WO2013021531A1 - 端末、送信装置、受信品質報告方法および受信方法 - Google Patents

端末、送信装置、受信品質報告方法および受信方法 Download PDF

Info

Publication number
WO2013021531A1
WO2013021531A1 PCT/JP2012/003636 JP2012003636W WO2013021531A1 WO 2013021531 A1 WO2013021531 A1 WO 2013021531A1 JP 2012003636 W JP2012003636 W JP 2012003636W WO 2013021531 A1 WO2013021531 A1 WO 2013021531A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
terminal
reception quality
transmission
measurement
Prior art date
Application number
PCT/JP2012/003636
Other languages
English (en)
French (fr)
Inventor
西尾 昭彦
鈴木 秀俊
星野 正幸
英範 松尾
尚志 田村
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US14/234,570 priority Critical patent/US9451589B2/en
Priority to EP22194926.6A priority patent/EP4142173A1/en
Priority to EP12822889.7A priority patent/EP2725845B1/en
Priority to JP2013527845A priority patent/JP6026415B2/ja
Priority to EP18167222.1A priority patent/EP3373650B1/en
Publication of WO2013021531A1 publication Critical patent/WO2013021531A1/ja
Priority to US15/232,409 priority patent/US10771207B2/en
Priority to US16/944,791 priority patent/US11882063B2/en
Priority to US18/529,775 priority patent/US20240113819A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/16Threshold monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0088Scheduling hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the present invention relates to a terminal, a transmission device, a reception quality report method, and a reception method.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-Carrier-Frequency-Division-Multiple-Access
  • CRS Cell-specific Reference Signal
  • PDSCH Data signal
  • the CRS is transmitted as a common reference signal in a cell using time / frequency resources depending on the cell ID, and is transmitted so as to cover all areas of the cell.
  • the CRS is transmitted in all subframes.
  • the CRS is also used for measurement for mobility management such as link adaptation and cell selection. That is, the terminal (or called UE (User Equipment)) uses the CRS of the cell (own cell) to which the terminal is connected and the neighboring cell to receive power (RSRP: Reference Signal Reception Power) or reception quality ( Measure RSRQ: Reference Signal Reception Quality.
  • RSRP Reference Signal Reception Power
  • Measure RSRQ Reference Signal Reception Quality.
  • a terminal reports the cell ID and RSRP of the said adjacent cell, when RSTP of an adjacent cell satisfy
  • the terminal can detect the cell using the cell ID (see, for example, Non-Patent Document 1).
  • LTE-Advanced (hereinafter referred to as “LTE-A” or “Release 10 (Rel. 10)”), which is a further advance of LTE (Rel. 8), is an extension of downlink MIMO (Multiple Input Input Multiple Output) transmission.
  • LTE-A LTE-Advanced
  • UE Specific Reference Signal data transmission using DMRS
  • CRS DeModulation Reference Signal
  • DMRS is transmitted to a terminal to which data is allocated, so beam forming by Precoding is possible, and high-throughput data transmission is possible (for example, (See Non-Patent Documents 2, 3, and 4).
  • transmission using DMRS can be used for terminals for which transmission mode 9 is set.
  • CSI-RS Channel State Information
  • CSI-RS is transmitted from each antenna (antenna port) using different resources (time, frequency, or code). For example, CSI-RS is normally transmitted at intervals of about 10 subframes (10 ms).
  • CSI-RS resource information to be CSI-measured and reported by the terminal is notified from the base station (or called eNB) to the terminal (UE).
  • the CSI includes reception quality (SINR) or CQI (Channel Quality Indicator) indicating an achievable data rate and PMI (Precoding Matrix Indicator) indicating an optimal Precoding Matrix.
  • Release 11 (hereinafter referred to as Rel.11), which is the next release of Rel.10, is CoMP (Coordinated Multi ⁇ ⁇ ⁇ ⁇ Point) in a heterogeneous network (Heterogeneous) Network) using multiple base stations with different cover area sizes transmission (and transmission) is under consideration.
  • the heterogeneous network is a network composed of macro base stations (HPN (High Power Node)) and pico base stations (LPN (Low Power Node) or RRH (Remote Radio Head)).
  • TP transmission points
  • each transmission point forms a cell having a different cell ID. Therefore, the CRS transmitted in the time / frequency resource arrangement depending on the cell ID is transmitted in a different arrangement for each cell.
  • data (PDSCH) also has different resource arrangements, so cooperative transmission from a plurality of transmission points is limited.
  • CoMP operation using the same cell ID is studied (for example, see Non-Patent Document 5).
  • CoMP operation using the same cell ID is the same cell ID as the cell ID of HPN for a plurality of LPNs (pico base stations) in a macro cell (a cell covered by HPN (macro base station, MacroMaceNB)). (See, for example, FIG. 1).
  • LPNs pico base stations
  • macro cell a cell covered by HPN (macro base station, MacroMaceNB)
  • transmission points the cell IDs of HPN and LPN (hereinafter referred to as transmission points) in the same macro cell are the same
  • CRS transmitted using resources depending on the cell ID is the same resource at a plurality of transmission points. Sent by.
  • the CRS transmitted from each transmission point is combined with SFN (Single Frequency Network) and received. Further, data (PDSCH) and control channel (PDCCH) for each terminal demodulated using CRS are transmitted from all transmission points with the same time and frequency resources in order to maintain the same phase relationship as CRS. . Therefore, in Rel.11, it is considered to transmit PDSCHs for different terminals using the same time and frequency resources from different transmission points using UE specific reference signal (for example, DMRS).
  • UE specific reference signal for example, DMRS
  • 3GPP TS 36.331 V10.1.0 “Radio Resource Control (RRC) (Release 10),” March 2011 3GPP TS 36.211 V10.1.0, “Physical Channels and Modulation (Release 10),” March 2011 3GPP TS 36.212 V10.1.0, “Multiplexing and channel coding (Release 10),” March 2011 3GPP TS 36.213 V10.1.0, “Physical layer procedures (Release 10),” March 2011 3GPP TSG RAN WG1 meeting, R1-110649, Feb. 2011
  • a different CSI-RS from each transmission point (CSI-RS arranged in different resources between each transmission point) is used. It is necessary to transmit (see, for example, FIG. 2). That is, it is necessary to notify the terminal of all CSI-RS resources used in the area having the same cell ID as the CSI-RS for CSI measurement / reporting and to perform CSI measurement / reporting. Thereby, the base station can determine an appropriate transmission point based on the CSI measurement results for CSI-RSs of all transmission points reported from the terminal.
  • CSI is used for data transmission link adaptation and needs to be reported at relatively short intervals to follow instantaneous fading fluctuations. Further, since the terminal reports PMI with good quality as CSI and CQI information for each frequency (subband), the data amount of the CSI measurement result is relatively large. Therefore, if the terminal reports the CSI measurement results for the CSI-RSs of all transmission points, the information amount of the CSI measurement results becomes enormous and there is a risk of degrading uplink data throughput. Further, the amount of calculation for CSI measurement (calculation of CQI and PMI) at the terminal increases, and the complexity of the terminal increases.
  • An object of the present invention is to provide a terminal, a transmission apparatus, a reception quality report method, and a reception method that can select an appropriate transmission point while reducing the overhead of CSI reporting.
  • a terminal uses a plurality of reference signals from a plurality of transmission points to measure a first reception quality for each of the plurality of reference signals, and the plurality of references.
  • Receiving means for receiving first information related to at least one specific reference signal out of the signals, and a second reception quality is measured using the specific reference signal based on the first information.
  • a transmission means for reporting the first reception quality and the second reception quality satisfying a predetermined condition.
  • the transmission apparatus includes transmission means for transmitting a reference signal to a terminal, and first reception quality for each of the plurality of reference signals measured by the terminal using the plurality of reference signals.
  • the reception means receives the second reception quality measured by the terminal using the specific reference signal.
  • the reception quality reporting method uses a plurality of reference signals from a plurality of transmission points to measure a first reception quality for each of the plurality of reference signals, and among the plurality of reference signals, Receiving first information on at least one specific reference signal, measuring second reception quality using the specific reference signal based on the first information, and satisfying a predetermined condition The first reception quality and the second reception quality are reported.
  • a reference signal is transmitted to a terminal, and the first reception quality for each of the plurality of reference signals measured by the terminal using reference signals from a plurality of transmission points. And receiving the first reception quality that satisfies a predetermined condition, determining at least one specific reference signal that is a measurement target of the second reception quality among the plurality of reference signals, and The second reception quality measured using the specific reference signal is received.
  • a diagram showing CoMP operation using the same cell ID in each macro cell Diagram showing CoMP operation using different CSI-RS resources at each transmission point Main configuration diagram of macro base station according to Embodiment 1 of the present invention Main configuration diagram of terminal according to Embodiment 1 of the present invention
  • the figure which shows the process of the macro base station and terminal which concern on Embodiment 1 of this invention The figure which shows an example of matching with CSI-RS configuration and mapping pattern which concerns on Embodiment 1 of this invention
  • the figure which shows an example of the non-transmission CSI-RS resource which concerns on Embodiment 2 of this invention The figure which shows the example of a setting of CSI-RS which concerns on Embodiment 2 of this invention
  • the figure which shows the process of the macro base station and terminal which concern on Embodiment 3 of this invention (report method 1)
  • the figure which shows the process of the macro base station and terminal which concern on Embodiment 3 of this invention (report method 2)
  • the figure which shows an example of Extension carrier which concerns on Embodiment 4 of this invention The figure which shows CoMP operation which concerns on Embodiment 5 of this invention.
  • the communication system includes a macro base station (HPN, Macro eNB) 100, a pico base station (LPN, RRH) 200, and a terminal 300.
  • macro base station 100 corresponds to the transmission apparatus according to the present embodiment.
  • Macro base station 100 and a plurality of pico base stations 200 arranged in the coverage area of macro base station 100 transmit signals to terminal 300 in a coordinated manner.
  • the macro base station 100 and one or more pico base stations 200 are connected by a low-delay and large-capacity interface such as an optical fiber.
  • the same cell ID is set for the macro base station 100 and the pico base station 200. That is, the same cell ID is set for the transmission points in the macro cell covered by the macro base station 100. Therefore, the macro base station 100 and the pico base station 200 transmit the CRS using the same resource (time, frequency, or code) depending on the cell ID.
  • each transmission point in the macro cell covered by the macro base station 100 transmits CSI-RSs having different configurations (configuration of resources, antenna ports, etc.).
  • each transmission point has one or a plurality of antenna ports.
  • terminal 300 measures two types of reception quality using CSI-RS.
  • One reception quality is, for example, reception power, RSRP, RSRQ, SINR, SLNR (Signal to Leakage plus Noise Ratio) and the like.
  • the other received power is CSI (CQI and PMI).
  • the processing amount required for measuring the first reception quality is smaller than the processing amount required for measuring the second reception quality.
  • the amount of information required for notification of the first reception quality is smaller than the amount of information required for measurement of the second reception quality.
  • FIG. 3 is a main configuration diagram of macro base station 100 according to the present embodiment.
  • transmitting section 102 transmits a reference signal (CSI-RS) to terminal 300
  • receiving section 103 uses a plurality of reference signals measured by terminal 300, respectively.
  • the first reception quality (reception power) for the first reception quality satisfying a predetermined condition is received, and the control unit 101 measures the second reception quality (CSI) among the plurality of reference signals.
  • At least one specific reference signal of interest is determined.
  • receiving section 103 receives the second reception quality measured by terminal 300 using a specific reference signal.
  • FIG. 4 is a main configuration diagram of terminal 300 according to the present embodiment.
  • measurement section 303 measures first reception quality (reception power) for each of a plurality of reference signals using a plurality of reference signals (CSI-RS) from a plurality of transmission points, and receives a reception section.
  • CSI-RS reference signals
  • 301 receives first information (measurement list) related to at least one specific reference signal among a plurality of reference signals, and the measurement unit 303 uses the specific reference signal based on the first information.
  • the second reception quality (CSI) is measured, and the transmission unit 304 reports the first reception quality and the second reception quality that satisfy a predetermined condition.
  • FIG. 5 is a block diagram showing a configuration of macro base station 100 according to the present embodiment.
  • control unit 101 performs control of CSI-RS (that is, transmission point) that each terminal 300 is subject to CSI measurement / report and control of the pico base station 200 (RRH). Do.
  • CSI-RS that is, transmission point
  • RRH pico base station 200
  • control unit 101 uses a CSI-RS configuration (used in a transmission point (macro base station 100 (HPN) and pico base station 200 (LPN)) in a macro cell covered by the macro base station 100 (
  • a list indicating setting information is created as a “CSI-RS candidate list (CSI-RS candidate list: CCL)”. That is, the “CSI-RS candidate list” indicates a plurality of CSI-RSs.
  • control section 101 determines only the CSI-RS configuration of a transmission point (HPN / LPN) located in the vicinity of terminal 300 as a CSI-RS candidate. May be included in the list.
  • the control unit 101 sets a predetermined condition (hereinafter referred to as a report condition) that is a criterion for determining whether or not the terminal 300 performs a received power (RSRP) report measured using CSI-RS.
  • a report condition a predetermined condition that is a criterion for determining whether or not the terminal 300 performs a received power (RSRP) report measured using CSI-RS.
  • the “reporting condition” include that the received power (RSRP) is equal to or higher than a preset threshold value. That is, terminal 300 reports the reception power measurement result when the report condition is satisfied.
  • the control unit 101 also includes information on CSI-RS (identifier of CSI-RS resource that satisfies the above report condition) included in a signal (received signal) from the terminal 300 input from the receiving unit 103 or the inter-base station IF 104. And the received power measurement result), the CSI-RS configuration (that is, transmission point) to be CSI measurement / report is determined. That is, the control unit 101 determines at least one specific CSI-RS that is a CSI measurement target among a plurality of CSI-RSs. The control unit 101 generates the determined CSI-RS configuration (at least one specific CSI-RS) as a “CSI-RS measurement list (CML)”.
  • CML CSI-RS measurement list
  • the “CSI-RS measurement list” is information indicating the specific CSI-RS, and corresponds to the received power satisfying the reporting condition among the plurality of CSI-RSs indicated in the CSI-RS candidate list. It is determined using information on at least one CSI-RS.
  • the CSI-RS measurement list may include information such as CSI-RS time / frequency resources, or an identifier of the CSI-RS resource given in the CSI-RS candidate list (ie, CSI-RS candidate). Information indicating what number CSI-RS configuration in the list may be used. When the latter CSI-RS resource identifier is used, the amount of notification information in the CSI-RS measurement list can be reduced.
  • control unit 101 uses the CSI measurement result (CQI and PMI) included in the signal (received signal) from the terminal 300 input from the receiving unit 103 or the inter-base station IF 104 to use DMRS and data (PDSCH).
  • the transmission parameter for the transmission point used for transmission is determined. That is, the control unit 101 performs PDSCH scheduling based on the CSI measurement result. Examples of the transmission parameter for the transmission point include frequency resource, precoding matrix, transmission power, and the like. This transmission parameter is output to the transmitter 102 and the inter-base station IF (interface) 104.
  • the control unit 101 sets the configuration of transmission parameters (cell ID, antenna port, time / frequency resource, etc.) used for transmission of CSI-RS, CRS, DMRS, PDCCH, and the like.
  • the cell ID is the same between the transmission points
  • the CRS resource CRS resource
  • the CSI-RS has a different configuration for each transmission point. This configuration is output to the transmitter 102 and the inter-base station IF (interface) 104.
  • the “CSI-RS candidate list” and the “report condition” generated by the control unit 101 are transmitted to each terminal 300 via the transmission unit 102.
  • Such information may be transmitted as broadcast information or may be notified as RRC control information for each terminal.
  • the CSI-RS candidate list may be included in the MAC header.
  • the “CSI-RS measurement list” is transmitted to each terminal 300 via the transmission unit 102. This information may be transmitted as terminal-specific control information, may be notified as RRC control information, and may be included in the MAC header or PDCCH.
  • Transmitting section 102 performs transmission processing on information (including “CSI-RS candidate list”, “reporting condition”, and “CSI-RS measurement list”) input from control section 101, and signals after the transmission processing Is transmitted through the antenna. Further, the transmission unit 102 transmits CSI-RS, CRS, DMRS, a data signal (PDSCH) to the terminal 300 and a control signal (PDCCH) according to a transmission parameter (configuration) input from the control unit 101.
  • information including “CSI-RS candidate list”, “reporting condition”, and “CSI-RS measurement list”
  • CSI-RS measurement list signals after the transmission processing Is transmitted through the antenna. Further, the transmission unit 102 transmits CSI-RS, CRS, DMRS, a data signal (PDSCH) to the terminal 300 and a control signal (PDCCH) according to a transmission parameter (configuration) input from the control unit 101.
  • the receiving unit 103 performs reception processing on the signal received via the antenna, and outputs the obtained received signal to the control unit 101.
  • the received signal includes a data signal from terminal 300, information on CSI-RS (the above-mentioned “information on CSI-RS satisfying the report condition”), CSI measurement results (CQI and PMI), and the like.
  • the inter-base station IF 104 communicates with the pico base station 200.
  • the inter-base station IF 104 transfers transmission parameters and transmission data used for transmission from the pico base station 200 to the terminal 300, and received data from the terminal 300 received by the pico base station 200 (CSI that satisfies the reporting condition). -Receive RS information and CSI measurement results).
  • FIG. 6 is a block diagram showing a configuration of pico base station 200 according to the present embodiment.
  • the inter-base station IF 201 communicates with the macro base station 100 (FIG. 5). For example, the inter-base station IF 201 receives transmission parameters and transmission data used for transmission to the terminal 300 from the macro base station 100, and outputs the received transmission parameters and transmission data to the transmission unit 202. Also, the inter-base station IF 201 receives data received from the terminal 300 (information on CSI-RS measurement results (information on CSI-RS satisfying the reporting conditions) and CSI measurement results (CQI and PMI) is transferred to the macro base station 100.
  • CSI-RS measurement results information on CSI-RS satisfying the reporting conditions
  • CQI and PMI CSI measurement results
  • the transmission unit 202 transmits the transmission data addressed to the terminal 300 via the antenna according to the transmission parameter input from the inter-base station IF 201.
  • the receiving unit 203 receives a signal from the terminal 300 via the antenna.
  • the signal from terminal 300 includes user data, information on CSI-RS measurement results (information on CSI-RS that satisfies a predetermined condition), CSI measurement results (CQI and PMI), and the like.
  • FIG. 7 is a block diagram showing a configuration of terminal 300 according to the present embodiment.
  • Terminal 300 communicates with macro base station 100 (FIG. 5) or pico base station 200 (FIG. 6).
  • the receiving unit 301 performs reception processing on the signal received via the antenna to obtain a received signal.
  • the received signal includes CRS, CSI-RS, DMRS, data signal (PDSCH), control signal (PDCCH), etc. transmitted from the macro base station 100 (HPN) or the pico base station 200 (LPN). Further, the received signal includes a “CSI-RS candidate list”, “report condition”, or “CSI-RS measurement list” transmitted from the macro base station 100.
  • the receiving unit 301 extracts a data signal (PDSCH) or CSI-RS using resources instructed by the control unit 302.
  • the reception unit 301 outputs the CSI-RS to the measurement unit 303.
  • the reception unit 301 extracts “CSI-RS candidate list”, “report condition”, and “CSI-RS measurement list” from the received signal, and outputs the extracted information to the control unit 302.
  • the control unit 302 Based on the “CSI-RS candidate list” or “CSI-RS measurement list” input from the receiving unit 301, the control unit 302 transmits CSI-RS resource information (which resource (time, frequency, code) to CSI-RS). -Information indicating whether RS is included) or the like. Also, the control unit 302 instructs the reception unit 301, for example, resource information (information indicating which resource user data should be received) of the downlink data signal (PDSCH) based on the control information (PDCCH). To do. Also, the control unit 302 instructs the transmission unit 304, for example, resource information (information indicating which resource should transmit user data) of the uplink data signal (PUSCH) based on the control information (PDCCH). To do.
  • control unit 302 outputs “reporting conditions (conditions for determining whether to report the received power measurement result based on the CSI-RS candidate list)” input from the receiving unit 301 to the measuring unit 303. .
  • the measurement unit 303 performs reception power (for example, RSRP) measurement based on the CSI-RS candidate list using the CSI-RS input from the reception unit 301. That is, measurement section 303 measures received power for each of a plurality of CSI-RSs using a plurality of CSI-RSs (a plurality of CSI-RSs indicated in a CSI-RS candidate list) from a plurality of transmission points. . The reception power measurement result is used to select a transmission point. The measurement unit 303 measures received power averaged for a relatively long time (for example, several hundred ms). In other words, the measurement unit 303 measures received power periodically at a relatively low frequency.
  • reception power for example, RSRP
  • the measurement unit 303 determines whether or not the measured received power satisfies “report condition (for example, the received power is equal to or higher than a preset threshold value)”.
  • the measuring unit 303 transmits CSI-RS (CSI-RS resource identifier) corresponding to the received power and information on the CSI-RS including information indicating the received power. It outputs to 304.
  • CSI-RS CSI-RS resource identifier
  • information regarding at least one CSI-RS corresponding to the received power satisfying the reporting condition among the plurality of CSI-RSs indicated in the CSI-RS candidate list is transmitted to the base station 100.
  • the information related to the CSI-RS includes, for example, an identifier indicating the CSI-RS corresponding to the received power that satisfies the report condition, a received power measurement result that satisfies the report condition, and the like.
  • the measurement unit 303 performs CSI (CQI and PMI) measurement based on the CSI-RS measurement list using the CSI-RS input from the reception unit 301. That is, the measurement unit 303 measures CSI using a specific CSI-RS indicated by the CSI-RS measurement list.
  • CSI is used for scheduling, link adaptation (MCS control), and precoding control in actual data transmission.
  • the measurement unit 303 measures average CSI (or CSI for each subframe) during a relatively short period with small fading fluctuation. In other words, the measurement unit 303 measures CSI periodically with a relatively high frequency.
  • the CSI is composed of a PMI indicating Precoding Matrix capable of realizing the maximum throughput, and a CQI indicating a data rate or MCS that can be transmitted at a predetermined error rate.
  • the measurement unit 303 uses the CSI-RS to measure the first reception quality (reception power, etc.) of a plurality of transmission points based on the CSI-RS candidate list, and based on the CSI-RS measurement list. Measure a second reception quality (CSI) of a specific transmission point.
  • the reception power measurement result (information on CSI-RS) or the CSI measurement result measured by the measurement unit 303 is output to the transmission unit 304.
  • the transmission unit 304 performs transmission processing on a transmission signal including user data (PUSCH), information on CSI-RS (information of CSI-RS that satisfies a predetermined condition) or CSI measurement results (CQI and PMI), The signal after transmission processing is transmitted via an antenna.
  • the transmission unit 304 transmits user data in accordance with an instruction from the control unit 302.
  • information on CSI-RS (information on CSI-RS that satisfies a predetermined condition) or CSI measurement results (CQI and PMI) can be directly or via pico base station 200 to which terminal 300 is connected.
  • FIG. 8 is a flowchart showing a processing flow of the macro base station 100 (represented as eNB) and the terminal 300 (represented as UE).
  • the macro base station 100 in step (hereinafter referred to as “ST”) 101, notifies the terminal 300 of the CSI-RS candidate list (CCL) set by the control unit 101.
  • the CSI-RS candidate list includes configurations of transmission points in the cell (macro cell) of the macro base station 100 (that is, CSI-RS candidate).
  • CSI-RS candidate number As an identifier of each CSI-RS candidate, for example, a CSI-RS candidate number (or CSI-RS configuration ID) is given.
  • CSI-RS candidate numbers 1 to 6 are included in the CSI-RS candidate list.
  • the configuration (CSI-RS configuration) related to CSI-RS includes (1) number of antenna ports (Antenna Ports Count), (2) time / frequency resource position (resourceConfig) in a subframe, and (3) CSI-RS. Transmission period and time offset (subframeConfig), and (4) offset (CSI-RS individual offset) for the measurement result for priority selection.
  • the CSI-RS candidate list includes the CSI-RS configuration including the information (1) to (4) above for the transmission points (for the CSI-RS candidates).
  • a CSI-RS configuration (RRC parameter name: resourceConfig) is associated with a mapping pattern in the time / frequency domain.
  • resourceConfig is specified by notifying CSI-RS configuration ID as shown in FIG.
  • the mapping patterns (Pattern 0 to 4) shown in FIG. 9 correspond to the physical resource mappings (Pattern 0 to 4) shown in FIG.
  • subframeConfig is defined by a combination of a predetermined cycle and a time offset (subframe offset), for example. For example, if the period is 10 ms (10 subframes) and the time offset is 0 (0 subframe), the period from subframe # 0 to 10 ms is set in CSI-RS.
  • CSI-RS individual offset is an offset given to the measurement result of each CSI-RS candidate.
  • the CSI-RS of a congested transmission point can be controlled such that the transmission point is hardly selected by lowering the offset.
  • “CSI-RS” individual “offset” may be the same as mobility “measurement”.
  • the macro base station 100 notifies the terminal 300 of the reception power measurement method and the “report condition (Event)” of the reception power measurement result (not shown).
  • the “report condition (Event)” when the measurement result exceeds a preset threshold A, when the measurement result falls below a preset threshold B, or the measurement result is the current CSI measurement target (that is, , CSI-RS measurement list) exceeds a CSI-RS measurement result specified by a preset threshold C [dB].
  • the reception power using CSI-RS exceeds a threshold based on CCL, terminal 300 transmits first reception quality to base station 100. For this reason, the base station 100 can know a transmission point to be considered as a CSI-RS candidate (second information: CML) that causes the terminal 300 to measure the second reception quality at an appropriate timing.
  • terminal 300 transmits the first reception quality to base station 100 when the received power using CSI-RS falls below a threshold based on CCL. Therefore, the base station 100 can know a transmission point that does not need to be considered as a CSI-RS candidate (second information: CML) that causes the terminal 300 to measure the second reception quality at an appropriate timing. As a result, the base station 100 can update the CSI-RS candidate suitable for the terminal 300 at an appropriate timing, and thus can schedule appropriately. As a result, the throughput of the terminal 300 can be improved, and frequency resources can be effectively used. Also, when the reception quality of the transmission point for which the terminal 300 is a candidate for use exceeds the reception quality of the other transmission points, the base station 100 transmits the first reception quality more accurately. CSI-RS candidates for measuring the reception quality of 2 can be determined.
  • FIG. 8 shows an example in which RSRP is used as the measurement method and the reporting condition is when the threshold Th_add is exceeded and when the threshold Th_remove is below.
  • the measurement unit 303 of the terminal 300 performs RSRP measurement using CSI-RS based on the CSI-RS candidate list notified in ST101 and the received power measurement method notified from the macro base station 100. That is, in FIG. 8, the measurement unit 303 performs six types of CSI-RSs (that is, six transmission points) based on CSI-RS-1 to CSI-RS configurations indicated in the CSI-RS candidate list. Measure RSRP. In addition, the measurement unit 303 determines whether the measured RSRP satisfies the reporting condition. In FIG. 8, in the CSI-RS candidate list (CSI-RS 1 to 6), the RSRP of CSI-RS 1 and CSI-RS 2 exceeds the threshold Th_add.
  • terminal 300 receives information on at least one CSI-RS candidate (that is, transmission point) corresponding to RSRP satisfying the reporting condition from among a plurality of CSI-RS candidates indicated in the CSI-RS candidate list as a macro base. Report (transmit) to station 100. Specifically, terminal 300 has CSI-RS candidate numbers that satisfy the reporting conditions (CSI-RSSI1 and CSI-RS 2 in FIG. 8) and the measurement results of CSI-RS that satisfy the reporting conditions (value 1 in FIG. 8). And value 2) are reported to the macro base station 100. That is, the macro base station 100 receives reception power measurement results for each of the plurality of CSI-RSs measured by the terminal 300 using the plurality of CSI-RSs and satisfying the reporting condition. . Note that the terminal 300 may report only the CSI-RS candidate number when reporting RSRP (reception power).
  • control section 101 of macro base station 100 Based on the information (CSI-RS candidate number and RSRP measurement result) received from terminal 300 in ST102, control section 101 of macro base station 100, among a plurality of CSI-RS candidates shown in the CSI-RS candidate list, At least one CSI-RS (specific CSI-RS that is a CSI measurement target) used for CSI measurement is determined.
  • the control unit 101 determines that a terminal exists in the vicinity of a transmission point using CSI-RS 1 and CSI-RS 2.
  • control section 101 determines that the reception quality from the transmission points using CSI-RS ⁇ ⁇ ⁇ 1 and CSI-RS 2 in terminal 300 is higher than other transmission points.
  • the control unit 101 determines CSI-RS to be CSI-RS 1 and CSI-RS 2 as CSI-RS to be CSI measurement / report. In other words, the control unit 101 determines CSI measurement / report target transmission points as a transmission point using CSI-RS 1 and a transmission point using CSI-RS 2.
  • control unit 101 may determine either one of CSI-RS 1 and CSI-RS 2 as a specific CSI-RS for CSI measurement / report. In this case, for example, the control unit 101 determines the larger one of the RSRP values (value 1 and value 2) out of CSI-RS 1 and CSI-RS C 2 as the CSI-RS for CSI measurement / reporting. Also good.
  • macro base station 100 In ST103, macro base station 100 generates a CSI-RS measurement list (CML) including CSI-RS 1 and CSI-RS 2 determined as CSI measurement / report targets, and transmits the CSI-RS measurement list to terminal 300. Notice.
  • CML CSI-RS measurement list
  • measurement section 303 of terminal 300 Upon receiving the CSI-RS measurement list in ST103, measurement section 303 of terminal 300 uses CSI (CQI) using specific CSI-RSs (CSI-RS 1 and CSI-RS 2) indicated in the CSI-RS measurement list. And PMI). That is, measurement section 303 measures CSI using CSI-RS from a specific transmission point determined using information on transmission points corresponding to RSRP satisfying the reporting condition in macro base station 100.
  • CQI CSI-RS 1 and CSI-RS 2
  • terminal 300 reports the measured CSI to macro base station 100 (CSI feedback). That is, macro base station 100 receives CSI measured by terminal 300 using a specific CSI-RS indicated in the CSI-RS measurement list.
  • the macro base station 100 sets a data signal (PDSCH) transmission method or PrecodingSMatrix at each transmission point based on CSI feedback (PDSCH scheduling based on CSI feedback). Thereby, data and DMRS are transmitted from each transmission point.
  • PDSCH data signal
  • RSRP measurement using CSI-RS is performed at a longer interval (low frequency) than CSI measurement using CSI-RS.
  • the CSI may be reported periodically (periodic CSI reporting) or may be reported in response to a report request such as a trigger (aperiodic CSI reporting).
  • terminal 300 reports information (CSI-RS candidate number and measurement result) on CSI-RS candidates (transmission points) corresponding to RSRP satisfying the reporting condition to macro base station 100.
  • the RSRP of CSI-RS 1 is below the threshold Th_remove
  • the RSRP of CSI-RS 3 is above the threshold Th_add. Therefore, in ST105, terminal 300 reports CSI-RS 1 and CSI-RS 3 to macro base station 100. Note that it is not necessary to report measurement results for CSI-RS candidates whose RSRP is below the threshold Th_remove. Therefore, in FIG. 8, the terminal 300 reports information (remove) indicating that the RSRP has fallen below the threshold value Th_remove instead of the measurement result (value 1) for CSI-RS 1 in order to reduce the amount of report information. To do.
  • control section 101 of macro base station 100 In ST106, control section 101 of macro base station 100 generates a CSI-RS measurement list (CML) and notifies CSI-RS measurement list to terminal 300 in the same manner as ST103. At this time, the control unit 101 resets the CSI measurement / report target based on the information received in ST105. For example, in FIG. 8, control section 101 removes CSI-RS 1 from CSI-RS 1 among CSI-RS 1 and CSI-RS 2 that were CSI measurement / report targets in ST104, and CSI-RS 3 Is newly added to the CSI measurement / report target. Therefore, in ST 106, macro base station 100 reports a CSI-RS measurement list including CSI-RS 1 and CSI-RS 2 to terminal 300.
  • CML CSI-RS measurement list
  • the measurement unit 303 of the terminal 300 measures CSI (CQI and PMI) using the CSI-RS (CSI-RS 2 and CSI-RS 3) indicated in the CSI-RS measurement list. Therefore, in ST107, CSI feedback for CSI-RS-1 and CSI-RS 2 is performed.
  • the macro base station 100 and the terminal 300 continuously perform the same processing.
  • the transmission unit 102 transmits CSI-RS to the terminal 300, and the control unit 101 uses the CSI-RS from a plurality of base stations (transmission points) in the terminal 300.
  • a specific base station that is a CSI (second quality) measurement target is determined from among a plurality of base stations, and a reception unit 103 receives the CSI for the specific base station measured by the terminal 300 using the CSI-RS from the specific base station.
  • measurement section 303 uses CSI-RS from a plurality of base stations (transmission points) within the coverage area of macro base station 100 to receive power (first reception quality) for each base station.
  • the measurement unit 303 uses the CSI-RS of the specific base station determined based on the reception power (first reception quality) of each base station among the plurality of base stations, to The CSI (second reception quality) for the base station is measured, and the measured CSI is reported to the macro base station 100.
  • terminal 300 measures received power (RSRP, etc.) and reports CSI-RS used by a transmission point with higher received power to macro base station 100.
  • the macro base station 100 can set a CSI measurement / report target CSI-RS to a part of a plurality of CSI-RSs set at a plurality of transmission points existing in the macro cell. it can.
  • the report period of received power is longer than the report period of CSI.
  • the received power measurement process has a smaller processing amount than the CSI measurement process including detailed information such as CQI and PMI. Furthermore, the amount of information (such as the number of bits) required for notification of received power is smaller than the amount of information required for CSI notification. That is, the terminal 300 reports information on CSI-RS candidates (transmission points) satisfying the reporting conditions (CSI-RS candidate numbers, received power, etc.) to the macro base station 100 before CSI measurement, rather than an increase in feedback amount. The effect of reducing the feedback amount by narrowing down the CSI-RS (transmission point) that is the target of CSI measurement / reporting to the system is greater.
  • terminal 300 reports CSI-RS candidates that satisfy a predetermined condition to macro base station 100 in advance, and the CSI measurement target
  • the effect of reducing the feedback amount by limiting the transmission points (base stations) is great.
  • macro base station 100 notifies terminal 300 of a CSI-RS candidate list in advance.
  • terminal 300 can measure and set transmission / reception timing for each transmission point in advance.
  • the terminal 300 can use the transmission destination of the change destination without causing a delay for synchronization with the transmission point of the change destination.
  • terminal 300 continuously performs reception power (RSRP) measurement using CSI-RS, and when the measurement result satisfies the reporting condition, CSI-RS candidate (transmission that satisfies the reporting condition)
  • RSRP reception power
  • CSI-RS candidate transmission that satisfies the reporting condition
  • the case of reporting the information of (point) to the macro base station 100 has been described (for example, see FIG. 8).
  • reporting of CSI-RS candidates that satisfy the reporting condition is not limited to this, and may be performed as follows.
  • received power reporting methods 1 and 2 will be described.
  • the macro base station 100 determines that the reception quality or throughput of the signal from the currently used transmission point has deteriorated, the macro base station 100 notifies the terminal 300 of a report request for the measurement result of the received power.
  • the report request may include the measurement method or the CSI-RS number to be reported.
  • the terminal 300 reports the measurement result of the designated CSI-RS (all CSI-RSs if there is no designation). As a result, the terminal 300 performs CSI-RS reception power measurement and reporting only when the transmission point is likely to be changed, so that it is possible to reduce power consumption and the amount of report information in the terminal 300. It becomes.
  • the macro base station 100 can cause the terminal 300 to report the CSI-RS reception measurement result at a timing when the transmission point is desired to be changed based on the congestion status of each transmission point.
  • the terminal 300 transmits the first reception quality to the base station 100 as soon as the reception quality measured using CSI-RS is obtained.
  • the second information can be updated.
  • the base station 100 can more flexibly switch transmission points for scheduling to the terminal 300.
  • terminal 300 when receiving a report request, reports only CSI-RS (transmission point) information (CSI-RS candidate number and measurement result) satisfying the report condition. Also good.
  • the report request and the measurement result report can also be realized by RRC signaling. However, by using the MAC or PHY signaling for the report request and the measurement result report, the delay from the report request to the measurement result report can be reduced.
  • ⁇ Reporting method 2> When the CSI-RS candidate list is notified from the macro base station 100, the terminal 300 measures the received power of CSI-RS and periodically transmits the measurement results of all CSI-RSs (or designated CSI-RSs). To the macro base station 100. At this time, the reporting period is separately notified from the macro base station 100. Thereby, the macro base station 100 can continuously monitor the state of the terminal 300 (reception quality from each transmission point).
  • zeroTxPowerCSI-RS (non-transmission CSI-RS) is configured for the purpose of reducing interference with CSI-RS.
  • CoMP operation using non-transmission CSI-RS is performed.
  • FIG. 11 shows an example of a CSI-RS mapping pattern in one subframe at each transmission point.
  • Pattern 0 to 2 are set for transmission points 1 to 3, respectively.
  • resources including CSI-RS resources respectively set for transmission points 1 to 3 are set as zeroTxPowerCSI-RS (non-transmission CSI-RS) resources.
  • the data signal (PDSCH) is not allocated to the non-transmission CSI-RS resource.
  • the non-transmission CSI-RS resources the CSI-RS transmitted from each transmission point is allocated to different resources.
  • the non-transmission CSI-RS resource is set at a predetermined cycle timing (for example, a cycle of 5 ms) (not shown in FIG. 11).
  • the CSI-RS is transmitted using the resources allocated to the CSI-RS of the transmission point 1 among the non-transmission CSI-RS resources.
  • the transmission point 1 shown in FIG. 11 among the resources of the non-transmission CSI-RS, resources other than the resources allocated to the CSI-RS of the transmission point 1 (that is, allocation to the CSI-RS of the transmission points 2 and 3).
  • the terminal connected to the transmission point 1 shown in FIG. 11 receives the CSI-RS transmitted from the transmission point 1 in the CSI-RS (CSI measurement target) resource of the transmission point 1.
  • the terminal connected to the transmission point 1 shown in FIG. 11 is the transmission point 2 (or even the CSI-RS resource of the transmission point 2 (or transmission point 3) among the non-transmission CSI-RS resources. It is possible to receive the CSI-RS transmitted from the transmission point 3). That is, the terminal can receive not only the CSI-RS subject to CSI measurement but also other CSI-RS in the zeroTxPowerCSI-RS (non-transmission CSI-RS) resource.
  • the terminal uses a non-transmission CSI-RS (zeroTxPowerCSI-RS) resource instead of the CSI-RS candidate list in the first embodiment, from a plurality of base stations (transmission points).
  • the received power of the CSI-RS to be transmitted is measured.
  • the macro base station 100 (FIG. 5), the pico base station 200 (FIG. 6), and the terminal 300 (FIG. 7) according to the present embodiment will be described.
  • control unit 101 performs the following processing in addition to the operation of the first embodiment. However, the control unit 101 does not create a CSI-RS candidate list.
  • the control unit 101 sets a resource group including a CSI-RS resource used at a transmission point in a cell (macro cell) covered by the macro base station 100 as a non-transmission CSI-RS (zeroTxPowerCSI-RS) resource. (Configure). Note that the control unit 101 may set non-transmission CSI-RS resources including only CSI-RS resources set at transmission points in the vicinity of the control target terminal 300.
  • non-transmission CSI-RS resource information includes, for example, (1) CSI-RS period and time offset (one subframeConfig), and (2) time / frequency in the subframe. Represented by a resource location (one or more resourceConfigs).
  • CSI-RS period and time offset one subframeConfig
  • time / frequency in the subframe Represented by a resource location (one or more resourceConfigs).
  • resourceConfigs one or more resourceConfigs.
  • only one combination of cycle and time offset (subframe offset) can be configured for zeroTxPowerCSI-RS. That is, the zeroTxPowerCSI-RS subframe is shared by each transmission point in the macro cell.
  • Non-transmission CSI-RS resource information is set by the RRC parameter (zeroTxPowerCSI-RS).
  • the macro base station 100 notifies the CSI-RS configuration used for the non-transmission CSI-RS with a bitmap in the mapping relationship between the CSI-RS configuration configured in advance and physical resources as shown in FIGS. 9 and 10. .
  • the notification information is [0 1 0 0 1]
  • the terminal 300 sets the CSI-RS using the resources of Pattern 1 and Pattern 4 among Pattern 0 to 4 shown in FIG. 10 as the non-transmission CSI-RS. Is done.
  • control unit 101 sets the CSI-RS cycle set at each transmission point in the macro cell covered by the macro base station 100 to an integer multiple (N times) of the non-transmission CSI-RS cycle.
  • control unit 101 sets a CSI-RS period (reception power measurement period) used for time averaging in reception power measurement in non-transmission CSI-RS resources.
  • the non-transmission CSI-RS resource information (zeroTxPowerCSI-RS information) set as described above and the reception power measurement period are notified to the terminal 300 via the transmission unit 102. Further, the non-transmission CSI-RS resource information, the received power measurement period, and the CSI-RS period set to each transmission point (an integral multiple of the non-transmission CSI-RS period) are transmitted via the inter-base station IF 104. To each transmission point (pico base station 200). Note that the macro base station 100 may notify only the value N as information indicating the CSI-RS period set for each transmission point.
  • the transmission unit 102 performs the following processing in addition to the operation of the first embodiment.
  • the transmission unit 102 does not place the data signal (PDSCH) in the non-transmission CSI-RS resource set by the control unit 101. Further, even if the transmission unit 102 is a resource of non-transmission CSI-RS, if it is a resource specified by the CSI-RS configuration of the own device (macro base station 100), the transmission unit 102 uses the CSI-RS with the resource. Send.
  • PDSCH data signal
  • transmission section 202 performs the following processing in addition to the operation of the first embodiment. Transmitting section 202 does not place a data signal (PDSCH) in the non-transmitting CSI-RS resource set in macro base station 100. In addition, even if the transmission unit 202 is a resource of non-transmission CSI-RS, if it is a resource specified by the CSI-RS configuration of the own device (pico base station 200), the transmission unit 202 uses the CSI-RS with the resource. Send.
  • PDSCH data signal
  • receiving section 301 receives non-transmission CSI-RS resource information and information on the received power measurement period.
  • Non-transmission CSI-RS resource information is output to the control unit 302 and the measurement unit 303, and information on the received power measurement period is output to the measurement unit 303.
  • control unit 302 outputs the CSI-RS resource information to be received power measurement to the receiving unit 301 based on the non-transmission CSI-RS resource information.
  • Measurement section 303 performs received power measurement using CSI-RS based on non-transmitted CSI-RS resource information and received power measurement period information in addition to the operation of the first embodiment. For example, the measurement unit 303 uses the CSI-RS transmitted from any transmission point in the time / frequency resource in each subframe specified by resourceConfig set as the non-transmission CSI-RS, and receives power Receive power is measured at each measurement cycle. That is, the measurement unit 303 uses the CSI-RS transmitted from a plurality of transmission points in the non-transmission CSI-RS resource group set at the timing (subframeConfig) of a predetermined cycle, to determine the reception power for each base station. taking measurement.
  • transmission section 304 reports CSI-RS (transmission point) information that satisfies a predetermined condition (report condition) when reporting received power measured using CSI-RS.
  • CSI-RS transmission point
  • ZeroTxPowerCSI-RS resourceConfig number that is, information indicating what number resource-configuration non-transmission CSI-RS resource
  • FIG. 12 shows an example of the above-described non-transmission CSI-RS (zeroTxPowerCSI-RS) setting, CSI-RS setting of each transmission point, and setting of the reception power measurement period at terminal 300.
  • CSI-RS zeroTxPowerCSI-RS
  • 10 ms is set as the reception power measurement period at the terminal 300.
  • the terminal 300 receives the CSI-RS transmitted from any transmission point with each resource for which the non-transmission CSI-RS is set, and measures the received power. That is, in this embodiment, the resource information of non-transmission CSI-RS (zeroTxPowerCSI-RS) is stored in the CSI-RS candidate list (information on CSI-RS set for each transmission point) used in Embodiment 1. Use instead.
  • a signal other than the CSI-RS of the transmission point is not transmitted in the resource to which the CSI-RS of a certain transmission point is allocated, so the terminal 300 uses the CSI-RS.
  • the received power can be measured with high accuracy.
  • the data signal (PDSCH) is not transmitted in the CSI-RS resource used by each transmission point. For this reason, it is not necessary to change the arrangement pattern of the data signal (PDSCH) in the resource block every time the transmission point for the terminal 300 is switched in the macro cell, so that the complexity of the terminal 300 can be reduced.
  • non-transmission CSI-RS zero-TxPowerCSI-RS
  • subframe offset may be set. desirable.
  • the non-transmission CSI-RS (zero-TxPowerCSI-RS) resource is a CSI-RS measurement target resource of each transmission point, all CSI-RSs of different transmission points in the cell are in the same subframe. Will be sent. In this case, the resources for the data signal (PDSCH) are extremely reduced, and there is a possibility that the throughput is deteriorated.
  • macro base station 100 sets the CSI-RS cycle of each transmission point to an integral multiple of the cycle of non-transmission CSI-RS (zeroTxPowerCSI-RS), and between transmission points. Set a different offset. Further, the macro base station 100 notifies the terminal 300 of the period of the subframe used for reception power measurement in addition to the non-transmission CSI-RS (zero-TxPowerCSI-RS) resource information. Terminal 300 measures received power at the notified received power measurement period. Thereby, CSI-RS of each transmission point can be transmitted in a distributed subframe. As a result, it is possible to prevent CSI-RS from each transmission point from concentrating only on a certain subframe, and to suppress degradation of data throughput.
  • the terminal 300 reports the reception power measurement result to the macro base station 100, in addition to the CSI-RS resource config number that satisfies the report condition, the subframe offset information used for the reception power measurement is also reported. To do.
  • the macro base station 100 can determine which transmission point CSI-RS that satisfies the report condition is set, and appropriately sets the CSI-RS for CSI measurement / report for the terminal 300. it can.
  • the notification information required for CSI measurement / report can be reduced as compared with the first embodiment.
  • macro base station 100 substitutes non-transmission CSI-RS (zeroTxPowerCSI-RS) as a CSI-RS candidate list (whether this embodiment is applied) or newly notifies the CSI-RS candidate list. (Whether or not the first embodiment is applied) may be selected and notified to the terminal 300. For example, when it is desired to reduce the amount of notification information as much as possible, flexible operation such as substituting zeroTxPowerCSI-RS as a CSI-RS candidate list becomes possible.
  • non-transmission CSI-RS zeroTxPowerCSI-RS
  • CSI-RS resources that is, CSI-RS candidate lists
  • only a part of non-transmission CSI-RS (zeroTxPowerCSI-RS) resources may be set as the received power measurement target resources.
  • the macro base station 100 notifies the terminal 300 of information indicating which resource config is a reception power measurement target among non-transmission CSI-RS (zeroTxPowerCSI-RS) resources.
  • non-transmission CSI-RS zeroTxPowerCSI-RS
  • non-transmission CSI-RS zero-transmission CSI-RS
  • information including a transmission period and a subframe offset may be notified to each resource of non-transmission CSI-RS (zeroTxPowerCSI-RS).
  • non-transmission CSI-RSs can be distributed and set in a plurality of subframes, and the amount of resources for PDSCH can be prevented from decreasing in one subframe.
  • the macro base station 100 (FIG. 5), the pico base station 200 (FIG. 6), and the terminal 300 (FIG. 7) according to the present embodiment will be described.
  • control unit 101 performs the following processing (operation related to transmission point selection in another cell) in addition to the operation of Embodiment 1 (operation related to transmission point selection in the macro cell).
  • the control unit 101 measures a measurement (received power measurement using CRS) for another cell (adjacent cell, that is, a transmission point having a cell ID different from a plurality of transmission points in the coverage area of the macro base station 100). ) Is determined for each terminal 300.
  • measurement settings include carrier frequency to be measured, cell ID information, measurement method (RSRP, RSRQ, etc.), measurement report reporting conditions, and the like.
  • the measurement setting (measConfig) is notified to each terminal 300 via the transmission unit 102.
  • control unit 101 uses the CSI-RS used at each transmission point in another cell targeted for measurement (that is, a plurality of transmission points having the same cell ID as the other cell targeted for measurement). Is generated as a “CSI-RS candidate list” of another cell.
  • the “CSI-RS candidate list” of another cell is notified to each terminal 300 via the transmission unit 102.
  • the control unit 101 includes only the CSI-RS used at the transmission point of another cell located in the vicinity of the setting target terminal 300 in the “CSI-RS candidate list” of the other cell, and measures the received power. May be set as
  • control unit 101 determines whether the other cell based on the measurement result report (measurement report, that is, the received power measurement result using CRS) from each terminal 300 received via the reception unit 103 or the inter-base station IF 104. It is determined whether or not to perform handover. When performing a handover to another cell, the control unit 101 outputs information necessary for performing the handover to the inter-base station IF 104.
  • measurement result report that is, the received power measurement result using CRS
  • control unit 101 receives information on CSI-RS of other cells (reception using CSI-RS) included in the signal (reception signal) from each terminal 300 received via the reception unit 103 or the inter-base station IF 104.
  • a CSI-RS resource identifier and a received power measurement result) that satisfy a predetermined condition (reporting condition of a received power measurement result using CSI-RS) as a criterion for whether or not to report a power measurement result) It is used to determine the CSI-RS configuration (ie, transmission point) that is the target of CSI measurement / report of another cell.
  • the control unit 101 sets the determined CSI-RS configuration as the “CSI-RS measurement list” of another cell.
  • CSI-RS transmitted from a plurality of transmission points having the same cell ID as another cell to be measured is transmitted with different resources for each transmission point, and CRS is based on the cell ID of the other cell. Sent with a determined resource.
  • the inter-base station IF 104 notifies handover information input from the control unit 101 to other base stations, and exchanges information necessary for handover with other base stations.
  • measurement section 303 measures received power using CRS according to the frequency, cell ID, etc. included in the measurement setting (measConfig) received via reception section 301.
  • the measurement method of received power using CRS is a measurement method (RSRP, RSRQ, etc.) designated by measurement setting (measConfig).
  • the measurement unit 303 determines whether the reception power measurement result by CRS satisfies the reporting condition included in the measurement setting (measConfig).
  • the measurement unit 303 includes information (for example, frequency, cell ID, etc.) of other cells that are measurement targets, and the measurement result (reception power measurement result using CRS).
  • the measurement unit 303 includes information (for example, frequency, cell ID, etc.) of other cells that are measurement targets, and the measurement result (reception power measurement result using CRS).
  • the measurement unit 303 when the reception power measurement result by CRS of another cell satisfies the measurement reporting condition, the measurement unit 303 further uses a plurality of CSI-RSs indicated in the CSI-RS candidate list of the other cell, The received power corresponding to each of the plurality of CSI-RSs is measured. Then, measurement section 303 transmits the measurement results (CSI-RS number, measurement value, etc.) to macro base station 100 or pico base station 200 via transmission section 304.
  • the measurement unit 303 Other base stations using CSI-RS from transmission points in the coverage area of the macro base station (other base stations and a plurality of pico base stations arranged in the coverage area of other macro base stations) Measure the received power for each transmission point.
  • the CSI-RS is transmitted with different resources for each transmission point.
  • CRS uses different resources for transmission points in the coverage area of the macro base station 100 and transmission points in the coverage areas of other macro base stations, and transmission is performed with the same resource at the transmission points in each cover area. (See, for example, FIG. 1).
  • Terminal 300 may report only the measurement result of the CSI-RS with the highest measurement value (higher received power) among the CSI-RSs shown in the CSI-RS candidate list, and the measurement value is preset. Only the measurement result of CSI-RS that satisfies the set reference value may be reported. By doing so, the number of CSI-RS measurement results to be reported can be reduced, and the message size for reporting can be reduced.
  • FIG. 13 is a flowchart showing a processing flow of the macro base station 100 (represented as eNB) and the terminal 300 (represented as UE).
  • the macro base station 100 receives the measurement configuration (parameters of received power measurement using CRS (cell ID, measurement method, etc.) of other cells to be measured) set by the control unit 101 in the terminal 300. Set and notify each time. At this time, the macro base station 100 also notifies the terminal 300 of CSI-RS candidate lists (other cell CSI-RS candidate lists) for other cells to be measured.
  • CRS cell ID, measurement method, etc.
  • the measurement unit 303 of the terminal 300 receives the measurement configuration in ST201, the measurement unit 303 performs reception power (for example, RSRP) measurement using CRS. In addition, the measurement unit 303 determines whether the measurement result using the CRS satisfies the reporting condition. For example, as a reporting condition, it is determined whether or not the measurement result using CRS exceeds a preset threshold value Th_crs. When the measurement result using CRS (in FIG. 13, the measurement result of the cell id 1 cell) exceeds the threshold value Th_crs, the measurement unit 303, based on the CSI-RS candidate list of the cell (Cell id 1 cell) , Receive power (for example, RSRP) measurement using CSI-RS is performed.
  • reception power for example, RSRP
  • terminal 300 When the received power (for example, RSRP) measurement using CSI-RS is completed, in ST202, terminal 300 receives the received power measurement result using CRS (cell id, measurement value, etc. satisfying the measurement reporting condition), and A measurement report including a reception power measurement result (CSI-RS ID, measurement value, etc.) using CSI-RS is reported to the macro base station 100.
  • CRS cell id, measurement value, etc. satisfying the measurement reporting condition
  • the macro base station 100 determines whether or not to hand over to the terminal 300 based on the measurement report received from the terminal 300 in ST202.
  • the macro base station 100 exchanges information (terminal information, setting information, etc.) necessary for the hand-over with the base station to which the handover is performed, and performs handover to the terminal 300.
  • a handover instruction and handover destination setting information are notified as a command (Handover ⁇ command).
  • terminal 300 transmits RACH to the handover destination base station based on the setting information received from macro base station 100 in ST203.
  • the terminal 300 upon receiving the RACH response from the handover destination base station in ST205, the terminal 300 transmits a handover complete message (HO complete) using the uplink resource indicated by the RACH response.
  • HO complete handover complete message
  • terminal 300 After the reception power measurement result using CRS satisfies the report condition, terminal 300 starts reception power measurement using CSI-RS based on the CSI-RS candidate list. That is, terminal 300 is measured using a plurality of CSI-RSs from other cells (here, cell id 1 cell, transmission point) and a plurality of transmission points having the same cell ID as the cell.
  • the reception power (RSRP) for each of the plurality of CSI-RSs is reported at the timing of reporting the reception power measurement result of the CRS that satisfies the measurement report condition. For this reason, in this Embodiment, the power consumption in the terminal 300 can be reduced compared with the case where the reception power measurement using CSI-RS is always performed.
  • the terminal 300 uses the received power measurement result using the CSI-RS for the transmission point in the cell of another macro base station as the received power measurement result satisfying the measurement report condition (received power measurement result using CRS). ) Is reported at the timing of reporting. That is, terminal 300 reports the received power measurement result using CRS and the received power measurement result using CSI-RS to macro base station 100 as the same message (measurementmeasurereport in FIG. 13). Thereby, it is possible to reduce an overhead such as a header, CRC, or ACK / NACK for transmission of the message necessary for reporting each measurement result.
  • a CSI-RS measurement list (not shown in FIG. 13) indicating CSI measurement / reporting targets at other macro base stations that can be a handover destination may be included in the handover command (ST 203 shown in FIG. 13). In this case, it is not necessary to additionally notify the CSI-RS measurement list after the handover is completed, and the delay can be further reduced.
  • FIG. 14 is a flowchart showing a processing flow of the macro base station 100 (represented as eNB) and the terminal 300 (represented as UE).
  • the same processes as those in the reporting method 1 are denoted by the same reference numerals, and the description thereof is omitted because it is duplicated.
  • the measurement unit 303 causes the CSI- Based on the RS candidate list, reception power (for example, RSRP) measurement using CSI-RS is performed, and a measurement report including a reception power measurement result using CRS is reported to the macro base station 100.
  • reception power for example, RSRP
  • the terminal 300 when receiving the RACH response from the handover destination base station in ST205, the terminal 300 transmits a handover complete message (HO complete) using the uplink resource indicated by the RACH response.
  • the handover completion message includes a reception power measurement result using CSI-RS from a transmission point in the handover destination base station (other macro base station). That is, terminal 300 transmits a received power measurement result using CSI-RS for a transmission point in the coverage area of another macro base station, and a timing for transmitting a handover completion message from macro base station 100 to another macro base station. To report.
  • the reception power measurement result (measurement report) using the CRS is reported to the macro base station 100 without waiting for the completion of the reception power measurement using the CSI-RS.
  • terminal 300 performs measurement using a plurality of CSI-RSs from another cell (here, cell id 1 cell, transmission point) and a plurality of transmission points having the same cell ID as the other cell.
  • the received power (RSRP) for each of the plurality of CSI-RSs is transmitted at the timing of reporting a handover completion message to the other cell.
  • the macro base station 100 can make the handover determination at an earlier timing as compared with the reporting method 1. This is particularly effective when the time variation of the propagation path is fast.
  • the received power measurement result using CSI-RS is included in measurementmeasurereport (ST202 shown in FIG. 13), whereas in reporting method 2, CSI-RS is included in the handover completion message.
  • the reception power measurement result using the ST is included (ST302 shown in FIG. 14). That is, in the reporting method 2, the report of the reception power measurement result using the CSI-RS is later than the reporting method 1.
  • the reception power measurement result using CSI-RS is used for selection of a transmission point in the handover destination cell. That is, the reception power measurement result using CSI-RS is used after the handover is completed. For this reason, it does not matter that the received power measurement result using CSI-RS is included in the handover completion message.
  • the terminal 300 does not necessarily perform handover. Therefore, in the reporting method 1, when the handover is not performed, the report of the reception power measurement result using the CSI-RS is wasted, whereas in the reporting method 2, the reception using the CSI-RS is completed after the handover is completed. Since the power measurement result is reported, the report is not wasted.
  • the macro base station 100 notifies the terminal 300 of CSI-RS information (CSI-RS candidate list) used by transmission points of other cells. Also, terminal 300 measures the received power of CSI-RS used by transmission points of other cells and reports it to macro base station 100. Thereby, the macro base station 100 can select an appropriate transmission point to be used for data transmission after the terminal 300 is handed over to another cell while reducing the delay. That is, in this embodiment, the delay until the start of data transmission after the handover can be reduced as compared with the case where the CSI-RS candidate list is notified after the handover is completed and the measurement result is reported.
  • CSI-RS candidate list is notified after the handover is completed and the measurement result is reported.
  • Rel. 10 supports communication using a band obtained by bundling several unit bands (Component Carrier: CC), so-called carrier aggregation (CA).
  • the “unit band” is a band having a maximum width of 20 MHz, for example, and is defined as a basic unit of a communication band.
  • Extension carrier non-backward compatible carrier
  • extension carrier only DMRS is supported, and CRS is not transmitted to reduce overhead (see, for example, “3GPP TSG RAN WG1 meeting, R1-100359, Jan. 2010”). That is, with the extension carrier, high-efficiency transmission can be performed by using only DMRS.
  • the CSI-RS is placed in the Extension carrier. That is, CSI-RS is arranged in ExtensionExtcarrier, and CRS different from CSI-RS is not arranged.
  • CC Component Carrier
  • Embodiments 1 to 3 may be applied to the heterogeneous network assumed in Embodiments 1 to 3, or may be applied to a homonetwork composed only of macro base stations. Below, the case where this Embodiment is applied to a homo network is demonstrated (refer FIG. 15).
  • control unit 101 performs the following processing in addition to the operation of the first embodiment.
  • the control unit 101 sets a measurement configuration that uses a CC other than the CC currently used for the terminal 300 as a measurement target.
  • the control unit 101 sets a measurement configuration including the carrier frequency, cell ID, and the like of the CC.
  • the control unit 101 transmits the setting information (carrier frequency and CSI-RS candidate list) for Extension carrier to the transmission unit 102. To the terminal 300.
  • the control unit 101 determines whether or not to add a CC to the terminal 300 based on a signal from the terminal 300 received via the receiving unit 103.
  • the signal from terminal 300 includes a measurement report for a normal CC (CC including CRS) or a reception power measurement result using CSI-RS. That is, when the CC to be added is a normal CC (a CC including CRS), the control unit 101 determines to add a CC based on the reception power measurement result using the CRS. On the other hand, when the CC to be added is Extension carrier, the control unit 101 determines the addition of the CC based on the reception power measurement result using CSI-RS. When adding a CC to the terminal 300, the control unit 101 notifies the terminal 300 of a CC addition instruction.
  • receiving section 301 extracts data from the CC set in terminal 300 in accordance with setting information such as the CC carrier frequency input from control section 302.
  • control unit 302 When the control unit 302 receives a CC addition instruction from the macro base station 100 via the reception unit 301, the control unit 302 outputs setting information such as a carrier frequency of the CC to be added to the reception unit 301.
  • the measurement unit 303 uses CRS based on the normal CC configuration information (carrier frequency, cell ID, etc.) included in the measurement configuration. Measure the received power.
  • the measurement result of the measured received power satisfies the reporting condition notified from the macro base station 100, the measurement result (ordinary measurement report for CC) is transmitted to the macro base station 100 via the transmission unit 304. .
  • the measurement unit 303 receives the setting information for Extension carrier from the macro base station 100 via the reception unit 301, the carrier frequency indicated by the setting information is based on the CSI-RS candidate list included in the setting information. The received power is measured using CSI-RS.
  • the measurement result of the measured reception power satisfies the reporting condition notified from the macro base station 100, the measurement result (reception power measurement result using CSI-RS) is sent to the macro base station 100 via the transmission unit 304. Sent.
  • Extension carrier (CC in which no CRS is arranged)
  • measurement section 303 uses the frequency of CC in which CRS is not arranged.
  • the reception power measurement result is reported to the macro base station 100. That is, terminal 300 performs reception power measurement using CSI-RS on an Extension carrier in which CRS is not allocated, and reports the measurement result to macro base station 100 (that is, CSI-RS based reception quality report). )
  • the macro base station 100 can select an extension carrier having a good channel state and set it in the terminal 300 even when using an extension carrier in which no CRS is arranged during carrier aggregation.
  • Component carrier can also be regarded as synonymous with a cell defined by a carrier frequency and a cell ID.
  • PCC Primary Component Carrier
  • SCC Secondary Component Carriers
  • SCell Secondary Cell
  • the PCC is a unit band that transmits broadcast information (for example, SIB2 (System Information Block type2)).
  • the present invention can be applied to any Component carrier in which CSI is not arranged and CSI-RS is arranged without being limited to Extension carrier.
  • a terminal 300 when a heterogeneous network is applied, when a terminal 300 adds a new extension-carrier (CC in which no CRS is allocated) to terminal 300, CC in which no CRS is allocated , The received power of each of the plurality of CSI-RSs is measured using a plurality of CSI-RSs transmitted from a plurality of transmission points, and the received power measurement result satisfying a predetermined condition is sent to the macro base station 100. Report it.
  • the reception base station (or reception point (RP)) in the uplink of each terminal is selected separately from the transmission base station (that is, transmission point (TP)) in the downlink.
  • the transmission base station that is, transmission point (TP)
  • one or a plurality of reception points may be selected for each terminal.
  • FIG. 16 shows an operation example of CoMP in the present embodiment.
  • signals are transmitted from three transmission points # 1, # 2, and # 3 whose RSRP (reception power) exceeds a predetermined threshold.
  • the path loss (path loss, the amount of propagation attenuation between the reception point and the terminal) is transmitted from the terminal at one reception point # 3 that is below a predetermined threshold. Signal is being received.
  • the terminal shown in FIG. 16 transmits a signal with transmission power that allows reception at reception point # 3 with sufficient reception quality.
  • the terminal shown in FIG. 16 transmits a signal with the lowest possible transmission power that can be received at the nearby reception point # 3.
  • the coefficient PL (path loss) in transmission power control (LTE or LTE-A transmission power control) represented by the following equation (1)
  • the terminal is measured using a signal from the reception point # 3.
  • RSRP is used.
  • RSRP is measured using CSI-RS as in the first embodiment.
  • Equation (1) P represents the transmission power of PUSCH (data), P MAX represents the maximum value of transmission power allowed in the terminal, M represents the transmission bandwidth, and P 0 represents each cell or A value set for each terminal is indicated, ⁇ indicates a coefficient of 1 or less, ⁇ TF indicates a value that varies depending on a modulation method or the like, and f indicates a control value by a transmission power control command. Further, referenceSignalPower indicates transmission power at a reception point serving as a reference for path loss calculation (hereinafter referred to as a reception point serving as a path loss reference).
  • the difference between the transmission power at the reception point, which is a reference for path loss calculation, and the average value of RSRP at the terminal (higher layer filtered RSRP) is calculated as path loss (propagation attenuation between the reception point and the terminal). Is done.
  • the base station in order for the base station to normally receive a signal from the terminal, it is necessary for the base station and the terminal to recognize the same reception point. For this reason, the base station needs to notify the terminal of information on a reception point (a reception point that becomes a path loss reference) used for calculating a path loss (PL) when the terminal performs transmission power control.
  • the path loss is calculated based on RSRP measured using CSI-RS. For this reason, the base station needs to notify the terminal of CSI-RS information (resource, timing, etc.) when calculating the path loss. Therefore, when the reception point changes frequently due to movement of the terminal or the like, the overhead for notification of information on the reception point becomes enormous.
  • the CSI-RS candidate list used in the downlink in the above embodiment is also used for selection of the reception point (RP) in the uplink.
  • the macro base station 100 (FIG. 5), the pico base station 200 (FIG. 6), and the terminal 300 (FIG. 7) according to the present embodiment will be described.
  • control unit 101 performs the following processing (operation related to reception point selection) in addition to the operation of Embodiment 1 (operation related to transmission point selection).
  • the control unit 101 is described in the first embodiment as a predetermined condition (hereinafter referred to as a report condition) that is a criterion for determining whether or not the terminal 300 reports the received power (RSRP) measured using CSI-RS.
  • a report condition a predetermined condition that is a criterion for determining whether or not the terminal 300 reports the received power (RSRP) measured using CSI-RS.
  • the reporting conditions for selecting the downlink transmission point are set.
  • the report condition to be set is notified to the terminal 300 by including it in the CSI-RS candidate list, for example.
  • a report condition for RSRP reception power measured using CSI-RS
  • a report condition for selecting a transmission point (TP) in the downlink and a reception point in the uplink
  • Two types of reporting conditions for (RP) selection are set. For example, as a report condition for downlink (DL), when RSRP exceeds a predetermined value (condition for adding a transmission point: TP addition condition), or when RSRP falls below a predetermined value (condition for deleting a transmission point: TP deletion condition).
  • a report condition for uplink when the path loss is lower than a predetermined value (condition for adding a reception point: RP addition condition), or when the path loss is higher than a predetermined value (condition for deleting a reception point: RP deletion condition).
  • the control unit 101 also includes information on CSI-RS (CSI-RS that satisfies the UL reporting conditions described above) included in the signal (received signal) from the terminal 300 input from the receiving unit 103 or the inter-base station IF 104.
  • CSI-RS CSI-RS that satisfies the UL reporting conditions described above
  • a reception point reception point serving as a path loss reference
  • the control unit 101 selects a reception point (RP) based on RSRP information (CSI-RS information satisfying UL reporting conditions) reported from the terminal 300. That is, the control unit 101 determines at least one specific CSI-RS used for path loss calculation in the terminal 300 among the plurality of CSI-RSs.
  • base station 100 notifies terminal 300 of information related to the reception point (RP) used as a path loss reference for uplink transmission power control, using the identifier (CSI-RS index) that has been notified in the CSI-RS candidate list.
  • the CSI-RS candidate list is notified by RRC signaling signaled at a relatively long interval, and the information of the reception point is notified by MAC signaling capable of signaling at a relatively short interval.
  • the control unit 101 determines configuration information (configuration) such as data or reference signal resources that the terminal 300 transmits in the uplink according to the determined reception point for each terminal 300, and each terminal via the transmission unit 102 300 is notified.
  • configuration information such as data or reference signal resources that the terminal 300 transmits in the uplink according to the determined reception point for each terminal 300, and each terminal via the transmission unit 102 300 is notified.
  • the control unit 101 performs control so as to reduce interference among signals from a plurality of terminals 300 received at each reception point.
  • the control unit 101 sets a random seed such that the hopping pattern is the same among the plurality of terminals 300.
  • the uplink configuration information (configuration) for example, information such as frequency / series, virtual cell id (virtual cell id), and the like can be cited.
  • the uplink setting information includes the uplink transmission power offset value (P0 in equation (1) or an additional offset value) set for each reception point for adjustment of the uplink transmission power. May be.
  • the receiving unit 103 receives uplink data (PUSCH), control signal (PUCCH), or reference signal (DMRS, SRS) transmitted from the terminal 300.
  • PUSCH uplink data
  • PUCCH control signal
  • DMRS reference signal
  • the inter-base station IF 201 transfers reception data (PUSCH) from the terminal 300 input from the receiving unit 203 to the macro base station 100.
  • the receiving unit 203 receives uplink signals such as data (PUSCH) and reference signals (DMRS, SRS) from the terminal 300 via the antenna.
  • PUSCH data
  • DMRS reference signals
  • the reception unit 301 transmits a signal including uplink report conditions or uplink transmission power control information (information of a reception point (CSI-RS) used as a path loss reference) to the macro base station 100 or the pico base station 200.
  • the received signal is output to the control unit 302.
  • the control unit 302 specifies a CSI-RS used for path loss measurement based on uplink transmission power control information (including CSI-RS information used as a path loss reference) input from the reception unit 301.
  • the control unit 302 instructs the measurement unit 303 with information indicating the specified CSI-RS.
  • Measurer 303 measures received power (for example, RSRP) for each of the plurality of CSI-RSs using the plurality of CSI-RSs shown in the CSI-RS candidate list, as in the first embodiment. In addition, the measurement unit 303 determines whether or not the measured received power satisfies a report condition for uplink or a report condition for downlink. When path loss is included as a report condition for uplink (when path loss is compared with a threshold value), measurement section 303 has information on measured received power (RSRP) and CSI-RS transmission power (from base station 100). The path loss (for example, PL shown in the equation (1)) is calculated using the notified information).
  • RSRP measured received power
  • CSI-RS transmission power from base station 100
  • the measuring unit 303 When the measured received power (or path loss) satisfies the reporting condition, the measuring unit 303 relates to the CSI-RS (CSI-RS resource identifier) corresponding to the received power and CSI-RS including information indicating the received power. Information is output to the transmission unit 304.
  • the measurement unit 303 includes information indicating which of the reporting conditions for the uplink and the reporting conditions for the downlink is satisfied in the information regarding the CSI-RS.
  • the measurement unit 303 uses the specific CSI-RS indicated in the uplink transmission power control information (CSI-RS information used as a path loss reference) instructed by the control unit 302 to perform uplink transmission power control. Calculate path loss.
  • FIG. 17 is a flowchart showing a processing flow of the macro base station 100 (represented as eNB) and the terminal 300 (represented as UE).
  • the same processes as those in the first embodiment (FIG. 8) are denoted by the same reference numerals, and the description thereof is omitted because it is duplicated.
  • the macro base station 100 notifies the terminal 300 of the reception power (for example, RSRP) measurement method and the “report condition (Event)” of the reception power measurement result (not shown).
  • the macro base station 100 has two report conditions: a report condition for downlink transmission point selection (report condition for DL) and a report condition for uplink reception point selection (UL report condition).
  • the terminal 300 is notified of the type of reporting condition. For example, as a UL reporting condition, when the path loss falls below a predetermined threshold pl_add (UL) (condition for adding a reception point), or when the path loss exceeds a predetermined threshold pl_remove (UL) (reception point deletion) May be used.
  • the macro base station 100 includes CSI-RS transmission power information for calculating path loss for uplink in the CSI-RS candidate list.
  • the CSI-RS transmission power information indicates, for example, CSI-RS transmission power at each reception point.
  • the measurement unit 303 of the terminal 300 performs RSRP measurement using CSI-RS based on the CSI-RS candidate list notified in ST 101a and the received power measurement method notified from the macro base station 100. That is, in FIG. 17, the measurement unit 303 performs six types of CSI-RSs (that is, six transmission points (receptions) based on CSI-RS-configurations of CSI-RS 1 to 6 shown in the CSI-RS candidate list. Measure RSRP for point)). In addition, the measurement unit 303 determines whether the measured RSRP satisfies the reporting condition. In FIG.
  • the RSRP of CSI-RS 1 and CSI-RS 2 exceeds the threshold Th_add (DL) of the reporting condition for DL, and CSI-RS
  • the RSRP of 3 is below the UL reporting condition threshold pl_add (UL).
  • terminal 300 uses the CSI-RS candidate number satisfying the reporting condition among the plurality of CSI-RS candidates indicated in the CSI-RS candidate list, the measurement result of CSI-RS satisfying the reporting condition, and for DL Alternatively, information indicating which report condition for UL is satisfied is reported to the macro base station 100.
  • terminal 300 has information indicating that the DL reporting conditions are satisfied (“DL” in FIG. 17), CSI-RS candidate numbers that satisfy the DL reporting conditions (in FIG. 17, CSI-RSSI1 and CSI- RS 2) and CSI-RS measurement results (value 1 and value 2 in FIG. 17) that satisfy the DL reporting condition are reported to the macro base station 100.
  • FIG. 17 shows information indicating that the DL reporting conditions are satisfied (“DL” in FIG. 17)
  • CSI-RS candidate numbers that satisfy the DL reporting conditions in FIG. 17, CSI-RSSI1 and CSI- RS 2
  • CSI-RS measurement results value 1 and value 2 in FIG. 17
  • terminal 300 has information indicating that the UL reporting condition is satisfied (“UL” in FIG. 17), a CSI-RS candidate number that satisfies the UL reporting condition (CSI-RSC3 in FIG. 17). ) And the CSI-RS measurement result (value 3 in FIG. 17) that satisfies the UL reporting condition is reported to the macro base station 100.
  • Macro base station 100 performs transmission point selection (DL-oriented processing) and reception point selection (UL-oriented processing) based on information received from terminal 300 in ST102a.
  • DL-oriented processing transmission point selection
  • UL-oriented processing reception point selection
  • Macro base station 100 selects or changes the uplink reception point of terminal 300 based on the uplink-related information reported from terminal 300 in ST102a.
  • the control unit 101 of the macro base station 100 determines that the path loss for the reception point using CSI-RS 3 in the terminal 300 is smaller than other reception points. Therefore, the control unit 101 determines a reception point for the terminal 300 as a reception point using CSI-RS 3.
  • the macro base station 100 notifies the terminal 300 of transmission power control setting information (power control config) and uplink resource setting information (UL resource config) regarding the determined reception point.
  • the macro base station 100 sets the CSI-RS identifier (CSI-RS) as the transmission power control setting information, for example, as CSI-RS information for path loss calculation used in the terminal 300 when performing uplink transmission power control. Information notified in the RS candidate list).
  • CSI-RS CSI-RS identifier
  • the macro base station 100 for example, PUSCH, RS (DMRS, SRS), resource setting information for PUCCH (information such as frequency / sequence, ID information used as a random seed, etc.) as uplink resource setting information, Alternatively, an uplink transmission power offset value (P0 in equation (1) or an additional offset value set) set for each reception point for adjustment of uplink transmission power is notified.
  • PUSCH PUSCH
  • RS DMRS, SRS
  • resource setting information for PUCCH information such as frequency / sequence, ID information used as a random seed, etc.
  • P0 in equation (1) or an additional offset value set set for each reception point for adjustment of uplink transmission power is notified.
  • terminal 300 changes the setting of uplink transmission power control according to the setting information notified from macro base station 100 in ST401, and PUSCH (data), RS (DMRS, SRS), PUCCH according to the changed setting.
  • An uplink signal such as (control information) is transmitted.
  • the reception unit 103 uses the terminal 300 to measure the path loss (third reception) of each base station measured using CSI-RS from a plurality of base stations (transmission points or reception points).
  • the control unit 101 receives a specific CSI-RS (that is, the CSI of the base station as the reception point of the terminal 300) based on the information regarding the CSI-RS corresponding to the path loss that satisfies the uplink reporting condition.
  • measurement section 303 uses a CSI-RS from a plurality of base stations (transmission points or reception points) indicated in the CSI-RS candidate list notified from macro base station 100 to use the base station (CSI- The path loss (third reception quality) for each of the RSs is measured, and the transmission unit 304 satisfies a reporting condition (predetermined condition) regarding the uplink among the plurality of CSI-RSs (third reception quality).
  • At least one CSI-RS information (third information) corresponding to the CSI-RS
  • the reception unit 301 receives a CSI-RS corresponding to a path loss that satisfies a report condition related to the uplink among the plurality of CSI-RSs.
  • Information on at least one specific CSI-RS (UL config. Fourth information) determined using the information on is received.
  • the CSI-RS candidate list is used not only for selection of transmission points in the downlink but also for selection of reception points in the uplink. That is, in the present embodiment, macro base station 100 and terminal 300 commonly use the same CSI-RS candidate list in selection of a transmission point in the downlink and selection of a reception point in the uplink. By doing so, the amount of information required for notification of information on the reception point can be reduced.
  • the information on the CSI-RS that satisfies the uplink reporting condition is similar to the information on the CSI-RS that satisfies the downlink reporting condition described in the first embodiment.
  • An identifier indicating a CSI-RS corresponding to a path loss that satisfies or a path loss measurement result that satisfies an uplink reporting condition is included. That is, the reception quality measurement result (for example, reception power or path loss that satisfies the report condition) is reported from the terminal 300 to the macro base station 100 using a common format for the uplink and the downlink. Thereby, an increase in the number of formats of signaling between the terminal 300 and the macro base station 100 can be prevented, and a simple system can be constructed.
  • macro base station 100 determines the reception point that has determined the CSI-RS identifier (CSI-RS index) included in the CSI-RS candidate list that has been notified to terminal 300 in advance.
  • the terminal 300 is notified as information to be shown (for example, UL config).
  • terminal 300 identifies a reception point based on the CSI-RS identifier (CSI-RS index) notified from macro base station 100, and CSI corresponding to the reception point from the CSI-RS candidate list.
  • CSI-RS index CSI-RS index
  • terminal 300 measures RSRP in advance using the CSI-RS indicated in the CSI-RS candidate list. For this reason, terminal 300 can obtain RSRP with sufficiently long averaging even immediately after notification of a change in reception point. Therefore, according to the present embodiment, terminal 300 can perform transmission power control using a highly accurate path loss immediately after notification of a change in reception point.
  • the “UL reporting condition” is not limited to the case where a path loss is used.
  • a case where “RSRP + ⁇ ” is greater than or equal to a predetermined threshold (or less) may be used as the “UL reporting condition”.
  • the signal transmitted by the terminal 300 in which the received power of the signal from the pico base station 200 is 13 dB lower than the received power of the signal from the macro base station 100 is transmitted between the macro base station 100 and the pico base. This is because the station 200 receives signals with the same power (provided that the propagation attenuation characteristics of both base stations are the same). For this reason, in the “UL reporting condition”, an offset ⁇ is added to the received power (RSRP) of the pico base station 200. Thereby, terminal 300 can determine whether or not the “UL reporting condition” is satisfied for each base station (macro base station 100 and pico base station 200) using the received power (RSRP).
  • RSRP received power
  • the macro base station 100 notifies the terminal 300 of a CSI-RS candidate list including the offset value ( ⁇ ) for each reception point.
  • the value obtained by subtracting the offset value ( ⁇ ) from the transmission power value calculated using the path loss from the macro base station 100 when the uplink transmission power control of the terminal 300 is performed is represented by the pico base station.
  • a transmission power value of 200 may be set.
  • the reception quality (the third reception quality) used for the “UL reporting condition” is the reception power (the first reception quality) measured using the CSI-RS from each transmission point.
  • the reception quality (path loss, RSRP + ⁇ , etc.) calculated using RSRP may be used.
  • a reception point is selected using a downlink signal (CSI-RS).
  • macro base station 100 may select a reception point using an uplink signal (for example, SRS (reference signal for sounding)).
  • SRS reference signal for sounding
  • the macro base station 100 notifies the selected reception point using the CSI-RS identifier in the CSI-RS candidate list, so that overhead associated with notification of reception point information is provided as in the present embodiment. Can be suppressed.
  • a plurality of report conditions having different uses may be set.
  • the path loss (or RSRP + ⁇ ) may be calculated using the average RSRP between the antennas, and the RSRP of each antenna may be calculated.
  • the path loss (or RSRP + ⁇ ) may be calculated using the sum.
  • the transmission point is switched to transmit a signal from a transmission point located in the vicinity of the terminal 300.
  • the uplink an operation in which only the macro base station 100 is received (or reception in all base stations) and the reception point is not switched is also conceivable. Or the operation which switches a receiving point only by an uplink is also considered. Therefore, the macro base station 100 can determine whether each transmission point / reception point (CSI-RS) is an RSRP report target for downlink, an RSRP report target for uplink, or an RSRP report target for both uplink and downlink. You may notify the terminal 300 of the information which shows whether there exists. Information indicating this RSRP report target may be explicitly notified.
  • CSI-RS transmission point / reception point
  • the CSI-RS having the maximum transmission power information of each CSI-RS notified in the CSI-RS candidate list may be excluded from the RSRP report for uplink.
  • the transmission power information of CSI-RS is the maximum value
  • the calculated path loss is a large value, so it is not selected as a reception point, so there is no problem even if the CSI-RS is not subject to reporting.
  • the CSI-RS having the minimum offset (CSI-RS individual offset) to be added to RSRP may be excluded from the RSRP report for downlink.
  • the offset is the minimum value, it becomes equal to or greater than the threshold value of the reporting condition (the reporting condition is not satisfied), and the reception point is rarely selected.
  • the operation when the “maximum value” of the transmission power information or the “minimum value” of the offset is set may be explicitly set or may be operated implicitly. As a result, it is possible to cope with each operation mode of CoMP on the downlink only, CoMP on the uplink only, or CoMP on both the uplink and downlink.
  • the RSRP report target for each CSI-RS that is, transmission point / reception point
  • the downlink RSRP report target and the uplink RSRP for each terminal UE. You may notify the report object and the RSRP report object for both uplink and downlink, respectively.
  • the terminal when one transmission point has a plurality of antenna ports, the terminal transmits CSI-RSs transmitted from different antenna ports of each transmission point based on the CSI-RS candidate list.
  • the average value (simple average, weighted average, median, etc.) of the measurement results used may be reported to the macro base station. Since only one measurement result indicating the average value of the measurement results of each antenna port is reported, the amount of information required for reporting is reduced. In addition, it is possible to improve the measurement accuracy of the reception quality by averaging the measurement results at a plurality of antenna ports included in the transmission point.
  • the terminal can perform measurement using CSI-RS transmitted from one antenna port or CSI ⁇ transmitted from a limited number of antenna ports. You may report the average value of the measurement result using RS to a macro base station. In this case, since the resources to be measured can be limited to the minimum necessary, the amount of processing at the terminal can be reduced.
  • the reception quality measured by the terminal using CSI-RS is not limited to reception power, and for example, RSRP, RSRQ, SINR, SLNR, or the like may be used.
  • the measurement result exceeds the threshold A (or Th_add) as the report condition for the reception power measurement result using the CSI-RS, the measurement result falls below the threshold B (or Th_remove).
  • the report condition of the reception power measurement result using CSI-RS is not limited to these, for example, the report condition (Event) of the measurement for mobility control (for example, “3GPP TS36.331 v10.1.0”) May be used.
  • the report condition of the received power measurement result using CSI-RS may be set in consideration of factors other than the radio wave environment such as the propagation path state. For example, a condition for using more transmission points for a user terminal that pays a high fee may be set as a report condition.
  • each transmission point may transmit CSI-RS with different resources. That is, in a place far away or separated by a wall or the like, different transmission points may transmit CSI-RS using the same resource.
  • the CSI-RS configuration used by transmission points in cells with different cell IDs may be included in the CSI-RS candidate list.
  • cell ID information may be included in each CSI-RS configuration in the CSI-RS candidate list.
  • one CSI-RS configuration may be set for a plurality of transmission points.
  • one CSI-RS configuration may be set as a CSI-RS of four antenna ports, which is a combination of the two antenna ports of the transmission point 1 and the two antenna ports of the transmission point 2. In this case, since one CSI measurement result is reported for the CSI-RS of the four antenna ports, the amount of report information is reduced.
  • the case where the CSI-RS is used has been described.
  • a signal or a channel that can be transmitted from each transmission point using different resources may be used instead of the CSI-RS.
  • PSS / SSS Primary ⁇ Synchronization Signal / Secondary Synchronization Signal
  • PSS / SSS configuration information (such as a scrambling sequence) is notified from the macro base station to the terminal.
  • the CRS may be transmitted only from a macro base station (HPN), for example.
  • HPN macro base station
  • the pico base station may be configured with only a radio amplifying unit and an antenna such as RRH (Remote Radio Radio Head), or a baseband processing unit is provided like a normal base station. Also good.
  • RRH Remote Radio Radio Head
  • the terminal may report all CSI-RS measurement results to the macro base station.
  • the macro base station may determine the CSI-RS (transmission point) that is the CSI measurement target from among all the reported CSI-RSs.
  • the information indicating the CSI-RS candidate list of each cell or carrier is included in the measurement object for measurement using the CRS of Rel. May be. Thereby, a simple system can be constructed by reusing existing signaling.
  • the measurement result is A case has been described in which the threshold B (or Th_remove) is exceeded, or the measurement result exceeds the CSI-RS measurement result currently designated as a CSI-RS measurement target by C [dB].
  • the second reporting condition “when the measurement result falls below the threshold value B (or Th_remove)” can be further divided into two reporting conditions.
  • the first reporting condition is a method of reporting the first reception quality when the measurement result using the CSI-RS set in the CCL falls below the threshold B.
  • the second reporting condition is the measurement of CSI-RS included in the first reception quality already reported to the base station, such as the first reporting condition “when the measurement result exceeds the threshold A (or Th_add)”
  • the base station is set as the CML to be included in the second information or the measurement result of any of the CSI-RS candidates to be set falls below the threshold B, Since the first reception quality is reported, the number of reports can be reduced.
  • the CSI-RS reporting that the terminal has fallen below a specific threshold may be removed from the list of CSI-RSs that are subject to the second reporting condition.
  • the specific threshold value may be the value of threshold A, the value of threshold B, or may be set separately.
  • reception quality reporting methods can be considered when the above reporting conditions are satisfied.
  • the terminal reports all CSI-RS measurement results in the CSI-RS candidate list when the above reporting condition is satisfied.
  • the base station can obtain a more recent CSI-RS measurement result for all CSI-RSs in the candidate list, so that more appropriate CML can be set.
  • the terminal reports only the CSI-RS measurement result exceeding a specific threshold to the base station as the first reception quality.
  • the specific threshold value may be the value of threshold A, the value of threshold B, or may be set separately.
  • the terminal uses the first reception quality reported in the first reporting condition “when the measurement result exceeds the threshold A (or Th_add)”.
  • the specific threshold value may be the value of threshold A, the value of threshold B, or may be set separately. In this way, the base station can determine which CSI-RS is appropriate as a candidate for CML, and can reduce the size of the report message of the CSI-RS measurement result.
  • the terminal uses the first reception quality reported in the first reporting condition “when the measurement result exceeds the threshold A (or Th_add)”. Report all CSI-RS measurement results of the included CSI-RS measurement results. By doing in this way, the measurement result of each CSI-RS already held by the base station can be updated.
  • the fifth reporting method is a method of reporting only the CSI-RS measurement result that satisfies the reporting condition when the above reporting condition is satisfied. By doing so, the message size of the report can be minimized.
  • the CRS is set for each cell, and users in the cell use a common CRS.
  • CSI-RS may be cell-specific or transmission point (TP) -specific, that is, all users in the cell may use a common CSI-RS setting, or may be user-specific.
  • TP transmission point
  • CSI-RS can be set user-specific, and the CSI-RS received for each user may be different.
  • a CSI-RS may be transmitted from a plurality of TPs using the same resource to a user using a CoMP transmission method that performs coordinated transmission from a plurality of TPs.
  • a user using the CoMP transmission method uses CSI-RS transmitted from the plurality of TPs using the same resource, while other users use CSI-RS transmitted from one TP.
  • CSI-RS transmitted from the plurality of TPs using the same resource
  • other users use CSI-RS transmitted from one TP.
  • by setting the CSI-RS of a congested TP only to a limited user it is possible to prevent a decrease in throughput of a user connected to the TP.
  • the reception power measurement result is reported to the macro base station, but may be reported via another node such as an LPN or a pico base station.
  • the terminal simply transmits report data to another node such as an LPN or pico base station.
  • the macro base station and the pico base station may use different carrier frequencies, or may use different combinations of carrier frequencies.
  • the macro base station may use the carrier frequency of f1
  • the pico base station may use the carrier frequency of f2
  • the macro base station uses two carrier frequencies of f1 and f2
  • the pico base station uses one of f2.
  • a carrier frequency may be used.
  • f1 that is, between macro base stations
  • f2 that is, pico base
  • a report of a received power measurement result using CSI-RS and a handover (or mobility management) based on the result may be performed.
  • the terminal since an appropriate reception power measurement result can be obtained at each frequency, the terminal can be connected to a cell having higher reception quality.
  • the terminal may communicate using both f1 and f2 as carrier-aggregation. In this case, since the terminal can communicate while being connected to a base station (or cell) having good reception quality at f1 and f2, high throughput can be realized.
  • extension carrier may be called new carrier type or additional carrier type.
  • Extension carrier may be defined as a carrier to which PBCH or PDCCH is not transmitted.
  • An antenna port refers to a logical antenna composed of one or more physical antennas. That is, the antenna port does not necessarily indicate one physical antenna, but may indicate an array antenna composed of a plurality of antennas.
  • 3GPP LTE it is not specified how many physical antennas an antenna port is composed of, but it is specified as a minimum unit in which a base station can transmit different reference signals (Reference signal).
  • the antenna port may be defined as a minimum unit for multiplying the weight of a precoding vector (Precoding vector).
  • each functional block used in the description of each of the above embodiments is typically realized as an LSI which is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
  • the name used here is LSI, but it may also be called IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • the present invention is useful as one capable of selecting an appropriate transmission point while reducing the overhead of CSI reporting.

Abstract

 CSI報告のオーバーヘッドを低減しつつ、適切な送信ポイントを選択することができる端末。測定部(303)は、複数の送信ポイントからの複数の参照信号を用いて、複数の参照信号のそれぞれに対する第1の受信品質を測定し、受信部(301)は、複数の参照信号のうち、少なくとも一つの特定の参照信号に関する第1の情報を受信し、測定部(303)は、第1の情報に基づいて、特定の参照信号を用いて、第2の受信品質を測定し、送信部(304)は、所定の条件を満たす第1の受信品質、および、第2の受信品質を報告する。

Description

端末、送信装置、受信品質報告方法および受信方法
 本発明は、端末、送信装置、受信品質報告方法および受信方法に関する。
 3GPP-LTE(3rd Generation Partnership Project Radio Access Network Long Term Evolution、以下、LTEという)のRelease 8(以下、Rel.8という)では、下りリンクの通信方式としてOFDMA(Orthogonal Frequency Division Multiple Access)が採用され、上りリンクの通信方式としてSC-FDMA(Single Carrier Frequency Division Multiple Access)が採用されている。
 Rel.8の下りリンクでは、データ信号(PDSCH)を復調するための参照信号(リファレンス信号)として、Cell specific Reference Signal(以下、CRSという)が用いられる。CRSは、セル内共通の参照信号として、セルIDに依存した時間・周波数リソースで送信され、セルの全てのエリアをカバーするように送信される。また、CRSは、全てのサブフレームで送信される。さらに、CRSは、リンクアダプテーション、および、セル選択などの移動管理(Mobility Management)向けの測定のためにも使用される。すなわち、端末(又はUE(User Equipment)と呼ぶ)は、自機が接続しているセル(自セル)および隣接セルのCRSを用いて、受信電力(RSRP:Reference Signal Reception Power)または受信品質(RSRQ:Reference Signal Reception Quality)の測定を行う。そして、端末は、例えば、隣接セルのRSRPが自セルのRSRPよりも3dB高い場合等、所定の基準を満たす場合、当該隣接セルのセルIDおよびRSRPを報告する。このとき、隣接セルのセルIDに関する情報が報知されている場合、端末は、そのセルIDを用いてセルの検出を行うことができる(例えば、非特許文献1参照)。
 一方、LTE(Rel.8)をさらに進めたLTE-Advanced(以下、「LTE-A」または「Release 10(Rel.10)」という)では、下りリンクのMIMO(Multiple Input Multiple Output)送信の拡張として、DMRS(DeModulation Reference Signal又は「UE specific Reference Signal」と呼ぶ)を用いたデータ送信がサポートされている。セル全体に向けて送信されるCRSに対して、DMRSは、データが割り当てられた端末向けに送信されるため、Precodingによるビーム形成が可能であり、高スループットのデータ伝送が可能である(例えば、非特許文献2、3、4参照)。Rel.10において、DMRSを用いた送信は送信モード9が設定された端末向けに用いることができる。
 また、リンクアダプテーションまたはスケジューリングに用いられるCSI(Channel State Information)はCSI-RSを用いて測定される。CSI-RSは、各アンテナ(アンテナポート)から異なるリソース(時間、周波数又はコード)で送信される。例えば、CSI-RSは通常10サブフレーム(10ms)程度の間隔で送信される。また、端末でCSI測定及び報告対象とすべきCSI-RSのリソース情報は、基地局(又はeNBと呼ぶ)から端末(UE)へ通知される。なお、CSIには、受信品質(SINR)あるいは達成可能なデータレートを示すCQI(Channel Quality Indicator)および最適なPrecoding Matrixを示すPMI(Precoding Matrix Indicator)が含まれる。
 また、Rel.10の次のReleaseであるRelease 11(以下、Rel.11という)では、カバーエリアの大きさが異なる複数の基地局を用いたヘテロジニアスネットワーク(Heterogeneous Network)におけるCoMP(Coordinated Multi Point transmission and reception)が検討されている。ヘテロジニアスネットワークは、マクロ基地局(HPN(High Power Node))とピコ基地局(LPN(Low Power Node)又はRRH(Remote Radio Head))とから構成されるネットワークである。CoMPでは、複数ノード(送信ポイント(TP:Transmission Point))が協調して端末に対してデータの送受信を行う。ここで、従来のシステムでは、各送信ポイントは異なるセルIDを有するセルを形成していた。よって、セルIDに依存した時間・周波数リソース配置で送信されるCRSは、セル毎に異なる配置で送信される。これに伴い、データ(PDSCH)も異なるリソース配置となるので、複数の送信ポイントからの協調送信は限定的となる。
 そこで、Rel.11では、同一セルIDを用いたCoMP運用が検討されている(例えば非特許文献5参照)。同一セルIDを用いたCoMP運用とは、マクロセル(HPN(マクロ基地局、Macro eNB)がカバーするセル)内の複数のLPN(ピコ基地局)に対して、HPNのセルIDと同一のセルIDを付与する運用である(例えば図1参照)。このような運用では、同一マクロセル内のHPNおよびLPN(以降、送信ポイントと記載)のセルIDが同一であるため、セルIDに依存したリソースで送信されるCRSは、複数の送信ポイントにおいて同一リソースで送信される。よって、端末では、各送信ポイントから送信されたCRSがSFN(Single Frequency Network)合成されて受信される。また、CRSを用いて復調される各端末向けのデータ(PDSCH)及び制御チャネル(PDCCH)は、CRSと同一の位相関係を維持するために全送信ポイントから同一の時間・周波数リソースで送信される。そこで、Rel.11では、UE specific Reference Signal(例えばDMRS)を用いて異なる送信ポイントから同一の時間・周波数リソースで異なる端末向けのPDSCHを送信することが検討されている。
3GPP TS 36.331 V10.1.0, "Radio Resource Control (RRC) (Release 10)," March 2011 3GPP TS 36.211 V10.1.0, "Physical Channels and Modulation (Release 10)," March 2011 3GPP TS 36.212 V10.1.0, "Multiplexing and channel coding (Release 10)," March 2011 3GPP TS 36.213 V10.1.0, "Physical layer procedures (Release 10)," March 2011 3GPP TSG RAN WG1 meeting, R1-110649, Feb. 2011
 同一セルIDを用いたCoMP運用では、各端末に対して、各端末の近傍に位置する送信ポイントのみからデータ送信を行うことにより、同一の時間・周波数リソースを離れた送信ポイントで異なるユーザ向けリソースとして再利用することができる。これにより、高効率かつ高スループットのシステム運用が可能となる。
 しかしながら、従来のシステムでは、各端末に対して適切な送信ポイントを選択するためには、各送信ポイントからそれぞれ異なるCSI-RS(各送信ポイント間で互いに異なるリソースに配置されたCSI-RS)を送信する必要がある(例えば図2参照)。すなわち、端末に対して、CSI測定・報告対象のCSI-RSとして、同一セルIDを有するエリア内で使用されている全てのCSI-RSリソースを通知し、CSI測定・報告させる必要がある。これにより、基地局は、端末から報告される、全ての送信ポイントのCSI-RSに対するCSI測定結果に基づいて、適切な送信ポイントを決定することができる。
 しかしながら、CSIはデータ送信のリンクアダプテーションに用いられ、瞬時のフェージング変動に追従するために比較的短い間隔で報告される必要がある。また、端末はCSIとして品質良好なPMI及び周波数(サブバンド)毎のCQIの情報を報告するので、CSI測定結果のデータ量は比較的大きい。よって、端末が全ての送信ポイントのCSI-RSに対するCSI測定結果を報告すると、CSI測定結果の情報量が膨大となり、上りリンクのデータスループット劣化を招く恐れがある。また、端末でのCSI測定(CQI及びPMIの算出)のための計算量が多くなり、端末のcomplexityが増大する。
 本発明の目的は、CSI報告のオーバーヘッドを低減しつつ、適切な送信ポイントを選択することができる端末、送信装置、受信品質報告方法および受信方法を提供することである。
 本発明の一態様の端末は、複数の送信ポイントからの複数の参照信号を用いて、前記複数の参照信号のそれぞれに対する第1の受信品質を測定する第1の測定手段と、前記複数の参照信号のうち、少なくとも一つの特定の参照信号に関する第1の情報を受信する受信手段と、前記第1の情報に基づいて、前記特定の参照信号を用いて、第2の受信品質を測定する第2の測定手段と、所定の条件を満たす前記第1の受信品質、及び、前記第2の受信品質を報告する送信手段と、を具備する構成を採る。
 本発明の一態様の送信装置は、参照信号を端末に送信する送信手段と、前記端末で複数の参照信号を用いて測定された、前記複数の参照信号のそれぞれに対する第1の受信品質であって、所定の条件を満たす前記第1の受信品質を受信する受信手段と、前記複数の参照信号のうち、第2の受信品質の測定対象である少なくとも一つの特定の参照信号を決定する決定手段と、を具備し、前記受信手段は、前記端末で前記特定の参照信号を用いて測定された、前記第2の受信品質を受信する。
 本発明の一態様の受信品質報告方法は、複数の送信ポイントからの複数の参照信号を用いて、前記複数の参照信号のそれぞれに対する第1の受信品質を測定し、前記複数の参照信号のうち、少なくとも一つの特定の参照信号に関する第1の情報を受信し、前記第1の情報に基づいて、前記特定の参照信号を用いて、第2の受信品質を測定し、所定の条件を満たす前記第1の受信品質、及び、前記第2の受信品質を報告する。
 本発明の一態様の受信方法は、参照信号を端末に送信し、前記端末で複数の送信ポイントからの参照信号を用いて測定された、前記複数の参照信号のそれぞれに対する第1の受信品質であって、所定の条件を満たす前記第1の受信品質を受信し、前記複数の参照信号のうち、第2の受信品質の測定対象である少なくとも一つの特定の参照信号を決定し、前記端末で前記特定の参照信号を用いて測定された、前記第2の受信品質を受信する。
 本発明によれば、CSI報告のオーバーヘッドを低減しつつ、適切な送信ポイントを選択することができる。
各マクロセル内で同一セルIDを用いたCoMP運用を示す図 各送信ポイントで異なるCSI-RSリソースを用いたCoMP運用を示す図 本発明の実施の形態1に係るマクロ基地局の主要構成図 本発明の実施の形態1に係る端末の主要構成図 本発明の実施の形態1に係るマクロ基地局の構成を示すブロック図 本発明の実施の形態1に係るピコ基地局の構成を示すブロック図 本発明の実施の形態1に係る端末の構成を示すブロック図 本発明の実施の形態1に係るマクロ基地局および端末の処理を示す図 本発明の実施の形態1に係るCSI-RS configurationとマッピングパターンとの対応付けの一例を示す図 本発明の実施の形態1に係る1サブフレーム内のCSI-RSの配置例を示す図 本発明の実施の形態2に係る非送信CSI-RSリソースの一例を示す図 本発明の実施の形態2に係るCSI-RSの設定例を示す図 本発明の実施の形態3に係るマクロ基地局および端末の処理を示す図(報告方法1) 本発明の実施の形態3に係るマクロ基地局および端末の処理を示す図(報告方法2) 本発明の実施の形態4に係るExtension carrierの一例を示す図 本発明の実施の形態5に係るCoMP運用を示す図 本発明の実施の形態5に係るマクロ基地局および端末の処理を示す図
 以下、本発明の実施の形態について図面を参照して詳細に説明する。なお、実施の形態において、同一の構成要素には同一の符号を付し、その説明は重複するので省略する。
 [実施の形態1]
 [通信システムの概要]
 本実施の形態に係る通信システムは、マクロ基地局(HPN、Macro eNB)100と、ピコ基地局(LPN、RRH)200と、端末300とを有する。例えば、マクロ基地局100は、本実施の形態に係る送信装置に対応する。マクロ基地局100、および、マクロ基地局100のカバーエリア内に配置された複数のピコ基地局200は端末300に対して協調して信号を送信する。
 マクロ基地局100と、1つまたは複数のピコ基地局200とは光ファイバ等の低遅延かつ大容量のインタフェースで接続されている。
 また、マクロ基地局100がカバーするセル(マクロセル)内において、マクロ基地局100およびピコ基地局200には同一のセルIDが設定される。つまり、マクロ基地局100がカバーするマクロセル内の送信ポイントには同一のセルIDが設定される。よって、マクロ基地局100およびピコ基地局200は、セルIDに依存した同一のリソース(時間、周波数又はコード)でCRSを送信する。
 一方、マクロ基地局100がカバーするマクロセル内の各送信ポイントは、互いに異なるconfiguration(リソース、アンテナポート等の設定)のCSI-RSを送信する。
 また、以下の説明では、各送信ポイントは1つまたは複数のアンテナポートを有する。
 また、以下の説明では、端末300は、CSI-RSを用いて、2種類の受信品質を測定する。一方の受信品質(第1の受信品質)は、例えば、受信電力、RSRP、RSRQ、SINR、SLNR(Signal to Leakage plus Noise Ratio)等である。他方の受信電力(第2の受信電力)は、CSI(CQIおよびPMI)である。ここで、第1の受信品質の測定に要する処理量は、第2の受信品質の測定に要する処理量よりも小さい。また、第1の受信品質の通知に要する情報量は、第2の受信品質の測定に要する情報量よりも小さい。
 図3は、本実施の形態に係るマクロ基地局100の主要構成図である。マクロ基地局100において、送信部102が、参照信号(CSI-RS)を端末300に送信し、受信部103が、端末300で複数の参照信号を用いて測定された、複数の参照信号のそれぞれに対する第1の受信品質(受信電力)であって、所定の条件を満たす第1の受信品質を受信し、制御部101が、複数の参照信号のうち、第2の受信品質(CSI)の測定対象である少なくとも一つの特定の参照信号を決定する。また、受信部103は、端末300で特定の参照信号を用いて測定された、第2の受信品質を受信する。
 図4は、本実施の形態に係る端末300の主要構成図である。端末300において、測定部303が、複数の送信ポイントからの複数の参照信号(CSI-RS)を用いて、複数の参照信号のそれぞれに対する第1の受信品質(受信電力)を測定し、受信部301が、複数の参照信号のうち、少なくとも一つの特定の参照信号に関する第1の情報(測定リスト)を受信し、測定部303が、第1の情報に基づいて、特定の参照信号を用いて、第2の受信品質(CSI)を測定し、送信部304が、所定の条件を満たす第1の受信品質、および、第2の受信品質を報告する。
 [マクロ基地局100の構成]
 図5は、本実施の形態に係るマクロ基地局100の構成を示すブロック図である。
 図5に示すマクロ基地局100において、制御部101は、各端末300がCSI測定・報告対象とするCSI-RS(つまり、送信ポイント)の制御、および、ピコ基地局200(RRH)の制御を行う。
 具体的には、制御部101は、マクロ基地局100がカバーするマクロセル内の送信ポイント(マクロ基地局100(HPN)およびピコ基地局200(LPN))において使用しているCSI-RSのconfiguration(設定情報)を示すリストを、「CSI-RS候補リスト(CSI-RS candidate list:CCL)」として作成する。つまり、「CSI-RS候補リスト」は複数のCSI-RSを示す。なお、上りリンクの受信信号電力等から端末300の位置検出ができる場合、制御部101は、端末300の近傍に位置する送信ポイント(HPN/LPN)のCSI-RSのconfigurationのみをCSI-RS候補リストに含めてもよい。
 また、制御部101は、端末300がCSI-RSを用いて測定する受信電力(RSRP)報告を行うか否かの基準である所定の条件(以下、報告条件という)を設定する。「報告条件」として、例えば、受信電力(RSRP)が予め設定された閾値以上であること等が挙げられる。すなわち、端末300では、報告条件を満たす場合に受信電力測定結果の報告が行われる。
 また、制御部101は、受信部103または基地局間IF104から入力される端末300からの信号(受信信号)に含まれる、CSI-RSに関する情報(上記報告条件を満たしたCSI-RSリソースの識別子、および、受信電力測定結果)を用いて、CSI測定・報告の対象とするCSI-RSのconfiguration(すなわち、送信ポイント)を決定する。すなわち、制御部101は、複数のCSI-RSのうち、CSIの測定対象である少なくとも1つの特定のCSI-RSを決定する。制御部101は、決定したCSI-RSのconfiguration(少なくとも1つの特定のCSI-RS)を、「CSI-RS測定リスト(CSI-RS measurement list:CML)」として生成する。つまり、「CSI-RS測定リスト」は、上記特定のCSI-RSを示す情報であって、CSI-RS候補リストに示される複数のCSI-RSのうち、報告条件を満たす受信電力に対応する、少なくとも一つのCSI-RSに関する情報を用いて決定される。ここで、CSI-RS測定リストとして、CSI-RSの時間・周波数リソース等の情報を含めてもよいし、CSI-RS候補リストで付与されるCSI-RSリソースの識別子(つまり、CSI-RS候補リストの何番目のCSI-RS configurationであるかを示す情報)を用いてもよい。後者のCSI-RSリソースの識別子を用いる場合は、CSI-RS測定リストの通知情報量を削減可能である。
 また、制御部101は、受信部103または基地局間IF104から入力される端末300からの信号(受信信号)に含まれる、CSI測定結果(CQIおよびPMI)を用いて、DMRSおよびデータ(PDSCH)の送信に用いる送信ポイントに対する送信パラメータを決定する。つまり、制御部101は、CSI測定結果に基づいてPDSCHのスケジューリングを行う。送信ポイントに対する送信パラメータとしては、例えば、周波数リソース、Precoding Matrix、送信電力等が挙げられる。この送信パラメータは、送信部102および基地局間IF(インタフェース)104に出力される。
 また、制御部101は、CSI-RS、CRS、DMRS、PDCCH等の送信に用いる送信パラメータ(セルID、アンテナポート、時間・周波数リソース等)のconfigurationを設定する。なお、マクロ基地局100のセル(マクロセル)内では、セルIDは、送信ポイント間で同一であり、セルIDに依存する、CRSのリソース(CRSリソース)は、送信ポイント間で共通のリソースである。一方、CSI-RSは、送信ポイント毎に異なるconfigurationとする。このconfigurationは、送信部102および基地局間IF(インタフェース)104に出力される。
 以上のように制御部101で生成された「CSI-RS候補リスト」および「報告条件」は、送信部102を介して各端末300へ送信される。これらの情報は、報知情報として送信されてもよく、端末個別のRRC制御情報として通知されてもよい。または、CSI-RS候補リストは、MACヘッダに含めてもよい。また、「CSI-RS測定リスト」は、送信部102を介して各端末300へ送信される。この情報は、端末個別の制御情報として送信されてもよく、RRC制御情報として通知されてもよく、MACヘッダまたはPDCCHに含めてもよい。
 送信部102は、制御部101から入力される情報(「CSI-RS候補リスト」、「報告条件」および「CSI-RS測定リスト」を含む)に対して送信処理を施し、送信処理後の信号をアンテナを介して送信する。また、送信部102は、制御部101から入力される送信パラメータ(configuration)に従って、CSI-RS、CRS、DMRS、端末300へのデータ信号(PDSCH)および制御信号(PDCCH)を送信する。
 受信部103は、アンテナを介して受信した信号に対して受信処理を施し、得られた受信信号を制御部101に出力する。受信信号には、端末300からのデータ信号、CSI-RSに関する情報(上記「報告条件を満たしたCSI-RSの情報」)、CSI測定結果(CQIおよびPMI)等が含まれる。
 基地局間IF104は、ピコ基地局200との間で通信を行う。例えば、基地局間IF104は、ピコ基地局200から端末300への送信に用いる送信パラメータおよび送信データの転送、および、ピコ基地局200が受信した端末300からの受信データ(報告条件を満たしたCSI-RSの情報、および、CSI測定結果を含む)の受信等を行う。
 [ピコ基地局200の構成]
 図6は、本実施の形態に係るピコ基地局200の構成を示すブロック図である。
 図6に示すピコ基地局200において、基地局間IF201は、マクロ基地局100(図5)との間で通信を行う。例えば、基地局間IF201は、端末300への送信に用いる送信パラメータおよび送信データを、マクロ基地局100から受け取り、受け取った送信パラメータおよび送信データを送信部202に出力する。また、基地局間IF201は、受信部203から入力される、端末300からの受信データ(CSI-RSの測定結果に関する情報(報告条件を満たしたCSI-RSの情報)およびCSI測定結果(CQIおよびPMI)を含む)を、マクロ基地局100へ転送する。
 送信部202は、基地局間IF201から入力される送信パラメータに従って、端末300宛ての送信データをアンテナを介して送信する。
 受信部203は、アンテナを介して端末300からの信号を受信する。端末300からの信号には、ユーザデータ、CSI-RSの測定結果に関する情報(所定の条件を満たしたCSI-RSの情報)、CSI測定結果(CQIおよびPMI)等が含まれる。
 [端末300の構成]
 図7は、本実施の形態に係る端末300の構成を示すブロック図である。端末300は、マクロ基地局100(図5)またはピコ基地局200(図6)と通信を行う。
 図7に示す端末300において、受信部301は、アンテナを介して受信した信号に対して受信処理を施し、受信信号を得る。受信信号には、マクロ基地局100(HPN)またはピコ基地局200(LPN)から送信される、CRS、CSI-RS、DMRS、データ信号(PDSCH)、制御信号(PDCCH)等が含まれる。さらに、受信信号には、マクロ基地局100から送信される、「CSI-RS候補リスト」、「報告条件」または、「CSI-RS測定リスト」が含まれる。
 なお、受信部301は、制御部302から指示されるリソースでデータ信号(PDSCH)、または、CSI-RSを抽出する。受信部301は、CSI-RSを測定部303に出力する。また、受信部301は、受信信号から「CSI-RS候補リスト」、「報告条件」および「CSI-RS測定リスト」を抽出し、抽出した情報を制御部302に出力する。
 制御部302は、受信部301から入力される、「CSI-RS候補リスト」または「CSI-RS測定リスト」に基づいて、CSI-RSのリソース情報(どのリソース(時間、周波数、コード)にCSI-RSが含まれているかを示す情報)を、受信部301に指示する。また、制御部302は、例えば、制御情報(PDCCH)に基づいて、下りリンクのデータ信号(PDSCH)のリソース情報(どのリソースのユーザデータを受信すべきかを示す情報)を、受信部301に指示する。また、制御部302は、例えば、制御情報(PDCCH)に基づいて、上りリンクのデータ信号(PUSCH)のリソース情報(どのリソースでユーザデータを送信すべきかを示す情報)を、送信部304に指示する。
 また、制御部302は、受信部301から入力される「報告条件(CSI-RS候補リストに基づく受信電力測定結果の報告を行うか否かの基準となる条件)」を測定部303に出力する。
 測定部303は、受信部301から入力されるCSI-RSを用いて、CSI-RS候補リストに基づく受信電力(例えば、RSRP)測定を行う。すなわち、測定部303は、複数の送信ポイントからの複数のCSI-RS(CSI-RS候補リストに示される複数のCSI-RS)を用いて、複数のCSI-RSのそれぞれに対する受信電力を測定する。受信電力の測定結果は送信ポイントの選択に用いられる。測定部303は、比較的長い間(例えば、数百ms)平均した受信電力を測定する。換言すると、測定部303は、比較的低頻度で周期的に受信電力を測定する。
 また、測定部303は、測定した受信電力が「報告条件(例えば、受信電力が予め設定された閾値以上)」を満たすか否かを判断する。測定部303は、測定した受信電力が報告条件を満たす場合、当該受信電力に対応するCSI-RS(CSI-RSのリソースの識別子)および受信電力を示す情報を含むCSI-RSに関する情報を送信部304に出力する。これにより、CSI-RS候補リストに示される複数のCSI-RSのうち、報告条件を満たす受信電力に対応する、少なくとも一つのCSI-RSに関する情報が基地局100へ送信される。当該CSI-RSに関する情報には、例えば、報告条件を満たす受信電力に対応する当該CSI-RSを示す識別子、報告条件を満たす受信電力測定結果等が含まれる。
 また、測定部303は、受信部301から入力されるCSI-RSを用いて、CSI-RS測定リストに基づくCSI(CQIおよびPMI)測定を行う。すなわち、測定部303は、CSI-RS測定リストによって示される特定のCSI-RSを用いてCSIを測定する。CSIは実際のデータ送信におけるスケジューリング、リンクアダプテーション(MCS制御)およびPrecoding制御に用いられる。測定部303は、フェージング変動の小さい、比較的短い間の平均したCSI(またはサブフレーム毎のCSI)を測定する。換言すると、測定部303は、比較的高頻度で周期的にCSIを測定する。なお、CSIは、最大スループットを実現可能なPrecoding Matrixを示すPMIと、所定の誤り率で伝送可能なデータレートあるいはMCSを示すCQIとから構成される。
 つまり、測定部303は、CSI-RSを用いて、CSI-RS候補リストに基づいて複数の送信ポイントの第1の受信品質(受信電力等)を測定するとともに、CSI-RS測定リストに基づいて特定の送信ポイントの第2の受信品質(CSI)を測定する。以上のように測定部303で測定された受信電力の測定結果(CSI-RSに関する情報)、または、CSIの測定結果は、送信部304に出力される。
 送信部304は、ユーザデータ(PUSCH)、CSI-RSに関する情報(所定の条件を満たしたCSI-RSの情報)またはCSI測定結果(CQIおよびPMI)を含む送信信号に対して送信処理を施し、送信処理後の信号をアンテナを介して送信する。なお、送信部304は、制御部302からの指示に従って、ユーザデータを送信する。このようにして、CSI-RSに関する情報(所定の条件を満たしたCSI-RSの情報)またはCSI測定結果(CQIおよびPMI)は、直接、または、端末300が接続するピコ基地局200を介して、マクロ基地局100へ報告される。
 [マクロ基地局100及び端末300の動作]
 以上の構成を有するマクロ基地局100及び端末300の動作について説明する。
 図8は、マクロ基地局100(eNBと表す)および端末300(UEと表す)の処理の流れを示すフロー図である。
 図8において、ステップ(以下、「ST」という)101では、マクロ基地局100は、制御部101で設定されたCSI-RS候補リスト(CCL)を端末300へ通知する。CSI-RS候補リストには、マクロ基地局100のセル(マクロセル)内の送信ポイント分(つまり、CSI-RS候補分)のconfigurationが含まれる。各CSI-RS候補の識別子として、例えば、CSI-RS候補番号(または、CSI-RS configuration ID)が付与される。例えば、図8では、CSI-RS候補リスト内には、CSI-RS候補番号1~6(CSI-RS 1~6)が含まれる。
 また、CSI-RSに関するconfiguration(CSI-RS configuration)には、(1)アンテナポート数(Antenna Ports Count)、(2)サブフレーム内の時間・周波数リソース位置(resourceConfig)、(3)CSI-RSの送信周期と時間オフセット(subframeConfig)、(4)優先選択のための測定結果に対するオフセット(CSI-RS individual offset)等が含まれる。
 すなわち、CSI-RS候補リストには、上記(1)-(4)の情報から成るCSI-RS configurationが送信ポイント分(CSI-RS候補分)含まれる。
 例えば、図9に示すように、CSI-RS configuration(RRCパラメータ名:resourceConfig)と時間・周波数領域におけるマッピングパターンとが対応付けられているとする。この場合、「resourceConfig」は、図9に示すように、CSI-RS configuration IDを通知することで特定される。例えば、図9に示すマッピングパターン(Pattern0~4)は、図10に示す物理リソースのマッピング(Pattern0~4)にそれぞれ対応する。
 また、「subframeConfig」は、例えば、所定の周期及び時間オフセット(サブフレームオフセット)の組合せによって定義される。例えば、周期が10ms(10サブフレーム)で時間オフセットが0(0サブフレーム)であれば、サブフレーム#0から10msの周期がCSI-RSに設定される。
 また、「CSI-RS individual offset」は、各CSI-RS候補の測定結果に付与されるオフセットである。これにより、例えば、混雑している送信ポイントのCSI-RSではオフセットを低くすることで当該送信ポイントが選択されにくくする等の制御が可能となる。なお、「CSI-RS individual offset」は、mobility measurementと同様のものが用いられてもよい。
 また、マクロ基地局100は、受信電力の測定方法、および、受信電力測定結果の「報告条件(Event)」を端末300へ通知する(図示せず)。受信電力の測定方法として、RSRP、RSRQ、受信SIR(Signal to Interference Ratio)、受信SLNR(Signal to Leakage plus Noise Ratio:所望信号電力対他セルの端末への与干渉電力(+雑音電力)比)等が挙げられる。
 また、「報告条件(Event)」として、測定結果が予め設定された閾値Aを上回った場合、測定結果が予め設定された閾値Bを下回った場合、または、測定結果が現在CSI測定対象(つまり,CSI-RS測定リスト)として指定されているCSI-RSの測定結果を予め設定された閾値C[dB]だけ上回った場合等が挙げられる。端末300は、CCLに基づいてCSI-RSを用いた受信電力が閾値を上回った場合、第1の受信品質を基地局100に送信する。このため、基地局100は、端末300に第2の受信品質を測定させるCSI-RS候補(第2の情報:CML)として考慮すべき送信ポイントを適切なタイミングで知ることができる。また、端末300は、CCLに基づいてCSI-RSを用いた受信電力が閾値を下回った場合に、第1の受信品質を基地局100に送信する。このため、基地局100は、端末300に第2の受信品質を測定させるCSI-RS候補(第2の情報:CML)として考慮しなくてよい送信ポイントを適切なタイミングで知ることができる。その結果、基地局100は、端末300に適したCSI-RS候補を適切なタイミングで更新することができるため、適切にスケジューリングすることができる。その結果、端末300のスループットを向上することができ、かつ、周波数リソースの有効活用を行うことができる。また、端末300が使用候補とされている送信ポイントの受信品質を、他の送信ポイントの受信品質が上回った場合に第1の受信品質を送信することで、基地局100は、より的確に第2の受信品質を測定するCSI-RS候補を決定することができる。図8は、測定方法としてRSRPを用いて、報告条件として、閾値Th_addを上回った場合、および、閾値Th_removeを下回った場合とした場合の一例を示す。
 端末300の測定部303は、ST101で通知されたCSI-RS候補リスト、および、マクロ基地局100から通知された受信電力の測定方法に基づいて、CSI-RSを用いたRSRP測定を行う。すなわち、図8では、測定部303は、CSI-RS候補リストに示されるCSI-RS 1~6のCSI-RS configurationに基づいて、6種類のCSI-RS(つまり、6個の送信ポイント)に対するRSRPを測定する。また、測定部303は、測定したRSRPが報告条件を満たすか否かを判断する。図8では、CSI-RS候補リスト(CSI-RS 1~6)のうち、CSI-RS 1およびCSI-RS 2のRSRPが閾値Th_addを上回っている。
 ST102では、端末300は、CSI-RS候補リストに示される複数のCSI-RS候補のうち、報告条件を満たすRSRPに対応する少なくとも一つのCSI-RS候補(つまり、送信ポイント)に関する情報をマクロ基地局100へ報告(送信)する。具体的には、端末300は、報告条件を満たすCSI-RS候補番号(図8ではCSI-RS 1およびCSI-RS 2)および、報告条件を満たすCSI-RSの測定結果(図8ではvalue 1およびvalue 2)をマクロ基地局100へ報告する。すなわち、マクロ基地局100は、端末300で複数のCSI-RSを用いて測定された、複数のCSI-RSのそれぞれに対する受信電力測定結果であって、報告条件を満たす受信電力測定結果を受信する。なお、端末300は、RSRP(受信電力)報告の際、CSI-RS候補番号のみを報告してもよい。
 マクロ基地局100の制御部101は、ST102において端末300から受け取った情報(CSI-RS候補番号およびRSRP測定結果)に基づいて、CSI-RS候補リストに示される複数のCSI-RS候補のうち、CSI測定に用いるCSI-RS(CSIの測定対象である特定のCSI-RS)を少なくとも一つ決定する。図8では、制御部101は、CSI-RS 1およびCSI-RS 2を用いている送信ポイントの近傍に端末が存在していると判断する。または、図8では、制御部101は、端末300においてCSI-RS 1およびCSI-RS 2を用いている送信ポイントからの受信品質が他の送信ポイントよりも高いと判断する。そこで、制御部101は、CSI測定・報告対象のCSI-RSを、CSI-RS 1およびCSI-RS 2に決定する。換言すると、制御部101は、CSI測定・報告対象の送信ポイントを、CSI-RS 1を用いている送信ポイントおよびCSI-RS 2を用いている送信ポイントに決定する。
 または、制御部101は、CSI-RS 1およびCSI-RS 2の何れか一方をCSI測定・報告対象の特定のCSI-RSとして決定してもよい。この場合、制御部101は、例えば、CSI-RS 1およびCSI-RS 2のうち、RSRPの値(value 1およびvalue 2)が大きい方を、CSI測定・報告対象のCSI-RSとして決定してもよい。
 ST103では、マクロ基地局100は、CSI測定・報告対象として決定されたCSI-RS 1およびCSI-RS 2を含むCSI-RS測定リスト(CML)を生成し、CSI-RS測定リストを端末300へ通知する。
 端末300の測定部303は、ST103においてCSI-RS測定リストを受け取ると、CSI-RS測定リストに示される特定のCSI-RS(CSI-RS 1およびCSI-RS 2)を用いて、CSI(CQIおよびPMI)を測定する。つまり、測定部303は、マクロ基地局100で報告条件を満たすRSRPに対応する送信ポイントの情報を用いて決定された特定の送信ポイントからのCSI-RSを用いて、CSIを測定する。
 ST104では、端末300は、測定されたCSIをマクロ基地局100へ報告する(CSIフィードバック)。すなわち、マクロ基地局100は、端末300でCSI-RS測定リストに示される特定のCSI-RSを用いて測定されたCSIを受信する。マクロ基地局100は、CSIフィードバックに基づいて、データ信号(PDSCH)の送信方法、または、各送信ポイントでのPrecoding Matrixを設定する(CSIフィードバックに基づくPDSCHスケジューリング)。これにより、各送信ポイントからデータおよびDMRSが送信される。
 なお、図8に示すように、CSI-RSを用いたRSRP測定は、CSI-RSを用いたCSI測定と比較して、長い間隔(低頻度)で実施される。また、CSIは、周期的に報告されてもよく(periodic CSI reporting)、トリガ等の報告要求に応じて報告されてもよい(aperiodic CSI reporting)。
 次いで、図8において、端末300(測定部303)でのCSI-RS候補リストに基づくRSRP測定の結果、報告条件を満たす新たな測定結果が得られた場合について説明する。
 ST105において、端末300は、ST102と同様、報告条件を満たすRSRPに対応するCSI-RS候補(送信ポイント)に関する情報(CSI-RS候補番号および測定結果)をマクロ基地局100へ報告する。図8では、CSI-RS 1のRSRPが閾値Th_removeを下回り、CSI-RS 3のRSRPが閾値Th_addを上回っている。よって、ST105では、端末300は、CSI-RS 1およびCSI-RS 3をマクロ基地局100へ報告する。なお、RSRPが閾値Th_removeを下回ったCSI-RSの候補について測定結果の報告は不要である。そこで、図8では、端末300は、報告情報量削減のために、CSI-RS 1について、測定結果(value 1)の代わりに、RSRPが閾値Th_removeを下回った旨を示す情報(remove)を報告する。
 ST106では、マクロ基地局100の制御部101は、ST103と同様にして、CSI-RS測定リスト(CML)を生成し、CSI-RS測定リストを端末300へ通知する。この際、制御部101は、ST105で受け取った情報に基づいて、CSI測定・報告対象を再設定する。例えば、図8では、制御部101は、ST104においてCSI測定・報告対象であったCSI-RS 1およびCSI-RS 2のうち、CSI-RS 1をCSI測定・報告対象から外し、CSI-RS 3をCSI測定・報告対象に新たに加える。よって、ST106では、マクロ基地局100は、CSI-RS 1およびCSI-RS 2を含むCSI-RS測定リストを端末300へ報告する。
 これにより、端末300の測定部303は、CSI-RS測定リストに示されるCSI-RS(CSI-RS 2およびCSI-RS 3)を用いて、CSI(CQIおよびPMI)を測定する。よって、ST107では、CSI-RS 1およびCSI-RS 2に対するCSIフィードバックが行われる。
 以降、マクロ基地局100および端末300では、同様の処理が継続して実施される。
 このようにして、マクロ基地局100では、送信部102が、CSI-RSを端末300に送信し、制御部101が、端末300で複数の基地局(送信ポイント)からのCSI-RSを用いて測定された、各基地局の受信電力(第1の受信品質)に基づいて、複数の基地局のうち、CSI(第2の品質)の測定対象である特定の基地局を決定し、受信部103が、端末300で上記特定の基地局からのCSI-RSを用いて測定された、上記特定の基地局に対するCSIを受信する。また、端末300では、測定部303が、マクロ基地局100のカバーエリア内の複数の基地局(送信ポイント)からのCSI-RSを用いて、各基地局に対する受信電力(第1の受信品質)を測定し、測定部303が、複数の基地局のうち、各基地局の受信電力(第1の受信品質)に基づいて決定される特定の基地局のCSI-RSを用いて、上記特定の基地局に対するCSI(第2の受信品質)を測定し、測定されたCSIをマクロ基地局100へ報告する。
 すなわち、端末300は、CSI測定・報告を行う前に、受信電力(RSRP等)の測定を行い、受信電力がより高い送信ポイントが使用しているCSI-RSをマクロ基地局100へ報告する。これにより、マクロ基地局100は、マクロセル内に存在する複数の送信ポイントに設定された複数のCSI-RSの中から、CSI測定・報告対象のCSI-RSを一部に絞って設定することができる。
 ここで、図8に示すように、受信電力(RSRP)の報告周期は、CSIの報告周期と比較して長い。また、受信電力の測定処理は、CQIおよびPMI等の詳細な情報を含むCSIの測定処理と比較して処理量が小さい。さらに、受信電力の通知に要する情報量(ビット数等)は、CSIの通知に要する情報量と比較して小さい。すなわち、端末300が報告条件を満たすCSI-RS候補(送信ポイント)の情報(CSI-RS候補番号、受信電力等)をCSI測定前にマクロ基地局100へ報告することによるフィードバック量の増加よりも、CSI測定・報告対象のCSI-RS(送信ポイント)を一部に絞ることによるフィードバック量の低減の方が、システムに与える影響はより大きくなる。つまり、端末300が全ての送信ポイントのCSI測定結果を報告する場合と比較して、端末300が所定の条件を満たすCSI-RS候補をマクロ基地局100へ事前に報告して、CSI測定対象の送信ポイント(基地局)を限定することによるフィードバック量削減の効果は大きい。
 こうすることで、CSI報告のオーバーヘッドを低減しつつ、適切な送信ポイントを選択することができる。
 さらに、本実施の形態では、マクロ基地局100は、CSI-RS候補リストを端末300へ予め通知する。これにより、端末300は、予め、各送信ポイントに対する送受信タイミングの測定および設定を行うことができる。これにより、端末300は、ユーザデータの送信に用いる送信ポイントが変更される際、変更先の送信ポイントとの同期のための遅延を発生させることなく、変更先の送信ポイントを利用することができる。
 なお、本実施の形態において、端末300は、CSI-RSを用いた受信電力(RSRP)測定を継続して行い、測定結果が報告条件を満たす場合に、報告条件を満たすCSI-RS候補(送信ポイント)の情報をマクロ基地局100へ報告する場合について説明した(例えば、図8参照)。しかし、本実施の形態において、報告条件を満たすCSI-RS候補の報告は、これに限らず、次のようにしてもよい。以下、受信電力の報告方法1および2について説明する。
 <報告方法1>
 マクロ基地局100は端末300に対して、現在使用している送信ポイントからの信号の受信品質またはスループットが悪くなったと判断した場合に、受信電力の測定結果の報告要求を端末300に通知する。報告要求には、測定方法または報告対象のCSI-RS番号を含めてもよい。端末300はマクロ基地局100から報告要求を受信した場合に、指定されたCSI-RS(指定が無い場合には全てのCSI-RS)の測定結果を報告する。これにより、端末300は、送信ポイントの変更が必要になりそうになったときにのみCSI-RSの受信電力測定及び報告を行うので、端末300における消費電力の低減及び報告情報量の低減が可能となる。また、マクロ基地局100は、各送信ポイントの混雑状況等から送信ポイントを変更したいタイミングで端末300にCSI-RSの受信測定結果を報告させることができる。また、端末300は、報告条件を設定されると、CSI-RSを用いて測定した受信品質が得られるとすぐに第1の受信品質を基地局100に送信するため、基地局100はすぐに第2の情報を更新することができる。その結果、基地局100は、端末300にスケジューリングをする送信ポイントをより柔軟に切り替えることができる。
 なお、端末300は、本実施の形態と同様、報告要求を受信した場合に、報告条件を満たしたCSI-RS(送信ポイント)の情報(CSI-RS候補番号および測定結果)のみを報告してもよい。報告要求及び測定結果の報告は、RRCシグナリングでも実現可能である。ただし、報告要求及び測定結果の報告を、MACまたはPHYシグナリングにすることで、報告要求から測定結果の報告までの遅延の低減が可能となる。
 <報告方法2>
 端末300は、CSI-RS候補リストがマクロ基地局100から通知されると、CSI-RSの受信電力測定を行い、全てのCSI-RS(または指定されたCSI-RS)の測定結果を周期的にマクロ基地局100へ報告する。この際、報告周期はマクロ基地局100から別途通知される。これにより、マクロ基地局100は、継続的に端末300の状態(各送信ポイントからの受信品質)をモニタすることができる。
 [実施の形態2]
 Rel.10では、CSI-RSへの干渉低減を目的として、zeroTxPowerCSI-RS(非送信CSI-RS)が設定(configure)される。本実施の形態では、非送信CSI-RSを用いたCoMP運用を行う。
 例えば、図11は、各送信ポイントにおける1サブフレーム内のCSI-RSのマッピングパターンの一例を示す。図11では、送信ポイント1~3に対して、Pattern 0~2(図10参照)がそれぞれ設定されている。図11に示すように、送信ポイント1~3にそれぞれ設定されたCSI-RSのリソースを含むリソースが、zeroTxPowerCSI-RS(非送信CSI-RS)のリソースに設定されている。図11に示すように、非送信CSI-RSのリソースには、データ信号(PDSCH)は配置されない。また、図11に示すように、非送信CSI-RSのリソースでは、各送信ポイントから送信されるCSI-RSが互いに異なるリソースにそれぞれ割り当てられている。また、Rel.10では、非送信CSI-RSのリソースは、所定の周期のタイミング(例えば、5ms周期)で設定される(図11では図示せず)。
 すなわち、図11に示すように、非送信CSI-RSを構成するリソース群において、或る送信ポイントのCSI-RSが割り当てられたリソースでは、当該送信ポイントのCSI-RSのみが送信され、データ信号(PDSCH)および他の送信ポイントのCSI-RSが送信されない。例えば、図11に示す送信ポイント1では、非送信CSI-RSのリソースのうち、送信ポイント1のCSI-RSに割り当てられたリソースでCSI-RSが送信される。一方、図11に示す送信ポイント1では、非送信CSI-RSのリソースのうち、送信ポイント1のCSI-RSに割り当てられたリソース以外のリソース(つまり、送信ポイント2および3のCSI-RSに割り当てられたリソース)ではデータが送信されない。他の送信ポイント2および3についても同様である。このように、或る送信ポイントのCSI-RSが割り当てられたリソースでは、他の送信ポイントから送信されるCSI-RSおよびデータが存在しないので、CSI-RSに対する干渉が軽減される。
 ここで、例えば、図11に示す送信ポイント1に接続している端末は、送信ポイント1のCSI-RS(CSI測定対象)のリソースでは、送信ポイント1から送信されるCSI-RSを受信する。一方で、図11に示す送信ポイント1に接続している端末は、非送信CSI-RSのリソースのうち、送信ポイント2(または送信ポイント3)のCSI-RSのリソースでも、送信ポイント2(または送信ポイント3)から送信されるCSI-RSを受信することが可能である。つまり、端末は、zeroTxPowerCSI-RS(非送信CSI-RS)のリソースにおいて、CSI測定対象のCSI-RSのみでなく、他のCSI-RSを受信することができる。
 そこで、本実施の形態では、端末は、実施の形態1におけるCSI-RS候補リストの代わりに、非送信CSI-RS(zeroTxPowerCSI-RS)のリソースを用いて、複数の基地局(送信ポイント)から送信されるCSI-RSの受信電力を測定する。
 以下、本実施の形態に係るマクロ基地局100(図5)、ピコ基地局200(図6)および端末300(図7)について説明する。
 [マクロ基地局100の構成]
 マクロ基地局100において、制御部101は、実施の形態1の動作に加え、以下の処理を行う。ただし、制御部101は、CSI-RS候補リストを作成しない。
 制御部101は、マクロ基地局100がカバーするセル(マクロセル)内の送信ポイントで使用しているCSI-RSのリソースを含むリソース群を、非送信CSI-RS(zeroTxPowerCSI-RS)のリソースとして設定(configure)する。なお、制御部101は、制御対象端末300の近傍の送信ポイントに設定されたCSI-RSのリソースのみを含む非送信CSI-RSのリソースを設定してもよい。
 ここで、非送信CSI-RSのリソース情報(zeroTxPowerCSI-RS情報)は、例えば、(1)CSI-RSの周期と時間オフセット(1つのsubframeConfig)、および、(2)サブフレーム内の時間・周波数リソース位置(1つまたは複数のresourceConfig)で表される。なお、Rel.10では、zeroTxPowerCSI-RSに対して、周期と時間オフセット(subframe offset)の組み合わせは1つのみ設定(configure)可能である。すなわち、マクロセル内の各送信ポイントでzeroTxPowerCSI-RSのサブフレームは共有される。
 非送信CSI-RSのリソース情報は、RRCパラメータ(zeroTxPowerCSI-RS)で設定される。例えば、マクロ基地局100は、図9および図10のように予め設定されたCSI-RS configurationと物理リソースとのマッピング関係において、非送信CSI-RSに用いるCSI-RS configurationをビットマップで通知する。例えば、通知情報が[0 1 0 0 1]の場合、端末300では、図10に示すPattern0~4のうち、Pattern 1およびPattern 4のリソースを用いたCSI-RSが非送信CSI-RSとして設定される。
 また、制御部101は、マクロ基地局100がカバーするマクロセル内の各送信ポイントに設定されるCSI-RSの周期を、非送信CSI-RSの周期の整数倍(N倍)に設定する。
 また、制御部101は、非送信CSI-RSのリソースにおける受信電力測定において時間平均に用いるCSI-RSの周期(受信電力測定周期)を設定する。
 以上のように設定した非送信CSI-RSのリソース情報(zeroTxPowerCSI-RS情報)、および、受信電力測定周期は、送信部102を介して端末300へ通知される。また、非送信CSI-RSのリソース情報、受信電力測定周期、および、各送信ポイントに設定されるCSI-RSの周期(非送信CSI-RSの周期の整数倍)は、基地局間IF104を介して各送信ポイント(ピコ基地局200)へ通知される。なお、マクロ基地局100は、各送信ポイントに設定されるCSI-RSの周期を表す情報として、上記Nの値のみを通知してもよい。
 送信部102は、実施の形態1の動作に加え、以下の処理を行う。
 送信部102は、制御部101で設定された非送信CSI-RSのリソースにはデータ信号(PDSCH)を配置しない。また、送信部102は、非送信CSI-RSのリソースであっても、自機(マクロ基地局100)のCSI-RS configurationで指定されているリソースである場合には、当該リソースでCSI-RSを送信する。
 [ピコ基地局200の構成]
 本実施の形態に係るピコ基地局200において、送信部202は、実施の形態1の動作に加え、以下の処理を行う。送信部202は、マクロ基地局100で設定された非送信CSI-RSのリソースにはデータ信号(PDSCH)を配置しない。また、送信部202は、非送信CSI-RSのリソースであっても、自機(ピコ基地局200)のCSI-RS configurationで指定されているリソースである場合には、当該リソースでCSI-RSを送信する。
 [端末300の構成]
 受信部301は、実施の形態1の動作に加え、非送信CSI-RSのリソース情報、および、受信電力測定周期の情報を受信する。非送信CSI-RSのリソース情報は制御部302および測定部303に出力され、受信電力測定周期の情報は測定部303に出力される。
 制御部302は、実施の形態1の動作に加え、非送信CSI-RSのリソース情報に基づいて、受信電力測定の対象となるCSI-RSのリソース情報を受信部301に出力する。
 測定部303は、実施の形態1の動作に加え、非送信CSI-RSのリソース情報、および、受信電力測定周期の情報に基づいて、CSI-RSを用いた受信電力測定を行う。例えば、測定部303は、非送信CSI-RSとして設定されたresourceConfigで指定される、各サブフレーム内の時間・周波数リソースにおいて何れかの送信ポイントから送信されるCSI-RSを用いて、受信電力測定周期毎に受信電力を測定する。つまり、測定部303は、所定の周期のタイミング(subframeConfig)で設定される非送信CSI-RSのリソース群で複数の送信ポイントから送信されるCSI-RSを用いて、各基地局に対する受信電力を測定する。
 送信部304は、実施の形態1の動作に加え、CSI-RSを用いて測定された受信電力の報告の際、所定の条件(報告条件)を満たしたCSI-RS(送信ポイント)の情報として、zeroTxPowerCSI-RSのresourceConfig番号(つまり、何番目のresource configurationの非送信CSI-RSのリソースであるかを示す情報)に加え、オフセットの情報を含める。
 [マクロ基地局100および端末300の動作]
 図12は、上述した非送信CSI-RS(zeroTxPowerCSI-RS)の設定、各送信ポイントのCSI-RSの設定、および、端末300での受信電力測定周期の設定の一例を示す。
 図12では、非送信CSI-RSのリソースとして、resourceConfig=1、かつ、subframe Config=(周期=5ms、オフセット=0ms)が設定されている。すなわち、図12に示すように、非送信CSI-RSのリソースは、5ms毎に設定される。
 また、図12では、送信ポイント1のCSI-RSのリソースとして、resourceConfig=1、かつ、周期=10ms、オフセット=0msが設定されている。同様に、図12では、送信ポイント2のCSI-RSのリソースとして、resourceConfig=1、かつ、周期=10ms、オフセット=4msが設定されている。つまり、各送信ポイントに設定されるCSI-RSの周期(10ms)は、非送信CSI-RSの周期(5ms)の2倍(N=2)である。
 また、図12では、端末300での受信電力測定周期として、10msが設定されている。
 そこで、端末300の測定部303は、オフセット=0ms(例えばサブフレーム0)から10msの周期で、送信ポイント1から送信されるCSI-RSを用いて受信電力測定を行う。また、測定部303は、オフセット=4ms(例えばサブフレーム4)から10msの周期で、送信ポイント2から送信されるCSI-RSを用いて受信電力測定を行う。つまり、端末300は、図12において、サブフレーム0(オフセット=0ms)から10ms周期で取り出したCSI-RSを用いた受信電力測定と、サブフレーム4(オフセット=4ms)から10ms周期で取り出したCSI-RSを用いた受信電力測定との2種類の受信電力測定を行い、それぞれ時間平均を行う。
 このように、端末300は、非送信CSI-RSが設定された各リソースで、何れかの送信ポイントから送信されたCSI-RSを受信して、受信電力を測定する。つまり、本実施の形態では、非送信CSI-RS(zeroTxPowerCSI-RS)のリソース情報を、実施の形態1で用いたCSI-RS候補リスト(各送信ポイントに設定されるCSI-RSの情報)の代わりに用いる。
 これにより、実施の形態1と比較して、CSI-RS候補リストの通知が不要となるので、通知情報の情報量を低減できる。すなわち、Rel.10と比較して、新たな通知情報(IE:Information Element)の設定が不要となり、システムのcomplexityを低減することができ、かつ、基地局および端末のテスト工数を低減することができる。
 さらに、非送信CSI-RSのリソースにおいて、或る送信ポイントのCSI-RSが割り当てられたリソースでは、当該送信ポイントのCSI-RS以外の信号が送信されないので、端末300は、CSI-RSを用いた受信電力測定を高精度で行うことができる。
 また、図11に示すように、各送信ポイントが使用しているCSI-RSのリソースでは、データ信号(PDSCH)が非送信となる。このため、マクロセル内で端末300に対する送信ポイントが切り替わる毎に、リソースブロック内のデータ信号(PDSCH)の配置パターンを変更する必要がないので、端末300のcomplexityを低減することができる。
 なお、マクロ基地局100から端末300への通知情報の情報量低減のために、非送信CSI-RS(zero-TxPowerCSI-RS)の周期、および、subframe offsetは、1つのみ設定されることが望ましい。このとき、仮に、非送信CSI-RS(zero-TxPowerCSI-RS)のリソースを各送信ポイントのCSI-RSの測定対象リソースとすると、セル内の異なる送信ポイントのCSI-RSはすべて同一サブフレームで送信されることになる。この場合、データ信号(PDSCH)向けリソースが極端に少なくなり、スループット劣化を招く恐れがある。
 これに対して、本実施の形態では、マクロ基地局100は、各送信ポイントのCSI-RSの周期を非送信CSI-RS(zeroTxPowerCSI-RS)の周期の整数倍とし、かつ、送信ポイント間で異なるオフセットを設定する。さらに、マクロ基地局100は、非送信CSI-RS(zero-TxPowerCSI-RS)のリソース情報に加えて、受信電力測定に用いるサブフレームの周期を端末300に通知する。そして、端末300は通知された受信電力測定の周期で受信電力を測定する。これにより、各送信ポイントのCSI-RSを分散したサブフレームで送信することができる。これにより、各送信ポイントからのCSI-RSが或るサブフレームのみに集中することを防ぎ、データスループットの劣化を抑えることができる。
 また、端末300がマクロ基地局100に受信電力の測定結果を報告する際、報告条件を満たしたCSI-RSのresource config番号に加えて、受信電力の測定に用いたサブフレームオフセットの情報も報告する。これにより、マクロ基地局100は、報告条件を満たしたCSI-RSがどの送信ポイントのCSI-RSであるかを判断でき、端末300に対してCSI測定・報告対象のCSI-RSを適切に設定できる。
 このようにして、本実施の形態によれば、CSI報告のオーバーヘッドを低減しつつ、適切な送信ポイントを選択することができる。さらに、本実施の形態によれば、実施の形態1と比較して、CSI測定・報告に要する通知情報を低減することができる。
 なお、本実施の形態の動作と実施の形態1の動作とを状況に応じて切り替えてもよい。この場合、マクロ基地局100は、非送信CSI-RS(zeroTxPowerCSI-RS)をCSI-RS候補リストとして代用するか(本実施の形態を適用するか)、CSI-RS候補リストを新たに通知するか(実施の形態1を適用するか)、を選択し、端末300へ通知してもよい。例えば、通知情報の情報量を極力低減したい場合にはzeroTxPowerCSI-RSをCSI-RS候補リストとして代用する等、柔軟な運用が可能となる。
 また、本実施の形態では、非送信CSI-RS(zeroTxPowerCSI-RS)のリソースを、受信電力測定対象のCSI-RSのリソース(つまり、CSI-RS候補リスト)として設定する場合について説明した。しかし、本実施の形態において、非送信CSI-RS(zeroTxPowerCSI-RS)のリソースの一部のみを、受信電力測定対象のリソースとして設定してもよい。この場合、マクロ基地局100は、非送信CSI-RS(zeroTxPowerCSI-RS)のリソースのうち、どのresource configを受信電力測定対象とするかを示す情報を端末300に通知する。例えば、非送信CSI-RSリソースとして隣接セル(異なるセルID)で使用しているCSI-RSのリソースを含める場合、または、端末300の近傍の送信ポイントで使用しているCSI-RSのリソースのみを測定対象とする場合等、非送信CSI-RS(zeroTxPowerCSI-RS)のリソースと、受信電力測定対象のCSI-RSのリソースとが異なる場合に効果的である。
 また、本実施の形態では、非送信CSI-RS(zeroTxPowerCSI-RS)として、送信周期とサブフレームオフセットとからなる1つの情報のみが設定される場合について説明した。しかし、非送信CSI-RS(zeroTxPowerCSI-RS)の各リソースに対して、送信周期とサブフレームオフセットとからなる情報を通知してもよい。これにより、非送信CSI-RSを複数のサブフレームに分散して設定することが可能となり、1つのサブフレームでPDSCH向けのリソース量が減少することを防ぐことができる。
 [実施の形態3]
 本実施の形態では、マクロセル間(異なるセルIDのセル間)でハンドオーバした後における送信ポイントの選択方法について説明する。
 以下、本実施の形態に係るマクロ基地局100(図5)、ピコ基地局200(図6)および端末300(図7)について説明する。
 [マクロ基地局100の構成]
 マクロ基地局100において、制御部101は、実施の形態1の動作(マクロセル内の送信ポイント選択に関する動作)に加え、以下の処理(他セル内での送信ポイント選択に関する動作)を行う。
 制御部101は、他セル(隣接セル。つまり、マクロ基地局100のカバーエリア内の複数の送信ポイントとは異なるセルIDを持つ送信ポイント)を測定対象とするmeasurement(CRSを用いた受信電力測定)の設定を端末300毎に決定する。measurementの設定(measurement configuration:measConfig)としては、測定対象のキャリア周波数、セルIDの情報、測定方法(RSRP、RSRQ等)、measurement reportの報告条件等が挙げられる。measurementの設定(measConfig)は、送信部102を介して各端末300へ通知される。
 また、制御部101は、上記measurementの対象とした他セル内の各送信ポイント(つまり、measurementの対象とした他セルと同一のセルIDを持つ複数の送信ポイント)で使用されているCSI-RSのconfigurationを、他セルの「CSI-RS候補リスト」として生成する。他セルの「CSI-RS候補リスト」は送信部102を介して各端末300へ通知される。なお、制御部101は、設定対象端末300の近傍に位置する他セルの送信ポイントで使用されているCSI-RSのみを他セルの「CSI-RS候補リスト」に含めて、受信電力の測定対象として設定してもよい。
 また、制御部101は、受信部103または基地局間IF104を介して受信する各端末300からの測定結果の報告(measurement report。つまり、CRSを用いた受信電力測定結果)に基づいて、他セルへのハンドオーバを行うか否かを判断する。制御部101は、他セルへのハンドオーバを行う場合、ハンドオーバの実施に必要な情報を基地局間IF104に出力する。
 また、制御部101は、受信部103または基地局間IF104を介して受信する各端末300からの信号(受信信号)に含まれる、他セルのCSI-RSに関する情報(CSI-RSを用いた受信電力測定結果の報告を行うか否かの基準となる所定の条件(CSI-RSを用いた受信電力測定結果の報告条件)を満たしたCSI-RSリソースの識別子、および、受信電力測定結果)を用いて、他セルのCSI測定・報告の対象とするCSI-RSのconfiguration(すなわち、送信ポイント)を決定する。制御部101は、決定したCSI-RSのconfigurationを、他セルの「CSI-RS測定リスト」とする。
 なお、measurement対象である他セルと同一のセルIDを持つ複数の送信ポイントから送信されるCSI-RSは、送信ポイント毎に異なるリソースで送信され、CRSは、当該他セルのセルIDに基づいて決められるリソースで送信される。
 基地局間IF104は、制御部101から入力されるハンドオーバの情報を他の基地局へ通知し、他の基地局との間でハンドオーバに必要な情報のやり取りを行う。
 [端末300の構成]
 端末300において、測定部303は、受信部301を介して受信したmeasurementの設定(measConfig)に含まれる周波数、セルID等に従って、CRSを用いて受信電力を測定する。CRSを用いた受信電力の測定方法は、measurementの設定(measConfig)で指定された測定方法(RSRP、RSRQ等)である。また、測定部303は、CRSによる受信電力測定結果が、measurementの設定(measConfig)に含まれる報告条件を満たすか否かを判断する。CRSによる受信電力測定結果が報告条件を満たす場合、測定部303は、measurement対象である他のセルの情報(例えば、周波数、セルID等)、および、測定結果(CRSを用いた受信電力測定結果)を、送信部304を介してマクロ基地局100またはピコ基地局200へ送信する。
 また、測定部303は、他のセルのCRSによる受信電力測定結果がmeasurementの報告条件を満たす場合、さらに、当該他のセルのCSI-RS候補リストに示される複数のCSI-RSを用いて、複数のCSI-RSのそれぞれに対応する受信電力を測定する。そして、測定部303は、測定結果(CSI-RS番号、測定値等)を送信部304を介してマクロ基地局100またはピコ基地局200へ送信する。つまり、測定部303は、マクロ基地局100のカバーエリア外の他のマクロ基地局(他のセル)からのCRSを用いて測定された受信電力がmeasurementの報告条件を満たした場合、当該他のマクロ基地局のカバーエリア内の送信ポイント(他の基地局、および、他のマクロ基地局のカバーエリア内に配置された複数のピコ基地局)からのCSI-RSを用いて、他の基地局の各送信ポイントに対する受信電力を測定する。ここで、前述したように、CSI-RSは送信ポイント毎に異なるリソースで送信される。また、CRSは、マクロ基地局100のカバーエリア内の送信ポイントと、他のマクロ基地局のカバーエリア内の送信ポイントとで異なるリソースが使用され、各カバーエリア内の送信ポイントにおいて同一リソースで送信される(例えば図1参照)。なお、端末300は、CSI-RS候補リストに示されるCSI-RSのうち、測定値が上位(受信電力がより高い)CSI-RSの測定結果のみを報告してもよく、測定値が予め設定された基準値を満たすCSI-RSの測定結果のみを報告してもよい。このようにすることで、報告するCSI-RSの測定結果の数を削減することができるため、報告のためのメッセージサイズを小さくすることができる。
 [マクロ基地局100および端末300の動作]
 以上の構成を有するマクロ基地局100及び端末300の動作について説明する。以下では、端末300における、他セルの送信ポイントのCSI-RSを用いた受信電力測定結果の報告方法1および2について説明する。
 <報告方法1(図13)>
 図13は、マクロ基地局100(eNBと表す)および端末300(UEと表す)の処理の流れを示すフロー図である。
 図13において、ST201では、マクロ基地局100は、制御部101で設定されたmeasurement configuration(CRSを用いる受信電力測定のパラメータ(測定対象の他のセルのセルID、測定方法等))を端末300毎に設定し、通知する。この際、マクロ基地局100は、測定対象の他のセルについてのCSI-RS候補リスト(other cell CSI-RS candidate lists)も端末300へ通知する。
 端末300の測定部303は、ST201においてmeasurement configurationを受け取ると、CRSを用いた受信電力(例えば、RSRP)測定を行う。また、測定部303は、CRSを用いた測定結果が報告条件を満たすか否かを判断する。例えば、報告条件として、CRSを用いた測定結果が予め設定された閾値Th_crsを上回るか否かが判断される。CRSを用いた測定結果(図13では、Cell id 1のセルの測定結果)が閾値Th_crsを上回ると、測定部303は、当該セル(Cell id 1のセル)のCSI-RS候補リストに基づいて、CSI-RSを用いた受信電力(例えば、RSRP)測定を行う。
 CSI-RSを用いた受信電力(例えば、RSRP)測定が完了すると、ST202では、端末300は、CRSを用いた受信電力測定結果(measurementの報告条件を満たすcell id、測定値等)、および、CSI-RSを用いた受信電力測定結果(CSI-RS id、測定値等)を含むmeasurement reportをマクロ基地局100に報告する。
 ST203では、マクロ基地局100は、ST202において端末300から受け取ったmeasurement reportに基づいて、端末300にハンドオーバさせるか否かを判断する。マクロ基地局100は、端末300にハンドオーバさせる場合には、ハンドオーバ先の基地局との間でハンドオーバに必要な情報(端末情報、設定情報等)のやり取りを行うとともに、端末300に対して、ハンドオーバコマンド(Handover command)としてハンドオーバ指示およびハンドオーバ先の設定情報を通知する。
 ST204では、端末300は、ST203においてマクロ基地局100から受け取った設定情報に基づいて、ハンドオーバ先の基地局へRACHを送信する。
 ST205では、端末300のハンドオーバ先の基地局は、ST204において端末300からのRACHを検出すると、端末300に対してRACH responseを送信する。
 ST206では、端末300は、ST205においてハンドオーバ先の基地局からのRACH responseを受け取ると、RACH responseで指示された上りリソースでハンドオーバ完了メッセージ(HO complete)を送信する。
 このように、端末300は、CRSを用いた受信電力測定結果が報告条件を満たした後に、CSI-RS候補リストに基づくCSI-RSを用いた受信電力測定を開始する。つまり、端末300は、他のセル(ここではCell id 1のセル。送信ポイント)、および、当該セルと同一のセルIDを持つ複数の送信ポイントからの複数のCSI-RSを用いて測定した、複数のCSI-RSのそれぞれに対する受信電力(RSRP)を、measurementの報告条件を満たしたCRSの受信電力測定結果を報告するタイミングで報告する。このため、本実施の形態では、CSI-RSを用いた受信電力測定を常に行う場合と比較して、端末300での消費電力を低減することができる。
 また、端末300は、他のマクロ基地局のセル内の送信ポイントに対するCSI-RSを用いた受信電力測定結果を、measurementの報告条件を満たした受信電力測定結果(CRSを用いた受信電力測定結果)を報告するタイミングで報告する。つまり、端末300は、CRSを用いた受信電力測定結果と、CSI-RSを用いた受信電力測定結果とを同一メッセージ(図13ではmeasurement report)としてマクロ基地局100に報告する。これにより、各測定結果の報告に必要なヘッダ、CRC、または、当該メッセージの送信に対するACK/NACK等のオーバーヘッドを低減することができる。
 なお、ハンドオーバ先となり得る他のマクロ基地局でのCSI測定・報告対象を示すCSI-RS測定リスト(図13では図示せず)は、ハンドオーバコマンド(図13に示すST203)に含めてもよい。この場合、ハンドオーバ完了後にCSI-RS測定リストを追加で通知する必要がなくなり、遅延をさらに低減できる。
 <報告方法2>
 図14は、マクロ基地局100(eNBと表す)および端末300(UEと表す)の処理の流れを示すフロー図である。なお、図14において、報告方法1(図13)と同一の処理には同一の符号を付し、その説明は重複するので省略する。
 図14において、ST301では、CRSを用いた受信電力測定結果(図14では、Cell id 1のセルの測定結果)が予め設定された閾値Th_crsを上回ると、測定部303は、当該セルのCSI-RS候補リストに基づいて、CSI-RSを用いた受信電力(例えば、RSRP)測定を行うとともに、CRSを用いた受信電力測定結果を含むmeasurement reportをマクロ基地局100に報告する。
 ST302では、端末300は、ST205においてハンドオーバ先の基地局からのRACH responseを受け取ると、RACH responseで指示された上りリソースでハンドオーバ完了メッセージ(HO complete)を送信する。ここで、ハンドオーバ完了メッセージの中には、ハンドオーバ先の基地局(他のマクロ基地局)内の送信ポイントからのCSI-RSを用いた受信電力測定結果が含まれる。つまり、端末300は、他のマクロ基地局のカバーエリア内の送信ポイントに対するCSI-RSを用いた受信電力測定結果を、マクロ基地局100から他のマクロ基地局へのハンドオーバ完了メッセージを送信するタイミングで報告する。
 すなわち、報告方法2では、CSI-RSを用いた受信電力測定の完了を待たずに、CRSを用いた受信電力測定結果(measurement report)がマクロ基地局100へ報告される点が報告方法1と異なる。すなわち、端末300は、他のセル(ここではCell id 1のセル。送信ポイント)、および、当該他のセルと同一のセルIDを持つ複数の送信ポイントからの複数のCSI-RSを用いて測定した、複数のCSI-RSのそれぞれに対する受信電力(RSRP)を、当該他のセルへのハンドオーバ完了メッセージを報告するタイミングで送信する。これにより、CRSを用いた受信電力測定結果(measurement report)の遅延が低減されるので、マクロ基地局100は、報告方法1と比較して、ハンドオーバの判断をより早いタイミングで行うことができる。これは、特に伝搬路の時間変動が早い場合に効果的である。
 また、報告方法1ではmeasurement reportの中にCSI-RSを用いた受信電力測定結果を含ませたのに対して(図13に示すST202)、報告方法2ではハンドオーバ完了メッセージの中にCSI-RSを用いた受信電力測定結果を含ませた(図14に示すST302)。つまり、報告方法2では、報告方法1と比較して、CSI-RSを用いた受信電力測定結果の報告は、遅いタイミングとなる。しかし、CSI-RSを用いた受信電力測定結果は、ハンドオーバ先のセルでの送信ポイントの選択に用いられる。つまり、CSI-RSを用いた受信電力測定結果は、ハンドオーバ完了後に使用される。このため、CSI-RSを用いた受信電力測定結果がハンドオーバ完了メッセージに含まれることは問題にならない。さらに、CRSを用いた受信電力測定結果が報告条件を満たしたからといって必ずしも端末300がハンドオーバするわけではない。よって、報告方法1では、ハンドオーバしなかった場合にはCSI-RSを用いた受信電力測定結果の報告が無駄になるのに対して、報告方法2では、ハンドオーバ完了後にCSI-RSを用いた受信電力測定結果が報告されるので、当該報告が無駄になることはない。
 以上、他セルの送信ポイントのCSI-RSを用いた受信電力測定結果の報告方法1および2について説明した。
 このようにして、マクロ基地局100は、他セルの送信ポイントが使用しているCSI-RSの情報(CSI-RS候補リスト)を端末300に通知する。また、端末300は、他セルの送信ポイントが使用しているCSI-RSの受信電力を測定し、マクロ基地局100へ報告する。これにより、マクロ基地局100は、端末300が他セルへハンドオーバした後のデータ送信に用いるべき適切な送信ポイントを、遅延を低減しつつ選択することができる。すなわち、本実施の形態では、ハンドオーバが完了してからCSI-RS候補リストを通知して測定結果を報告させる場合と比較して、ハンドオーバ後のデータ送信開始までの遅延を低減できる。
 [実施の形態4]
 Rel.10では、単位バンド(Component Carrier:CC)を幾つか束ねた帯域を用いた通信、所謂Carrier aggregation(CA)がサポートされる。「単位バンド」は、例えば、最大20MHzの幅を持つ帯域であって、通信帯域の基本単位として定義される。また、Rel.11では、下りリンク向けにExtension carrier(non-backward compatible carrier)が検討されている。Extension carrierでは、DMRSのみがサポートされ、オーバーヘッド低減のためにCRSは送信されない(例えば、「3GPP TSG RAN WG1 meeting, R1-100359, Jan. 2010」参照)。すなわち、Extension carrierでは、DMRSのみを用いた運用により高効率の伝送が可能となる。
 なお、Extension carrierにはCSI-RSは配置される。すなわち、Extension carrierには、CSI-RSが配置され、かつ、CSI-RSとは異なるCRSが配置されない。
 本実施の形態では、Carrier aggregation時に、Extension carrier等のCRSが送信されないComponent Carrier(CC)を用いるシステムを想定する。つまり、端末は複数のCCを用いて通信する。
 なお、本実施の形態は、実施の形態1~3で想定されるヘテロジニアスネットワークに適用されてもよく、マクロ基地局のみで構成されるホモネットワークに適用されてもよい。以下では、本実施の形態をホモネットワークに適用する場合について説明する(図15参照)。
 以下、本実施の形態に係るマクロ基地局100(図5)および端末300(図7)について説明する。
 [マクロ基地局100の構成]
 マクロ基地局100において、制御部101は、実施の形態1の動作に加え、以下の処理を行う。
 制御部101は、端末300に対して現在使用しているCC以外の他のCCを測定対象とするmeasurement configurationを設定する。ここで、測定対象となるCCが通常のCC(CRSを含むCC)の場合には、制御部101は、当該CCのキャリア周波数、セルID等を含むmeasurement configurationを設定する。一方、測定対象となるCCがExtension carrier(CRSを含まないCC)の場合には、制御部101は、Extension carrier向けの設定情報(キャリア周波数、および、CSI-RS候補リスト)を、送信部102を介して端末300へ通知する。
 また、制御部101は、受信部103を介して受信した、端末300からの信号に基づいて、端末300に対してCCを追加するか否かを判断する。端末300からの信号には、通常のCC(CRSを含むCC)向けのmeasurement report、または、CSI-RSを用いた受信電力測定結果が含まれる。つまり、制御部101は、追加されるCCが通常のCC(CRSを含むCC)の場合には、CRSを用いた受信電力測定結果に基づいて、CCの追加を判断する。一方、制御部101は、追加されるCCがExtension carrierの場合、CSI-RSを用いた受信電力測定結果に基づいて、CCの追加を判断する。制御部101は、端末300に対してCCを追加する場合、端末300にCC追加指示を通知する。
 [端末300の構成]
 端末300において、受信部301は、制御部302から入力されるCCのキャリア周波数等の設定情報に従って、端末300に設定されたCCからデータを抽出する。
 制御部302は、受信部301を介してマクロ基地局100からCC追加指示を受け取ると、追加するCCのキャリア周波数等の設定情報を受信部301に出力する。
 測定部303は、受信部301を介してマクロ基地局100からmeasurement configurationを受け取ると、measurement configurationに含まれる通常のCC向けの設定情報(キャリア周波数、セルID等)に基づいて、CRSを用いた受信電力測定を行う。測定された受信電力の測定結果が、マクロ基地局100から通知される報告条件を満たす場合、測定結果(通常のCC向けのmeasurement report)は送信部304を介してマクロ基地局100へ送信される。
 一方、測定部303は、受信部301を介してマクロ基地局100からExtension carrier向けの設定情報を受け取ると、設定情報に含まれるCSI-RS候補リストに基づいて、設定情報で指示されたキャリア周波数において、CSI-RSを用いた受信電力測定を行う。測定された受信電力の測定結果が、マクロ基地局100から通知される報告条件を満たす場合、測定結果(CSI-RSを用いた受信電力測定結果)は送信部304を介してマクロ基地局100へ送信される。
 このように、本実施の形態では、端末300に対してExtension carrier(CRSが配置されないCC)が新たに追加される際、端末300において、測定部303が、CRSが配置されないCCの周波数において、マクロ基地局100から送信されるCSI-RSを用いて受信電力を測定し、送信部304が、測定部303で測定されたCSI-RSを用いた受信電力測定結果が所定の条件を満たす場合、当該受信電力測定結果をマクロ基地局100へ報告する。つまり、端末300は、CRSが配置されていないExtension carrierに対して、CSI-RSを用いた受信電力測定を行い、測定結果をマクロ基地局100へ報告(つまり、CSI-RSベースの受信品質報告)する。こうすることで、Carrier aggregation時に、CRSが配置されていないExtension carrierを用いる場合でも、マクロ基地局100は、伝搬路状態が良好なExtension carrierを選択して、端末300に設定することができる。
 なお、Component carrierは、キャリア周波数およびセルIDにより定義されるセルと同義なものと見なすこともできる。また、Carrier aggregation時には、端末毎に1つのPrimary Component Carrier(PCCまたはPCell(Primary Cell)と呼ばれる)、および、1つまたは複数のSecondary Component Carrier(SCCまたはSCell(Secondary Cell)と呼ばれる)が設定される。例えば、PCC(PCell)は、報知情報(例えば、SIB2(System Information Block type2))を送信している単位バンドである。
 また、Extension carrierに限らず、CRSが配置されず、CSI-RSが配置されるComponent carrierであれば本発明を適用することができる。
 また、本実施の形態において、ヘテロジニアスネットワークが適用される場合には、端末300は、端末300に対してExtension carrier(CRSが配置されないCC)が新たに追加される際、CRSが配置されないCCの周波数において、複数の送信ポイントから送信される複数のCSI-RSを用いて、複数のCSI-RSのそれぞれの受信電力を測定し、所定の条件を満たす受信電力測定結果をマクロ基地局100へ報告すればよい。
 [実施の形態5]
 本実施の形態では、各端末の上りリンクにおける受信基地局(または受信ポイント(reception point:RP)と呼ぶ)を、下りリンクにおける送信基地局(つまり、送信ポイント(TP))とは別に選択する。なお、各端末に対して選択される受信ポイントは1つであっても複数であってもよい。
 図16は、本実施の形態におけるCoMPの運用例を示す。図16に示す端末に対して、下りリンクでは、RSRP(受信電力)が所定の閾値を上回った3つの送信ポイント#1,#2,#3から信号が送信されている。
 一方、図16に示す端末に対して、上りリンクでは、パスロス(path loss。受信ポイントと端末との間の伝搬減衰量)が所定の閾値を下回った1つの受信ポイント#3で端末から送信される信号が受信されている。この際、図16に示す端末は、受信ポイント#3で十分な受信品質で受信できるような送信電力で信号を送信する。例えば、図16に示す端末は、近傍の受信ポイント#3で受信可能なできるだけ低い送信電力で信号を送信する。例えば、端末は、次式(1)で表される送信電力制御(LTEまたはLTE-Aの送信電力制御)における係数PL(パスロス)の算出時には、受信ポイント#3からの信号を用いて測定されたRSRPを用いる。なお、RSRPは実施の形態1と同様にCSI-RSを用いて測定される。
Figure JPOXMLDOC01-appb-M000001
 なお、式(1)において、PはPUSCH(データ)の送信電力を示し、PMAXは端末で許容される送信電力の最大値を示し、Mは送信帯域幅を示し、P0はセル毎または端末毎に設定される値を示し、αは1以下の係数を示し、ΔTFは変調方式などによって変わる値を示し、fは送信電力制御コマンドによる制御値を示す。また、referenceSignalPowerは、パスロス算出の基準となる受信ポイント(以下、パスロスリファレンスとなる受信ポイント)での送信電力を示す。つまり、パスロス算出の基準となる受信ポイントでの送信電力と、端末でのRSRPの平均値(higher layer filtered RSRP)との差が、パスロス(受信ポイントと端末との間の伝搬減衰量)として算出される。
 ここで、基地局が端末からの信号を正常に受信するためには、基地局と端末との間で受信ポイントの認識が同じである必要がある。このため、基地局は、端末が送信電力制御の際のパスロス(PL)算出に用いる受信ポイント(パスロスリファレンスとなる受信ポイント)の情報を端末に通知する必要がある。ここで、パスロスはCSI-RSを用いて測定されるRSRPに基づいて算出される。このため、基地局は、パスロス算出の際、CSI-RSの情報(リソース、タイミングなど)を端末に通知する必要がある。よって、端末の移動などにより頻繁に受信ポイントが変わる場合には、受信ポイントの情報の通知にかかるオーバーヘッドが膨大になる。
 また、端末において高精度なパスロスを得るためには、十分長い平均化が必要である。このため、受信ポイントの変更の度にCSI-RSの設定情報が通知されるのでは、新たな受信ポイントからのCSI-RSを用いた高精度なパスロスの算出において遅延が生じてしまう。
 そこで、本実施の形態では、上記実施の形態において下りリンクで用いていたCSI-RS候補リストを上りリンクにおける受信ポイント(RP)の選択にも使用する。
 以下、本実施の形態に係るマクロ基地局100(図5)、ピコ基地局200(図6)および端末300(図7)について説明する。
 [マクロ基地局100の構成]
 マクロ基地局100において、制御部101は、実施の形態1の動作(送信ポイント選択に関する動作)に加え、以下の処理(受信ポイント選択に関する動作)を行う。
 制御部101は、端末300がCSI-RSを用いて測定する受信電力(RSRP)の報告を行うか否かの基準である所定の条件(以下、報告条件という)として、実施の形態1で説明した下りリンクの送信ポイント選択向けの報告条件に加え、上りリンクの受信ポイント選択向けの報告条件を設定する。設定される報告条件は、例えば、CSI-RS候補リストに含めて端末300へ通知される。
 つまり、CSI-RS候補リスト内において、CSI-RSを用いて測定されるRSRP(受信電力)の報告条件として、下りリンクにおける送信ポイント(TP)選択用の報告条件、及び、上りリンクにおける受信ポイント(RP)選択用の報告条件の2種類が設定される。例えば、下りリンク(DL)向けの報告条件として、RSRPが所定値を上回る場合(送信ポイントを追加する条件:TP追加条件)、又は、RSRPが所定値を下回る場合(送信ポイントを削除する条件:TP削除条件)等がある。また、上りリンク(UL)向けの報告条件として、パスロスが所定値を下回る場合(受信ポイントを追加する条件:RP追加条件)、又は、パスロスが所定値を上回る場合(受信ポイントを削除する条件:RP削除条件)等がある。
 また、制御部101は、受信部103または基地局間IF104から入力される端末300からの信号(受信信号)に含まれる、CSI-RSに関する情報(上記UL向けの報告条件を満たしたCSI-RSリソースの識別子および受信電力測定結果)を用いて、端末300の上り送信電力制御におけるパスロス算出の基準とする受信ポイント(パスロスリファレンスとなる受信ポイント)を決定する。つまり、制御部101は、端末300から報告されるRSRPの情報(UL向けの報告条件を満たしたCSI-RSの情報)に基づいて受信ポイント(RP)を選択する。すなわち、制御部101は、複数のCSI-RSのうち、端末300においてパスロス算出に用いられる少なくとも1つの特定のCSI-RSを決定する。そして、基地局100は、CSI-RS候補リストで通知済みの識別子(CSI-RS index)を用いて、上り送信電力制御のパスロスリファレンスとする受信ポイント(RP)に関する情報を端末300へ通知する。
 ここで、例えば、CSI-RS候補リストは比較的長い間隔でシグナリングされるRRCシグナリングで通知され、受信ポイントの情報は比較的短い間隔のシグナリング可能なMACシグナリングで通知される。
 また、制御部101は、決定した受信ポイントに従って、端末300が上りリンクで送信するデータまたは参照信号のリソース等の設定情報(configuration)を各端末300について決定し、送信部102を介して各端末300に通知する。ここで、制御部101は、各受信ポイントで受信される複数の端末300からの信号間で干渉が少なくなるように制御する。例えば、制御部101は、ホッピングパタンが複数の端末300間で同一になるようなランダムシードを設定する。また、上りリンクの設定情報(configuration)としては、例えば、周波数/系列などの情報、仮想的なCell id(virtual Cell id)などの情報も挙げられる。また、上りリンクの設定情報には、上り送信電力の調整のために受信ポイントごとに設定された上りリンク送信電力のオフセット値(式(1)におけるP0又は追加で設定されるオフセット値)を含めてもよい。
 受信部103は、端末300から送信される上りリンクのデータ(PUSCH)、制御信号(PUCCH)、又は、参照信号(DMRS、SRS)を受信する。
 [ピコ基地局200の構成]
 ピコ基地局200では、実施の形態1の動作(下りリンクに関する動作)に加え、以下の動作(上りリンクに関する動作)が追加される。
 基地局間IF201は、受信部203から入力される端末300からの受信データ(PUSCH)をマクロ基地局100へ転送する。
 受信部203は、アンテナを介して端末300からのデータ(PUSCH)、参照信号(DMRS、SRS)などの上りリンクの信号を受信する。
 [端末300の構成]
 端末300では、実施の形態1の動作(下りリンクに関する動作)に加え、以下の動作(上りリンクに関する動作)が追加される。
 受信部301は、上りリンク向けの報告条件、又は、上り送信電力制御の情報(パスロスリファレンスとする受信ポイント(CSI-RS)の情報)が含まれる信号を、マクロ基地局100またはピコ基地局200から受信し、受信信号を制御部302に出力する。
 制御部302は、受信部301から入力される上り送信電力制御の情報(パスロスリファレンスとするCSI-RSの情報を含む)に基づいて、パスロス測定に用いるCSI-RSを特定する。制御部302は、特定したCSI-RSを示す情報を測定部303へ指示する。
 測定部303は、実施の形態1と同様、CSI-RS候補リストに示される複数のCSI-RSを用いて、複数のCSI-RSのそれぞれに対する受信電力(例えば、RSRP)を測定する。また、測定部303は、測定した受信電力が上りリンク向けの報告条件または下りリンク向けの報告条件を満たすか否かを判断する。なお、上りリンク向けの報告条件としてパスロスが含まれる場合(パスロスと閾値とを比較する場合)、測定部303は、測定した受信電力(RSRP)とCSI-RS送信電力の情報(基地局100から通知される情報)とを用いて、パスロス(例えば、式(1)に示すPL)を算出する。
 測定部303は、測定した受信電力(またはパスロス)が報告条件を満たす場合、当該受信電力に対応するCSI-RS(CSI-RSのリソースの識別子)および受信電力を示す情報を含むCSI-RSに関する情報を送信部304に出力する。ここで、測定部303は、上りリンク向けの報告条件および下りリンク向けの報告条件のうち、いずれの報告条件を満たしたかを示す情報もCSI-RSに関する情報に含める。
 また、測定部303は、制御部302から指示された上り送信電力制御の情報(パスロスリファレンスとするCSI-RSの情報)に示される特定のCSI-RSを用いて、上り送信電力制御のためのパスロスを算出する。
 [マクロ基地局100及び端末300の動作]
 以上の構成を有するマクロ基地局100及び端末300の動作について説明する。
 図17は、マクロ基地局100(eNBと表す)および端末300(UEと表す)の処理の流れを示すフロー図である。なお、図17において、実施の形態1(図8)と同一の処理には同一の符号を付し、その説明は重複するので省略する。
 ST101aでは、マクロ基地局100は、受信電力(例えば、RSRP)の測定方法、および、受信電力測定結果の「報告条件(Event)」を端末300へ通知する(図示せず)。ここで、マクロ基地局100は、報告条件として、下りリンクの送信ポイント選択向けの報告条件(DL向け報告条件)、および、上りリンクの受信ポイント選択向けの報告条件(UL向け報告条件)の2種類の報告条件を端末300へ通知する。例えば、UL向け報告条件として、パスロスが所定の閾値pl_add (UL)を下回った場合(受信ポイント追加のための条件)、または、パスロスが所定の閾値pl_remove (UL)を上回った場合(受信ポイント削除のための条件)を用いてもよい。
 また、マクロ基地局100は、CSI-RS候補リストの中に、上りリンク向けのパスロス算出のためのCSI-RS送信電力情報を含める。CSI-RS送信電力情報は、例えば、各受信ポイントにおけるCSI-RSの送信電力を示す。
 端末300の測定部303は、ST101aで通知されたCSI-RS候補リスト、および、マクロ基地局100から通知された受信電力の測定方法に基づいて、CSI-RSを用いたRSRP測定を行う。すなわち、図17では、測定部303は、CSI-RS候補リストに示されるCSI-RS 1~6のCSI-RS configurationに基づいて、6種類のCSI-RS(つまり、6個の送信ポイント(受信ポイント))に対するRSRPを測定する。また、測定部303は、測定したRSRPが報告条件を満たすか否かを判断する。図17では、CSI-RS候補リスト(CSI-RS 1~6)のうち、CSI-RS 1およびCSI-RS 2のRSRPがDL向け報告条件の閾値Th_add (DL)を上回っており、CSI-RS 3のRSRPがUL向け報告条件の閾値pl_add (UL)を下回っている。
 ST102aでは、端末300は、CSI-RS候補リストに示される複数のCSI-RS候補のうち、報告条件を満たすCSI-RS候補番号、報告条件を満たすCSI-RSの測定結果に加えて、DL向けまたはUL向けのいずれの報告条件を満たしたかを示す情報をマクロ基地局100へ報告する。図17では、端末300は、DL向け報告条件を満たしたことを示す情報(図17では「DL」)、DL向け報告条件を満たすCSI-RS候補番号(図17ではCSI-RS 1およびCSI-RS 2)および、DL向け報告条件を満たすCSI-RSの測定結果(図17ではvalue 1およびvalue 2)をマクロ基地局100へ報告する。同様に、図17では、端末300は、UL向け報告条件を満たしたことを示す情報(図17では「UL」)、UL向け報告条件を満たすCSI-RS候補番号(図17ではCSI-RS 3)および、UL向け報告条件を満たすCSI-RSの測定結果(図17ではvalue 3)をマクロ基地局100へ報告する。
 マクロ基地局100は、ST102aにおいて端末300から受け取った情報に基づいて、送信ポイントの選択(DL向けの処理)および受信ポイントの選択(UL向けの処理)を行う。なお、DL向けの処理(図17に示すST103~ST107)については実施の形態1と同一の処理であるので説明を省略する。
 マクロ基地局100は、ST102aにおいて端末300から報告された上りリンクに関する情報に基づいて、当該端末300の上りリンクにおける受信ポイントを選択または変更する。図17では、マクロ基地局100の制御部101は、端末300においてCSI-RS 3を用いている受信ポイントに対するパスロスが他の受信ポイントよりも小さいと判断する。そこで、制御部101は、当該端末300に対する受信ポイントを、CSI-RS 3を用いている受信ポイントに決定する。
 ST401では、マクロ基地局100は、決定した受信ポイントに関する送信電力制御の設定情報(power control config)及び上りリンクのリソース設定情報(UL resource config)を端末300に通知する。ここで、マクロ基地局100は、送信電力制御の設定情報として、例えば、端末300において上り送信電力制御の際に用いるパスロス算出のためのCSI-RSの情報として、CSI-RSの識別子(CSI-RS候補リストで通知済みの情報)を通知する。また、マクロ基地局100は、上りリンクのリソース設定情報として、例えば、PUSCH、RS(DMRS、SRS)、PUCCH向けのリソース設定情報(周波数/系列などの情報、ランダムシードとして用いるID情報等)、または、上り送信電力の調整のために受信ポイントごとに設定された上りリンク送信電力のオフセット値(式(1)におけるP0又は追加で設定されるオフセット値)を通知する。
 ST402では、端末300は、ST401においてマクロ基地局100から通知された設定情報に従って、上り送信電力制御の設定を変更し、変更後の設定に従って、PUSCH(データ)、RS(DMRS、SRS)、PUCCH(制御情報)等の上りリンク信号を送信する。
 このように、マクロ基地局100では、受信部103が、端末300で複数の基地局(送信ポイントまたは受信ポイント)からのCSI-RSを用いて測定された各基地局のパスロス(第3の受信品質)に基づいて、複数の基地局のうち、上りリンクに関する報告条件(所定の条件)を満たすパスロス(第3の受信品質)に対応する、少なくとも一つのCSI-RSに関する情報(第3の情報)を受信し、制御部101が、上りリンクに関する報告条件を満たすパスロスに対応するCSI-RSに関する情報に基づいて、特定のCSI-RS(つまり、端末300の受信ポイントとする基地局のCSI-RS)を決定し、送信部102が、決定された少なくとも一つの特定のCSI-RSに関する情報(UL config。第4の情報)を送信する。端末300では、測定部303が、マクロ基地局100から通知されたCSI-RS候補リストに示される複数の基地局(送信ポイントまたは受信ポイント)からのCSI-RSを用いて、基地局(CSI-RS)のそれぞれに対するパスロス(第3の受信品質)を測定し、送信部304が、複数のCSI-RSのうち、上りリンクに関する報告条件(所定の条件)を満たすパスロス(第3の受信品質)に対応する、少なくとも一つのCSI-RSに関する情報(第3の情報)を、送信し、受信部301が、複数のCSI-RSのうち、上りリンクに関する報告条件を満たすパスロスに対応するCSI-RSに関する情報を用いて決定された、少なくとも一つの特定のCSI-RSに関する情報(UL config。第4の情報)を受信する。
 このようにして、本実施の形態では、下りリンクにおける送信ポイントの選択に加え、上りリンクにおける受信ポイントの選択にも、CSI-RS候補リストを用いる。すなわち、本実施の形態では、マクロ基地局100および端末300は、下りリンクにおける送信ポイントの選択、及び、上りリンクにおける受信ポイントの選択において、同一のCSI-RS候補リストを共通して使用する。こうすることで、受信ポイントの情報の通知に要する情報量を削減できる。
 また、本実施の形態では、上りリンクの報告条件を満たすCSI-RSに関する情報には、実施の形態1で説明した下りリンクの報告条件を満たすCSI-RSに関する情報と同様、上りリンクの報告条件を満たすパスロスに対応するCSI-RSを示す識別子、または、上りリンクの報告条件を満たすパスロスの測定結果が含まれる。つまり、受信品質の測定結果(例えば、報告条件を満たした受信電力またはパスロス)が上りリンクと下りリンクとで共通のフォーマットを用いて端末300からマクロ基地局100へ報告される。これにより、端末300とマクロ基地局100との間のシグナリングのフォーマット数の増加を防ぐことができ、簡易なシステムが構築可能となる。
 また、本実施の形態では、マクロ基地局100は、端末300に対して予め通知しているCSI-RS候補リストに含まれるCSI-RSの識別子(CSI-RS index)を、決定した受信ポイントを示す情報(例えば、UL config)として、端末300へ通知する。また、端末300は、マクロ基地局100から通知されたCSI-RSの識別子(CSI-RS index)に基づいて、受信ポイントを特定するとともに、CSI-RS候補リストの中から受信ポイントに対応するCSI-RSの設定情報を特定する。これにより、受信ポイントの更新の度に、CSI-RSの設定情報を通知する場合と比較して、受信ポイントの情報の通知にかかるオーバーヘッドを低減できる。
 また、本実施の形態では、端末300は、CSI-RS候補リストに示されるCSI-RSを用いてRSRPを予め測定している。このため、端末300では、受信ポイントの変更が通知された直後でも、十分長い平均化が為されたRSRPを得ることができる。よって、本実施の形態によれば、端末300では、受信ポイントの変更が通知された後に直ちに高精度なパスロスを用いて送信電力制御を行うことができる。
 なお、本実施の形態では、「UL向け報告条件」として、パスロスを用いる場合について説明したが、「UL向け報告条件」はパスロスを用いる場合に限らない。例えば、「UL向け報告条件」として、「RSRP+Δ」が所定の閾値以上(または以下)の場合を条件として用いてもよい。ここで、Δは、マクロ基地局100とピコ基地局200との間の送信電力差に基づくオフセット値である。例えば、マクロ基地局100の送信電力が43dBmであり、或るピコ基地局200の送信電力が30dBmであるとする。この場合、Δ=13dB(=43-30)と設定してもよい。これは、マクロ基地局100からの信号の受信電力よりもピコ基地局200からの信号の受信電力が13dB低くなるような端末300が上りリンクで送信した信号は、マクロ基地局100と当該ピコ基地局200とで同一電力で受信されるためである(ただし、双方の基地局の伝搬減衰特性が同一と仮定する)。このため、「UL向け報告条件」において、ピコ基地局200の受信電力(RSRP)にオフセットΔを付加する。これにより、端末300は、各基地局(マクロ基地局100およびピコ基地局200)について、受信電力(RSRP)を用いて「UL向け報告条件」を満たしているか否かを判断することができる。なお、この際、マクロ基地局100は、受信ポイント毎のオフセット値(Δ)を含むCSI-RS候補リストを端末300へ通知する。また、「UL向け報告条件」において、端末300の上り送信電力制御の際にマクロ基地局100からのパスロスを用いて算出した送信電力値にオフセット値(Δ)を差し引いた値を、ピコ基地局200の送信電力値として設定してもよい。このように、本実施の形態において、「UL向け報告条件」に用いる受信品質(上記第3の受信品質)は、各送信ポイントからのCSI-RSを用いて測定される受信電力(上記第1の受信品質。RSRP)を用いて算出される受信品質(パスロス、及び、RSRP+Δ等)であればよい。
 また、本実施の形態では、下りリンクの信号(CSI-RS)を用いて受信ポイントの選択を行う場合について説明した。しかし、本実施の形態において、マクロ基地局100は、上りリンクの信号(例えば、SRS(サウンディング向け参照信号))を用いて受信ポイントの選択を行ってもよい。この場合、マクロ基地局100は、CSI-RS候補リスト内のCSI-RS識別子を用いて、選択した受信ポイントを通知することで、本実施の形態と同様、受信ポイントの情報の通知にかかるオーバーヘッドの増加を抑えることができる。
 また、本実施の形態では、下りリンクにおける送信ポイント選択向け報告条件、および、上りリンクにおける受信ポイント選択向け報告条件の2種類の報告条件を用いる場合について説明した。しかし、本実施の形態において、用途の異なる複数の報告条件を設定するようにしてもよい。
 また、本実施の形態において、送信ポイント(受信ポイント)あたり複数のアンテナがある場合には、アンテナ間の平均のRSRPを用いてパスロス(またはRSRP+Δ)を算出してもよく、各アンテナのRSRPの合計を用いてパスロス(またはRSRP+Δ)を算出してもよい。
 また、下りリンクでは端末300の近隣に位置する送信ポイントから信号を送信すべく、送信ポイントの切替を行う。これに対して、上りリンクではマクロ基地局100のみの受信(または全基地局での受信)を行い、受信ポイントの切替を行わないような運用も考えられる。または、上りリンクのみで受信ポイントの切替を行う運用も考えられる。そこで、マクロ基地局100は、各送信ポイント/受信ポイント(CSI-RS)について、下りリンク向けのRSRP報告対象、上りリンク向けのRSRP報告対象、または、上下リンク双方向けのRSRP報告対象のいずれであるかを示す情報を、端末300へ通知してもよい。このRSRP報告対象を示す情報は、明示的に通知されてもよい。例えば、CSI-RS候補リストで通知される各CSI-RSの送信電力情報が最大値であるCSI-RSについては、上りリンク向けのRSRP報告の対象外としてもよい。CSI-RSの送信電力情報が最大値である場合には算出されるパスロスは大きな値となるため、受信ポイントとして選択されることはないので、当該CSI-RSを報告の対象外としても問題ない。また、RSRPに加えるオフセット(CSI-RS individual offset)が最小値となるCSI-RSについては、下りリンク向けのRSRP報告の対象外としてもよい。オフセットが最小値である場合には報告条件の閾値以上となり(報告条件を満たさず)、その受信ポイントが選択されることはほとんどないため、当該CSI-RSを報告の対象外としても問題ない。また、上記送信電力情報の「最大値」またはオフセットの「最小値」となる場合の動作は、明示的に設定してもよく、暗示的に動作させてもよい。これにより、下りリンクのみでCoMP、上りリンクのみでCoMP、または、上下リンク双方でCoMPのそれぞれの運用形態に対応することが可能となる。また、上述したように、CSI-RS(つまり送信ポイント/受信ポイント)毎にRSRP報告対象を設定するのではなくて、端末(UE)毎に下りリンク向けのRSRP報告対象、上りリンク向けのRSRP報告対象、上下リンク双方向けのRSRP報告対象を、それぞれ通知してもよい。
 以上、本発明の各実施の形態について説明した。
 [他の実施の形態]
 (1)上記各実施の形態において、1つの送信ポイントが複数のアンテナポートを有する場合、端末は、CSI-RS候補リストに基づいて、各送信ポイントの異なるアンテナポートから送信されるCSI-RSを用いた測定結果の平均値(単純平均、加重平均、中央値等)を、マクロ基地局へ報告してもよい。各アンテナポートの測定結果の平均値を示す1つの測定結果のみが報告されるので、報告に要する情報量が低減される。また、送信ポイントが有する複数のアンテナポートでの測定結果を平均することにより、受信品質の測定精度を向上させることが可能となる。
 また、1つの送信ポイントが複数のアンテナポートを有する場合でも、端末は、1つのアンテナポートから送信されるCSI-RSを用いた測定結果、または限られた数のアンテナポートから送信されるCSI-RSを用いた測定結果の平均値を、マクロ基地局へ報告してもよい。この場合、測定するリソースを必要最小限に限定できるので端末での処理量の低減が可能である。
 (2)上記各実施の形態において、端末がCSI-RSを用いて測定する受信品質としては、受信電力に限らず、例えば、RSRP、RSRQ、SINR、SLNR等を用いてもよい。
 (3)上記各実施の形態では、CSI-RSを用いた受信電力測定結果の報告条件として、測定結果が閾値A(またはTh_add)を上回った場合、測定結果が閾値B(またはTh_remove)を下回った場合、または、測定結果が、CSI-RS測定対象として現在指定されているCSI-RSの測定結果をC[dB]上回った場合、等について説明した。しかし、CSI-RSを用いた受信電力測定結果の報告条件は、これらに限らず、例えば、モビリティ制御のためのmeasurement(例えば、「3GPP TS36.331 v10.1.0」参照)の報告条件(Event)を用いてもよい。既存の条件(上記Event等)をCSI-RSを用いた受信電力測定結果の報告条件として再利用することで、端末の簡素化およびテスト工数の低減が可能となる。また、CSI-RSを用いた受信電力測定結果の報告条件は、伝搬路状態等の電波環境以外の要因を考慮して設定されてもよい。例えば、報告条件として、高い料金を支払うユーザの端末に対してより多くの送信ポイントを用いるような条件を設定してもよい。
 (4)上記各実施の形態では、マクロセル内の送信ポイント毎に異なるリソースでCSI-RSが送信される場合について説明した。しかし、必ずしもマクロセル内の送信ポイント毎に異なるリソースでCSI-RSを送信する必要はない。例えば、或る端末に信号が届く範囲(エリア)において、各送信ポイントが異なるリソースでCSI-RSを送信すればよい。すなわち、十分離れた場所、または、壁等で隔離された場所では、異なる送信ポイントが同一リソースでCSI-RSを送信してもよい。
 (5)上記各実施の形態において、CSI-RS候補リスト内に、異なるセルIDのセル内の送信ポイントが使用しているCSI-RSのconfigurationを含めてもよい。この場合、CSI-RS候補リスト内の各CSI-RS configurationの中にセルIDの情報を含めればよい。これにより、端末は、受信電力の大きい送信ポイントを、異なるIDのセル間で選択することができる。
 (6)上記各実施の形態において、複数の送信ポイントに対して1つのCSI-RS configurationを設定してもよい。例えば、送信ポイント1が有する2アンテナポートと、送信ポイント2が有する2アンテナポートとを合わせた4アンテナポートのCSI-RSとして、1つのCSI-RS configurationを設定してもよい。この場合、4つのアンテナポートのCSI-RSに対して1つのCSI測定結果が報告されるので、報告情報の情報量が低減される。
 (7)上記各実施の形態では、CSI-RSを用いる場合について説明したが、CSI-RSの代わりに、各送信ポイントから異なるリソースで送信可能な信号またはチャネルを用いてもよい。例えば、CSI-RSの代わりに、同期用信号であるPSS/SSS(Primary Synchronization Signal/Secondary Synchronization Signal)を用いてもよい。この場合、CSI-RS候補リストの代わりに、PSS/SSSのconfiguration情報(スクランブリング系列等)がマクロ基地局から端末へ通知される。
 (8)上記各実施の形態では、CRSが全ての送信ポイントから送信される場合について説明したが、CRSは、例えば、マクロ基地局(HPN)のみから送信されてもよい。
 (9)上記各実施の形態では、マクロ基地局とピコ基地局とから構成されるネットワークを一例として説明した。しかし、マクロ基地局のみから構成されるネットワークであっても、複数のマクロ基地局が同一のセルIDを用いる場合には、本発明を適用することができる。また、ピコ基地局はRRH(Remote Radio Head)等のように無線増幅部およびアンテナのみで構成されるものであってもよいし、通常の基地局のようにベースバンド処理部が設けられていてもよい。
 (10)上記各実施の形態では、CSI-RSを用いた受信電力測定結果が報告条件を満たした場合、端末が報告条件を満たした測定結果のみをマクロ基地局へ報告する場合について説明した。しかし、CSI-RSを用いた受信電力測定結果が報告条件を満たした場合、端末は、全てのCSI-RSの測定結果をマクロ基地局へ報告してもよい。この場合、マクロ基地局は、報告された全てのCSI-RSの中から、CSI測定対象のCSI-RS(送信ポイント)を決定すればよい。
 (11)上記各実施の形態で用いたzeroTxPowerCSI-RSおよびresourceConfig等は、例えば、3GPP TS36.331 v10.1.0に記載のパラメータを用いてもよい。
 (12)上記各実施の形態において、Rel.8~10のCRSを用いたmeasurement向けのmeasurement objectの中に、各セルまたはキャリアのCSI-RS候補リストを示す情報を含めて、端末に通知してもよい。これにより、既存のシグナリングを再利用することにより簡易なシステムが構築可能となる。
 (13)上記各実施形態では、(3)に記載したように、CSI-RSを用いた受信電力測定結果の報告条件として、測定結果が閾値A(またはTh_add)を上回った場合、測定結果が閾値B(またはTh_remove)を下回った場合、または、測定結果が、CSI-RS測定対象として現在指定されているCSI-RSの測定結果をC[dB]上回った場合、等について説明した。ここで、第2の報告条件「測定結果が閾値B(またはTh_remove)を下回った場合」は、さらに2つの報告条件に分割することができる。
 1つ目の報告条件は、CCLで設定されたCSI-RSを用いた測定結果が、閾値Bを下回った場合に、第1の受信品質を報告する方法である。
 2つ目の報告条件は、第1の報告条件「測定結果が閾値A(またはTh_add)を上回った場合」など、すでに基地局に報告された第1の受信品質に含まれるCSI-RSの測定結果が、閾値Bを下回った場合に、第1の受信品質を報告する方法である。このようにすることで、基地局が第2の情報に含めるCMLとして設定している、あるいは、設定しようとしているCSI-RS候補のうちいずれかの測定結果が閾値Bを下回ったときにだけ、第1の受信品質が報告されるので、報告回数を減らすことができる。なお、端末が特定の閾値を下回ったことを報告したCSI-RSは、2つ目の報告条件の対象とするCSI-RSのリストから外してもよい。このようにすることで、基地局が特定の閾値を下回っていることを把握しているCSI-RSの受信品質を再び送信することを避けることができ、報告回数を減らすことができる。なお、特定の閾値とは、閾値Aの値でもよいし、閾値Bの値でもよいし、別途設定しても良い。
 また、上記の報告条件を満たした場合の第1の受信品質の報告方法として以下の5つが考えられる。
 第1の報告方法では、端末は、上記報告条件を満たした場合にCSI-RS候補リストの全てのCSI-RSの測定結果を報告する。このようにすることで、基地局では、候補リスト内の全てのCSI-RSに対してより最近のCSI-RS測定結果が得られるため、より適切なCMLの設定が可能である。
 第2の報告方法では、端末は、上記報告条件を満たした場合に、特定の閾値を上回るCSI-RSの測定結果のみを第1の受信品質として基地局に報告する。このようにすることで、報告されるCSI-RS測定結果が限定されるので、報告メッセージサイズを小さくすることができる。なお、特定の閾値とは、閾値Aの値でもよいし、閾値Bの値でもよいし、別途設定しても良い。
 第3の報告方法では、端末は、上記報告条件を満たした場合に、上記第1の報告条件「測定結果が閾値A(またはTh_add)を上回った場合」で報告された第1の受信品質に含まれるCSI-RSの測定結果のうち、特定の閾値を上回るCSI-RSの測定結果のみを第1の受信品質として基地局に報告する。なお、特定の閾値とは、閾値Aの値でもよいし、閾値Bの値でもよいし、別途設定しても良い。このようにすることで、基地局は、どのCSI-RSをCMLの候補として適切かを判断することが出来ると共に、CSI-RSの測定結果の報告メッセージサイズを小さくすることができる。
 第4の報告方法では、端末は、上記報告条件を満たした場合に、上記第1の報告条件「測定結果が閾値A(またはTh_add)を上回った場合」で報告された第1の受信品質に含まれるCSI-RSの測定結果の全てのCSI-RSの測定結果を報告する。このようにすることで、基地局が既に保持している各CSI-RSの測定結果を更新することができる。
 第5の報告方法は、上記報告条件を満たした場合に、報告条件を満たしたCSI-RSの測定結果のみを報告する方法である。このようにすることで、報告のメッセージサイズを最小限に抑えることができる。
 (14)上記各実施の形態では、CRSはセル単位で設定され、セル内のユーザは共通のCRSを用いる。一方、CSI-RSをセル固有または送信ポイント(TP)固有の設定、つまり、セル内の全ユーザが共通のCSI-RS設定を用いるようにしてもよいし、ユーザ固有の設定にしてもよい。ユーザ固有の設定の場合には、CSI-RSはユーザ固有に設定可能であり、ユーザごとに受信するCSI-RSが異なってもよい。例えば、複数のTPから協調送信するようなCoMP送信方法を用いるユーザには複数のTPから同一のリソースでCSI-RSを送信してもよい。この場合、CoMP送信方法を用いるユーザは、複数のTPから同一のリソースで送信されたCSI-RSを用いるのに対して、他のユーザは、1つのTPから送信されたCSI-RSを用いる。また別の例として、混雑しているTPのCSI-RSを限定されたユーザにしか設定しないことにより、TPに接続しているユーザのスループット低下を防ぐことができる。このように、CSI-RSをユーザ固有に設定することにより、様々な伝送方式を用いるユーザが混在する柔軟なシステムを構築可能できる。
 (15)上記実施の形態では、受信電力測定結果をマクロ基地局へ報告するようにしたが、LPN又はピコ基地局など他のノードを介して報告するようにしてもよい。この場合、端末は単にLPN又はピコ基地局などの他のノードへ報告データを送信する。
 (16)上記実施の形態において、マクロ基地局とピコ基地局はそれぞれ異なる1つのキャリア周波数を用いてもよいし、異なる組み合わせのキャリア周波数を用いてもよい。例えば、マクロ基地局はf1のキャリア周波数、ピコ基地局はf2のキャリア周波数を用いるようにしてもよいし、マクロ基地局はf1とf2の2つのキャリア周波数用い、ピコ基地局はf2の1つのキャリア周波数を用いるようにしてもよい。この場合、f1(つまりマクロ基地局間)では実施の形態3で説明したようなCRSを用いた受信電力測定結果の報告とそれに基づいたハンドオーバー(あるいは移動管理)を行い、f2(つまりピコ基地局間)ではCSI-RSを用いた受信電力測定結果の報告とそれに基づいたハンドオーバー(あるいは移動管理)を行うようにしてもよい。この場合、それぞれの周波数で適切な受信電力測定結果が得られるため端末をより高い受信品質のセルに接続させることができる。また、実施の形態4のようにこれらのf1とf2をcarrier aggregationとして端末が両方を用いて通信してもよい。この場合、端末はf1、f2それぞれにおける受信品質のよい基地局(あるいはセル)に接続しながら通信できるため高いスループットを実現できる。
 (17)上記実施の形態において、Extension carrierはnew carrier type又はadditional carrier typeと呼ばれることもある。また、Extension carrierはPBCH又はPDCCHが送信されないキャリアとして定義される場合もある。
 (18)上記各実施の形態ではアンテナとして説明したが、本発明はアンテナポート(antenna port)でも同様に適用できる。
 アンテナポートとは、1本又は複数の物理アンテナから構成される、論理的なアンテナを指す。すなわち、アンテナポートは必ずしも1本の物理アンテナを指すとは限らず、複数のアンテナから構成されるアレイアンテナ等を指すことがある。
 例えば3GPP LTEにおいては、アンテナポートが何本の物理アンテナから構成されるかは規定されず、基地局が異なる参照信号(Reference signal)を送信できる最小単位として規定されている。
 また、アンテナポートはプリコーディングベクトル(Precoding vector)の重み付けを乗算する最小単位として規定されることもある。
 (19)上記各実施の形態では、本発明をハードウェアで構成する場合を例にとって説明したが、本発明はハードウェアとの連携においてソフトウェアでも実現することも可能である。
 また、上記各実施の形態の説明に用いた各機能ブロックは、典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部または全てを含むように1チップ化されてもよい。ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサーを利用してもよい。
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてありえる。
 2011年8月5日出願の特願2011-171710および2011年9月30日出願の特願2011-217298の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本発明は、CSI報告のオーバーヘッドを低減しつつ、適切な送信ポイントを選択することができるものとして有用である。
 100 マクロ基地局
 101,302 制御部
 102,202,304 送信部
 103,203,301 受信部
 104,201 基地局間IF
 200 ピコ基地局
 300 端末
 303 測定部

Claims (24)

  1.  複数の送信ポイントからの複数の参照信号を用いて、前記複数の参照信号のそれぞれに対する第1の受信品質を測定する第1の測定手段と、
     前記複数の参照信号のうち、少なくとも一つの特定の参照信号に関する第1の情報を受信する受信手段と、
     前記第1の情報に基づいて、前記特定の参照信号を用いて、第2の受信品質を測定する第2の測定手段と、
     所定の条件を満たす前記第1の受信品質、及び、前記第2の受信品質を報告する送信手段と、
     を具備する端末。
  2.  前記送信手段は、前記複数の参照信号のうち、所定の条件を満たす前記第1の受信品質に対応する、少なくとも一つの前記参照信号に関する第2の情報を、送信する、
     請求項1に記載の端末。
  3.  前記受信手段は、前記第2の情報を用いて決定された前記特定の参照信号に関する前記第1の情報を受信する、
     請求項2記載の端末。
  4.  前記受信手段は、前記複数の参照信号を示す候補リストを受信し、
     前記第1の測定手段は、前記候補リストに示される前記複数の参照信号を用いて、前記複数の参照信号のそれぞれに対する前記第1の受信品質を測定し、
     前記第1の情報は、前記特定の参照信号を示す測定リストであり、前記第2の測定手段は、前記測定リストによって示される前記特定の参照信号を用いて、前記第2の受信品質を測定する、
     請求項1に記載の端末。
  5.  前記第2の情報には、前記所定の条件を満たす前記第1の受信品質に対応する前記参照信号を示す識別子、または、前記所定の条件を満たす前記第1の受信品質の測定結果が含まれる、
     請求項2記載の端末。
  6.  前記送信手段は、前記第1の受信品質の報告要求を受信した場合に、前記第2の情報を報告する、
     請求項2記載の端末。
  7.  前記候補リストは、前記複数の参照信号の設定情報を示す、
     請求項4記載の端末。
  8.  前記第1の測定手段は、所定の周期のタイミングで設定されるリソース群で前記第1の受信品質を測定し、前記リソース群にはデータ信号が割り当てられない、
     請求項1記載の端末。
  9.  前記複数の参照信号は、前記リソース群内の互いに異なるリソースに割り当てられる、
     請求項8記載の端末。
  10.  前記複数の参照信号の送信周期は、前記所定の周期の整数倍である、
     請求項8記載の端末。
  11.  前記第1の測定手段は、前記複数の送信ポイントとは異なるセル識別子を持つ第2の送信ポイントからの第2の参照信号を用いて測定された第3の受信品質が所定の条件を満たした場合、前記第2の送信ポイント、および、前記第2の送信ポイントと同一のセル識別子を持つ複数の送信ポイントからの前記複数の参照信号を用いて、前記複数の参照信号のそれぞれに対する前記第1の受信品質を測定し、
     前記複数の参照信号は前記複数の送信ポイント毎に異なるリソースで送信され、前記第2の参照信号は、セル識別子に基づいて決められるリソースで送信される、
     請求項1記載の端末。
  12.  前記送信手段は、前記第2の送信ポイント、および、前記第2の送信ポイントと同一のセル識別子を持つ複数の送信ポイントからの前記複数の参照信号を用いて測定した、前記複数の参照信号のそれぞれに対する前記第1の受信品質を、所定の条件を満たした前記第3の受信品質を報告するタイミングで報告する、
     請求項11記載の端末。
  13.  前記送信手段は、前記第2の送信ポイント、および、前記第2の送信ポイントと同一のセル識別子を持つ複数の送信ポイントからの前記複数の参照信号を用いて測定した、前記複数の参照信号のそれぞれに対する前記第1の受信品質を、前記第2の送信ポイントへのハンドオーバ完了メッセージを報告するタイミングで送信する、
     請求項11記載の端末。
  14.  前記端末は複数の単位バンドを用いて通信し、
     前記第1の測定手段は、特定の単位バンドが前記端末に対して新たに追加される場合、前記特定の単位バンドの周波数において、前記複数の送信ポイントからの前記複数の参照信号を用いて前記第1の受信品質を測定し、
     前記送信手段は、所定の条件を満たす前記第1の受信品質を前記第1の基地局へ報告し、
     前記特定の単位バンドには、前記参照信号が配置され、かつ、前記参照信号と異なる第2の参照信号が配置されない、
     請求項1記載の端末。
  15.  前記候補リストに示される前記複数の参照信号を用いて、前記複数の参照信号のそれぞれに対する第3の受信品質を測定する第3の測定手段、を更に具備し、
     前記送信手段は、前記複数の参照信号のうち、上りリンクに関する所定の条件を満たす前記第3の受信品質に対応する、少なくとも一つの前記参照信号に関する第3の情報を、送信し、
     前記受信手段は、前記複数の参照信号のうち、前記第3の情報を用いて決定された、少なくとも一つの特定の参照信号に関する第4の情報を受信する、
     請求項4記載の端末。
  16.  前記第3の情報には、前記上りリンクに関する所定の条件を満たす前記第3の受信品質に対応する前記参照信号を示す識別子、または、前記所定の条件を満たす前記第3の受信品質の測定結果が含まれる、
     請求項15記載の端末。
  17.  前記第4の情報には、前記第3の情報を用いて決定された前記特定の参照信号を示す識別子が含まれる、
     請求項15記載の端末。
  18.  前記第3の受信品質は、前記第1の受信品質を用いて算出される受信品質である、
     請求項15記載の端末。
  19.  前記第1の受信品質の通知に要する情報量は、前記第2の受信品質の通知に要する情報量よりも小さい、
     請求項1記載の端末。
  20.  前記第1の受信品質の測定周期は、前記第2の受信品質の測定周期よりも長い、
     請求項1記載の端末。
  21.  参照信号を端末に送信する送信手段と、
     前記端末で複数の参照信号を用いて測定された、前記複数の参照信号のそれぞれに対する第1の受信品質であって、所定の条件を満たす前記第1の受信品質を受信する受信手段と、
     前記複数の参照信号のうち、第2の受信品質の測定対象である少なくとも一つの特定の参照信号を決定する決定手段と、
     を具備し、
     前記受信手段は、前記端末で前記特定の参照信号を用いて測定された、前記第2の受信品質を受信する、
     送信装置。
  22.  前記送信手段は、前記複数の参照信号を示す候補リストを前記端末に送信し、
     前記受信手段は、前記端末で前記候補リストに示される前記参照信号を用いて測定された、前記複数の参照信号のそれぞれに対する前記第1の受信品質であって、所定の条件を満たす前記第1の受信品質を受信し、
     前記送信手段は、前記特定の参照信号を示す測定リストを前記端末に送信し、
     前記受信手段は、前記端末で前記測定リストに示される前記特定の参照信号を用いて測定された、前記第2の受信品質を受信する、
     請求項21に記載の送信装置。
  23.  複数の送信ポイントからの複数の参照信号を用いて、前記複数の参照信号のそれぞれに対する第1の受信品質を測定し、
     前記複数の参照信号のうち、少なくとも一つの特定の参照信号に関する第1の情報を受信し、
     前記第1の情報に基づいて、前記特定の参照信号を用いて、第2の受信品質を測定し、
     所定の条件を満たす前記第1の受信品質、及び、前記第2の受信品質を報告する、
     受信品質報告方法。
  24.  参照信号を端末に送信し、
     前記端末で複数の送信ポイントからの参照信号を用いて測定された、前記複数の参照信号のそれぞれに対する第1の受信品質であって、所定の条件を満たす前記第1の受信品質を受信し、
     前記複数の参照信号のうち、第2の受信品質の測定対象である少なくとも一つの特定の参照信号を決定し、
     前記端末で前記特定の参照信号を用いて測定された、前記第2の受信品質を受信する、
     受信方法。
PCT/JP2012/003636 2011-08-05 2012-06-01 端末、送信装置、受信品質報告方法および受信方法 WO2013021531A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US14/234,570 US9451589B2 (en) 2011-08-05 2012-06-01 Terminal, transmitting device, reception quality reporting method and reception method
EP22194926.6A EP4142173A1 (en) 2011-08-05 2012-06-01 Csi-rs reporting for base stations having multiple transmission points
EP12822889.7A EP2725845B1 (en) 2011-08-05 2012-06-01 Terminal, transmitting device, reception quality reporting method and reception method
JP2013527845A JP6026415B2 (ja) 2011-08-05 2012-06-01 端末、送信装置、受信品質報告方法および受信方法
EP18167222.1A EP3373650B1 (en) 2011-08-05 2012-06-01 Csi-rs reporting in coordinated multipoint (comp) systems
US15/232,409 US10771207B2 (en) 2011-08-05 2016-08-09 Terminal and reception power measurement method
US16/944,791 US11882063B2 (en) 2011-08-05 2020-07-31 Terminal and reception power measurement method
US18/529,775 US20240113819A1 (en) 2011-08-05 2023-12-05 Terminal and reception power measurement method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011171710 2011-08-05
JP2011-171710 2011-08-05
JP2011217298 2011-09-30
JP2011-217298 2011-09-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/234,570 A-371-Of-International US9451589B2 (en) 2011-08-05 2012-06-01 Terminal, transmitting device, reception quality reporting method and reception method
US15/232,409 Continuation US10771207B2 (en) 2011-08-05 2016-08-09 Terminal and reception power measurement method

Publications (1)

Publication Number Publication Date
WO2013021531A1 true WO2013021531A1 (ja) 2013-02-14

Family

ID=47668074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/003636 WO2013021531A1 (ja) 2011-08-05 2012-06-01 端末、送信装置、受信品質報告方法および受信方法

Country Status (4)

Country Link
US (4) US9451589B2 (ja)
EP (3) EP2725845B1 (ja)
JP (4) JP6026415B2 (ja)
WO (1) WO2013021531A1 (ja)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013157826A (ja) * 2012-01-30 2013-08-15 Ntt Docomo Inc 移動通信方法、無線基地局及び移動局
JP2013243508A (ja) * 2012-05-21 2013-12-05 Sharp Corp 通信システム、基地局装置、移動局装置、測定方法、および集積回路
JP2014523158A (ja) * 2011-08-11 2014-09-08 聯發科技股▲ふん▼有限公司 協調マルチポイント送信のポイント接続の方法
CN104038312A (zh) * 2013-03-08 2014-09-10 中兴通讯股份有限公司 信道测量导频的指示信令的确定、csi反馈方法及装置
JP2014183486A (ja) * 2013-03-19 2014-09-29 Ntt Docomo Inc ユーザ端末、無線基地局及び無線通信方法
WO2014156969A1 (ja) * 2013-03-25 2014-10-02 株式会社Nttドコモ 移動局及び無線基地局
JP2014187630A (ja) * 2013-03-25 2014-10-02 Ntt Docomo Inc ユーザ端末、無線基地局及び無線通信方法
WO2014155741A1 (ja) * 2013-03-29 2014-10-02 富士通株式会社 通信システム、移動局、基地局、及びセル検出方法
JP2014530560A (ja) * 2011-09-28 2014-11-17 エルジー エレクトロニクスインコーポレイティド 無線通信システムにおける複数の参照信号構成を設定する方法及び装置
WO2014188522A1 (ja) * 2013-05-21 2014-11-27 富士通株式会社 通信装置、及び通信制御方法
CN104244283A (zh) * 2013-06-06 2014-12-24 索尼公司 无线通信方法和无线通信设备
WO2015001923A1 (ja) * 2013-07-04 2015-01-08 シャープ株式会社 端末装置、基地局装置および送信方法
WO2015022813A1 (ja) * 2013-08-12 2015-02-19 ソニー株式会社 通信制御装置、通信制御方法及び端末装置
WO2015066393A1 (en) * 2013-10-31 2015-05-07 Nec Laboratories America, Inc. COORDINATED MULTI-POINT TRANSMISSION AND RECEPTION (CoMP) WITH NON-IDEAL BACKHAUL (NIB)
JPWO2013114832A1 (ja) * 2012-01-30 2015-05-11 日本電気株式会社 無線通信システムおよびレポーティング設定制御方法
WO2015141825A1 (ja) * 2014-03-20 2015-09-24 シャープ株式会社 端末装置、および、基地局装置
WO2015141071A1 (ja) * 2014-03-20 2015-09-24 株式会社Nttドコモ ユーザ装置及び基地局
KR20150138365A (ko) * 2013-04-03 2015-12-09 인터디지탈 패튼 홀딩스, 인크 누산된 송신 전력 제어 커맨드들 및 대응 업링크 서브프레임 세트들에 기초하여 업링크 송신 전력을 제어하는 방법 및 장치
JP2016513375A (ja) * 2013-04-04 2016-05-12 日本電気株式会社 通信システム
JP2016517244A (ja) * 2013-04-26 2016-06-09 アルカテル−ルーセント 干渉ベースのアップリンク・フラクショナル電力制御のための方法および装置
JP2016518740A (ja) * 2013-03-15 2016-06-23 ゼットティーイー ウィストロン テレコム エービー ユーザ機器グループ化およびユーザ機器グループへの共通制御信号伝達
EP3013108A4 (en) * 2013-06-19 2017-03-01 Sony Corporation Communication control device, communication control method, and terminal device
JP2017512441A (ja) * 2014-03-04 2017-05-18 ゼットティーイー コーポレイション チャネル情報のフィードバック方法、パイロットとビームの送信方法、システム及び装置
JP2017098997A (ja) * 2011-01-07 2017-06-01 インターデイジタル パテント ホールディングス インコーポレイテッド 複数の送信ポイントのチャネル状態情報(csi)の通信
KR20180036705A (ko) * 2015-07-31 2018-04-09 퀄컴 인코포레이티드 경쟁 기반 공유 스펙트럼을 포함하는 lte/lte-a 에서 신호 송신의 측정 및 보고
WO2018088538A1 (ja) * 2016-11-11 2018-05-17 株式会社Nttドコモ ユーザ端末及び無線通信方法
WO2018173203A1 (ja) * 2017-03-23 2018-09-27 富士通株式会社 無線基地局、ユーザ装置、通信方法、無線通信方法、及び無線通信システム
US10091743B2 (en) 2009-10-01 2018-10-02 Interdigital Patent Holdings, Inc. Determining power headroom in a wireless network
JP2018534828A (ja) * 2015-09-24 2018-11-22 株式会社Nttドコモ 無線基地局及びユーザ装置
WO2019030928A1 (ja) * 2017-08-10 2019-02-14 株式会社Nttドコモ ユーザ端末及び無線通信方法
JPWO2017195724A1 (ja) * 2016-05-11 2019-03-14 三菱電機株式会社 通信システム
CN109586872A (zh) * 2017-09-29 2019-04-05 华为技术有限公司 信道质量信息的上报方法、终端设备和网络设备
US10271291B2 (en) 2008-12-03 2019-04-23 Interdigital Patent Holdings, Inc. Uplink power headroom reporting for carrier aggregation
JP2019528010A (ja) * 2016-08-12 2019-10-03 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 二つのレベルのモビリティリファレンス信号設定
JP2019530359A (ja) * 2016-09-29 2019-10-17 株式会社Nttドコモ チャネル状態測定方法、送信方法、移動局及び基地局
JP2020500444A (ja) * 2016-09-30 2020-01-09 オッポ広東移動通信有限公司 チャンネル状態情報の送受信方法及び機器
US10798684B2 (en) 2011-09-30 2020-10-06 Interdigital Patent Holdings, Inc. Multipoint transmission in wireless communication
JP2020202599A (ja) * 2016-03-30 2020-12-17 アイディーエーシー ホールディングス インコーポレイテッド 無線システムにおける参照信号測定のためのシステムおよび方法
KR20210013355A (ko) * 2013-03-15 2021-02-03 리어덴 엘엘씨 분산 입력 분산 출력 무선 통신에서 채널 상호성을 활용하는 무선 주파수 교정을 위한 시스템 및 방법
WO2021038656A1 (ja) * 2019-08-23 2021-03-04 株式会社Nttドコモ 端末及び無線通信方法
WO2021038654A1 (ja) * 2019-08-23 2021-03-04 株式会社Nttドコモ 端末及び無線通信方法
WO2021038655A1 (ja) * 2019-08-23 2021-03-04 株式会社Nttドコモ 端末及び無線通信方法
US11039329B2 (en) 2012-06-04 2021-06-15 Interdigital Patent Holdings, Inc. Communicating channel state information (CSI) of multiple transmission points
US11540156B2 (en) 2013-05-08 2022-12-27 Interdigital Patent Holdings, Inc. Methods, systems and apparatuses for network assisted interference cancellation and/or suppression (NAICS) in long-term evolution (LTE) systems
US11962380B2 (en) 2013-04-04 2024-04-16 Nec Corporation Apparatus and method for controlling transmission in a communication system

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102843759B (zh) * 2011-06-23 2016-03-02 华为技术有限公司 一种上行多入多出信道的功率控制方法和用户设备
JP5767530B2 (ja) * 2011-08-15 2015-08-19 株式会社Nttドコモ 無線通信システムおよび通信制御方法
US9456411B2 (en) 2012-03-19 2016-09-27 Nokia Solutions And Networks Oy Transmission point selection
WO2013183946A1 (ko) * 2012-06-05 2013-12-12 엘지전자 주식회사 채널 상태 정보를 보고하는 방법 및 장치
KR20150035760A (ko) * 2012-06-29 2015-04-07 엘지전자 주식회사 무선 통신 시스템에서 csi-rs 측정 및 보고 방법 및 이를 지원하는 장치
US10433159B2 (en) 2012-08-03 2019-10-01 Texas Instruments Incorporated Uplink signaling for cooperative multipoint communication
EP3503617B1 (en) * 2012-08-03 2020-07-01 Sun Patent Trust Wireless communication terminal device, wireless communication base device, and method for generating csi
KR101972945B1 (ko) * 2012-09-18 2019-04-29 삼성전자 주식회사 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 장치
EP2900025A4 (en) * 2012-09-26 2015-08-05 Huawei Tech Co Ltd METHOD AND DEVICE FOR FEEDBACK COMBINATION OF CSI-RS RESOURCES, USER EQUIPMENT AND BASE STATION
WO2014070035A1 (en) * 2012-11-02 2014-05-08 Intel Corporation Handling signal quality measurements in a wireless communication network
WO2014075282A1 (zh) * 2012-11-16 2014-05-22 华为技术有限公司 接入方法及设备
CN103929800B (zh) * 2013-01-11 2017-09-29 电信科学技术研究院 一种pucch功率控制方法及装置
KR20140095912A (ko) * 2013-01-25 2014-08-04 삼성전자주식회사 클라우드 셀 통신 시스템에서 클라우드 셀 멤버 결정 방법 및 장치
KR102071550B1 (ko) * 2013-03-06 2020-01-31 삼성전자주식회사 전력 절감을 위한 이동용 전자 장치 및 그 방법
CN105659687B (zh) * 2013-08-07 2020-01-21 交互数字专利控股公司 在上行链路/下行链路解耦情形中的低成本mtc设备的覆盖增强
JP6096142B2 (ja) * 2013-08-08 2017-03-15 株式会社Nttドコモ ユーザ端末、基地局及び無線通信方法
JP2017022427A (ja) * 2013-11-07 2017-01-26 シャープ株式会社 通信システム、基地局装置、および端末装置
JP2015164281A (ja) * 2014-01-31 2015-09-10 株式会社Nttドコモ ユーザ装置、基地局、及び通信方法
JP6411383B2 (ja) * 2014-01-31 2018-10-24 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 端末及びハンドオーバ判定方法
EP2988542B1 (en) * 2014-08-18 2021-06-02 Alcatel Lucent Cell Identification
CN105357160B (zh) * 2014-08-19 2020-09-15 北京三星通信技术研究有限公司 发送参考信号的方法及装置、接收参考信号的方法及装置
KR102301826B1 (ko) * 2014-08-27 2021-09-14 삼성전자 주식회사 무선 통신 시스템 및 그 시스템에서 간섭 조정을 위한 자원 관리 방법
WO2016074185A1 (en) * 2014-11-13 2016-05-19 Qualcomm Incorporated Standalone carrier sense adaptive transmission (csat) in unlicensed spectrum
US10355757B2 (en) 2015-01-30 2019-07-16 Nokia Solutions And Networks Oy Method and apparatus for performing radio-resource-management measurements
EP3275092B1 (en) * 2015-03-27 2019-10-23 Telefonaktiebolaget LM Ericsson (PUBL) Systems and methods for selecting beam-reference signals for channel-state information reference-signal transmission
WO2016186378A1 (ko) * 2015-05-15 2016-11-24 엘지전자 주식회사 다중 안테나 무선 통신 시스템에서의 참조신호 정보 피드백 방법 및 이를 위한 장치
US10439698B2 (en) * 2015-08-21 2019-10-08 Lg Electronics Inc. Channel state reporting method in wireless communication system and device for same
CN106936488B (zh) * 2015-12-31 2021-02-12 华为技术有限公司 一种csi接收方法及接入网设备
JP6676766B2 (ja) * 2016-02-03 2020-04-08 株式会社Nttドコモ 無線通信方法
CN107231680B (zh) * 2016-03-23 2021-04-30 中兴通讯股份有限公司 一种开环功率控制的方法和装置
US10849026B2 (en) * 2016-05-13 2020-11-24 Qualcomm Incorporated Method and apparatus of uplink and downlink based handover
CN109075932B (zh) * 2016-08-31 2022-03-01 惠州Tcl移动通信有限公司 参考信号配置方法、中央单元及分布单元
US11477637B2 (en) * 2016-09-26 2022-10-18 Nokia Solutions And Networks Oy Communication system
KR102512849B1 (ko) 2016-09-29 2023-03-24 삼성전자 주식회사 측정을 수행하기 위한 장치 및 방법
US10320475B2 (en) * 2016-10-21 2019-06-11 Qualcomm Incorporated Power control in assisted millimeter wave initial access
KR20190082827A (ko) * 2016-11-04 2019-07-10 텔레폰악티에볼라겟엘엠에릭슨(펍) 빔 장애 처리 방법 및 장치
CN110495213B (zh) * 2017-01-04 2022-01-14 瑞典爱立信有限公司 用于无线通信网络中的邻居关系建立的无线电网络节点、网络节点、无线装置以及其中执行的方法
CN108347324B (zh) 2017-01-25 2022-05-31 华为技术有限公司 通信方法和网络设备
CN110447263B (zh) * 2017-03-22 2022-10-28 三星电子株式会社 用于在随机接入(rach)过程期间执行初始波束对准的方法和用户设备
JP6972107B2 (ja) * 2017-03-23 2021-11-24 株式会社Nttドコモ 端末、無線通信方法及び基地局
JP6978511B2 (ja) * 2017-04-12 2021-12-08 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. 上りリンク電力制御方法、機器及びシステム
WO2018198342A1 (ja) * 2017-04-28 2018-11-01 株式会社Nttドコモ ユーザ端末及び無線通信方法
CN108809394A (zh) * 2017-05-04 2018-11-13 株式会社Ntt都科摩 一种混合信道质量测量方法和用户设备
CN108809595B (zh) * 2017-05-05 2024-02-09 华为技术有限公司 一种参考信号通知方法及其装置
CN115038154A (zh) 2017-06-16 2022-09-09 中兴通讯股份有限公司 发送功率的确定方法及装置、终端
WO2019071544A1 (zh) * 2017-10-12 2019-04-18 Oppo广东移动通信有限公司 传输数据的方法、终端设备和网络设备
HUE058109T2 (hu) * 2017-11-09 2022-07-28 Beijing Xiaomi Mobile Software Co Ltd Eljárás és berendezés vezeték nélküli eszközök képességein alapuló kommunikációhoz
US10582489B2 (en) 2018-01-12 2020-03-03 Telefonaktiebolaget Lm Ericsson (Publ) Signaling in RRC and MAC for PDSCH resource mapping for periodic and semipersistent reference signal assumptions
US11665567B2 (en) * 2018-02-15 2023-05-30 Telefonaktiebolaget Lm Ericsson (Publ) Adaptive CSI reporting for carrier aggregation
WO2019194490A1 (ko) * 2018-04-04 2019-10-10 엘지전자 주식회사 측정을 수행하는 방법, 사용자 장치 및 기지국
US11812449B2 (en) * 2018-08-10 2023-11-07 Qualcomm Incorporated Active beam management, configuration, and capability signaling
EP3874800A1 (en) * 2018-11-01 2021-09-08 Telefonaktiebolaget LM Ericsson (publ) Radio network node, user equipment (ue) and methods performed in a wireless communication network
CN111107575B (zh) * 2018-11-02 2021-05-07 维沃移动通信有限公司 一种信号质量参数测量方法和设备
US10893547B2 (en) * 2019-01-22 2021-01-12 Qualcomm Incorporated Configuration of a first message for a two-step random access channel procedure
US11533097B2 (en) * 2019-04-26 2022-12-20 Electronics And Telecommunications Research Institute Method and apparatus for ultra reliable and low latency communication
US11510192B2 (en) * 2019-05-02 2022-11-22 Qualcomm Incorporated Control channel resource grouping and spatial relation configuration
WO2020237612A1 (en) * 2019-05-31 2020-12-03 Qualcomm Incorporated Csi report configuration for full-duplex communications
US11496260B2 (en) * 2019-06-21 2022-11-08 Qualcomm Incorporated Methods and apparatus to facilitate dual stage channel state information reference signal (CSI-RS) selection for CSI feedback
CA3095196A1 (en) 2019-10-02 2021-04-02 Comcast Cable Communications, Llc Transmission and reception point configuration for beam failure recovery
US11671961B2 (en) * 2019-12-20 2023-06-06 Qualcomm Incorporated Signaling of multiple candidate cells for L1/L2-centric inter-cell mobility
US11234199B2 (en) * 2020-01-15 2022-01-25 Ofinno, Llc Power control procedure in a wireless network
WO2022236566A1 (en) * 2021-05-10 2022-11-17 Apple Inc. Cmr and imr configuration enhancement for multi-trp csi-rs reporting

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4326561B2 (ja) * 2006-12-18 2009-09-09 株式会社エヌ・ティ・ティ・ドコモ 移動通信端末及び送信電力制御方法
US8274951B2 (en) * 2009-03-17 2012-09-25 Samsung Electronics Co., Ltd. System and method for dynamic cell selection and resource mapping for CoMP joint transmission
JP5205330B2 (ja) * 2009-04-27 2013-06-05 株式会社日立製作所 無線通信システムおよび無線通信方法ならびに基地局装置
JP5286159B2 (ja) * 2009-05-29 2013-09-11 株式会社日立製作所 無線通信ネットワークおよび無線通信ネットワークにおけるネイバーリストの生成方法ならびに制御装置
EP2439997B1 (en) * 2009-06-02 2019-08-28 Sun Patent Trust Wireless communication apparatus and wireless communication method
JP2011004212A (ja) * 2009-06-19 2011-01-06 Sharp Corp 送信装置、受信装置、通信システムおよび通信方法
WO2011041754A1 (en) * 2009-10-02 2011-04-07 Research In Motion Limited Mobility in a wireless network
BR112012012086A2 (pt) * 2009-11-19 2017-10-03 Interdigital Patent Holdings Inc Ativação/desativação de portadoras componentes em sistemas com múltiplas portadoras
US8824384B2 (en) * 2009-12-14 2014-09-02 Samsung Electronics Co., Ltd. Systems and methods for transmitting channel quality information in wireless communication systems
JP2011171710A (ja) 2010-01-12 2011-09-01 Rohm & Haas Co 光起電モジュールの製造方法
WO2011087272A2 (en) * 2010-01-18 2011-07-21 Lg Electronics Inc. A method and an apparatus for providing channel quality information in a wireless communication system
US9270347B2 (en) * 2010-02-12 2016-02-23 Blackberry Limited Reference signal for a coordinated multi-point network implementation
JP4861487B2 (ja) * 2010-02-15 2012-01-25 株式会社エヌ・ティ・ティ・ドコモ 移動局、無線基地局及び通信制御方法
WO2011099634A1 (ja) * 2010-02-15 2011-08-18 株式会社エヌ・ティ・ティ・ドコモ 無線基地局及び通信制御方法
MX2011006037A (es) * 2010-02-17 2011-10-28 Zte Usa Inc Metodos y sistemas para transmision de csi-rs en sistemas de lte avanzada.
JP5711277B2 (ja) * 2010-03-17 2015-04-30 エルジー エレクトロニクス インコーポレイティド 複数アンテナをサポートする無線通信システムにおいてチャネル状態情報参照信号の設定情報を提供する方法及び装置
JP2011217298A (ja) 2010-04-02 2011-10-27 Sumitomo Electric Ind Ltd Ponシステムとその局側装置及び宅側装置、rttの補正方法
US20110275385A1 (en) * 2010-05-10 2011-11-10 Nokia Corporation System and Methods for Observed Time Difference of Arrival Measurements for Location Services in Cellular Devices
WO2011145886A2 (ko) * 2010-05-18 2011-11-24 엘지전자 주식회사 다중 분산 노드 시스템에서 채널 측정을 수행하기 위한 방법 및 장치
KR101790505B1 (ko) * 2010-06-01 2017-11-21 주식회사 골드피크이노베이션즈 서브프레임 구성에 따른 채널상태정보-기준신호 할당 장치 및 방법
JP5809694B2 (ja) * 2010-06-17 2015-11-11 聯發科技股▲ふん▼有限公司Mediatek Inc. マルチキャリア無線通信システムの測定構成
US8838159B2 (en) * 2010-06-28 2014-09-16 Lg Electronics Inc. Method and apparatus for transmitting reference signal in multi-node system
US20130114562A1 (en) * 2010-07-16 2013-05-09 Lg Electronics Inc. Method and apparatus for controlling uplink transmission power in wireless communication system
EP2911333B1 (en) * 2010-08-16 2019-05-01 ZTE (USA) Inc. Methods and systems for csi-rs resource allocation in lte-advanced systems
US9642021B2 (en) * 2010-10-04 2017-05-02 Telefonaktiebolaget Lm Ericsson (Publ) Acquisition of cell information for enhancing network operation in heterogeneous environment
US9014025B2 (en) * 2010-10-04 2015-04-21 Futurewei Technologies, Inc. System and method for coordinating different types of base stations in a heterogeneous communications system
US9100972B2 (en) * 2010-12-07 2015-08-04 Lg Electronics Inc. Method for controlling inter-cell interference in a wireless communication system that supports a plurality of component carriers, and base station apparatus for same
EP2663130B1 (en) * 2011-01-04 2018-08-08 LG Electronics Inc. Method and apparatus for selecting a node in a distributed multi-node system
EP2738953A1 (en) * 2011-01-07 2014-06-04 Interdigital Patent Holdings, Inc. Communicating channel state information (CSI) of multiple transmission points
JP5092026B2 (ja) * 2011-02-14 2012-12-05 株式会社エヌ・ティ・ティ・ドコモ 基地局装置、移動端末装置、及び通信制御方法
US9673945B2 (en) * 2011-02-18 2017-06-06 Qualcomm Incorporated Implicitly linking aperiodic channel state information (A-CSI) reports to CSI-reference signal (CSI-RS) resources
KR101903569B1 (ko) * 2011-02-21 2018-11-22 삼성전자 주식회사 이동통신 시스템에서 헷넷 환경에서의 단말기의 효율적인 전력 절약 방법 및 장치
US20130336154A1 (en) * 2011-03-01 2013-12-19 Nokia Siemens Networks Oy Sharing Radio Resources Between Access Nodes with Different Access Restrictions
US8515431B2 (en) * 2011-03-28 2013-08-20 Nokia Corporation Methods and apparatuses for facilitating triggered mobility
CN103583005B (zh) * 2011-04-01 2018-04-24 英特尔公司 用于分布式rrh系统中csi-rs配置的设备和方法
US8599711B2 (en) * 2011-04-08 2013-12-03 Nokia Siemens Networks Oy Reference signal port discovery involving transmission points
US8630253B2 (en) * 2011-05-02 2014-01-14 Futurewei Technologies, Inc. System and method for mapping data symbols
CN103503330B (zh) * 2011-05-02 2017-06-06 黑莓有限公司 使用远程射频头的无线通信的方法和系统
JP5716132B2 (ja) * 2011-05-27 2015-05-13 エルジー エレクトロニクス インコーポレイティド 多重ノードシステムにおけるチャネル状態情報送信方法及び装置
EP2719228A4 (en) * 2011-06-08 2014-11-05 Nokia Solutions & Networks Oy EMISSION POWER
US9247564B2 (en) * 2011-06-10 2016-01-26 Lg Electronics Inc. Method and apparatus for transmitting aperiodic channel state information in wireless communication system
US9313747B2 (en) * 2011-07-01 2016-04-12 Intel Corporation Structured codebook for uniform circular array (UCA)
US9755804B2 (en) * 2011-07-12 2017-09-05 Lg Electronics Inc. Method of user equipment monitoring control information in a multiple node system and user equipment using the method
US20130021925A1 (en) * 2011-07-22 2013-01-24 Sharp Laboratories Of America, Inc. Coordinated multipoint (comp) transmission method selection and feedback requirements
US8861430B2 (en) 2011-08-11 2014-10-14 Mediatek Inc. Methods of point association for cooperative multiple point transmission
TWI753150B (zh) * 2017-04-07 2022-01-21 大陸商Oppo廣東移動通信有限公司 資源配置方法

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
"Multiplexing and channel coding (Release 10", 3GPP TS 36.212 V10.1.0, March 2011 (2011-03-01)
"Physical Channels and Modulation (Release 10", 3GPP TS 36.211. V10.1.0, March 2011 (2011-03-01)
"Physical layer procedures (Release 10", 3GPP TS 36.213 V10.1.0, March 2011 (2011-03-01)
"Radio Resource Control (RRC) (Release 10", 3GPP TS 36.331 V10.1.0, March 2011 (2011-03-01)
3GPP TSG RAN WG1 MEETING, RL-100359, January 2010 (2010-01-01)
3GPP TSG RAN WG1 MEETING, RL-110649, February 2011 (2011-02-01)
MARVELL: "High level views for CoMP Feedback for Release 11", 3GPP TSG-RAN WG1 #63BIS, R1- 110268, January 2011 (2011-01-01), pages 1 - 2, XP050490368 *
PANASONIC: "CoMP feedback overhead reduction based on precoded RS", 3GPP TSG RAN WG1 MEETING #58B, R1-093949, October 2009 (2009-10-01), pages 1 - 3, XP050388449 *
PANASONIC: "Flexible CoMP Operation based on Dedicated CSI-RS Configuration", 3GPP TSG RAN WG1 MEETING #65, R1-111587, May 2011 (2011-05-01), pages 1 - 5, XP050491234 *
SAMSUNG: "Discussions on CSI-RS port selection for non-uniform networks with low-power nodes", 3GPP TSG-RAN1#65 MEETING, R1-111469, May 2011 (2011-05-01), pages 1 - 3, XP050491151 *
See also references of EP2725845A4
ZTE: "Views on Rel-11 CoMP", 3GPP TSG RAN WG1 MEETING #63BIS, R1-110573, January 2011 (2011-01-01), pages 1 - 2, XP050490430 *

Cited By (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10798663B2 (en) 2008-12-03 2020-10-06 Interdigital Patent Holdings, Inc. Uplink power headroom reporting for carrier aggregation
US10271291B2 (en) 2008-12-03 2019-04-23 Interdigital Patent Holdings, Inc. Uplink power headroom reporting for carrier aggregation
US10091743B2 (en) 2009-10-01 2018-10-02 Interdigital Patent Holdings, Inc. Determining power headroom in a wireless network
US10292117B2 (en) 2009-10-01 2019-05-14 Interdigital Patent Holdings, Inc. Determining power headroom in a wireless network
JP2017098997A (ja) * 2011-01-07 2017-06-01 インターデイジタル パテント ホールディングス インコーポレイテッド 複数の送信ポイントのチャネル状態情報(csi)の通信
US11621743B2 (en) 2011-01-07 2023-04-04 Interdigital Patent Holdings, Inc. Communicating channel state information (CSI) of multiple transmission points
JP2014523158A (ja) * 2011-08-11 2014-09-08 聯發科技股▲ふん▼有限公司 協調マルチポイント送信のポイント接続の方法
JP2014530560A (ja) * 2011-09-28 2014-11-17 エルジー エレクトロニクスインコーポレイティド 無線通信システムにおける複数の参照信号構成を設定する方法及び装置
US11877291B2 (en) 2011-09-30 2024-01-16 Interdigital Patent Holdings, Inc. Multipoint transmission in wireless communication
US11395275B2 (en) 2011-09-30 2022-07-19 Interdigital Patent Holdings, Inc. Multipoint transmission in wireless communication
US10798684B2 (en) 2011-09-30 2020-10-06 Interdigital Patent Holdings, Inc. Multipoint transmission in wireless communication
JP2016105625A (ja) * 2012-01-30 2016-06-09 日本電気株式会社 移動局およびcsi報告方法
JP2013157826A (ja) * 2012-01-30 2013-08-15 Ntt Docomo Inc 移動通信方法、無線基地局及び移動局
JP2018042251A (ja) * 2012-01-30 2018-03-15 日本電気株式会社 移動局およびcsi報告方法
JPWO2013114832A1 (ja) * 2012-01-30 2015-05-11 日本電気株式会社 無線通信システムおよびレポーティング設定制御方法
JP2013243508A (ja) * 2012-05-21 2013-12-05 Sharp Corp 通信システム、基地局装置、移動局装置、測定方法、および集積回路
US11039329B2 (en) 2012-06-04 2021-06-15 Interdigital Patent Holdings, Inc. Communicating channel state information (CSI) of multiple transmission points
US10425850B2 (en) 2013-03-08 2019-09-24 Xi'an Zhongxing New Software Co., Ltd. Method and device for determining indication signalling of pilot signal for channel measurement and method and device for feeding back CSI
CN104038312A (zh) * 2013-03-08 2014-09-10 中兴通讯股份有限公司 信道测量导频的指示信令的确定、csi反馈方法及装置
EP3706504A1 (en) * 2013-03-08 2020-09-09 ZTE Corporation Method and device for triggering csi feedback, and method and device for feeding back csi
CN104038312B (zh) * 2013-03-08 2019-12-31 中兴通讯股份有限公司 信道测量导频的指示信令的确定、csi反馈方法及装置
EP2966931A4 (en) * 2013-03-08 2016-07-06 Zte Corp METHOD AND DEVICE FOR DETERMINING CHANNEL MEASUREMENT PILOT FREQUENCY SIGNALING SIGNALING, AND CSI REFERRING METHOD AND DEVICE
US10142976B2 (en) 2013-03-15 2018-11-27 Zte Tx Inc. User equipment grouping and common control signaling to user equipment groups
KR102499350B1 (ko) * 2013-03-15 2023-02-10 리어덴 엘엘씨 분산 입력 분산 출력 무선 통신에서 채널 상호성을 활용하는 무선 주파수 교정을 위한 시스템 및 방법
KR20230024439A (ko) * 2013-03-15 2023-02-20 리어덴 엘엘씨 분산 입력 분산 출력 무선 통신에서 채널 상호성을 활용하는 무선 주파수 교정을 위한 시스템 및 방법
JP2016518740A (ja) * 2013-03-15 2016-06-23 ゼットティーイー ウィストロン テレコム エービー ユーザ機器グループ化およびユーザ機器グループへの共通制御信号伝達
KR102547847B1 (ko) * 2013-03-15 2023-06-23 리어덴 엘엘씨 분산 입력 분산 출력 무선 통신에서 채널 상호성을 활용하는 무선 주파수 교정을 위한 시스템 및 방법
KR20210013355A (ko) * 2013-03-15 2021-02-03 리어덴 엘엘씨 분산 입력 분산 출력 무선 통신에서 채널 상호성을 활용하는 무선 주파수 교정을 위한 시스템 및 방법
EP2978268A4 (en) * 2013-03-19 2016-11-02 Ntt Docomo Inc USER DEVICE, RADIO BASIS STATION AND RADIO COMMUNICATION PROCESS
JP2014183486A (ja) * 2013-03-19 2014-09-29 Ntt Docomo Inc ユーザ端末、無線基地局及び無線通信方法
WO2014156969A1 (ja) * 2013-03-25 2014-10-02 株式会社Nttドコモ 移動局及び無線基地局
JP2014187630A (ja) * 2013-03-25 2014-10-02 Ntt Docomo Inc ユーザ端末、無線基地局及び無線通信方法
WO2014156397A1 (ja) * 2013-03-25 2014-10-02 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
JPWO2014155741A1 (ja) * 2013-03-29 2017-02-16 富士通株式会社 通信システム、移動局、基地局、及びセル検出方法
WO2014155741A1 (ja) * 2013-03-29 2014-10-02 富士通株式会社 通信システム、移動局、基地局、及びセル検出方法
US10588036B2 (en) 2013-04-03 2020-03-10 Interdigital Patent Holdings, Inc. Method and apparatus for controlling uplink transmission power based on accumulated transmit power control commands and corresponding uplink subframe sets
KR20150138365A (ko) * 2013-04-03 2015-12-09 인터디지탈 패튼 홀딩스, 인크 누산된 송신 전력 제어 커맨드들 및 대응 업링크 서브프레임 세트들에 기초하여 업링크 송신 전력을 제어하는 방법 및 장치
KR102077882B1 (ko) 2013-04-03 2020-02-14 인터디지탈 패튼 홀딩스, 인크 누산된 송신 전력 제어 커맨드들 및 대응 업링크 서브프레임 세트들에 기초하여 업링크 송신 전력을 제어하는 방법 및 장치
JP2016519507A (ja) * 2013-04-03 2016-06-30 インターデイジタル パテント ホールディングス インコーポレイテッド 累積された送信電力制御コマンドおよび対応するアップリンクサブフレームセットに基づいてアップリンク送信電力を制御するための方法および装置
CN105191445B (zh) * 2013-04-03 2018-11-27 交互数字专利控股公司 一种干扰测量方法、装置及基站
US11025323B2 (en) 2013-04-04 2021-06-01 Nec Corporation Apparatus and method for controlling transmission in a communication system
US10511371B2 (en) 2013-04-04 2019-12-17 Nec Corporation Apparatus and method for controlling transmission in a communication system
JP2016513375A (ja) * 2013-04-04 2016-05-12 日本電気株式会社 通信システム
US11962380B2 (en) 2013-04-04 2024-04-16 Nec Corporation Apparatus and method for controlling transmission in a communication system
US11658718B2 (en) 2013-04-04 2023-05-23 Nec Corporation Apparatus and method for controlling transmission in a communication system
JP2016517244A (ja) * 2013-04-26 2016-06-09 アルカテル−ルーセント 干渉ベースのアップリンク・フラクショナル電力制御のための方法および装置
US11889338B2 (en) 2013-05-08 2024-01-30 Interdigital Patent Holdings, Inc. Methods, systems and apparatuses for network assisted interference cancellation and/or suppression (NAICS) in long-term evolution (LTE) systems
US11540156B2 (en) 2013-05-08 2022-12-27 Interdigital Patent Holdings, Inc. Methods, systems and apparatuses for network assisted interference cancellation and/or suppression (NAICS) in long-term evolution (LTE) systems
WO2014188522A1 (ja) * 2013-05-21 2014-11-27 富士通株式会社 通信装置、及び通信制御方法
JPWO2014188522A1 (ja) * 2013-05-21 2017-02-23 富士通株式会社 通信装置、及び通信制御方法
CN104244283A (zh) * 2013-06-06 2014-12-24 索尼公司 无线通信方法和无线通信设备
US10660099B2 (en) 2013-06-19 2020-05-19 Sony Corporation Communication control device, communication control method, and terminal device
US10244533B2 (en) 2013-06-19 2019-03-26 Sony Corporation Communication control device, communication control method, and terminal device
US9661507B2 (en) 2013-06-19 2017-05-23 Sony Corporation Communication control device, communication control method, and terminal device
EP3013108A4 (en) * 2013-06-19 2017-03-01 Sony Corporation Communication control device, communication control method, and terminal device
EP3261399A1 (en) * 2013-06-19 2017-12-27 Sony Corporation Communication control device, communication control method, and terminal device
US10499397B2 (en) 2013-06-19 2019-12-03 Sony Corporation Communication control device, communication control method, and terminal device
WO2015001923A1 (ja) * 2013-07-04 2015-01-08 シャープ株式会社 端末装置、基地局装置および送信方法
US9807665B2 (en) 2013-08-12 2017-10-31 Sony Corporation Communication control device, communication control method, and terminal device
CN105103629A (zh) * 2013-08-12 2015-11-25 索尼公司 通信控制设备、通信控制方法和终端设备
JP2015037205A (ja) * 2013-08-12 2015-02-23 ソニー株式会社 通信制御装置、通信制御方法及び端末装置
WO2015022813A1 (ja) * 2013-08-12 2015-02-19 ソニー株式会社 通信制御装置、通信制御方法及び端末装置
WO2015066393A1 (en) * 2013-10-31 2015-05-07 Nec Laboratories America, Inc. COORDINATED MULTI-POINT TRANSMISSION AND RECEPTION (CoMP) WITH NON-IDEAL BACKHAUL (NIB)
JP2017512441A (ja) * 2014-03-04 2017-05-18 ゼットティーイー コーポレイション チャネル情報のフィードバック方法、パイロットとビームの送信方法、システム及び装置
WO2015141071A1 (ja) * 2014-03-20 2015-09-24 株式会社Nttドコモ ユーザ装置及び基地局
CN105940708A (zh) * 2014-03-20 2016-09-14 夏普株式会社 终端装置以及基站装置
CN105940708B (zh) * 2014-03-20 2020-02-14 夏普株式会社 终端装置、基站装置、通信方法以及集成电路
WO2015141825A1 (ja) * 2014-03-20 2015-09-24 シャープ株式会社 端末装置、および、基地局装置
US9930559B2 (en) 2014-03-20 2018-03-27 Sharp Kabushiki Kaisha Terminal device and base station device
EP3122104A4 (en) * 2014-03-20 2017-10-25 Sharp Kabushiki Kaisha Terminal device and base station device
US9743348B2 (en) 2014-03-20 2017-08-22 Ntt Docomo, Inc. User equipment and base station
JP2015185955A (ja) * 2014-03-20 2015-10-22 株式会社Nttドコモ ユーザ装置及び基地局
JPWO2015141825A1 (ja) * 2014-03-20 2017-04-13 シャープ株式会社 端末装置、および、基地局装置
KR102538194B1 (ko) * 2015-07-31 2023-05-30 퀄컴 인코포레이티드 경쟁 기반 공유 스펙트럼을 포함하는 lte/lte-a 에서 신호 송신의 측정 및 보고
JP2018528661A (ja) * 2015-07-31 2018-09-27 クゥアルコム・インコーポレイテッドQualcomm Incorporated 競合ベースの共有スペクトルを含むlte/lte−aにおける信号送信の測定および報告
KR20180036705A (ko) * 2015-07-31 2018-04-09 퀄컴 인코포레이티드 경쟁 기반 공유 스펙트럼을 포함하는 lte/lte-a 에서 신호 송신의 측정 및 보고
JP2018534828A (ja) * 2015-09-24 2018-11-22 株式会社Nttドコモ 無線基地局及びユーザ装置
JP2020202599A (ja) * 2016-03-30 2020-12-17 アイディーエーシー ホールディングス インコーポレイテッド 無線システムにおける参照信号測定のためのシステムおよび方法
JP7288887B2 (ja) 2016-03-30 2023-06-08 アイディーエーシー ホールディングス インコーポレイテッド 無線システムにおける参照信号測定のためのシステムおよび方法
JPWO2017195724A1 (ja) * 2016-05-11 2019-03-14 三菱電機株式会社 通信システム
JP2022050676A (ja) * 2016-05-11 2022-03-30 三菱電機株式会社 通信システム
JP2019528010A (ja) * 2016-08-12 2019-10-03 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 二つのレベルのモビリティリファレンス信号設定
US11202219B2 (en) 2016-08-12 2021-12-14 Telefonaktiebolaget Lm Ericsson (Publ) Two-level mobility reference signal configuration
JP2022033785A (ja) * 2016-08-12 2022-03-02 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 二つのレベルのモビリティリファレンス信号設定
JP7035031B2 (ja) 2016-09-29 2022-03-14 株式会社Nttドコモ チャネル状態測定方法、送信方法、移動局及び基地局
JP2019530359A (ja) * 2016-09-29 2019-10-17 株式会社Nttドコモ チャネル状態測定方法、送信方法、移動局及び基地局
JP2020500444A (ja) * 2016-09-30 2020-01-09 オッポ広東移動通信有限公司 チャンネル状態情報の送受信方法及び機器
US11082960B2 (en) 2016-09-30 2021-08-03 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and device for transmitting or receiving channel state information
JPWO2018088538A1 (ja) * 2016-11-11 2019-10-10 株式会社Nttドコモ ユーザ端末及び無線通信方法
JP7183047B2 (ja) 2016-11-11 2022-12-05 株式会社Nttドコモ 端末、無線通信方法、基地局及びシステム
WO2018088538A1 (ja) * 2016-11-11 2018-05-17 株式会社Nttドコモ ユーザ端末及び無線通信方法
CN110169110A (zh) * 2016-11-11 2019-08-23 株式会社Ntt都科摩 用户终端以及无线通信方法
WO2018173203A1 (ja) * 2017-03-23 2018-09-27 富士通株式会社 無線基地局、ユーザ装置、通信方法、無線通信方法、及び無線通信システム
JPWO2019030928A1 (ja) * 2017-08-10 2020-08-13 株式会社Nttドコモ ユーザ端末及び無線通信方法
WO2019030928A1 (ja) * 2017-08-10 2019-02-14 株式会社Nttドコモ ユーザ端末及び無線通信方法
JP7144420B2 (ja) 2017-08-10 2022-09-29 株式会社Nttドコモ 端末、無線通信方法及びシステム
CN109586872A (zh) * 2017-09-29 2019-04-05 华为技术有限公司 信道质量信息的上报方法、终端设备和网络设备
US11405163B2 (en) 2017-09-29 2022-08-02 Huawei Technologies Co., Ltd. Channel quality information reporting method, terminal device, and network device
CN114600492A (zh) * 2019-08-23 2022-06-07 株式会社Ntt都科摩 终端以及无线通信方法
WO2021038655A1 (ja) * 2019-08-23 2021-03-04 株式会社Nttドコモ 端末及び無線通信方法
WO2021038656A1 (ja) * 2019-08-23 2021-03-04 株式会社Nttドコモ 端末及び無線通信方法
JP7418450B2 (ja) 2019-08-23 2024-01-19 株式会社Nttドコモ 端末、無線通信方法及びシステム
JPWO2021038656A1 (ja) * 2019-08-23 2021-03-04
CN114616853A (zh) * 2019-08-23 2022-06-10 株式会社Ntt都科摩 终端以及无线通信方法
WO2021038654A1 (ja) * 2019-08-23 2021-03-04 株式会社Nttドコモ 端末及び無線通信方法

Also Published As

Publication number Publication date
JP6026415B2 (ja) 2016-11-16
JPWO2013021531A1 (ja) 2015-03-05
JP2017005767A (ja) 2017-01-05
EP4142173A1 (en) 2023-03-01
JP6669918B2 (ja) 2020-03-18
EP2725845B1 (en) 2018-05-16
EP2725845A4 (en) 2015-04-22
US20140177601A1 (en) 2014-06-26
JP6374464B2 (ja) 2018-08-15
JP2019165463A (ja) 2019-09-26
JP6518825B2 (ja) 2019-05-22
US11882063B2 (en) 2024-01-23
EP3373650B1 (en) 2022-11-16
US9451589B2 (en) 2016-09-20
US20240113819A1 (en) 2024-04-04
EP2725845A1 (en) 2014-04-30
EP3373650A1 (en) 2018-09-12
US20200358568A1 (en) 2020-11-12
JP2018182753A (ja) 2018-11-15
US20160352477A1 (en) 2016-12-01
US10771207B2 (en) 2020-09-08

Similar Documents

Publication Publication Date Title
JP6669918B2 (ja) ノード、送受信方法および集積回路
JP6625704B2 (ja) アンライセンスバンドにおけるパワー制御
US10506577B2 (en) Systems and methods for adaptive transmissions in a wireless network
JP7183047B2 (ja) 端末、無線通信方法、基地局及びシステム
US9331827B2 (en) Enhanced receiver configuration adaptive to cyclic prefix configuration
US9973956B2 (en) Method and apparatus for measurement procedures with composite dynamic subframes in dynamic TDD
WO2018171006A1 (zh) 干扰测量方法及相关设备
EP2850762B1 (en) Methods of sending feedback signaling under carrier specific measurement gaps in multi-carrier
EP3062575B1 (en) Terminal apparatus and method in terminal apparatus
TW202042515A (zh) 寬頻載波中高效之頻寬部分切換方法及其使用者設備
US20140321314A1 (en) User equipment and a radio network node, and methods therein
JP2023512795A (ja) 測定制限に基づいたl1-sinr測定手順
CN115299135A (zh) 用于参数设置的方法和装置
JP2019535159A (ja) 無線通信システムにおけるセル変更
RU2649309C1 (ru) Способ приоритетной идентификации и измерения ячеек
CN111095814A (zh) 执行波束报告的用户设备
WO2023031190A1 (en) Channel state information reference signal enhancements for wireless devices
EP4252379A1 (en) Non-collocated scell selection for carrier aggregation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822889

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013527845

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14234570

Country of ref document: US

Ref document number: 2012822889

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE