WO2013023393A1 - 一种动态调节电压和频率的电路控制系统和方法 - Google Patents

一种动态调节电压和频率的电路控制系统和方法 Download PDF

Info

Publication number
WO2013023393A1
WO2013023393A1 PCT/CN2011/079366 CN2011079366W WO2013023393A1 WO 2013023393 A1 WO2013023393 A1 WO 2013023393A1 CN 2011079366 W CN2011079366 W CN 2011079366W WO 2013023393 A1 WO2013023393 A1 WO 2013023393A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
voltage
circuit
module
target
Prior art date
Application number
PCT/CN2011/079366
Other languages
English (en)
French (fr)
Inventor
匡双鸽
丁然
Original Assignee
珠海全志科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海全志科技股份有限公司 filed Critical 珠海全志科技股份有限公司
Priority to EP11871004.5A priority Critical patent/EP2743793B1/en
Priority to US14/238,465 priority patent/US9317048B2/en
Publication of WO2013023393A1 publication Critical patent/WO2013023393A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/12Regulating voltage or current wherein the variable actually regulated by the final control device is ac
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3206Monitoring of events, devices or parameters that trigger a change in power modality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/324Power saving characterised by the action undertaken by lowering clock frequency
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3296Power saving characterised by the action undertaken by lowering the supply or operating voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present invention relates to the field of circuit control technologies, and in particular, to a circuit control system and method for dynamically adjusting voltage and frequency for dynamically adjusting a working voltage and frequency of a target circuit.
  • Reducing the power consumption of a circuit has two meanings, one is to reduce the dynamic power consumption of the target circuit under working conditions, and the other is to reduce the static power consumption of the target circuit in the non-operating state.
  • the target circuit requires different operating frequencies and operating voltages in the active and inactive states. If the working state is further refined, the target circuit requires different operating frequencies and operating voltages in different application scenarios. If the operating frequency and operating voltage of the target circuit under different operating conditions can be dynamically adjusted, when the target circuit performs a relatively simple task/program (or when it is not in operation), its operating frequency and operating voltage are lowered. When the complex task/program is increased in its working frequency and working voltage, the overall power consumption of the target circuit can be effectively reduced under the premise of ensuring the original performance of the target circuit.
  • Conventional systems that control operating frequency and operating voltage are more complex when adjusting the voltage and frequency of the target circuit. It mainly uses software, especially the operating system, to analyze the tasks or applications to be executed, obtain the working frequency and working voltage required to run the task, and pre-execute the working voltage and working frequency of the target circuit through software beforehand. Adjustment, when the frequency and voltage are adjusted in place, the task or application is started.
  • This adjustment method mainly relies on software.
  • the adjustment module is also divided into many independent structures. The adjustment process is complicated, the adjustment time is long, and the burden of the software program is greatly increased.
  • the adjustment efficiency is relatively low, which is mainly reflected in the need to increase the operating voltage when the target circuit needs to operate at a higher frequency, or When working at a lower operating frequency, it is necessary to lower the operating voltage.
  • the standard for increasing or decreasing the operating voltage is single, and there is no distinction between the manufacturing process differences of the target circuits or the differences in the working environment. In fact, the target circuits in different working environments do not have the same minimum voltage required to operate at the same frequency.
  • a circuit control system for dynamically adjusting voltage and frequency provided for achieving the object of the present invention, comprising a look-up table module, a conversion module, and a joint adjustment module; wherein:
  • the look-up table module is configured to store a voltage and frequency corresponding relationship curve combination table of the target circuit under one or more working conditions;
  • the conversion module is configured to convert the working frequency of the target circuit with the working voltage according to the lookup table module; and the joint adjustment module is configured to jointly adjust the working frequency and the working voltage of the target circuit.
  • the circuit control system for dynamically adjusting voltage and frequency further includes a scanning module for scanning performance of the target circuit under current conditions;
  • the scanning module can perform a state scan on the performance of the target circuit under the current conditions, and select a voltage-frequency correspondence curve of the target circuit under the current condition from the look-up table module according to the state scan result.
  • the circuit control system for dynamically adjusting voltage and frequency further includes a joint control module for jointly controlling the working frequency of the target circuit and the adjustment of the operating voltage;
  • the joint control module controls the query module, the scan module, the conversion module, and the joint adjustment module, and outputs the adjustment result to notify the user when the joint smoothing adjustment of the frequency and the voltage ends.
  • Step A Perform a state scan on the performance of the target circuit under current conditions, and directly pass the preset result according to the scan result. The result selects the voltage-frequency correspondence curve of the target circuit under the current conditions from the look-up table;
  • Step B Under the current condition, when the target circuit performs a work task, obtain a target frequency value required to execute the work task, and convert the required target according to the frequency value and the obtained voltage frequency corresponding relationship curve. Voltage value; Step C, according to the relative relationship between the frequency value and the target frequency value under the current condition of the target circuit, and the corresponding relationship between the voltage value and the target voltage value under the current condition, the operating frequency of the target circuit in a preset order Joint smoothing adjustment with the operating voltage.
  • the beneficial effects of the present invention are:
  • the circuit control system and method for dynamically adjusting voltage and frequency of the present invention have high degree of automation, and the circuit and the work are not increased when the voltage and frequency are jointly adjusted to the target circuit. Adjusting the voltage and the operating frequency, taking into account the safety and speed of the adjustment, the regulation of the working voltage and the operating frequency of the circuit is safe and reliable, and the circuit control system of the present invention can be operated under different working scenarios.
  • Improve the working frequency of the chip integrated circuit under the premise of limiting the working voltage fully exploit the working performance of the target circuit, obtain a better working experience, and adjust according to the process characteristics of the target circuit and the performance and power consumption characteristics under different applications. In order to achieve the best possible energy saving effect.
  • FIG. 1 is a schematic structural diagram of a circuit control system for dynamically adjusting voltage and frequency according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a working condition inquiry table in an embodiment of the present invention.
  • Figure 3 is a schematic diagram of the relationship between frequency and voltage
  • Figure 4 is a schematic structural view of the speed detecting circuit of Figure 1;
  • Figure 5 is a schematic diagram showing the circuit structure of the frequency adjustment module of Figure 1;
  • Figure 6 is a schematic structural view of the frequency switching circuit of Figure 5;
  • Figure 7 is a schematic structural view of the frequency dividing circuit of Figure 5;
  • FIG. 8 is a flow chart of a method for dynamically adjusting control of circuit voltage and frequency in an embodiment of the present invention
  • Figure 9 is a flow chart showing the process of adjusting the frequency and adjusting the voltage in step S300 of Figure 8. detailed description
  • a circuit control system for dynamically adjusting voltage and frequency includes a lookup table module 1 , a scan module 2 , a conversion module 3 , and a joint adjustment module 4 ;
  • the lookup table module 1 is configured to store a working condition query table (VF t ab l e ) of the performance of the target circuit.
  • the working condition lookup table (VF t ab l e ) contains a combination of voltage and frequency correspondence curves of various target circuits under various operating conditions.
  • the operating conditions include, but are not limited to, different manufacturing process variations and operating temperature conditions.
  • the scanning module 2 is configured to scan the performance of the target circuit under the current conditions.
  • the scanning module 1 performs a state scan on the performance of the target circuit under the current conditions, and selects a voltage-frequency correspondence curve of the target circuit under the current condition from the look-up table module 1 according to the state scan result.
  • the scanning module 2 of the embodiment of the present invention includes a speed detecting circuit 21 for performing state scanning on the performance performance of the target circuit under the set condition. That is, the speed detecting circuit is used for the highest frequency of the target circuit under the current conditions (such as set voltage, set temperature), or the target circuit is in the current condition. The lowest voltage that can be operated under (such as setting frequency, setting temperature) is measured.
  • the conversion module 3 is configured to convert the working frequency of the target circuit with the working voltage according to the lookup table module 1.
  • the conversion module 3 obtains a target frequency value required for executing the work task when the target circuit performs a work task under the current condition, and converts the corresponding frequency value according to the frequency value and the voltage frequency obtained by the scanning module 2 The desired target voltage value.
  • the joint adjustment module 4 is configured to jointly adjust the operating frequency and the operating voltage of the target circuit.
  • the joint adjustment module 4 performs joint smoothing adjustment on the operating frequency and voltage of the target circuit according to the relative relationship between the current frequency value of the target circuit and the target frequency value, and the correspondence between the current voltage value and the target voltage value in a preset order. .
  • the joint adjustment module 4 includes a scheduling module 41, a frequency adjustment module 42, and a voltage adjustment module 43.
  • the scheduling module 41 is configured to invoke the frequency adjustment module 42 and the voltage adjustment module 43 in a preset sequence to perform joint smoothing adjustment on the operating frequency and the operating voltage.
  • the frequency adjustment module 42 is configured to smoothly adjust the working frequency of the target circuit by adjusting the target circuit clock source selection, the source frequency, the frequency division coefficient, the clock switch, and the like.
  • the voltage regulating module 43 is configured to adjust the voltage of the target circuit power supply system in a set order.
  • the circuit control system for dynamically adjusting voltage and frequency further includes a joint control module 5 for jointly controlling the operating frequency of the target circuit and the adjustment of the operating voltage.
  • the joint control module 5 controls the query module 1, the scan module 2, the conversion module 3, the joint adjustment module 4, and outputs the adjustment result to notify the user when the joint smoothing adjustment of the frequency and voltage ends.
  • the working condition lookup table (VF tab l e ) module 1 for the performance of the storage target circuit of the embodiment of the present invention will be described in detail below.
  • the performance of the target circuit refers to individual differences in the manufacturing process of the target circuit, or in different working environments, such as temperature differences, or under the influence of different peripheral components, such as The difference in printed circuit boards, resulting in each individual target circuit, shows a difference in performance in actual work.
  • the overall performance range obtained by statistically processing the performance of a limited number of target circuits is known as the performance of the target circuit.
  • the working condition query table (VF tab le ) refers to quantizing the performance of the target circuit and converting it into a list of curves corresponding to the operating frequency and the working voltage. Performance table for each individual target circuit in actual operation It is now possible to measure the highest frequency that can operate normally at multiple specific voltages, or to measure the minimum voltage required for normal operation at multiple specific frequencies, and then statistically derive the operating frequency and operating voltage.
  • the working voltage as a coordinate corresponds to the operating frequency. Due to the difference in performance performance that may be caused by multiple or multiple different implementations of the target circuit, a graph of the relationship between the operating voltage and the operating frequency is obtained, as shown in Table 1, ie, VF tab le, VF tab le Covers the overall performance range of the target circuit.
  • the working condition query table is the VF tab le table, which contains multiple working frequencies corresponding to the working voltage. They correspond to a variety of different performances of integrated circuits (ICs). The various points on the curve define the highest frequency at which the target circuit can operate at a particular voltage.
  • the minimum voltage at which the different curves can operate at the same frequency is different, wherein the curve 1 has a corresponding operating voltage of 1. 3V at an operating frequency of 500 MHz; the curve 1 has an operating frequency of 500 MHz. 4 ⁇ The minimum operating voltage corresponding to 1. 4V.
  • the minimum voltage allowed is 1. 3V when its operating frequency is at 500 MHz. If the target circuit performs in line with curve 2 in another application, the maximum allowable voltage is 1. 4V when its operating frequency is at 500MHz.
  • the data source of the lookup table (VF tab le ) in the embodiment of the present invention is obtained by actual measurement after implementation of a large number of target circuits.
  • the measurement process of the target circuit is: performing boundary scan on the highest frequency of the target circuit IC at a voltage, and retaining a certain amount (preset amount) of margin when determining the highest frequency at which it can work. And after a long period of stability test, the highest frequency of the target circuit at this voltage can be obtained; or the target circuit can be subjected to boundary scan at the lowest voltage at a frequency, and when it is determined that the lowest voltage at which it can operate, After a certain amount of margin, and after a long time stability test, the lowest voltage of the target circuit at this frequency can be obtained.
  • the two measurement methods can be converted to each other, and a frequency-voltage correspondence point as shown in Fig. 3 can be obtained.
  • a plurality of different working voltages corresponding to the working frequency are obtained.
  • Combining, statistically combining and combining the curve combinations to obtain a plurality of voltage and frequency combination curves as the corresponding relationship between the working voltage of the target circuit and the working frequency, and the corresponding relationship between the working voltage and the working frequency The data table is stored, and the query table module, that is, the VF tab le module, is obtained.
  • the data of the operating voltage corresponding to the working frequency in the lookup table (VF tab le ) module 1 of the embodiment of the present invention is saved in the solid state storage device of the system of the embodiment of the present invention, which may be The system initialization phase is imported and stored in the system.
  • the scanning module 1 of the embodiment of the present invention is described in further detail below:
  • the scanning module 1 performs a state scan on the performance of the target circuit under the current conditions, and selects a voltage-frequency correspondence curve of the target circuit under the current condition from the query table module 1 according to the scan result.
  • the scanning module 2 of the embodiment of the present invention includes a speed detecting circuit 21 for performing state scanning on the performance performance of the target circuit under the setting conditions. That is, the speed detecting circuit is used for the highest frequency of the target circuit under the current conditions (such as set voltage, set temperature), or the target circuit under current conditions (such as set frequency, set temperature) The lowest voltage at which it can work is measured.
  • the speed detecting circuit is used for the highest frequency of the target circuit under the current conditions (such as set voltage, set temperature), or the target circuit under current conditions (such as set frequency, set temperature) The lowest voltage at which it can work is measured.
  • the speed detecting circuit or: A) obtaining a result of working normally or not working by adjusting a voltage, or adjusting a frequency, or adjusting a delay path of the circuit itself (or other factors); or : B) The result of normal operation or failure to work normally does not affect the normal operation of the target circuit itself; or: C) The result of normal operation or failure to work under the first set condition can be obtained by converting the target circuit. The result that the specific conditions can work normally or cannot work normally; or: D) Depending on the characteristics of the speed detecting circuit, the first setting condition and the second setting condition may be the same or different conditions.
  • the conversion relationship can be obtained by a limited number of measurement statistics.
  • the speed detecting circuit 21 of the scanning module may adjust a delay frequency (or an arithmetic circuit), adjust an input clock frequency, or fix an input frequency, adjust a delay path level, etc.
  • a delay frequency or an arithmetic circuit
  • the speed detecting circuit 21 of the scanning module adjusts the length of the self-delay path by setting the voltage and setting the working frequency (ie, the fixed input frequency), and judging the working result thereof. To detect the performance of the target circuit.
  • the working frequency ie, the fixed input frequency
  • the delay level obtained by the speed detection circuit can be determined by determining the interval in which the delay level is classified and statistic, and the working frequency and the working voltage curve selection bit of the current target circuit are correspondingly selected, that is, the query table is selected. (VF tab le )
  • One of the multiple curves in the module serves as the corresponding relationship between the operating voltage of the current target circuit and the operating frequency.
  • a schematic diagram of a speed detecting circuit 21 includes an excitation generating module 211, a delay path module 212, a result comparing module 213, and a detecting control module 214.
  • the excitation generating module 211 is configured to generate one or more multi-cycle pulse signals (for example, a duty ratio of 50%) by using an input clock signal, and the pulse signal passes through two different path circuits, that is, a delay-free path circuit. And the delay path circuit of the delay path module 212 respectively arrives at the result comparison module 213;
  • the delay path module 212 includes a delay path circuit for delaying the pulse signal or calculating the input signal
  • the result comparison module 213 is configured to compare the phase relationship between the signal after the original pulse signal passes through the delay-free path circuit and the pulse signal after the delay path circuit.
  • the detection control module 214 is configured to control the excitation generation module 211, the delay path module 212, and the result comparison module 113 to operate at different timings.
  • the two pulse signals When the delay path length of the initial delay path circuit is set to 0, the two pulse signals have the same phase. When the delay path length is gradually increased, the signal phases of the two are gradually deviated. When the delay path length is increased to a certain value, The phase shift of the two pulse signals reaches 180 degrees, that is, the high and low potentials of the two signals are opposite. At this time, it can be determined that the speed detecting circuit can not work normally, and the delay level obtained at this time can be used as the working performance of the speed detecting circuit. Performance data.
  • the speed detecting circuit 21 increases the certain delay voltage path length (delay unit level) by inputting the set voltage and the set operating frequency, and then increases to a certain value.
  • the speed detection circuit finds that it cannot work normally.
  • the delay level obtained at this time can be used as the basis for the performance of the speed detection circuit. It reflects the speed performance of the speed detection circuit in the current working environment, and can correspond to the speed performance of the target circuit in the current working environment.
  • the delay detection circuit of the speed detection circuit 21 can be compared with the working frequency of the target circuit and the working voltage point. For example, the delay time of the target circuit speed detection circuit scanned at 1.2 v is 120.
  • the maximum stable operating frequency of the target circuit is 1.2M at 1. 2v; and the maximum stable operating frequency corresponding to the target circuit speed detecting circuit is 1.2 at 0. 2v. It is 500M. The correspondence between the two can be determined experimentally.
  • the number of delay stages obtained by scanning through multiple speed detection circuits can be divided into four types of different performances by classification and statistics. For example, under 1. 2v, the delay level is higher than 180. In the interval, 180 - 150 is in the second interval, 150 - 120 is in the third interval, and 120 is below the fourth interval.
  • Multiple delay series intervals can correspond to multiple target circuits with different performances, that is, the operating frequencies of multiple target circuits in the same query table (VF tab le ) correspond to the operating voltage curves. For example, interval 1 corresponds to curve 1 in the VF tab le table, interval 1 corresponds to curve 2 in the VF tab l e table, and so on.
  • the speed detecting circuit 21 is one or more parts, and respectively monitors a plurality of key circuits that affect the operation of the target circuit, that is, the speed detecting circuit is close to the critical circuit that affects the operation of the target circuit to obtain the same.
  • the working condition is convenient for converting the result of the target circuit operation by the detection result of the speed detecting circuit.
  • the conversion module 3 of the embodiment of the present invention is described in detail below:
  • the conversion module 3 obtains a target frequency value required to execute the work task when the target circuit performs a work task under the current condition, and converts the required frequency curve according to the frequency value and the voltage frequency corresponding curve obtained by the scanning module.
  • the target voltage value is a target voltage value required to execute the work task when the target circuit performs a work task under the current condition.
  • the conversion module 3 calculates and converts the voltage value required for the target circuit to operate at the frequency under the current condition according to the corresponding relationship between the operating voltage and the operating frequency under the current condition.
  • the relationship between the operating voltage and the operating frequency under the current conditions is scanned by the speed detecting circuit 11 of the scanning module 1 and selected according to the result.
  • the conversion module 3 includes a target frequency acquisition module 31 for acquiring a target frequency value required when the target circuit needs to perform a work task.
  • the target frequency obtaining module 31 can monitor changes of the target circuit clock configuration information, including changes such as clock source selection, clock source frequency configuration, clock division setting, etc., and according to the current clock configuration information of the target circuit and running the next task.
  • the required clock configuration information is used to calculate the current operating frequency and target operating frequency of the target circuit. For example:
  • the target circuit currently selects a phase-locked loop as its clock source selection.
  • the phase-locked loop input frequency is 24Mhz
  • its VC0 multiplication factor is 64
  • the post-frequency division factor is 4
  • the target circuit clock division is set to 3.
  • the phase-locked loop post-frequency division coefficient in the target circuit clock configuration information is modified to 2 by software, and the target circuit clock division setting is changed to 2, then the target circuit needs to perform the target work for the next task.
  • the target frequency acquisition module 31 needs to simultaneously record the current clock configuration information of the target circuit and the clock configuration information required to run the next task, and calculate the current operating frequency and the target operating frequency of the target circuit, respectively.
  • the target voltage value refers to a voltage value required for the target circuit to operate normally at the target frequency value.
  • the voltage value is related to the target frequency value of the target circuit, and is related to the individual characteristics of the target circuit and the working environment.
  • the target voltage value is converted according to the target frequency value by using the working frequency and the working voltage corresponding relationship curve under the current condition.
  • the target circuit When the target circuit switches from one working state to another (such as when switching from standby to working state), or when you need to open or close an application (such as turning video playback on or off), Or when performing certain applications, at different stages of operation (such as when the network is downloaded), the target circuit needs to be switched from one operating frequency to another due to different performance requirements. Start frequency and target frequency. And because the operating frequency of the circuit is in the process of adjusting from the starting frequency to the target frequency, multiple factors affecting the frequency, such as clock source selection, source frequency, frequency division coefficient, etc., are allowed to change, and different factor changes may result in aims The operating frequency of the circuit changes in a direction that deviates from the target frequency in a short period of time. The different factor changes cause the operating frequency of the target circuit to be different from the starting frequency and the target frequency as the intermediate frequency.
  • the conversion module 3 obtains the starting voltage, the intermediate voltage and the target voltage by searching the operating frequency and the operating voltage corresponding curve in the VF t ab l e table according to the starting frequency, the target frequency or the intermediate frequency.
  • the starting voltage can also be input by the user or by a status register.
  • the starting frequency, the intermediate frequency and the target frequency are 24MHz, 200MHz and 500MHz respectively, which is the last one according to the curve 1.
  • the initial voltage, the intermediate voltage and the target voltage are 0. 8v, 0. 8v and 1. 4v, respectively. According to these three voltages, it can be concluded that the maximum voltage during the entire adjustment process is 1. 4v and the target voltage is 1. 4v.
  • the joint adjustment module 4 of the present invention is described in detail below:
  • the joint adjustment module 4 according to the relative relationship between the frequency value and the target frequency value under the current condition of the target circuit, and the corresponding relationship between the voltage value and the target voltage value under the current condition, in the preset order, the operating frequency of the target circuit Joint smoothing adjustment with the operating voltage.
  • the joint smoothing adjustment 1) a process comprising one or more times or adjusting the frequency, which may include one or more processes of adjusting the voltage;
  • the target frequency acquisition module 31 detects the change of the target circuit operating frequency information, and calculates the intermediate frequency, the target frequency and the intermediate voltage, and the target voltage
  • the starting frequency and voltage combination adjustment module 4 performs the joint adjustment of the operating frequency and the working voltage.
  • the joint adjustment module includes a frequency adjustment module 42, a voltage adjustment module 43, and a scheduling module 41.
  • the scheduling module 41 is configured to invoke the frequency adjustment module 42 and the voltage adjustment module 43 in a preset sequence to perform joint smoothing adjustment on the operating frequency and the operating voltage.
  • the frequency adjustment module 42 is configured to adjust a target circuit operating frequency by adjusting a target circuit clock source selection, a source frequency, a frequency division coefficient, a clock switch, and the like.
  • the frequency adjustment module 42 adjusts the frequency of the target circuit, and the operating frequency allows a plurality of factors affecting the frequency, such as clock source selection, source frequency, frequency division coefficient, etc., during the adjustment from the starting frequency to the target frequency, and the factors may cause
  • a sharp pulse appears on the target circuit clock that causes the target circuit to be inoperable; during the frequency adjustment, a relatively large change occurs between the current frequency (first frequency) and the latter frequency (second frequency), and the second frequency is high.
  • the frequency adjustment module When the first frequency exceeds the maximum value of the frequency change allowed by the target circuit, the frequency adjustment module enables the frequency adjustment smoothing method to smoothly switch the operating clock of the target circuit from the first frequency to the second frequency, otherwise the target circuit is directly The clock frequency is switched to the second frequency.
  • the frequency adjustment module 42 includes a frequency switching circuit 421 , a frequency dividing circuit 422 , a c lock frequency smoothing circuit 423 , and a corresponding timing control circuit 424 .
  • the frequency switching circuit 421 is a clock switching circuit that switches between a plurality of source clocks of the target circuit operating clock. As an implementation manner, as shown in FIG. 6, it is a clock switching circuit, which follows the first turn off. The principle of opening ensures that there will be no abnormal signals such as burrs or narrow pulses on the output clock that affect the normal operation of the target circuit.
  • the frequency dividing circuit 422 is a 1 - 2 N high-speed frequency dividing circuit capable of dynamically configuring the frequency dividing coefficient, which functions as a frequency buffering function for the frequency switching process, and can also be used for the frequency smoothing function.
  • the frequency dividing circuit is a 1 /2/4/8 dynamically configurable coefficient high-speed frequency dividing circuit, which mainly includes a binary 8 frequency dividing circuit. Circuit, frequency division coefficient synchronization circuit and clock output selection circuit.
  • the divide-by-frequency coefficient synchronization circuit uses the divide-by-8 clock to synchronize the external divide-frequency coefficient change with the output clock, and uses the synchronized divide-by-frequency coefficient to select the clock output. Therefore, the division factor is synchronized by the internal clock, so the secondary division factor can be dynamically changed without affecting the safety of the output clock.
  • the c lock frequency smoothing circuit 423 is a c lock switch control circuit that can dynamically adjust the clock switch fclock ga t ing ).
  • the principle is that the c lock pulse is passed through the switch circuit by controlling the clock switch (c lock ga t ing ). Part of the clock pulse is turned off, and finally the number of output clock pulses is reduced to achieve the purpose of reducing the output frequency. If a divide-by-8 clock cycle is used as a complete cycle, then only one of the eight clock pulses can be selected, one for up to eight clock pulses, and the output frequency is equivalent to 1/8 of the input frequency, 2/8 , 3/8 to 8/8. Compared to ordinary integer frequency division circuits, it can achieve higher precision in output clock frequency adjustment.
  • the timing control circuit output frequency select bits are synchronized by the internal input clock, so its select bits can be dynamically changed without affecting the safety of the output clock.
  • the timing control circuit 424 is a relationship between the coordinated frequency switching circuit 421, the frequency dividing circuit 422, and the clock frequency smoothing circuit 423, controls the successive correlation of the dynamic changes of the coefficients, and the delay waiting control between the coefficients.
  • the frequency switching can be divided into several actions.
  • the switching process is also needed. It is divided into several actions, such as adjusting the clock frequency to a smaller direction, and then adjusting the clock frequency to a larger direction.
  • a frequency adjustment smoothing method is introduced.
  • the 24MHz clock source and the 500Mhz clock source are both from the clock source clkO, 200Mhz clock from the clock source clkl, clkO and clkl do not support dynamic adjustment.
  • the threshold of the operating frequency smoothing adjustment method is that the target frequency exceeds the starting frequency by more than 200 MHz, and the smoothing adjustment step length must not exceed 200 MHz, and the first frequency adjustment in step S3 of the combined adjustment of the operating frequency and the operating voltage in this embodiment There is no need to start the frequency adjustment smoothing method.
  • the specific adjustment method is as follows: Turn on clkl and set its frequency to 200MHz (omit this step if clkl is set successfully), wait for clkl to stabilize, and switch clock source to clkL
  • the frequency adjustment smoothing method needs to be started.
  • the specific adjustment method is as follows: Set the clkO frequency to 500Mhz, wait for the clkO to stabilize, switch the clock source to clkO and turn on the smoothing adjustment circuit, and set the frequency to the clock switch.
  • An intermediate frequency point (such as 375MHZ) waits for the fluctuation of the external power system caused by the operating frequency jump.
  • the waiting time is determined by the characteristics of the power system.
  • Set the clock switching rate to 100%, that is, set to the target frequency, wait for a while. The adjustment ends.
  • the voltage regulating module 43 is configured to adjust the voltage of the target circuit power supply system in a specific order.
  • the voltage regulating module 43 can directly adjust the voltage of the power supply system of the target circuit through some preset communication protocol, such as a common input/output interface signal or a signal group having a special protocol.
  • the voltage adjustment module adjusts the voltage of the power supply system to meet the requirements of the target circuit power supply system, and the adjustment of the target circuit voltage does not cause destructive fluctuation of the target circuit power system, and does not affect the target circuit. normal work.
  • the voltage supply of the target circuit is completed by a power management module (not shown), and the power management module is connected to the frequency voltage regulation system.
  • the voltage regulation module includes a communication interface, a communication interface control circuit, and a voltage regulation process control circuit.
  • the working voltage regulating circuit can adjust the power supply voltage of the power management module by using a communication protocol through a communication interface.
  • the communication interface control circuit is configured to convert the control information sent by the voltage regulation control circuit into a standard protocol signal of the communication interface, send the signal to the power management module, and simultaneously interpret and transmit the status signal sent by the external power management chip to the voltage regulation control. Circuit.
  • the voltage adjustment command sent by the voltage regulation control circuit is converted into an I2C protocol signal, and transmitted to the external power management module through the I2C bus.
  • the specific I2C protocol signal generation and communication process refer to the I2C protocol specification.
  • the communication interface control circuit can use a general communication interface controller such as an I2C interface controller.
  • a voltage regulation process control circuit for generating communication commands and status sequences, and delay waiting for control between sequences. For example, during the voltage adjustment process of the power management module, the power management module may read the current supply state of the target circuit voltage, set a new target circuit supply voltage, set a new target circuit supply voltage, and then read the status. . In order to avoid the impact of the power supply regulation on the target circuit, it is necessary to wait for a certain time delay after setting the new target circuit supply voltage. The way in which a single command communicates depends on the interpretation of the protocol by the I2C protocol and the power management module.
  • composition of the communication command sequence generated by the voltage regulation process control circuit and the length of the delay wait time are determined by the characteristics of the power management module.
  • the voltage setting of the power management module in the embodiment can be realized by writing a power management module device number, a write voltage supply serial number, a write target voltage value, and a read voltage state through a communication interface.
  • the circuit control system for dynamically adjusting voltage and frequency further includes a joint control module 5 for jointly controlling the operating frequency of the target circuit and the adjustment of the operating voltage.
  • the joint control module 5 controls the query module 1, the scan module 2, the conversion module 3, the joint adjustment module 4, and outputs the adjustment result to notify the user when the joint smoothing adjustment of the frequency and voltage ends.
  • the joint control module 5 controls the application requirements of the target circuit, and the query module 1, the scan module 2, the conversion module 3, and the joint adjustment module 4 are connected in series, and the startup timing of each module is controlled according to the application requirement, and the running state thereof is The result is passed between the modules, completing the dynamic adjustment of the operating frequency and operating voltage of the target circuit.
  • the joint control module 5 outputs the adjustment result to notify the user that it informs the user of the operating frequency of the target circuit and the result of the success or failure of the working voltage adjustment and the corresponding state by means of interrupt or state output, so that the user can have more current state of the target circuit.
  • the joint adjustment control module 5 is an interrupt and state processing circuit, which is used for joint work of each module, and records and corrects the correct and error information appearing during the adjustment process, and notifies the user by interruption or the like. , notify the user of the current voltage and current frequency if the adjustment ends correctly; or when the power management module cannot be used for special reasons When correctly responding to the adjustment command of the voltage regulation circuit, the user is notified of the error module and the cause of the error, and the information such as the start voltage and the start frequency, the target voltage and the target frequency are recorded.
  • Step S100 performing a state scan on the performance of the target circuit under the current condition, and selecting a voltage-frequency correspondence curve of the target circuit under the current condition from the look-up table according to the scan result or directly through the preset result;
  • the status scanning process is as follows:
  • the variation characteristic described in the embodiment of the present invention refers to the speed detection circuit based on its own characteristics, which can work normally or cannot work normally when the input frequency, or the input voltage, or the self-delay path changes.
  • the change in results has a certain directionality, and the change in the results is predictable.
  • the speed detecting circuit can work normally.
  • the delay detection path of the speed detection circuit is in a certain number of stages, it can work normally.
  • the delay detection path number of the speed detection circuit is increased, which causes the speed detection circuit to operate at the highest frequency, which can be inferred.
  • the speed detection circuit may not work properly.
  • the result of the speed detecting circuit being able to work normally or not working can be a value or a range.
  • the result that the target circuit can work normally or does not work properly under the set conditions can be converted. That is, it can be inferred that the target circuit can work at the highest frequency under the set conditions (such as set voltage, set temperature), or the current target circuit is under the set conditions (such as set frequency, set temperature). The lowest voltage that can work.
  • the speed detection circuit converts the target circuit after the state scan to work normally under normal conditions or does not work normally.
  • the final reaction is in the curve selection of VF tab le, that is, the result of the conversion after the speed detection circuit state scan.
  • the scanning module selects a corresponding working voltage and working frequency corresponding relationship curve from the query table module as a reference curve for the joint adjustment of the working voltage and the working frequency under the set condition of the target circuit.
  • the speed detecting circuit adjusts the length of its own delay path by setting the voltage and the set operating frequency, and judges the working result thereof, and the detecting target circuit can work normally under the set condition or cannot work normally, that is, Target circuit performance.
  • the delay determining process of the speed detecting circuit includes the following steps: Step SI 10, generating a multi-cycle pulse signal with a duty ratio of 50% by using an input clock signal, and the pulse signal passes through two different path circuits, that is, a delay-free path circuit and a delay path circuit;
  • Step S120 comparing the phase relationship between the signal after the original pulse signal passes through the delay-free path circuit and the pulse signal after the delay path circuit;
  • Step S130 when the delay path length of the initial delay path circuit is set to 0, the two pulse signals have the same phase.
  • the delay path length is gradually increased, the signal phases of the two are gradually deviated, and the delay path length is increased to a certain value.
  • the phase shift of the two pulse signals reaches 180 degrees, that is, the high and low potentials of the two signals are opposite. At this time, it can be judged that the speed detecting circuit can not work normally, and the delay level obtained at this time can be used as the speed detecting circuit. Work performance data.
  • Step S200 Under the current condition, when the target circuit performs a work task, obtain a target frequency value required to execute the work task, and convert the required target voltage value according to the frequency value and the acquired voltage frequency corresponding relationship curve. ;
  • the operating frequency and the operating voltage are converted, and the following steps are included:
  • Step S300 according to the relative relationship between the frequency value and the target frequency value under the current condition of the target circuit, and the corresponding relationship between the voltage value and the target voltage value under the current condition, the working frequency and the working voltage of the target circuit are in a preset order. Perform joint smoothing adjustment.
  • the process of adjusting the frequency and adjusting the voltage includes the following steps:
  • Step S310 the current voltage corresponding to the current frequency of the target circuit, the target voltage corresponding to the target frequency, or the intermediate voltage corresponding to the intermediate frequency that may be introduced during the adjustment of the frequency, the maximum value of the three is used as the adjustment process.
  • Step S320 when starting the joint adjustment of the target circuit frequency and voltage, first determining whether the current voltage is lower than the maximum voltage value
  • step S330 If yes, first perform a voltage adjustment, adjust the target circuit voltage to the maximum voltage value, then proceeds to step S330; otherwise, directly proceeds to step S330;
  • Step S330 adjusting the operating frequency of the target circuit to the target frequency
  • Step S340 determining whether the target voltage of the target circuit is lower than the maximum voltage value, if yes, performing a voltage adjustment on the target circuit, adjusting the voltage of the target circuit to the target voltage, and proceeding to step S350; otherwise, directly proceeding to step S350; step S350 , the adjustment is over.
  • the joint adjustment of the operating frequency and the operating voltage is divided into three steps.
  • the first step is to operate the voltage from 0. 8v is increased to 1. 4v.
  • the second step adjusts the operating frequency from 24MHz to 200MHz.
  • the third step adjusts the operating frequency from 200MHz to 500Mhz.
  • the step adjusting method is to gradually reduce the frequency dividing method or the ga ting method.
  • the method for smoothing the frequency adjustment includes the following specific steps:
  • the target circuit operating clock frequency is stepped up, passing through each intermediate frequency point and finally adjusting to the second frequency.
  • the method for frequency smoothing adjustment in the embodiment of the present invention does not exceed the maximum value of the allowed frequency change of the target circuit operating frequency every time, thereby avoiding the drastic change of the target circuit clock at the operating frequency, and the work brought about by the target circuit clock. Drastic changes in consumption result in damaging impact on the target circuit clock system and power system.
  • the selection of the maximum frequency and the intermediate frequency point of the first frequency and the second frequency of the method of triggering the frequency smoothing adjustment is determined by the target circuit operating environment, especially the power supply system.
  • the difference between the first frequency and the second frequency of the method for triggering the frequency smoothing adjustment and the first frequency, and the difference between the second frequency and each adjacent intermediate frequency point is set not to exceed a preset value allowed by the target circuit
  • the maximum frequency change, the change in power consumption caused by the change in the operating frequency of the target circuit must not cause destructive fluctuations in the power supply system.
  • the preset frequency change maximum value may be a fixed value or may be dynamically changed by software according to application requirements.
  • the circuit control system and method for dynamically adjusting voltage and frequency have high hardware automation and do not increase the complexity of the application software; the operating frequency and the operating voltage are adjusted in a manner that fully considers the target circuit power system. Impact, ensuring its safety; and optimizing energy-saving solutions based on the characteristics of each target circuit and the performance and power consumption characteristics of different applications.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Power Sources (AREA)

Abstract

本发明公开一种动态调节电压和频率的电路控制系统和方法。该系统包括查询表模块,用于存储目标电路在一种或多种工作条件下的电压频率对应关系曲线组合表;转换模块,用于根据查询表模块对目标电路工作频率同工作电压进行转换;联合调节模块,用于对目标电路工作频率和工作电压进行联合调节。其自动化程度高,对电路的工作电压和工作频率的调节安全可靠,达到调节优化的效果。

Description

一种动态调节电压和频率的电路控制系统和方法 技术领域
本发明涉及电路控制技术领域,特别是涉及一种对目标电路进行工作电压和频率进行 动态调节的动态调节电压和频率的电路控制系统和方法。 背景技术
众所周知, 如果集成电路设计具有更低的功耗, 我们就可以获得更低的封装成本、 更 低的电源成本、 更低的散热成本和更高的可靠性, 从而增强产品的竟争力。
降低一个电路(以下称目标电路) 的功耗, 有两个方面的含义, 一是降低目标电路在 工作状态下的动态功耗, 二是降低目标电路在非工作状态下的静态功耗。 目标电路在工作 状态下和非工作状态下所需的工作频率和工作电压是不同的。 如果将工作状态再细化下 去, 目标电路在不同的应用场景下所需的工作频率和工作电压也不尽相同。 如果能够动态 调节目标电路在不同的工作状态下的工作频率和工作电压, 则当目标电路在执行较为简单 的任务 /程序时 (或是非工作状态时) 降低其工作频率和工作电压, 在执行较为复杂的任 务 /程序时提高其工作频率和工作电压, 则可以在保证目标电路原有性能的前提下, 有效 降低目标电路的总体功耗。
传统的控制工作频率和工作电压的系统在针对目标电路的电压和频率进行调节时, 过 程是较为复杂的。 主要是利用软件尤其是操作系统对将要执行的任务或应用程序进行解 析, 获取运行该任务所需要的工作频率和工作电压, 在执行前, 预先通过软件分别将目标 电路的工作电压和工作频率进行调节, 当频率和电压调节到位后, 才开始执行任务或应用 程序。 这种调节方式主要依赖软件, 调节模块也会分为许多独立的结构, 调节过程复杂, 调节时间较长, 并极大增加了软件程序的负担。
传统的动态控制工作频率和工作电压的系统针对目标电路的电压和频率进行调节时, 调节效率比较低,主要体现在,在目标电路需要工作在较高的频率上时需要提高工作电压, 或者是工作在较低的工作频率上时需要降低工作电压, 提高或降低工作电压的标准是单一 的, 并没有对目标电路在制造工艺上的差异或工作环境的差异进行区分。 事实上, 处于不 同工作环境的目标电路, 工作在同一频率下所需的最低电压并不相同。 如果动态控制工作 频率和工作电压的系统不对制造工艺上的差异或工作环境的差异进行区分, 则只能使用较 高的电压作为统一的调节标准, 无法达到尽可能降低工作电压的目的。 因此, 传统的动态 控制工作频率和工作电压的系统无法做到最优化的节能方案。
传统的动态控制工作频率和工作电压的系统针对目标电路的电压和频率进行调节时, 对目标电路的调节是简单而直接的。 为达到减少调节结构, 减低软件负担, 传统的动态控 制工作频率和工作电压的系统对目标电路的电压或频率进行调节一般都是一步到位, 不好 解决电压或频率急剧变化给系统造成的冲击, 因而不能给系统状态切换过程留下足够的緩 冲时间, 或者, 在緩冲过程中只能被迫暂时中断目标电路的运行。 所以, 传统的调节系统 无法做到足够的安全和快捷。 发明内容
本发明的目的在于提供一种动态调节电压和频率的电路控制系统和方法, 其自动化程 度高, 对电路的工作电压和工作频率的调节安全可靠, 达到调节优化的效果。
为实现本发明目的而提供的一种动态调节电压和频率的电路控制系统, 包括 查询表模块, 转换模块, 联合调节模块; 其中:
所述查询表模块, 用于存储目标电路的在一种或多种工作条件下的电压和频率对应关 系曲线组合表;
所述转换模块, 用于根据查询表模块对目标电路工作频率同工作电压进行转换; 所述联合调节模块, 用于对目标电路工作频率和工作电压进行联合调节。
较优地, 所述动态调节电压和频率的电路控制系统, 还包括扫描模块, 用于对目标电 路的当前条件下的工作表现进行扫描;
所述扫描模块能对目标电路的当前条件下的工作表现进行状态扫描, 并根据状态扫描 结果从查询表模块中选择在当前条件下目标电路的电压频率对应关系曲线。
较优地, 所述的动态调节电压和频率的电路控制系统, 还包括联合控制模块, 用于对 目标电路工作频率和工作电压调节进行联合控制;
联合控制模块控制查询模块、 扫描模块、 转换模块、 联合调节模块, 并在频率以及电 压的联合平滑调节结束时, 输出调节结果通知用户。
为实现本发明目的还提供一种电路电压和频率的动态调节控制方法, 包括如下步骤: 步骤 A , 对目标电路的当前条件下的工作表现进行状态扫描, 并根据扫描结果或直接 通过预设的结果从查询表中选择在当前条件下目标电路的电压频率对应关系曲线;
步骤 B , 在当前条件下, 目标电路执行一工作任务时, 获取执行该工作任务所需要的 目标频率值,并才艮据此频率值和获取的电压频率对应关系曲线,换算出所需的目标电压值; 步骤 C , 根据目标电路的当前条件下频率值同目标频率值的相对关系, 以及当前条件 下电压值同目标电压值的对应关系, 按预先设定的顺序, 对目标电路的工作频率和工作电 压进行联合平滑调节。
本发明的有益效果是: 本发明的动态调节电压和频率的电路控制系统和方法, 自动化 程度高, 在对目标电路进行电压和频率联合调节时, 不会增加电路的复杂性, 对电路和工 作电压和工作频率的调节, 充分考虑到调节的安全性和快捷性, 对电路的工作电压和工作 频率的调节安全可靠, 而且, 本发明的电路控制系统, 其可以在不同的工作场景下, 在限 定工作电压的前提下提高芯片集成电路工作频率, 充分挖掘目标电路的工作性能, 获得更 好的工作体验, 并可以依据目标电路的工艺特性以及不同应用下的性能和功耗特性进行调 节, 以尽可能达到最优化的节能效果。 附图说明
图 1是本发明实施例的动态调节电压和频率的电路控制系统结构示意图;
图 2是本发明实施例中工作条件查询表示意图;
图 3是频率与电压对应关系示意图;
图 4是图 1中速度检测电路结构示意图;
图 5是图 1中频率调节模块电路结构示意图;
图 6是图 5中频率切换电路结构示意图;
图 7是图 5中分频电路结构示意图;
图 8是本发明实施例中电路电压和频率的动态调节控制方法流程图;
图 9是图 8中步骤 S 300中调节频率和调节电压过程流程图。 具体实施方式
为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图及实施例, 对本 发明的动态调节电压和频率的电路控制系统和方法进行进一步详细说明。 应当理解, 此处 所描述的具体实施例仅仅用以解释本发明, 并不用于限定本发明。
如图 1所示, 作为一种可实施方式, 本发明实施例的动态调节电压和频率的电路控制 系统, 包括查询表模块 1 , 扫描模块 2 , 转换模块 3 , 联合调节模块 4 ;
所述查询表模块 1 , 用于存储目标电路的工作表现的工作条件查询表(VF t ab l e )。 该工作条件查询表(VF t ab l e ) 包含各种目标电路在多种工作条件下的电压频率对应 关系曲线组合表。
所述工作条件包括但不限于不同的制造工艺偏差和工作温度条件。
所述扫描模块 2 , 用于对目标电路的当前条件下的工作表现进行扫描。
所述扫描模块 1对目标电路的当前条件下的工作表现进行状态扫描, 并根据状态扫描 结果从查询表模块 1中选择在当前条件下目标电路的电压频率对应关系曲线。
作为一种可实施方式, 本发明实施例的扫描模块 2包括一速度检测电路 21 , 对设定条 件下的目标电路的工作性能表现进行状态扫描。 即该速度检测电路, 用于对目标电路在当 前条件下 (如设定电压, 设定温度) 的所能工作的最高频率、 或者是目标电路在当前条件 下 (如设定频率, 设定温度) 的所能工作的最低电压进行测量。
所述转换模块 3 , 用于根据查询表模块 1对目标电路工作频率同工作电压进行转换。 所述转换模块 3在目标电路在当前条件下, 执行一工作任务时, 获取执行该工作任务 所需要的目标频率值, 并根据此频率值和扫描模块 2获取的电压频率对应关系曲线, 换算 出所需的目标电压值。
所述联合调节模块 4 , 用于对目标电路工作频率和工作电压进行联合调节。
联合调节模块 4根据目标电路的当前频率值同目标频率值的相对关系, 以及当前电压 值同目标电压值的对应关系, 按预先设定的顺序, 对目标电路的工作频率和电压进行联合 平滑调节。
较佳地, 作为一种可实施方式, 所述联合调节模块 4包括调度模块 41 , 频率调节模块 42 , 以及电压调节模块 43。
所述调度模块 41 ,用于按预先设定的顺序调用频率调节模块 42和电压调节模块 43对 工作频率以及工作电压进行联合平滑调节。
所述频率调节模块 42 , 用于通过调节目标电路时钟来源选择、 源头频率、 分频系数、 时钟开关等对目标电路工作频率进行平滑调节。
通过平滑调节尽量降低其对时钟系统和电源系统的有害冲击。
所述的电压调节模块 43 ,用于对目标电路电源供给系统的电压按照设定的顺序进行调 节。
较佳地, 所述动态调节电压和频率的电路控制系统, 还包括联合控制模块 5 , 用于对 目标电路工作频率和工作电压调节进行联合控制。
联合控制模块 5控制查询模块 1、 扫描模块 2、 转换模块 3、 联合调节模块 4 , 并在频 率以及电压的联合平滑调节结束时, 输出调节结果通知用户。
下面详细说明本发明实施例的存储目标电路的工作表现的工作条件查询表(VF tab l e ) 模块 1。
所述目标电路的工作表现, 是指由于目标电路在生产制造过程中的个体差异, 或者是 处于不同的工作环境下, 如温度差异, 或者在不同的外围配合元器件影响下, 如其所处的 印刷电路板的差异, 而导致每个独立的目标电路, 在实际工作中表现出性能上的差异。 对 有限数量的目标电路的性能表现进行统计学上的处理所获得的总体性能表现范围, 即称为 目标电路的工作表现。
作为一种可实施方式, 对每个独立的目标电路, 其在实际工作中的性能表现可以通过 实际测量获取。
工作条件查询表(VF tab l e ), 是指对目标电路的性能表现进行量化处理, 转换成为 其工作频率同工作电压对应曲线列表。 对每个独立的目标电路, 其在实际工作中的性能表 现可以通过测量其在多个特定的电压下可以正常运行的最高频率, 或是测量其在多个特定 频率下正常运行所需的最低电压, 然后经过统计即可得出以工作频率和工作电压作为坐标 的工作电压同工作频率对应关系曲线。 因目标电路多次或多个不同的实现可能导致的性能 表现的差异性,会得出多条工作电压同工作频率对应关系曲线表,如表 1所示,即 VF tab le, VF tab le表涵盖目标电路的总体工作表现范围。
表 1 工作电压同工作频率对应关系曲线表
Figure imgf000007_0001
工作条件查询表即 VF tab le表, 其中包含多条工作频率同工作电压对应曲线。 其分 别对应了集成电路( Integrated Circuit, IC ) 的多种不同性能表现。 曲线上的各个点定义了 目标电路在特定的电压可以正常工作的最高频率。
如图 2所示, 不同的曲线在相同的频率下可以工作的最低电压不同, 其中曲线 1在工 作频率为 500MHz时, 所对应的最氏工作电压为 1. 3V; 曲线 1在工作频率为 500MHz时所对 应的最低工作电压为 1. 4V。
如果目标电路的实现在一种应用场合下其性能表现符合曲线 1 , 则当其工作频率处于 500MHz时, 其允许的最低电压为 1. 3V。 如目标电路在另一应用场合下其性能表现符合曲 线 2 , 则当其工作频率处于 500MHz时, 其允许的最氏电压为 1. 4V。
作为一种可实施方式, 本发明实施例的查询表(VF tab le )数据来源由大量目标电路 的实现后通过实际测量后得出。
作为一种可实施方式, 对目标电路测量过程为: 对目标电路 IC进行一电压下的最高 频率进行边界扫描, 当确定其能工作的最高频率时, 保留一定量(预设量) 的裕度, 并经 过长时间稳定性测试后就可得出此目标电路在此电压下得最高频率; 或者对目标电路进行 一频率下的最低电压进行边界扫描, 当确定其能工作的最低电压时, 保留一定量的裕度, 并经过长时间稳定性测试后即可得出此目标电路在此频率下得最低电压。
两种测量方式可以互相转换, 均可得出如图 3中的一个频率与电压对应关系点。
当对目标电路进行多个电压下的最高频率或多个频率下的最低电压进行测试, 即可得 出目标电路在设定工作条件下的一条工作电压同工作频率对应关系曲线。
当对目标电路在不同工作条件下进行测试, 以及对目标电路的不同实现在特定工作条 件下的工作电压同工作频率对应关系曲线进行测试, 则得出多条不同工作电压同工作频率 对应关系曲线组合, 对所述曲线组合进行统计学上的组合和合并后即可得出若干条电压和 频率组合曲线作为目标电路的工作电压同工作频率对应关系曲线, 将这些工作电压同工作 频率对应关系曲线的数据表进行存储, 即可得到查询表模块, 即 VF tab le模块。
作为一种可实施方式, 本发明实施例的查询表(VF tab le )模块 1中各工作电压同工 作频率对应关系曲线的数据保存在本发明实施例的系统的固态存储设备中,其可以在系统 初始化阶段导入并存储到系统中。
下面进一步详细描述本发明实施例的扫描模块 1 :
扫描模块 1对目标电路的当前条件下的工作表现进行状态扫描, 并根据扫描结果从查 询表模块 1中选择在当前条件下目标电路的电压频率对应关系曲线。
作为一种可实施方式, 本发明实施例的扫描模块 2包括一速度检测电路 21 , 对设定条 件下的目标电路的工作性能表现进行状态扫描。 即该速度检测电路, 用于对目标电路在当 前条件下 (如设定电压, 设定温度) 的所能工作的最高频率、 或者是目标电路在当前条件 下 (如设定频率, 设定温度) 的所能工作的最低电压进行测量。
作为一种可实施方式, 所述速度检测电路, 或者: A )通过调节电压, 或调节频率, 或调节电路本身延时路径 (或是其他因素)获得能正常工作或不能正常工作的结果; 或者: B )其正常工作或不能正常工作的结果不影响目标电路自身的正常运行; 或者: C )在第一 设定条件下能正常工作或不能正常工作的结果可以通过换算得出目标电路在第二特定条 件能正常工作或不能正常工作的结果; 或者: D )根据速度检测电路的特性的不同, 第一 设定条件同第二设定条件可以为相同或不同条件。
作为一种可实施方式, 所述换算关系可以通过有限数量的测量统计获取。
作为一种可实施方式, 所述扫描模块的速度检测电路 21 , 可通过固定延时电路延时级 数(或运算电路)、 调节输入时钟频率, 或者固定输入频率、 调节延时路径级数等方法实 现。
作为一种可实施方式, 扫描模块的速度检测电路 21 , 如图 4所示, 通过设定电压和设 定工作频率 (即固定输入频率) 下调节自身延时路径长度, 通过判断其工作结果, 来检测 目标电路工作表现。
速度检测电路通过扫描得出的延时级数, 可以通过判断其落在延时級数分类统计哪个 区间的方式, 相对应得出当前目标电路的工作频率与工作电压曲线选择位, 即选择查询表 ( VF tab le )模块中的多条曲线之一作为当前目标电路的工作电压同工作频率对应关系曲 线。 作为一种可实施方式, 如图 4所示为一速度检测电路 21示意图, 其中包含激励生成 模块 211 , 延时路径模块 212 , 结果比较模块 213 , 以及检测控制模块 214。
所述激励生成模块 211 ,用于利用一输入时钟信号产生一个或多个(如占空比为 50 % ) 多周期脉冲信号, 其脉冲信号经过两段不同的路径电路, 即无延时路径电路和延时路径模 块 212的延时路径电路后分别到达结果比较模块 213;
所述延时路径模块 212 , 包括延时路径电路, 用于对脉冲信号进行延时, 或对输入信 号进行运算;
所述结果比较模块 213 , 用于将原始脉冲信号经过无延时路径电路之后的信号和经过 延时路径电路之后的脉冲信号之间的相位关系进行比较。
所述检测控制模块 214 , 用于在不同的时序下控制激励生成模块 211、 延时路径模块 212、 结果比较模块 113进行工作。
当初始延时路径电路的延时路径长度设为 0时, 所述两脉冲信号相位相同, 当延时路 径长度逐步增加, 两者信号相位逐渐偏离, 当延时路径长度增加到一定数值后, 所述两脉 冲信号相位偏移达到 180度, 即两信号高低电位相反, 此时即可判断为速度检测电路已无 法正常工作, 此时获得的延时级数即可作为速度检测电路的工作性能表现数据。
如图 4所示, 作为一种可实施方式, 速度检测电路 21通过输入设定的电压和设定的 工作频率, 并逐步增加其延时路径长度(延时单元級数), 则在增加到一定数量的延时级 数时, 速度检测电路得出无法正常工作的结果, 此时所获得的延时级数即可作为速度检测 电路的工作性能表现依据。 其反映了速度检测电路在当前的工作环境下的速度性能表现, 同目标电路在当前的工作环境下的速度性能表现可以进行对应。
速度检测电路通 21过扫描得出的延时级数, 可以同目标电路的工作频率与工作电压 点相对应, 例如目标电路速度检测电路在 1. 2v下扫描出的延时級数为 120 , 则目标电路在 1. 2v下对应的最高稳定工作频率为 450M; 而目标电路速度检测电路在 1. 2v下扫描出的延 时级数为 150 , 则其在 1. 2v下对应的最高稳定工作频率为 500M。 两者之间的对应关系可 通过实验确定。
多个速度检测电路通过扫描得出的延时级数, 可以通过分类统计的方式将其划分为 4 类不同工作表现的区间, 如同样在 1. 2v下, 延时級数高于 180为第 1区间, 为 180 - 150 位于第 2区间, 150 - 120位于第 3区间, 120以下为第 4区间。 多个延时級数区间可以同 多类不同工作表现的目标电路相对应, 即同查询表(VF tab le ) 中的多条目标电路的工作 频率与工作电压曲线相对应。 如区间 1对应 VF tab le表中的曲线 1 , 区间 1对应 VF tab l e 表中的曲线 2等等。
较佳地, 所述速度检测电路 21为一份或者多份, 分别针对影响目标电路运行的多处 关键电路进行监控, 即尽量使速度检测电路靠近影响目标电路运行的关键电路以获取相同 的工作条件, 便于通过速度检测电路的检测结果换算出目标电路运行的结果。 下面详细描述本发明实施例的转换模块 3:
所述转换模块 3在当前条件下, 目标电路执行一工作任务时, 获取执行该工作任务所 需要的目标频率值, 并根据此频率值和扫描模块获取的电压频率对应关系曲线, 换算出所 需的目标电压值。
当目标电路需要完成当前条件下的应用时, 获取当前条件下目标电路的所需的目标频 率值, 并通过扫描模块 2根据查询表( VF tab l e )选择得到当前条件下的工作频率和工作 电压对应关系曲线后,转换模块 3才艮据该当前条件下的工作电压同工作频率对应关系曲线, 计算并转换出当前条件下目标电路能工作在此频率下所需的电压值。
该当前条件下的工作电压同工作频率对应关系曲线,由扫描模块 1的速度检测电路 11 进行状态扫描并根据其结果选择得到。
较佳地, 所述转换模块 3包括目标频率获取模块 31 , 用于获取当目标电路需要执行一 工作任务时, 所需的目标频率值。
目标频率获取模块 31可以通过监测目标电路时钟配置信息的变化, 包括如时钟源头 选择, 时钟源头频率配置, 时钟分频设置等信息的变化, 并根据目标电路当前时钟配置信 息和运行下一工作任务所需的时钟配置信息, 分别计算目标电路当前工作频率和目标工作 频率。例如: 目标电路当前选择某锁相环作为其时钟源头选择,其锁相环输入频率为 24Mhz, 其 VC0倍频因子为 64 , 后置除频系数为 4 , 目标电路时钟分频设置为 3 , 则目标当前电路 工作频率为 24X64 ÷ 4 ÷ 3=128Mhz。 在某个时刻点, 目标电路时钟配置信息中的锁相环后置 除频系数被软件修改为 2 , 目标电路时钟分频设置改为 2 , 则目标电路运行下一工作任务 所需的目标工作频率为 24X64 ÷ 2 ÷ 2=384Mhz。
因此, 目标频率获取模块 31需要同时记录目标电路当前时钟配置信息和运行下一工 作任务所需的时钟配置信息, 分别计算目标电路当前工作频率和目标工作频率。
所述目标电压值, 是指为使目标电路能在所述目标频率值上正常工作所需的电压值。 所述电压值同目标电路的目标频率值相关, 同目标电路的个体特性以及工作环境相关。
作为一种可实施方式, 本发明实施例中, 所述目标电压值才艮据目标频率值, 通过当前 条件下的工作频率和工作电压对应关系曲线进行换算得出。
当目标电路从一种工作状态切换到另一个工作状态 (如从待机状态切换到工作状态 时), 或是需要新打开或关闭某一种应用程序时 (如打开或关闭视频播放时), 又或是在执 行某些应用程序时在不同的运行阶段时 (如网络下载时)会由于不同的性能需求需要目标 电路从一个运行频率切换到另一个运行频率上, 本发明实施例称之为起始频率和目标频 率。 又因为目便电路工作频率在从起始频率到目标频率的调节过程中, 允许多个影响频率 的因子, 如时钟源选择, 源频率, 分频系数等发生变化, 其不同的因子变化可能导致目标 电路工作频率在短期内往偏离目标频率的方向变化。 其不同的因子变化导致目标电路出现 的异于起始频率及目标频率的工作频率称之为中间频率。
如图 1所示, 转换模块 3根据起始频率、 目标频率或中间频率, 通过查找 VF t ab l e 表中的工作频率和工作电压对应曲线获得起始电压, 中间电压和目标电压。
作为一种可实施方式, 起始电压也可由用户输入或者通过状态寄存器获取。
如目标电路当前工作状态对应图 3中的曲线 2 , 在一应用程序启动时, 其起始频率, 中间频率和目标频率分别为 24MHz , 200MHz和 500MHz , 才艮据曲线 1所示其最氐起始电压, 中间电压和目标电压分别为 0. 8v, 0. 8v和 1. 4v。 才艮据这 3个电压, 可以得出整个调节过 程中最大电压为 1. 4v , 目标电压为 1. 4v。
下面详细描述本发明的联合调节模块 4 :
所述联合调节模块 4根据目标电路的当前条件下频率值同目标频率值的相对关系, 以 及当前条件下电压值同目标电压值的对应关系, 按预先设定的顺序, 对目标电路的工作频 率和工作电压进行联合平滑调节。
所述联合平滑调节: 1 ) 包含一次或多次或调节频率的过程, 可以包含一次或多次调 节电压的过程;
2 ) 包含的一次或多次的调节频率和调节电压的过程, 其调节顺序遵循着调度模块预 先设定的顺序;
3 ) 包含的一次或多次的调节频率和调节电压的过程, 充分避免了调节本身对目标电 路时钟系统和电源系统的冲击;
当目标频率获取模块 31监测到目标电路工作频率信息变化, 并计算出中间频率, 目 标频率和中间电压, 目标电压后, 则启动频率电压联合调节模块 4进行工作频率和工作电 压联合调节。
较佳地,作为一种可实施方式,如图 1所示,所述联合调节模块包括频率调节模块 42 , 电压调节模块 43 , 以及调度模块 41。
所述调度模块 41 ,用于按预先设定的顺序调用频率调节模块 42和电压调节模块 43对 工作频率以及工作电压进行联合平滑调节。
所述频率调节模块 42 , 用于通过调节目标电路时钟来源选择、 源头频率、 分频系数、 时钟开关等对目标电路工作频率进行调节。
较佳地, 其通过平滑调节尽量降低其对时钟系统和电源系统的有害冲击。
频率调节模块 42对目标电路频率调节, 工作频率在从起始频率到目标频率的调节过 程中, 允许多个影响频率的因子, 如时钟源选择, 源频率, 分频系数等, 其因子可能导致 频率在短期内往偏离目标频率的方向变化, 即可能出现中间频率; 频率的调节过程中不会 出现超出目标电路在当前电压下所允许运行的最高频率的频率; 频率的调节过程中不会出 现使目标电路时钟上出现会导致目标电路无法工作的尖脉冲; 频率的调节过程中, 当前一 频率 (第一频率)和后一频率 (第二频率) 间出现比较大的变化, 第二频率高于第一频率 超过目标电路允许的频率变化最大值的时候, 频率调节模块会启用频率调节平滑方法, 将 目标电路的工作时钟由第一频率平滑切换到第二频率之上, 否则直接将目标电路的时钟频 率切换到第二频率。
更佳地, 所述频率调节模块 42 , 如图 5所示, 包括频率切换电路 421 , 分频电路 422, c lock频率平滑电路 423以及对应的时序控制电路 424。
其中, 频率切换电路 421为在目标电路工作时钟的多个源时钟之间进行切换的时钟切 换电路, 作为一种可实施方式, 如图 6所示, 为一时钟切换电路, 其遵循先关后开的原则, 保证输出时钟上不会出现毛刺或窄脉冲等影响目标电路正常运行的异常信号。
分频电路 422为对可动态配置分频系数的 1 - 2N高速分频电路, 其为频率切换过程起 除频緩冲作用, 同时也可用于频率平滑功能。
如图 7所示, 作为一种可实施方式, 本发明实施例中, 所述分频电路为一 1 /2/4/8可 动态配置系数高速分频电路, 其主要包括一二进制 8分频电路, 除频系数同步电路以及时 钟输出选择电路。除频系数同步电路使用 8分频时钟将外部除频系数变化同输出时钟同步, 并使用同步后的除频系数选择时钟输出。 因此除频系数经过内部时钟同步, 因此次除频系 数可动态改变而不会影响输出时钟的安全性。
c lock频率平滑电路 423为 c lock 开关控制电路,可动态调节时钟开关 fclock ga t ing ) 通过率, 其原理为通过控制时钟开关 (c lock ga t ing ), 使部分 c lock脉冲通过开关电路, 部分 clock脉冲被关断, 最终使输出时钟脉冲数减少, 达到输出频率降低的目的。 如使用 8分频时钟周期作为一个完整周期时, 则可选择 8个时钟脉冲中仅输出 1个, 1个直到 8 个时钟脉冲, 则其输出频率相当于输入频率的 1 /8, 2/8, 3/8到 8/8。 相对于普通的整数分 频电路, 其在输出时钟频率调节方面可以达到更高的精度。 时序控制电路输出频率选择位 经过内部输入时钟同步, 因此其选择位可动态改变而不会影响输出时钟的安全性。
时序控制电路 424为协调频率切换电路 421 , 分频电路 422 , clock频率平滑电路 423 之间的关系,控制各系数动态变化的先后关联性,以及各系数变化之间的延时等待控制等。
从起始频率切换到目标频率的过程中, 出于安全性的考虑, 本发明实施例中, 可将频 率切换分为几个动作完成。
例如设目标电路的某些时钟源头不支持动态频率调节, 则在调节此时钟源头的频率时 的时候需要将源频率切换到另一个稳定的频率点上, 然后调节时钟源头, 再等待原时钟源 头稳定后再切回到原时钟源头上, 这样可能出现频率调节时需要从其他中间频率点过渡的 方式, 且此中间频率点可能高于起始频率和目标频率。
又或者从起始频率切换到目标频率过程中, 需要同时切换时钟源头及分频系数, 为避 免同时切换因生效时机误差引起的短时间内出现超出预期频率的高频时钟, 也需要将切换 过程分为几个动作完成, 如先完成使时钟频率往较小方向变化的调节, 后完成使时钟频率 往较大方向变化的调节。
从起始频率切换到目标频率的过程中, 为避免频率变化超出目标电路允许的最大值, 引起目标电路的时钟系统和电源系统的破坏性波动, 本发明实施例中, 引入频率调节平滑 方法。
如上文中例所示, 设其 24MHz clock源头和 500Mhz clock源头均来自时钟源头 clkO, 200Mhz clock 来自时钟源头 clkl , clkO和 clkl均不支持动态调节。
工作频率平滑调节方法启动的门槛为目标频率超过起始频率 200MHz以上, 每次平滑 调节步长不得超过 200MHz,则本实施例中工作频率和工作电压联合调节的步骤 S3中的第一 次频率调节不需要启动频率调节平滑方法, 其具体调节方法如下: 开启 clkl并将其频率 设置为 200MHz (如果 clkl 已设置成功则省略此步), 等待 clkl稳定, 将 clock源头切换 到 clkL
在频率调节的第二次频率调节需要启动频率调节平滑方法, 具体调节方式如下: 设置 clkO频率到 500Mhz , 等待 clkO稳定, 将 clock源头切换到 clkO并开启平滑调节电路, 通过时钟开关将频率设置到某中间频率点 (如 375MHZ ), 等待因工作频率跳变引起的外部 电源系统波动平复, 等待时间由电源系统特性决定; 将时钟开关率设为 100 % , 即设置到 目标频率, 等待一段时间后调节结束。
所述的电压调节模块 43 ,用于对目标电路电源供给系统的电压按照特定的顺序进行调 节。
作为一种可实施方式, 电压调节模块 43可以通过某种预先设置的通信协议, 例如通 用的输入输出接口信号或具有特殊协议的信号组等, 直接对目标电路的电源供给系统的电 压进行调节。
较佳地, 电压调节模块对电源供给系统的电压的调节过程契合目标电路电源供给系统 的要求, 其对目标电路电压的调节不会引起目标电路电源系统的破坏性波动, 不会影响目 标电路的正常工作。
更佳地, 作为一种可实施方式本发明的动态调节电压和频率的控制系统, 其 目标电路的电压供应由电源管理模块(未示出)完成, 其电源管理模块同频率电压调 节系统之间通过通用的通信协议进行通讯(如 I2C )。
更佳地, 所述电压调节模块, 包括通信接口, 通信接口控制电路和电压调节过程控制 电路。 工作电压调节电路可以通过通信接口利用通信协议对电源管理模块的供电电压进行 调节。
通信接口控制电路用于将电压调节控制电路发送过来的控制信息转换成为通信接口 标准协议信号, 发送到电源管理模块, 同时可以将外部电源管理芯片发送过来的状态信号 进行解释并传送到电压调节控制电路。 如将电压调节控制电路发送过来的电压调节命令转 换为 I2C协议信号, 通过 I2C总线传送至外部电源管理模块。 或是通过 I2C总线发送外部 电源管理模块状态读取命令, 将外部电源管理模块特定状态信息读取回电压调节控制电 路。 其具体的 I2C协议信号产生与通信过程参照 I2C协议规范。
通信接口控制电路可以使用通用的通信接口控制器, 如 I2C接口控制器。
电压调节过程控制电路, 用于产生通信命令和状态序列, 并在序列间进行延时等待控 制。 如对电源管理模块的一次电压调节过程中, 可以包含电源管理模块对目标电路电压当 前供给状态读取, 设置新的目标电路供电电压, 设置新的目标电路供电电压后状态读取等 多个步骤。 其间为避免电源调节对目标电路的冲击, 在设置新的目标电路供电电压后需经 过一定时间的延时等待。 其单个命令的通信方式取决于 I2C协议及电源管理模块对协议的 解释。
电压调节过程控制电路产生的通信命令序列组成以及延时等待时间长短由电源管理 模块的特性决定。
如本实施例中电源管理模块的电压设置可通过通信接口写电源管理模块设备号, 写电 压供给序列号, 写目标电压值和读取电压状态等几个结构实现。
较佳地, 所述动态调节电压和频率的电路控制系统, 还包括联合控制模块 5 , 用于对 目标电路工作频率和工作电压调节进行联合控制。
联合控制模块 5控制查询模块 1、 扫描模块 2、 转换模块 3、 联合调节模块 4 , 并在频 率以及电压的联合平滑调节结束时, 输出调节结果通知用户。
联合控制模块 5对目标电路的应用需求进行控制, 其将查询模块 1、 扫描模块 2、 转 换模块 3、 联合调节模块 4串连, 按应用需求控制各模块的启动时序, 并将其运行状态和 结果在各模块之间传递, 完成对目标电路的工作频率和工作电压动态调节。
联合控制模块 5输出调节结果通知用户, 其通过中断或状态输出的方式, 通知用户目 标电路的工作频率和工作电压调节成功或失败的结果以及相应的状态, 便于用户对目标电 路的当前状态有更准确的了解, 并针对目标电路可能出现的各种概率性异常引起的错误状 况(如外界异常电脉冲引起的电压调节错误 )进行处理和修复。
作为一种可实施方式, 联合调节控制模块 5为一中断和状态处理电路, 其用于各模块 的联合工作, 并在调节过程中出现的正确和错误信息时进行记录并通过中断等方式通知用 户, 如调节正确结束时通知用户当前电压和当前频率; 或当电源管理模块因特殊原因无法 正确响应电压调节电路的调节命令时, 通知用户错误模块和错误原因, 记录起始电压和起 始频率, 目标电压和目标频率等信息。
下面进一步详细描述本发明实施例的动态调节电压和频率的控制系统的工作过程, 即 本发明提供的相应的一种电路电压和频率的动态调节控制方法, 如图 8所示, 包括如下步 骤:
步骤 S100 , 对目标电路的当前条件下的工作表现进行状态扫描, 并根据扫描结果或直 接通过预设的结果从查询表中选择在当前条件下目标电路的电压频率对应关系曲线;
作为一种可实施方式, 所述状态扫描过程如下:
利用速度检测电路在输入频率、 输入电压以及自身延时路径等因素上的变化特性, 通 过逐级调节输入频率, 或调节输入电压, 或调节速度检测电路的延时路径, 判断获得速度 检测电路能正常工作或不能正常工作的结果。
本发明实施例所述的变化特性,是指速度检测电路基于其本身的特性,其在输入频率, 或输入电压, 或自身延时路径等因素发生变化时, 其能正常工作或不能正常工作的结果的 变化的具有一定的方向性, 其结果的变化是可预测的。 如: 当输入电压在某一特定值时, 速度检测电路能正常工作, 当输入电压升高, 其他条件不变时, 因为速度检测电路会具有 更高的运行速度, 可以推断速度检测电路得出正常工作的结果。 又如: 当速度检测电路延 时路径处于一定級数的时候能正常工作, 当在其他条件不变时增加速度检测电路延时路径 级数, 导致速度检测电路所能运行的最高频率降低, 可以推断速度检测电路有可能不能正 常工作的结果。
作为一种可实施方式, 速度检测电路能正常工作或不能正常工作的结果, 可以为一个 数值, 或是一个范围。
根据此数值或范围可以换算出目标电路在设定条件下能正常工作或不能正常工作的 结果。 即可以推断出目标电路在设定条件下 (如设定电压, 设定温度) 的所能工作的最高 频率, 或者是当前目标电路在设定条件下 (如设定频率, 设定温度) 的所能工作的最低电 压。
速度检测电路在状态扫描后换算得出的目标电路在设定条件下能正常工作或不能正 常工作的结果, 最终反应在 VF tab le的曲线选择上, 即根据速度检测电路状态扫描后换 算的结果, 扫描模块从查询表模块中选择相应的一条工作电压同工作频率对应关系曲线作 为目标电路在设定条件下进行工作电压和工作频率联合调节的参考曲线。
作为一种可实施方式, 速度检测电路通过设定电压和设定工作频率下调节自身延时路 径长度, 并判断其工作结果, 检测目标电路在设定条件下能正常工作或不能正常工作, 即 目标电路工作表现。
较佳地, 所述速度检测电路的延时判断过程, 包括如下步骤: 步骤 SI 10 , 利用一输入时钟信号产生一段占空比为 50 %的多周期脉冲信号, 其脉冲 信号经过两段不同的路径电路, 即无延时路径电路和延时路径电路;
步骤 S120 ,将原始脉冲信号经过无延时路径电路之后的信号和经过延时路径电路之后 的脉冲信号之间的相位关系进行比较;
步骤 S130 ,当初始延时路径电路的延时路径长度设为 0时,所述两脉冲信号相位相同, 当延时路径长度逐步增加, 两者信号相位逐渐偏离, 当延时路径长度增加到一定数值后, 所述两脉冲信号相位偏移达到 180度, 即两信号高低电位相反, 此时即可判断为速度检测 电路已无法正常工作, 此时获得的延时级数即可作为速度检测电路的工作性能表现数据。
步骤 S200 , 在当前条件下, 目标电路执行一工作任务时, 获取执行该工作任务所需要 的目标频率值, 并根据此频率值和获取的电压频率对应关系曲线, 换算出所需的目标电压 值;
作为一种可实施方式, 所述工作频率与工作电压转换, 包括如下步骤:
通过工作频率与工作电压曲线选择位选择 VF table中的某一条曲线作为当前工作条 件下的工作频率和工作电压对应曲线, 将曲线上各个工作电压值所对应的工作频率值查表 取出, 然后将输入频率值同各工作电压值所对应的工作频率值进行比较, 获取目标电路即 在当前工作条件下正常工作在输入频率上所需要的最低电压值。
步骤 S300 , 根据目标电路的当前条件下频率值同目标频率值的相对关系, 以及当前条 件下电压值同目标电压值的对应关系, 按预先设定的顺序, 对目标电路的工作频率和工作 电压进行联合平滑调节。
较佳地, 作为一种可实施方式, 所述调节频率和调节电压的过程, 如图 9所示, 包括 如下步骤:
步骤 S310 , 将目标电路的当前频率所对应的当前电压, 目标频率所对应的目标电压, 或是调节频率过程中可能引入的中间频率所对应的中间电压, 三者取最大值作为调节过程 中的最大电压;
步骤 S320 , 开始目标电路频率和电压联合调节时, 首先判断当前电压是否低于最大电 压值;
如果是则先进行一次电压调节, 将目标电路电压调至最大电压值后进入步骤 S330; 否则直接进入步骤 S330;
步骤 S330 , 将目标电路的工作频率调节到目标频率上;
步骤 S340 , 判断目标电路的目标电压是否低于最大电压值, 如果是则对目标电路进行 一次电压调节,将目标电路的电压调至目标电压后进入步骤 S350;否则直接进入步骤 S350; 步骤 S 350 , 调节结束。
如上述例所示, 则工作频率和工作电压联合调节分为 3步进行, 第一步将工作电压从 0. 8v调高到 1. 4v.第二步将工作频率从 24MHz调节到 200MHz。第三步将工作频率从 200MHz 调节到 500Mhz。
较佳地, 所述步骤调节方法, 为逐步减小除频方法或者 ga t ing方法。
较佳地, 作为另一种可实施方式, 所述频率调节平滑的方法, 包括如下具体步骤:
1 )根据第一频率和第二频率之间的差值大小, 划分出若干个由低到高的且位于第一 频率和第二频率之间的中间频率点;
2 )在频率切换时, 逐级提升目标电路工作时钟频率, 使其经过各中间频率点并最终 调节至第二频率。
本发明实施例的频率平滑调节的方法, 使目标电路工作频率在每次变化时, 不超过其 允许的频率变化最大值, 避免了目标电路时钟在工作频率上剧烈变化, 及其带来的功耗的 剧烈变化, 导致对目标电路时钟系统和电源系统的破坏性冲击。
触发频率平滑调节的方法的第一频率和第二频率的频率变化最大值和中间频率点的 选取由目标电路工作环境决定, 尤其是电源供给系统。
触发频率平滑调节的方法的第一频率和第二频率的差值大小和第一频率, 第二频率与 各相邻中间频率点之间的差值大小设置不超过目标电路允许的预先设定的频率变化最大 值, 目标电路工作频率变化引起的功耗变化不得导致电源供给系统出现破坏性波动。 所述 预先设定的频率变化最大值可以为固定值, 也可以由软件根据应用需求动态改变。
本发明实施例的动态调节电压和频率的电路控制系统和方法, 其硬件自动化程度高, 不会增加应用软件的复杂性; 其工作频率和工作电压的调节方式充分考虑到对目标电路电 源系统的冲击, 确保其安全性; 并且可以依据每份目标电路的特性以及不同应用下的性能 和功耗特性, 实现最优化的节能方案。
最后应当说明的是, 很显然, 本领域的技术人员可以对本发明进行各种改动和变型而 不脱离本发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明权利要求及 其等同技术的范围之内, 则本发明也意图包含这些改动和变型。

Claims

权利要求
1、 一种动态调节电压和频率的电路控制系统, 其特征在于, 包括查询表模块, 转换 模块, 联合调节模块; 其中:
所述查询表模块, 用于存储目标电路的在一种或多种工作条件下的电压和频率对应关 系曲线组合表;
所述转换模块, 用于根据查询表模块对目标电路工作频率同工作电压进行转换; 所述联合调节模块, 用于对目标电路工作频率和工作电压进行联合调节。
2、 根据权利要求 1所述的动态调节电压和频率的电路控制系统, 其特征在于, 还包 括扫描模块, 用于对目标电路的当前条件下的工作表现进行扫描;
所述扫描模块能对目标电路的当前条件下的工作表现进行状态扫描, 并根据状态扫描 结果从查询表模块中选择在当前条件下目标电路的电压频率对应关系曲线。
3、 根据权利要求 1或 2所述的动态调节电压和频率的电路控制系统, 其特征在于, 还包括联合控制模块, 用于对目标电路工作频率和工作电压调节进行联合控制;
联合控制模块控制查询模块、 扫描模块、 转换模块、 联合调节模块, 并在频率以及电 压的联合平滑调节结束时, 输出调节结果通知用户。
4、 根据权利要求 3任一项所述的动态调节电压和频率的电路控制系统, 其特征在于, 所述扫描模块包括一速度检测电路, 对设定条件下的目标电路的工作性能表现进行状态扫 描; 即所述速度检测电路, 用于对目标电路在当前条件下的所能工作的最高频率、 或者是 目标电路在当前条件下的所能工作的最低电压进行测量。
5、 根据权利要求 4所述的动态调节电压和频率的电路控制系统, 其特征在于, 所述 速度检测电路包括激励生成模块, 延时路径模块及结果比较模块;
激励生成模块, 用于利用一输入时钟信号产生一个或多个的多周期脉冲信号, 其脉冲 信号经过两段不同的路径电路, 即无延时路径电路和延时路径模块的延时路径电路后分别 到达结果比较模块;
延时路径模块, 包括延时路径电路, 用于对脉冲信号进行延时, 或对输入信号进行运 算;
结果比较模块, 用于将原始脉冲信号经过无延时路径电路之后的信号和经过延时路径 电路之后的脉冲信号之间的相位关系进行比较。
6、 根据权利要求 4所述的动态调节电压和频率的电路控制系统, 其特征在于, 所述 速度检测电路为一份或者多份, 分别针对影响目标电路运行的多处关键电路进行监控。
7、 根据权利要求 4所述的动态调节电压和频率的电路控制系统, 其特征在于, 所述 联合调节模块包括调度模块, 频率调节模块, 以及电压调节模块; 所述调度模块, 用于按预先设定的顺序调用频率调节模块和电压调节模块对工作频率 以及工作电压进行联合平滑调节;
所述频率调节模块, 用于通过调节目标电路时钟来源选择、 源头频率、 分频系数、 时 钟开关等对目标电路工作频率进行平滑调节;
所述的电压调节模块, 用于对目标电路电源供给系统的电压按照设定的顺序进行调 节。
8、 根据权利要求 7所述的动态调节电压和频率的电路控制系统, 其特征在于, 还包 括电源管理模块, 用于供应目标电路中的电压。
9、 一种电路电压和频率的动态调节控制方法, 其特征在于, 包括如下步骤: 步骤 A, 对目标电路的当前条件下的工作表现进行状态扫描, 并根据扫描结果或直接 通过预设的结果从查询表中选择在当前条件下目标电路的电压频率对应关系曲线;
步骤 B, 在当前条件下, 目标电路执行一工作任务时, 获取执行该工作任务所需要的 目标频率值,并才艮据此频率值和获取的电压频率对应关系曲线,换算出所需的目标电压值; 步骤 C, 根据目标电路的当前条件下频率值同目标频率值的相对关系, 以及当前条件 下电压值同目标电压值的对应关系, 按预先设定的顺序, 对目标电路的工作频率和工作电 压进行联合平滑调节。
10、 根据权利要求 9所述的电路电压和频率的动态调节控制方法, 其特征在于, 所述 步骤 A中, 所述状态扫描, 包括如下步骤:
利用速度检测电路在输入频率、 输入电压以及自身延时路径等因素上的变化特性, 通 过逐级调节输入频率, 或调节输入电压, 或调节速度检测电路的延时路径, 判断获得速度 检测电路能正常工作或不能正常工作的结果。
11、 根据权利要求 9所述的电路电压和频率的动态调节控制方法, 其特征在于, 所述 步骤 B中, 所述工作频率与工作电压转换, 包括如下步骤:
通过工作频率与工作电压曲线选择位选择查询表中的一条曲线作为当前工作条件下 的工作频率和工作电压对应曲线, 将曲线上各个工作电压值所对应的工作频率值查表取 出, 然后将输入频率值同各工作电压值所对应的工作频率值进行比较, 获取目标电路在当 前工作条件下正常工作在输入频率上所需要的最低电压值。
12、 根据权利要求 9所述的电路电压和频率的动态调节控制方法, 其特征在于, 在步 骤 C中, 所述调节频率和调节电压, 包括如下步骤:
步骤 C1 , 将目标电路的当前频率所对应的当前电压, 目标频率所对应的目标电压,或 是调节频率过程中可能引入的中间频率所对应的中间电压, 三者取最大值作为调节过程中 的最大电压;
步骤 C2,开始目标电路频率和电压联合调节时,首先判断当前电压是否低于最大电压 值;
如果是则先进行一次电压调节, 将目标电路电压调至最大电压值后进入步骤 C3; 否则直接进入步骤 C3;
步骤 C3 , 将目标电路的工作频率调节到目标频率上;
步骤 C4,判断目标电路的目标电压是否低于最大电压值,如果是则对目标电路进行一 次电压调节, 将目标电路的电压调至目标电压后进入步骤 C5; 否则直接进入步骤 C5; 步骤 C5 , 调节结束。
13、 根据权利要求 12所述的电路电压和频率的动态调节控制方法, 其特征在于, 在 步骤 C中, 所述频率调节平滑的方法, 包括如下步骤:
步骤 C1 ' , 根据第一频率和第二频率之间的差值大小, 划分出若干个由低到高的且位 于第一频率和第二频率之间的中间频率点;
步骤 C2' , 在频率切换时, 逐级提升目标电路工作时钟频率, 使其经过各中间频率点 并最终调节至第二频率。
PCT/CN2011/079366 2011-08-12 2011-09-06 一种动态调节电压和频率的电路控制系统和方法 WO2013023393A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11871004.5A EP2743793B1 (en) 2011-08-12 2011-09-06 Circuit control system and method for dynamically adjusting voltage and frequency
US14/238,465 US9317048B2 (en) 2011-08-12 2011-09-06 Circuit control system and method for dynamically adjusting voltage and frequency

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110231571.2 2011-08-12
CN201110231571.2A CN102931655B (zh) 2011-08-12 2011-08-12 一种动态调节电压和频率的电路控制系统和方法

Publications (1)

Publication Number Publication Date
WO2013023393A1 true WO2013023393A1 (zh) 2013-02-21

Family

ID=47646395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/079366 WO2013023393A1 (zh) 2011-08-12 2011-09-06 一种动态调节电压和频率的电路控制系统和方法

Country Status (4)

Country Link
US (1) US9317048B2 (zh)
EP (1) EP2743793B1 (zh)
CN (1) CN102931655B (zh)
WO (1) WO2013023393A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114113974A (zh) * 2021-11-01 2022-03-01 海光信息技术股份有限公司 芯片系统级测试方法及装置

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2597547B1 (en) * 2011-11-24 2018-01-03 Astrium Limited Voltage control
FR2985045B1 (fr) * 2011-12-21 2014-11-28 Commissariat Energie Atomique Controle tension-frequence optimise
US20150145334A1 (en) * 2013-11-25 2015-05-28 Marvell World Trade Ltd. Systems and Methods for Dynamic Voltage Control
CN104836571B (zh) * 2014-02-07 2017-11-28 扬智科技股份有限公司 时脉调整装置与时脉调整方法
US10136384B1 (en) * 2014-10-14 2018-11-20 Altera Corporation Methods and apparatus for performing buffer fill level controlled dynamic power scaling
US10042405B2 (en) 2015-10-22 2018-08-07 Qualcomm Incorporated Adjusting source voltage based on stored information
CN105527560B (zh) * 2016-01-11 2018-05-25 福州瑞芯微电子股份有限公司 芯片差异性的监测方法及监测电路
CN105680852B (zh) * 2016-01-11 2018-08-07 福州瑞芯微电子股份有限公司 一种芯片内部时钟产生和差异性检测方法及电路
KR20180033960A (ko) 2016-09-27 2018-04-04 삼성전자주식회사 클럭 스위치 장치 및 이를 포함하는 시스템-온-칩
US10659063B2 (en) * 2016-11-01 2020-05-19 Nvidia Corporation Adaptive voltage frequency scaling for optimal power efficiency
CN108459651B (zh) * 2017-02-22 2021-01-08 上海莱狮半导体科技有限公司 恒流控制器及其功率调节电路
CN112166547B (zh) 2018-01-05 2021-11-16 阿特拉佐有限公司 功率管理系统
US10614184B2 (en) 2018-01-08 2020-04-07 Atlazo, Inc. Semiconductor process and performance sensor
US10416746B2 (en) * 2018-01-10 2019-09-17 Atlazo, Inc. Adaptive energy optimal computing
US10635130B2 (en) 2018-02-01 2020-04-28 Atlazo, Inc. Process, voltage and temperature tolerant clock generator
US10571945B2 (en) 2018-02-21 2020-02-25 Atlazo, Inc. Low power regulator circuits, systems and methods regarding the same
CN108446008B (zh) * 2018-02-27 2021-08-10 晶晨半导体(上海)股份有限公司 一种分级调频调压的动态响应调节方法
US10700604B2 (en) 2018-03-07 2020-06-30 Atlazo, Inc. High performance switch devices and methods for operating the same
CN109766629B (zh) * 2019-01-08 2022-05-03 电子科技大学 基于多目标优化算法的空间行波管电参数智能调试系统
CN112015221B (zh) * 2019-05-30 2022-03-29 瑞昱半导体股份有限公司 电压控制电路、电压控制方法以及集成电路
CN110278603B (zh) * 2019-06-20 2022-02-11 重庆邮电大学 一种移动终端动态功耗调整的方法
US11543872B2 (en) * 2019-07-02 2023-01-03 Microsoft Technology Licensing, Llc Dynamically adjusting device operating voltage based on device performance
CN112713895B (zh) * 2019-10-24 2024-02-09 珠海格力电器股份有限公司 一种时钟检测电路及方法
CN113031736A (zh) * 2019-12-09 2021-06-25 华为技术有限公司 一种电压调节方法和电子设备
US11747852B2 (en) * 2019-12-23 2023-09-05 Advanced Micro Devices, Inc. Method and apparatus for maintaining stable operation of servers in a data center
US20240020243A1 (en) * 2020-04-29 2024-01-18 Hewlett-Packard Development Company, L.P. Modification of audio signals based on ambient noise collected by speakers
CN113741789A (zh) * 2020-05-28 2021-12-03 瑞昱半导体股份有限公司 讯号处理系统及讯号处理系统的操作方法
CN111736680B (zh) * 2020-05-28 2022-04-22 广东浪潮大数据研究有限公司 电源缓启动的控制方法、控制装置、控制设备及存储介质
KR102400977B1 (ko) * 2020-05-29 2022-05-25 성균관대학교산학협력단 프로세서를 통한 페이지 폴트 처리 방법
CN111966409B (zh) * 2020-07-30 2021-04-02 深圳比特微电子科技有限公司 矿机快速搜频方法和装置以及矿机
CN112214315B (zh) * 2020-09-23 2024-03-29 深圳云天励飞技术股份有限公司 一种芯片控制方法、装置、人工智能芯片及终端设备
CN112213582B (zh) * 2020-09-29 2024-05-10 北京智芯微电子科技有限公司 电子模块的检测系统、检测方法、检测装置及存储介质
CN112474016B (zh) * 2020-11-30 2022-11-08 深圳市智物联网络有限公司 一种控制方法、控制装置、终端设备及可读存储介质
CN112527090B (zh) * 2020-12-07 2022-06-28 湖南国科微电子股份有限公司 一种调压方法、装置、设备及介质
CN112581994A (zh) * 2020-12-11 2021-03-30 瓴盛科技有限公司 同步型存储装置的控制方法、装置和系统
US20240072808A1 (en) * 2021-09-09 2024-02-29 Mediatek Singapore Pte. Ltd. Voltage scaling system used for reducing power consumption
CN113993249B (zh) * 2021-11-23 2023-07-04 京信网络系统股份有限公司 等离子灯控制方法、装置、控制器、控制系统和照明系统
CN114257309B (zh) * 2022-01-17 2023-08-04 武汉光迅科技股份有限公司 一种光模块设备及控制方法
CN114706449B (zh) * 2022-03-28 2024-04-26 杭州中天微系统有限公司 基于自适应时钟的频率控制方法、电路及芯片
CN114785376B (zh) * 2022-05-06 2023-07-21 Oppo广东移动通信有限公司 频压预配置方法和相关装置
CN115328248A (zh) * 2022-08-17 2022-11-11 上海燧原科技有限公司 一种集成电路的电压自适应调节方法、装置及电子设备
CN116826528B (zh) * 2023-06-16 2024-03-12 上海承控信息科技有限公司 一种强弱电一体化设备
CN117079694B (zh) * 2023-09-11 2024-02-23 荣耀终端有限公司 芯片及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1745358A (zh) * 2002-12-31 2006-03-08 全美达股份有限公司 自适应功率控制
CN1940857A (zh) * 2005-09-26 2007-04-04 浦蓝微电子(上海)有限公司 一种动态控制芯片工作电压和工作频率的方法
CN101174159A (zh) * 2006-10-31 2008-05-07 国际商业机器公司 将时钟频率、电压和电流的组合提供给处理器的方法和系统
US7774625B1 (en) * 2004-06-22 2010-08-10 Eric Chien-Li Sheng Adaptive voltage control by accessing information stored within and specific to a microprocessor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2410344B (en) * 2004-01-26 2006-03-15 Toshiba Res Europ Ltd Dynamic voltage controller
DE102006017973B4 (de) * 2006-04-13 2014-05-28 Atmel Corp. Direkt modulierender Frequenzmodulator
CN1945917A (zh) * 2006-10-26 2007-04-11 天津理工大学 基于单周控制的动态电压补偿器控制系统及其工作方法
US7541879B2 (en) * 2007-09-24 2009-06-02 Panasonic Corporation System for compensation of VCO non-linearity
US7915910B2 (en) 2009-01-28 2011-03-29 Apple Inc. Dynamic voltage and frequency management
US8661274B2 (en) * 2009-07-02 2014-02-25 Qualcomm Incorporated Temperature compensating adaptive voltage scalers (AVSs), systems, and methods
US9405340B2 (en) * 2013-06-27 2016-08-02 Intel Corporation Apparatus and method to implement power management of a processor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1745358A (zh) * 2002-12-31 2006-03-08 全美达股份有限公司 自适应功率控制
US7774625B1 (en) * 2004-06-22 2010-08-10 Eric Chien-Li Sheng Adaptive voltage control by accessing information stored within and specific to a microprocessor
CN1940857A (zh) * 2005-09-26 2007-04-04 浦蓝微电子(上海)有限公司 一种动态控制芯片工作电压和工作频率的方法
CN101174159A (zh) * 2006-10-31 2008-05-07 国际商业机器公司 将时钟频率、电压和电流的组合提供给处理器的方法和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2743793A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114113974A (zh) * 2021-11-01 2022-03-01 海光信息技术股份有限公司 芯片系统级测试方法及装置
CN114113974B (zh) * 2021-11-01 2023-10-27 海光信息技术股份有限公司 芯片系统级测试方法及装置

Also Published As

Publication number Publication date
US20140191734A1 (en) 2014-07-10
EP2743793A1 (en) 2014-06-18
US9317048B2 (en) 2016-04-19
EP2743793B1 (en) 2018-12-05
CN102931655B (zh) 2014-12-10
CN102931655A (zh) 2013-02-13
EP2743793A4 (en) 2015-04-29

Similar Documents

Publication Publication Date Title
WO2013023393A1 (zh) 一种动态调节电压和频率的电路控制系统和方法
US10804906B2 (en) Adaptive clocking scheme
US7587622B2 (en) Power management of components having clock processing circuits
KR101046274B1 (ko) 클럭지연회로
JP6103783B2 (ja) 電力制御装置
JPH0784946A (ja) データ転送方式
JP2008524745A (ja) オンデマンド電力管理の方法及び機器
JPH098796A (ja) データ転送装置
JP5417688B2 (ja) 半導体集積回路
JP2003150269A (ja) 電源電圧周波数制御回路
US20110161715A1 (en) Information processing apparatus or information processing method
US10965292B1 (en) Delay-locked loop device and operation method therefor
JP5131370B2 (ja) 電源電圧調整装置および電源電圧調整方法
US8909970B2 (en) Information processing apparatus or information processing method which supplies a clock to an external device
CN112671396A (zh) 动态电压频率调整系统、方法及电子设备
US9419599B2 (en) Semiconductor integrated circuit, apparatus including semiconductor integrated circuit, and method for controlling clock signal in semiconductor integrated circuit
US20230195207A1 (en) Electronic device and method of controlling temperature in same
US9479326B2 (en) Information processing apparatus or information processing method
CN113746475A (zh) 延迟锁相回路装置及其操作方法
KR101027688B1 (ko) 반도체 장치
KR20140086618A (ko) 듀티 싸이클 보정 회로 및 그의 동작 방법
KR20140086615A (ko) 듀티 싸이클 보정 회로 및 그의 동작 방법
JP2001282716A (ja) 出力データ位相制御装置、記憶装置の制御装置、および出力データ位相制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11871004

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14238465

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE