 6.
  • the size is a rectangular parallelepiped of 40 mm square and 5 mm thickness.
  • a heat conductive elastomer is filled between the heat sink 7 and the hole of the metal base 6, and heat generated in the light emitting unit 3 irradiated by the laser light is conducted to the heat sink 7 and conducted to the heat sink 7. Heat was made easy to be transmitted to the metal base 6. Furthermore, the surface on the side having the holes was a mirror surface.
  • the material Since it is necessary to irradiate and reflect the laser beam on the side having the hole of the metal base 6 as will be described later, the material is resistant to heat and reflects the laser beam with a high reflectance and a reflectance of at least 50% or more. It is better to use Further, since only the irradiation position needs to have a mirror surface, other materials may be used as long as such a condition is satisfied.
  • the condensing lens 4 is a lens for condensing the laser light so that the laser light emitted from the laser element 2 is irradiated to the light emitting unit 3 as a circular or elliptical spot.
  • Examples of the condensing lens 4 include a biconvex lens having a convex surface with respect to the light emitting unit 3, a plano-convex lens, and a convex meniscus lens.
  • an independent lens having a concave surface and a convex surface having an arbitrary axis according to the shape of the light emitting unit 3 or the number of laser elements 2 and the light distribution characteristics of the laser light emitted from the laser element 2 Or a combination of a convex surface having an arbitrary axis and an independent lens having a convex surface.
  • the luminous efficiency of the light emitting unit 3 is increased by adopting an appropriate lens combination according to the shape of the light emitting unit 3 or the number of the laser elements 2 and the light distribution characteristics of the laser light emitted from the laser element 2. be able to.
  • a convex lens having the above-mentioned axis and a compound lens obtained by integrating a lens obtained by integrating a compound lens having a convex surface may be employed.
  • the number of parts of the entire optical system is reduced, and the size of the entire optical system is reduced, while the light emitting unit 3 or the number of the laser elements 2 and the light distribution characteristics of the laser light emitted from the laser elements 2 are reduced.
  • the light emission efficiency of the light emitting unit 3 can be increased.
  • a convex lens having a diameter of 20 mm was used.
  • the condenser lens 4 is supported by a condenser lens support member 8.
  • the condensing lens support member 8 is provided with an opening 8a. Laser light emitted from the laser element 2 travels from the laser element 2 side to the light emitting part 3 side of the condenser lens support member 8 through the opening 8a.
  • the condenser lens 4 is disposed on one main surface of the condenser lens support member 8 while covering the opening 8 a of the condenser lens support member 8.
  • the condensing lens 4 is disposed on the main surface of the condensing lens support member 8 that faces the light emitting portion 3, but of course, the main surface of the condensing lens support member 8 that faces the laser element 2. It may be arranged on the surface.
  • the condensing lens 4 condenses the laser light emitted from the laser element 2 that passes through the opening 8 a and irradiates the light emitting unit 3.
  • the reflecting mirror 9 reflects the fluorescence generated by the light emitting unit 3 and forms a light bundle (illumination light) that travels within a predetermined solid angle.
  • the reflecting mirror 9 reflects the light reflected or scattered by the light emitting unit 3 among the excitation light irradiated to the light emitting unit 3, and forms a light beam (illumination light) traveling within a predetermined solid angle.
  • the illumination light refers to light that is finally emitted from the light emitting device 101.
  • the reflecting mirror 9 may be a member having a metal thin film formed on the surface thereof, or may be a metal member.
  • the reflecting mirror 9 only needs to include at least a part of a curved surface formed by rotating a figure (an ellipse, a circle, a parabola) about the rotation axis on the reflecting surface.
  • a partial curved surface obtained by cutting a curved surface (parabolic curved surface) formed by rotating the parabola with the axis of symmetry of the parabola as a rotational axis along a plane including the rotational axis is the reflecting surface. Is included.
  • a part of the reflecting mirror 9 having such a shape is disposed above the upper surface of the light emitting unit 3 having a larger area than the side surface. That is, the reflecting mirror 9 is arranged at a position covering the upper surface of the light emitting unit 3. If it demonstrates from another viewpoint, a part of side surface of the light emission part 3 has faced the direction of the opening part of the reflective mirror 9.
  • the reflecting mirror 9 is formed with a window portion 9a and a window 9b through which the laser beams of the laser element 2 and the laser element 24 are transmitted or passed.
  • the window 9a and the window 9b may be openings or may include a transparent member that can transmit laser light.
  • a transparent plate provided with a filter that transmits laser light and reflects white light (fluorescence of the light emitting unit 3) may be provided as the window portion 9a and the window 9b. With this configuration, the fluorescence of the light emitting unit 3 can be prevented from leaking from the window 9a and the window 9b.
  • the positional deviation detection device 20 includes a detection unit (detection unit) 21, a determination unit (determination unit) 22, a storage unit 23, a laser element 24, a collimator lens 25, a beam splitter (half mirror) 26, a collecting unit.
  • An optical lens 27, a fluorescence cut filter (optical functional filter) 28, a lens 29, and a light receiving element (light receiving unit) 30 are provided.
  • the detection unit 21 detects a relative positional relationship among the laser element 2, the condenser lens 4, and the light emitting unit 3 in the light emitting device 101.
  • the detection unit 21 is connected to the light receiving element 30 and receives the light reception result from the light receiving element 30.
  • the detection unit 21 detects the relative positional relationship among the laser element 2, the condenser lens 4, and the light emitting unit 3 based on the light reception result.
  • the detection unit 21 has a relative relationship between the laser element 2, the condenser lens 4, and the light emitting unit 3 so that the laser light emitted from the laser element 2 is irradiated onto the light emitting unit 3 with a desired irradiation area. Detect positional relationship.
  • the “relative positional relationship” means, for example, when the laser element 2, the condenser lens 4, and the light emitting unit 3 are arranged in this order as in the light emitting device 101, the laser element 2 and the condenser lens 4. Are the relative distance between the condensing lens 4 and the light emitting unit 3, and the relative distance between the laser element 2 and the light emitting unit 3.
  • “Relative positional relationship” is set as “reference relative positional relationship” to be the reference.
  • the laser light emitted from the laser element 2 and condensed via the condenser lens 4 is irradiated to the light emitting unit 3, and this “reference relative positional relationship” is an irradiation area irradiated to the light emitting unit 3. It becomes a standard for adjusting.
  • the “relative positional relationship” among the laser element 2, the condenser lens 4, and the light emitting unit 3 is the “reference relative positional relationship”
  • the laser light emitted from the laser element 2 is applied to the light emitting unit 3 according to a desired irradiation area. Irradiated.
  • the laser element 2, the condensing lens 4 and the light emitting unit 3 are arranged so as to be aligned on the same optical axis.
  • the “reference relative positional relationship” is a “relative positional relationship” when the laser light from the laser element 2 is irradiated with a desired position and illumination area of the light emitting unit 3.
  • the determination unit 22 compares the detection result of the detection unit 21 with the reference relative positional relationship between the laser element 2, the condensing lens 4, and the light emitting unit 3. It is determined whether or not the relative positional relationship between them deviates from the reference relative positional relationship.
  • the determination unit 22 When the determination unit 22 receives the relative positional relationship among the laser element 2, the condenser lens 4, and the light emitting unit 3 as the detection result from the detection unit 21, the laser unit 2 stored in advance in the storage unit 23.
  • the reference relative positional relationship information indicating the reference relative positional relationship between the condenser lens 4 and the light emitting unit 3 is acquired.
  • the determination unit 22 compares the reference relative positional relationship indicated by the reference relative positional relationship information acquired from the storage unit 23 with the detection result of the detection unit 21, and performs the above determination.
  • the determination unit 22 performs the above determination and outputs the determination result to the misalignment adjusting device 40.
  • the relative positional relationship detected by the detection part 21 is deviated from the reference relative positional relationship, and includes a specific deviation amount.
  • the positional deviation adjusting device 40 to be described later can use this specific deviation amount to determine an adjustment amount necessary to bring the relative positional relationship detected by the detection unit 21 back to the reference relative positional relationship. It becomes possible.
  • the storage unit 23 stores reference relative positional relationship information indicating the reference relative positional relationship among the laser element 2, the condenser lens 4, and the light emitting unit 3.
  • the storage unit 23 for example, a nonvolatile semiconductor memory or a hard disk can be used.
  • the laser element 24 Similarly to the laser element 2, the laser element (laser light source) 24 is supported by the laser element support member 5. Specifically, the laser element 24 is disposed on the laser element support surface 5 a of the laser element support member 5, and emits laser light toward the metal base 6 that supports the light emitting unit 3.
  • a drive circuit (not shown) for driving the laser element 24 is mounted on, for example, the laser element support member 5 and supplies a drive current to the laser element 24.
  • the laser element 24 emits laser light by this drive current.
  • Both the laser element 2 and the laser element 24 are supported by the laser element support member 5, so that the laser element 2 and the laser element 24 do not move independently of each other.
  • the collimator lens 25 converts the laser light emitted from the laser element 24 into parallel light. When the laser light emitted from the laser element 24 enters the collimator lens 25, it is converted into parallel light and enters the beam splitter 26.
  • Beam splitter 26 When the parallel light emitted from the collimator lens 25 is incident, the beam splitter 26 transmits the beam as it is and emits it toward the condenser lens 27.
  • the beam splitter 26 reflects toward the light receiving element 30 without being transmitted as it is.
  • Condensing lens 27 Similar to the condenser lens 4, the condenser lens 27 is supported by the condenser lens support member 8.
  • the condensing lens support member 8 is further provided with an opening 8b. Laser light emitted from the laser element 24 travels from the laser element 24 side to the metal base 6 side of the condenser lens support member 8 through the opening 8b.
  • the condenser lens 27 is disposed on one main surface of the condenser lens support member 8 while covering the opening 8 b of the condenser lens support member 8.
  • the condenser lens 27 is disposed on the main surface of the condenser lens support member 8 that faces the metal base 6.
  • the condenser lens 27 of the condenser lens support member 8 faces the laser element 24. It may be arranged on the surface.
  • the condensing lens 27 condenses the laser beam emitted from the laser element 24 that passes through the opening 8 b and irradiates the metal base 6.
  • the laser light applied to the metal base 6 is reflected by the light emitting portion support surface 6a of the metal base 6 (location indicated by A in FIG. 1) and travels toward the condenser lens 27.
  • the laser light reflected from the light emitting unit support surface 6 a passes through the condenser lens 27 and the opening 8 b in this order and enters the beam splitter 26.
  • the beam splitter 26 emits the light toward the light receiving element 30.
  • the condensing lens 4 and the condensing lens 27 are both supported by the condensing lens support member 8, and the condensing lens 4 and the condensing lens 27 do not move independently of each other. That is, when any one of the condensing lens 4, the condensing lens 27, and the condensing lens support member 8 moves, the other two also move in conjunction with one of them. For this reason, each does not move independently.
  • the fluorescence cut filter 28 is a filter that blocks the fluorescence emitted from the light emitting unit 3 and transmits the laser light reflected from the metal base 6. As shown in FIG. 1, the fluorescence cut filter 28 is disposed on the light receiving surface side where the light receiving element 30 receives laser light. In other words, the fluorescence cut filter 28 is disposed on the optical axis of the laser light that travels from the beam splitter 26 toward the light receiving element 30. By doing so, it is possible to prevent the fluorescence leaking from the window 9a and the window 9b of the reflecting mirror 9 described later from entering the light receiving element 30, and thus it is possible to prevent malfunction of the light receiving element 30.
  • the lens 29 is for condensing the laser light that has passed through the fluorescence cut filter 28 onto the light receiving element 30.
  • the light receiving element 30 is irradiated with laser light emitted from the lens 29.
  • the laser beam forms a light spot on the light receiving surface of the light receiving element 30.
  • the light receiving element 30 uses, for example, four photodetectors, and receives the laser light applied to each light receiving surface.
  • the light receiving element 30 outputs the intensity distribution of the laser light received in this way to the detection unit 21.
  • the detection unit 21 detects the relative positional relationship among the laser element 24, the condenser lens 27, and the metal base 6 (location indicated by A in FIG. 1) using the intensity distribution output from the light receiving element 30.
  • the relative positional relationship among the laser element 24, the condensing lens 27, and the metal base 6 and the relative positional relationship among the laser element 2, the condensing lens 4, and the light emitting unit 3 of the positional deviation detection device 20 are described. , Will be the same. This is because both the laser element 2 and the laser element 24 are supported by the same laser element support member 5, and the condenser lens 4 and the condenser lens 27 are both supported by the same condenser lens support member 8. This is because the light emitting unit 3 is supported by the metal base 6. That is, if the laser element 2 moves, the laser element 24 of the misalignment detection apparatus 20 also moves in the same direction by the same amount. If the condensing lens 4 moves, the condensing lens 27 of the misalignment detection device 20 also moves in the same direction. The movement of the light emitting unit 3 means that the metal base 6 moves.
  • the detection unit 21 indirectly detects the relative positional relationship among the laser element 2, the condenser lens 4, and the light emitting unit 3 using the intensity of the laser light output from the light receiving element 30. Can do.
  • the reference relative positional relationship is, for example, the relative positional relationship among the laser element 2, the condensing lens 4 and the light emitting unit 3 when the diameter of the light spot on the light receiving surface of the light receiving element 30 is a certain size. Good.
  • the detector 21 detects the size of the diameter of the light spot as a relative positional relationship.
  • the determination unit 22 may determine that there is a deviation from the reference relative positional relationship when the diameter of the light spot changes from the size of the light spot diameter in the case of the reference relative positional relationship.
  • the reference relative positional relationship is targeted at the relative position between three or more objects.
  • the reference position in these three reference relative positional relationships is not limited to one, and there may be a plurality.
  • the relative positional relationship among the laser element 2, the condenser lens 4 and the light emitting unit 3 is as follows. Not limited to.
  • the position deviation adjusting device 40 includes an actuator drive circuit 41, an actuator 42, and a connecting member 43.
  • the actuator drive circuit 41 acquires a determination result from the determination unit 22 of the positional deviation detection device 20.
  • the actuator drive circuit 41 recognizes that the relative positional relationship among the laser element 2, the condenser lens 4, and the light emitting unit 3 has deviated from the reference relative positional relationship by acquiring this determination result.
  • the actuator drive circuit 41 extracts the deviation amount included in the determination result of the determination unit 22. From this deviation amount, the actuator drive circuit 41 generates a drive signal for driving the movement by the moving mechanism 44 composed of the actuator 42 and the connecting member 43. This drive signal is for instructing the amount of movement by the moving mechanism 44.
  • the moving mechanism 44 determines the amount of movement based on this drive signal.
  • the moving amount is an amount by which the condensing lens support member 8 is moved by the moving mechanism 44, and may be either a movement in the horizontal direction or a movement in the vertical direction.
  • the actuator 42 has a drive mechanism whose position is displaced by electromagnetic force, and is connected to the condenser lens support member 8 via the connection member 43.
  • the actuator 42 can move the condenser lens support member 8 using the connecting member 43. That is, as described above, the actuator 42 and the connecting member 43 constitute a moving mechanism 44 for moving the condenser lens support member 8.
  • the actuator 42 determines the movement amount of the condenser lens support member 8 based on the drive signal from the actuator drive circuit 41, and moves the condenser lens support member 8 according to the movement amount.
  • the condenser lens 4 is moved by the movement of the condenser lens support member 8. That is, the focal position of the condenser lens 4 is also displaced.
  • the focal position of the condenser lens 4 By changing the focal position of the condenser lens 4, the irradiation area of the laser light irradiated on the light emitting unit 3 can be changed.
  • the condenser lens 27 moves so as to be focused on the metal base 6, but the condenser lens 4 must be prevented from being focused on the light emitting unit 3. In other words, the position of the condensing lens 27 must be set so that the metal base 6 is in focus at the position of the condensing lens 4 when the light emitting unit 3 is out of focus and has a desired irradiation area.
  • an electromagnetic force is used as a means for moving the actuator 42, but it is not limited to this.
  • the misalignment detection device 20 detects misalignment, the condensing lens support member 8 that supports the condensing lens 4 is moved so that the laser light irradiated on the light emitting unit 3 can have a desired irradiation area.
  • Any means that moves at high speed is acceptable.
  • a motor is mentioned as another means.
  • the laser light emitted from the laser element 2 passes through the opening 8 a provided in the condenser lens support member 8 and enters the condenser lens 4.
  • the light emitting unit 3 forms a desired beam shape.
  • the laser light irradiates the light emitting unit 3 through a window 9 a provided in the reflecting mirror 9 for transmitting or passing the laser light.
  • the light emitting unit 3 is disposed on the heat sink 7, and the heat sink 7 is installed on the metal base 6.
  • Fluorescence is emitted from the light emitting unit 3 when irradiated with laser light. However, a part of the laser light is reflected and scattered by the light emitting unit 3. Further, of the laser light irradiated to the light emitting unit 3, a part of the laser light that has not been converted into fluorescence is converted into heat, and a part of the generated heat is conducted in the order of the heat radiating plate 7 and the metal base 6. . Thereby, heat dissipation of the light emission part 3 is performed.
  • the laser light applied to the light emitting unit 3 is converted into fluorescence by the light emitting unit 3, or reflected and scattered by the light emitting unit 3.
  • the desired illumination light is finally obtained by mixing these lights. Can be obtained.
  • FIG. 2 is a flowchart showing a processing procedure of a positional deviation adjustment method by the positional deviation detection device 20 and the positional deviation adjustment device 40.
  • the detection unit 21 of the positional deviation detection device 20 detects the relative positional relationship among the laser element 2, the condensing lens 4, and the light emitting unit 3 (step S101; detection process).
  • the determination unit 22 of the positional deviation detection device 20 receives the detection result from the detection unit 21, the determination unit 22 acquires reference relative positional relationship information indicating the reference relative positional relationship from the storage unit 23 (step S102).
  • the determination unit 22 indicates the relative positional relationship among the laser element 2, the condenser lens 4, and the light emitting unit 3, and the reference relative positional relationship information acquired from the storage unit 23, which are detection results of the detection unit 21.
  • the reference relative positional relationship is compared (step S103).
  • the determination part 22 determines whether the relative positional relationship among the laser element 2, the condensing lens 4, and the light emission part 3 has shifted
  • step S105 the actuator drive circuit 41 of the positional deviation adjusting device 40 receives the determination result from the determination unit 22, it extracts a specific amount of deviation included in the determination result. Then, the actuator drive circuit 41 uses the deviation amount to calculate an adjustment amount (retraction amount) necessary for returning the relative positional relationship detected by the detecting unit 21 to the reference relative positional relationship (step S105). In step S105, the actuator drive circuit 41 outputs a drive signal indicating the adjustment amount to the actuator 42.
  • the actuator 42 of the misalignment adjusting device 40 moves the connecting member 43 by a drive signal from the actuator drive circuit 41.
  • the condensing lens support member 8 is moved, and by doing so, the relative positional relationship among the laser element 2, the condensing lens 4 and the light emitting unit 3 is returned to the reference relative positional relationship, and the relative positional relationship is adjusted. Is executed (step S106; misregistration adjustment step).
  • FIG. 3 is a cross-sectional view illustrating a schematic configuration of the light-emitting device 102 according to Embodiment 2 of the present invention.
  • symbol is attached
  • the light emitting device 102 includes a light emitting unit 3, a heat radiating plate 7, a laser element support member 10, a metal base 11, a condenser lens support member 12, a reflecting mirror 13, and a displacement detection.
  • the apparatus 20a and the misalignment adjusting apparatus 40 are provided.
  • the light emitting device 102 is different from the light emitting device 101 in that the laser element 2 and the laser element 24 of the light emitting device 101 are combined with one laser element 24a.
  • the laser element support member 10 is different from the laser element support member 5 in that only one laser element 24a is supported.
  • the metal base 11 is different from the metal base 6 in that the light emitting unit support surface 11a of the metal base 11 is not irradiated with laser light.
  • the condensing lens support member 12 is different from the condensing lens support member 8 in that only one condensing lens 27 is supported.
  • the difference between the reflecting mirror 13 and the reflecting mirror 9 is that it has only one window 13a that transmits or passes laser light from one laser element 24a.
  • the light emitting device 102 combines a laser element that emits a laser beam that contributes to the light emission of the light emitting unit 3 and a laser element that emits a laser beam used by the misalignment detection device 20a. This is a mechanism in which the misalignment detection device 20a uses laser light reflected from the light emitting unit 3 without contributing to light emission of the unit 3.
  • the laser light emitted from the laser element 24 a is shaped to have a desired shape by the collimator lens 25, passes through the beam splitter 26, and passes through the opening 12 a provided in the condenser lens support member 12. , And enters the condenser lens 27.
  • the laser light of the lens element 24 a incident on the condenser lens 27 is irradiated to the light emitting unit 3.
  • the laser light that does not contribute to the light emission of the light emitting unit 3 and is reflected from the light emitting unit 3 is incident on the condenser lens 27, is reflected by the beam splitter 26, and enters the fluorescence cut filter 28.
  • the light receiving element 30 receives the light spots irradiated on the four light receiving surfaces.
  • the purpose of the light emitting device 102 is to keep the irradiation area of the light emitting unit 3 at a desired irradiation area without focusing, the light spots irradiated on each of the four light receiving surfaces of the light receiving element 30.
  • the intensity distribution indicating the position out of focus must be set as the reference position. By setting such a reference position in advance, control to return to the reference position can be performed.
  • FIG. 4 is a cross-sectional view illustrating a schematic configuration of the light-emitting device 103 according to Embodiment 3 of the present invention.
  • the light emitting device 103 is different from the light emitting device 101 and the light emitting device 102 in that the displacement detection device 20 and the displacement displacement adjustment device 40 and the displacement displacement detection device 20a and the displacement displacement adjustment device 40 of the second embodiment are replaced by a spring.
  • the elastic member 52 and the elastic member 53 are used.
  • an elastic member 52 is connected between the laser element support member 10 and the condenser lens support member 12, and an elastic member 53 is connected between the condenser lens support member 12 and the metal base 51. ing.
  • the elastic member 52 keeps the relative positional relationship between the laser element support member 10 and the condensing lens support member 12 constant.
  • the elastic member 53 holds the relative positional relationship between the condensing lens support member 12 and the metal base 51 constant.
  • the laser light irradiation area to the light emitting unit 3 can be made constant with a simpler configuration than the first and second embodiments.
  • FIG. 5 is a cross-sectional view illustrating a schematic configuration of the light-emitting device 104 according to Embodiment 4 of the present invention. Note that members similar to those in the first to third embodiments are given the same reference numerals, and descriptions thereof are omitted.
  • the light emitting device 104 includes a laser element 2, a light emitting unit 3, a condenser lens 4, a laser element support member 15, a metal base 6, a heat sink 7, and a condenser lens support member. 16, a reflecting mirror 14, a position shift detection device 20 b, and a position shift adjustment device 40 b.
  • the misregistration detection device 20b includes a detection unit 21b, a determination unit 22b, a storage unit 23b, a camera 31, a camera 32, a marker 33, and a marker 34.
  • the camera 31 is supported by the condenser lens support member 16. Specifically, the camera 31 is fitted in the condenser lens support member 16 and images the marker 33 disposed on the marker fixing portion 14b of the reflecting mirror 14.
  • the camera 31 for example, a CCD camera can be used.
  • the CCD camera may have a passive autofocus function that is used for focus adjustment of a digital camera or the like.
  • the marker 33 is disposed on the marker fixing portion 14b of the reflecting mirror 14 as described above.
  • the marker 33 is further included in the imaging area of the camera 31.
  • the reflecting mirror 14 and the metal base 6 are fixed in advance so that their positions are not displaced from each other.
  • the reflecting mirror 14 and the metal base 6 may be integrated, or both may be fixed to other identical members. Thereby, the relative positional relationship between the marker 33 and the light emitting unit 3 is fixed.
  • the camera 31 images the marker 33 and outputs the imaging result to the detection unit 21b.
  • the detection unit 21 b detects the relative positional relationship between the camera 31 and the marker 33 using the imaging result output from the camera 31.
  • the relative positional relationship between the marker 33 and the light emitting unit 3 is fixed. Therefore, the relative positional relationship between the camera 31 and the light emitting unit 3 can be derived from the relative positional relationship between the camera 31 and the marker 33.
  • the camera 31 is fixed to the condenser lens support member 16, and the relative positional relationship between the camera 31 and the condenser lens 4 is also fixed. From the relative positional relationship between the camera 31 and the marker 33, the relative positional relationship between the condenser lens 4 and the marker 33 can be derived.
  • the detection unit 21b can derive the relative positional relationship between the condenser lens 4 and the light emitting unit 3 using the imaging result of the camera 31 from these things.
  • the camera 32 is supported by the laser element support member 15. Specifically, the camera 32 is fitted in the laser element support member 15 and images the marker 34 disposed on the condenser lens support member 16.
  • a CCD camera can be used in the same manner as the camera 31.
  • the CCD camera may have a passive autofocus function that is used for focus adjustment of a digital camera or the like.
  • the marker 34 is disposed on the condensing lens support member 16 as described above.
  • the marker 34 is further included in the imaging area of the camera 32.
  • the condenser lens 4 is fitted into the condenser lens support member 16. Thereby, the relative positional relationship between the marker 34 and the condenser lens support member 16 is fixed.
  • the camera 32 images the marker 34 and outputs the imaging result to the detection unit 21b.
  • the detection unit 21 b detects the relative positional relationship between the camera 32 and the marker 34 using the imaging result output from the camera 32.
  • the relative positional relationship between the marker 34 and the condenser lens 4 is fixed. Therefore, the relative positional relationship between the camera 32 and the condenser lens 4 can be derived from the relative positional relationship between the camera 32 and the marker 34.
  • the camera 32 is fixed to the laser element support member 15, and the relative positional relationship between the camera 32 and the laser element 2 is also fixed. From the relative positional relationship between the camera 32 and the marker 34, the relative positional relationship between the laser element 2 and the marker 34 can be derived.
  • the detection unit 21b can detect the relative positional relationship between the laser element 2 and the condenser lens 4 using the imaging result of the camera 32 based on these things.
  • FIGS. 6A and 6B show an example of the marker 33 and the marker 34.
  • the camera 31 and the camera 32 take an image of a white portion and a black portion drawn on the marker 33 and the marker 34, and output a contrast intensity distribution between them to the detection unit 21b.
  • the detecting unit 21 b detects a relative positional relationship among the laser element 2, the condenser lens 4, and the light emitting unit 3 in the light emitting device 104.
  • the detection unit 21b is connected to the camera 31 and the camera 32, and receives the imaging result of the camera 31 and the imaging result of the camera 32, respectively, as described above.
  • the detection unit 21 b detects the relative positional relationship among the laser element 2, the condenser lens 4, and the light emitting unit 3 based on those imaging results.
  • the detection unit 21 has a relative relationship between the laser element 2, the condenser lens 4, and the light emitting unit 3 so that the laser light emitted from the laser element 2 is irradiated onto the light emitting unit 3 with a desired irradiation area. Detect positional relationship.
  • the determination unit 22b compares the detection result of the detection unit 21b with the reference relative positional relationship between the laser element 2, the condensing lens 4, and the light emitting unit 3, and the laser element 2, the condensing lens 4 and the light emitting unit 3 are compared. It is determined whether or not the relative positional relationship between them deviates from the reference relative positional relationship.
  • the positional deviation adjusting device 40b includes an actuator drive circuit 41b, an actuator 42b, a connecting member 43b1, and a connecting member 43b2.
  • the actuator drive circuit 41b extracts the deviation amount included in the determination result of the determination unit 22b. From this deviation amount, the actuator drive circuit 41b generates a drive signal for driving the movement by the moving mechanism 44b composed of the actuator 42b, the connecting member 43b1, and the connecting member 43b2.
  • the connecting member 43b1 connects the actuator 42b and the laser element support member 15, and the connecting member 43b2 connects the actuator 42b and the condenser lens support member 16. Therefore, this drive signal is a signal indicating the amount of movement by the moving mechanism 44b, that is, the amount of movement of each of the laser element support member 15 and the condenser lens support member 16.
  • the movement direction may be any of movement in the horizontal direction and movement in the vertical direction.
  • the misalignment detection device 20b detects the misalignment of the relative positional relationship among the laser element 2, the condenser lens 4 and the light emitting unit 3 from the reference relative positional relationship.
  • the adjustment device 40b uses the detection result of the positional deviation detection device 20b to return the relative positional relationship among the laser element 2, the condenser lens 4 and the light emitting unit 3 to the reference relative positional relationship.
  • the positional deviation adjusting device 40b does not need to restore the relative positional relationship among the laser element 2, the condenser lens 4 and the light emitting unit 3 to the reference relative positional relationship by a single pull back operation.
  • the reference relative positional relationship may be gradually brought closer to the reference by a plurality of pullback operations.
  • the pull back operation may be performed a plurality of times until the position shift detection device 20b does not detect the position shift.
  • the misalignment detection device 20b detects misalignment each time the misalignment adjustment device 40b performs a pull back operation.
  • Such a form is executed, for example, as a passive autofocus function used for focus adjustment of a digital camera or the like, that is, focusing of a camera that stops the operation at the point of focus when it is actually moved. It is a form.
  • Embodiment 5 of the present invention is an embodiment in which Embodiment 1 relating to a reflective light emitting device is applied to a transmissive light emitting device.
  • Embodiment 1 relating to a reflective light emitting device
  • Embodiment 5 is an embodiment in which Embodiment 1 relating to a reflective light emitting device is applied to a transmissive light emitting device.
  • differences from the first embodiment will be described.
  • FIG. 7 is a cross-sectional view illustrating a schematic configuration of the light-emitting device 105 according to Embodiment 5 of the present invention. Note that members similar to those in the first to fourth embodiments are given the same reference numerals, and descriptions thereof are omitted.
  • the light emitting device 105 includes a laser element 2, a condenser lens 71, an optical fiber 72, a ferrule (optical member) 73, a light emitting unit 3, a laser element support member 17, and a ferrule support member. 18, a light emitting unit support member 19, a misalignment detection device 20 c, and a misalignment adjustment device 40 c.
  • the optical fiber 72 is a light guide member that guides the laser light oscillated by the laser element 2 to the light emitting unit 3, and is a bundle of a plurality of optical fibers. For example, laser light is incident on the optical fiber 72 from the laser element 2 through the condenser lens 71. The tip of the optical fiber 72 is held by a ferrule 73 and supported by the ferrule support member 18.
  • the light emitting unit 3 is supported by a light emitting unit supporting member 19 using a transmitting member that transmits laser light.
  • the laser light emitted from the tip of the optical fiber 72 is transmitted through the light emitting unit support member 19 and irradiated onto the light emitting unit 3.
  • the position shift detection device 20c includes a detection unit 21c, a determination unit 22c, a storage unit 23c, a laser element 24c, a collimator lens 25c, a beam splitter (half mirror) 26c, a light receiving element 30c, and a reflection member 35. ,have.
  • the laser light emitted from the laser element 24c passes through the collimator lens 25c and enters the beam splitter 26c.
  • the laser beam emitted from the beam splitter 26c is directed to the reflecting member 35, reflected by the reflecting member 35, passes through the beam splitter 26c, and is irradiated to the light receiving element 30c.
  • the laser element 24 c is fitted into the ferrule support member 18, while the reflection member 35 is fixed to the light emitting unit support member 19.
  • the misalignment detection device 20c detects the relative positional relationship between the laser element 24c and the reflecting member 35, whereby the ferrule 73 supported by the ferrule support member 18, that is, the tip of the optical fiber 72, and the light emitting unit support member 19 are detected. The relative positional relationship with the light emitting unit 3 supported by is detected.
  • Embodiment 6 of the present invention is an embodiment in which Embodiment 4 relating to a reflective light emitting device is applied to a transmissive light emitting device.
  • Embodiment 4 relating to a reflective light emitting device is applied to a transmissive light emitting device.
  • differences from the fourth embodiment will be described.
  • FIG. 8 is a cross-sectional view illustrating a schematic configuration of the light-emitting device 106 according to Embodiment 6 of the present invention. Note that members similar to those in the first to fifth embodiments are given the same reference numerals, and descriptions thereof are omitted.
  • the light emitting device 106 includes a laser element 2, a condenser lens 71, an optical fiber 72, a ferrule 73, a light emitting unit 3, a laser element support member 17, a ferrule support member 18, and light emission.
  • a part support member 19a, a displacement detection device 20d, and a displacement adjustment device 40d are provided.
  • the positional deviation detection device 20d includes a detection unit 21d, a determination unit 22d, a storage unit 23d, a camera 31d, and a marker 33d.
  • the camera 31d is fitted into the ferrule support member 18, while the marker 33d is fixed to the light emitting unit support member 19a.
  • the position shift detection device 20d detects the relative positional relationship between the camera 31d and the marker 33d, thereby supporting the ferrule 73 supported by the ferrule support member 18, that is, the tip of the optical fiber 72, and the light emitting unit support member 19a. The relative positional relationship with the emitted light emitting unit 3 is detected.
  • the light emitting device including the misalignment detecting device and the misalignment adjusting device is described.
  • the misalignment detecting device and the misalignment adjusting device may be independent from the light emitting device.
  • each of the misalignment detection device and the misalignment adjustment device may be configured to be removable from the light emitting device.
  • the laser light emitted from the laser element 2 passes through the condenser lens 4 and converges (converges and converges) toward the light emitting unit 3.
  • the light emitting unit 3 is irradiated.
  • the condenser lens 4 converges the light emitted from the laser element 2 toward the light emitting unit 3. Therefore, in the above first to sixth embodiments, it can be said that “condensing” of the condenser lens 4 has the meaning of “narrowing light”, in other words, “collecting to one point”.
  • the meaning of “light collection” in the present invention is not limited to such “narrowing light” or “collecting at one point”.
  • the meaning of “condensing” in the present invention is only to “make light irradiate a desired irradiation region”.
  • “light narrowing” and “to one point” It includes not only the meaning of “collecting” but also the meaning of “spreading light”, more specifically “spreading from one point” and “not changing the traveling direction of light”.
  • specific examples of the significance of the latter will be described.
  • FIG. 9 shows a semiconductor laser device suitable for the present invention.
  • FIG. 9A is a diagram showing a positional relationship between the semiconductor laser device 81 and the light emitting unit 3
  • FIG. 9B is an external view of the semiconductor laser device 81.
  • FIG. 10 is a cross-sectional view of the semiconductor laser device 81 of FIG.
  • the semiconductor laser device 81 emits a laser beam toward the light emitting unit 3, and the light emitting unit 3 is irradiated with the laser light.
  • the semiconductor laser device 81 includes a cap glass 84 on the laser beam emission direction side, and emits laser light to the outside of the semiconductor laser device 81 through the cap glass 84.
  • a semiconductor laser element 87 is enclosed in a package including a stem 82 and a cap 83.
  • the cap glass 84 is fused to the opening of the cap 83, and the cap glass 84 has a function of extracting laser light emitted from the semiconductor laser element 87 to the outside of the cap 83.
  • the semiconductor laser element 87 is hermetically sealed in the package by the cap glass 84 and the cap 83.
  • the semiconductor laser element 87 is embedded and loaded in a laser element holding member 86 disposed on the stem 82 together with a heat sink 88 described later.
  • the laser element holding member 86 is fixed on the stem 82 and maintains the distance between the semiconductor laser element 87 and the cap glass 84 constant. Thereby, the laser light emitted from the semiconductor laser element 87 is reliably incident on the cap glass 84.
  • the semiconductor laser element 87 is surrounded by a heat sink 88 using a high heat conductive material such as a metal, except for the laser light emitting surface side.
  • the heat generated by the semiconductor laser element 87 through the heat sink 88 is efficiently radiated to the laser element holding member 86 side.
  • Two leads 85 are attached to the stem 82, and a driving current for driving the semiconductor laser element 87 is supplied from the outside of the semiconductor laser device 81 using the two leads 85. As shown in FIG. 10, the two leads 85 are electrically connected to the two electrodes of the semiconductor laser element 87 loaded in the laser element holding member 86 through the wiring, the laser element holding member 86 and the heat sink 88, respectively. It is connected to the.
  • the cap glass 84 is an example of the “optical member” of the present invention
  • the semiconductor laser element 87 is an example of the “excitation light source” of the present invention.
  • the laser light emitted from the semiconductor laser element 87 is collected by the cap glass 84 and irradiated to the light emitting unit 3.
  • the laser light emitted from the semiconductor laser element 87 is incident on the cap glass 84 with a certain spread angle in accordance with the alignment characteristics of the semiconductor laser element 87.
  • the cap glass 84 emits the laser beam incident thereon without substantially spreading.
  • the cap glass 84 when the laser light emitted from the semiconductor laser element 87 enters the cap glass 84, the cap glass 84 and the surrounding gas (for example, enclosed in the cap 83) at the interface of the cap glass 84.
  • the air is refracted according to the respective refractive indexes of the dry air), and the spread angle changes.
  • the laser light travels while maintaining its spreading angle.
  • the laser light travels through the cap glass 84 and is emitted from the cap glass 84, the laser light is again refracted at the interface of the cap glass 84 according to the refractive indexes of the cap glass 84 and the surrounding gas. The spread angle changes again.
  • the laser light having undergone such a change in the divergence angle of 2 degrees is irradiated to the light emitting unit 3 as shown in FIG. 9.
  • the meaning of “condensing” here is not “narrowing light” or “collecting to one point” as in the first to sixth embodiments. As described above, the meanings are “spread light”, “spread from one point”, and “do not change the traveling direction of light”.
  • the meaning of “condensing” in the present invention is “so that light is irradiated to a desired irradiation region”.
  • the light emitting device of the present invention may be applied to a vehicle headlamp or other lighting devices.
  • a downlight can be mentioned as an example of the illuminating device of this invention.
  • a downlight is a lighting device installed on the ceiling of a structure such as a house or a vehicle.
  • the lighting device of the present invention may be realized as a headlamp of a vehicle and other moving objects (for example, humans, ships, aircrafts, submersibles, rockets, etc.), searchlights, projectors, downlights. It may be realized as a room lighting device other than (such as a stand lamp).
  • the projector is used in an environment with vibration (for example, a moving body such as a car), it is very effective to apply the present invention to a light emitting device that is a light source of the projector. .
  • the excitation light irradiation area to the light emitting part can be made constant, and the intensity of the fluorescence from the light emitting part does not change with time, so the generation of speckles when illuminating the object with illumination light can be suppressed, and the illumination light Flickering can be prevented. Therefore, it is possible to make the human eyes less likely to get tired.
  • the illumination device 201 of the present invention can be used for a headlamp that satisfies the light distribution characteristic standard of a traveling headlamp (high beam) for automobiles, for example.
  • the lighting device of the present invention includes a headlamp that satisfies the light distribution characteristic standard of a low-beam headlight for automobiles, and vehicles / moving objects other than automobiles (for example, humans, ships, aircrafts, submersibles) -It may be realized as a headlamp of a rocket or the like.
  • other lighting devices for example, a searchlight, a projector, a home lighting device, a store lighting device, an office lighting device, and an outdoor lighting device may be realized.
  • the illumination device 201 includes an excitation light source 203 that emits excitation light C1, a light emitting unit 205 that receives the excitation light C1 and emits non-excitation light C3, and an auxiliary light that emits auxiliary illumination light C2.
  • An illumination light source 207 a reflector (reflection unit) 209 that irradiates illumination light C4 composed of non-excitation light C3 and auxiliary illumination light C2 in a predetermined illumination direction H, and excitation light termination that terminates excitation light C1 from the excitation light source 203
  • the unit 211 and the excitation light cut filter 213 for preventing the excitation light C1 from leaking outside the illumination device 201 are provided.
  • the reflector 209 (reflecting portion) is formed in a parabolic shape that is rotationally symmetric about the center line L1.
  • An inner surface 209a of the reflector 209 is a parabolic reflecting surface (parabolic reflecting surface) (hereinafter also referred to as a parabolic reflecting surface 209a).
  • One end side of the reflector 209 in the direction of the center line L1 is open and serves as an illumination light opening 209b for emitting the illumination light C4 to the outside. That is, in the reflector 209, the light C2 and C3 from the light emitting unit 205 are reflected in the illumination direction H by the parabolic reflecting surface 209a and emitted from the opening 209b to the outside.
  • the illumination direction H is parallel to the center line L1.
  • the member of the reflector 209 may be, for example, a member having a metal thin film formed on the surface thereof, or a member made of metal, and a member having a high reflectance in the wavelength range of the illumination light C4. Is preferred.
  • the light emitting unit 205 is disposed inside the reflector 209 (for example, a focal position).
  • the light emitting unit 205 includes, for example, a phosphor (not shown) that is excited by receiving excitation light C1 from the excitation light source 203 and emits fluorescence (non-excitation light) C3, and a phosphor holding material (not shown) that seals the phosphor. (Not shown).
  • the phosphor holding substance is preferably an inorganic material.
  • the phosphor is dispersed inside the low melting point glass as the phosphor holding substance.
  • the ratio between the low melting point glass and the phosphor is about 10: 1.
  • the light emitting unit 205 may be a phosphor that is hardened by an appropriate process, for example, a phosphor that is pressed and hardened and subjected to heat treatment.
  • the phosphor holding substance is not limited to the low melting point glass, and may be organic / inorganic hybrid glass (HBG), inorganic glass, or silicone resin.
  • the phosphor is, for example, an oxynitride type or a nitride type, and blue, green, and red phosphors are dispersed in low-melting glass.
  • the excitation light source 203 is configured, for example, as a semiconductor laser, and oscillates 405 nm (blue-violet) laser light. Therefore, white light is generated when the light emitting unit 205 is irradiated with the laser light. Therefore, it can be said that the light emitting unit 205 is a wavelength conversion material.
  • the semiconductor laser may oscillate 450 nm (blue) laser light (or so-called blue laser light having a peak wavelength in the wavelength range of 440 nm to 490 nm) as described above.
  • the phosphor is a yellow phosphor or a mixture of a green phosphor and a red phosphor.
  • a yellow phosphor is a phosphor that emits light having a peak wavelength in a wavelength range of 560 nm to 590 nm.
  • the green phosphor is a phosphor that emits light having a peak wavelength in a wavelength range of 510 nm or more and 560 nm or less.
  • the red phosphor is a phosphor that emits light having a peak wavelength in a wavelength range of 600 nm to 680 nm.
  • a green phosphor may be a so-called sialon.
  • Sialon is a substance in which a part of silicon atoms in silicon nitride is replaced with aluminum atoms and a part of nitrogen atoms is replaced with oxygen atoms. It can be made by dissolving alumina (Al 2 O 3 ), silica (SiO 2 ), rare earth elements and the like in silicon nitride (Si 3 N 4 ).
  • a semiconductor nanoparticle phosphor using nanometer size particles of a III-V compound semiconductor can be exemplified.
  • One of the features of semiconductor nanoparticle phosphors is that even if the same compound semiconductor (for example, indium phosphorus: InP) is used, the emission color is changed by the quantum size effect by changing the particle diameter to nanometer size. It is a point that can be. For example, InP emits red light when the particle size is about 3 to 4 nm. Here, the particle size was evaluated with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • this semiconductor nanoparticle phosphor is based on a semiconductor, it has a short fluorescence lifetime and can emit laser light power quickly as fluorescence, and thus has a feature that it is highly resistant to high power laser light. This is because the emission lifetime of the semiconductor nanoparticle phosphor is about 10 nanoseconds, which is five orders of magnitude smaller than that of a normal phosphor material having a rare earth as the emission center.
  • the emission lifetime is short, the absorption of the laser beam and the emission of the phosphor can be repeated quickly. As a result, high conversion efficiency can be maintained for strong laser light, and heat generation from the phosphor can be reduced.
  • the excitation light source 203 is configured, for example, as a semiconductor laser (hereinafter also referred to as a semiconductor laser 203), and emits (oscillates) laser light that is excitation light C1 (hereinafter also referred to as laser light C1) in one direction.
  • the wavelength of the excitation light C1 is, for example, ultraviolet light or blue-violet light.
  • the semiconductor laser 203 functions as an excitation light source that emits the laser light C1.
  • Laser light (excitation light) C 1 is oscillated from the semiconductor laser 203.
  • a plurality of semiconductor lasers 203 may be provided. In that case, laser light C1 is oscillated from each of the plurality of semiconductor lasers 203.
  • the laser light C1 emitted from the semiconductor laser 203 is excitation light for exciting a phosphor that is a component of the light emitting unit 205, and is coherent light having coherency.
  • coherent light is light that is spatially and temporally aligned in phase, and has a single wavelength.
  • the semiconductor laser 203 has 10 light emitting points (10 stripes) per chip, and oscillates, for example, a laser beam of 405 nm (blue purple), an output of 11.2 W, an operating voltage of 5 V, and a current of 6.4 A. It is mounted on a stem having a diameter of 15 mm. If the laser light C1 is output from the semiconductor laser 203 at 11.2 W described above, the power consumption is 32 W (5 V ⁇ 6.4 A).
  • the laser beam C1 oscillated by the semiconductor laser 203 is not limited to 405 nm, and may be any laser beam having a peak wavelength in the wavelength range of 400 nm to 420 nm.
  • the laser light C1 emitted from the semiconductor laser 203 is 420 nm or more, for example, blue (450 nm) laser light or laser light having a peak wavelength in the wavelength range near blue (440 nm or more and 490 nm or less). Good.
  • FIG. 15A schematically shows a circuit diagram of the semiconductor laser 203
  • FIG. 15B is a perspective view showing the basic structure of the semiconductor laser 203.
  • the semiconductor laser 203 has a configuration in which a cathode electrode 223, a substrate 222, a cladding layer 113, an active layer 111, a cladding layer 112, and an anode electrode 221 are stacked in this order.
  • the substrate 222 is a semiconductor substrate, and it is preferable to use GaN, sapphire, or SiC in order to obtain blue to ultraviolet laser light for exciting the phosphor as in the present application.
  • a group IV semiconductor represented by a group IV semiconductor such as Si, Ge and SiC, GaAs, GaP, InP, AlAs, GaN, InN, InSb, GaSb and AlN Group V compound semiconductors, Group II-VI compound semiconductors such as ZnTe, ZeSe, ZnS and ZnO, oxide insulators such as ZnO, Al 2 O 3 , SiO 2 , TiO 2 , CrO 2 and CeO 2 , and SiN Any material of the nitride insulator is used.
  • the anode electrode 221 is for injecting current into the active layer 111 through the clad layer 112.
  • the cathode electrode 223 is for injecting current into the active layer 111 from the lower part of the substrate 222 through the clad layer 113.
  • the current is injected by applying a forward bias to the anode electrode 221 and the cathode electrode 223.
  • the active layer 111 has a structure sandwiched between the cladding layer 113 and the cladding layer 112.
  • a mixed crystal semiconductor made of AlInGaN is used as a material for the active layer 111 and the cladding layer in order to obtain blue to ultraviolet laser light.
  • a mixed crystal semiconductor mainly composed of Al, Ga, In, As, P, N, and Sb is used as an active layer / cladding layer of a semiconductor laser, and such a configuration may be used. Further, it may be composed of a II-VI compound semiconductor such as Zn, Mg, S, Se, Te and ZnO.
  • the active layer 111 is a region where light emission occurs due to the injected current, and the emitted light is confined in the active layer 111 due to a difference in refractive index between the cladding layer 112 and the cladding layer 113.
  • the active layer 111 is formed with a front side cleaved surface 114 and a back side cleaved surface 115 provided to face each other in order to confine light amplified by stimulated emission, and the front side cleaved surface 114 and the back side cleaved surface 115. Plays the role of a mirror.
  • a part of the light amplified by stimulated emission is split into a front side cleavage surface 114 and a back side cleavage surface 115 of the active layer 111 (in this embodiment, the front side cleavage surface 114 for convenience.
  • the active layer 111 may form a multilayer quantum well structure.
  • a reflective film (not shown) for laser oscillation is formed on the back side cleaved surface 115 opposite to the front side cleaved surface 114, and the difference in reflectance between the front side cleaved surface 114 and the back side cleaved surface 115 is different.
  • most of the laser light L0 can be irradiated from the light emitting point 116 from the front-side cleavage surface 114 which is a low reflectance end face.
  • the clad layer 113 and the clad layer 112 are made of n-type and p-type GaAs, GaP, InP, AlAs, GaN, InN, InSb, GaSb, and AlN, III-V group compound semiconductors, and ZnTe, ZeSe. , ZnS, ZnO, and other II-VI group compound semiconductors, and by applying a forward bias to the anode electrode 221 and the cathode electrode 223, current can be injected into the active layer 111. It has become.
  • MOCVD metal organic chemical vapor deposition
  • MBE molecular beam epitaxy
  • CVD chemical vapor deposition
  • the film can be formed using a general film forming method such as a laser ablation method or a sputtering method.
  • the film formation of each metal layer can be configured using a general film forming method such as a vacuum deposition method, a plating method, a laser ablation method, or a sputtering method.
  • the excitation light source 203 is disposed at a predetermined position outside the reflector 209 (more specifically, a position outside the excitation light incident opening 209c provided in the reflector 209), and emits light through the opening 209c.
  • Laser light C ⁇ b> 1 is emitted toward the unit 205.
  • the opening 209 c is formed at a location including a point where a predetermined virtual line L ⁇ b> 2 passing through the focal position P ⁇ b> 1 of the reflector 209 and orthogonal to the center line L ⁇ b> 1 passes through the reflector 209.
  • the formation position of the opening 209c is not limited in this way.
  • the excitation light incident opening 209c may be formed at any location of the reflector 209. That is, the excitation light source 203 may be disposed at any location outside the reflector 209 as long as the emission direction of the laser light C1 emitted from the excitation light source 203 is different from the illumination direction H.
  • the excitation light termination unit 211 terminates the excitation light C ⁇ b> 1 emitted from the excitation light source 203 and passed without being absorbed by the light emitting unit 205.
  • termination means that the excitation light C1 is terminated at the end of an effective optical path with a diffuse reflector or absorber having an appropriate reflectance and appropriate thermal characteristics.
  • the appropriate reflectance is a reflectance such that even if the excitation light C1 is reflected, the output of the reflected excitation light C1 is an output that does not harm humans.
  • the appropriate thermal characteristics indicate that the local heat generated when absorbing the excitation light C1 has a thermal conductivity that can be diffused to such an extent that the excitation light termination unit 211 is not destroyed.
  • Excitation light termination unit 211 The excitation light termination unit 211 is disposed at a position of the reflector 209 facing the excitation light source 203 through the light emitting unit 205. An excitation light discharge opening 209d is formed at the arrangement position of the reflector 209.
  • the pumping light termination unit 211 is configured as a beam damper 211A as shown in FIG.
  • the beam damper 211A is formed on the bottomed cylinder part 211b having an opening 211a for receiving the excitation light C1, the tapered part 211c formed on the bottom surface 211e of the bottomed cylinder part 211b, and the outer surface of the bottomed cylinder part 211b.
  • the heat dissipating fins 211d are provided.
  • the bottomed cylindrical portion 211b is arranged so that the cylindrical axis direction L3 thereof is parallel to the facing direction (the same direction as L2) between the excitation light terminating portion 211 (that is, the beam damper 211A) and the excitation light source 203. Moreover, the opening part 211a of the bottomed cylinder part 211b is arrange
  • the tapered portion 211c is formed so as to taper from the bottom surface 211e side of the bottomed cylindrical portion 211b toward the opening 211a side along the cylindrical axis direction L3.
  • the tip end 211f is pointed, and the base end face 211g is formed in the same size as the bottom face 211e. That is, the interval between the inner surface 211h of the bottomed cylindrical portion 211b and the outer peripheral surface 211i of the tapered portion 211c becomes narrower from the opening 211a side to the bottom surface 211e side, and becomes zero on the bottom surface 211e.
  • the excitation light C1 incident on the inside of the beam damper 211A from the opening 211a is repeatedly reflected between the inner surface 211h of the bottomed cylindrical portion 211b and the outer peripheral surface 211i of the tapered portion 211c, and thus the opening 211a side Without being reflected, it propagates to the bottom of the bottomed cylindrical portion 211b and attenuates and disappears.
  • the black coating black non-reflective coating which makes the excitation light C1 non-reflective may be given to the inner surface 211h of the bottomed cylinder part 211b and the outer peripheral surface 211i of the taper part 211c. Thereby, the effect of attenuating the excitation light C1 can be enhanced.
  • the aperture 211a has a diameter that the excitation light C1 emitted from the excitation light source 203 and transmitted through the light emitting unit 205 enters the beam damper 211A even when the emission direction of the excitation light C1 of the excitation light source 203 is shifted. Therefore, it is desirable to set the size appropriately.
  • the auxiliary illumination light source 207 is constituted by a light emitting diode, for example.
  • the auxiliary illumination light source 207 emits light (for example, blue light or blue-violet light) having a wavelength different from that of the excitation light C1 (for example, ultraviolet light or blue-violet light) emitted from the excitation light source 203 as auxiliary illumination light C2.
  • the auxiliary illumination light source 207 emits natural light (non-excitation light), but may emit excitation light.
  • the auxiliary illumination light source 207 may include a light emitting element that emits natural light and a phosphor that emits white light by receiving light from the light emitting element. Thereby, white light can be emitted from the auxiliary illumination light source 207. Thereby, when the light emission part 205 shift
  • the auxiliary illumination light source 207 is disposed at a predetermined position outside the reflector 209 (more specifically, a position facing the auxiliary illumination light incident opening 209e formed in the reflector 209), and via the opening 209e.
  • the auxiliary illumination light C ⁇ b> 2 is emitted toward the light emitting unit 205.
  • the opening 209e is formed at the apex of the reflector 209 (that is, a point including a point where a virtual line L4 passing through the focal position P1 of the reflector 209 and parallel to the center line L1 passes through the reflector 209).
  • the formation position of the opening 209e is not limited in this way.
  • the opening 209e may be formed at any position as long as the auxiliary illumination light C2 emitted from the auxiliary illumination light source 207 through the opening 209e can irradiate the light emitting unit 205.
  • the light emitting unit 205 has a characteristic that the absorption rate with respect to the excitation light C1 is higher than the absorption rate with respect to the auxiliary illumination light C2.
  • the auxiliary illumination light C2 from the auxiliary illumination light source 207 is blue light or blue-violet light and the excitation light C1 from the excitation light source 203 is ultraviolet light or blue-violet light
  • the phosphor is excited by ultraviolet light or blue-violet light.
  • the external quantum efficiency is high (at least 60% or more) and the absorption rate of blue or blue-violet light is 40% or less.
  • the light emitting unit 205 has a relatively high conversion efficiency for converting the excitation light C1 into non-excitation light, while the transmissivity through which the auxiliary illumination light C2 passes through the light emitting unit 205 is also relatively high. Therefore, the auxiliary illumination light C2 can be easily used as illumination light together with the non-excitation light without impairing the conversion efficiency of the excitation light C1 into the non-excitation light.
  • the excitation light cut filter 213 is disposed so as to cover the illumination light opening 209 b of the reflector 209. That is, the excitation light cut filter 213 is arranged on the illumination direction H side when viewed from the light emitting unit 205.
  • the excitation light cut filter 213 has a transmittance of 10% for the excitation light C1 emitted from the excitation light source 203 in order to prevent the excitation light C1 emitted from the excitation light source 203 from being emitted outside the illumination device 201. It is desirable that the transmittance of the auxiliary illumination light C2 emitted from the auxiliary illumination light source 207 is 70% or more. The excitation light cut filter 213 may not be provided.
  • the excitation light C1 emitted from the excitation light source 203 is applied to the light emitting unit 205 in the reflector 209 through the opening 209c. Most of the excitation light C1 from the excitation light source 203 is absorbed by the light emitting unit 205 and excites the phosphor. From the light emitting unit 205 excited by the excitation light C1, fluorescence (non-excitation light) C3 is emitted in all directions, and the fluorescence C3 is converged in the illumination direction H by the parabolic reflection surface 209a of the reflector 209 and excited. The light is transmitted through the light cut filter 213 and emitted from the opening 209 b of the reflector 209 to the outside of the illumination device 201.
  • a part of the excitation light C 1 from the excitation light source 203 is not absorbed by the light emitting unit 205 but is scattered or diffused by the light emitting unit 205 and converged in the illumination direction H by the parabolic reflection surface 209 a of the reflector 209. And is absorbed by the excitation light cut filter 213.
  • the excitation light C ⁇ b> 1 scattered or diffused by the light emitting unit 205 is prevented from being emitted to the outside of the illumination device 201.
  • excitation light C1 from the excitation light source 203 (excitation light C1 that has not been absorbed by the light emitting unit 205) passes through the light emitting unit 205 and passes through the opening 209d of the reflector 209 to be the excitation light termination unit 211. And is absorbed by the pumping light termination unit 211 and terminates. Accordingly, the excitation light C1 emitted from the excitation light source 203 and transmitted through the light emitting unit 205 is prevented from being reflected by the parabolic reflection surface 209a of the reflector 209 and emitted to the outside of the illumination device 201.
  • excitation light C1 that has not been absorbed by the light emitting unit 205 is scattered or diffused by the light emitting unit 205, and as a result, is not directed toward the excitation light terminating unit 211, but is reflected along the illumination direction H. There is also light traveling toward the opening 209b of 209.
  • the auxiliary illumination light C2 emitted from the auxiliary illumination light source 207 is irradiated to the light emitting unit 205 in the reflector 209 through the opening 209e, and is transmitted through the light emitting unit 205, scattered in the light emitting unit 205, or the light emitting unit 205.
  • the illumination light C4 is formed together with the fluorescent light C3 emitted from the light emitting unit 205 through one of the reflections on the surface or a combination thereof, and is emitted to the outside from the opening 209b of the reflector 209.
  • the auxiliary illumination light C2 transmitted through the light emitting unit 205 is not reflected by the parabolic reflection surface 209a of the reflector 209, propagates in the illumination direction H, and is emitted to the outside together with the fluorescence C3 from the opening 209b of the reflector 209.
  • the Further, the auxiliary illumination light C2 scattered or reflected by the light emitting unit 205 is reflected in the illumination direction H by the parabolic reflection surface 209a of the reflector 209, and is emitted to the outside together with the fluorescence C3 from the opening 209b of the reflector 209.
  • the illumination light C4 is composed of the combined light of the fluorescent light C3 emitted from the light emitting unit 205 and the auxiliary illumination light C2 transmitted, scattered or reflected by the light emitting unit 205. That is, the illumination light C4 is constituted by a color mixture of the fluorescence C3 and the auxiliary illumination light C2.
  • the highly coherent laser light C1 is not emitted to the outside of the illumination device 201, and thus the illumination device is safe for human eyes. Even if the light emitting unit 205 is displaced, the excitation light C1 is not emitted outside the illumination device 201 because the excitation light cut filter 213 and the excitation light termination unit 211 are provided.
  • the auxiliary illumination light C2 from the auxiliary illumination light source 207 is emitted to the outside regardless of whether or not the light emitting unit 205 is at a desired position. Even when the light emitting unit 205 is deviated from a predetermined position, it is emitted to the outside of the illumination device 201, so that it is possible to prevent the illumination light C4 from being emitted from the illumination device 201. Accordingly, even when the light emitting unit 205 is displaced from a predetermined position and the fluorescent light C3 is no longer emitted from the light emitting unit 205, the presence of the lighting device 201 can be notified to the surroundings.
  • the user of the illumination device 201 driving state of the excitation light source 203, at least from the excitation light source 203
  • the person other than the person who can control on / off of the emission of the excitation light C1 by his / her own will be notified of the abnormality of the illumination device 201 (abnormality such as misalignment of the light emitting part 205, opening of the light emitting part 205, etc.). it can.
  • the chromaticity of the illumination light C4 can be changed by arbitrarily adjusting the output (that is, the wavelength) of the auxiliary illumination light C2 from the auxiliary illumination light source 207.
  • the color temperature of the fluorescence C3 emitted from the light emitting unit 205 is increased while exciting the light emitting unit 205 with excitation light C1 having a wavelength of around 405 nm or less (or light in the blue region).
  • the light emitting unit 205 is irradiated with the blue laser light C2, and the light emitting unit 205 scatters and diffuses the blue laser light C2, thereby making the fluorescence C3 emitted from the light emitting unit 205 incoherent.
  • the color temperature of the fluorescence C3 emitted from the light emitting unit 205 can be improved without increasing the light emitting unit 205 of the lighting device 201. Thereby, it is possible to increase the color temperature while maintaining a high luminance light emission characteristic. In addition, while a highly efficient blue phosphor has not been easily developed, it is possible to realize a solid illumination device with high efficiency, high color temperature, and good color rendering.
  • the pumping light termination unit 211 is configured as the beam damper 211A, but in this modification, the pumping light termination unit 211 is configured as an integrating sphere 211B that scatters and attenuates the pumping light C1 therein.
  • the integrating sphere 211B is formed in a hollow sphere shape as shown in FIG. 13, and has a small light incident port 211j for receiving the excitation light C1.
  • the integrating sphere 211B is disposed outside the reflector 209 so that the light incident port 211j faces the opening 209d of the reflector 209.
  • the excitation light C1 that has passed through the light emitting unit 205 and entered the opening 209d can be incident into the integrating sphere 211B from the light incident port 211j.
  • the excitation light C1 incident on the inside of the integrating sphere 211B from the light incident port 211j is scattered and attenuated inside the integrating sphere 211B and disappears.
  • a powder material such as black that absorbs the excitation light C1 may be applied to the inner surface of the integrating sphere 211B. Thereby, the excitation light C1 in the integrating sphere 211B can be attenuated more effectively.
  • the pumping light termination unit 211 is configured as the beam damper 211A.
  • the pumping light termination unit 211 is formed by a light absorbing member 211C that absorbs the pumping light C1.
  • the light absorbing member 211C is formed as a laser curtain (that is, a sheet member made of a light absorbing material such as soft vinyl chloride).
  • the light absorbing member 211C is disposed outside the reflector 209 so as to face the opening 209d of the reflector 209. As a result, the excitation light C1 transmitted through the light emitting unit 205 and incident on the opening 209d can be absorbed and extinguished by the light absorbing member 211C.
  • the light absorbing member 211C has been described as having a sheet shape, but the light absorbing member 211C is not limited to a sheet shape.
  • FIG. 16 is a schematic configuration diagram of an illumination apparatus according to Embodiment 8 of the present invention.
  • symbol is attached
  • the difference between the lighting device 230 according to the eighth embodiment of the present invention and the lighting device 201 according to the seventh embodiment is that, instead of the reflector 209, a parabolic mirror (reflecting part) 241 and a metal plate (reflecting part) 242 are provided. It is a point with. Furthermore, instead of the pumping light terminal unit 211, a pumping light terminal unit 244 is provided.
  • the parabolic mirror 241 reflects the fluorescence (non-excitation light) C3 generated by the light emitting unit 205, and forms a light beam (illumination light) that travels within a predetermined solid angle.
  • the parabolic mirror 241 may be, for example, a member having a metal thin film formed on the surface thereof or a metal member.
  • Part of the parabolic mirror 241 is disposed above the upper surface of the light emitting unit 205. That is, the parabolic mirror 241 is disposed at a position covering the upper surface of the light emitting unit 205. If it demonstrates from another viewpoint, a part of side surface of the light emission part 205 has faced the direction of the opening part 251 for illumination light which is one opening part of the parabolic mirror 241.
  • FIG. 1 Part of the parabolic mirror 241 is disposed above the upper surface of the light emitting unit 205. That is, the parabolic mirror 241 is disposed at a position covering the upper surface of the light emitting unit 205. If it demonstrates from another viewpoint, a part of side surface of the light emission part 205 has faced the direction of the opening part 251 for illumination light which is one opening part of the parabolic mirror 241.
  • the efficiency of collecting the non-excitation light C3 of the light emitting unit 205 within a predetermined solid angle can be increased.
  • the utilization efficiency of the light C3 can be increased.
  • the excitation light source 203 is disposed outside the parabolic mirror 241, and the parabolic mirror 241 is formed with an excitation light incident opening 252 that allows the laser light C 1 to pass therethrough.
  • the excitation light incident opening 252 is a hole that penetrates the outside (excitation light source 203 side) and the inside (light emitting unit 205 side) of the parabolic mirror 241.
  • the auxiliary illumination light C2 emitted from the auxiliary illumination light source 207 is irradiated to the light emitting unit 205 in the parabolic mirror 241 through the auxiliary illumination light incident opening 254 which is the other opening of the parabolic mirror 241 to emit light.
  • the illumination light C4 is taken together with the non-excitation light C3 emitted from the light emitting unit 205 through one of transmission through the unit 205, scattering in the light emitting unit 205, reflection on the surface of the light emitting unit 205, or a combination thereof. In this way, the light is emitted from the opening 251 of the parabolic mirror 241 to the outside.
  • an elliptical mirror or a hemispherical mirror may be used instead of the parabolic mirror 241.
  • the metal plate 242 is a plate-like support member that supports the light emitting unit 205 and is made of metal (for example, copper or iron). Therefore, the metal plate 242 has high thermal conductivity, and the light emitting unit 205 can be cooled.
  • the member which supports the light emission part 205 is not limited to what consists of metals, The member containing substances (glass, sapphire, etc.) with high heat conductivity other than a metal may be sufficient.
  • a metal thin film 243 is deposited on the surface of the metal plate 242 on the side of the parabolic mirror 241 (excluding the attachment surface of the light emitting unit 205), and the non-excitation light C3 emitted from the light emitting unit 205 is reflected. .
  • the excitation light C1 incident from the upper surface of the light emitting unit 205 can be reflected after being converted into the non-excitation light C3 and directed toward the parabolic mirror 241 side. In this way, the utilization efficiency of the non-excitation light C3 can be improved.
  • the metal plate 242 Since the metal plate 242 is covered by the parabolic mirror 241, it can be said that the metal plate 242 has a surface facing the reflecting surface of the parabolic mirror 241.
  • the surface of the metal plate 242 on the parabolic mirror 241 side is substantially parallel to the rotational axis of the paraboloid of the parabolic mirror 241 and substantially includes the rotational axis.
  • the metal plate 242 may include fins.
  • the fins function as a cooling unit that cools the metal plate 242.
  • the fin has a plurality of heat dissipation plates, and increases the heat dissipation efficiency by increasing the contact area with the atmosphere.
  • the cooling unit that cools the metal plate 242 may have a cooling (heat radiation) function, and may be a heat pipe, a water cooling method, or an air cooling method instead of the fins.
  • Excitation light termination unit 244 The excitation light termination unit 244 is disposed on the metal plate 242 at a position facing the excitation light source 203 via the light emitting unit 205. An excitation light discharge opening 253 is formed at the arrangement position of the metal plate 242. Note that the structure of the pumping light termination unit 244 is the same as that of the pumping light termination unit 211 of the seventh embodiment, and description thereof will not be repeated here.
  • FIG. 17 is an explanatory diagram for explaining the positional relationship among the light emitting unit 205, the metal plate 242, and the excitation light discharge opening 253.
  • FIG. 17A is a conceptual diagram viewed from the direction of the arrow X in FIG. ) Is a conceptual diagram for explaining how the light emitting unit 205 is disposed on the excitation light discharging opening 253 of the metal plate 242. As shown in FIG. 17, the light emitting unit 205 is disposed on the excitation light discharging opening 253.
  • Excitation light C1 that has not been absorbed by the light emitting unit 205
  • the excitation light termination unit 244 passes through the light emitting unit 205 and enters the excitation light termination unit 244 through the opening 253 of the metal plate 242.
  • Incident light is absorbed by the excitation light termination unit 244 and terminates.
  • the excitation light C1 emitted from the excitation light source 203 and transmitted through the light emitting unit 205 is prevented from being reflected by the parabolic mirror 241 and the metal plate 242 and emitted outside the illumination device 230.
  • the detection device condenses the excitation light emitted from the excitation light source on the light emitting unit through the optical member and causes the light emitting unit to emit light.
  • the reference relative positional relationship is set in advance based on at least one of the area of the irradiation region on the light emitting unit or the position of the irradiation region on the light emitting unit with respect to the excitation light condensed on the light emitting unit. It is preferable that
  • the excitation light is emitted from the desired state to be emitted to the light emitting unit, that is, the excitation light is concentrated on the light emitting unit more than the desired state or is diffused more than the desired state. In such a case, the deviation can be detected.
  • a laser light source that emits laser light from one surface side of the excitation light source support surface that supports the excitation light source and the light emitting unit support surface that supports the light emitting unit to the other surface side, and the laser light source that emits the laser light
  • a light receiving unit that receives the return light reflected from the other surface side and returning to the one surface side, and the detection means receives from the light reception unit as its detection result.
  • the focus shape of the return light on the light receiving unit is acquired, and the determination unit sets the relative positional relationship among the excitation light source, the optical member, and the light emitting unit to the reference relative positional relationship.
  • the laser light source is used as the excitation light source of the light-emitting device, and further includes an optical functional filter that blocks light emitted from the light-emitting unit and transmits the return light. It is preferable that the light receiving unit is disposed on the light receiving surface side that receives light.
  • the light emitting device can include the excitation light source and the laser light source as the same light source, and can prevent the light receiving unit from receiving the light emitted from the light emitting unit by the optical function filter. . Therefore, it is not necessary to configure a laser light source and its optical system, and the detection device can be reduced in size and simplified. Further, only the excitation light from the excitation light source is received by the light receiving unit, and the excitation light source, the optical member and the light are emitted. The deviation of the relative positional relationship with the part can be detected with high accuracy by the deviation from the reference relative positional relationship.
  • the detection means obtains an imaging result obtained by imaging the marker with the camera as its detection result
  • the determination means is configured to change the relative positional relationship between the camera and the marker to the reference relative positional relationship. An imaging result by the camera, are compared, and an imaging result obtained by said detection means, if there is a change between the two imaging result, it is preferable to perform the determination that deviates above.
  • the light-emitting device emits light using an excitation light source that emits excitation light, an optical member that collects the excitation light emitted from the excitation light source, and excitation light that is collected by the optical member.
  • a positional deviation detection device that detects a deviation in a relative positional relationship among the light emitting unit, the excitation light source, the optical member, and the light emitting unit; and a positional deviation adjustment device that adjusts the deviation detected by the positional deviation detection device;
  • the positional deviation detection device includes a detection unit that detects a relative positional relationship between the excitation light source, the optical member, and the light emitting unit, a detection result of the detection unit, the excitation light source, the optical member, and The relative relative positional relationship between the light emitting units is compared with a reference relative positional relationship that should be used as a reference, and the detection unit detects between the excitation light source, the optical member, and the light emitting unit.
  • determining means for determining whether or not the relative positional relationship is deviated from the reference relative positional relationship and the misalignment adjusting device is configured to detect when misalignment is detected by the misalignment detecting device.
  • the displacement detected by the displacement detector is adjusted by returning the relative positional relationship among the excitation light source, the optical member, and the light emitting unit to the reference relative positional relationship.
  • the reference relative positional relationship is set in advance based on at least one of the area of the irradiation region on the light emitting unit or the position of the irradiation region on the light emitting unit with respect to the excitation light condensed on the light emitting unit. It is preferable that
  • the excitation light is emitted from the desired state to be emitted to the light emitting unit, that is, the excitation light is concentrated on the light emitting unit more than the desired state or is diffused more than the desired state. In such a case, the deviation can be detected.
  • the positional deviation adjusting device includes a moving mechanism for moving at least one position of the excitation light source, the optical member, or the light emitting unit.
  • the light emitting unit can be irradiated with excitation light with a desired irradiation area.
  • the moving mechanism fixes the excitation light source and the light emitting unit and moves the optical member.
  • the relative positional relationship among the excitation light source, the optical member, and the light emitting unit can be maintained at the reference relative positional relationship by moving the position of the optical member.
  • the positional deviation adjusting device since only the optical member is moved by the positional deviation adjusting device, the positional deviation adjusting device can be reduced in size and simplified.
  • the light-emitting device emits light using an excitation light source that emits excitation light, an optical member that collects the excitation light emitted from the excitation light source, and excitation light that is collected by the optical member. It is a structure provided with the light emission part and the elastic member holding the relative positional relationship between the said excitation light source, the said optical member, and the said light emission part.
  • the light emitted from the light emitting unit can be reflected in a desired direction by the reflecting mirror.
  • the excitation light source is preferably a laser light source.
  • the laser beam can be easily collected by the optical system. Therefore, a light-emitting device with high output and high brightness can be obtained, and the deterioration of the light-emitting part due to the excitation light being concentrated on the light-emitting part and irradiating the light-emitting part is delayed, or the brightness is extremely high. And the danger from the viewpoint of eye-safety can be prevented.
  • the laser light source is preferably a semiconductor laser light source.
  • the semiconductor laser since the semiconductor laser is small, the light emitting device can be miniaturized. Further, when the light emitting device is downsized, the degree of freedom in designing an illumination device using the light emitting device can be significantly improved.
  • the illumination device includes an excitation light source that emits excitation light in one direction, a light emitting unit that receives the excitation light and emits non-excitation light, and the non-excitation light. And a reflection part that reflects the illumination light in a direction different from the light emission direction of the excitation light.
  • excitation light termination unit that terminates the excitation light at a position facing the excitation light source via the light emitting unit.
  • the excitation light termination is disposed at a position facing the excitation light source via the light emitting unit, the position of the light emission unit is shifted, or the optical axis of the excitation light source is shifted and the excitation light is emitted from the light emission unit. If it is off, the excitation light from the excitation light source enters the excitation light termination and terminates.
  • the excitation light can be prevented from being emitted to the outside of the illumination device.
  • the excitation light termination is preferably an integrating sphere that scatters and attenuates the excitation light inside.
  • the pumping light termination unit can be configured with a simple configuration.
  • the excitation light termination portion is formed so as to taper from the bottom surface side toward the opening portion side at the bottomed cylinder portion having an opening for entering the excitation light and the bottom surface of the bottomed cylinder portion, It is desirable that the tip end portion is sharp and the base end surface has a tapered portion having the same size as the bottom surface.
  • the excitation light that has entered the excitation light terminal portion from the opening is repeatedly reflected between the inner surface of the bottomed cylindrical portion and the outer peripheral surface of the tapered portion, and is reflected on the inner side of the bottomed cylindrical portion. move on.
  • the tip end portion of the taper portion is pointed, and the base end surface of the taper portion is the same size as the bottom surface of the bottomed tube portion (that is, the bottom surface of the bottomed tube portion is the taper portion). Completely occupied).
  • the pumping light termination unit can be configured with a simple configuration.
  • the excitation light termination portion has a light absorbing member that absorbs the excitation light from the excitation light source.
  • the excitation light termination unit since the excitation light termination unit includes the light absorbing member that absorbs the excitation light from the excitation light source, the excitation light termination unit can be configured with a simple configuration.
  • auxiliary illumination light source that emits auxiliary illumination light.
  • the illumination light does not come out from the device at all. Can be prevented.
  • a device for recognizing a person or / and an object that may occur in the case of a lighting device that does not have the above-described configuration is used for recognizing a person or / and an object, and / or the presence of the lighting device is known to surrounding people
  • the minimum illumination light can be secured by the auxiliary illumination light source.
  • the auxiliary illumination light has a wavelength different from the wavelength of the excitation light.
  • the illumination light is composed of combined light of non-excitation light emitted from the light emitting part excited by excitation light and auxiliary illumination light.
  • the color temperature of the illumination light can be adjusted by adjusting the wavelength of the auxiliary illumination light.
  • the color temperature of the illumination light when the illumination light is composed of non-excitation light and auxiliary illumination light is different from the color temperature of the illumination light. Therefore, the presence or absence of a failure of the lighting device can be determined from the color temperature of the illumination light.
  • the light emitting unit has a characteristic that the absorption rate with respect to the excitation light is higher than the absorption rate with respect to the auxiliary illumination light.
  • the conversion efficiency for converting the excitation light into non-excitation light is relatively high.
  • the transmittance with which the auxiliary illumination light passes through the light emitting portion is also relatively high. Therefore, it becomes easy to utilize auxiliary illumination light as illumination light together with non-excitation light without impairing the conversion efficiency of excitation light into non-excitation light.
  • the excitation light included in the illumination light is removed by the excitation light cut filter. Therefore, it can prevent that excitation light is mixed with illumination light and is inject
  • the auxiliary illumination light source preferably includes a light emitting element and a phosphor that emits white light upon receiving light from the light emitting element.
  • the auxiliary illumination light source can emit white auxiliary illumination light.
  • the present invention can keep the irradiation area to the light emitting portion constant, and is particularly suitable for a lighting device. Furthermore, the present invention can also be used for vehicle headlamps and the like.

Abstract

 レーザ素子(24)、集光レンズ(27)および発光部(3)の間の相対位置関係を検知する検知部(21)と、検知部(21)の検知結果と上記の相対位置関係において基準とすべき基準相対位置関係とを比較し、レーザ素子(24)、集光レンズ(27)および発光部(3)の間の、検知部(21)の検知の際における相対位置関係が基準相対位置関係からずれているか否かを判定する判定部(22)とを備える位置ずれ検出装置(20)である。

Description

位置ずれ検出装置、発光装置、照明装置、プロジェクタ、車両用前照灯および位置ずれ調整方法
 本発明は、半導体レーザ等の励起光源と蛍光体等の発光部とを組み合わせた発光装置、当該発光装置を備えた照明装置、プロジェクタおよび車両用前照灯に関し、また、このような発光装置等に好適な位置ずれ検出装置および位置ずれ調整方法に関するものである。
 近年、励起光源として発光ダイオード(LED;Light Emitting Diode)や半導体レーザ(LD;Laser Diode)等の半導体発光素子を用い、これらの励起光源から生じた励起光を、蛍光体を含む発光部に照射することによって発生する蛍光を照明光として用いる発光装置および照明装置が数多く登場している。
 このような従来の発光装置の一例として、特許文献1に開示された光源装置がある。この特許文献1に開示された光源装置は、半導体レーザと、半導体レーザからのレーザ光を平行光線束とするコリメータと、コリメータからの平行光線束のレーザ光を集光するコンデンサと、コンデンサで集光したレーザ光を吸収し自然放出光としてインコヒーレント光を放出する蛍光体とを有している。この光源装置は、コヒーレントなレーザ光が漏れないようにレーザ光反射鏡を有する構成を採用している。また、この光源装置では、蛍光体から放出されたインコヒーレント光は、可視光反射鏡によって一定方向に反射されて照明光になる。
 また、特許文献2に開示された光源装置は、半導体レーザと、半導体レーザからの励起光を導光する光ファイバーと、光ファイバー射出端部と光学的に接続され、その射出端部から射出された励起光を受光し、波長の異なる光を射出する波長変換部材(すなわち、発光部)と、その波長変換部材および励起光の光路上に配置された光発散手段を保持するための保持部材とを有している。そして、励起光の利用効率を高くし、照明光射出部を小型化するために、光ファイバー射出端部とレンズなどの光発散手段と波長変換部材との距離や、光発散手段と波長変換部材の有効領域の範囲を最適化している。
 また、特許文献3では、波長450nmのレーザ光(励起光)を発するGaN系半導体レーザを励起光源として用い、該励起光源からの上記レーザ光によって励起されて可視域の蛍光(非励起光)を発するように、蛍光体(発光部)が上記励起光源と組み合わされた発光装置が開示されている。
日本国公開特許公報「特開2003-295319号公報(2003年10月15日公開)」 日本国公開特許公報「特開2000-174346号公報(2000年6月23日公開)」 日本国公開特許公報「特開2010-81957号公報(2010年4月15日公開)」 日本国公開特許公報「特開2011-66069号公報(2011年3月11日公開)」
 上述したように、励起光源にレーザ光源を用い、蛍光体などの発光部を発光させ、照明光を得る発光装置がある。このような発光装置において、レーザ光を凸レンズに代表されるような集光するための光学部材を用いて発光部に照射する場合が典型的である。このような場合、レーザ光源、光学部材および発光部という、3つの部材の間における相対的な位置関係が非常に重要である。
 つまり、このような発光装置では、これら3つの部材のうちのいずれかの位置が何かの拍子にずれて、言い換えると、各々の位置が最適な位置から変動すると、その結果、発光部上における、光学部材によるレーザ光の集光状態が変化してしまう場合がある。この場合、発光部に照射されるレーザ光の光密度が所望の状態よりも高くなってしまったり、あるいは逆に、低くなってしまったりすることになる。
 このような場合、これら3つの部材間における相対位置関係が最適な位置関係からずれないようにすることが強く望まれることは言うまでもない。そして、このことは、それらの間における相対位置関係の、最適な位置関係からのずれが検出可能となっていることが必須の前提条件である。
 また、上で述べたような相対的な位置関係のずれは、以下の問題を引き起こす要因となる。
(1)目に対する危険性の増大
(2)発光部の劣化
(3)発光部の、発光の強度、色度および配光特性の変動
 小さな発光点を有する光源から放射された高いエネルギーの光が人間の目に入射した場合、網膜上では、その小さな発光点のサイズにまで光源像が絞られる。これにより、結像箇所におけるエネルギー密度が極めて高くなってしまうことがある。例えば、半導体レーザ素子から放射されるレーザ光は、発光点サイズが10μm角よりも小さい場合があり、そのような光源から放射される光が直接、あるいは、レンズやミラーといった光学部材を介したとしても小さな発光点が直接または間接的に見える状態で、目に入射すると、網膜上の結像箇所が損傷してしまうことがある。
 これを回避するためには、発光点のサイズを、一定の有限サイズ以上(当然、光密度にも依存するが、具体的には、例えば1mm×1mm以上)に拡大しなければならない。
 典型的な高出力の半導体レーザにおける発光点のサイズは、例えば1μm×10μmである。面積としては10μm=1.0×10-5mmである。すなわち、発光点が1mmの光源と比較すると、同じエネルギーの光であったとしても、網膜上に結像される領域のエネルギー密度は10倍も高くなってしまう。
 発光点のサイズを拡大させることにより、網膜上の結像サイズを拡大させることができる。これにより、同じエネルギーの光が目に入射した場合であっても、網膜上のエネルギー密度を低減させることが可能となる。
 さらに、光の輝度の観点から言えば、目に対する安全性を確保しつつ、要求される輝度が得られる範囲に収めなければならない。
 特許文献1に開示された光源装置は、レーザダイオードからのコヒーレント光を、蛍光体に照射し、インコヒーレント光に変換している。この変換により、人の目に対する安全性を確保している。さらに、蛍光体でインコヒーレント光に変換されず、蛍光体を透過してくるレーザ光については、反射鏡を用いて、照明光照射側(人の目に向かっていく方向)にレーザ光が投影されてしまうことを回避している。
 しかしながら、特許文献1~3では、何らかの拍子で発光部が所定の場所からずれる、あるいは励起光源の光軸がずれて励起光源からの励起光が発光部に当たらなくなると、励起光源からの励起光が装置外部に放出され、その励起光が人の目に照射されると、人の目を害する場合がある。
 また、特許文献1には、半導体レーザと蛍光体との間に位置ずれが起きた場合、上で述べたような、蛍光体にレーザ光が集中し、高光密度で照射されてしまうという課題については開示されていない。そもそも、特許文献1は、半導体レーザと蛍光体の各々の位置がずれてしまうことを想定しているものではない。
 また、特許文献2に開示された光源装置は、励起光の利用効率を高くし、照明光射出部を小型化するために、光ファイバー射出端部とレンズなどの光発散手段と波長変換部材との距離や、光発散手段と波長変換部材の有効領域の範囲を最適化している。
 しかし、特許文献2、3に開示された光源装置は、上記(1)~(3)の問題点を解消することを目的とするものではなく、特許文献1と同様、半導体レーザと蛍光体の各々の位置を調整することはできない。
 なお、上記問題は、励起光源が半導体レーザの場合に限定される問題ではなく、高出力可能な励起光源であれば、半導体レーザ特有の特性を有していない励起光源、例えば、発光ダイオード(LED)等であっても、問題となる。
 また、特許文献4には、半導体レーザ素子から発振されたコヒーレントなレーザ光が外部に出射するのを抑制するべく、蛍光体の発光強度を測定する受光素子と、上記受光素子で検知される光強度(受光素子に流れる電流の値)が所定値以下となった場合に上記レーザ素子の駆動を停止する制御部とを備えた発光装置が開示されている。
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、励起光源からの励起光を発光部に照射することで発光部から非励起光を放出させ、その非励起光を照明光として利用する照明装置において、人の目に対する安全性を確保するために、発光部がずれる、あるいは励起光源の位置がずれて励起光源からの励起光が発光部に当たらなくなった場合に、該励起光が装置外部に放出されることを防止することができる発光装置、照明装置およびこの照明装置を備えた車両用前照灯、上記照明装置に備えられ、上記励起光源、上記光学部材および上記発光部の間の相対位置関係のずれを検出する位置ずれ検出装置、位置ずれ調整方法、ならびにプロジェクタを提供することにある。
 本発明に係る位置ずれ検出装置は、上記の課題を解決するために、励起光源から出射された励起光を、光学部材を通して発光部に集光し、当該発光部を発光させる発光装置における、上記励起光源、上記光学部材および上記発光部の間の相対位置関係を検知する検知手段と、上記検知手段の検知結果と、上記励起光源、上記光学部材および上記発光部の間の相対位置関係において基準とすべき基準相対位置関係とを比較し、上記励起光源、上記光学部材および上記発光部の間の、上記検知手段の検知の際における相対位置関係が、上記基準相対位置関係から、ずれているか否かを判定する判定手段とを備えることを特徴としている。
 上記構成によれば、励起光源から出射し光学部材を経由して集光された励起光を発光部に照射することにより発光する発光装置に対して、励起光源と光学部材と発光部との相対位置関係を、それらの間における基準相対位置関係からのずれを検出装置により検出することができる。例えば、発光装置が搭載される照明器具や車両の動きにより、励起光源と光学部材と発光部との相対位置関係がずれた場合でも、ずれたことを検出することができる。
 また、本発明に係る発光装置は、上記の課題を解決するために、励起光を出射する励起光源と、上記励起光源から出射された励起光を集光する光学部材と、上記光学部材により集光された励起光により発光する発光部と、上記励起光源、上記光学部材および上記発光部の間の相対位置関係におけるずれを検出する位置ずれ検出装置と、上記位置ずれ検出装置により検出されたずれを調整する位置ずれ調整装置とを備え、上記位置ずれ検出装置は、上記励起光源、上記光学部材および上記発光部の間の相対位置関係を検知する検知手段と、上記検知手段の検知結果と、上記励起光源、上記光学部材および上記発光部の間の相対位置関係において基準とすべき基準相対位置関係とを比較し、上記励起光源、上記光学部材および上記発光部の間の、上記検知手段の検知の際における相対位置関係が、上記基準相対位置関係から、ずれているか否かを判定する判定手段とを有し、上記位置ずれ調整装置は、上記位置ずれ検出装置によりずれの検出が行なわれたときに、上記励起光源、上記光学部材および上記発光部の間の相対位置関係を上記基準相対位置関係に引き戻すことにより、上記位置ずれ検出装置により検出されたずれを調整することを特徴としている。
 上記構成によれば、励起光源から出射し光学部材を経由して集光された励起光を発光部に照射することにより発光する。
 励起光源と光学部材と発光部との相対位置関係がずれた場合に、検出部によって基準相対位置関係からのずれを検出し、位置ずれ調整装置によって基準位置関係に戻される。例えば、発光装置が搭載される照明器具や車両の動きにより、励起光源と光学部材と発光部との相対位置関係がずれた場合でも、位置ずれ調整装置により再び、基準相対位置関係に戻されることになる。このため、上で述べたようなずれが生じた場合でも、励起光を所望の位置および範囲で発光部に照射し続けることが可能となる。
 それにより、励起光が所望の状態よりも集中して発光部に照射されることによる発光部の劣化を遅らせたり、輝度が極めて高くなることや、アイセーフの観点からの危険性を防いだりすることができる。ここで、アイセーフとは、人間の目に対する安全性のことを指す。また逆に、励起光が所望の状態より集中させることができず発光部に照射されることにより、輝度が低くなり所望の光学特性を得られないことも防ぐことができる。
 また、本発明に係る発光装置は、上記の課題を解決するために、励起光を出射する励起光源と、上記励起光源から出射された励起光を集光する光学部材と、上記光学部材により集光された励起光により発光する発光部と、上記励起光源、上記光学部材および上記発光部の間の相対位置関係を保持する弾性部材とを備えることを特徴としている。
 上記構成によれば、励起光源から出射し光学部材を経由して集光された励起光を発光部に照射することにより発光する。
 ここで、上記励起光源、上記光学部材および上記発光部の間の相対位置関係は、例えば、バネといった弾性部材の弾性力によって、保持されている。具体的には、励起光源と光学部材と発光部との相対位置関係がずれた場合でも、弾性部材の弾性力により、基準位置関係に戻される。このため、上で述べたようなずれが生じた場合でも、励起光を所望の位置および範囲で発光部に照射し続けることが可能となる。
 それにより、励起光が所望の状態よりも集中して発光部に照射されることによる発光部の劣化を遅らせたり、輝度が極めて高くなることや、アイセーフの観点からの危険性を防いだりすることができる。また逆に、励起光が所望の状態より集中させることができず発光部に照射されることにより、輝度が低くなり所望の光学特性を得られないことも防ぐことができる。
 また、本発明に係る位置ずれ調整方法は、上記の課題を解決するために、励起光源から出射された励起光を、光学部材を通して発光部に集光し、当該発光部を発光させる発光装置における、上記励起光源、上記光学部材および上記発光部の間の相対位置関係におけるずれを検出する位置ずれ検出工程と、上記位置ずれ検出工程にて検出されたずれを調整する位置ずれ調整工程とを含み、上記位置ずれ検出工程は、上記励起光源、上記光学部材および上記発光部の間の相対位置関係を検知する検知工程と、上記検知工程での検知結果と、上記励起光源、上記光学部材および上記発光部の間の相対位置関係において基準とすべき基準相対位置関係とを比較し、上記励起光源、上記光学部材および上記発光部の間の、上記検知工程での検知の際における相対位置関係が、上記基準相対位置関係から、ずれているか否かを判定する判定工程と、を含み、上記位置ずれ調整工程は、上記位置ずれ検出工程にてずれの検出が行なわれたときに、上記励起光源、上記光学部材および上記発光部の間の相対位置関係を上記基準相対位置関係に引き戻すことにより、上記位置ずれ検出工程にて検出されたずれを調整することを特徴としている。
 上記構成によれば、励起光源から出射し、光学部材を経由して集光された励起光を発光部に照射することにより発光する。
 励起光源と光学部材と発光部との相対位置関係のずれを、それらの間における基準相対位置関係からのずれにより検出した場合に、位置調整方法によって基準相対位置関係に戻される。例えば、発光装置が搭載される照明器具や車両の動きにより、励起光源と光学部材と発光部との相対位置関係がずれた場合でも、位置調整方法によって、基準相対位置関係に戻されることになる。このため、上で述べたようなずれが生じた場合でも、励起光を所望の位置および範囲で発光部に照射し続けることが可能となる。
 それにより、励起光が所望の状態よりも集中して発光部に照射されることによる発光部の劣化を遅らせたり、輝度が極めて高くなることを防いだりすることができる。また逆に、励起光が所望の状態より集中させることができず発光部に照射されることにより、輝度が低くなり所望の光学特性を得られないことも防ぐことができる。さらに、発光部の位置または励起光の発光方向がずれることによって、励起光が照明光として放出され、その照明光が人の目に入るという危険を防止することができる。
 また、上記発光装置を備えている照明装置、プロジェクタおよび車両用前照灯も本発明の技術的範囲に含まれる。
 また、本発明に係る照明装置は、上記の課題を解決するために、一方向に励起光を発光する励起光源と、上記励起光を受けて非励起光を発光する発光部と、上記非励起光を、上記励起光の発光方向と異なる方向である照明方向に反射させる反射部と、を備えることを特徴としている。
 上記の構成によれば、励起光源からの励起光が発光部によって非励起光に変換され、その非励起光が照明光として放出される。よって、励起光源を用いて輝度の高い照明光を得ることできる。
 また、励起光の発光方向は、照明光の照明方向と異なる方向に設定される。よって、発光部の位置または励起光の発光方向がずれて、励起光が発光部から外れても、励起光が照明方向に出射されること(すなわち、励起光が照明光として放出されること)を防止できる。
 また、上記照明装置を備えている車両用前照灯も本発明の技術的範囲に含まれる。この車両用前照灯では、励起光源が発光部に照射されなくても、周囲から車両の存在を確認することができる。
 本発明によれば、励起光源から出射された励起光を、光学部材を通して発光部に集光し、当該発光部を発光させる発光装置において、上記励起光源、上記光学部材および上記発光部の間の相対位置関係のずれを検出可能となるという効果を奏する。
 また、本発明の照明装置は、一方向に励起光を発光する励起光源と、上記励起光を受けて非励起光を発光する発光部と、上記非励起光を、上記励起光の発光方向と異なる方向である照明方向に反射させる反射部と、を備えている。
 よって、発光部の位置または励起光の発光方向がずれて、励起光が発光部から外れても、励起光が照明方向に出射されること(すなわち、励起光が照明光として放出されること)を防止できるという効果を奏する。
本発明の一実施形態に係る発光装置の構成を示す図である。 本発明の一実施形態に係る位置ずれ調整方法の処理手順を示すフローチャートである。 本発明の他の実施形態に係る発光装置の構成を示す図である。 本発明の他の実施形態に係る発光装置の構成を示す図である。 本発明の他の実施形態に係る発光装置の構成を示す図である。 マーカーの具体例を説明する模式図である。 本発明の他の実施形態に係る発光装置の構成を示す図である。 本発明の他の実施形態に係る発光装置の構成を示す図である。 本発明の他の実施形態に係る発光装置に用いられる半導体レーザ装置の構成を示す図であり、(a)は、半導体レーザ装置と発光部との位置関係を示す図であり、(b)は、半導体レーザ装置の外観を示す図である。 半導体レーザ装置の断面図である。 本発明の一実施形態に係る照明装置の構成を説明する断面図である。 図11の励起光終端部を説明する断面図である。 励起光終端部の変形例を説明する断面図である。 励起光終端部の他の変形例を説明する斜視図である。 (a)は、半導体レーザの回路図を模式的に示したものであり、(b)は、半導体レーザの基本構造を示す斜視図である。 本発明の他の実施形態に係る照明装置の構成を説明する断面図である。 発光部、金属板および励起光排出用開口部の位置関係を説明する説明図であり、(a)は、図16の矢印Xの方向から見た概念図、(b)は、発光部の、金属板の励起光排出用開口部上への配設の仕方を説明する概念図である。
 本発明の一実施形態に係る情報端末について、図面を参照して説明すれば以下のとおりである。なお、本実施形態に係る情報端末は、携帯電話機として実現されている。このため、以下では、本実施形態に係る情報端末を端的に携帯電話機と呼称する。
 ただし、本発明は、携帯電話機に限らず、セキュリティ機能を備える情報端末一般に適用することができる。
 本発明の実施の一形態について図1および図2に基づいて説明すれば、以下のとおりである。
 〔実施形態1〕
 <発光装置101の構成>
 図1は、本発明の一実施形態に係る発光装置101の概略構成を示す断面図である。図1に示すように、発光装置101は、レーザ素子(励起光源、半導体レーザ)2と、発光部3と、集光レンズ(光学部材)4と、レーザ素子支持部材(励起光源支持部材)5と、金属ベース(発光部支持部材)6と、放熱板7と、集光レンズ支持部材(光学部材支持部材)8と、反射鏡9と、位置ずれ検出装置20と、位置ずれ調整装置40と、を備えている。
 (レーザ素子2)
 レーザ素子2は、励起光を出射する励起光源として機能する発光素子である。このレーザ素子2は、複数設けられていてもよい。その場合、複数のレーザ素子2のそれぞれから励起光としてのレーザ光が発振される。
 レーザ素子2は、1チップに1つの発光点を有するものであってもよく、1チップに複数の発光点を有するものであってもよい。レーザ素子2のレーザ光の波長は、例えば、405nm(青紫色)または450nm(青色)であるが、これらに限定されず、発光部3に含める蛍光体の種類に応じて適宜選択されればよい。
 また、励起光源(発光素子)として、レーザ素子2の代わりに、発光ダイオード(LED)を用いることも可能である。
 本実施形態では、波長405nm、出力500mWの半導体レーザチップを20個並べたものを1パッケージに実装したものを用いた。
 レーザ素子2は、レーザ素子支持部材5により支持されている。具体的には、レーザ素子2は、レーザ素子支持部材5の発光部3に対向する主面であるレーザ素子支持面(励起光源支持面)5a上に配置されており、発光部3に向け、レーザ光を出射する。
 レーザ素子支持部材5は、例えば、レーザ素子2を駆動する駆動回路(図示省略)を搭載しており、この駆動回路は、レーザ素子2に駆動電流を供給し、レーザ素子2を駆動する。
 (発光部3)
 発光部3は、レーザ素子2から出射され、集光レンズ4によって集光されたレーザ光を受けて蛍光を発するものである。発光部3は、レーザ光を受けて発光する蛍光体(蛍光物質)を含んでいる。具体的には、発光部3は、封止材の内部に蛍光体が分散されているもの、または、蛍光体を押し固めたもの、または押し固めて熱処理を施したもの、または、蛍光体を堆積させて熱処理などの適切な後処理を施したものである。発光部3は、レーザ光を蛍光に変換するため、波長変換素子であると言える。
 この発光部3は、放熱板7の上かつ反射鏡9のほぼ焦点位置に配置されている。そのため、発光部3から出射した蛍光は、反射鏡9の反射曲面に反射することで、その光路が制御される。発光部3の上面および側面に励起光源からの光の反射を防止する反射防止構造が形成されていてもよい。
 なお、発光部3を焦点位置からずれた位置に配置することで、意図的に照明光の照射範囲を広げてもよいし、狭めてもよい。
 発光部3の蛍光体として、例えば、酸窒化物蛍光体(例えば、サイアロン蛍光体:SiAlON)、窒化物蛍光体(例えば、カズン蛍光体:CASN)、またはIII-V族化合物半導体ナノ粒子蛍光体(例えば、インジュウムリン:InP)を用いることができる。これらの蛍光体は、レーザ素子2から発せられた高い出力(および/または光密度)のレーザ光に対しての熱耐性が高く、レーザ照明光源に最適である。ただし、発光部3の蛍光体は、上述のものに限定されず、酸化物蛍光体や硫化物蛍光体など、その他の蛍光体であってもよい。
 この発光装置をヘッドランプとして用いるときは、ヘッドランプの照明光は、所定の範囲の色度を有する白色にしなければならないことが、法律により規定されている。そのため、発光部3には、照明光が白色となるように選択された蛍光体を含ませるようにする。
 例えば、青色、緑色および赤色の蛍光体を発光部3に含め、405nmのレーザ光を照射すると白色光が発生する。または、黄色の蛍光体(または緑色および赤色の蛍光体)を発光部3に含め、450nm(青色)のレーザ光(または、440nm以上490nm以下の波長範囲にピーク波長を有する、いわゆる青色近傍のレーザ光)を照射することでも白色光が得られる。
 発光部3の封止材は、例えば、ガラス材(無機ガラス、有機無機ハイブリッドガラス)、シリコーン樹脂等の樹脂材料である。ガラス材として低融点ガラスを用いてもよい。封止材は、励起光の波長である405nm付近の波長領域および蛍光体の発光スペクトル領域の波長領域において特に透明性の高いものが好ましく、レーザ光が高出力の場合には、耐熱性の高いものが好ましい。
 本実施形態では、蛍光体として、窒化物蛍光体であるCASN:Euおよび酸窒化物蛍光体であるCa-αSiAlON:Ceを使用し、封止材として低融点ガラスを使用した。これらを重量比で(CASN:Eu):(Ca-αSiAlON:Ce)=1:3となるように混合したものを、電気泳動により放熱板7上に堆積させ、10mm角、厚さ0.5mmの直方体の蛍光体堆積物を得た。さらにこの蛍光体堆積物の表面が覆われる程度に、低融点ガラスの粉末を被せ、低融点ガラスのガラス軟化点以上の温度で熱処理を行なうことで蛍光体堆積物を封止し、発光部を得た。
 発光部3は、放熱板7を介して金属ベース6により支持されている。具体的には、発光部3は、金属ベース6のレーザ素子2に対向する発光部支持面6a上に配置されている。発光部3は、レーザ素子2から出射されるレーザ光を受け、そのレーザ光により発光する。
 発光部支持面6aには、放熱板7を埋め込むための孔が設けられている。発光部3は、放熱板7に直接接触するように配置されている。放熱板7は、レーザ素子2から出射されたレーザ光の照射による、発光部3からの発熱を放熱する役目を担っている。
 放熱板7として銅を用いた。銅のサイズは20mm角、厚さ2mmの直方体を使用した。そして、金属ベース6として、放熱板7を埋めこむための孔を有したアルミブロックを使用した。その大きさは40mm角、厚さ5mmの直方体である。放熱板7と金属ベース6の孔との間には熱伝導性のエラストマーを充填し、レーザ光により照射された発光部3において発生した熱が放熱板7に伝導し、放熱板7に伝導した熱が金属ベース6に伝わりやすくなるようにした。さらに、孔を有している側の面は鏡面とした。
 金属ベース6の孔を有する側には、後述するようにレーザ光を照射し、反射させる必要があるため、熱に強く、レーザ光を高い反射率、少なくとも50%以上の反射率で反射する材料を使用した方がよい。また、照射位置のみ鏡面を有していればよいので、そのような条件を満たすものであれば他の材料であってもよい。
 (集光レンズ4)
 集光レンズ4は、レーザ素子2から出射したレーザ光が発光部3に円形あるいは楕円形のスポットとして照射されるように、当該レーザ光を集光するためのレンズである。
 集光レンズ4の例としては、発光部3に対する凸面を有する両凸レンズ、平凸レンズ、凸メニスカスレンズ等が例示できる。
 なお、上述した例の他、発光部3の形状またはレーザ素子2の個数、レーザ素子2から出射されるレーザ光の配光特性に応じて、任意の軸を持つ凹面および凸面を有する独立したレンズの組合せ、任意の軸を持つ凸面および凸面を有する独立したレンズの組合せなどを採用しても良い。
 これにより、発光部3の形状またはレーザ素子2の個数、レーザ素子2から出射されるレーザ光の配光特性に応じて適切なレンズの組合せを採用することで、発光部3の発光効率を高めることができる。
 また、発光部3の形状またはレーザ素子2の個数、レーザ素子2から出射されるレーザ光の配光特性に応じて、任意の軸を持つ凹面および凸面を有するレンズを一体化した複合レンズ、任意の軸を持つ凸面および凸面を有する複合レンズを一体化したレンズを一体化した複合レンズなどを採用しても良い。
 これにより、光学系全体の部品点数を少なくし、光学系全体のサイズを小さくしつつ、発光部3の形状またはレーザ素子2の個数、レーザ素子2から出射されるレーザ光の配光特性に応じて適切な複合レンズを採用することで、発光部3の発光効率を高めることができる。
 本実施形態では、直径20mmの凸レンズを用いた。
 集光レンズ4は、集光レンズ支持部材8により支持されている。集光レンズ支持部材8には開口部8aが設けられている。レーザ素子2から出射されるレーザ光は、この開口部8aを通り、集光レンズ支持部材8のレーザ素子2側から発光部3側へ進行する。集光レンズ4は、集光レンズ支持部材8の開口部8aを覆いつつ、集光レンズ支持部材8の一主面上に配置されている。発光装置101では、集光レンズ4は、集光レンズ支持部材8の発光部3に対向する主面上に配置されているが、もちろん、集光レンズ支持部材8のレーザ素子2に対向する主面上に配置されていても構わない。
 集光レンズ4は、開口部8aを通過する、レーザ素子2から出射されたレーザ光を集光し、発光部3に照射する。
 (反射鏡9)
 反射鏡9は、発光部3が発生させた蛍光を反射し、所定の立体角内を進む光線束(照明光)を形成する。
 また、反射鏡9は、発光部3に照射された励起光のうち、発光部3で反射や散乱された光も反射し、所定の立体角内を進む光線束(照明光)を形成する。ここで、照明光とは、最終的に発光装置101から放出されてくる光のことを指し、(1)発光部3から発生する蛍光のみで構成させる場合と、(2)発光部3から発生する蛍光と、発光部3に含まれる蛍光体の励起に使用されること無く、発光部3で反射や散乱された励起光と、の混色で構成される場合と、がある。この反射鏡9は、例えば、金属薄膜がその表面に形成された部材であってもよいし、そのものが金属製の部材であってもよい。
 反射鏡9は、回転軸を中心として図形(楕円、円、放物線)を回転させることによって形成される曲面の少なくとも一部をその反射面に含んでいるものであればよい。
 本実施形態では、放物線の対称軸を回転軸として当該放物線を回転させることによって形成される曲面(放物曲面)を、上記回転軸を含む平面で切断することによって得られる部分曲面をその反射面に含んでいる。
 このような形状の反射鏡9が、発光部3の、側面よりも面積の広い上面の上方にその一部が配置されている。すなわち、反射鏡9は、発光部3の上面を覆う位置に配置されている。別の観点から説明すれば、発光部3の側面の一部は、反射鏡9の開口部の方向を向いている。
 発光部3と反射鏡9との位置関係を上述のものにすることで、発光部3から発生する蛍光を狭い立体角内に効率的に投光することができ、その結果、蛍光の利用効率を高めることができる。
 また、反射鏡9には、レーザ素子2およびレーザ素子24の各々のレーザ光を透過または通過させる窓部9aおよび窓9bが形成されている。この窓部9aおよび窓9bは、開口部であってもよいし、レーザ光を透過可能な透明部材を含むものであってもよい。例えば、レーザ光を透過し、白色光(発光部3の蛍光)を反射するフィルターを設けた透明板を窓部9aおよび窓9bとして設けてもよい。この構成では、発光部3の蛍光が窓部9aおよび窓9bから漏れることを防止できる。
 (位置ずれ検出装置20)
 位置ずれ検出装置20は、検知部(検知手段)21と、判定部(判定手段)22と、記憶部23と、レーザ素子24と、コリメータレンズ25と、ビームスプリッタ(ハーフミラー)26と、集光レンズ27と、蛍光カットフィルタ(光機能フィルター)28と、レンズ29と、受光素子(受光部)30と、を有している。
 (検知部21)
 検知部21は、発光装置101における、レーザ素子2、集光レンズ4および発光部3の間の相対位置関係を検知する。検知部21は、受光素子30と接続しており、受光素子30からその受光結果を受け取る。検知部21は、その受光結果を基に、レーザ素子2、集光レンズ4および発光部3の間の相対位置関係を検知する。具体的には、検知部21は、レーザ素子2から出射されたレーザ光が所望の照射面積により発光部3に照射されるよう、レーザ素子2、集光レンズ4および発光部3の間の相対位置関係を検知する。
 ここで、この「相対位置関係」とは、例えば、発光装置101のように、レーザ素子2、集光レンズ4および発光部3がこの順に配置されている場合、レーザ素子2と集光レンズ4との間の相対距離、集光レンズ4と発光部3との間の相対距離、および、レーザ素子2と発光部3との間の相対距離、のことである。
 このような「相対位置関係」には、その基準とすべき「基準相対位置関係」が設定されている。レーザ素子2から出射し、集光レンズ4を経由して集光されたレーザ光は、発光部3に照射されるが、この「基準相対位置関係」は、発光部3に照射される照射面積を調整するための基準となる。レーザ素子2、集光レンズ4および発光部3の間の「相対位置関係」が「基準相対位置関係」である場合、レーザ素子2から出射されるレーザ光は発光部3に所望の照射面積により照射される。レーザ素子2、集光レンズ4および発光部3は、同一の光軸上に並ぶように配置されている。「基準相対位置関係」は、レーザ素子2からのレーザ光が発光部3の所望の位置および照明面積により照射される際における、「相対位置関係」となる。
 (判定部22)
 判定部22は、検知部21の検知結果と、レーザ素子2、集光レンズ4および発光部3の間の基準相対位置関係とを比較し、レーザ素子2、集光レンズ4および発光部3の間の相対位置関係が基準相対位置関係から、ずれているか否かを判定する。
 判定部22は、検知部21からその検知結果である、レーザ素子2、集光レンズ4および発光部3の間の相対位置関係を受け取ると、記憶部23に予め記憶されている、レーザ素子2、集光レンズ4および発光部3の間の基準相対位置関係を示す基準相対位置関係情報を取得する。判定部22は、記憶部23から取得した基準相対位置関係情報が示す基準相対位置関係と、検知部21の検知結果とを比較し、上記判定を行なう。
 このようにして、判定部22は上記判定を行ない、その判定結果を位置ずれ調整装置40に出力する。
 なお、判定部22の判定結果については、検知部21により検知された相対位置関係が基準相対位置関係からどの程度ずれているか、具体的なずれ量を含んでいることが好ましい。この場合、後述する位置ずれ調整装置40は、この具体的なずれ量を用いて、検知部21により検知された相対位置関係を基準相対位置関係に引き戻すために必要な調整量を決定することが可能となる。
 (記憶部23)
 記憶部23は、上述したように、レーザ素子2、集光レンズ4および発光部3の間の基準相対位置関係を示す基準相対位置関係情報を記憶する。記憶部23は、例えば、不揮発性の半導体メモリやハードディスク等を用いることができる。
 (レーザ素子24)
 レーザ素子(レーザ光源)24は、レーザ素子2と同様、レーザ素子支持部材5により支持されている。具体的には、レーザ素子24は、レーザ素子支持部材5のレーザ素子支持面5a上に配置されており、発光部3を支持する金属ベース6に向け、レーザ光を出射する。
 レーザ素子24を駆動する駆動回路(図示省略)は、例えば、レーザ素子支持部材5に搭載され、レーザ素子24に駆動電流を供給する。レーザ素子24は、この駆動電流により、レーザ光を出射する。
 レーザ素子2とレーザ素子24とは共に、レーザ素子支持部材5に支持されており、これにより、レーザ素子2とレーザ素子24とは、お互いに独立して動くことはない。
 (コリメータレンズ25)
 コリメータレンズ25は、レーザ素子24から出射されたレーザ光を平行光に変換する。レーザ素子24から出射されたレーザ光は、コリメータレンズ25に入射すると、平行光に変換され、ビームスプリッタ26に入射する。
 (ビームスプリッタ26)
 ビームスプリッタ26は、コリメータレンズ25から出射された平行光が入射されると、そのまま透過し、集光レンズ27に向け、出射する。
 また、ビームスプリッタ26は、後述するように、金属ベース6から反射する反射光が入射されると、そのまま透過することなく、受光素子30に向け、反射する。
 (集光レンズ27)
 集光レンズ27は、集光レンズ4と同様、集光レンズ支持部材8により支持されている。集光レンズ支持部材8にはさらに、開口部8bが設けられている。レーザ素子24から出射されるレーザ光は、この開口部8bを通り、集光レンズ支持部材8のレーザ素子24側から金属ベース6側へ進行する。集光レンズ27は、集光レンズ支持部材8の開口部8bを覆いつつ、集光レンズ支持部材8の一主面上に配置されている。発光装置101では、集光レンズ27は、集光レンズ支持部材8の金属ベース6に対向する主面上に配置されているが、もちろん、集光レンズ支持部材8のレーザ素子24に対向する主面上に配置されていても構わない。
 集光レンズ27は、開口部8bを通過する、レーザ素子24から出射されたレーザ光を集光し、金属ベース6に照射する。金属ベース6に照射されたレーザ光は、金属ベース6の発光部支持面6aにより反射し(図1のAで示す箇所)、集光レンズ27に向け、進行する。発光部支持面6aから反射したレーザ光は、集光レンズ27および開口部8bをこの順に通過し、ビームスプリッタ26に入射する。ビームスプリッタ26は、集光レンズ27から出射されたレーザ光が入射されると、受光素子30に向け、出射する。
 集光レンズ4と集光レンズ27とは共に、集光レンズ支持部材8により支持されており、これにより、集光レンズ4と集光レンズ27とは、お互いに独立して動くことはない。すなわち、集光レンズ4、集光レンズ27および集光レンズ支持部材8のうちのいずれかの1つが動いたとき、その1つと連動し、他の2つも動く。このため、それぞれが独立して動くことはない。
 (蛍光カットフィルタ28)
 蛍光カットフィルタ28は、発光部3から発光された蛍光を遮断し、且つ、金属ベース6から反射したレーザ光を透過するフィルターである。蛍光カットフィルタ28は、図1に示すように、受光素子30がレーザ光を受光する受光面側に配置されている。言い換えれば、蛍光カットフィルタ28は、ビームスプリッタ26から受光素子30に向かうレーザ光の光軸上に配置されている。こうすることにより、後述する反射鏡9の窓9aや窓9bから漏れ出す蛍光が受光素子30に入射しないようにすることができるため、受光素子30の誤動作を防止することができる。
 (レンズ29)
 レンズ29は、蛍光カットフィルタ28を通過したレーザ光を受光素子30に集光するためのものである。
 (受光素子30)
 受光素子30は、レンズ29から出射されたレーザ光が照射される。このレーザ光は、受光素子30の受光面に光スポットを形成する。受光素子30は、例えば、4つのフォトディテクタを用いており、各々の受光面に照射されたレーザ光を受光する。
 受光素子30は、このようにして受光したレーザ光の強度分布を検知部21に出力する。検知部21は、受光素子30から出力された強度分布を用いて、レーザ素子24、集光レンズ27および金属ベース6(の図1のAで示す箇所)の間における相対位置関係を検知する。
 ここで、位置ずれ検出装置20の、レーザ素子24、集光レンズ27および金属ベース6の間における相対位置関係と、レーザ素子2、集光レンズ4および発光部3の間における相対位置関係とは、同一のものとなる。なぜなら、レーザ素子2とレーザ素子24とは共に、同一のレーザ素子支持部材5により支持されており、集光レンズ4と集光レンズ27とは共に、同一の集光レンズ支持部材8により支持されており、発光部3は、金属ベース6により支持されているからである。すなわち、レーザ素子2が動けば、位置ずれ検出装置20のレーザ素子24も同じだけ同じ方向に動く。集光レンズ4が動けば、位置ずれ検出装置20の集光レンズ27も同じだけ同じ方向に動く。発光部3が動くということは、金属ベース6が動くことを意味する。
 このようにして検知部21は、受光素子30から出力されたレーザ光の強度を用いて、間接的に、レーザ素子2、集光レンズ4および発光部3の間における相対位置関係を検知することができる。
 (基準相対位置関係)
 基準相対位置関係は、例えば、受光素子30の受光面における、光スポットの径が、ある大きさの場合における、レーザ素子2、集光レンズ4および発光部3の間における相対位置関係とすればよい。検知部21は、相対位置関係として、光スポットの径の大きさを検知する。判定部22は、その光スポットの径の大きさが、基準相対位置関係にある場合における光スポットの径の大きさから変化したとき、基準相対位置関係からのずれがあると判定すればよい。
 また、基準相対位置関係は、3つ以上の対象間の相対位置を対象にしている。このため、それら3つの基準相対位置関係における基準位置は1つに限らず、複数あってもよい。換言すれば、レーザ素子2からのレーザ光が、ある照射面積で発光部3に照射されるためには、レーザ素子2、集光レンズ4および発光部3の間における相対位置関係は、一通りには限らない。
 この基準相対位置関係から、何らかの衝撃により、レーザ素子2、集光レンズ4および発光部3のうちの一部品でも動き、それら2つの間における相対位置関係が基準相対位置関係からずれた場合、後述するように、位置ずれ調整装置40により、相対位置関係が基準相対位置関係に引き戻される。
 (位置ずれ調整装置40)
 位置ずれ調整装置40は、アクチュエータ駆動回路41と、アクチュエータ42と、連結部材43と、を有している。
 (アクチュエータ駆動回路41)
 アクチュエータ駆動回路41は、位置ずれ検出装置20の判定部22から判定結果を取得する。アクチュエータ駆動回路41は、この判定結果の取得により、レーザ素子2、集光レンズ4および発光部3の間における相対位置関係が基準相対位置関係からずれたことを認識する。
 アクチュエータ駆動回路41は、判定部22の判定結果に含まれるずれ量を抽出する。このずれ量から、アクチュエータ駆動回路41は、アクチュエータ42および連結部材43から構成された移動機構44による移動を駆動するための駆動信号を生成する。この駆動信号は、移動機構44による移動量を指示するためのものである。移動機構44は、この駆動信号により、その移動量を決定する。なお、移動量とは、移動機構44により、集光レンズ支持部材8が移動する量のことであり、水平方向における移動、および、鉛直方向における移動、のいずれであっても構わない。
 (アクチュエータ42および連結部材43)
 アクチュエータ42は、電磁力により、その位置が変位する駆動機構を有し、連結部材43を介し、集光レンズ支持部材8に連結されている。アクチュエータ42は、連結部材43を用いて、集光レンズ支持部材8を移動させることができる。すなわち、上述したように、アクチュエータ42および連結部材43は、集光レンズ支持部材8を移動させるための移動機構44を構成している。
 アクチュエータ42は、アクチュエータ駆動回路41からの駆動信号を基に、集光レンズ支持部材8の移動量を決定し、その移動量に従い、集光レンズ支持部材8を移動させる。
 集光レンズ支持部材8の移動により、集光レンズ4も移動する。つまり、集光レンズ4の焦点位置も変位する。集光レンズ4の焦点位置を変化させることで、発光部3に照射されるレーザ光の照射面積を変化させることができる。
 なお、集光レンズ27は、金属ベース6で焦点が合うように動くが、集光レンズ4は発光部3で焦点が合うことを避けなければならない。言い換えると、発光部3での焦点がずれ、所望の照射面積になる場合の集光レンズ4の位置において、金属ベース6で焦点が合うように集光レンズ27の位置を設定しなければならない。
 ここで、アクチュエータ42が動く手段として電磁力を用いているがこれに限られるわけではない。位置ずれ検出装置20が位置ずれを検出したときに、集光レンズ4を支持する集光レンズ支持部材8を動かすことにより、発光部3に照射されるレーザ光を所望の照射面積にできるような速さで動く手段であればよい。例えばその他の手段としてはモータが挙げられる。
 (発光装置101の動作原理)
 レーザ素子2から出射されたレーザ光は、集光レンズ支持部材8に設けられた開口部8aを通り、集光レンズ4に入射する。集光レンズ4を通過することにより、発光部3で所望のビーム形状になるように成形される。レーザ光は、集光レンズ4を通過した後、反射鏡9に設けられた、レーザ光を透過または通過させるための窓9aを通って、発光部3を照射する。発光部3は、放熱板7の上に配置されており、放熱板7は金属ベース6に設置されている。
 レーザ光が照射されると、発光部3から蛍光が放射される。しかし、一部のレーザ光は、発光部3で反射、散乱される。また、発光部3に照射されたレーザ光のうち、蛍光に変換されなかった一部のレーザ光は熱に変換され、この発生した熱の一部は放熱板7、金属ベース6の順に伝導する。これにより、発光部3の放熱が行われる。
 なお、発光部3に照射されたレーザ光は、発光部3により蛍光に変換されたり、発光部3で反射、散乱したりするが、これらの光を混合することで最終的に所望の照明光を得ることができる。
 (位置ずれ調整方法)
 図2は、位置ずれ検出装置20および位置ずれ調整装置40による位置ずれ調整方法の処理手順を示すフローチャートである。
 図2に示すように、まず、位置ずれ検出装置20の検知部21は、レーザ素子2、集光レンズ4および発光部3の間の相対位置関係を検知する(ステップS101;検知工程)。
 次に、位置ずれ検出装置20の判定部22は、検知部21から検知結果を受け取ると、記憶部23から基準相対位置関係を示す基準相対位置関係情報を取得する(ステップS102)。
 次に、判定部22は、検知部21の検知結果である、レーザ素子2、集光レンズ4および発光部3の間の相対位置関係と、記憶部23から取得した基準相対位置関係情報が示す基準相対位置関係とを比較する(ステップS103)。そして、判定部22は、その比較結果から、レーザ素子2、集光レンズ4および発光部3の間の相対位置関係が、基準相対位置関係からずれているか否かを判定する(ステップS104;判定工程)。
 次に、位置ずれ調整装置40のアクチュエータ駆動回路41は、判定部22から判定結果を受け取ると、その判定結果に含まれる、具体的なずれ量を抽出する。そして、アクチュエータ駆動回路41は、そのずれ量を用いて、検知部21により検知された相対位置関係を基準相対位置関係に引き戻すために必要な調整量(引き戻し量)を算出する(ステップS105)。本ステップS105において、アクチュエータ駆動回路41は、その調整量を指示する駆動信号をアクチュエータ42に出力する。
 次に、位置ずれ調整装置40のアクチュエータ42は、アクチュエータ駆動回路41からの駆動信号により連結部材43を移動させる。その移動により、集光レンズ支持部材8を移動させ、そうすることにより、レーザ素子2、集光レンズ4および発光部3の間の相対位置関係を基準相対位置関係に引き戻し、相対位置関係の調整を実行する(ステップS106;位置ずれ調整工程)。
 このようにして、位置ずれ検出装置20および位置ずれ調整装置40による位置ずれ調整方法が終了する。
 (発光装置101の効果)
 発光部3へのレーザ光照射面積を一定にでき、発光部3からの蛍光の強度が時間に対して変化しないため、照明光のちらつき(フリッカー)を防止することができる。したがって、人の目を疲れにくくすることができる。
 〔実施形態2〕
 本発明の他の実施形態について図3に基づいて説明すれば、以下のとおりである。図3は、本発明の実施形態2に係る発光装置102の概略構成を示す断面図である。なお、実施形態1と同様の部材に関しては、同じ符号を付し、その説明を省略する。
 発光装置102は、図3に示すように、発光部3と、放熱板7と、レーザ素子支持部材10と、金属ベース11と、集光レンズ支持部材12と、反射鏡13と、位置ずれ検出装置20aと、位置ずれ調整装置40と、を備えている。
 発光装置102が発光装置101と異なる点は、発光装置101のレーザ素子2およびレーザ素子24を1つのレーザ素子24aにより兼ねている点である。なお、レーザ素子支持部材10がレーザ素子支持部材5と異なる点は、1つのレーザ素子24aのみを支持する点である。金属ベース11が金属ベース6と異なる点は、金属ベース11の発光部支持面11aにレーザ光が照射されない点である。集光レンズ支持部材12が集光レンズ支持部材8と異なる点は、1つの集光レンズ27のみを支持する点である。反射鏡13が反射鏡9と異なる点は、1つのレーザ素子24aからのレーザ光を透過または通過する1つの窓13aのみを有する点である。
 発光装置102は、発光部3の発光に寄与するレーザ光を出射するレーザ素子と、位置ずれ検出装置20aが用いるレーザ光を出射するレーザ素子とを、1つのレーザ素子24aにより兼ねており、発光部3の発光に寄与せず、発光部3から反射したレーザ光を位置ずれ検出装置20aが用いる機構である。
 レーザ素子24aから出射されたレーザ光は、コリメータレンズ25により所望の形状になるように成形された後、ビームスプリッタ26を透過し、集光レンズ支持部材12に設けられた開口部12aを通って、集光レンズ27に入射する。
 集光レンズ27に入射した、レンズ素子24aのレーザ光は、発光部3に照射される。発光部3の発光に寄与せず、発光部3から反射したレーザ光は、集光レンズ27に入射後、ビームスプリッタ26で反射し、蛍光カットフィルタ28に入射する。
 蛍光カットフィルタ28を透過したレーザ光は、レンズ29に入射し、レンズ29により非点収差を付与され、受光素子30上に光スポットを形成する。受光素子30は、4つの各受光面に照射された光スポットを受光する。
 ここで、発光装置102においては、焦点を合わさずに発光部3での照射面積を所望の照射面積に保つことが目的であるため、受光素子30の4つの各受光面に照射された光スポットの強度分布は、焦点がずれた位置を示す強度分布を基準位置としなければならない。そのような基準位置を予め設定しておくことにより、基準位置に戻すような制御を行なうことができる。
 (発光装置102の効果)
 本実施形態においては、2つのレーザ素子を用意する必要がなくなり、製造工程や費用、さらには装置全体の大きさを抑えることができる。
 〔実施形態3〕
 本発明の他の実施形態について図4に基づいて説明すれば、以下のとおりである。図4は、本発明の実施形態3に係る発光装置103の概略構成を示す断面図である。発光装置103が、発光装置101や発光装置102と異なる点は、位置ずれ検出装置20および位置ずれ調整装置40や、実施形態2の位置ずれ検出装置20aおよび位置ずれ調整装置40に代えて、バネ等の弾性部材52および弾性部材53を用いた点である。
 発光装置103では、レーザ素子支持部材10と集光レンズ支持部材12との間に弾性部材52が接続されており、集光レンズ支持部材12と金属ベース51との間に弾性部材53が接続されている。
 弾性部材52は、レーザ素子支持部材10と集光レンズ支持部材12との間の相対位置関係を一定に保持する。同様に、弾性部材53は、集光レンズ支持部材12と金属ベース51との間の相対位置関係を一定に保持する。
 このため、実施形態1や実施形態2よりも簡素な構成により、発光部3へのレーザ光照射面積を一定にすることができる。
 〔実施形態4〕
 本発明の他の実施形態について図5に基づいて説明すれば、以下のとおりである。図5は、本発明の実施形態4に係る発光装置104の概略構成を示す断面図である。なお、実施形態1~3と同様の部材に関しては、同じ符号を付し、その説明を省略する。
 図5に示すように、発光装置104は、レーザ素子2と、発光部3と、集光レンズ4と、レーザ素子支持部材15と、金属ベース6と、放熱板7と、集光レンズ支持部材16と、反射鏡14と、位置ずれ検出装置20bと、位置ずれ調整装置40bと、を備えている。
 位置ずれ検出装置20bは、検知部21bと、判定部22bと、記憶部23bと、カメラ31と、カメラ32と、マーカー33と、マーカー34と、を有している。
 カメラ31は、集光レンズ支持部材16により支持されている。具体的には、カメラ31は、集光レンズ支持部材16に嵌め込まれており、反射鏡14のマーカー固定部14b上に配置されたマーカー33を撮像する。
 カメラ31は、例えば、CCDカメラを用いることができる。CCDカメラは、デジタルカメラ等のピント調整で用いられているパッシブ型のオートフォーカス機能を備えていてもよい。
 マーカー33は、上で述べたように、反射鏡14のマーカー固定部14b上に配置されている。マーカー33はさらに、カメラ31の撮像領域に含まれている。ここで、反射鏡14と金属ベース6とは、お互いからの位置がずれないように、予め固定されている。例えば、反射鏡14と金属ベース6とを一体化してもよいし、両者を他の同一の部材に固定しておいてもよい。これにより、マーカー33と発光部3との相対位置関係が固定される。
 カメラ31は、マーカー33を撮像し、その撮像結果を検知部21bに出力する。検知部21bは、カメラ31から出力された撮像結果を用いて、カメラ31とマーカー33との相対位置関係を検知する。
 上述したように、マーカー33と発光部3との相対位置関係は固定されている。したがって、カメラ31とマーカー33との相対位置関係から、カメラ31と発光部3との相対位置関係を導出することができる。一方、カメラ31は、集光レンズ支持部材16に固定されており、カメラ31と集光レンズ4との相対位置関係も固定されている。カメラ31とマーカー33との相対位置関係から、集光レンズ4とマーカー33との相対位置関係を導出することができる。
 すなわち、検知部21bは、これらのことから、カメラ31の撮像結果を用いて、集光レンズ4と発光部3との相対位置関係を導出することができる。
 カメラ32は、レーザ素子支持部材15により支持されている。具体的には、カメラ32は、レーザ素子支持部材15に嵌め込まれており、集光レンズ支持部材16上の配置されたマーカー34を撮像する。
 カメラ32は、カメラ31と同様、例えば、CCDカメラを用いることができる。CCDカメラは、デジタルカメラ等のピント調整で用いられているパッシブ型のオートフォーカス機能を備えていてもよい。
 マーカー34は、上で述べたように、集光レンズ支持部材16上に配置されている。マーカー34はさらに、カメラ32の撮像領域に含まれている。ここで、集光レンズ4は、集光レンズ支持部材16に嵌め込まれている。これにより、マーカー34と集光レンズ支持部材16との相対位置関係が固定される。
 カメラ32は、マーカー34を撮像し、その撮像結果を検知部21bに出力する。検知部21bは、カメラ32から出力された撮像結果を用いて、カメラ32とマーカー34との相対位置関係を検知する。
 マーカー34と集光レンズ4との相対位置関係は固定されている。したがって、カメラ32とマーカー34との相対位置関係から、カメラ32と集光レンズ4との相対位置関係を導出することができる。一方、カメラ32は、レーザ素子支持部材15に固定されており、カメラ32とレーザ素子2との相対位置関係も固定されている。カメラ32とマーカー34との相対位置関係から、レーザ素子2とマーカー34との相対位置関係を導出することができる。
 すなわち、検知部21bは、これらのことから、カメラ32の撮像結果を用いて、レーザ素子2と集光レンズ4との相対位置関係を検知することができる。
 図6(a)および(b)に、マーカー33およびマーカー34の一例を示す。カメラ31およびカメラ32は、例えば、これらマーカー33およびマーカー34に描かれている、白色部分と黒色部分とを撮像し、それらの間におけるコントラストの強度分布を、検知部21bに出力する。
 検知部21bは、発光装置104における、レーザ素子2、集光レンズ4および発光部3の間の相対位置関係を検知する。検知部21bは、カメラ31およびカメラ32と接続しており、上述したように、カメラ31の撮像結果およびカメラ32の撮像結果を、それぞれ、受け取る。検知部21bは、それらの撮像結果を基に、レーザ素子2、集光レンズ4および発光部3の間の相対位置関係を検知する。具体的には、検知部21は、レーザ素子2から出射されたレーザ光が所望の照射面積により発光部3に照射されるよう、レーザ素子2、集光レンズ4および発光部3の間の相対位置関係を検知する。
 判定部22bは、検知部21bの検知結果と、レーザ素子2、集光レンズ4および発光部3の間の基準相対位置関係とを比較し、レーザ素子2、集光レンズ4および発光部3の間の相対位置関係が基準相対位置関係から、ずれているか否かを判定する。
 位置ずれ調整装置40bは、アクチュエータ駆動回路41bと、アクチュエータ42bと、連結部材43b1と、連結部材43b2と、を有している。
 アクチュエータ駆動回路41bは、判定部22bの判定結果に含まれるずれ量を抽出する。このずれ量から、アクチュエータ駆動回路41bは、アクチュエータ42b、連結部材43b1および連結部材43b2から構成された移動機構44bによる移動を駆動するための駆動信号を生成する。ここで、連結部材43b1は、アクチュエータ42bとレーザ素子支持部材15とを連結するものであり、連結部材43b2は、アクチュエータ42bと集光レンズ支持部材16とを連結するものである。したがって、この駆動信号は、移動機構44bによる移動量、すなわち、レーザ素子支持部材15および集光レンズ支持部材16の各々が移動する量を示す信号である。そして、その移動方向は、各々の、水平方向における移動、および、鉛直方向における移動、のいずれであっても構わない。
 なお、本実施形態では、位置ずれ検出装置20bは、レーザ素子2、集光レンズ4および発光部3の間の相対位置関係の、基準相対位置関係からのずれを検出し、次に、位置ずれ調整装置40bは、位置ずれ検出装置20bの検出結果を用いて、レーザ素子2、集光レンズ4および発光部3の間の相対位置関係を基準相対位置関係に引き戻している。
 ここで、位置ずれ調整装置40bは、単に一回のみの引き戻し動作により、レーザ素子2、集光レンズ4および発光部3の間の相対位置関係を、基準相対位置関係に回復させる必要はない。例えば、複数回の引き戻し動作により、徐々に、基準相対位置関係に近づけていけばよい。そして、位置ずれ検出装置20bが位置ずれを検出しなくなるまで、複数回の引き戻し動作を行なえばよい。この場合、位置ずれ検出装置20bは、位置ずれ調整装置40bが引き戻し動作を行なう毎に、ずれを検出することになる。
 このような形態は、例えば、デジタルカメラ等のピント調整で用いられるパッシブ型のオートフォーカス機能、すなわち、実際に動かしてみて、ピントが合った点で動作を止めるカメラのピント合わせの如く実行される形態である。
 〔実施形態5〕
 本発明の実施形態5は、反射型の発光装置に係る実施形態1を、透過型の発光装置に適用した形態である。以下、実施形態1と異なる点を説明する。
 本発明の実施形態5について図7に基づいて説明すれば、以下のとおりである。図7は、本発明の実施形態5に係る発光装置105の概略構成を示す断面図である。なお、実施形態1~4と同様の部材に関しては、同じ符号を付し、その説明を省略する。
 図7に示すように、発光装置105は、レーザ素子2と、集光レンズ71と、光ファイバー72と、フェルール(光学部材)73と、発光部3と、レーザ素子支持部材17と、フェルール支持部材18と、発光部支持部材19と、位置ずれ検出装置20cと、位置ずれ調整装置40cと、を備えている。
 光ファイバー72は、レーザ素子2が発振したレーザ光を発光部3へと導く導光部材であり、複数の光ファイバーの束である。この光ファイバー72は、例えば、集光レンズ71を通して、レーザ素子2からレーザ光が入射される。光ファイバー72の先端は、フェルール73により保持され、フェルール支持部材18に支持されている。
 発光部3は、レーザ光を透過する透過部材を用いた発光部支持部材19により支持されている。光ファイバー72の先端から出射されたレーザ光は、発光部支持部材19を透過し、発光部3に照射される。
 位置ずれ検出装置20cは、検知部21cと、判定部22cと、記憶部23cと、レーザ素子24cと、コリメータレンズ25cと、ビームスプリッタ(ハーフミラー)26cと、受光素子30cと、反射部材35と、を有している。レーザ素子24cから出射されたレーザ光は、コリメータレンズ25cを通過し、ビームスプリッタ26cに入射する。ビームスプリッタ26cから出射されたレーザ光は、反射部材35に向かい、反射部材35により反射された後、ビームスプリッタ26cを通過し、受光素子30cに照射される。
 レーザ素子24cは、フェルール支持部材18に嵌め込まれており、一方、反射部材35は、発光部支持部材19に固定されている。位置ずれ検出装置20cは、このレーザ素子24cと反射部材35との相対位置関係を検知することにより、フェルール支持部材18により支持されたフェルール73、すなわち、光ファイバー72の先端と、発光部支持部材19により支持された発光部3との相対位置関係を検知する。
 〔実施形態6〕
 本発明の実施形態6は、反射型の発光装置に係る実施形態4を、透過型の発光装置に適用した形態である。以下、実施形態4と異なる点を説明する。
 本発明の実施形態6について図8に基づいて説明すれば、以下のとおりである。図8は、本発明の実施形態6に係る発光装置106の概略構成を示す断面図である。なお、実施形態1~5と同様の部材に関しては、同じ符号を付し、その説明を省略する。
 図8に示すように、発光装置106は、レーザ素子2と、集光レンズ71と、光ファイバー72と、フェルール73と、発光部3と、レーザ素子支持部材17と、フェルール支持部材18と、発光部支持部材19aと、位置ずれ検出装置20dと、位置ずれ調整装置40dと、を備えている。
 位置ずれ検出装置20dは、検知部21dと、判定部22dと、記憶部23dと、カメラ31dと、マーカー33dと、を有している。
 カメラ31dは、フェルール支持部材18に嵌め込まれており、一方、マーカー33dは、発光部支持部材19aに固定されている。位置ずれ検出装置20dは、このカメラ31dとマーカー33dとの相対位置関係を検知することにより、フェルール支持部材18により支持されたフェルール73、すなわち、光ファイバー72の先端と、発光部支持部材19aにより支持された発光部3との相対位置関係を検知する。
 上記の実施形態1~6では、位置ずれ検出装置および位置ずれ調整装置を備えた発光装置について記載したが、位置ずれ検出装置および位置ずれ調整装置を発光装置から独立させてもよい。その場合は、位置ずれ検出装置および位置ずれ調整装置をそれぞれ、発光装置から脱着可能な形態とすればよい。
 〔本発明における集光の定義〕
 上記の実施形態1~6では、例えば、図1に示すように、レーザ素子2から出射されたレーザ光は、集光レンズ4を通過することにより、発光部3に向かって収束(集束、収斂)しつつ、発光部3に照射されている。すなわち、集光レンズ4は、レーザ素子2から出射された光を発光部3に向けて収束させるものであった。したがって、上記の実施形態1~6においては、集光レンズ4の「集光」は、「光を狭める」、言い換えれば、「一点に集める」という意義を持つと言える。
 しかしながら、本発明における「集光」の意義は、このような「光を狭める」や「一点に集める」に限られるものではない。本発明における「集光」の意義は、要は、「所望の照射領域に光が照射されるようにする」ことのみであり、上で述べたような、「光を狭める」や「一点に集める」といった意義のみならず、「光を広げる」、より具体的には、「一点から広げる」といった意義や、「光の進行方向を変化させない」といった意義も含むものである。以下、後者の意義について、具体例を説明する。
 例えば、図9に、本発明に好適な半導体レーザ装置を示す。図9(a)は、半導体レーザ装置81と発光部3との位置関係を示す図であり、図9(b)は、半導体レーザ装置81の外観図である。また、図10は、図9(b)の半導体レーザ装置81の断面図である。
 図9(a)に示すように、半導体レーザ装置81は、発光部3に向かって、レーザ光を出射し、そのレーザ光が発光部3に照射される。半導体レーザ装置81は、図9(b)に示すように、レーザ光の出射方向側にキャップガラス84を備えており、このキャップガラス84を通して、半導体レーザ装置81の外部にレーザ光を出射する。
 図9(b)および図10に示すように、半導体レーザ装置81は、ステム82とキャップ83とからなるパッケージ内に、半導体レーザ素子87が封入されている。キャップ83の開口部には上述のキャップガラス84が融着されており、キャップガラス84は、半導体レーザ素子87から出射されるレーザ光をキャップ83の外部に取り出す機能を有している。そして、キャップガラス84およびキャップ83によって、パッケージ内に半導体レーザ素子87が気密封止されている。
 半導体レーザ素子87は、後述のヒートシンク88と共に、ステム82上に配置されたレーザ素子保持部材86に埋め込まれ、装填されている。レーザ素子保持部材86は、ステム82上に固定されており、半導体レーザ素子87とキャップガラス84との距離を一定に維持する。これにより、半導体レーザ素子87から出射されたレーザ光はキャップガラス84に確実に入射する。
 半導体レーザ素子87は、そのレーザ光出射面側を除き、金属等の高熱伝導材料を用いたヒートシンク88に取り囲まれている。このヒートシンク88を通して、半導体レーザ素子87が発する熱は、レーザ素子保持部材86側に効率よく放熱される。
 ステム82には、2本のリード85が取り付けられており、それら2本のリード85を用いて、半導体レーザ素子87を駆動させるための駆動電流が半導体レーザ装置81の外部から供給されている。なお、図10に示すように、2本のリード85は、配線、レーザ素子保持部材86およびヒートシンク88を通して、レーザ素子保持部材86に装填された半導体レーザ素子87の2つの電極に、それぞれ電気的に接続されている。
 このような半導体レーザ装置81では、キャップガラス84は、本発明の「光学部材」の一例であり、半導体レーザ素子87は、本発明の「励起光源」の一例である。この場合、半導体レーザ素子87から出射されたレーザ光は、キャップガラス84により集光され、発光部3に照射される、と言える。
 半導体レーザ素子87から出射されたレーザ光は、半導体レーザ素子87の配向特性に従い、ある広がり角をもってキャップガラス84に入射する。キャップガラス84は、自身に入射したレーザ光をほぼ広げることなく、出射する。
 より具体的には、半導体レーザ素子87から出射されたレーザ光は、キャップガラス84に入射する際、キャップガラス84の界面において、キャップガラス84とその周囲の気体(例えば、キャップ83内に封入された乾燥空気)のそれぞれの屈折率に応じて屈折し、その広がり角度が変化する。キャップガラス84内では、レーザ光は、その広がり角度を維持しつつ、進行する。
 このレーザ光は、キャップガラス84内を進行し、キャップガラス84から出射する際、再び、キャップガラス84の界面において、キャップガラス84とその周囲の気体のそれぞれの屈折率に応じて屈折し、その広がり角度が再び変化する。
 半導体レーザ装置81においては、半導体レーザ素子87から出射された後、このような2度にわたる広がり角度の変化を経たレーザ光が、図9に示したように、発光部3に照射される。
 すなわち、ここでの「集光」の意義は、上記実施形態1~6の場合のような、「光を狭める」や「一点に集める」というものではない。上述したような、「光を広げる」、「一点から広げる」、そして、「光の進行方向を変化させない」といった意義となる。
 このようにして、本発明における「集光」の意義は、「所望の照射領域に光が照射されるようにする」ということであると言える。
 〔発光装置のその他の構成例〕
 本発明の発光装置は、車両用前照灯や、その他の照明装置に適用されてもよい。本発明の照明装置の一例として、ダウンライトを挙げることができる。ダウンライトは、家屋、乗物などの構造物の天井に設置される照明装置である。その他にも、本発明の照明装置は、車両および他の移動物体(例えば、人間・船舶・航空機・潜水艇・ロケットなど)のヘッドランプとして実現されてもよいし、サーチライト、プロジェクタ、ダウンライト以外の室内照明器具(スタンドランプなど)として実現されてもよい。特に、プロジェクタが振動のあるような環境(例えば、車のような移動体)の中で使用される場合、そのプロジェクタの光源である発光装置に本発明を適用することは、非常に有効である。
 発光部への励起光照射面積を一定にでき、発光部からの蛍光の強度が時間に対して変化しないため、照明光を対象物に照射した時のスペックルの発生を抑制できるとともに、照明光のちらつきを防止することができる。したがって、人の目が疲れにくくすることができる。
 〔実施形態7〕
 以下、本発明の実施形態について、詳細に説明する。
 (1.構成)
 本発明の照明装置に関する実施の一形態について、図11および図12に基づいて説明すれば以下のとおりである。
 本発明の照明装置201は、例えば自動車用の走行用前照灯(ハイビーム)の配光特性基準を満たすヘッドランプに利用可能である。ただし、本発明の照明装置は、自動車用のすれ違い用前照灯(ロービーム)の配光特性基準を満たすヘッドランプ、および、自動車以外の車両・移動物体(例えば、人間・船舶・航空機・潜水艇・ロケットなど)のヘッドランプとして実現されてもよい。また、その他の照明装置として、例えば、サーチライト、プロジェクタ、家庭用照明器具、店舗用照明器具、オフィス用照明器具、さらに、屋外照明器具として実現されてもよい。
 この照明装置201は、図11に示すように、励起光C1を発光する励起光源203と、励起光C1を受けて非励起光C3を発光する発光部205と、補助照明光C2を発光する補助照明光源207と、非励起光C3および補助照明光C2からなる照明光C4を所定の照明方向Hに照射させるリフレクタ(反射部)209と、励起光源203からの励起光C1を終端させる励起光終端部211と、励起光C1が照明装置201の外部に漏れることを防止するための励起光カットフィルタ213とを備えている。
 (リフレクタ209)
 リフレクタ209(反射部)は、中心線L1回りに回転対称な放物面状に形成されている。リフレクタ209の内面209aは、放物面状の反射面(放物反射面)になっている(以後、放物反射面209aとも呼ぶ)。リフレクタ209の中心線L1方向の一端側は開放されており、照明光C4を外部に出射する照明光用開口部209bになっている。すなわち、このリフレクタ209では、放物反射面209aによって、発光部205からの光C2およびC3を照明方向Hに反射させて開口部209bから外部に放出させる。なお、照明方向Hは、中心線L1に平行である。リフレクタ209の部材は、例えば、金属薄膜がその表面に形成された部材であってもよいし、金属製の部材であってもよく、照明光C4の波長範囲における反射率が高い部材であることが好ましい。
 (発光部205)
 発光部205は、リフレクタ209の内部(例えば焦点位置)に配置される。発光部205は、例えば、励起光源203からの励起光C1を受けて励起されて蛍光(非励起光)C3を発する蛍光体(不図示)と、上記蛍光体を封止する蛍光体保持物質(不図示)とから構成される。上記蛍光体保持物質は、無機材料であることが好ましい。
 より詳細には、発光部205は、蛍光体保持物質としての低融点ガラスの内部に蛍光体が分散されているものである。低融点ガラスと蛍光体との割合は、10:1程度である。また、発光部205は、蛍光体を適切な処理により固めたものであってもよく、例えば、蛍光体を押し固めて熱処理を加えたものであってもよい。蛍光体保持物質は、低融点ガラスに限定されず、有機無機ハイブリッドガラス(HBG)や無機ガラス、シリコーン樹脂であってもよい。
 上記蛍光体は、例えば、酸窒化物系、または窒化物系のものであり、青色、緑色および赤色の蛍光体が低融点ガラスに分散されている。励起光源203は、後述のように例えば半導体レーザとして構成されており、405nm(青紫色)のレーザ光を発振するため、発光部205に当該レーザ光が照射されると白色光が発生する。それゆえ、発光部205は、波長変換材料であるといえる。
 なお、上記半導体レーザは、上述したように450nm(青色)のレーザ光(または、440nm以上490nm以下の波長範囲にピーク波長を有する、いわゆる青色近傍のレーザ光)を発振するものでもよく、この場合には、上記蛍光体は、黄色の蛍光体、または緑色の蛍光体と赤色の蛍光体との混合物である。黄色の蛍光体とは、560nm以上590nm以下の波長範囲にピーク波長を有する光を発する蛍光体である。緑色の蛍光体とは、510nm以上560nm以下の波長範囲にピーク波長を有する光を発する蛍光体である。赤色の蛍光体とは、600nm以上680nm以下の波長範囲にピーク波長を有する光を発する蛍光体である。
 上記蛍光体のうちの例えば緑色の蛍光体は、サイアロンと通称されるものを用いることができる。サイアロンとは、窒化ケイ素のシリコン原子の一部がアルミニウム原子に、窒素原子の一部が酸素原子に置換された物質である。窒化ケイ素(Si)にアルミナ(Al)、シリカ(SiO)および希土類元素などを固溶させて作ることができる。
 蛍光体の別の好適な例としては、III-V族化合物半導体のナノメータサイズの粒子を用いた半導体ナノ粒子蛍光体を例示することができる。
 半導体ナノ粒子蛍光体の特徴の一つは、同一の化合物半導体(例えばインジュウムリン:InP)を用いても、その粒子径をナノメータサイズに変更することにより、量子サイズ効果によって発光色を変化させることができる点である。例えば、InPでは、粒子サイズが3~4nm程度のときに赤色に発光する。ここで、粒子サイズは透過型電子顕微鏡(TEM)にて評価した。
 また、この半導体ナノ粒子蛍光体は、半導体ベースであるので蛍光寿命が短く、レーザ光のパワーを素早く蛍光として放射できるのでハイパワーのレーザ光に対して耐性が強いという特徴もある。これは、この半導体ナノ粒子蛍光体の発光寿命が10ナノ秒程度と、希土類を発光中心とする通常の蛍光体材料に比べて5桁も小さいためである。
 さらに、上述したように、発光寿命が短いため、レーザ光の吸収と蛍光体の発光を素早く繰り返すことができる。その結果、強いレーザ光に対して高い変換効率を保つことができ、蛍光体からの発熱を低減させることができる。
 よって、発光部205が熱により劣化(変色や変形)するのをより抑制することができる。これにより、発光部205の寿命を延ばすことができる。
 (励起光源203)
 励起光源203は、例えば半導体レーザ(以下、半導体レーザ203とも呼ぶ)として構成されており、励起光C1であるレーザ光(以後、レーザ光C1とも呼ぶ)を一方向に出射(発振)する。励起光C1の波長は、上述のように、例えば紫外線または青紫光である。
 上述のように、半導体レーザ203は、レーザ光C1を出射する励起光源として機能するものである。半導体レーザ203からレーザ光(励起光)C1が発振される。もちろん、半導体レーザ203は複数設けられていてもよい。その場合、複数の半導体レーザ203のそれぞれからレーザ光C1が発振される。
 半導体レーザ203から出射されるレーザ光C1は、発光部205の構成要素である蛍光体を励起するための励起光であり、コヒーレント性を有するコヒーレント光である。コヒーレント光は、一般的には、空間的および時間的に位相がそろっている光とされており、その波長は単一波長である。
 半導体レーザ203は、1チップに10個の発光点(10ストライプ)を有するものであり、例えば、405nm(青紫色)のレーザ光を発振し、出力11.2W、動作電圧5V、電流6.4Aのものであり、直径15mmのステムに実装されているものである。半導体レーザ203を上で述べた11.2Wでレーザ光C1を出力させれば、その消費電力は32W(5V×6.4A)となる。もちろん、半導体レーザ203が発振するレーザ光C1は、405nmに限定されず、400nm以上420nm以下の波長範囲にピーク波長を有するレーザ光であればよい。
 また、半導体レーザ203から出射されるレーザ光C1は、420nm以上の、例えば青色(450nm)のレーザ光、または青色近傍(440nm以上490nm以下)の波長範囲にピーク波長を有するレーザ光であってもよい。
 図15(a)は、半導体レーザ203の回路図を模式的に示したものであり、図15(b)は、半導体レーザ203の基本構造を示す斜視図である。同図に示すように、半導体レーザ203は、カソード電極223、基板222、クラッド層113、活性層111、クラッド層112、アノード電極221がこの順に積層された構成である。
 基板222は、半導体基板であり、本願のように蛍光体を励起する為の青色~紫外のレーザ光を得る為にはGaN、サファイア、SiCを用いることが好ましい。一般的には、半導体レーザ用の基板の他の例として、Si、GeおよびSiC等のIV属半導体、GaAs、GaP、InP、AlAs、GaN、InN、InSb、GaSbおよびAlNに代表されるIII-V属化合物半導体、ZnTe、ZeSe、ZnSおよびZnO等のII-VI属化合物半導体、ZnO、Al、SiO、TiO、CrOおよびCeO等の酸化物絶縁体、ならびに、SiNなどの窒化物絶縁体のいずれかの材料が用いられる。
 アノード電極221は、クラッド層112を介して活性層111に電流を注入するためのものである。
 カソード電極223は、基板222の下部から、クラッド層113を介して活性層111に電流を注入するためのものである。なお、電流の注入は、アノード電極221・カソード電極223に順方向バイアスをかけて行なう。
 活性層111は、クラッド層113およびクラッド層112で挟まれた構造になっている。
 また、活性層111およびクラッド層の材料としては、青色~紫外のレーザ光を得る為にはAlInGaNから成る混晶半導体が用いられる。一般に半導体レーザの活性層・クラッド層としては、Al、Ga、In、As、P、N、Sbを主たる組成とする混晶半導体が用いられ、そのような構成としても良い。また、Zn、Mg、S、Se、TeおよびZnO等のII-VI属化合物半導体によって構成されていてもよい。
 また、活性層111は、注入された電流により発光が生じる領域であり、クラッド層112およびクラッド層113との屈折率差により、発光した光が活性層111内に閉じ込められる。
 さらに、活性層111には、誘導放出によって増幅される光を閉じ込めるために互いに対向して設けられる表側へき開面114・裏側へき開面115が形成されており、この表側へき開面114・裏側へき開面115が鏡の役割を果す。
 ただし、完全に光を反射する鏡とは異なり、誘導放出によって増幅される光の一部は、活性層111の表側へき開面114・裏側へき開面115(本実施形態では、便宜上表側へき開面114とする)から出射され、レーザ光L0となる。なお、活性層111は、多層量子井戸構造を形成していてもよい。
 なお、表側へき開面114と対向する裏側へき開面115には、レーザ発振のための反射膜(図示せず)が形成されており、表側へき開面114と裏側へき開面115との反射率に差を設けることで、低反射率端面である、例えば、表側へき開面114よりレーザ光L0の大部分を発光点116から照射されるようにすることができる。
 クラッド層113・クラッド層112は、n型およびp型それぞれのGaAs、GaP、InP、AlAs、GaN、InN、InSb、GaSb、およびAlNに代表されるIII-V属化合物半導体、ならびに、ZnTe、ZeSe、ZnSおよびZnO等のII-VI属化合物半導体のいずれの半導体によって構成されていてもよく、順方向バイアスをアノード電極221およびカソード電極223に印加することで活性層111に電流を注入できるようになっている。
 クラッド層113・クラッド層112および活性層111などの各半導体層との膜形成については、MOCVD(有機金属化学気相成長)法やMBE(分子線エピタキシー)法、CVD(化学気相成長)法、レーザアブレーション法、スパッタ法などの一般的な成膜手法を用いて構成できる。各金属層の膜形成については、真空蒸着法やメッキ法、レーザアブレーション法、スパッタ法などの一般的な成膜手法を用いて構成できる。
 励起光源203は、リフレクタ209の外側の所定位置(より詳細には、リフレクタ209に設けられた励起光入射用開口部209cの外側の位置)に配置されており、開口部209cを介して、発光部205に向けてレーザ光C1を出射する。
 ここでは、開口部209cは、図11に示すように、リフレクタ209の焦点位置P1を通り中心線L1に直交する所定の仮想線L2がリフレクタ209を通過する点を含む箇所に形成されている。なお、開口部209cの形成位置は、このように限定されない。励起光源203から出射されるレーザ光C1の出射方向が、照明方向Hと異なる方向になれば、リフレクタ209のどの箇所に励起光入射用開口部209cが形成されてもよい。すなわち、励起光源203は、励起光源203から出射されるレーザ光C1の出射方向が照明方向Hと異なる方向になれば、リフレクタ209の外側のどの箇所に配置されてもよい。
 励起光終端部211は、励起光源203から出射されて発光部205で吸収されずに通過した励起光C1を終端させるものである。
 なお、終端とは、有効な光路の末端において、適切な反射率および適切な熱特性を有する拡散反射体または吸収体で励起光C1を終端させることを指す。ここで、適切な反射率とは、励起光C1が反射しても、その反射した励起光C1の出力が人に対して害を及ぼさない程度の出力になるような反射率のことであり、適切な熱特性とは、励起光C1を吸収した際に発生する局所的な熱が励起光終端部211を破壊しない程度に拡散されうる熱伝導率を有することを指す。
 (励起光終端部211)
 励起光終端部211は、リフレクタ209の、発光部205を介して励起光源203と対向する位置に配設される。リフレクタ209の当該配設位置には、励起光排出用開口部209dが形成されている。
 ここでは、励起光終端部211は、例えば、図12に示すような、ビームダンパー211Aとして構成されている。このビームダンパー211Aは、励起光C1を入射する開口部211aを有する有底筒部211bと、有底筒部211bの底面211eに形成されたテーパ部211cと、有底筒部211bの外面に形成された放熱用フィン211dとを備えている。
 有底筒部211bは、その筒軸方向L3が、励起光終端部211(すなわちビームダンパー211A)と励起光源203との対向方向(L2と同じ方向)に平行となるように配置されている。また、有底筒部211bの開口部211aは、励起光排出用開口部209dに対向するように配置されている。
 テーパ部211cは、筒軸方向L3に沿って有底筒部211bの底面211e側から開口部211a側に向かって先細りするように形成されている。その先端部211fは尖り、且つ、その基端面211gは底面211eと同じ大きさに形成されている。すなわち、有底筒部211bの内側面211hとテーパ部211cの外周面211iとの間の間隔は、開口部211a側から底面211e側へ行くに連れて狭くなり、底面211e上ではゼロになる。これにより、開口部211aからビームダンパー211Aの内部に入射した励起光C1は、有底筒部211bの内側面211hとテーパ部211cの外周面211iとの間で反射を繰り返して、開口部211a側に反射することなく、有底筒部211bの奥に伝搬して行き、減衰して消滅する。
 なお、有底筒部211bの内側面211hおよびテーパ部211cの外周面211iに、励起光C1を無反射させる黒色のコーティング(黒無反射コーティング)が施されてもよい。これにより、励起光C1を減衰させる効果を高めることができる。
 なお、開口部211aの口径は、励起光源203の励起光C1の出射方向がずれた場合でも、励起光源203から出射されて発光部205を透過した励起光C1が、ビームダンパー211Aの内部に入射されるように、適宜大きさに設定されることが望ましい。
 (補助照明光源207)
 補助照明光源207は、例えば発光ダイオードにより構成される。補助照明光源207は、励起光源203から出射される励起光C1の波長(例えば紫外線または青紫光)と異なる波長の光(例えば青色光または青紫光)を補助照明光C2として出射する。
 ここでは、補助照明光源207は、自然光(非励起光)を出射するが、励起光を出射するものであっても構わない。
 なお、補助照明光源207は、自然光を出射する発光素子と、該発光素子からの光を受けて白色光を発光する蛍光体とを備えて構成されてもよい。これにより、補助照明光源207から白色光は出射させることができる。これにより、発光部205がずれて照明光C4が補助照明光源207からの補助照明光C2だけになった場合、白色の照明光C4を放出させることができる。
 補助照明光源207は、リフレクタ209の外側の所定位置(より詳細には、リフレクタ209に形成された補助照明光入射用開口部209eに対向する位置)に配置されており、開口部209eを介して、発光部205に向けて補助照明光C2を出射する。
 ここでは、開口部209eは、リフレクタ209の頂点部(すなわち、リフレクタ209の焦点位置P1を通り中心線L1に平行な仮想線L4がリフレクタ209を通過する点を含む箇所)に形成されている。なお、開口部209eの形成位置は、このように限定されない。開口部209eは、その開口部209eを介して補助照明光源207から出射される補助照明光C2が発光部205に照射できる位置であれば、どの位置に形成されてもよい。
 (発光部205の、励起光C1および補助照明光C2に対する吸収率について)
 発光部205は、補助照明光C2に対する吸収率よりも、励起光C1に対する吸収率の方が高い特性を有する。例えば、補助照明光源207からの補助照明光C2が青色光または青紫光であり、励起光源203からの励起光C1が紫外線または青紫光である場合は、上記蛍光体は、紫外線または青紫光で励起した時の外部量子効率が高く(少なくとも60%以上)、且つ、青色または青紫色の光の吸収率は40%以下であることが好ましい。
 この場合、発光部205において、励起光C1に対する吸収率が高いほど、励起光C1を非励起光に変換する変換効率が高くなる。また、発光部205において、補助照明光C2に対する吸収率が低いほど、補助照明光C2が発光部205を透過する透過率が高くなり、補助照明光C2を非励起光と共に照明光C4として活用し易くなる。
 すなわち、発光部205は、励起光C1を非励起光に変換する変換効率が比較的高く、一方、補助照明光C2が発光部205を透過する透過率も比較的高くなる。故に、励起光C1の非励起光への変換効率を損なうことなく、補助照明光C2を非励起光と共に照明光として活用し易くなる。
 (励起光カットフィルタ213)
 励起光カットフィルタ213は、リフレクタ209の照明光用開口部209bを覆うように配設されている。すなわち、励起光カットフィルタ213は、発光部205から見て照明方向H側に配置される。
 励起光カットフィルタ213は、励起光源203から出射された励起光C1が照明装置201の外部に放出されることを防止するために、励起光源203から出射される励起光C1の透過率が10%以下であり、且つ、補助照明光源207から出射された補助照明光C2の透過率は70%以上であることが望ましい。なお、励起光カットフィルタ213は、無くても構わない。
 (2.動作)
 次に、図11に基づいて、この照明装置201の動作を説明する。
 励起光源203から出射された励起光C1は、開口部209cを介してリフレクタ209内の発光部205に照射される。励起光源203からの励起光C1の大部分は、発光部205に吸収され、蛍光体を励起する。励起光C1により励起された発光部205からは、蛍光(非励起光)C3が全方向に発光され、その蛍光C3は、リフレクタ209の放物反射面209aで照明方向Hに収斂されて、励起光カットフィルタ213を透過して、リフレクタ209の開口部209bから照明装置201の外部に放出される。
 その際、励起光源203からの励起光C1の一部は、発光部205に吸収されずに、発光部205で散乱または拡散され、リフレクタ209の放物反射面209aで照明方向Hに収斂されて、励起光カットフィルタ213に吸収される。これにより、発光部205で散乱または拡散された励起光C1が照明装置201の外部に放出されることが防止される。
 また、励起光源203からの励起光C1の一部(発光部205で吸収されなかった励起光C1)は、発光部205を透過して、リフレクタ209の開口部209dを介して励起光終端部211に入射して、励起光終端部211に吸収されて終端する。これにより、励起光源203から出射されて発光部205を透過した励起光C1が、リフレクタ209の放物反射面209aで反射されて照明装置201の外部に放出されることが防止される。なお、発光部205で吸収されなかった、励起光C1の一部の中には、発光部205で散乱あるいは拡散された結果、励起光終端部211に向かわずに、照明方向Hに沿ってリフレクタ209の開口部209bに向かう光も存在する。
 他方、補助照明光源207から出射された補助照明光C2は、開口部209eを介してリフレクタ209内の発光部205に照射され、発光部205の透過、発光部205内での散乱または発光部205表面での反射のいずれかまたはそれらが組合わさった経路をとって、発光部205から発光された蛍光C3と共に照明光C4を構成して、リフレクタ209の開口部209bから外部に放出される。
 なお、発光部205を透過した補助照明光C2は、リフレクタ209の放物反射面209aで反射されずに、照明方向Hに伝搬して、蛍光C3と共にリフレクタ209の開口部209bから外部に放出される。また、発光部205で散乱または反射された補助照明光C2は、リフレクタ209の放物反射面209aで照明方向Hに反射されて、蛍光C3と共にリフレクタ209の開口部209bから外部に放出される。
 このように、この照明装置201では、発光部205から発光された蛍光C3と、発光部205で透過、散乱または反射された補助照明光C2との合成光により照明光C4が構成される。すなわち、照明光C4は、蛍光C3と補助照明光C2との混色により構成される。
 (主要な効果)
 この構成により、照明装置201では、コヒーレント性の高いレーザ光C1は照明装置201の外部には放出されないので、人の目に対して安全な照明装置となる。また、万が一、発光部205がずれても、励起光カットフィルタ213および励起光終端部211が設けられているので、励起光C1が照明装置201の外部に放出されることはない。
 また、補助照明光源207からの補助照明光C2は、発光部205が所望の位置にあるか否かに関わらず外部に放出される。発光部205が所定の位置からずれた場合でも、照明装置201の外部に放出されるので、照明装置201から照明光C4が放出されなくなるということを防ぐことができる。これにより、発光部205が所定の位置からずれて発光部205から蛍光C3が発光されなくなった場合でも、照明装置201の存在を周囲に知らせることができる。
 また、照明光C4に蛍光C3が含まれる場合と含まれない場合とでは、照明光C4の色温度は異なるので、照明装置201の使用者(励起光源203の駆動状態、少なくとも励起光源203からの励起光C1の出射のオンオフを自らの意志で制御できる人)以外の人にも、照明装置201の異常(発光部205の位置ずれ、発光部205に孔が開く等の異常)を知らせることができる。
 また、補助照明光源207からの補助照明光C2の出力(すなわち波長)を任意に調整することで、照明光C4の色度を変えることができる。
 なお、この照明装置201では、例えば405nm近傍もしくはそれ以下の波長の励起光C1で発光部205を励起しつつ、発光部205から発光される蛍光C3の色温度を高める(あるいは、青色領域の光を足す)目的として、発光部205に青色レーザ光C2を照射し、発光部205で青色レーザ光C2を散乱・拡散させて、発光部205から発光される蛍光C3をインコヒーレント化している。
 これにより、照明装置201の発光部205を大きくすることなく、発光部205から発光される蛍光C3の色温度を向上させることができる。これにより、高輝度な発光特性を維持しつつ色温度を上げることができる。また、高効率な青色蛍光体がなかなか開発されない中、高効率で色温度が高く、かつ演色性のよい固体照明装置を実現できる。
 (変形例1)
 上記実施形態では、励起光終端部211はビームダンパー211Aとして構成されたが、この変形例では、励起光終端部211は、その内部で励起光C1を散乱させて減衰させる積分球211Bとして構成される。
 この積分球211Bは、図13に示すように、中空の球体状に形成されており、励起光C1を入射する小さな光入射口211jを有している。この積分球211Bは、リフレクタ209の外側において、光入射口211jがリフレクタ209の開口部209dと対向するように配置される。これにより、発光部205を透過して開口部209dに入射した励起光C1を、光入射口211jから積分球211B内に入射させることができる。
 この積分球211Bでは、光入射口211jから積分球211Bの内部に入射した励起光C1は、積分球211Bの内部で散乱して減衰して消滅する。
 なお、積分球211Bの内面に、励起光C1を吸収する黒色等の粉末物質が塗布されてもよい。これにより、積分球211B内での励起光C1をより効果的に減衰させることができる。
 (変形例2)
 上記実施形態では、励起光終端部211はビームダンパー211Aとして構成されたが、この変形例では、励起光終端部211は、励起光C1を吸収する光吸収部材211Cにより形成される。この光吸収部材211Cは、例えば図14に示すように、例えばレーザカーテン(すなわち、軟質塩化ビニル等の光吸収材料からなるシート部材)として形成されている。この光吸収部材211Cは、リフレクタ209の外側において、リフレクタ209の開口部209dと対向するように配置される。これにより、発光部205を透過して開口部209dに入射した励起光C1を、光吸収部材211Cにより吸収して消滅させることができる。
 なお、ここでは、光吸収部材211Cはシート状である場合で説明したが、シート状に限定されない。
 〔実施形態8〕
 次に、本発明の実施形態8について説明する。図16は、本発明の実施形態8に係る照明装置の概略構成図である。なお、実施形態7と同様の部材に関しては、同じ符号を付し、その説明を省略する。
 本発明の実施形態8の照明装置230と上記の実施形態7の照明装置201とが異なる点は、リフレクタ209に代えて、パラボラミラー(反射部)241と、金属板(反射部)242と、を備えた点である。さらに、励起光終端部211に代えて、励起光終端部244を備えた点である。
 (パラボラミラー241)
 パラボラミラー241は、発光部205が発生させた蛍光(非励起光)C3を反射し、所定の立体角内を進む光線束(照明光)を形成する。このパラボラミラー241は、例えば、金属薄膜がその表面に形成された部材であってもよいし、金属製の部材であってもよい。
 パラボラミラー241は、その一部が、発光部205の上面の上方に配置されている。すなわち、パラボラミラー241は、発光部205の上面を覆う位置に配置されている。別の観点から説明すれば、発光部205の側面の一部は、パラボラミラー241の一方の開口部である照明光用開口部251の方向を向いている。
 発光部205とパラボラミラー241との位置関係を上述のものにすることで、発光部205の非励起光C3を所定の立体角内に集光する効率を高めることができ、その結果、非励起光C3の利用効率を高めることができる。
 また、励起光源203は、パラボラミラー241の外部に配置されており、パラボラミラー241には、レーザ光C1を通過させる励起光入射用開口部252が形成されている。この励起光入射用開口部252は、パラボラミラー241の外部(励起光源203側)と内部(発光部205側)とを貫通する孔である。
 一方、補助照明光源207から出射された補助照明光C2は、パラボラミラー241の他方の開口部である補助照明光入射用開口部254を介してパラボラミラー241内の発光部205に照射され、発光部205の透過、発光部205内での散乱または発光部205表面での反射のいずれかまたはそれらが組合わさった経路をとって、発光部205から発光された非励起光C3と共に照明光C4を構成して、パラボラミラー241の開口部251から外部に放出される。
 なお、パラボラミラー241に代えて、楕円面ミラーや半球面ミラーであってもよい。
 (金属板242)
 金属板242は、発光部205を支持する板状の支持部材であり、金属(例えば、銅や鉄)からなっている。それゆえ、金属板242は熱伝導性が高く、発光部205を冷却できる。なお、発光部205を支持する部材は、金属からなるものに限定されず、金属以外の熱伝導性が高い物質(ガラス、サファイアなど)を含む部材でもよい。
 金属板242のパラボラミラー241側の面(発光部205の貼り付け面を除く)には、金属薄膜243を蒸着し、発光部205から発せられた非励起光C3を反射するようになっている。発光部205の上面から入射した励起光C1が非励起光C3に変換された後に反射させ、パラボラミラー241側へ向かわせることができる。このようにして、非励起光C3の利用効率を向上させることができる。
 金属板242は、パラボラミラー241によって覆われているため、金属板242は、パラボラミラー241の反射面と対向する面を有していると言える。金属板242のパラボラミラー241側の面は、パラボラミラー241の回転放物面の回転軸と概ね平行であり、当該回転軸を概ね含んでいる。
 なお、図示はしないが、金属板242はフィンを備えていてもよい。このフィンは、金属板242を冷却する冷却部として機能する。フィンは、複数の放熱板を有するものであり、大気との接触面積を増加させることにより放熱効率を高めている。金属板242を冷却する冷却部は、冷却(放熱)機能を有するものであればく、フィンの代わりに、ヒートパイプ、水冷方式や、空冷方式のものであってもよい。
 (励起光終端部244)
 励起光終端部244は、金属板242の、発光部205を介して励起光源203と対向する位置に配設される。金属板242の当該配設位置には、励起光排出用開口部253が形成されている。なお、励起光終端部244の構造については、上記実施形態7の励起光終端部211と同様であり、ここでは説明を繰り返さない。
 図17は、発光部205、金属板242および励起光排出用開口部253の位置関係を説明する説明図であり、(a)は、図16の矢印Xの方向から見た概念図、(b)は、発光部205の、金属板242の励起光排出用開口部253上への配設の仕方を説明する概念図である。図17に示すように、励起光排出用開口部253上に発光部205が配設されている。
 励起光源203からの励起光C1の一部(発光部205で吸収されなかった励起光C1)は、発光部205を透過して、金属板242の開口部253を介して励起光終端部244に入射して、励起光終端部244に吸収されて終端する。これにより、励起光源203から出射されて発光部205を透過した励起光C1が、パラボラミラー241および金属板242により反射されて照明装置230の外部に放出されることが防止される。
 なお、本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 以上のように、本実施形態に係る検出装置は、励起光源から出射された励起光を、光学部材を通して発光部に集光し、当該発光部を発光させる発光装置における、上記励起光源、上記光学部材および上記発光部の間の相対位置関係を検知する検知手段と、上記検知手段の検知結果と、上記励起光源、上記光学部材および上記発光部の間の相対位置関係において基準とすべき基準相対位置関係とを比較し、上記励起光源、上記光学部材および上記発光部の間の、上記検知手段の検知の際における相対位置関係が、上記基準相対位置関係から、ずれているか否かを判定する判定手段とを備える構成である。
 上記基準相対位置関係は、上記発光部に集光される励起光に関する、上記発光部上における照射領域の面積あるいは当該照射領域の上記発光部上における位置のうちの少なくとも一方を基に、予め設定されていることが好ましい。
 上記構成によれば、励起光が所望の状態からずれて発光部に照射される、つまり、励起光が所望の状態よりも集中して発光部に照射される、あるいは所望の状態よりも拡散して照射される状態となった場合、ずれを検出することができる。
 上記励起光源を支持する励起光源支持面および上記発光部を支持する発光部支持面のいずれか一方の面側から他方の面側に向かってレーザ光を出射するレーザ光源と、上記レーザ光源から出射されたレーザ光のうち、上記他方の面側から反射されて上記一方の面側に戻る戻り光を受光する受光部とをさらに備え、上記検知手段は、自身の検知結果として、上記受光部から、上記戻り光の、上記受光部上での焦点形状を取得し、上記判定手段は、上記励起光源、上記光学部材および上記発光部の間の相対位置関係を上記基準相対位置関係にしたときにおける、上記受光部上の焦点形状である基準焦点形状と、上記検知手段により取得された上記受光部上での焦点形状と、を比較し、それら2つの焦点形状の間に変化があった場合、上記ずれているという判定を行なうことが好ましい。
 上記構成によれば、受光部上での焦点形状の変化を判定することにより、励起光源と光学部材と発光部との相対位置関係のずれを高速かつ高精度で検出することができる。
 上記レーザ光源は、上記発光装置の上記励起光源として用いられており、上記発光部から発光された光を遮断し、且つ、上記戻り光を透過する光機能フィルターをさらに備え、上記光機能フィルターは、上記受光部の、光を受光する受光面側に配置されていることが好ましい。
 上記構成によれば、発光装置は、励起光源とレーザ光源とを同一の光源として備えることができ、かつ、光機能フィルターによって発光部から出射した光を受光部に受光することを防ぐことができる。そのため、レーザ光源およびその光学系を構成する必要がなく、検出装置を小型化・簡略化することができ、さらに受光部には励起光源からの励起光のみ受光され、励起光源と光学部材と発光部との相対位置関係のずれを、基準相対位置関係からのずれにより高精度に検出することができる。
 上記励起光源を支持する励起光源支持部材あるいは上記光学部材を支持する光学部材支持部材のうちの少なくとも一方に配置されたカメラと、上記カメラの撮像領域に含まれたマーカーとをさらに備え、上記マーカーは、上記励起光源支持部材に配置されたカメラの撮像領域に含まれ、且つ、上記光学部材支持部材に配置されたマーカー、あるいは、上記光学部材支持部材に配置されたカメラの撮像領域に含まれ、且つ、上記発光部を支持する発光部支持部材に配置されたマーカー、のうちの少なくとも一方を含み、上記検知手段は、自身の検知結果として、上記カメラにより上記マーカーを撮像した撮像結果を取得し、上記判定手段は、上記カメラと上記マーカーとの間の相対位置関係を上記基準相対位置関係にしたときにおける、上記カメラによる撮像結果と、上記検知手段により取得された撮像結果と、を比較し、それら2つの撮像結果の間に変化があった場合、上記ずれているという判定を行なうことが好ましい。
 上記構成によれば、カメラによるマーカーの撮像結果の変化を判定することにより、励起光源と光学部材と発光部との相対位置関係のずれを高速かつ高精度で検出することができる。
 また、本実施形態に係る発光装置は、励起光を出射する励起光源と、上記励起光源から出射された励起光を集光する光学部材と、上記光学部材により集光された励起光により発光する発光部と、上記励起光源、上記光学部材および上記発光部の間の相対位置関係におけるずれを検出する位置ずれ検出装置と、上記位置ずれ検出装置により検出されたずれを調整する位置ずれ調整装置とを備え、上記位置ずれ検出装置は、上記励起光源、上記光学部材および上記発光部の間の相対位置関係を検知する検知手段と、上記検知手段の検知結果と、上記励起光源、上記光学部材および上記発光部の間の相対位置関係において基準とすべき基準相対位置関係とを比較し、上記励起光源、上記光学部材および上記発光部の間の、上記検知手段の検知の際における相対位置関係が、上記基準相対位置関係から、ずれているか否かを判定する判定手段とを有し、上記位置ずれ調整装置は、上記位置ずれ検出装置によりずれの検出が行なわれたときに、上記励起光源、上記光学部材および上記発光部の間の相対位置関係を上記基準相対位置関係に引き戻すことにより、上記位置ずれ検出装置により検出されたずれを調整する構成である。
 上記基準相対位置関係は、上記発光部に集光される励起光に関する、上記発光部上における照射領域の面積あるいは当該照射領域の上記発光部上における位置のうちの少なくとも一方を基に、予め設定されていることが好ましい。
 上記構成によれば、励起光が所望の状態からずれて発光部に照射される、つまり、励起光が所望の状態よりも集中して発光部に照射される、あるいは所望の状態よりも拡散して照射される状態となった場合、ずれを検出することができる。
 上記位置ずれ調整装置は、上記励起光源、上記光学部材あるいは上記発光部のうちの少なくとも1つの位置を移動させる移動機構を含むことが好ましい。
 上記構成によれば、励起光源、光学部材および発光部の少なくとも1つの位置を移動させることにより、基準相対位置関係へ適切に戻すことができる。それにより、励起光の照射位置が発光部からずれてしまうことを防ぐことができる。また、励起光を所望の照射面積で発光部に照射することができる。
 よって、励起光が所望の状態よりも集中して発光部に照射されることによる発光部の劣化を遅らせたり、輝度が極めて高くなることや、アイセーフの観点からの危険性を防いだりすることができる。また逆に、励起光が所望の状態より集中させることができず発光部に照射されることにより、輝度が低くなり所望の光学特性を得られないことも防ぐことができる。
 上記移動機構は、上記励起光源および上記発光部を固定し、上記光学部材を移動させることを特徴とすることが好ましい。
 上記構成によれば、上記励起光源と上記光学部材と上記発光部との相対位置関係を、上記光学部材の位置を移動させることにより、基準相対位置関係に保つことができる。それにより、位置ずれ調整装置が移動させる対象が光学部材のみとなるため、位置ずれ調整装置を小型化・簡略化することができる。
 また、本実施形態に係る発光装置は、励起光を出射する励起光源と、上記励起光源から出射された励起光を集光する光学部材と、上記光学部材により集光された励起光により発光する発光部と、上記励起光源、上記光学部材および上記発光部の間の相対位置関係を保持する弾性部材とを備える構成である。
 上記発光部から発光された光を反射する反射鏡をさらに備えることが好ましい。
 上記構成によれば、発光部より出射した光を反射鏡により、所望の方向へと反射させることができる。
 上記励起光源は、レーザ光源であることが好ましい。
 上記構成によれば、レーザ光は光学系によって集光することが容易である。その為、高出力かつ高輝度な発光装置を得ることができ、なおかつ励起光が所望の状態よりも集中して発光部に照射されることによる発光部の劣化を遅らせたり、輝度が極めて高くなることや、アイセーフの観点からの危険性を防いだりすることができる。
 上記レーザ光源は、半導体レーザ光源であることが好ましい。
 上記構成によれば、半導体レーザは小型である為、発光装置を小型化することができる。また発光装置が小型化すると、この発光装置を用いた照明装置のデザインの自由度を格段に向上させることができる。
 また、以上のように、本実施形態に係る照明装置は、一方向に励起光を発光する励起光源と、上記励起光を受けて非励起光を発光する発光部と、上記非励起光を、上記励起光の発光方向と異なる方向である照明方向に反射させる反射部と、を備える構成である。
 上記発光部を介して上記励起光源と対向する位置に、上記励起光を終端させる励起光終端部をさらに備えることが望ましい。
 上記の構成によれば、発光部を介して励起光源と対向する位置に励起光終端部が配置されるので、発光部の位置がずれる、あるいは励起光源の光軸がずれて励起光が発光部から外れると、励起光源からの励起光は、励起光終端部に入射して終端される。
 よって、発光部の位置がずれる、あるいは励起光源の光軸がずれて励起光が発光部から外れても、励起光が当該照明装置の外部に放出されることを防止できる。
 上記励起光終端部は、その内部で上記励起光を散乱させて減衰させる積分球であることが望ましい。
 上記の構成によれば、励起光終端部に入射した励起光は、この内部で散乱して減衰して行き、最終的に消滅(すなわち終端)する。よって、簡単な構成で励起光終端部を構成できる。
 上記励起光終端部は、上記励起光を入射する開口部を有する有底筒部と、上記有底筒部の底面において、上記底面側から上記開口部側に向かって先細りするように形成され、その先端部は尖り、且つ、その基端面は上記底面と同じ大きさであるテーパ部と、を有することが望ましい。
 上記の構成によれば、開口部から励起光終端部に入射した励起光は、有底筒部の内側面とテーパ部の外周面との間で反射を繰り返して有底筒部の奥側に進む。この励起光終端部では、テーパ部の先端部は尖っており、且つ、テーパ部の基端面は有底筒部の底面と同じ大きさである(すなわち、有底筒部の底面はテーパ部に完全に占められている)。
 よって、開口部から励起光終端部に入射した励起光は、励起光終端部内では、開口部側に反射できず、反射の度に減衰して最終的に消滅(すなわち終端)する。故に、簡単な構成で励起光終端部を構成できる。
 上記励起光終端部は、上記励起光源からの上記励起光を吸収する光吸収部材を有することが望ましい。
 上記の構成によれば、上記励起光終端部は、上記励起光源からの上記励起光を吸収する光吸収部材を有するので、簡単な構成で、励起光終端部を構成できる。
 補助照明光を発光する補助照明光源をさらに備えることが望ましい。
 上記の構成によれば、発光部が所定の場所からずれる、あるいは励起光源の光軸がずれて励起光源からの励起光が発光部に当たらなくなると、装置から照明光が全く出てこなくなることを防止することができる。
 そのため、上記構成を有しない照明装置の場合に起こり得る、人若しくは/且つ物体を認識するための装置が人若しくは/且つ物体を認識するため、若しくは/且つ照明装置の存在を周囲の人に知らしめるために光を放出している光源がない場合は、物体を認識することができなくなる、若しくは/且つ、照明装置の存在を周囲に知らしめることができなくなるという問題を解決することができる。
 つまり、発光部の位置がずれる、あるいは励起光源の光軸がずれて励起光が発光部から外れることで非励起光が消灯した場合においても、補助照明光源により最低限の照明光を確保できる。
 上記補助照明光は、上記励起光の波長と異なる波長であることが望ましい。
 照明光は、励起光によって励起された発光部から発光される非励起光と、補助照明光との合成光により構成される。
 上記の構成によれば、補助照明光は、励起光の波長と異なる波長であるので、補助照明光の波長を調整することで、照明光の色温度を調整することができる。
 また、波長が異なると色温度が異なってくるので、照明光が非励起光および補助照明光により構成される場合の照明光の色温度と、照明光が補助照明光だけで構成される場合の照明光の色温度とは異なる。よって、照明光の色温度により、当該照明装置の故障の有無を判断することができる。
 上記発光部は、上記補助照明光に対する吸収率よりも、上記励起光に対する吸収率の方が高い特性を有することが望ましい。
 発光部において、励起光に対する吸収率が高いほど、励起光を非励起光に変換する変換効率が高くなる。また、発光部において、補助照明光に対する吸収率が低いほど、補助照明光が発光部を透過する透過率が高くなり、補助照明光を非励起光と共に照明光として活用し易くなる。
 よって、上記の構成によれば、上記補助照明光に対する光吸収率よりも、上記励起光に対する光吸収率の方が高いので、励起光を非励起光に変換する変換効率が比較的高く、また、補助照明光が発光部を透過する透過率も比較的高くなる。故に、励起光の非励起光への変換効率を損なうことなく、補助照明光を非励起光と共に照明光として活用し易くなる。
 上記発光部における上記照明方向の側に配置された励起光カットフィルタをさらに備えることが望ましい。
 上記の構成によれば、励起光カットフィルタによって、照明光に含まれた励起光が除去される。よって、励起光が照明光に混ざって外部に射出されることを防止できる。
 上記補助照明光源は、発光素子と、上記発光素子からの光を受けて白色光を発光する蛍光体と、を有することが望ましい。
 上記の構成によれば、補助照明光源は、白色の補助照明光を照射することができる。
 本発明は、発光部への照射面積を一定に保つことができ、特に照明装置に好適である。さらに、本発明は、車両のヘッドランプ等に利用することもできる。
 2  レーザ素子(励起光源、半導体レーザ)
 4  集光レンズ(光学部材)
 24、24a、24c  レーザ素子
 20、20a、20b、20c、20d  位置ずれ検出装置
 21、21a、21b、21c、21d  検知部(検知手段)
 22、22a、22b、22c、22d  判定部(判定手段)
 30、30c  受光素子(受光部)
 40、40b、40c  位置ずれ調整装置
 52、53  弾性部材
 73  フェルール(光学部材)
 101、102、103、104、105、106  発光装置
 201、230  照明装置
 203  励起光源
 205  発光部
 207  補助照明光源
 209  リフレクタ(反射部)
 209a  内面
 209b、251  照明光用開口部
 209c、252  励起光入射用開口部
 209d、253  励起光排出用開口部
 209e、254  補助照明光入射用開口部
 211、244  励起光終端部
 211B  積分球
 211C  光吸収部材
 211a  開口部
 211b  有底筒部
 211c  テーパ部
 211d  放熱用フィン
 211e  底面
 211f  先端部
 211g  基端面
 211h  内側面
 211i  外周面
 211j  光入射口
 213  励起光カットフィルタ
 241  パラボラミラー(反射部)
 242  金属板(反射部)
 243  金属薄膜
 C1  励起光
 C2  補助照明光
 C3  非励起光
 C4  照明光
 H  照明方向
 L1  中心線

Claims (28)

  1.  励起光源から出射された励起光を、光学部材を通して発光部に集光し、当該発光部を発光させる発光装置における、上記励起光源、上記光学部材および上記発光部の間の相対位置関係を検知する検知手段と、
     上記検知手段の検知結果と、上記励起光源、上記光学部材および上記発光部の間の相対位置関係において基準とすべき基準相対位置関係とを比較し、上記励起光源、上記光学部材および上記発光部の間の、上記検知手段の検知の際における相対位置関係が、上記基準相対位置関係から、ずれているか否かを判定する判定手段と
    を備えることを特徴とする位置ずれ検出装置。
  2.  上記基準相対位置関係は、上記発光部に集光される励起光に関する、上記発光部上における照射領域の面積あるいは当該照射領域の上記発光部上における位置のうちの少なくとも一方を基に、予め設定されていることを特徴とする請求項1に記載の位置ずれ検出装置。
  3.  上記励起光源を支持する励起光源支持面および上記発光部を支持する発光部支持面のいずれか一方の面側から他方の面側に向かってレーザ光を出射するレーザ光源と、
     上記レーザ光源から出射されたレーザ光のうち、上記他方の面側から反射されて上記一方の面側に戻る戻り光を受光する受光部と
    をさらに備え、
     上記検知手段は、自身の検知結果として、上記受光部から、上記戻り光の、上記受光部上での焦点形状を取得し、
     上記判定手段は、上記励起光源、上記光学部材および上記発光部の間の相対位置関係を上記基準相対位置関係にしたときにおける、上記受光部上の焦点形状である基準焦点形状と、上記検知手段により取得された上記受光部上での焦点形状と、を比較し、それら2つの焦点形状の間に変化があった場合、上記ずれているという判定を行なうことを特徴とする請求項1または2に記載の位置ずれ検出装置。
  4.  上記レーザ光源は、上記発光装置の上記励起光源として用いられており、
     上記発光部から発光された光を遮断し、且つ、上記戻り光を透過する光機能フィルターをさらに備え、
     上記光機能フィルターは、上記受光部の、光を受光する受光面側に配置されていることを特徴とする請求項3に記載の位置ずれ検出装置。
  5.  上記励起光源を支持する励起光源支持部材あるいは上記光学部材を支持する光学部材支持部材のうちの少なくとも一方に配置されたカメラと、
     上記カメラの撮像領域に含まれるマーカーと
    をさらに備え、
     上記マーカーは、上記励起光源支持部材に配置されたカメラの撮像領域に含まれ、且つ、上記光学部材支持部材に配置されたマーカー、あるいは、上記光学部材支持部材に配置されたカメラの撮像領域に含まれ、且つ、上記発光部を支持する発光部支持部材に配置されたマーカー、のうちの少なくとも一方を含み、
     上記検知手段は、自身の検知結果として、上記カメラにより上記マーカーを撮像した撮像結果を取得し、
     上記判定手段は、上記カメラと上記マーカーとの間の相対位置関係を上記基準相対位置関係にしたときにおける、上記カメラによる撮像結果と、上記検知手段により取得された撮像結果と、を比較し、それら2つの撮像結果の間に変化があった場合、上記ずれているという判定を行なうことを特徴とする請求項1または2に記載の位置ずれ検出装置。
  6.  励起光を出射する励起光源と、
     上記励起光源から出射された励起光を集光する光学部材と、
     上記光学部材により集光された励起光により発光する発光部と、
     上記励起光源、上記光学部材および上記発光部の間の相対位置関係におけるずれを検出する位置ずれ検出装置と、
     上記位置ずれ検出装置により検出されたずれを調整する位置ずれ調整装置と
    を備え、
     上記位置ずれ検出装置は、
     上記励起光源、上記光学部材および上記発光部の間の相対位置関係を検知する検知手段と、
     上記検知手段の検知結果と、上記励起光源、上記光学部材および上記発光部の間の相対位置関係において基準とすべき基準相対位置関係とを比較し、上記励起光源、上記光学部材および上記発光部の間の、上記検知手段の検知の際における相対位置関係が、上記基準相対位置関係から、ずれているか否かを判定する判定手段と
    を有し、
     上記位置ずれ調整装置は、上記位置ずれ検出装置によりずれの検出が行なわれたときに、上記励起光源、上記光学部材および上記発光部の間の相対位置関係を上記基準相対位置関係に引き戻すことにより、上記位置ずれ検出装置により検出されたずれを調整することを特徴とする発光装置。
  7.  上記基準相対位置関係は、上記発光部に集光される励起光に関する、上記発光部上における照射領域の面積あるいは当該照射領域の上記発光部上における位置のうちの少なくとも一方を基に、予め設定されていることを特徴とする請求項6に記載の発光装置。
  8.  上記位置ずれ調整装置は、上記励起光源、上記光学部材あるいは上記発光部のうちの少なくとも1つの位置を移動させる移動機構を含むことを特徴とする請求項6または7に記載の発光装置。
  9.  上記移動機構は、上記励起光源および上記発光部を固定し、上記光学部材を移動させることを特徴とすることを特徴とする請求項8に記載の発光装置。
  10.  励起光を出射する励起光源と、
     上記励起光源から出射された励起光を集光する光学部材と、
     上記光学部材により集光された励起光により発光する発光部と、
     上記励起光源、上記光学部材および上記発光部の間の相対位置関係を保持する弾性部材と
    を備えることを特徴とする発光装置。
  11.  上記発光部から発光された光を反射する反射鏡をさらに備えることを特徴とする請求項6~10のいずれか1項に記載の発光装置。
  12.  上記励起光源は、レーザ光源であることを特徴とする請求項6~11のいずれか1項に記載の発光装置。
  13.  上記レーザ光源は、半導体レーザ光源であることを特徴とする請求項12に記載の発光装置。
  14.  励起光源から出射された励起光を、光学部材を通して発光部に集光し、当該発光部を発光させる発光装置における、上記励起光源、上記光学部材および上記発光部の間の相対位置関係におけるずれを検出する位置ずれ検出工程と、
     上記位置ずれ検出工程にて検出されたずれを調整する位置ずれ調整工程と
    を含み、
     上記位置ずれ検出工程は、
     上記励起光源、上記光学部材および上記発光部の間の相対位置関係を検知する検知工程と、
     上記検知工程での検知結果と、上記励起光源、上記光学部材および上記発光部の間の相対位置関係において基準とすべき基準相対位置関係とを比較し、上記励起光源、上記光学部材および上記発光部の間の、上記検知工程での検知の際における相対位置関係が、上記基準相対位置関係から、ずれているか否かを判定する判定工程と、を含み、
     上記位置ずれ調整工程は、上記位置ずれ検出工程にてずれの検出が行なわれたときに、上記励起光源、上記光学部材および上記発光部の間の相対位置関係を上記基準相対位置関係に引き戻すことにより、上記位置ずれ検出工程にて検出されたずれを調整することを特徴とする位置ずれ調整方法。
  15.  請求項6~13のいずれか1項に記載の発光装置を備えることを特徴とする照明装置。
  16.  請求項6~13のいずれか1項に記載の発光装置を備えることを特徴とするプロジェクタ。
  17.  請求項6~13のいずれか1項に記載の発光装置を備えることを特徴とする車両用前照灯。
  18.  一方向に励起光を発光する励起光源と、
     上記励起光を受けて非励起光を発光する発光部と、
     上記非励起光を、上記励起光の発光方向と異なる方向である照明方向に反射させる反射部と、
    を備えることを特徴とする照明装置。
  19.  上記発光部を介して上記励起光源と対向する位置に、上記励起光を終端させる励起光終端部をさらに備えることを特徴とする請求項18に記載の照明装置。
  20.  上記励起光終端部は、その内部で上記励起光を散乱させて減衰させる積分球であることを特徴とする請求項19に記載の照明装置。
  21.  上記励起光終端部は、
     上記励起光を入射する開口部を有する有底筒部と、
     上記有底筒部の底面において、上記底面側から上記開口部側に向かって先細りするように形成され、その先端部は尖り、且つ、その基端面は上記底面と同じ大きさであるテーパ部と、
    を有することを特徴とする請求項19に記載の照明装置。
  22.  上記励起光終端部は、上記励起光源からの上記励起光を吸収する光吸収部材を有することを特徴とする請求項19に記載の照明装置。
  23.  補助照明光を発光する補助照明光源をさらに備えることを特徴とする請求項18~22のいずれか1項に記載の照明装置。
  24.  上記補助照明光は、上記励起光の波長と異なる波長であることを特徴とする請求項23に記載の照明装置。
  25.  上記発光部は、上記補助照明光に対する吸収率よりも、上記励起光に対する吸収率の方が高い特性を有することを特徴とする請求項23または24に記載の照明装置。
  26.  上記発光部における上記照明方向の側に配置された励起光カットフィルタをさらに備えることを特徴とする請求項18~25のいずれか1項に記載の照明装置。
  27.  上記補助照明光源は、
     発光素子と、
     上記発光素子からの光を受けて白色光を発光する蛍光体と、
    を有することを特徴とする請求項23に記載の照明装置。
  28.  請求項18~27のいずれか1項に記載の照明装置を備えていることを特徴とする車両用前照灯。
PCT/JP2012/068632 2011-08-12 2012-07-23 位置ずれ検出装置、発光装置、照明装置、プロジェクタ、車両用前照灯および位置ずれ調整方法 WO2013024668A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/235,914 US9074877B2 (en) 2011-08-12 2012-07-23 Positional deviation detection unit, light emitting device, illumination apparatus, projector, vehicle headlamp, and positional deviation adjustment method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-177215 2011-08-12
JP2011177215A JP2013039868A (ja) 2011-08-12 2011-08-12 位置ずれ検出装置、発光装置、照明装置、プロジェクタ、車両用前照灯および位置ずれ調整方法
JP2011245923A JP5204885B2 (ja) 2011-11-09 2011-11-09 照明装置および車両用前照灯
JP2011-245923 2011-11-09

Publications (1)

Publication Number Publication Date
WO2013024668A1 true WO2013024668A1 (ja) 2013-02-21

Family

ID=47714992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068632 WO2013024668A1 (ja) 2011-08-12 2012-07-23 位置ずれ検出装置、発光装置、照明装置、プロジェクタ、車両用前照灯および位置ずれ調整方法

Country Status (2)

Country Link
US (1) US9074877B2 (ja)
WO (1) WO2013024668A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015049048A1 (de) * 2013-10-02 2015-04-09 Audi Ag Beleuchtungseinrichtung fur ein kraftfahrzeug und kraftfahrzeug
DE102014017521A1 (de) 2014-11-27 2016-06-02 Audi Ag Beleuchtungseinrichtung für ein Kraftfahrzeug, Kraftfahrzeug mit einem Scheinwerfer mit einer Beleuchtungseinrichtung und Verfahren zum Betreiben einer Beleuchtungseinrichtung

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013125693A (ja) * 2011-12-15 2013-06-24 Koito Mfg Co Ltd 車両用灯具
TWI528018B (zh) * 2012-03-07 2016-04-01 鴻海精密工業股份有限公司 貼片機檢測裝置
US20160084461A1 (en) * 2013-04-26 2016-03-24 Hitachi Maxell, Ltd. Vehicle lamp
JP6504355B2 (ja) * 2014-06-06 2019-04-24 パナソニックIpマネジメント株式会社 ランプおよび車両用ヘッドランプ
AT515996B1 (de) * 2014-06-23 2016-09-15 Zizala Lichtsysteme Gmbh Verfahren und Scheinwerfer zum Erzeugen einer Lichtverteilung auf einer Fahrbahn
JP6509617B2 (ja) 2015-04-15 2019-05-08 株式会社小糸製作所 車両用灯具
JP6722700B2 (ja) * 2015-05-26 2020-07-15 ルミレッズ ホールディング ベーフェー 高輝度光を作り出す光学デバイス
DE102016102456A1 (de) * 2016-02-12 2017-08-17 Hella Kgaa Hueck & Co. Beleuchtungsvorrichtung für Fahrzeuge
US20190049830A1 (en) * 2016-03-07 2019-02-14 Sony Corporation Light source device and electronic apparatus
JP6782559B2 (ja) * 2016-05-13 2020-11-11 株式会社小糸製作所 車両用前照灯
DE102016223231A1 (de) * 2016-11-23 2018-05-24 Osram Gmbh Laser activated remote phosphor (larp) system, scheinwerfer und fahrzeug
FR3062195A1 (fr) * 2017-01-26 2018-07-27 Valeo Vision Dispositif d'eclairage a source laser pour un vehicule
CN107101591A (zh) * 2017-05-16 2017-08-29 上海卫星工程研究所 基于激光测量的星载标校装置
JP6831302B2 (ja) * 2017-06-21 2021-02-17 トヨタ自動車株式会社 レーザ加工品の製造方法および電池の製造方法
US10684539B2 (en) * 2017-09-19 2020-06-16 Panasonic Intellectual Property Management Co., Ltd. Lighting device and projection display apparatus
JP7037043B2 (ja) 2017-12-25 2022-03-16 日亜化学工業株式会社 発光装置の異常検出方法及び発光装置
EP3614045B1 (en) 2018-08-20 2021-11-03 Nichia Corporation Fluorescent module and illumination device
CN111197725A (zh) * 2018-11-20 2020-05-26 深圳市绎立锐光科技开发有限公司 一种照明装置及灯具
KR20200124377A (ko) * 2019-04-23 2020-11-03 현대자동차주식회사 차량의 라이다 통합 램프 장치
US11768281B2 (en) * 2020-02-28 2023-09-26 Continental Autonomous Mobility US, LLC Vehicle component with image sensor aimed at fiducial marker
WO2022059089A1 (ja) 2020-09-16 2022-03-24 三菱電機株式会社 前照灯装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327361A (ja) * 2003-04-28 2004-11-18 Seiko Epson Corp 照明装置および投射型表示装置
JP2005326603A (ja) * 2004-05-14 2005-11-24 Pentax Corp 光通信装置
JP2010092747A (ja) * 2008-10-09 2010-04-22 Koito Mfg Co Ltd 車両用前照灯
JP2011124189A (ja) * 2009-12-14 2011-06-23 Asahi Rubber Inc 照明装置及び照明装置の発光色変更方法
JP2011154995A (ja) * 2009-12-28 2011-08-11 Sharp Corp 照明装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4009966A (en) * 1975-09-24 1977-03-01 General Motors Corporation Headlamp focusing method
US5633710A (en) * 1995-10-04 1997-05-27 Egs Inc. System for self-aligning vehicle headlamps
JP3708730B2 (ja) 1998-12-01 2005-10-19 三菱電線工業株式会社 発光装置
JP4054594B2 (ja) 2002-04-04 2008-02-27 日東光学株式会社 光源装置及びプロジェクタ
WO2003087792A2 (en) * 2002-04-15 2003-10-23 Delta Dansk Elektronik, Lys & Akustik Method and apparatus for measuring light reflections of an object
CA2635155C (en) * 2007-06-18 2015-11-24 Institut National D'optique Method for detecting objects with visible light
US8767215B2 (en) * 2007-06-18 2014-07-01 Leddartech Inc. Method for detecting objects with light
JP2010081957A (ja) 2008-09-29 2010-04-15 Olympus Corp 光源装置
JP5122542B2 (ja) 2009-09-15 2013-01-16 シャープ株式会社 発光装置、照明装置および光検知器
US8708537B2 (en) * 2010-08-31 2014-04-29 Sharp Kabushiki Kaisha Lighting apparatus, headlamp, and mobile body
JP5261543B2 (ja) * 2011-06-30 2013-08-14 シャープ株式会社 レーザ光利用装置および車両用前照灯

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327361A (ja) * 2003-04-28 2004-11-18 Seiko Epson Corp 照明装置および投射型表示装置
JP2005326603A (ja) * 2004-05-14 2005-11-24 Pentax Corp 光通信装置
JP2010092747A (ja) * 2008-10-09 2010-04-22 Koito Mfg Co Ltd 車両用前照灯
JP2011124189A (ja) * 2009-12-14 2011-06-23 Asahi Rubber Inc 照明装置及び照明装置の発光色変更方法
JP2011154995A (ja) * 2009-12-28 2011-08-11 Sharp Corp 照明装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015049048A1 (de) * 2013-10-02 2015-04-09 Audi Ag Beleuchtungseinrichtung fur ein kraftfahrzeug und kraftfahrzeug
EP3052853B1 (de) * 2013-10-02 2020-04-01 Audi AG Beleuchtungseinrichtung für ein kraftfahrzeug und kraftfahrzeug
DE102014017521A1 (de) 2014-11-27 2016-06-02 Audi Ag Beleuchtungseinrichtung für ein Kraftfahrzeug, Kraftfahrzeug mit einem Scheinwerfer mit einer Beleuchtungseinrichtung und Verfahren zum Betreiben einer Beleuchtungseinrichtung

Also Published As

Publication number Publication date
US20140204398A1 (en) 2014-07-24
US9074877B2 (en) 2015-07-07

Similar Documents

Publication Publication Date Title
WO2013024668A1 (ja) 位置ずれ検出装置、発光装置、照明装置、プロジェクタ、車両用前照灯および位置ずれ調整方法
JP5329511B2 (ja) 照明装置及び車両用前照灯
JP4991834B2 (ja) 車両用前照灯
JP5589007B2 (ja) 発光装置、照明装置および車両用前照灯
EP2534411B1 (en) Lamp comprising a phosphor, radiation source, optical system and heatsink
JP5232815B2 (ja) 車両用前照灯
JP5059208B2 (ja) 照明装置および車両用前照灯
JP5254418B2 (ja) 照明装置および前照灯
JP5204885B2 (ja) 照明装置および車両用前照灯
JP6258083B2 (ja) 発光ユニット、発光装置、照明装置および車両用前照灯
JP6067629B2 (ja) 発光装置、照明装置および車両用前照灯
JP2011129376A (ja) 発光装置、照明装置、車両用ヘッドランプおよびプロジェクタ
WO2013051623A1 (ja) 発光体、照明装置および前照灯
US20120106185A1 (en) Light emitting device, illuminating equiptment, and vehicle headlamp
JP2012099282A (ja) 照明装置及び車両用前照灯
JP2013039868A (ja) 位置ずれ検出装置、発光装置、照明装置、プロジェクタ、車両用前照灯および位置ずれ調整方法
JP5710953B2 (ja) 発光装置、車両用前照灯および照明装置
JP2012193283A (ja) 発光体、発光装置、照明装置および前照灯
JP5356998B2 (ja) 車両用前照灯
JP5737861B2 (ja) 照明装置及び車両用前照灯
JP2012204071A (ja) 照明装置及び前照灯
US20190219233A1 (en) Light emitting device and illuminating apparatus
JP5675306B2 (ja) 発光装置、車両用前照灯及び照明装置
JP2013243162A (ja) 車両用前照灯
JP6072447B2 (ja) 照明装置及び車両用前照灯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12823421

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14235914

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12823421

Country of ref document: EP

Kind code of ref document: A1