WO2018171006A1 - 干扰测量方法及相关设备 - Google Patents

干扰测量方法及相关设备 Download PDF

Info

Publication number
WO2018171006A1
WO2018171006A1 PCT/CN2017/083151 CN2017083151W WO2018171006A1 WO 2018171006 A1 WO2018171006 A1 WO 2018171006A1 CN 2017083151 W CN2017083151 W CN 2017083151W WO 2018171006 A1 WO2018171006 A1 WO 2018171006A1
Authority
WO
WIPO (PCT)
Prior art keywords
interference measurement
terminal
measurement signal
signal
network device
Prior art date
Application number
PCT/CN2017/083151
Other languages
English (en)
French (fr)
Inventor
张莉莉
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201780001806.4A priority Critical patent/CN108934188B/zh
Priority to AU2017405544A priority patent/AU2017405544B2/en
Priority to EP17902263.7A priority patent/EP3592024B1/en
Priority to JP2019552531A priority patent/JP6899446B2/ja
Priority to US16/496,490 priority patent/US11284355B2/en
Priority to RU2019133487A priority patent/RU2749350C2/ru
Priority to CA3057541A priority patent/CA3057541A1/en
Priority to KR1020197030735A priority patent/KR102319178B1/ko
Publication of WO2018171006A1 publication Critical patent/WO2018171006A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control

Definitions

  • the present application relates to the field of communication technologies, and more specifically, to an interference measurement method and related equipment.
  • the flexible duplex can adaptively allocate uplink and downlink resources according to the distribution of uplink and downlink services, which can effectively improve the resource utilization of the communication system, and thus can meet the demand for asymmetric characteristics of the future network.
  • One of the duplex modes of the flexible duplex technology is a flexible band technology, which configures some uplink frequency bands in a Frequency Division Duplex (FDD) system as flexible frequency bands.
  • the flexible frequency band is allocated to the uplink transmission or the downlink transmission according to the distribution of the uplink and downlink services in the network, so that the uplink and downlink spectrum resources are matched with the uplink and downlink service requirements, thereby improving spectrum utilization.
  • the network may configure the frequency band originally used for uplink transmission as the frequency band used for downlink transmission.
  • TDD Time Division Duplex
  • LTE Long Term Evolution
  • DL downlink
  • Interference When the service requires that some uplink (UL) bands are configured as the downlink (DL) band, the cross-link interference of neighboring cells on the same time domain/frequency domain resource may be caused, that is, between different link directions. Interference.
  • the present application provides an interference measurement method for measuring cross-link interference existing between adjacent cells, that is, interference between different link directions, and further performing power control based on the measured interference.
  • the present application provides an interference measurement method, including: a first terminal transmitting an interference measurement signal on an interference measurement resource; wherein the interference measurement signal is a signal used to measure interference between links in different directions, The different directions include a downlink direction between the first terminal and the first network device, and an uplink direction between the second terminal and the second network device, where the second terminal is configured according to the interference measurement resource information and the interference measurement signal information. Measuring the interference measurement signal to obtain the strength of the interference measurement signal; the second terminal controls according to the strength of the interference measurement signal The second terminal transmits the power of the data signal to the second network device.
  • the first terminal sends the interference measurement signal on the interference measurement resource, including: the first terminal receives the indication information of the interference measurement resource and/or the indication information of the interference measurement signal; where the indication information of the interference measurement resource includes Interference at least one of a time domain location, a frequency domain location, and a spatial domain location of the measurement signal transmission; the first terminal indicates, by the indication information of the interference measurement signal, the interference measurement resource indicated by the indication information of the interference measurement resource Interference measurement signal.
  • the first terminal receives the indication information of the interference measurement resource and/or the indication information of the interference measurement signal, where the first terminal receives the indication information of the interference measurement resource sent by the first network device or the second network device.
  • the first terminal receives indication information of the interference measurement signal sent by the first network device or the second network device.
  • the first terminal receives the indication information of the interference measurement resource and/or the indication information of the interference measurement signal, including: configuring the indication information of the interference measurement resource and/or the interference measurement signal by using the OAM for the first terminal. Instructions.
  • the time domain location comprises: a subframe, a time slot, a mini subframe, a minislot, an OFDM symbol, or a resource unit of less than one OFDM symbol.
  • the frequency domain location includes: a frequency band, a sub-band, a frequency domain offset, a control channel element, or a physical resource block.
  • the spatial domain location comprises: information of a transmission port or a transmission beam, wherein the information of the transmission beam is a beam-related identification.
  • the time domain location is located in any one of the following subframes: a subframe including a PDCCH, a PDSCH, and a PUCCH, a subframe including a PDCCH, a PUSCH, and a PUCCH, and a subframe including a PDCCH and a PDSCH, including a PUCCH and a PUSCH. Subframe.
  • the interference measurement resource is one or more OFDM symbols after the PDCCH; if the time domain location is located in a PDCCH, a PDSCH, and In the subframe of the PUCCH, the interference measurement resource is one or more OFDM symbols before the PUCCH.
  • the interference measurement signal is: a demodulation reference signal, a channel state information reference signal, a response reference signal, a preamble, or a novel signal.
  • the indication information of the interference measurement signal includes at least one of the following: a sequence length, a cyclic shift, a physical cell identifier, and an initial value of the pseudo-random sequence.
  • the indication information of the interference measurement signal further includes: a transmission port or a transmission beam of the interference measurement signal, wherein the transmission beam is a beam-related identifier.
  • the beam-related identification includes a synchronization signal resource block, a time domain identification of the synchronization signal, or an identification of the reference signal.
  • the second terminal controls, according to the strength of the interference measurement signal, the power of the second terminal to send the data signal to the second network device, where the second terminal receives the feature of the interference measurement signal and the location of the data signal.
  • a relationship between the location includes at least one of a time domain, a frequency domain, and a spatial domain; the second terminal determines a feature of the interference measurement signal sent by the first terminal, and determines the first according to the relationship a position of the data signal corresponding to the interference measurement signal sent by the terminal; the second terminal controls the second terminal to determine according to the strength of the interference measurement signal The position of the control data signal transmission power.
  • the second terminal receives a relationship between a feature of the interference measurement signal and a location of the data signal, where the second terminal receives the feature and data of the interference measurement signal sent by the first network device or the second network device.
  • the relationship between the positions of the signals is a relationship between a feature of the interference measurement signal and a location of the data signal.
  • the second terminal receives a relationship between a feature of the interference measurement signal and a location of the data signal, including: configuring, by the OAM, between the feature of the interference measurement signal and the location of the data signal for the second terminal relationship.
  • the indication information of the interference measurement resource, the indication information of the interference measurement signal, and any one of a relationship between a feature of the interference measurement signal and a location of the data signal passes through RRC signaling, MAC At least one of layer signaling or physical layer signaling is sent.
  • the indication information of the interference measurement resource, the indication information of the interference measurement signal, and any relationship between the characteristics of the interference measurement signal and the location of the data signal are pre-configured by RRC signaling. , activated or deactivated by physical layer signaling.
  • the interference measurement resource and/or the interference measurement signal are time domain orthogonal, frequency domain orthogonal or code domain orthogonal.
  • the strength of the interference measurement signal measured by the second terminal includes any one or more of the following items: reference signal received power, reference signal received quality, received signal strength indication, channel quality indicator, and Channel status indication.
  • the second terminal controls, according to the strength of the interference measurement signal, the power of the second terminal to send the data signal to the second network device, including: the second terminal according to the strength of the interference measurement signal and the uplink Determining a correspondence between the modulation and coding policies to determine an uplink modulation and coding strategy to the second network device; or determining, by the second terminal, the correspondence between the strength of the interference measurement signal and the transmission power control parameter, to the second network device Uplink transmission power.
  • the second terminal receives the signaling sent by the second network device, where the signaling includes: a correspondence between an intensity of the interference measurement signal and a modulation coding strategy of the uplink, and/or the interference measurement The correspondence between the strength of the signal and the transmission power control parameters.
  • the signaling is at least one of radio resource control signaling, MAC layer signaling, or physical layer signaling.
  • the physical layer signaling is signaling in uplink grant signaling or downlink control information.
  • the transmission power control parameter includes any one or more of the following: a target power value, a path loss compensation factor, a closed loop transmission power value, and a cross-link interference parameter.
  • the cross-link interference parameter is sent by the second network device to the second terminal through high layer signaling; when the interference measurement is short-term, the cross-link The interference parameter is sent by the second network device to the second terminal by using MAC layer signaling or physical layer signaling.
  • the correspondence between the strength of the interference measurement signal and the modulation coding strategy of the uplink includes: a correspondence between an intensity level of the interference measurement signal and a modulation coding strategy of the uplink.
  • the correspondence between the strength of the interference measurement signal and the transmission power control parameter includes: a correspondence between an intensity level of the interference measurement signal and a transmission power control parameter.
  • the intensity level is determined by a signal strength threshold.
  • an interference measurement method including:
  • the second terminal sends an interference measurement signal on the interference measurement resource, where the interference measurement signal is a signal used to measure interference between links in different directions, where the different direction includes a downlink direction between the first terminal and the first network device And an uplink direction between the second terminal and the second network device; the first terminal measures the interference measurement signal according to the information of the interference measurement resource and the information of the interference measurement signal, to obtain the interference measurement signal. strength.
  • the interference measurement signal is a signal used to measure interference between links in different directions, where the different direction includes a downlink direction between the first terminal and the first network device And an uplink direction between the second terminal and the second network device; the first terminal measures the interference measurement signal according to the information of the interference measurement resource and the information of the interference measurement signal, to obtain the interference measurement signal. strength.
  • the interference measurement method further includes the first terminal transmitting the strength of the interference measurement signal to the first network device.
  • the interference measurement method further includes: the first network device controlling, according to the strength of the interference measurement signal, the power of the first network device to send the data signal to the first terminal.
  • the type of the strength of the interference measurement signal measured by the first terminal includes any one or more of the following items: reference signal received power, reference signal received quality, received signal strength indication, channel quality Indication and channel status indication.
  • the interference measurement method further includes the first terminal establishing an association relationship between a type of the strength of the interference measurement signal and an uplink direction.
  • the interference measurement method further includes: the first terminal transmitting an association relationship between a type of the strength of the interference measurement signal and an uplink direction to the first network device.
  • the first terminal sends the association between the type of the strength of the interference measurement signal and the uplink direction to the first network device, where the first terminal passes any of the following two resources.
  • a resource the association between the type of the strength of the interference measurement signal and the uplink direction is sent to the first network device; where the resource includes: the reserved frame located in the PUCCH in the subframe including the PDCCH, the PDSCH, and the PUCCH The reserved resource located in the PUSCH or PUCCH in the subframe including the PDCCH, the PUSCH, and the PUCCH.
  • the first terminal sends the strength of the interference measurement signal to the first network device, where the first terminal sends the interference measurement signal by using any one of the following two resources:
  • the strength is sent to the first network device, where the resource includes: the reserved resource located in the PUCCH in the subframe including the PDCCH, the PDSCH, and the PUCCH, and the pre-presence of the PUSCH or the PUCCH in the subframe including the PDCCH, the PUSCH, and the PUCCH Resources left.
  • the reserved resource is included in at least one of RRC signaling, MAC layer signaling, and physical layer signaling sent by the first network device.
  • the present application provides an interference measurement method, including: a first network device sends an interference measurement signal to a second network device on an interference measurement resource; wherein the interference measurement signal is used to measure a link between different directions.
  • the interference signal is measured by the second network device according to the information of the interference measurement resource and the information of the interference measurement signal, to obtain the strength of the interference measurement signal.
  • the interference measurement method further includes the second network device transmitting the strength of the interference measurement signal to the first network device.
  • the interference measurement method further includes: the first network device transmitting the indication information of the interference measurement resource and/or the indication information of the interference measurement signal to the first terminal, so that the first terminal receives the indication according to the indication information.
  • Number Data processing based on rate matching or puncturing.
  • the interference measurement method further includes: the second network device transmitting the indication information of the interference measurement resource and/or the indication information of the interference measurement signal to the second terminal, so that the second terminal performs uplink according to the indication information. Data rate matching or punctured data operations for transferring data.
  • the indication information of the interference measurement resource and/or the indication information of the interference measurement signal is sent by at least one of RRC signaling, MAC layer signaling, and physical layer signaling.
  • the application provides a terminal, including: a receiver, configured to receive indication information of an interference measurement resource and/or indication information of an interference measurement signal; where the indication information of the interference measurement resource includes a time when the interference measurement signal is transmitted. At least one of a domain location, a frequency domain location, and a spatial domain location; a transmitter, configured to send, by the interference measurement resource indicated by the indication information of the interference measurement resource, an interference measurement signal indicated by the indication information of the interference measurement signal;
  • the interference measurement signal is a signal for measuring interference between links in different directions.
  • the receiver is configured to receive the indication information of the interference measurement resource and/or the indication information of the interference measurement signal
  • the method includes: a receiver, configured to receive an indication of the interference measurement resource sent by the first network device or the second network device. And receiving indication information of the interference measurement signal sent by the first network device or the second network device.
  • the receiver is configured to receive the indication information of the interference measurement resource and/or the indication information of the interference measurement signal
  • the method includes: a receiver, configured to receive indication information for configuring the interference measurement resource by using the OAM for the first terminal, and / or indication of interference with the measurement signal.
  • the time domain location comprises: a subframe, a time slot, a mini subframe, a minislot, an OFDM symbol, or a resource unit of less than one OFDM symbol.
  • the frequency domain location includes: a frequency band, a sub-band, a frequency domain offset, a control channel element, or a physical resource block.
  • the spatial domain location comprises: information of a transmission port or a transmission beam, wherein the information of the transmission beam is a beam-related identification.
  • the time domain location is located in any one of the following subframes: a subframe including a PDCCH, a PDSCH, and a PUCCH, a subframe including a PDCCH, a PUSCH, and a PUCCH, and a subframe including a PDCCH and a PDSCH, including a PUCCH and a PUSCH. Subframe.
  • the interference measurement resource is one or more OFDM symbols after the PDCCH; if the time domain location is located in a PDCCH, a PDSCH, and In the subframe of the PUCCH, the interference measurement resource is one or more OFDM symbols before the PUCCH.
  • the interference measurement signal is: a demodulation reference signal, a channel state information reference signal, a response reference signal, a preamble, or a novel signal.
  • the indication information of the interference measurement signal includes at least one of the following: a sequence length, a cyclic shift, a physical cell identifier, and an initial value of the pseudo-random sequence.
  • the indication information of the interference measurement signal further includes: a transmission port or a transmission beam of the interference measurement signal, wherein the transmission beam is a beam-related identifier.
  • the beam-related identification includes a synchronization signal resource block, a time domain identification of the synchronization signal, or an identification of the reference signal.
  • the receiver is configured to receive the indication information of the interference measurement resource and/or the indication information of the interference measurement signal, including: the receiver, specifically, receiving at least one of RRC signaling, MAC layer signaling, or physical layer signaling.
  • the signaling includes indication information of the interference measurement resource and/or indication information of the interference measurement signal.
  • the receiver is configured to receive the indication information of the interference measurement resource and/or the indication information of the interference measurement signal
  • the method includes: a receiver, configured to receive RRC signaling, where the RRC signaling is used to pre-configure the interference. And indication information of the measurement resource and/or the indication information of the interference measurement signal; and configured to receive physical layer signaling, where the physical layer signaling is used to activate or deactivate the pre-configured indication information of the interference measurement resource and / or indication information of the interference measurement signal.
  • the interference measurement resource and/or the interference measurement signal are time domain orthogonal, frequency domain orthogonal, or code domain orthogonal.
  • the application provides a terminal, including: a processor, configured to measure, according to information of an interference measurement resource and information of an interference measurement signal, an interference measurement signal transmitted by another terminal, to obtain an intensity of the interference measurement signal.
  • the interference measurement signal is a signal for measuring interference between links in different directions, the different direction includes a downlink direction between the other terminal and the first network device, and between the terminal and the second network device The uplink direction; and controlling the power of the terminal to transmit the data signal to the second network device according to the strength of the interference measurement signal.
  • the terminal further includes: a receiver configured to receive a relationship between a feature of the interference measurement signal and a location of the data signal, wherein the location includes at least one of a time domain, a frequency domain, and a spatial domain;
  • the processor is configured to control, according to the strength of the interference measurement signal, the power of the terminal to send the data signal to the second network device, where the processor is specifically configured to determine a feature of the interference measurement signal sent by the first terminal, and according to the Determining a position of the data signal corresponding to the interference measurement signal sent by the first terminal; and controlling, according to the strength of the interference measurement signal, the second terminal to control the transmission power of the data signal at the determined position.
  • the receiver is configured to receive a relationship between a feature of the interference measurement signal and a location of the data signal, including: a receiver, configured to receive a feature of the interference measurement signal sent by the first network device or the second network device The relationship between the locations of the data signals.
  • the receiver is configured to receive a relationship between a feature of the interference measurement signal and a location of the data signal, including: a receiver, configured to receive a feature and a data signal for configuring the interference measurement signal for the second terminal by using OAM The relationship between the locations.
  • the receiver is configured to receive a relationship between a feature of the interference measurement signal and a location of the data signal, including: a receiver, configured to receive at least one of RRC signaling, MAC layer signaling, or physical layer signaling. And the signaling includes a relationship between a feature of the interference measurement signal and a location of the data signal.
  • the receiver is configured to receive a relationship between a feature of the interference measurement signal and a location of the data signal, including: a receiver, specifically configured to receive RRC signaling, where the RRC signaling is used to pre-configure the interference measurement signal. a relationship between a feature and a location of the data signal; and for receiving physical layer signaling for activating or deactivating between a feature of the pre-configured interference measurement signal and a location of the data signal relationship.
  • the strength of the interference measurement signal measured by the processor includes any one or more of the following items: reference signal received power, reference signal received quality, received signal strength indication, channel quality indicator, and channel. Status indication.
  • the processor is configured to control, according to the strength of the interference measurement signal, the power of the terminal to send a data signal to the second network device, where the processor includes: a processor, specifically, according to the strength of the interference measurement signal and the uplink. Corresponding relationship between modulation coding strategies, determining an uplink modulation and coding strategy to the second network device; or determining uplink transmission to the second network device according to a correspondence between the strength of the interference measurement signal and the transmission power control parameter power.
  • the terminal further includes: a receiver, configured to receive signaling sent by the second network device, where the signaling includes: a correspondence between an intensity of the interference measurement signal and an uplink modulation coding strategy, and / or a correspondence between the strength of the interference measurement signal and the transmission power control parameter.
  • the signaling is at least one of radio resource control signaling, MAC layer signaling, or physical layer signaling.
  • the physical layer signaling is signaling in uplink grant signaling or downlink control information.
  • the transmission power control parameter includes any one or more of the following: a target power value, a path loss compensation factor, a closed loop transmission power value, and a cross-link interference parameter.
  • the receiver is configured to receive a cross-link interference parameter transmitted by the second network device by the second network device to the second terminal when the interference measurement is medium or long; and when the interference measurement is short-term, receive A cross-link interference parameter sent by the second network device to the second terminal by using MAC layer signaling or physical layer signaling.
  • the correspondence between the strength of the interference measurement signal and the modulation coding strategy of the uplink includes: a correspondence between an intensity level of the interference measurement signal and a modulation coding strategy of the uplink.
  • the correspondence between the strength of the interference measurement signal and the transmission power control parameter includes: a correspondence between an intensity level of the interference measurement signal and a transmission power control parameter.
  • the intensity level is determined by a signal strength threshold.
  • the application provides a terminal, including: a processor, configured to measure, according to information of an interference measurement resource and information of an interference measurement signal, an interference measurement signal transmitted by another terminal, to obtain an intensity of the interference measurement signal.
  • the interference measurement signal is a signal for measuring interference between links in different directions, the different direction includes a downlink direction between the other terminal and the first network device, and between the terminal and the second network device The upward direction.
  • the terminal further includes: a transmitter: the strength for the interference measurement signal is sent to the first network device.
  • the type of the strength of the interference measurement signal measured by the processor includes any one or more of the following items: reference signal received power, reference signal received quality, received signal strength indication, channel quality indicator And channel status indication.
  • the processor is further configured to establish an association between a type of strength of the interference measurement signal and an uplink direction.
  • the terminal further includes: a transmitter: configured to send an association between a type of strength of the interference measurement signal and an uplink direction to the first network device.
  • the transmitter is configured to send the association between the type of the strength of the interference measurement signal and the uplink direction to the first network device, including: a transmitter, specifically for using any one of the following two resources: a resource, the association between the type of the strength of the interference measurement signal and the uplink direction is sent to the first network device;
  • the resource includes: a reserved resource located in the PUCCH in the subframe including the PDCCH, the PDSCH, and the PUCCH, and a reserved resource located in the PUSCH or the PUCCH in the subframe including the PDCCH, the PUSCH, and the PUCCH.
  • the transmitter sends the strength of the interference measurement signal to the first network device, including: a transmitter, specifically for using the strength of the interference measurement signal by using any one of the following two resources: Sending to the first network device, where the resource includes: reserved resources located in the PUCCH in the subframe including the PDCCH, the PDSCH, and the PUCCH, reserved in the PUSCH or PUCCH in the subframe including the PDCCH, the PUSCH, and the PUCCH Resources.
  • the reserved resource is included in at least one of RRC signaling, MAC layer signaling, and physical layer signaling sent by the first network device.
  • the application further provides a network device, including: a transmitter, configured to send an interference measurement signal to another network device on an interference measurement resource; wherein the interference measurement signal is used to measure links between different directions The signal of the interference.
  • the transmitter is further configured to send indication information of the interference measurement resource and/or indication information of the interference measurement signal to a terminal associated with the network device, so that the terminal receives according to the indication information.
  • indication information of the interference measurement resource and/or indication information of the interference measurement signal to a terminal associated with the network device, so that the terminal receives according to the indication information.
  • the indication information of the interference measurement resource and/or the indication information of the interference measurement signal is sent by at least one of RRC signaling, MAC layer signaling, and physical layer signaling.
  • the application provides a network device, including: a processor, configured to measure, according to information of an interference measurement resource and information of an interference measurement signal, an interference measurement signal transmitted by another network device, to obtain the interference measurement. The strength of the signal.
  • the network device further includes a transmitter for transmitting the strength of the interference measurement signal to the another network device.
  • the network device further includes: a transmitter, configured to send, to the terminal associated with the network device, indication information of the interference measurement resource and/or indication information of an interference measurement signal, so that the terminal is configured according to the The indication information is used for rate matching or puncturing data operations of the uplink transmission data.
  • the indication information of the interference measurement resource and/or the indication information of the interference measurement signal is sent by at least one of RRC signaling, MAC layer signaling, and physical layer signaling.
  • FIG. 1 is a schematic diagram of two TDD configuration modes allowed by a cell provided by the present application
  • FIG. 2 is a schematic diagram of interference between adjacent cells provided by the present application.
  • FIG. 3 is a system architecture diagram of interference generated between adjacent cells provided by the present application.
  • FIG. 5 is a schematic diagram of a novel subframe provided by the present application.
  • FIG. 7 is still another schematic flowchart of interference measurement based power control provided by the present application.
  • FIG. 8 is a schematic structural diagram of a hardware of a first terminal provided by the present application.
  • FIG. 9 is a schematic structural diagram of a hardware of a second terminal provided by the present application.
  • FIG. 10 is a schematic diagram of another hardware structure of a first terminal provided by the present application.
  • FIG. 11 is a schematic structural diagram of a hardware of a first base station provided by the present application.
  • FIG. 12 is a schematic structural diagram of a hardware of a second base station provided by the present application.
  • a base station and a terminal can work in a flexible duplex mode, and between one neighboring cell using a flexible duplex mode, data transmission in one direction of one cell is in another direction of another cell.
  • Data transmission causes interference, and interference caused by such communication links in different directions may be referred to as cross-link interference.
  • the data transmission may be a transmission on a control channel or a data channel, and data transmission in one direction of one cell may cause interference in data transmission in another direction of another cell, including: a direction of a cell Interference between data transmission of a control channel and data transmission of a control channel of another direction of another cell, or data transmission of a control channel of one direction of one cell and a data channel of another direction of another cell Interference between data transmissions, or interference between data transmission of a data channel in one direction of one cell and data transmission of a data channel in another direction of another cell.
  • the duplex mode may include two types: Time Division Duplex (TDD) and Frequency Division Duplex (FDD).
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the configuration of the uplink data and the downlink data may include seven of the following table.
  • D indicates that the direction of the subframe is downlink
  • U indicates that the direction of the subframe is uplink
  • S indicates a special subframe.
  • the direction of the subframes with the sequence numbers 0, 1, 2, and 5 is fixed, and other serial numbers.
  • the direction of the sub-frame is varied.
  • a subframe having a fixed direction, such as a subframe numbered 0, 1, 2, and 5, may be referred to as a fixed subframe, and a subframe whose direction is changed, such as numbers 3, 4, 6, 7, 8, and 9, may be referred to as a flexible sub-frame. frame.
  • the fixed subframe and the flexible subframe may differ depending on the manner in which the TDD configuration is allowed to be employed.
  • a cell supports only the TDD configuration mode with sequence numbers 0 and 2.
  • the configuration mode with sequence number 0 is changed before the change, and the configuration mode with sequence number 2 is changed.
  • the sequence number is 0.
  • the subframes of 1, 2, 5, 6, and 7 are fixed subframes, and the subframes of sequence numbers 3, 4, 8, and 9 are flexible subframes (Flexible Subframes).
  • cell 1 uses a TDD configuration mode with sequence number 1
  • cell 2 uses a TDD configuration mode with sequence number 0
  • cell 3 uses a TDD configuration mode with sequence number 2. Comparing the three TDD configurations, it can be found that for the base station eNB#1, the subframe sf#3 and the subframe sf#4 are flexible subframes, and the interference strengths of the two subframes are different from the interference strengths received by other subframes. of. Further, for the base station eNB#1, the subframe sf#3 is interfered by the subframe of the direction D arranged by the base station eNB#3, and the subframe sf#4 is configured by the base station eNB#2. The interference of the subframes in the direction U is different, and the interference states of the two subframes are also different.
  • the technical solution of the present application is not limited to the foregoing application scenario, and interference may also exist in other application scenarios.
  • the above is to change the TDD configuration mode in the time domain, of course, changing the TDD configuration mode in the frequency domain or changing the transmission direction in the entire frequency domain, for example, changing the TDD configuration mode on the entire specific frequency band or some subbands in the frequency band or Changing the transmission direction in a particular frequency band or on some sub-bands in the frequency band may also cause interference between adjacent cells.
  • not only changing the TDD configuration mode may cause interference, but also changing the FDD configuration mode may also have the above interference.
  • the base station and the terminal work in a flexible duplex mode, and the used communication link is a link with different directions, which may also be referred to as a cross link.
  • a base station in a cell may dynamically change the transmission direction of the link resource due to service requirements, thereby causing interference between multiple neighboring cells including the cell.
  • the configuration of the transmission direction is dynamically changed, the resulting interference is dynamic.
  • Interference can affect the data signals transmitted by the link, which can be adjusted by controlling the transmission power of the data signals. For example, for an interfered terminal, in the case of strong interference, the transmission power of the data signal of the terminal causing the interference can be reduced, and in the case of low interference, the transmission power of the data signal of the terminal causing the interference is allowed to be increased. To ensure the reliability of data transmission / reception.
  • the terminal in the above example may be replaced by a base station, that is, when interference and interference occur between the base stations, for an interfered base station, when the interference is strong, the transmission power of the data signal of the base station causing the interference may be reduced. In the case of low interference, the transmission power of the data signal of the base station causing the interference is allowed to be increased to ensure the reliability of data transmission/reception.
  • a power control scheme in an Enhanced Interference Management and Traffic Adaptation (eIMTA) technology in which a subframe in a TDD configuration mode of a serving cell and a TDD configuration mode of a neighboring cell are set.
  • the type of interference between the subframes in the medium, and setting the transmission power for the devices in the serving cell based on the interference type.
  • this technique is based on semi-static TDD configuration when dividing the subframe resources to which power control is applied.
  • the distribution and related signaling notifications are not timely enough, and therefore are not applicable to the above-described flexible duplex mode communication system using a relatively dynamic transmission direction configuration.
  • the present application provides a scheme for controlling transmission power based on measurement of cross-link interference.
  • the present application can dynamically measure interference caused by the configuration. And based on this measurement, the transmission power is adjusted in time.
  • two cells in the adjacent cell are taken as an example for description.
  • two cells may be referred to as a first cell and a second cell.
  • the system architecture of the present technical solution is as shown in FIG. 3, the base station in the first cell is referred to as the first base station, the base station in the second cell is referred to as the second base station, and the terminal in the first cell is referred to as the first terminal, A terminal in a two cell is referred to as a second terminal.
  • the second terminal works in the uplink mode, and the first terminal works in the downlink mode, that is, when the second terminal sends the uplink data signal, it may cause interference to the first terminal receiving the downlink data signal.
  • the first terminal/second terminal in the present application may be one or more.
  • the first base station may be summarized as a first network device
  • the second base station may be summarized as a second network device.
  • FIG. 4 a flow diagram of power control based on interference measurement is shown, which specifically includes the following steps S401-S407.
  • the first base station sends information of the interference measurement resource to the first terminal and the second base station.
  • the first base station and the second base station are located in two adjacent cells.
  • the first base station may send the above information to the first terminal and the second base station at the same time, or may not send the information at the same time.
  • the interference measurement resource is a resource for transmitting an interference measurement signal, and the interference measurement signal is a signal for measuring the interference strength between links in different directions.
  • the interference measurement resource may also be considered as a resource for measuring interference, and the interference measurement signal may also be considered as a signal for measuring interference.
  • Interference measurement can also be called interference detection, interference monitoring, interference sensing, and the like.
  • the interference is interference between transmissions in different directions.
  • Information that interferes with measurement resources (which may also be referred to as indication information or configuration information) is used to indicate what type of resource is used to transmit the interference measurement signal.
  • the information of the interference measurement resource may include any one or more of the following: the transmission time position of the interference measurement signal, the transmission frequency domain location, and the spatial domain location, that is, the interference measurement signal may be transmitted. At least one of a time position, a frequency domain location, and a spatial domain location represents an interference measurement resource.
  • the time position (or time domain resource) for transmitting the interference measurement signal may include a subframe, a slot, a mini slot, a mini subframe, and an orthogonal frequency division. (Orthogonal Frequency Division Multiplexing, OFDM) symbols or resource units of less than one OFDM symbol. Wherein, the OFDM symbol may be one or more OFDM symbols.
  • the frequency domain location (or frequency domain resource) for transmitting the interference measurement signal may include a band, a subband, a frequency offset, a control channel element (CCE), or a physical resource. Physical resource block (PRB). Transmission dry
  • the spatial domain location (or spatial domain resource) of the interference measurement signal may include a transmission port or a transmission beam.
  • the transmission beam can be represented by a beam-related identification, such as by a synchronization signal resource block, or a time domain identification of the synchronization signal, or an identification of a reference signal.
  • the time position of transmitting the interference measurement signal may be one or more of the foregoing time positions, which may be continuous or discontinuous; the frequency domain position of the transmission interference measurement signal may be one or more of the above frequency domain positions, which may be Continuous or discontinuous.
  • the continuous or discontinuous temporal location and/or frequency domain location may be in a particular pattern.
  • the mini slot is a resource unit composed of OFDM symbols of less than one slot; the mini subframe is a resource unit composed of OFDM symbols of less than one slot.
  • the interference measurement resource is an OFDM symbol, it is less than or equal to the length of one subframe.
  • the interference measurement resource may be included in any one of the following types of subframes: the first type of subframe is a sub-frame including a physical downlink control channel (PDCCH) and a physical downlink shared channel (PDSCH).
  • the second type of subframe is a subframe including a physical uplink control channel (PUCCH) and a physical uplink shared channel (PUSCH);
  • the third type of subframe includes a PDCCH and a PDSCH.
  • the fourth type of subframe is a subframe including a PDCCH, a PUSCH, and a PUCCH.
  • the third type subframe and the fourth type subframe may include a guarding period (GP), and the guard interval is used for switching between uplink and downlink.
  • the interference measurement resource may be one or more time positions after the PDCCH, such as one or more OFDM symbols, or may be one or more time positions before the PUCCH, for example, One or more OFDM symbols.
  • the third type of subframe may be referred to as a new subframe, a downlink hybrid subframe, or a self-contained subframe; the fourth type subframe may be referred to as a new subframe, an uplink hybrid subframe, or a self-contained subframe.
  • the third and fourth subframes in the first row are the third type of subframe, and the third is the third type of subframe including the interference measurement resource (the portion filled with the cross-slash).
  • the fourth is a third type of subframe that does not contain interference measurement resources.
  • the third type of subframe is a new type of subframe dominated by DL (downlink) (or a new type of subframe dominated by DL, or a new subframe called DL center, or a self-contained downlink subframe).
  • the interference measurement resource is one or more temporal locations preceding the PUCCH, such as one or more OFDM symbols.
  • the third and fourth subframes in the second row are the fourth type of subframe, wherein the third is the fourth type of subframe including the interference measurement resource, and the fourth is the interference measurement resource not included.
  • the fourth type of subframe is a new type of subframe dominated by UL (uplink) (or a new subframe called UL-led, or a new subframe called UL center, or a self-contained uplink subframe).
  • the interference measurement resource is one or more temporal locations after the PDCCH, such as one or more OFDM symbols.
  • the interference measurement may occur in the first time slot, and the data transmission occurs in the second time slot; when the resource unit is a subframe, the interference measurement may occur in the first subframe, and Data transmission occurs in the second subframe.
  • the interference measurement resources used by the first base station and the second base station may be coordinated by time domain, frequency domain coordination, or code domain, so that interference measurement resources between each other are orthogonal or quasi-orthogonal, and thus Detection.
  • the frequency domain coordination and the code domain coordination may be on the same time resource, so that the interference measurement resource can be pre-configured.
  • the association The adjustment may be based on coordination between base station mutual notifications, or may be coordinated by OAM (operation, administration and management) pre-configuration.
  • the first base station may send the information through the air interface signaling.
  • the first base station may send information of the interference measurement resource to the first terminal by using air interface signaling.
  • the second base station sends information about the interference measurement resource to the second terminal.
  • the first base station sends information of the interference measurement signal to the first terminal and the second base station.
  • the first base station may send the information of the interference measurement signal to the first terminal and the second base station at the same time, or may not send the information at the same time.
  • the first base station may transmit the information of the interference measurement signal to the second base station through an interface between the two base stations.
  • the first base station may send the information of the interference measurement signal to the first terminal by using air interface signaling.
  • the information of the interference measurement signal may be configuration information of the interference measurement signal or the interference measurement signal.
  • the configuration information may instruct the first terminal to generate a corresponding interference measurement signal according to the configuration information.
  • S404 The second base station sends information of the interference measurement signal to the second terminal.
  • the second base station may send information of the interference measurement signal and/or information of the interference measurement resource to the second terminal by air interface signaling.
  • the first base station may send information of the interference measurement resource and/or the information of the interference measurement signal to the first terminal according to its own setting, and send information of the interference measurement resource and/or the information of the interference measurement signal to the second base station, and the sending Actions can be executed simultaneously or sequentially, and the order of execution is not specifically limited.
  • the second base station may send the information of the interference measurement and/or the information of the interference measurement signal to the second terminal according to its own setting.
  • steps S401 to S404 are information for configuring the interference measurement resource information and the interference measurement signal for the first terminal, and configuring the information of the interference measurement resource and the information of the interference measurement signal for the second terminal.
  • the configuration manner is not limited to the above-mentioned first embodiment, and may also be as follows.
  • the information of the interference measurement resource and the information of the interference measurement signal are configured by the first base station and the second base station by using the OAM, and the first base station is configured to the first terminal and configured by the second base station to the second terminal. .
  • the information of the interference measurement resource and the information of the interference measurement signal are directly configured by the OAM for the first terminal and the second terminal.
  • the information of the interference measurement resource and/or the information of the interference measurement signal are negotiated between the first base station and the second base station, and then the information of the interference measurement resource and/or the interference measurement signal that are negotiated by the first base station.
  • the information is sent to the first terminal, and the second base station sends the information of the negotiated interference measurement resource and/or the information of the interference measurement signal to the second terminal.
  • the information of the negotiation interference measurement resource and the information of the interference measurement signal may be information of the interference measurement resource sent by the first base station to the second base station and the interference measurement signal, or may be the interference measurement resource sent by the second base station to the first base station. Information and information on interference measurement signals.
  • S405 The first terminal sends an interference measurement signal indicated by the information of the interference measurement signal on the interference measurement resource indicated by the information of the interference measurement resource.
  • the information of the interference measurement signal (which may also be referred to as indication information or configuration information) is used to indicate which type of interference measurement signal is used for the interference measurement.
  • the information of the interference measurement signal includes at least one of the following: a sequence length, a cyclic shift, a physical cell ID, and The pseudo-random sequence initial value.
  • the form of the interference measurement signal is indicated by the information of the interference measurement signal.
  • the interference measurement signal may specifically include the following forms: a demodulation reference signal (DMRS), a channel state information reference signal (CSI-RS), a sounding reference signal (SRS), and a preamble (preamble). Or a new type of signal.
  • any of the above signals may be based on a sequence length, a cyclic shift, a physical cell ID, and a pseudo-random sequence initial value. At least one of the determined or configured signals.
  • the information of the interference measurement signal may further include a transmission port or a transmission beam of the interference measurement signal, wherein the transmission port or the transmission beam is a transmission port or a transmission beam of the terminal.
  • the information of the interference measurement signal also includes a transmission beam that interferes with the measurement signal.
  • the transmission beam can be represented by a beam-related identification, such as by a synchronization signal resource block, or a time domain identification of the synchronization signal, or an identification of a reference signal.
  • the interference measurement signal may be defined in advance between the first cell and the second cell, and the two cells have their own corresponding interference measurement signals, and the interference measurement signals are orthogonal to avoid erroneous monitoring of the interference measurement signals.
  • the interference measurement signals corresponding to each cell may be a group (the group may also be called a set), and then the two sets of interference measurement signals are orthogonal between each other.
  • the second terminal determines, according to the information of the interference measurement resource and the information of the interference measurement signal, the strength of the interference measurement signal sent by the first terminal.
  • the second terminal may determine, on the resource, the interference measurement signal according to the information of the interference measurement resource, monitor the interference measurement signal after monitoring the interference measurement signal, and use the information of the interference measurement signal to determine the interference measurement signal.
  • Strength or path loss may be used to determine the interference measurement signal.
  • the intensity value of the interference measurement signal may be measured on one or more of the following: Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ) ), Received Signal Strength Indicator (RSSI), Channel Quality Indicator (CQI), and Channel State Indicator (CSI).
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • RSSI Received Signal Strength Indicator
  • CQI Channel Quality Indicator
  • CSI Channel State Indicator
  • the strength of the interference measurement signal may be included in the interference measurement report, and the interference measurement report may be reported to the second base station, and the used resource for reporting may be reserved to ensure timely reporting of the interference measurement report.
  • the reserved resources may be in a PUCCH/PUSCH of any subframe, such as a PUCCH/PUSCH of a third type subframe or a fourth type subframe. The reserved resources can be notified to the terminal by the corresponding base station through high layer signaling.
  • the interference measurement of the second terminal may be a medium/long-term interference measurement or a short-term interference measurement.
  • the duration of the interference measurement such as the number of sampling values of the interference measurement or the number of interference measurement resources, needs to be notified by the second base station through at least one of higher layer signaling, MAC layer signaling, and physical layer signaling. Two terminals.
  • S407 The second terminal controls, according to the strength of the monitored interference measurement signal, the power of the second terminal to send the data signal to the second base station.
  • the second base station may send, by using signaling, several sets of optional uplink transmission modes to the second terminal, where the signaling may include signaling in uplink authorization signaling or other downlink control information.
  • the second base station may configure an uplink transmission mode of the second terminal, and the configuration manner may be configured by using Radio Resource Control (RRC) signaling.
  • RRC Radio Resource Control
  • Set or can be configured through physical layer signaling.
  • the configuration can be pre-configured or dynamically configured.
  • the pre-configured uplink transmission mode may be activated or deactivated by physical layer signaling in the PDCCH.
  • the physical layer signaling may be signaling in uplink grant signaling or other downlink control information.
  • the second base station is also configured by air interface signaling or configured by OAM.
  • the power control mode of the Physical Uplink Shared CHannel is as follows:
  • P CMAX,c (i) represents the maximum power
  • M PUSCH,c (i) represents the number of physical resource blocks (PRBs)
  • P O_PUSCH,c (j) and ⁇ c (j) are Semi-statically configured parameters
  • PL c is the estimated path loss of the user equipment (User Equipment, UE)
  • ⁇ TF is the incremental value of different Modulation and Coding Scheme (MCS)
  • f c (i) is the power adjustment value formed by the closed loop power control of the terminal.
  • P O_PUSCH,c (j) and ⁇ c (j) are semi-statically configured, and the values remain unchanged for all subframes.
  • the semi-static configuration has a long configuration period and is not suitable for use in systems with flexible duplex mode.
  • the uplink transmission mode is configured by the second base station to the second terminal by using the uplink authorization signaling or the PDCCH, and the configuration mode is more dynamic, and can be applied to the system adopting the flexible duplex mode. .
  • the interference received by the base station in a certain uplink subframe may be the uplink interference caused by the downlink transmission of the neighboring base station, and the interference received by the other uplink subframe may be the neighboring base station.
  • the uplink interference caused by the uplink transmission by the terminal may be configured for the second terminal, and the second terminal may select a corresponding uplink transmission mode according to the strength of the monitored interference measurement signal, and the uplink transmission mode considers uplink and downlink transmission in different directions.
  • the resulting interference difference can avoid the impact of cross-link interference on the effective transmission of data, thereby increasing the effective transmission rate of data.
  • the second base station also needs to configure a correspondence between the strength of the interference measurement signal and the uplink transmission mode for the second terminal. After the second terminal monitors the strength of the interference measurement signal, the corresponding uplink transmission mode may be selected according to the correspondence between the strength of the interference measurement signal and the uplink transmission mode.
  • the correspondence between the strength of the interference measurement signal and the uplink transmission mode may be specifically: a correspondence between an intensity level of the interference measurement signal and an uplink transmission mode.
  • the intensity level can be determined by the signal strength range, which is determined by the signal strength threshold. In this way, according to the strength of the monitored interference measurement signal, it can be determined which intensity level the interference measurement signal corresponds to, and then the uplink transmission mode corresponding to the interference measurement signal is determined.
  • the signal strength threshold value and/or the correspondence between the strength level of the interference measurement signal and the uplink transmission mode may be configured by the base station to the terminal through higher layer signaling.
  • the signal strength range [1dB, 5dB) corresponds to an intensity level of 1
  • the signal strength range [5dB, 10dB) corresponds to an intensity level of 2
  • the interference measurement signal strength corresponds to intensity level 2.
  • the specific numerical values are merely examples, and the actual values are not limited.
  • the second terminal can determine the uplink transmission mode corresponding to the intensity level 2 to control the transmission power of the data signal according to the correspondence between the strength level and the uplink transmission mode.
  • the uplink transmission mode may include: multiple modulation and coding strategies of the uplink (Modulation and Coding) Scheme, MCS) and/or multiple parameter values of the transmission power control parameters.
  • the transmission power control parameter may include any one or more of the following four parameters: a target power value, a path loss compensation factor, a closed loop transmission power value, and a cross link interference parameter.
  • the target power value includes a cell-specific target power value and a terminal-specific target power value;
  • the cross-link interference parameter is a parameter added to the PUSCH power control formula in parallel with the target power value, which is used to compensate for interference. The determination of the resulting uplink transmission power value.
  • the power control formula for the introduction of a new cross-link interference parameter is:
  • the cross-link interference parameter may be notified to the second terminal by the second base station by using at least one of high layer signaling, MAC layer signaling, and physical layer signaling.
  • the cross-link interference parameter may be notified to the second terminal by the second base station by using high-level signaling; when the interference measurement is short-term, the cross-link interference parameter may be The second base station notifies the second terminal by using MAC layer signaling or physical layer signaling.
  • the target power value may be combined into one parameter notification or separately.
  • the closed-loop power value may be combined into one parameter notification or separately notified.
  • the uplink transmission mode may include multiple types, and the different types of uplink transmission modes correspond to different types of power control.
  • the power control includes PUSCH power control, PUCCH power control, or SRS (Sounding Reference Signal) power control.
  • the transmission power of the data signals generated by using different modulation and coding strategies will be different; the transmission power control parameters are the influence factors of the transmission power, and the transmission power values are different under the constraints of different parameter values.
  • 3GPP the power control mode of the Physical Uplink Shared CHannel (PUSCH).
  • the selected uplink transmission mode may be some modulation/coding strategy or some parameter value of the transmission power control parameter, and the transmission power of the data signal may be determined according to the uplink transmission mode.
  • the relationship between the uplink transmission mode and the strength of the interference measurement signal is an inverse correlation relationship, that is, the stronger the strength of the interference measurement signal, the lower the transmission power of the data signal determined by the uplink transmission mode and/or the selection.
  • Low-order MCS to reduce interference conversely, the lower the strength of the interference measurement signal, the higher the transmission power of the data signal determined by the uplink transmission mode and/or the higher-order MCS is selected, so that the data can be improved without causing interference. Reliability and/or throughput of signal transmission.
  • the first base station configures, for the first terminal, a positional relationship between the feature of the interference measurement signal and the data signal, where the location includes any one or more of a time domain, a frequency domain, and a spatial domain of the data signal.
  • the relationship may be sent to the terminal by mutual negotiation between the base stations. For example, after the first base station sends the second base station to the second base station, the second base station sends the second base station to the second terminal and is then sent by the first base station to the first terminal.
  • This relationship can also be configured by the OAM to the base station, which is sent to the terminal similarly to the above, or configured by the OAM to the base station and the terminal.
  • the sending, by the first base station, to the second base station may be through inter-base station interface signaling, such as X2 signaling or air interface signaling.
  • the second base station is further sent to the second terminal and/or the first base station and then sent to the first terminal to perform air interface signaling, which may be at least one of RRC signaling, MAC layer signaling or physical layer signaling. It can also be pre-configured by RRC signaling and activated by physical layer signaling.
  • the relationship between the characteristics of the interference measurement signal and the time domain of the data signal indicates that after the first terminal transmits the interference measurement signal of a certain characteristic, corresponding to the interference measurement signal of the feature, how long after the data signal is sent.
  • the relationship between the characteristics of the interference measurement signal and the frequency domain of the data signal indicates that the terminal transmits an interference signal of a certain characteristic, corresponding to the interference measurement signal of the feature, and the data signal is transmitted at what frequency domain position.
  • the feature may be information that interferes with the measurement signal.
  • the time domain/frequency domain may be subject to some predefined mode. The specific mode is, for example, a semi-statically scheduled time domain/frequency domain resource.
  • the data signal may be transmitted in one or more subsequent subframes or time slots.
  • the time domain resources such as subframes or time slots, may be continuous or discontinuous.
  • the discontinuity may be semi-persistent scheduling or semi-persistent scheduling (SPS).
  • the relationship between the interference measurement signal and the location of the data signal can be sent to the second terminal.
  • the second terminal monitors an interference measurement signal, according to the relationship between the interference measurement signal and the position of the data signal, it can be determined at what position the first terminal transmits the data signal, so that the second terminal can be at the corresponding position.
  • the power of the data signal transmitted by itself is controlled according to the uplink transmission mode determined above.
  • the interference measurement signal monitored by the second terminal or the determined uplink transmission mode may be used as the power control of the terminal that is closer to the second terminal.
  • the criterion for the closer distance may be that the difference between the distance parameter such as Reference Signal Receiving Power (RSRP) or Reference Signal Receiving Quality (RSRQ) is within a preset threshold range.
  • RSRP Reference Signal Receiving Power
  • RSRQ Reference Signal Receiving Quality
  • the first terminal sends the interference measurement signal
  • the second terminal monitors the strength of the interference measurement signal
  • the second terminal can directly control the second terminal itself to transmit the data signal according to the measured strength of the interference measurement signal.
  • the present application can measure the interference of various granularities such as frequency bands, sub-bands, and sub-frames, and control the transmission power based on the measurement result.
  • the first embodiment is that the second terminal controls the power of transmitting the data signal to the second base station, that is, the terminal itself causing the interference adjusts the transmission power of the data signal, so as to adaptively adjust the terminal to receive data from the neighboring cell.
  • the application further provides the second embodiment.
  • the second embodiment controls the power of the data signal sent by the first base station to the first terminal. See FIG. 6, which shows a flow diagram of power control based on interference measurement, specifically including the following steps S601-S608.
  • the second base station sends information about the interference measurement resource to the second terminal and the first base station.
  • the first base station sends information of the interference measurement resource to the first terminal.
  • the second base station sends information of the interference measurement signal to the second terminal and the first base station.
  • the first base station sends information of the interference measurement signal to the first terminal.
  • the second terminal sends the interference measurement signal indicated by the information of the interference measurement signal on the interference measurement resource indicated by the information of the interference measurement resource.
  • the first terminal monitors the second terminal according to the information of the interference measurement resource and the information of the interference measurement signal.
  • the interference measures the strength of the signal.
  • the descriptions of the steps S601 to S606 in this embodiment can be referred to the S401 to S406 in the first embodiment.
  • the above steps are the same as those in the corresponding step in the first embodiment, except that the action is performed.
  • the main body is replaced by the first base station and the first terminal as the second base station and the second terminal.
  • the second base station may send the information of the interference measurement resource and/or the information of the interference measurement signal to the second terminal according to its own setting, and send the information of the interference measurement resource and/or the information of the interference measurement signal to the first base station, and the sending Actions can be executed simultaneously or sequentially, and the order of execution is not specifically limited.
  • the first base station may send the information of the interference measurement and/or the information of the interference measurement signal to the first terminal according to its own setting.
  • steps S601 to S604 are information for configuring the interference measurement resource information and the interference measurement signal for the first terminal, and configuring the interference measurement resource information and the interference measurement signal for the second terminal.
  • the configuration manner is not limited to the foregoing embodiment 2, and may be the following.
  • the information of the interference measurement resource and the information of the interference measurement signal are configured by the first base station and the second base station by using the OAM, and the first base station is configured to the first terminal and configured by the second base station to the second terminal. .
  • the information of the interference measurement resource and the information of the interference measurement signal are directly configured by the OAM for the first terminal and the second terminal.
  • the information of the interference measurement resource and/or the information of the interference measurement signal are negotiated between the first base station and the second base station, and then the information of the interference measurement resource and/or the interference measurement signal that are negotiated by the first base station.
  • the information is sent to the first terminal, and the second base station sends the information of the negotiated interference measurement resource and/or the information of the interference measurement signal to the second terminal.
  • the information of the negotiation interference measurement resource and the information of the interference measurement signal may be information of the interference measurement resource sent by the first base station to the second base station and the interference measurement signal, or may be the interference measurement resource sent by the second base station to the first base station. Information and information on interference measurement signals.
  • the first terminal sends the strength of the interference measurement signal to the first base station.
  • the interference measurement signal is transmitted by the second terminal in the uplink mode, and the strength of the interference measurement signal may be at least one of RSRP, RSRQ, RSSI, CQI, and CSI, respectively, the interference measurement signal may be recorded as UL-RSRP, UL-RSRQ, UL-RSSI, UL-CSI, UL-CQI, etc.
  • the UL-signal strength type recording mode can indicate which of the uplink directions is monitored by the first terminal. Type of signal strength. It should be noted that the recording method may also be referred to as an association relationship.
  • the UL included in the association indicates the uplink direction, that is, the measurement result of the interference measurement signal transmitted by the second terminal.
  • the first terminal may also record DL-RSRP, DL-RSRQ, DL-RSSI, DL-CSI, DL-CQI, but the DL in these associations represents the downlink direction, which is a downlink reference to the first base station.
  • the measurement result of the signal It can be seen that the DL and UL can distinguish which measured signal strength is associated with which link direction or which signal is associated (ie, is the normal reference signal or the interference measurement signal).
  • the interference measurement signal may also be multiple, and therefore, it is also possible to record which type of signal strength is related to a type of interference measurement signal.
  • the recording method is: UL-signal type-signal strength type.
  • the signal strength types include RSRP, RSRQ, RSSI, CQI, and CSI
  • the signal types include DMRS, CSI-RS, SRS, and preamble
  • 20 UL-signal type-signal strength type recording results can be combined. .
  • the result of the recording includes: UL-SRS-RSRP, UL-SRS-RSRQ, UL-SRS-RSSI, UL-SRS-CSI, UL-SRS-CQI;
  • the record results include: UL-CSI-RS-RSRP, UL-CSI-RS-RSRQ, UL -CSI-RS-RSSI, UL-CSI-RS-CSI, UL-CSI-RS-CQI;
  • the record results include: UL-DMRS-RSRP, UL-DMRS-RSRQ, UL-DMRS-RSSI, UL-DMRS-CSI, UL-DMRS-CQI.
  • the second terminal in the foregoing Embodiment 1 monitors the strength of the interference measurement signal sent by the first terminal
  • the type of the interference measurement signal and the type of the signal strength may also be recorded in the foregoing manner.
  • the first terminal may report to the first base station in the area PUCCH part of the uplink control data transmission.
  • the area PUCCH part of the uplink control data transmission may be a PUCCH part of an existing subframe or a new subframe, and the new subframe may be referred to as a self-contained subframe or a hybrid subframe.
  • the new subframe may include a DL control portion, a DL data portion, and a UL control portion, or the new subframe may include a DL control portion, a UL data portion, and a UL control portion.
  • the first terminal can also report to the first base station in the PUSCH part.
  • the PUSCH portion may be a PUSCH portion of an existing subframe or a new subframe.
  • the reserved PUCCH/PUSCH is a base station notifying the terminal in advance through air interface signaling.
  • the first base station controls, according to the strength of the interference measurement signal, the power of the first base station to send the data signal to the first terminal.
  • the first base station may also configure a correspondence between the transmission power (or transmission power) of the data signal and the strength of the interference measurement signal, according to the correspondence, To control the transmit power of the data signal.
  • the corresponding relationship is positive correlation, that is, the stronger the strength of the interference measurement signal, the higher the transmission power of the controlled data signal is, so as to reduce the received by the first terminal. Interference; conversely, the lower the strength of the interference measurement signal, the lower the transmission power of the controlled data signal, so as to ensure that the first terminal receives the data signal without interference, the power consumption of the first base station can be reduced.
  • the first base station performs control of data signal transmission power using Relative Narrow Band Transmission Power (RNTP) signaling.
  • RNTP Relative Narrow Band Transmission Power
  • the first base station uses RNTP signaling to control the transmission power of different PRBs, and improves the transmission power of the PRB for the time domain/frequency domain resources of the data signals corresponding to the strong interference measurement signals; for the weak interference measurement signals The time domain/frequency domain resource of the corresponding data signal reduces the transmission power of the PRB.
  • RNTP Relative Narrow Band Transmission Power
  • the first terminal sends the interference measurement signal
  • the second terminal monitors the interference measurement signal and adaptively adjusts the power.
  • the second terminal sends the interference measurement signal
  • the interference measurement signal is monitored, and is fed back to the first base station to perform a power scheduling adjustment such as power adjustment by the first base station. It can be seen that the foregoing two embodiments are mainly performed on the terminal side, or the first terminal.
  • the application also provides the following embodiments. The embodiment is mainly applied to the base station side, and the base station sends and monitors the interference measurement signal, and according to the monitoring result, Power Control.
  • the first base station sends an interference measurement signal, which is measured by the second base station, and correspondingly is performed on the base station side. Adjustments such as scheduling methods.
  • FIG. 7 shows a flow diagram of power control based on interference measurement, specifically including the following steps S701-S704.
  • the first base station sends information of the interference measurement resource and information of the interference measurement signal to the second base station.
  • the first base station may send the foregoing information to the second base station simultaneously or at different times.
  • the information of the interference measurement resource of the second base station and the information of the interference measurement signal may not be sent by the first base station, and may be configured by using OAM, that is, configuring the first base station and the second base station by using OAM.
  • OAM that is, configuring the first base station and the second base station by using OAM.
  • the information of the interference measurement resource and/or the information of the interference measurement signal may not be sent by the first base station, and may be configured by using OAM, that is, configuring the first base station and the second base station by using OAM.
  • the second base station After receiving the foregoing interference measurement resources, the second base station does not configure data transmission or data reception on the specified resources, that is, blanks the resources to ensure that the interference is correctly measured.
  • the first base station sends an interference measurement signal indicated by the information of the interference measurement signal on the interference measurement resource indicated by the information of the interference measurement resource.
  • the interference measurement signal of the first base station is sent to the second base station.
  • the second base station monitors the strength of the interference measurement signal sent by the first base station according to the information of the interference measurement resource and the information of the interference measurement signal.
  • the second base station configures, according to the strength of the interference measurement signal, the power of the second terminal to send the data signal to the second base station.
  • the power of the data signal sent by the second terminal to the second base station is configured, and the power parameter value and/or the MCS of the data signal sent by the second terminal to the second base station is configured, so that the second terminal uses the
  • the configured power parameter value determines the uplink transmission power and/or uses the configured MCS for uplink transmission. It should be noted that if only the interference measurement method is performed, the above steps S703 and S704 may not be necessary steps.
  • the interference measurement can be implemented by the base station, and the terminal is processed correspondingly according to the measured interference strength, for example, the power of the data signal sent to the base station is controlled, and no large interference is added to the terminal. Measuring the burden.
  • the second base station may further transmit the strength of the interference measurement signal to the first base station. Therefore, the first base station can perform corresponding processing, for example, making power adjustment of the downlink transmission.
  • the first base station may further send indication information of the interference measurement resource and/or indication information of the interference measurement signal to the first terminal, so that after receiving the indication information of the interference measurement resource, the first terminal is notified by the indication information.
  • the resources are used for interference measurement. There is no data from the first base station to schedule the first terminal to perform downlink transmission. Therefore, the first terminal can perform corresponding data operations such as rate matching or puncturing of the received data.
  • the second base station may further send the indication information of the interference measurement resource and/or the information of the interference measurement signal to the second terminal, so that after receiving the indication information of the interference measurement resource, the second terminal is notified by the indication information.
  • the resource is used for interference measurement.
  • the second terminal can perform corresponding data operations such as rate matching or puncturing of the uplink transmission data.
  • first base station in the foregoing Embodiment 3 may be replaced by the second base station, and the second base station may be replaced with the first base station.
  • FIG. 8 is a schematic structural diagram of a first terminal provided by the present application, including: a bus, a receiver 801, Transmitter 802, processor 803, and memory 804.
  • the bus, receiver 801, transmitter 802, processor 803, and memory 804 are connected to one another via a bus. among them:
  • the bus can include a path for communicating information between the various components of the first terminal.
  • the receiver 801 is configured to receive indication information of the interference measurement resource and/or indication information of the interference measurement signal, where the indication information of the interference measurement resource includes at least a time domain location, a frequency domain location, and a spatial domain location of the interference measurement signal transmission. One.
  • the receiver 801 is further configured to perform other data receiving operations related to the first terminal in the first embodiment.
  • the transmitter 802 is configured to send, according to the interference measurement resource indicated by the indication information of the interference measurement resource, an interference measurement signal indicated by the indication information of the interference measurement signal, where the interference measurement signal is used to measure the link between the different directions. Signal of interference.
  • the transmitter 802 can also be configured to perform other data transmission actions described above in connection with the first terminal.
  • the processor 803 can coordinate the operation of the receiver 801 and the transmitter 802.
  • the program for executing the technical solution of the present application is stored in the memory 804, and an operating system and other data can also be saved.
  • FIG. 9 is a schematic structural diagram of a second terminal provided by the present application, including: a bus, a receiver 901, a transmitter 902, a processor 903, and a memory 904.
  • the bus, receiver 901, transmitter 902, processor 903, and memory 904 are connected to one another via a bus.
  • the bus can include a path for communicating information between the various components of the second terminal.
  • the receiver 901 is configured to perform the data receiving action related to the second terminal in the first embodiment.
  • the transmitter 902 is configured to perform the data sending action related to the second terminal in the first embodiment.
  • the processor 903 is configured to measure, according to the information of the interference measurement resource and the information of the interference measurement signal, the interference measurement signal transmitted by the other terminal, to obtain the strength of the interference measurement signal, where the interference measurement signal is used to measure the link in different directions. a signal of interference between the downlink direction between the other terminal and the first network device and an uplink direction between the terminal and the second network device; and according to the strength of the interference measurement signal, Controlling, by the terminal, the power of the data signal sent to the second network device.
  • the processor 903 is further configured to perform other data processing actions related to the second terminal in the first embodiment.
  • the program for executing the technical solution of the present application is stored in the memory 904, and an operating system and other data can also be saved.
  • FIG. 10 is a schematic diagram showing another structure of the first terminal provided by the present application, including: a bus, a receiver 1001, a transmitter 1002, a processor 1003, and a memory 1004.
  • the bus, the receiver 1001, the transmitter 1002, the processor 1003, and the memory 1004 are connected to each other through a bus.
  • the bus can include a path for communicating information between the various components of the first terminal.
  • the receiver 1001 is configured to perform the data receiving action related to the second terminal in the second embodiment.
  • the transmitter 1002 is configured to perform the data sending action related to the second terminal in the foregoing Embodiment 2.
  • the processor 1003 is configured to measure, according to the information of the interference measurement resource and the information of the interference measurement signal, the interference measurement signal transmitted by the other terminal, to obtain the strength of the interference measurement signal, where the interference measurement signal is used to measure the link in different directions.
  • the signal of the interference, the different direction includes a downlink direction between the other terminal and the first network device, and an uplink direction between the terminal and the second network device.
  • a program for executing the technical solution of the present application is stored in the memory 1004, and an operating system and other data may also be stored.
  • FIG. 11 is a schematic structural diagram of a first base station provided by the present application, including: a bus, a receiver 1101, a transmitter 1102, a processor 1103, and a memory 1104.
  • the bus, the receiver 1101, the transmitter 1102, the processor 1103, and the memory 1104 are connected to each other through a bus.
  • the bus can include a path for communicating information between various components of the first base station.
  • the receiver 1101 is configured to perform the data receiving action related to the first base station in the foregoing Embodiment 3.
  • the transmitter 1102 is configured to send an interference measurement signal to the second base station on the interference measurement resource; wherein the interference measurement signal is a signal used to measure interference between links in different directions.
  • the transmitter 1002 can also perform the data sending action related to the first base station in the foregoing Embodiment 3.
  • the processor 1103 can coordinate the operation of the receiver 1101 and the transmitter 1102.
  • the memory 1104 stores a program for executing the technical solution of the present application, and may also store an operating system and other data.
  • FIG. 12 is a schematic structural diagram of a second base station provided by the present application, including: a bus, a receiver 1201, a transmitter 1202, a processor 1203, and a memory 1204.
  • the bus, the receiver 1201, the transmitter 1202, the processor 1203, and the memory 1204 are connected to each other through a bus.
  • the bus can include a path for communicating information between various components of the second base station.
  • the receiver 1201 is configured to perform the data receiving action related to the second base station in the foregoing Embodiment 3.
  • the transmitter 1202 is configured to perform the data sending action related to the second base station in the foregoing Embodiment 3.
  • the processor 1203 is configured to measure the interference measurement signal sent by the first base station according to the information of the interference measurement resource and the information of the interference measurement signal, to obtain the strength of the interference measurement signal.
  • the program for executing the technical solution of the present application is stored in the memory 1204, and an operating system and other data can also be saved.
  • the first base station and the second base station may be interchanged in the full text, and the first terminal and the second terminal may be interchanged. Not subject to a specific name.
  • the technical solutions provided by the embodiments of the present application can be applied to various communication systems, such as current 2G, 3G, 4G communication systems, and future evolution networks, such as 5G communication systems.
  • 5G communication systems such as Long Term Evolution (LTE) systems, 3GPP related cellular systems, etc., and other such communication systems.
  • LTE Long Term Evolution
  • 3GPP related cellular systems such as 3GPP
  • UDN 5G Ultra Dense Network
  • the 5G standard may include Machine to Machine (M2M), D2M, Macro Micro Communication, Enhanced Mobile Broadband (eMBB), ultra high reliability and ultra low latency communication ( Ultra Reliable & Low Latency Communication (uRLLC) and Massive Machine Type Communication (mMTC) scenarios, which may include, but are not limited to, communication scenarios between base stations and base stations, base stations and terminals The communication scenario between the terminal, the communication scenario between the terminal and the terminal, and the like.
  • the technical solution provided by the embodiment of the present application can also be applied to the communication between the base station and the terminal in the 5G communication system, or the communication between the base station and the base station, and the communication between the terminal and the terminal.
  • the first base station and the second base station may be, but are not limited to, a base station, a small cell base station, a new radio eNB, or a transmission point (TRP), which apply 5G technology.
  • Base station Alternatively, in the application scenario of the WLAN, the first base station and the second base station may be replaced by a first wireless access node (Access Point, AP) and a second wireless access node. In other application scenarios, the first base station and the second base station may be replaced with other types of devices.
  • AP Access Point
  • the first base station and the second base station may be replaced with other types of devices.
  • the base station can be a relay station, an access point or a transmission point, and the like.
  • the base station may be a Global System for Mobile Communication (GSM) or a Base Transceiver Station (BTS) in a Code Division Multiple Access (CDMA) network, or may be a broadband code division.
  • GSM Global System for Mobile Communication
  • BTS Base Transceiver Station
  • CDMA Code Division Multiple Access
  • the NB (NodeB) in the Wideband Code Division Multiple Access (WCDMA) may also be an eNB or an eNodeB (evolutional NodeB) in LTE.
  • the base station may also be a wireless controller in a Cloud Radio Access Network (CRAN) scenario.
  • the base station may also be a network device in a future 5G network (for example, gNB) or a network device in a future evolved Public Land Mobile Network (PLMN); it may also be a wearable device or an in-vehicle device.
  • gNB future 5G network
  • the base station may include an indoor baseband processing unit (BBU) and a remote radio unit (RRU), and the RRU and the antenna feeder system (ie, an antenna) are connected, and the BBU and the RRU may be used as needed. It should be noted that the base station may also adopt other general hardware architectures in a specific implementation process.
  • BBU baseband processing unit
  • RRU remote radio unit
  • the base station may also adopt other general hardware architectures in a specific implementation process.
  • the terminal may be a User Equipment (UE), an access terminal, a UE unit, a UE station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a UE terminal, a terminal, a wireless communication device, a UE proxy, or a UE. Device, etc.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • the type of the neighboring cell may be a macro cell, a micro cell, a small cell, etc., and the types of the neighboring cells may be the same or different.
  • the network type of the cell may also be various. For example, it may be an Ultra Dense Network (UDN). The number of cells constructed by using such a network type is larger, and the distance between the cells is closer, so that interference occurs. More and the interference is stronger. In a UDN scenario, more severe interference will occur between adjacent small cells, not just between adjacent cell clusters.
  • UDN Ultra Dense Network
  • all air interface signaling that is sent may be at least one of RRC signaling, MAC layer signaling, or physical layer signaling. It can also be pre-configured by RRC signaling and activated by physical layer signaling.
  • the present application is not limited to application in a low frequency system, and may also be a high frequency millimeter wave system, and thus the above-mentioned interference measurement signal, interference measurement resource and/or intensity report of power control and/or interference measurement signal
  • the information may be beamforming or corresponding to a certain beam identification, that is, all relevant interference measurement signals, interference measurement resources and/or strength reports of power control and/or interference measurement signals may be further carried.
  • the beam identifier may be a beam index or an identification of an identification/reference signal of a corresponding synchronization signal on the beam.
  • the identification of the identification/reference signal of the synchronization signal may be a time identification associated with the synchronization signal/reference signal, such as a synchronization signal block time index.
  • the interference measurement signal described in this application may also be referred to as any one of an interference detection signal, an interference sensing signal, an interference monitoring signal, and an interference measurement signal.
  • the interference measurement resource described in this patent may also be referred to as any one of an interference detection resource, an interference sensing resource, an interference monitoring resource, and an interference measurement resource.
  • the intensity of the interference measurement signal described in the present application may also be referred to as the reception power of the interference measurement signal or the measurement result of the interference measurement signal.
  • the first base station and the second base station are exemplified in the present patent, but are not limited to only two base stations, and may actually be multiple base stations. Therefore, based on the interference measurement signal sent by the first terminal to which the first base station belongs.
  • the second base station may configure the second terminal to perform monitoring, and the third base station may configure the third terminal to perform monitoring, and so on.
  • the first base station may configure the first terminal to perform monitoring, and the third base station may configure the third terminal to perform monitoring, and so on.
  • the first base station transmits the interference measurement signal
  • the second base station, the third base station, and the like can both monitor.
  • Downlink Information transmission direction from base station to terminal.
  • Uplink The direction of information transmission from the terminal to the base station.
  • Special subframe A conversion subframe located between a downlink subframe and an uplink subframe.
  • Static configuration Usually configured through pre-configuration or through network planning.
  • Dynamic configuration real-time or high-frequency configuration.
  • Semi-static configuration A configuration between a static configuration and a dynamic configuration.
  • the configuration is performed at a lower frequency.
  • the configuration is configured with a longer period of configuration or a longer configuration.
  • Resource particle The resource unit that is divided.
  • New subframe/slot Also known as self-contained subframe/slot, new radio subframe/slot, bidirectional subframe/slot or hybrid subframe/slot.
  • the self-contained subframe/slot may be included as follows, and the self-contained subframe may include a self-contained downlink subframe and a self-contained uplink subframe.
  • the self-contained downlink subframe may include a downlink control channel, a downlink data channel, and an uplink control channel.
  • the self-contained uplink subframe may include transmission of a downlink control channel, an uplink data channel, and an uplink control channel.
  • the new subframe/slot can be a new type of mini subframe/time slot.
  • Resource Element corresponds to one subcarrier in frequency, and corresponds to one OFDM symbol in the time domain.
  • Subband consists of several subcarriers.
  • Time slot 7 OFDM symbols correspond to one time slot.
  • Subframe One subframe includes two slots.
  • Radio frame One radio frame includes 10 subframes.
  • Superframe One superframe includes 51 multiframes, and one multiframe includes 26 subframes.

Abstract

本申请本申请提供了一种干扰测量方法,其中,第一终端在干扰测量资源上发送干扰测量信号;其中干扰测量信号为用于测量不同方向链路之间的干扰的信号,所述不同方向包括第一终端与第一网络设备之间的下行方向及第二终端与第二网络设备之间的上行方向;第二终端根据所述干扰测量资源的信息及所述干扰测量信号的信息,监听所述干扰测量信号的强度。基于干扰测量,第二终端还可以进行功率控制,即根据所述干扰测量信号的强度,控制第二终端向第二网络设备发送数据信号的功率。另外,本申请还提供了与干扰测量相关的设备,以保证上述方法在实际中的应用及实现。

Description

干扰测量方法及相关设备
本申请要求于2017年3月24日提交中国专利局、申请号为201710182073.0、发明名称为“一种网络资源配置方法和设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,更具体地,是干扰测量方法及相关设备。
背景技术
随着通信系统中不对称上下行业务的增加,以及上下行业务比例的不断变化,固定成对的频谱使用和固定的上下行时隙配比已经不能够有效支撑业务动态不对称特性。灵活的双工能够根据上下行业务的分布自适应地分配上下行资源,可以有效提高通信系统的资源利用率,因此可以满足未来网络对不对称特性的需求。
灵活双工技术中的一种双工方式是灵活频带技术,其将频分双工(Frequency Division Duplex,FDD)系统中部分上行频段配置为灵活频段。在实际应用中,根据网络中上下行业务的分布,将灵活频段分配给上行传输或下行传输,使得上下行频谱资源和上下行业务需求相匹配,从而提高频谱利用率。例如,当网络中下行业务量高于上行业务量时,网络可将原用于上行传输的频段配置为用于下行传输的频段。
灵活双工技术的另一种双工方式是灵活时分技术,即在频段上采用时分双工(Time DivisionDuplex,TDD)进行上下行业务传输。在长期演进(Long Term Evolution,LTE)系统中,TDD的上下行配置中共有7种不同的子帧配置模式,当相邻小区采用不同的TDD配置时,或者对于FDD的灵活双工,当根据业务要求将一些上行(Uplink,UL)频段配置为下行(Downlink,DL)频段时,可能会造成相邻小区在同一时域/频域资源上的交叉链路干扰,即不同链路方向之间的干扰。
发明内容
有鉴于此,本申请提供了一种干扰测量方法,以测量相邻小区间存在的交叉链路干扰,即不同链路方向之间的干扰,并可以进一步基于测量的干扰进行功率控制。
为实现所述目的,本申请提供的技术方案如下:
第一方面,本申请提供了一种干扰测量方法,包括:第一终端在干扰测量资源上发送干扰测量信号;其中干扰测量信号为用于测量不同方向链路之间的干扰的信号,所述不同方向包括第一终端与第一网络设备之间的下行方向及第二终端与第二网络设备之间的上行方向;第二终端根据所述干扰测量资源的信息及所述干扰测量信号的信息,测量所述干扰测量信号,以得到所述干扰测量信号的强度;第二终端根据所述干扰测量信号的强度,控 制第二终端向第二网络设备发送数据信号的功率。
在一个示例中,所述第一终端在干扰测量资源上发送干扰测量信号,包括:第一终端接收干扰测量资源的指示信息和/或干扰测量信号的指示信息;其中干扰测量资源的指示信息包括干扰测量信号传输的时域位置、频域位置以及空间域位置中的至少一项;第一终端在干扰测量资源的指示信息所指示的干扰测量资源上,发送干扰测量信号的指示信息所指示的干扰测量信号。
在一个示例中,所述第一终端接收干扰测量资源的指示信息和/或干扰测量信号的指示信息,包括:第一终端接收第一网络设备或第二网络设备发送的干扰测量资源的指示信息;第一终端接收第一网络设备或第二网络设备发送的干扰测量信号的指示信息。
在一个示例中,所述第一终端接收干扰测量资源的指示信息和/或干扰测量信号的指示信息,包括:通过OAM为所述第一终端配置干扰测量资源的指示信息和/或干扰测量信号的指示信息。
在一个示例中,所述时域位置包括:子帧、时隙、迷你子帧、迷你时隙、OFDM符号或少于一个OFDM符号的资源单位。
在一个示例中,所述频域位置包括:频带、子带、频域偏移量、控制信道元素或物理资源块。
在一个示例中,所述空间域位置包括:传输端口或传输波束的信息,其中所述传输波束的信息为波束相关的标识。
在一个示例中,所述时域位置位于以下任意一种子帧中:包括PDCCH、PDSCH及PUCCH的子帧,包括PDCCH、PUSCH及PUCCH的子帧,包括PDCCH及PDSCH的子帧,包括PUCCH及PUSCH的子帧。
在一个示例中,若所述时域位置位于包括PDCCH、PUSCH及PUCCH的子帧中,则干扰测量资源为PDCCH之后的一个或多个OFDM符号;若所述时域位置位于包括PDCCH、PDSCH及PUCCH的子帧中,则干扰测量资源为PUCCH之前的一个或多个OFDM符号。
在一个示例中,所述干扰测量信号为:解调参考信号、信道状态信息参考信号、响应参考信号、前导码或新型信号。
在一个示例中,所述干扰测量信号的指示信息包括以下几项中的至少一项:序列长度、循环移位、物理小区标识及伪随机序列的初始值。
在一个示例中,所述干扰测量信号的指示信息还包括:干扰测量信号的传输端口或传输波束,其中所述传输波束为波束相关的标识。
在一个示例中,所述波束相关的标识包括:同步信号资源块、同步信号的时域标识或者参考信号的标识。
在一个示例中,所述第二终端根据所述干扰测量信号的强度,控制第二终端向第二网络设备发送数据信号的功率,包括:第二终端接收干扰测量信号的特征与数据信号的位置之间的关系,其中所述位置包括时域、频域及空间域中的至少一项;第二终端确定第一终端发送的干扰测量信号的特征,并根据所述关系,确定所述第一终端发送的干扰测量信号对应的数据信号的位置;第二终端根据所述干扰测量信号的强度,控制第二终端在确定出 的位置上控制数据信号的发送功率。
在一个示例中,所述第二终端接收干扰测量信号的特征与数据信号的位置之间的关系,包括:第二终端接收第一网络设备或第二网络设备发送的干扰测量信号的特征与数据信号的位置之间的关系。
在一个示例中,所述第二终端接收干扰测量信号的特征与数据信号的位置之间的关系,包括:通过OAM为所述第二终端配置干扰测量信号的特征与数据信号的位置之间的关系。
在一个示例中,所述干扰测量资源的指示信息、所述干扰测量信号的指示信息以及所述干扰测量信号的特征与数据信号的位置之间的关系中的任何一项通过RRC信令、MAC层信令或物理层信令中的至少一项发送。
在一个示例中,所述干扰测量资源的指示信息、所述干扰测量信号的指示信息以及所述干扰测量信号的特征与数据信号的位置之间的关系中的任何一项通过RRC信令预先配置,由物理层信令激活或去激活。
在一个示例中,第一终端在干扰测量资源上发送干扰测量信号时,所述干扰测量资源和/或所述干扰测量信号时域正交、频域正交或码域正交。
在一个示例中,第二终端测量得到的所述干扰测量信号的强度包括以下几项中的任意一项或多项:参考信号接收功率、参考信号接收质量、接收信号强度指示、信道质量指示及信道状态指示。
在一个示例中,所述第二终端根据所述干扰测量信号的强度,控制第二终端向第二网络设备发送数据信号的功率,包括:第二终端根据干扰测量信号的强度与上行链路的调制编码策略之间的对应关系,确定向第二网络设备的上行调制编码策略;或者,第二终端根据干扰测量信号的强度与传输功率控制参数之间的对应关系,确定向第二网络设备的上行传输功率。
在一个示例中,第二终端接收第二网络设备发送的信令;所述信令中包括:干扰测量信号的强度与上行链路的调制编码策略之间的对应关系和/或所述干扰测量信号的强度与传输功率控制参数之间的对应关系。
在一个示例中,所述信令为无线资源控制信令,MAC层信令或物理层信令中的至少一项。
在一个示例中,所述物理层信令为上行授权信令或下行控制信息中的信令。
在一个示例中,所述传输功率控制参数包括以下几项中的任意一项或多项:目标功率值、路损补偿因子、闭环传输功率值及交叉链路干扰参数。
在一个示例中,当干扰测量是中期或长期时,所述交叉链路干扰参数由所述第二网络设备通过高层信令发送给第二终端;当干扰测量是短期时,所述交叉链路干扰参数由所述第二网络设备通过MAC层信令或物理层信令发送给第二终端。
在一个示例中,所述干扰测量信号的强度与上行链路的调制编码策略之间的对应关系,包括:所述干扰测量信号的强度级别与上行链路的调制编码策略之间的对应关系。
在一个示例中,所述干扰测量信号的强度与传输功率控制参数之间的对应关系,包括:所述干扰测量信号的强度级别与传输功率控制参数之间的对应关系。
在一个示例中,所述强度级别由信号强度门限值确定。
第二方面,本申请提供了一种干扰测量方法,包括:
第二终端在干扰测量资源上发送干扰测量信号;其中干扰测量信号为用于测量不同方向链路之间的干扰的信号,所述不同方向包括第一终端与第一网络设备之间的下行方向及第二终端与第二网络设备之间的上行方向;第一终端根据所述干扰测量资源的信息及所述干扰测量信号的信息,测量所述干扰测量信号,以得到所述干扰测量信号的强度。
在一个示例中,干扰测量方法还包括:第一终端将所述干扰测量信号的强度发送至第一网络设备。
在一个示例中,干扰测量方法还包括:第一网络设备根据所述干扰测量信号的强度,控制第一网络设备向第一终端发送数据信号的功率。
在一个示例中,第一终端测量得到的所述干扰测量信号的强度的类型包括以下几项中的任意一项或多项:参考信号接收功率、参考信号接收质量、接收信号强度指示、信道质量指示及信道状态指示。
在一个示例中,干扰测量方法还包括:第一终端建立所述干扰测量信号的强度的类型与上行链路方向的关联关系。
在一个示例中,干扰测量方法还包括:第一终端将所述干扰测量信号的强度的类型与上行链路方向的关联关系发送至第一网络设备。
在一个示例中,所述第一终端将所述干扰测量信号的强度的类型与上行链路方向的关联关系发送至第一网络设备,包括:所述第一终端通过以下两种资源中的任意一种资源,将所述干扰测量信号的强度的类型与上行链路方向的关联关系发送至第一网络设备;其中,资源包括:包含PDCCH、PDSCH以及PUCCH的子帧中位于PUCCH的被预留的资源、包含PDCCH、PUSCH以及PUCCH的子帧中位于PUSCH或PUCCH的被预留的资源。
在一个示例中,所述第一终端将所述干扰测量信号的强度发送至第一网络设备,包括:所述第一终端通过以下两种资源中的任意一种资源,将所述干扰测量信号的强度发送至第一网络设备;其中,资源包括:包含PDCCH、PDSCH以及PUCCH的子帧中位于PUCCH的被预留的资源、包含PDCCH、PUSCH以及PUCCH的子帧中位于PUSCH或PUCCH的被预留的资源。
在一个示例中,所述被预留的资源包含在由第一网络设备发送的RRC信令,MAC层信令及物理层信令中的至少一种信令中。
第三方面,本申请提供了一种干扰测量方法,包括:第一网络设备在干扰测量资源上向第二网络设备发送干扰测量信号;其中干扰测量信号为用于测量不同方向链路之间的干扰的信号;第二网络设备根据所述干扰测量资源的信息及所述干扰测量信号的信息,测量所述干扰测量信号,以得到所述干扰测量信号的强度。
在一个示例中,干扰测量方法还包括:第二网络设备向第一网络设备发送所述干扰测量信号的强度。
在一个示例中,干扰测量方法还包括:第一网络设备向第一终端发送所述干扰测量资源的指示信息和/或干扰测量信号的指示信息,以使第一终端依据所述指示信息进行接收数 据的速率匹配或打孔的数据操作。
在一个示例中,干扰测量方法还包括:第二网络设备向第二终端发送所述干扰测量资源的指示信息和/或干扰测量信号的指示信息,以使第二终端依据所述指示信息进行上行传输数据的速率匹配或打孔的数据操作。
在一个示例中,所述干扰测量资源的指示信息和/或所述干扰测量信号的指示信息通过RRC信令,MAC层信令以及物理层信令中的至少一种进行发送。
第四方面,本申请提供了一种终端,包括:接收器,用于接收干扰测量资源的指示信息和/或干扰测量信号的指示信息;其中干扰测量资源的指示信息包括干扰测量信号传输的时域位置、频域位置以及空间域位置中的至少一项;发射器,用于在干扰测量资源的指示信息所指示的干扰测量资源上,发送干扰测量信号的指示信息所指示的干扰测量信号;其中干扰测量信号为用于测量不同方向链路之间的干扰的信号。
在一个示例中,接收器用于接收干扰测量资源的指示信息和/或干扰测量信号的指示信息,包括:接收器,具体用于接收第一网络设备或第二网络设备发送的干扰测量资源的指示信息;以及接收第一网络设备或第二网络设备发送的干扰测量信号的指示信息。
在一个示例中,接收器用于接收干扰测量资源的指示信息和/或干扰测量信号的指示信息,包括:接收器,具体用于接收通过OAM为所述第一终端配置干扰测量资源的指示信息和/或干扰测量信号的指示信息。
在一个示例中,所述时域位置包括:子帧、时隙、迷你子帧、迷你时隙、OFDM符号或少于一个OFDM符号的资源单位。
在一个示例中,所述频域位置包括:频带、子带、频域偏移量、控制信道元素或物理资源块。
在一个示例中,所述空间域位置包括:传输端口或传输波束的信息,其中所述传输波束的信息为波束相关的标识。
在一个示例中,所述时域位置位于以下任意一种子帧中:包括PDCCH、PDSCH及PUCCH的子帧,包括PDCCH、PUSCH及PUCCH的子帧,包括PDCCH及PDSCH的子帧,包括PUCCH及PUSCH的子帧。
在一个示例中,若所述时域位置位于包括PDCCH、PUSCH及PUCCH的子帧中,则干扰测量资源为PDCCH之后的一个或多个OFDM符号;若所述时域位置位于包括PDCCH、PDSCH及PUCCH的子帧中,则干扰测量资源为PUCCH之前的一个或多个OFDM符号。
在一个示例中,所述干扰测量信号为:解调参考信号、信道状态信息参考信号、响应参考信号、前导码或新型信号。
在一个示例中,所述干扰测量信号的指示信息包括以下几项中的至少一项:序列长度、循环移位、物理小区标识及伪随机序列的初始值。
在一个示例中,所述干扰测量信号的指示信息还包括:干扰测量信号的传输端口或传输波束,其中所述传输波束为波束相关的标识。
在一个示例中,所述波束相关的标识包括:同步信号资源块、同步信号的时域标识或者参考信号的标识。
在一个示例中,接收器用于接收干扰测量资源的指示信息和/或干扰测量信号的指示信息,包括:接收器,具体用于接收RRC信令、MAC层信令或物理层信令中的至少一项,其中所述信令中包含所述干扰测量资源的指示信息和/或所述干扰测量信号的指示信息。
在一个示例中,接收器用于接收干扰测量资源的指示信息和/或干扰测量信号的指示信息,包括:接收器,具体用于接收RRC信令,所述RRC信令用于预先配置所述干扰测量资源的指示信息和/或所述干扰测量信号的指示信息;以及用于接收物理层信令,所述物理层信令用于激活或去激活预先配置的所述干扰测量资源的指示信息和/或所述干扰测量信号的指示信息。
在一个示例中,所述发射器在干扰测量资源上发送干扰测量信号时,所述干扰测量资源和/或所述干扰测量信号时域正交、频域正交或码域正交。
第五方面,本申请提供了一种终端,包括:处理器,用于根据干扰测量资源的信息及干扰测量信号的信息,测量其他终端发射的干扰测量信号,以得到所述干扰测量信号的强度,其中干扰测量信号为用于测量不同方向链路之间的干扰的信号,所述不同方向包括所述其他终端与第一网络设备之间的下行方向及所述终端与第二网络设备之间的上行方向;以及根据所述干扰测量信号的强度,控制所述终端向第二网络设备发送数据信号的功率。
在一个示例中,终端还包括:接收器,用于接收干扰测量信号的特征与数据信号的位置之间的关系,其中所述位置包括时域、频域及空间域中的至少一项;则处理器用于根据所述干扰测量信号的强度,控制所述终端向第二网络设备发送数据信号的功率,包括:处理器,具体用于确定第一终端发送的干扰测量信号的特征,并根据所述关系,确定所述第一终端发送的干扰测量信号对应的数据信号的位置;以及根据所述干扰测量信号的强度,控制第二终端在确定出的位置上控制数据信号的发送功率。
在一个示例中,接收器用于接收干扰测量信号的特征与数据信号的位置之间的关系,包括:接收器,具体用于接收第一网络设备或第二网络设备发送的干扰测量信号的特征与数据信号的位置之间的关系。
在一个示例中,接收器用于接收干扰测量信号的特征与数据信号的位置之间的关系,包括:接收器,具体用于接收通过OAM为所述第二终端配置干扰测量信号的特征与数据信号的位置之间的关系。
在一个示例中,接收器用于接收干扰测量信号的特征与数据信号的位置之间的关系,包括:接收器,具体用于接收RRC信令、MAC层信令或物理层信令中的至少一项,所述信令中包括干扰测量信号的特征与数据信号的位置之间的关系。
在一个示例中,接收器用于接收干扰测量信号的特征与数据信号的位置之间的关系,包括:接收器,具体用于接收RRC信令,所述RRC信令用于预先配置干扰测量信号的特征与数据信号的位置之间的关系;以及用于接收物理层信令,所述物理层信令用于激活或去激活预先配置的所述干扰测量信号的特征与数据信号的位置之间的关系。
在一个示例中,处理器测量得到的所述干扰测量信号的强度包括以下几项中的任意一项或多项:参考信号接收功率、参考信号接收质量、接收信号强度指示、信道质量指示及信道状态指示。
在一个示例中,处理器用于根据所述干扰测量信号的强度,控制所述终端向第二网络设备发送数据信号的功率,包括:处理器,具体用于根据干扰测量信号的强度与上行链路的调制编码策略之间的对应关系,确定向第二网络设备的上行调制编码策略;或者,根据干扰测量信号的强度与传输功率控制参数之间的对应关系,确定向第二网络设备的上行传输功率。
在一个示例中,终端还包括:接收器,用于接收第二网络设备发送的信令;所述信令中包括:干扰测量信号的强度与上行链路的调制编码策略之间的对应关系和/或所述干扰测量信号的强度与传输功率控制参数之间的对应关系。
在一个示例中,所述信令为无线资源控制信令,MAC层信令或物理层信令中的至少一项。
在一个示例中,所述物理层信令为上行授权信令或下行控制信息中的信令。
在一个示例中,所述传输功率控制参数包括以下几项中的任意一项或多项:目标功率值、路损补偿因子、闭环传输功率值及交叉链路干扰参数。
在一个示例中,接收器用于当干扰测量是中期或长期时,接收由所述第二网络设备通过高层信令发送给第二终端的交叉链路干扰参数;以及当干扰测量是短期时,接收由所述第二网络设备通过MAC层信令或物理层信令发送给第二终端的交叉链路干扰参数。
在一个示例中,所述干扰测量信号的强度与上行链路的调制编码策略之间的对应关系,包括:所述干扰测量信号的强度级别与上行链路的调制编码策略之间的对应关系。
在一个示例中,所述干扰测量信号的强度与传输功率控制参数之间的对应关系,包括:所述干扰测量信号的强度级别与传输功率控制参数之间的对应关系。
在一个示例中,所述强度级别由信号强度门限值确定。
第六方面,本申请提供了一种终端,包括:处理器,用于根据干扰测量资源的信息及干扰测量信号的信息,测量其他终端发射的干扰测量信号,以得到所述干扰测量信号的强度,其中干扰测量信号为用于测量不同方向链路之间的干扰的信号,所述不同方向包括所述其他终端与第一网络设备之间的下行方向及所述终端与第二网络设备之间的上行方向。
在一个示例中,终端还包括:发射器:用于所述干扰测量信号的强度发送至第一网络设备。
在一个示例中,处理器测量得到的所述干扰测量信号的强度的类型包括以下几项中的任意一项或多项:参考信号接收功率、参考信号接收质量、接收信号强度指示、信道质量指示及信道状态指示。
在一个示例中,处理器还用于建立所述干扰测量信号的强度的类型与上行链路方向的关联关系。
在一个示例中,终端还包括:发射器:用于将所述干扰测量信号的强度的类型与上行链路方向的关联关系发送至第一网络设备。
在一个示例中,发射器用于将所述干扰测量信号的强度的类型与上行链路方向的关联关系发送至第一网络设备,包括:发射器,具体用于通过以下两种资源中的任意一种资源,将所述干扰测量信号的强度的类型与上行链路方向的关联关系发送至第一网络设备;其中, 资源包括:包含PDCCH、PDSCH以及PUCCH的子帧中位于PUCCH的被预留的资源、包含PDCCH、PUSCH以及PUCCH的子帧中位于PUSCH或PUCCH的被预留的资源。
在一个示例中,发射器用于所述干扰测量信号的强度发送至第一网络设备,包括:发射器,具体用于通过以下两种资源中的任意一种资源,将所述干扰测量信号的强度发送至第一网络设备;其中,资源包括:包含PDCCH、PDSCH以及PUCCH的子帧中位于PUCCH的被预留的资源、包含PDCCH、PUSCH以及PUCCH的子帧中位于PUSCH或PUCCH的被预留的资源。
在一个示例中,所述被预留的资源包含在由第一网络设备发送的RRC信令,MAC层信令及物理层信令中的至少一种信令中。
第七方面,本申请还提供了一种网络设备,包括:发射器,用于在干扰测量资源上向另一网络设备发送干扰测量信号;其中干扰测量信号为用于测量不同方向链路之间的干扰的信号。
在一个示例中,发射器还用于向与所述网络设备关联的终端发送所述干扰测量资源的指示信息和/或干扰测量信号的指示信息,以使所述终端依据所述指示信息进行接收数据的速率匹配或打孔的数据操作。
在一个示例中,所述干扰测量资源的指示信息和/或所述干扰测量信号的指示信息通过RRC信令,MAC层信令以及物理层信令中的至少一种进行发送。
第八方面,本申请提供了一种网络设备,包括:处理器,用于根据干扰测量资源的信息及干扰测量信号的信息,测量另一网络设备发射的干扰测量信号,以得到所述干扰测量信号的强度。
在一个示例中,网络设备还包括:发射器,用于向所述另一网络设备发送所述干扰测量信号的强度。
在一个示例中,网络设备还包括:发射器,用于向所述网络设备关联的终端发送所述干扰测量资源的指示信息和/或干扰测量信号的指示信息,以使所述终端依据所述指示信息进行上行传输数据的速率匹配或打孔的数据操作。
在一个示例中,所述干扰测量资源的指示信息和/或所述干扰测量信号的指示信息通过RRC信令,MAC层信令以及物理层信令中的至少一种进行发送。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中需要使用的附图作简要的介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请提供的小区允许采用的两种TDD配置方式的示意图;
图2为本申请提供的相邻小区之间的干扰情况示意图;
图3为本申请提供的相邻小区之间产生干扰的系统架构图;
图4为本申请提供的基于干扰测量的功率控制的一种流程示意图;
图5为本申请提供的新型子帧的示意图;
图6为本申请提供的基于干扰测量的功率控制的另一流程示意图;
图7为本申请提供的基于干扰测量的功率控制的又一流程示意图;
图8为本申请提供的第一终端的一种硬件结构示意图;
图9为本申请提供的第二终端的一种硬件结构示意图;
图10为本申请提供的第一终端的另一种硬件结构示意图;
图11为本申请提供的第一基站的一种硬件结构示意图;
图12为本申请提供的第二基站的一种硬件结构示意图。
具体实施方式
在通信技术领域中,基站和终端可以工作在灵活双工模式下,使用灵活双工模式的相邻小区之间,一个小区的一种方向的数据传输会对另一小区的另一种方向的数据传输造成干扰,这种不同方向的通信链路造成的干扰可以称为交叉链路干扰。
其中,数据传输可以是控制信道上的或数据信道上的传输,一个小区的一种方向的数据传输会对另一小区的另一种方向的数据传输造成干扰包括:一个小区的一种方向的控制信道的数据传输与另一个小区的另一种方向的控制信道的数据传输之间的干扰,或者一个小区的一种方向的控制信道的数据传输与另一个小区的另一种方向的数据信道的数据传输之间的干扰,或者一个小区的一种方向的数据信道的数据传输与另一个小区的另一种方向的数据信道的数据传输之间的干扰。
以下结合具体应用场景介绍干扰的产生原因。
双工模式可以包括时分双工(Time Division Duplex,TDD)及频分双工(Frequency Division Duplex,FDD)两种。以TDD模式为例,上行数据及下行数据的配置方式可以包括下表中的7种。
表1
Figure PCTCN2017083151-appb-000001
其中,D表示子帧的方向为下行,U表示子帧的方向为上行,S表示特殊子帧。
通过上表1可以看出,如果某小区为了适用业务需求,可以在这7种方式中动态改变TDD配置,则序号为0、1、2及5的子帧的方向是固定的,其他序号的子帧的方向是变化的。具有固定方向的子帧如序号为0、1、2及5的子帧可以称为固定子帧,方向变化的子帧如序号为3、4、6、7、8及9可以称为灵活子帧。当然,固定子帧和灵活子帧可能根据允许采用的TDD配置方式的不同而不同。例如图1所示,假设某小区只支持配置序号为0和2的TDD配置方式,改变前为序号为0的配置方式,改变后为序号为2的配置方式,这种情况下,序号为0、1、2、5、6及7的子帧为固定子帧,序号为3、4、8及9的子帧为灵活子帧(Flexible Subframe)。
见图2,假设三个小区相邻,小区1使用的是序号为1的TDD配置方式,小区2使用的是序号为0的TDD配置方式,小区3使用的是序号为2的TDD配置方式。对比三种TDD配置方式可以发现,对基站eNB#1来说,子帧sf#3和子帧sf#4是灵活子帧,这两个子帧受到的干扰强度与其他子帧受到的干扰强度是不同的。另外,对基站eNB#1来说,子帧sf#3会受到基站eNB#3所配置的方向为D的子帧的干扰(interference),子帧sf#4会受到基站eNB#2所配置的方向为U的子帧的干扰(interference),这两个子帧受到的干扰状态也是不同的。
需要说明的是,本申请的技术方案并不局限于上述应用场景,在其他应用场景中,也可能存在干扰。例如,以上是在时域上改变TDD配置方式,当然在频域改变TDD配置方式或整个频域改变传输方向,例如对整个特定频段或在频段中的一些子带上改变TDD配置方式或对整个特定频段或在频段中的一些子带上改变传输方向也可能会造成相邻小区间的干扰。另外,不仅是改变TDD配置方式会导致干扰,改变FDD配置方式也可能存在上述干扰。
综上所述,不论在以上何种应用场景中,基站与终端之间工作在灵活双工模式,使用的通信链路为方向不同的链路,也可以称之为交叉链路。某小区中的基站可能由于业务需要动态改变链路资源的传输方向,从而导致包含该小区的多个相邻小区之间存在干扰。当传输方向的配置是动态改变时,所导致的干扰是动态的。
干扰会对链路所传输的数据信号造成影响,通过控制数据信号的传输功率可以调节这种影响。例如,对一个被干扰的终端,在干扰较强的情况下,可以降低造成干扰的终端的数据信号的传输功率,在干扰较低的情况下,允许提高造成干扰的终端的数据信号的传输功率,以保证数据传输/接收的可靠性。上述示例中的终端可以替换为基站,即当干扰和被干扰发生在基站间时,对一个被干扰的基站,在干扰较强的情况下,可以降低造成干扰的基站的数据信号的传输功率,在干扰较低的情况下,允许提高造成干扰的基站的数据信号的传输功率,以保证数据传输/接收的可靠性。
目前,公开有一种在增强干扰管理和流量自适应(Enhanced Interference Management and Traffic Adaptation,eIMTA)技术中的功率控制方案,该方案中设置一个服务小区TDD配置方式中的子帧和邻小区TDD配置方式中的子帧之间的干扰类型,并设置基于该干扰类型,对服务小区中的设备设置发送功率。
但该技术在划分功率控制所适用的子帧资源时,是基于半静态的TDD配置,其资源划 分及相关信令通知并不够及时,因此并不适用于上述使用较为动态传输方向配置的灵活双工模式的通信系统中。
因此,本申请提供了一种基于对交叉链路干扰的测量来控制传输功率的方案,当时域/频域资源的传输方向较为动态地进行配置时,本申请能够动态测量这种配置导致的干扰,并基于这种测量及时对发送功率作出调整。
为了便于理解技术方案,以相邻小区中的两个小区为例进行说明。为了便于区分,两个小区可以称为第一小区及第二小区。实施本技术方案的系统架构如图3所示,第一小区中的基站称为第一基站,第二小区中的基站称为第二基站,第一小区中的终端称为第一终端,第二小区中的终端称为第二终端。第二终端工作在上行模式,第一终端工作在下行模式,也就是说第二终端发送上行数据信号时,会对第一终端接收下行数据信号造成干扰。其中,本申请中所述第一终端/第二终端可以是一个或者多个。为了包括各种应用场景,可以将第一基站概括为第一网络设备,将第二基站概括为第二网络设备。
基于以上系统架构,为了控制第二终端对第一终端造成的干扰,有两种解决思路,一是可以控制第二终端发送数据信号的功率,二是可以控制第一终端接收数据信号的功率。因此,本申请提供了如下几个具体实施例。
实施例一
见图4,其示出了基于干扰测量的功率控制的一种流程示意,具体包括以下步骤S401~S407。
S401:第一基站向第一终端及第二基站发送干扰测量资源的信息。
其中,第一基站与第二基站位于两个相邻的小区中。第一基站可以是同时向第一终端及第二基站发送以上信息,也可以是不同时发送。
干扰测量资源为用于发送干扰测量信号的资源,干扰测量信号是用于测量不同方向的链路之间干扰强度的信号。或者,干扰测量资源也可以认为是用于测量干扰的资源,干扰测量信号也可以认为是用于测量干扰的信号。干扰测量又可以称为干扰检测、干扰监测、干扰感应等。所述干扰为不同方向的传输之间的干扰。
干扰测量资源的信息(也可以称为指示信息或配置信息),用于指示使用何种类型的资源传输干扰测量信号。具体地,干扰测量资源的信息可以包括以下几项中的任意一项或多项:干扰测量信号的传输时间位置、传输频域位置及空间域位置,也就是说,可以通过传输干扰测量信号的时间位置,频域位置以及空间域位置中的至少一项来表示干扰测量资源。
其中,传输干扰测量信号的时间位置(或时域资源)可以包括子帧(subframe)、时隙(slot)、迷你时隙(mini slot)、迷你子帧(mini subframe)、正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号或少于一个OFDM符号的资源单位。其中,OFDM符号可以是一个或多个OFDM符号。传输干扰测量信号的频域位置(或频域资源)可以包括频带(band)、子带(subband)、频域偏移量(frequency offset)、控制信道元素(control channel element,CCE)或物理资源块(physical resource block,PRB)。传输干 扰测量信号的空间域位置(或空间域资源)可以包括传输端口(port)或传输波束。传输波束可以通过波束相关的标识表示,例如通过同步信号资源块,或者同步信号的时域标识,或者参考信号的标识等。
具体的,传输干扰测量信号的时间位置可以是一个或者多个上述时间位置,可以是连续的或者不连续的;传输干扰测量信号的频域位置可以是一个或者多个上述频域位置,可以是连续的或者不连续的。所述连续或者不连续的时间位置和/或频域位置都可以是以某种特定的模式(pattern)。所述迷你时隙(mini slot)为少于一个时隙的OFDM符号组成的资源单位;所述迷你子帧(mini subframe)为少于一个时隙的OFDM符号组成的资源单位。
在干扰测量资源为OFDM符号的情况下,其小于或等于一个子帧的长度。
干扰测量资源可以包含在以下任意一种类型的子帧中:第一类型子帧为包含物理下行控制信道(Physical Downlink Control Channel,PDCCH)和物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的子帧;第二类型子帧为包含物理上行链路控制信道(Physical Uplink Control Channel,PUCCH)和物理上行共享信道(Physical Uplink Shared CHannel,PUSCH)的子帧;第三类型子帧为包含PDCCH、PDSCH以及PUCCH的子帧;第四类型子帧为包含PDCCH、PUSCH以及PUCCH的子帧。
其中,第三类型子帧和第四类型子帧可以包含保护间隔(guarding period,GP),保护间隔用于上下行之间的转换。第三类型子帧及第四类型子帧中,干扰测量资源可以为PDCCH之后的一个或多个时间位置,例如一个或多个OFDM符号,也可以为PUCCH之前的一个或多个时间位置,例如一个或多个OFDM符号。第三类型子帧可以称为新型子帧、下行混合子帧或自包含子帧;第四类型子帧可以称为新型子帧、上行混合子帧或自包含子帧。
如图5所述,第一行中的第三个和第四个子帧为第三类型子帧,其中第三个为包含干扰测量资源(填充有交叉斜线的部分)的第三类型子帧,第四个为不包含干扰测量资源的第三类型子帧。第三类型子帧为DL(downlink,下行链路)主宰的新型子帧(或称为DL主导的新型子帧,或称为DL中心的新型子帧,或称为自包含下行子帧)。在第三类型子帧中,干扰测量资源为PUCCH之前的一个或多个时间位置,例如一个或多个OFDM符号。
在图5中,第二行中的第三个和第四个子帧为第四类型子帧,其中第三个为包含干扰测量资源的第四类型子帧,第四个为不包含干扰测量资源的第四类型子帧。第四类型子帧为UL(uplink,上行链路)主宰的新型子帧(或称为UL主导的新型子帧,或称为UL中心的新型子帧,或称为自包含上行子帧)。在第四类型子帧中,干扰测量资源为PDCCH之后的一个或多个时间位置,例如一个或多个OFDM符号。
当资源单位是时隙时,干扰测量可以发生在第一个时隙,而数据传输发生在第二个时隙;当资源单位是子帧时,干扰测量可以发生在第一个子帧,而数据传输发生在第二个子帧。
需要说明的是,第一基站与第二基站使用的干扰测量资源是可以通过时域协调、频域协调或码域协调的,以使得相互间的干扰测量资源正交或准正交,因此易于检测。其中频域协调及码域协调可以是相同时间资源上的,使得干扰测量资源可以被预先配置。所述协 调可以是基于基站相互通知进行的协调,也可以是OAM(operation,administration and management)预先配置进行的协调。
第一基站向第二基站发送干扰测量资源的信息时,可以通过空口信令发送。第一基站可以通过空口信令向第一终端发送干扰测量资源的信息。
S402:第二基站向第二终端发送干扰测量资源的信息。
S403:第一基站向第一终端及第二基站发送干扰测量信号的信息。
其中,第一基站可以同时向第一终端及第二基站发送干扰测量信号的信息,也可以不同时发送。第一基站在向第二基站发送干扰测量信号的信息时,可以通过两个基站之间的接口发送。第一基站可以通过空口信令向第一终端发送干扰测量信号的信息。
干扰测量信号的信息可以是干扰测量信号或干扰测量信号的配置信息。配置信息可以指示第一终端依据该配置信息生成相应的干扰测量信号。
S404:第二基站向第二终端发送干扰测量信号的信息。
第二基站可以通过空口信令向第二终端发送干扰测量信号的信息和/或干扰测量资源的信息。
需要说明的是,以上步骤S401~S404的执行顺序并不局限于图示中的限定。第一基站可以按照自身的设置,向第一终端发送干扰测量资源的信息和/或干扰测量信号的信息,并向第二基站发送干扰测量资源的信息和/或干扰测量信号的信息,这些发送动作可以同时执行也可以顺序执行,执行顺序并不做具体限定。第二基站接收到干扰测量信号的信息和/或干扰测量信号的信息后,可以按照自身的设置,将该干扰测量的信息和/或干扰测量信号的信息向第二终端发送。
需要说明的是,以上步骤S401~S404是为第一终端配置干扰测量资源的信息及干扰测量信号的信息,以及为第二终端配置干扰测量资源的信息及干扰测量信号的信息。当然,配置方式并不局限于上述实施例一,还可以是如下几种。
在另一种配置方式中,通过OAM为第一基站及第二基站配置干扰测量资源的信息及干扰测量信号的信息,由第一基站配置给第一终端及由第二基站配置给第二终端。在又一种实现方式中,通过OAM直接为第一终端及第二终端配置干扰测量资源的信息及干扰测量信号的信息。在又一种实现方式中,第一基站与第二基站间协商干扰测量资源的信息和/或干扰测量信号的信息,再由第一基站将协商的干扰测量资源的信息和/或干扰测量信号的信息发送给第一终端,由第二基站将协商的干扰测量资源的信息和/或干扰测量信号的信息发送给第二终端。所述协商干扰测量资源的信息及干扰测量信号的信息可以是第一基站发给第二基站干扰测量资源的信息及干扰测量信号的信息,也可以是第二基站发给第一基站干扰测量资源的信息及干扰测量信号的信息。
S405:第一终端在干扰测量资源的信息指示的干扰测量资源上,发送干扰测量信号的信息指示的干扰测量信号。
其中,干扰测量信号的信息(也可以称为指示信息或配置信息),用于指示使用何种类型的干扰测量信号进行干扰测量。干扰测量信号的信息包括以下几项中的至少一项:序列长度(sequence length)、循环移位(cyclic shift)、物理小区标识(physical cell ID)及 伪随机序列的初始值(pseudo-random sequence initial value)。干扰测量信号的形式是通过干扰测量信号的信息指示的。干扰测量信号可以具体包括如下几种形式:解调参考信号(demodulation reference signal,DMRS)、信道状态信息参考信号(CSI-RS)、响应参考信号(sounding reference signal,SRS)、前导码(preamble)或新型信号。其中,上述任何一种信号都可以是基于序列长度(sequence length)、循环移位(cyclic shift)、物理小区标识(physical cell ID)以及伪随机序列的初始值(pseudo-random sequence initial value)中的至少一种确定或配置的信号。干扰测量信号的信息中还可以包括干扰测量信号的传输端口(port)或传输波束,其中传输端口(port)或传输波束为终端的传输端口(port)或传输波束。在一个高频系统中,干扰测量信号的信息还包括干扰测量信号的传输波束。传输波束可以通过波束相关的标识表示,例如通过同步信号资源块,或者同步信号的时域标识,或者参考信号的标识等。
第一小区与第二小区之间可以预先协商定义干扰测量信号,两个小区具有自身对应的干扰测量信号,干扰测量信号之间是正交的,以避免错误监听干扰测量信号。每个小区对应的干扰测量信号可以是一组(组也可以称为集合),那么两组干扰测量信号集合之间是正交的。
S406:第二终端依据干扰测量资源的信息及干扰测量信号的信息,确定第一终端发送的干扰测量信号的强度。
具体地,第二终端根据干扰测量资源的信息可以确定在哪个资源上监听干扰测量信号,监听到干扰测量信号后,测量干扰监测信号,并使用干扰测量信号的信息,来判断出干扰测量信号的强度或路损。
在测量干扰测量信号的强度时,可以测量干扰测量信号在以下一项或多项上的强度值:参考信号接收功率(Reference Signal Received Power,RSRP),参考信号接收质量(Reference Signal Received Quality,RSRQ),接收信号强度指示(Received Signal Strength Indicator,RSSI),信道质量指示(Channel Quality Indicator,CQI)及信道状态指示(Channel State Indicator,CSI)。
干扰测量信号的强度可以被包含在干扰测量报告中,干扰测量报告可以上报给第二基站,则用于上报的资源可以被预留以保证干扰测量报告的及时上报。预留的资源可以在任何子帧的PUCCH/PUSCH,例如第三类型子帧或第四类型子帧的PUCCH/PUSCH。预留的资源可以通过高层信令由相应的基站通知给终端。
第二终端的干扰测量可以是中期/长期的干扰测量,也可以是短期的干扰测量。干扰测量的持续时间,例如干扰测量的取样值的个数或者干扰测量资源的个数,需要由第二基站通过高层信令、MAC层信令及物理层信令中的至少一项通知给第二终端。
S407:第二终端根据监听的干扰测量信号的强度,控制第二终端向第二基站发送数据信号的功率。
其中,第二基站可以通过信令向第二终端发送几组可选的上行传输方式,其中信令可以包括上行授权信令或其他下行控制信息中的信令。或者,第二基站可以配置第二终端的上行传输方式,配置方式是可以通过无线资源控制(Radio Resource Control,RRC)信令配 置,或者可以通过物理层信令配置。配置可以是预先配置或动态配置。预先配置后的上行传输方式可以通过PDCCH中的物理层信令激活或去激活。物理层信令可以为上行授权信令或其他下行控制信息中的信令。第二基站还通过空口信令进行配置或者通过OAM配置。
需要说明的是,目前在第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)中,物理上行共享信道(Physical Uplink Shared CHannel,PUSCH)的功率控制方式如下:
Figure PCTCN2017083151-appb-000002
其中,PCMAX,c(i)表示最大功率,MPUSCH,c(i)表示物理资源块(Physical Resource Block,PRB)的个数,PO_PUSCH,c(j)和αc(j)是被半静态配置的参量,PLc是用户设备(User Equipment,UE)估计出的路损,ΔTF,c(i)是对不同的调制与编码策略(Modulation and Coding Scheme,MCS)的增量值,fc(i)是由终端闭环功控所形成的功率调整值。
在上述功率控制中,PO_PUSCH,c(j)和αc(j)是被半静态配置的,并且对于所有子帧,取值都保持不变。半静态配置的配置周期较长,并不适合应用在采用灵活双工模式的系统中。然而,本实施例中,上行传输方式是第二基站通过上行授权信令或PDCCH等动态方式配置到第二终端上的,这种配置方式更加动态,能够应用到采用灵活双工模式的系统中。
另外,在采用灵活双工模式的系统中,相邻小区之间存在交叉时隙干扰,不同的上行子帧间的干扰可能存在差别。以某小区为例:该小区基站在某个上行子帧所受到的干扰可能是相邻基站进行下行传输造成的上行干扰,而在另一个上行子帧所受到的干扰可能是相邻基站下的终端进行上行传输造成的上行干扰。然而,本实施例可以为第二终端配置多套上行传输方式,第二终端可以根据监测到的干扰测量信号的强度,选择使用对应的上行传输方式,该上行传输方式考虑了上下行不同方向传输造成的干扰差别,从而可以避免交叉链路干扰对数据有效传输造成的影响,进而提高数据的有效传输速率。
第二基站还需要为第二终端配置干扰测量信号的强度与上行传输方式之间的对应关系。第二终端监听到干扰测量信号的强度后,便可以根据干扰测量信号的强度与上行传输方式之间的对应关系,选择对应的上行传输方式。
在一个示例中,干扰测量信号的强度与上行传输方式之间的对应关系可以具体为:干扰测量信号的强度级别与上行传输方式之间的对应关系。强度级别可以是由信号强度范围确定的,信号强度范围是由信号强度门限值确定的。这样,根据监听到的干扰测量信号的强度,可以确定该干扰测量信号对应哪个强度级别,进而确定该干扰测量信号对应的上行传输方式。所述信号强度门限值和/或所述干扰测量信号的强度级别与上行传输方式之间的对应关系可以通过高层信令由基站配置给终端。
例如,信号强度范围[1dB,5dB)对应的强度级别为1,信号强度范围[5dB,10dB)对应的强度级别为2,假设第二终端监听到的干扰测量信号的强度为8dB,便可以确定出该干扰测量信号强度对应强度级别2。所述具体数值仅作为示例,实际值不受限制。进一步地,第二终端根据强度级别与上行传输方式之间的对应关系,便可以确定出需要使用强度级别2对应的上行传输方式,来控制数据信号的发射功率。
上行传输方式可以包括:上行链路的多种调制编码策略(Modulation and Coding  Scheme,MCS)和/或传输功率控制参数的多个参数值。其中,传输功率控制参数可以包括以下四项参数中的任意一项或多项:目标功率值、路损补偿因子、闭环传输功率值以及交叉链路干扰参数。其中,所述目标功率值包括小区特定的目标功率值和终端特定的目标功率值;交叉链路干扰参数是与目标功率值并列的增加在PUSCH的功率控制公式中的参数,其用来弥补干扰所造成的上行传输功率值的确定。
例如,若用P_CLI表示交叉链路干扰参数,则新的引入交叉链路干扰参数的功控公式为:
Figure PCTCN2017083151-appb-000003
其中,所述交叉链路干扰参数可以由第二基站通过高层信令、MAC层信令及物理层信令中的至少一项通知给第二终端。当所述干扰测量是中期/长期时,所述交叉链路干扰参数可以由第二基站通过高层信令通知给第二终端;当所述干扰测量是短期时,所述交叉链路干扰参数可以由第二基站通过MAC层信令或物理层信令通知给第二终端。当所述交叉链路干扰参数通过高层信令通知给第二终端时,可以与目标功率值合并成一个参数通知,或者分别通知。当所述交叉链路干扰参数通过物理层信令通知给第二终端时,可以与闭环功率值合并成一个参数通知,或者分别通知。
上行传输方式可以包括多种,不同种的上行传输方式对应的是不同类型的功率控制,例如功率控制包括PUSCH功控、PUCCH功控或SRS(Sounding Reference Signal,信道探测参考信号)功控。
调制编码策略不同,则使用不同的调制编码策略生成的数据信号的传输功率也会不同;传输功率控制参数是传输功率的影响因子,在不同参数值的约束下,传输功率值也不同,可以参见第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)中,物理上行共享信道(Physical Uplink Shared CHannel,PUSCH)的功率控制方式。
不论使用何种方式选择出上行传输方式,所选择的上行传输方式可以是某种调制编码策略或者传输功率控制参数的某些参数值,根据上行传输方式便可以确定数据信号的传输功率。需要说明的是,上行传输方式与干扰测量信号的强度之间的关系是反相关的关系,即干扰测量信号的强度越强,则上行传输方式决定的数据信号的传输功率越低和/或选用低阶MCS以降低干扰;反之,干扰测量信号的强度越低,则上行传输方式决定的数据信号的传输功率越高和/或选用高阶MCS,以在不造成干扰的情况下,可以提高数据信号传输的可靠性和/或吞吐量。
第一基站为第一终端配置干扰测量信号的特征与数据信号的位置关系,该位置包括数据信号的时域、频域及空间域中的任意一种或多种。这个关系可以由基站间相互协商后发送给终端,例如第一基站发送给第二基站后,由第二基站再发送给第二终端以及由第一基站再发送给第一终端。这个关系也可以由OAM配置给基站,基站类似上述发送给终端,或者由OAM配置给基站和终端。所述第一基站发送给第二基站可以是通过基站间接口信令,例如X2信令或者空口信令。第二基站再发送给第二终端和/或第一基站再发送给第一终端通过空口信令,具体可以是RRC信令,MAC层信令或物理层信令中的至少一项。也可以为通过RRC信令预先配置,并由物理层信令激活。
其中,干扰测量信号的特征与数据信号的时域之间的关系表示,第一终端发送某种特征的干扰测量信号后,与该种特征的干扰测量信号对应,多长时间后会发送数据信号;干扰测量信号的特征与数据信号的频域之间的关系表示,终端发送某种特征的干扰信号,与该种特征的干扰测量信号对应,在怎样的频域位置上会发送数据信号。所述特征可以为干扰测量信号的信息。所述时域/频域可以服从某种预定义的模式。具体模式例如某种半静态调度的时域/频域资源。
例如,第一终端发送干扰测量信号后,可能在接下来的某一个或某几个子帧或时隙发送数据信号。若在某几个子帧或时隙发送数据信号,该些时域资源,例如子帧或时隙,可以是连续的或者不连续的。不连续可以为半静态调度或半持续调度(semi-persistent scheduling,SPS)。
干扰测量信号与数据信号的位置之间的关系可以被发送至第二终端。第二终端监听到一干扰测量信号后,根据该干扰测量信号与数据信号的位置之间关系,可以确定第一终端在怎样的位置上发送数据信号,这样,第二终端可以在相应的位置上,按照以上确定出的上行传输方式控制自身发送数据信号的功率。
需要说明的是,由于距离较近的终端所受到的干扰近似,因此该第二终端监听到的干扰测量信号或者确定出的上行传输方式可以作为与该第二终端距离较近的终端的功率控制参考。距离较近的判断标准可以是距离参数如参考信号接收功率(Reference Signal Receiving Power,RSRP)或参考信号接收质量(Reference Signal Receiving Quality,RSRQ)之差在预设的阈值范围内。
在本实施例中,由第一终端发送干扰测量信号,第二终端监听该干扰测量信号的强度,第二终端可以直接根据测量到干扰测量信号的强度,来控制第二终端自身传输数据信号的功率。本申请可以实现对频段、子带、子帧等各种粒度上的干扰的测量,并基于测量结果对传输功率进行控制。
实施例二
以上实施例一是由第二终端控制向第二基站发送数据信号的功率,即是由造成干扰的终端自身来调整数据信号的传输功率,以适应性调整该终端对相邻小区接收数据的终端造成的干扰。本申请还提供了实施例二,实施例二是由第一基站控制向第一终端发送数据信号的功率。见图6,其示出了基于干扰测量的功率控制的一种流程示意,具体包括以下步骤S601~S608。
S601:第二基站向第二终端及第一基站发送干扰测量资源的信息。
S602:第一基站向第一终端发送干扰测量资源的信息。
S603:第二基站向第二终端及第一基站发送干扰测量信号的信息。
S604:第一基站向第一终端发送干扰测量信号的信息。
S605:第二终端在干扰测量资源的信息指示的干扰测量资源上,发送干扰测量信号的信息指示的干扰测量信号。
S606:第一终端依据干扰测量资源的信息及干扰测量信号的信息,监听第二终端发送 的干扰测量信号的强度。
需要说明的是,有关本实施例中步骤S601~S606的说明可以参见实施例一中S401~S406,以上各个步骤与实施例一中的对应步骤的动作内容是相同的,只不过将动作的执行主体由第一基站及第一终端替换为第二基站及第二终端而已。
同样,以上步骤S601~S604的执行顺序并不局限于图示中的限定。第二基站可以按照自身的设置,向第二终端发送干扰测量资源的信息和/或干扰测量信号的信息,并向第一基站发送干扰测量资源的信息和/或干扰测量信号的信息,这些发送动作可以同时执行也可以顺序执行,执行顺序并不做具体限定。第一基站接收到干扰测量信号的信息和/或干扰测量信号的信息后,可以按照自身的设置,将该干扰测量的信息和/或干扰测量信号的信息向第一终端发送。
需要说明的是,以上步骤S601~S604是为第一终端配置干扰测量资源的信息及干扰测量信号的信息,以及为第二终端配置干扰测量资源的信息及干扰测量信号的信息。当然,配置方式并不局限于上述实施例二,还可以是如下几种。
在另一种配置方式中,通过OAM为第一基站及第二基站配置干扰测量资源的信息及干扰测量信号的信息,由第一基站配置给第一终端及由第二基站配置给第二终端。在又一种实现方式中,通过OAM直接为第一终端及第二终端配置干扰测量资源的信息及干扰测量信号的信息。在又一种实现方式中,第一基站与第二基站间协商干扰测量资源的信息和/或干扰测量信号的信息,再由第一基站将协商的干扰测量资源的信息和/或干扰测量信号的信息发送给第一终端,由第二基站将协商的干扰测量资源的信息和/或干扰测量信号的信息发送给第二终端。所述协商干扰测量资源的信息及干扰测量信号的信息可以是第一基站发给第二基站干扰测量资源的信息及干扰测量信号的信息,也可以是第二基站发给第一基站干扰测量资源的信息及干扰测量信号的信息。
S607:第一终端向第一基站发送干扰测量信号的强度。
由于干扰测量信号是由第二终端在上行模式下发送的,且干扰测量信号的强度可以分别为RSRP、RSRQ、RSSI、CQI及CSI等中的至少一种,因此,可以将干扰测量信号记录为UL-RSRP,UL-RSRQ,UL-RSSI,UL-CSI,UL-CQI等,这种UL-信号强度类型的记录方式可以表示出,第一终端监听的是关联于上行链路方向的哪种类型的信号强度。需要说明的是,记录方式也可以称为关联关系。关联关系中包括的UL表示上行链路方向,即是对第二终端发送的干扰测量信号的测量结果。当然,第一终端也可能记录有DL-RSRP,DL-RSRQ,DL-RSSI,DL-CSI,DL-CQI,但这些关联关系中的DL表示下行链路方向,是对第一基站的下行参考信号的测量结果。可见,通过DL及UL可以区分出所测量的信号强度是关联于哪种链路方向的或关联于哪种信号的(即,是通常的参考信号还是干扰测量信号)。
进一步地,干扰测量信号也可能是多种,因此,还可以记录该类型的信号强度是关于哪里一类型的干扰测量信号的。记录方式为:UL-信号类型-信号强度类型。例如,在信号强度类型包括RSRP、RSRQ、RSSI、CQI及CSI,以及信号类型包括DMRS、CSI-RS、SRS及preamble的情况下,可以组合出20种UL-信号类型-信号强度类型的记录结果。
如干扰测量信号的类型为SRS,记录结果包括:UL-SRS-RSRP,UL-SRS-RSRQ, UL-SRS-RSSI,UL-SRS-CSI,UL-SRS-CQI;如干扰测量信号的类型为CSI-RS,记录结果包括:UL-CSI-RS-RSRP,UL-CSI-RS-RSRQ,UL-CSI-RS-RSSI,UL-CSI-RS-CSI,UL-CSI-RS-CQI;如干扰测量信号的类型为DM-RS,记录结果包括:UL-DMRS-RSRP,UL-DMRS-RSRQ,UL-DMRS-RSSI,UL-DMRS-CSI,UL-DMRS-CQI。
需要说明的是,以上实施例一第二终端在监听第一终端发送的干扰测量信号的强度时,也可以按照上述方式记录干扰测量信号的类型及信号强度的类型。
第一终端可以在上行控制数据传输的区域PUCCH部分汇报给第一基站。上行控制数据传输的区域PUCCH部分可以是现有子帧或新型子帧的PUCCH部分,新型子帧可以称为自包含子帧或混合子帧。具体地,新型子帧可以包含DL控制部分、DL数据部分及UL控制部分,或者新型子帧可以包含DL控制部分、UL数据部分及UL控制部分。同样的,第一终端也可以在PUSCH部分汇报给第一基站。PUSCH部分可以是现有子帧或新型子帧的PUSCH部分。
在预留的PUCCH/PUSCH上进行反馈时,需要指明是针对UL-信号强度类型或UL-信号类型-信号强度类型进行的反馈以及对应的信号强度值,或直接反馈对应的信号强度值。所述预留的PUCCH/PUSCH为基站通过空口信令预先通知终端。
S608:第一基站根据干扰测量信号的强度,控制第一基站向第一终端发送数据信号的功率。
其中,为了实现对所发送的数据信号的功率的控制,第一基站也可以配置数据信号的发送功率(或称为传输功率)与干扰测量信号的强度之间的对应关系,根据该对应关系,来控制数据信号的发送功率。需要说明的是,与实施例一种的对应关系不同,这种对应关系是正相关,即干扰测量信号的强度越强,则控制后的数据信号的发送功率越高,以降低第一终端受到的干扰;反之,干扰测量信号的强度越低,则控制后的数据信号的传输功率越低,以保证第一终端接收数据信号不受干扰的情况下,可以降低第一基站的功耗。
或者,第一基站使用相对窄带发射功率(Relative Narrowband Transmission Power,RNTP)信令进行数据信号发送功率的控制。具体地,第一基站利用RNTP信令控制不同PRB的传输功率,对于较强的干扰测量信号所对应的数据信号的时域/频域资源,提高PRB的传输功率;对于较弱的干扰测量信号所对应的数据信号的时域/频域资源,降低PRB的传输功率。需要说明的是,如果仅执行干扰测量方法,则以上步骤S607及步骤S608可以并非为必要步骤。
以上实施例一是由第一终端发送干扰测量信号,由第二终端对该干扰测量信号进行监听且自适应地调整功率;实施例二是由第二终端发送干扰测量信号,由第一终端对该干扰测量信号进行监听,反馈给第一基站由第一基站进行功率调整等调度方式的改变。可见,以上两个实施例主要执行在终端侧,或者第一终端本申请还提供了以下实施例,该实施例主要应用在基站侧,由基站发送及监听干扰测量信号,并根据监听结果做出功率控制。
实施例三
本实施例是由第一基站发送干扰测量信号,由第二基站测量,并在基站侧作出相应的 调度方式等的调整。见图7,其示出了基于干扰测量的功率控制的一种流程示意,具体包括以下步骤S701~S704。
S701:第一基站向第二基站发送干扰测量资源的信息及干扰测量信号的信息。
其中,第一基站可以同时或不同时向第二基站发送上述信息。
需要说明的是,第二基站的干扰测量资源的信息及干扰测量信号的信息,也可以并非通过第一基站发送的,可以是通过OAM配置的,即通过OAM配置第一基站与第二基站间的干扰测量资源的信息和/或干扰测量信号的信息。
第二基站接收到上述干扰测量资源后,自身在这些指定的资源上不配置数据传输或数据接收,即清空(blank)这些资源,以保证正确测量该干扰。
S702:第一基站在干扰测量资源的信息指示的干扰测量资源上,发送干扰测量信号的信息指示的干扰测量信号。
其中,与上述两个实施例不同,第一基站的干扰测量信号是向第二基站发送的。
S703:第二基站依据干扰测量资源的信息及干扰测量信号的信息,监听第一基站发送的干扰测量信号的强度。
S704:第二基站根据干扰测量信号的强度,配置第二终端向第二基站发送数据信号的功率。
其中,配置第二终端向第二基站发送数据信号的功率,包括配置第二终端向第二基站发送数据信号的功率参数值和/或MCS,以使得第二终端在进行上行传输时使用所述配置的功率参数值确定上行传输功率和/或使用所述配置的MCS进行上行传输。需要说明的是,如果仅执行干扰测量方法,则以上步骤S703及步骤S704可以并非为必要步骤。
由以上的技术方案可知,本实施例可以由基站实现干扰测量,并且基于测量的干扰强度对终端进行相应的处理,例如向基站发送数据信号的功率进行控制,并未为终端增加较大的干扰测量负担。
在以上实施例的基础上,第二基站还可以将干扰测量信号的强度发送至第一基站。因此,第一基站可以进行相应的处理,例如做出下行传输的功率调整。
另外,第一基站还可以向第一终端发送干扰测量资源的指示信息和/或干扰测量信号的指示信息,这样,第一终端接收到上述干扰测量资源的指示信息后,获知这些指示信息所指示的资源被用于做干扰测量,在这些资源上不会有来自第一基站调度第一终端进行下行传输的数据,因此第一终端可以进行接收数据的速率匹配或打孔等相应的数据操作。
另外,第二基站还可以向第二终端发送干扰测量资源的指示信息和/或干扰测量信号的信息,这样,第二终端接收到上述干扰测量资源的指示信息后,获知这些指示信息所指示的资源被用于做干扰测量,在这些资源上不会有来自第二基站调度第二终端进行上行传输的数据,因此第二终端可以进行上行传输数据的速率匹配或打孔等相应的数据操作。
需要说明的是,以上实施例三中的第一基站可以替换为第二基站,第二基站可以替换为第一基站。
见图8,其示出了本申请提供的第一终端的一种结构示意,包括:总线、接收器801、 发射器802、处理器803及存储器804。总线、接收器801、发射器802、处理器803及存储器804通过总线相互连接。其中:
总线可包括一通路,在第一终端各个部件之间传送信息。
接收器801,用于接收干扰测量资源的指示信息和/或干扰测量信号的指示信息;其中干扰测量资源的指示信息包括干扰测量信号传输的时域位置、频域位置以及空间域位置中的至少一项。接收器801还可以用于执行上述实施例一中与第一终端相关的其他数据接收动作。
发射器802,用于在干扰测量资源的指示信息所指示的干扰测量资源上,发送干扰测量信号的指示信息所指示的干扰测量信号;其中干扰测量信号为用于测量不同方向链路之间的干扰的信号。发射器802还可以用于执行上述与第一终端相关的其他数据发送动作。
处理器803可以协调接收器801及发射器802的工作。
存储器804中保存有执行本申请技术方案的程序,还可以保存有操作系统和其他数据。
见图9,其示出了本申请提供的第二终端的一种结构示意,包括:总线、接收器901、发射器902、处理器903及存储器904。总线、接收器901、发射器902、处理器903及存储器904通过总线相互连接。
总线可包括一通路,在第二终端各个部件之间传送信息。
接收器901用于执行上述实施例一中与第二终端相关的数据接收动作。
发射器902用于执行上述实施例一中与第二终端相关的数据发送动作。
处理器903用于根据干扰测量资源的信息及干扰测量信号的信息,测量其他终端发射的干扰测量信号,以得到所述干扰测量信号的强度,其中干扰测量信号为用于测量不同方向链路之间的干扰的信号,所述不同方向包括所述其他终端与第一网络设备之间的下行方向及所述终端与第二网络设备之间的上行方向;以及根据所述干扰测量信号的强度,控制所述终端向第二网络设备发送数据信号的功率。处理器903还可以用于执行上述实施例一中与第二终端相关的其他数据处理动作。
存储器904中保存有执行本申请技术方案的程序,还可以保存有操作系统和其他数据。
见图10,其示出了本申请提供的第一终端的另一种结构示意,包括:总线、接收器1001、发射器1002、处理器1003及存储器1004。总线、接收器1001、发射器1002、处理器1003及存储器1004通过总线相互连接。
总线可包括一通路,在第一终端各个部件之间传送信息。
接收器1001用于执行上述实施例二中与第二终端相关的数据接收动作。
发射器1002用于执行上述实施例二中与第二终端相关的数据发送动作。
处理器1003,用于根据干扰测量资源的信息及干扰测量信号的信息,测量其他终端发射的干扰测量信号,以得到所述干扰测量信号的强度,其中干扰测量信号为用于测量不同方向链路之间的干扰的信号,所述不同方向包括所述其他终端与第一网络设备之间的下行方向及所述终端与第二网络设备之间的上行方向。
存储器1004中保存有执行本申请技术方案的程序,还可以保存有操作系统和其他数据。
见图11,其示出了本申请提供的第一基站的一种结构示意,包括:总线、接收器1101、发射器1102、处理器1103及存储器1104。总线、接收器1101、发射器1102、处理器1103及存储器1104通过总线相互连接。
总线可包括一通路,在第一基站各个部件之间传送信息。
接收器1101用于执行上述实施例三中与第一基站相关的数据接收动作。
发射器1102用于在干扰测量资源上向第二基站发送干扰测量信号;其中干扰测量信号为用于测量不同方向链路之间的干扰的信号。另外,发射器1002还可以执行上述实施例三中与第一基站相关的数据发送动作。
处理器1103可以协调接收器1101及发射器1102的工作。
存储器1104中保存有执行本申请技术方案的程序,还可以保存有操作系统和其他数据。
见图12,其示出了本申请提供的第二基站的一种结构示意,包括:总线、接收器1201、发射器1202、处理器1203及存储器1204。总线、接收器1201、发射器1202、处理器1203及存储器1204通过总线相互连接。
总线可包括一通路,在第二基站各个部件之间传送信息。
接收器1201用于执行上述实施例三中与第二基站相关的数据接收动作。
发射器1202用于执行上述实施例三中与第二基站相关的数据发送动作。
处理器1203用于根据干扰测量资源的信息及干扰测量信号的信息,测量第一基站发射的干扰测量信号,以得到所述干扰测量信号的强度。
存储器1204中保存有执行本申请技术方案的程序,还可以保存有操作系统和其他数据。
以下对本申请的应用场景及术语进行补充说明。
全文所述第一基站和第二基站可以互换,第一终端和第二终端可以互换。不受特定名称的限制。
本申请实施例提供的技术方案可以应用于各种通信系统,例如当前2G,3G,4G通信系统,以及未来演进网络,如5G通信系统。例如,长期演进(Long Term Evolution,LTE)系统,3GPP相关的蜂窝系统等,以及其他此类通信系统。尤其地,可以应用于5G超密集组网(Ultra Dense Network,UDN)系统中。需要说明的是,5G标准中可以包括机器对机器(Machine to Machine,M2M)、D2M、宏微通信、增强型移动互联网(Enhance Mobile Broadband,eMBB)、超高可靠性与超低时延通信(Ultra Reliable&Low Latency Communication,uRLLC)以及海量物联网通信(Massive Machine Type Communication,mMTC)等场景,这些场景可以包括但不限于:基站与基站之间的通信场景,基站与终端 之间的通信场景,终端与终端之间的通信场景等。本申请实施例提供的技术方案也可以应用于5G通信系统中的基站与终端之间的通信,或基站与基站之间的通信,终端与终端之间的通信等场景中。
以上各个实施例中,第一基站及第二基站可以是但不局限于应用5G技术的基站、小小区基站、新型无线电基站(new radio eNB)或传输点(transmissionpoint,TRP)等各种类型的基站。或者,在无线局域网的应用场景中,第一基站及第二基站可以替换为第一无线访问节点(AccessPoint,AP)及第二无线访问节点。在其他应用场景中,第一基站及第二基站可以替换为其他类型的设备。
基站可以是中继站、接入点或传输点等。基站可以是全球移动通信系统(Global System for Mobile Communication,GSM)或码分多址(Code Division Multiple Access,CDMA)网络中的基站收发信台(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)中的NB(NodeB),还可以是LTE中的eNB或eNodeB(evolutional NodeB)。基站还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器。基站还可以是未来5G网络中的网络设备(例如gNB)或未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备;还可以是可穿戴设备或车载设备等。
基站可以包括室内基带处理单元(Building Baseband Unit,BBU)和远端射频模块(Remote Radio Unit,RRU),RRU和天馈系统(即天线)连接,BBU和RRU可以根据需要拆开使用。应注意,在具体实现过程中,基站还可以采用其他通用硬件架构。
终端可以是用户设备(User Equipment,UE)、接入终端、UE单元、UE站、移动站、移动台、远方站、远程终端、移动设备、UE终端、终端、无线通信设备、UE代理或UE装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端或者未来演进的PLMN网络中的终端等。
另外,相邻小区的类型可以是宏小区、微小区、小小区等,相邻小区的类型可以相同也可以不同。小区的网络类型也可以是各种,例如可以是超密集组网(Ultra Dense Network,UDN),利用这种网络类型构建的小区数量更多,小区之间的距离更近,因此出现干扰的情况更多且干扰更强烈。在UDN场景中,更严重的干扰将出现在相邻小小区之间,而不仅仅局限于相邻小区簇之间。
全文如果不做特殊说明,所有发送的空口信令都可以是RRC信令,MAC层信令或物理层信令中的至少一项。也可以为通过RRC信令预先配置,并由物理层信令激活。
另外,本申请并不受限于应用于低频系统中,还可以是高频毫米波系统,因此上述涉及的干扰测量信号,干扰测量资源和/或,功率控制和/或干扰测量信号的强度汇报等都可以是基于波束赋形(beamforming)的或对应某一个波束标识的,即所有相关的扰测量信号,干扰测量资源和/或,功率控制和/或干扰测量信号的强度汇报都可以进一步携带波束标识。 所述波束标识可以是波束索引或者波束上对应的同步信号的标识/参考信号的标识。所述同步信号的标识/参考信号的标识可以是与同步信号/参考信号相关的时间标识,例如同步信号块时间索引。
本申请中所述的干扰测量信号,也可以称之为干扰探测信号,干扰感应信号,干扰监听信号,干扰测量信号中的任何一种。本专利中所述干扰测量资源,也可以称之为干扰探测资源,干扰感应资源,干扰监听资源,干扰测量资源中的任何一种。
本申请中所述的干扰测量信号的强度,也可以称之为干扰测量信号的接收功率,或干扰测量信号的测量结果。本专利中以第一基站和第二基站为例举例说明,但是不受限于只有两个基站,实际中可以是多个基站,因此,基于第一基站所属的第一终端发送的干扰测量信号,第二基站可以配置第二终端进行监听,第三基站可以配置第三终端进行监听,依次类推。同样,基于第二基站所属的第二终端发送的干扰测量信号,第一基站可以配置第一终端进行监听,第三基站可以配置第三终端进行监听,依次类推。同样,第一基站发送干扰测量信号时,第二基站和第三基站等都可以监听。
为了便于理解,示例的给出了部分与本申请相关概念的说明以供参考。如下所示:
下行:基站至终端的信息传输方向。
上行:终端至基站的信息传输方向。
特殊子帧:位于下行子帧与上行子帧之间的转换子帧。
静态配置:通常通过预配置或通过网络规划的方法进行配置。
动态配置:实时或频率较高的配置方式。
半静态配置:介于静态配置和动态配置之间的配置,改变频率较低,配置持续的周期较长的配置方式或配置持续的时间较长的配置方式,通常通过高层信令进行配置。
资源粒子:被划分的资源单元。
新型子帧/时隙:又称自包含子帧/时隙,新radio子帧/时隙,双向子帧/时隙或混合子帧/时隙。下述以自包含子帧/时隙作为示例,自包含子帧可以包括自包含下行子帧和自包含上行子帧。其中,自包含下行子帧可以包括下行控制信道、下行数据信道以及上行控制信道的传输。自包含上行子帧可以包括下行控制信道、上行数据信道以及上行控制信道的传输。所述新型子帧/时隙可以为新型迷你子帧/时隙。
资源元素(Resource Element,RE):频率上对应一个子载波,时域上对应一个OFDM符号。
子带:由若干个子载波组成。
频带:整个频域带宽。
时隙:7个OFDM符号对应一个时隙。
子帧:一个子帧包括两个时隙。
无线帧:一个无线帧包括10个子帧。
超帧:一个超帧包括51个复帧,一个复帧包括26个子帧。
需要说明的是,在本申请的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种 关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,在本申请的描述中,“多个”是指两个或多于两个。

Claims (89)

  1. 一种干扰测量方法,其特征在于,包括:
    第一终端在干扰测量资源上发送干扰测量信号;其中干扰测量信号为用于测量不同方向链路之间的干扰的信号,所述不同方向包括第一终端与第一网络设备之间的下行方向及第二终端与第二网络设备之间的上行方向;
    第二终端根据所述干扰测量资源的信息及所述干扰测量信号的信息,测量所述干扰测量信号,以得到所述干扰测量信号的强度;
    第二终端根据所述干扰测量信号的强度,控制第二终端向第二网络设备发送数据信号的功率。
  2. 根据权利要求1所述的干扰测量方法,其特征在于,所述第一终端在干扰测量资源上发送干扰测量信号,包括:
    第一终端接收干扰测量资源的指示信息和/或干扰测量信号的指示信息;其中干扰测量资源的指示信息包括干扰测量信号传输的时域位置、频域位置以及空间域位置中的至少一项;
    第一终端在干扰测量资源的指示信息所指示的干扰测量资源上,发送干扰测量信号的指示信息所指示的干扰测量信号。
  3. 根据权利要求2所述的干扰测量方法,其特征在于,所述第一终端接收干扰测量资源的指示信息和/或干扰测量信号的指示信息,包括:
    第一终端接收第一网络设备或第二网络设备发送的干扰测量资源的指示信息;
    第一终端接收第一网络设备或第二网络设备发送的干扰测量信号的指示信息。
  4. 根据权利要求2所述的干扰测量方法,其特征在于,所述第一终端接收干扰测量资源的指示信息和/或干扰测量信号的指示信息,包括:
    通过OAM为所述第一终端配置干扰测量资源的指示信息和/或干扰测量信号的指示信息。
  5. 根据权利要求2所述的干扰测量方法,其特征在于,所述时域位置包括:子帧、时隙、迷你子帧、迷你时隙、OFDM符号或少于一个OFDM符号的资源单位。
  6. 根据权利要求2所述的干扰测量方法,其特征在于,所述频域位置包括:频带、子带、频域偏移量、控制信道元素或物理资源块。
  7. 根据权利要求2所述的干扰测量方法,其特征在于,所述空间域位置包括:传输端口或传输波束的信息,其中所述传输波束的信息为波束相关的标识。
  8. 根据权利要求2所述的干扰测量方法,其特征在于;
    所述时域位置位于以下任意一种子帧中:包括PDCCH、PDSCH及PUCCH的子帧,包括PDCCH、PUSCH及PUCCH的子帧,包括PDCCH及PDSCH的子帧,包括PUCCH及PUSCH的子帧。
  9. 根据权利要求8所述的干扰测量方法,其特征在于,
    若所述时域位置位于包括PDCCH、PUSCH及PUCCH的子帧中,则干扰测量资源为 PDCCH之后的一个或多个OFDM符号;
    若所述时域位置位于包括PDCCH、PDSCH及PUCCH的子帧中,则干扰测量资源为PUCCH之前的一个或多个OFDM符号。
  10. 根据权利要求2所述的干扰测量方法,其特征在于,所述干扰测量信号为:解调参考信号、信道状态信息参考信号、响应参考信号、前导码或新型信号。
  11. 根据权利要求10所述的干扰测量方法,其特征在于,所述干扰测量信号的指示信息包括以下几项中的至少一项:序列长度、循环移位、物理小区标识及伪随机序列的初始值。
  12. 根据权利要求10或11所述的干扰测量方法,其特征在于,所述干扰测量信号的指示信息还包括:干扰测量信号的传输端口或传输波束,其中所述传输波束为波束相关的标识。
  13. 根据权利要求7或12所述的干扰测量方法,其特征在于,所述波束相关的标识包括:同步信号资源块、同步信号的时域标识或者参考信号的标识。
  14. 根据权利要求1所述的干扰测量方法,其特征在于,所述第二终端根据所述干扰测量信号的强度,控制第二终端向第二网络设备发送数据信号的功率,包括:
    第二终端接收干扰测量信号的特征与数据信号的位置之间的关系,其中所述位置包括时域、频域及空间域中的至少一项;
    第二终端确定第一终端发送的干扰测量信号的特征,并根据所述关系,确定所述第一终端发送的干扰测量信号对应的数据信号的位置;
    第二终端根据所述干扰测量信号的强度,控制第二终端在确定出的位置上控制数据信号的发送功率。
  15. 根据权利要求14所述的干扰测量方法,其特征在于,所述第二终端接收干扰测量信号的特征与数据信号的位置之间的关系,包括:
    第二终端接收第一网络设备或第二网络设备发送的干扰测量信号的特征与数据信号的位置之间的关系。
  16. 根据权利要求14所述的干扰测量方法,其特征在于,所述第二终端接收干扰测量信号的特征与数据信号的位置之间的关系,包括:
    通过OAM为所述第二终端配置干扰测量信号的特征与数据信号的位置之间的关系。
  17. 根据权利要求2或14所述的干扰测量方法,其特征在于,
    所述干扰测量资源的指示信息、所述干扰测量信号的指示信息以及所述干扰测量信号的特征与数据信号的位置之间的关系中的任何一项通过RRC信令、MAC层信令或物理层信令中的至少一项发送。
  18. 根据权利要求2或14所述的干扰测量方法,其特征在于,
    所述干扰测量资源的指示信息、所述干扰测量信号的指示信息以及所述干扰测量信号的特征与数据信号的位置之间的关系中的任何一项通过RRC信令预先配置,由物理层信令激活或去激活。
  19. 根据权利要求1所述的干扰测量方法,其特征在于,第一终端在干扰测量资源上 发送干扰测量信号时,所述干扰测量资源和/或所述干扰测量信号时域正交、频域正交或码域正交。
  20. 根据权利要求1所述的基于干扰测量的功率控制方法,其特征在于,
    第二终端测量得到的所述干扰测量信号的强度包括以下几项中的任意一项或多项:参考信号接收功率、参考信号接收质量、接收信号强度指示、信道质量指示及信道状态指示。
  21. 根据权利要求1所述的干扰测量方法,其特征在于,所述第二终端根据所述干扰测量信号的强度,控制第二终端向第二网络设备发送数据信号的功率,包括:
    第二终端根据干扰测量信号的强度与上行链路的调制编码策略之间的对应关系,确定向第二网络设备的上行调制编码策略;或者,
    第二终端根据干扰测量信号的强度与传输功率控制参数之间的对应关系,确定向第二网络设备的上行传输功率。
  22. 根据权利要求21所述的干扰测量方法,其特征在于,还包括:
    第二终端接收第二网络设备发送的信令;所述信令中包括:干扰测量信号的强度与上行链路的调制编码策略之间的对应关系和/或所述干扰测量信号的强度与传输功率控制参数之间的对应关系。
  23. 根据权利要求22所述的干扰测量方法,其特征在于,所述信令为无线资源控制信令,MAC层信令或物理层信令中的至少一项。
  24. 根据权利要求23所述的干扰测量方法,其特征在于,所述物理层信令为上行授权信令或下行控制信息中的信令。
  25. 根据权利要求21所述的干扰测量方法,其特征在于,
    所述传输功率控制参数包括以下几项中的任意一项或多项:目标功率值、路损补偿因子、闭环传输功率值及交叉链路干扰参数。
  26. 根据权利要求25所述的干扰测量方法,其特征在于,
    当干扰测量是中期或长期时,所述交叉链路干扰参数由所述第二网络设备通过高层信令发送给第二终端;
    当干扰测量是短期时,所述交叉链路干扰参数由所述第二网络设备通过MAC层信令或物理层信令发送给第二终端。
  27. 根据权利要求21所述的干扰测量方法,其特征在于,
    所述干扰测量信号的强度与上行链路的调制编码策略之间的对应关系,包括:所述干扰测量信号的强度级别与上行链路的调制编码策略之间的对应关系。
  28. 根据权利要求21所述的干扰测量方法,其特征在于,
    所述干扰测量信号的强度与传输功率控制参数之间的对应关系,包括:所述干扰测量信号的强度级别与传输功率控制参数之间的对应关系。
  29. 根据权利要求27或28所述的干扰测量方法,其特征在于,所述强度级别由信号强度门限值确定。
  30. 一种干扰测量方法,其特征在于,包括:
    第二终端在干扰测量资源上发送干扰测量信号;其中干扰测量信号为用于测量不同方向链路之间的干扰的信号,所述不同方向包括第一终端与第一网络设备之间的下行方向及第二终端与第二网络设备之间的上行方向;
    第一终端根据所述干扰测量资源的信息及所述干扰测量信号的信息,测量所述干扰测量信号,以得到所述干扰测量信号的强度。
  31. 根据权利要求30所述的干扰测量方法,其特征在于,还包括:
    第一终端将所述干扰测量信号的强度发送至第一网络设备。
  32. 根据权利要求30所述的干扰测量方法,其特征在于,还包括:
    第一网络设备根据所述干扰测量信号的强度,控制第一网络设备向第一终端发送数据信号的功率。
  33. 根据权利要求30所述的干扰测量方法,其特征在于,
    第一终端测量得到的所述干扰测量信号的强度的类型包括以下几项中的任意一项或多项:参考信号接收功率、参考信号接收质量、接收信号强度指示、信道质量指示及信道状态指示。
  34. 根据权利要求33所述的干扰测量方法,其特征在于,还包括:
    第一终端建立所述干扰测量信号的强度的类型与上行链路方向的关联关系。
  35. 根据权利要求34所述的干扰测量方法,其特征在于,还包括:
    第一终端将所述干扰测量信号的强度的类型与上行链路方向的关联关系发送至第一网络设备。
  36. 根据权利要求35所述的干扰测量方法,其特征在于,所述第一终端将所述干扰测量信号的强度的类型与上行链路方向的关联关系发送至第一网络设备,包括:
    所述第一终端通过以下两种资源中的任意一种资源,将所述干扰测量信号的强度的类型与上行链路方向的关联关系发送至第一网络设备;其中,资源包括:包含PDCCH、PDSCH以及PUCCH的子帧中位于PUCCH的被预留的资源、包含PDCCH、PUSCH以及PUCCH的子帧中位于PUSCH或PUCCH的被预留的资源。
  37. 根据权利要求31所述的干扰测量方法,其特征在于,所述第一终端将所述干扰测量信号的强度发送至第一网络设备,包括:
    所述第一终端通过以下两种资源中的任意一种资源,将所述干扰测量信号的强度发送至第一网络设备;其中,资源包括:包含PDCCH、PDSCH以及PUCCH的子帧中位于PUCCH的被预留的资源、包含PDCCH、PUSCH以及PUCCH的子帧中位于PUSCH或PUCCH的被预留的资源。
  38. 根据权利要求36或37所述的干扰测量方法,其特征在于,所述被预留的资源包含在由第一网络设备发送的RRC信令,MAC层信令及物理层信令中的至少一种信令中。
  39. 一种干扰测量方法,其特征在于,包括:
    第一网络设备在干扰测量资源上向第二网络设备发送干扰测量信号;其中干扰测量信号为用于测量不同方向链路之间的干扰的信号;
    第二网络设备根据所述干扰测量资源的信息及所述干扰测量信号的信息,测量所述干扰测量信号,以得到所述干扰测量信号的强度。
  40. 根据权利要求39所述的干扰测量方法,其特征在于,还包括:
    第二网络设备向第一网络设备发送所述干扰测量信号的强度。
  41. 根据权利要求39所述的干扰测量方法,其特征在于,还包括:
    第一网络设备向第一终端发送所述干扰测量资源的指示信息和/或干扰测量信号的指示信息,以使第一终端依据所述指示信息进行接收数据的速率匹配或打孔的数据操作。
  42. 根据权利要求39所述的干扰测量方法,其特征在于,还包括:
    第二网络设备向第二终端发送所述干扰测量资源的指示信息和/或干扰测量信号的指示信息,以使第二终端依据所述指示信息进行上行传输数据的速率匹配或打孔的数据操作。
  43. 根据权利要求41或42所述的干扰测量方法,其特征在于,所述干扰测量资源的指示信息和/或所述干扰测量信号的指示信息通过RRC信令,MAC层信令以及物理层信令中的至少一种进行发送。
  44. 一种终端,其特征在于,包括:
    接收器,用于接收干扰测量资源的指示信息和/或干扰测量信号的指示信息;其中干扰测量资源的指示信息包括干扰测量信号传输的时域位置、频域位置以及空间域位置中的至少一项;
    发射器,用于在干扰测量资源的指示信息所指示的干扰测量资源上,发送干扰测量信号的指示信息所指示的干扰测量信号;其中干扰测量信号为用于测量不同方向链路之间的干扰的信号。
  45. 根据权利要求44所述的终端,其特征在于,接收器用于接收干扰测量资源的指示信息和/或干扰测量信号的指示信息,包括:
    接收器,具体用于接收第一网络设备或第二网络设备发送的干扰测量资源的指示信息;以及接收第一网络设备或第二网络设备发送的干扰测量信号的指示信息。
  46. 根据权利要求44所述的终端,其特征在于,接收器用于接收干扰测量资源的指示信息和/或干扰测量信号的指示信息,包括:
    接收器,具体用于接收通过OAM为所述第一终端配置干扰测量资源的指示信息和/或干扰测量信号的指示信息。
  47. 根据权利要求44所述的终端,其特征在于,所述时域位置包括:子帧、时隙、迷你子帧、迷你时隙、OFDM符号或少于一个OFDM符号的资源单位。
  48. 根据权利要求44所述的终端,其特征在于,所述频域位置包括:频带、子带、频域偏移量、控制信道元素或物理资源块。
  49. 根据权利要求44所述的终端,其特征在于,所述空间域位置包括:传输端口或传输波束的信息,其中所述传输波束的信息为波束相关的标识。
  50. 根据权利要求44所述的终端,其特征在于,所述时域位置位于以下任意一种子帧中:包括PDCCH、PDSCH及PUCCH的子帧,包括PDCCH、PUSCH及PUCCH的子帧, 包括PDCCH及PDSCH的子帧,包括PUCCH及PUSCH的子帧。
  51. 根据权利要求50所述的终端,其特征在于,
    若所述时域位置位于包括PDCCH、PUSCH及PUCCH的子帧中,则干扰测量资源为PDCCH之后的一个或多个OFDM符号;
    若所述时域位置位于包括PDCCH、PDSCH及PUCCH的子帧中,则干扰测量资源为PUCCH之前的一个或多个OFDM符号。
  52. 根据权利要求44所述的终端,其特征在于,所述干扰测量信号为:解调参考信号、信道状态信息参考信号、响应参考信号、前导码或新型信号。
  53. 根据权利要求52所述的终端,其特征在于,所述干扰测量信号的指示信息包括以下几项中的至少一项:序列长度、循环移位、物理小区标识及伪随机序列的初始值。
  54. 根据权利要求52或53所述的终端,其特征在于,所述干扰测量信号的指示信息还包括:干扰测量信号的传输端口或传输波束,其中所述传输波束为波束相关的标识。
  55. 根据权利要求49或54所述的终端,其特征在于,所述波束相关的标识包括:同步信号资源块、同步信号的时域标识或者参考信号的标识。
  56. 根据权利要求44所述的终端,其特征在于,接收器用于接收干扰测量资源的指示信息和/或干扰测量信号的指示信息,包括:
    接收器,具体用于接收RRC信令、MAC层信令或物理层信令中的至少一项,其中所述信令中包含所述干扰测量资源的指示信息和/或所述干扰测量信号的指示信息。
  57. 根据权利要求44所述的终端,其特征在于,接收器用于接收干扰测量资源的指示信息和/或干扰测量信号的指示信息,包括:
    接收器,具体用于接收RRC信令,所述RRC信令用于预先配置所述干扰测量资源的指示信息和/或所述干扰测量信号的指示信息;以及用于接收物理层信令,所述物理层信令用于激活或去激活预先配置的所述干扰测量资源的指示信息和/或所述干扰测量信号的指示信息。
  58. 根据权利要求44所述的终端,其特征在于,所述发射器在干扰测量资源上发送干扰测量信号时,所述干扰测量资源和/或所述干扰测量信号时域正交、频域正交或码域正交。
  59. 一种终端,其特征在于,包括:
    处理器,用于根据干扰测量资源的信息及干扰测量信号的信息,测量其他终端发射的干扰测量信号,以得到所述干扰测量信号的强度,其中干扰测量信号为用于测量不同方向链路之间的干扰的信号,所述不同方向包括所述其他终端与第一网络设备之间的下行方向及所述终端与第二网络设备之间的上行方向;以及根据所述干扰测量信号的强度,控制所述终端向第二网络设备发送数据信号的功率。
  60. 根据权利要求59所述的终端,其特征在于,还包括:
    接收器,用于接收干扰测量信号的特征与数据信号的位置之间的关系,其中所述位置包括时域、频域及空间域中的至少一项;
    则处理器用于根据所述干扰测量信号的强度,控制所述终端向第二网络设备发送数据 信号的功率,包括:
    处理器,具体用于确定第一终端发送的干扰测量信号的特征,并根据所述关系,确定所述第一终端发送的干扰测量信号对应的数据信号的位置;以及根据所述干扰测量信号的强度,控制第二终端在确定出的位置上控制数据信号的发送功率。
  61. 根据权利要求60所述的终端,其特征在于,接收器用于接收干扰测量信号的特征与数据信号的位置之间的关系,包括:
    接收器,具体用于接收第一网络设备或第二网络设备发送的干扰测量信号的特征与数据信号的位置之间的关系。
  62. 根据权利要求60所述的终端,其特征在于,接收器用于接收干扰测量信号的特征与数据信号的位置之间的关系,包括:
    接收器,具体用于接收通过OAM为所述第二终端配置干扰测量信号的特征与数据信号的位置之间的关系。
  63. 根据权利要求60所述的终端,其特征在于,接收器用于接收干扰测量信号的特征与数据信号的位置之间的关系,包括:
    接收器,具体用于接收RRC信令、MAC层信令或物理层信令中的至少一项,所述信令中包括干扰测量信号的特征与数据信号的位置之间的关系。
  64. 根据权利要求60所述的终端,其特征在于,接收器用于接收干扰测量信号的特征与数据信号的位置之间的关系,包括:
    接收器,具体用于接收RRC信令,所述RRC信令用于预先配置干扰测量信号的特征与数据信号的位置之间的关系;以及用于接收物理层信令,所述物理层信令用于激活或去激活预先配置的所述干扰测量信号的特征与数据信号的位置之间的关系。
  65. 根据权利要求59所述的终端,其特征在于,处理器测量得到的所述干扰测量信号的强度包括以下几项中的任意一项或多项:参考信号接收功率、参考信号接收质量、接收信号强度指示、信道质量指示及信道状态指示。
  66. 根据权利要求59所述的终端,其特征在于,处理器用于根据所述干扰测量信号的强度,控制所述终端向第二网络设备发送数据信号的功率,包括:
    处理器,具体用于根据干扰测量信号的强度与上行链路的调制编码策略之间的对应关系,确定向第二网络设备的上行调制编码策略;或者,根据干扰测量信号的强度与传输功率控制参数之间的对应关系,确定向第二网络设备的上行传输功率。
  67. 根据权利要求66所述的终端,其特征在于,还包括:
    接收器,用于接收第二网络设备发送的信令;所述信令中包括:干扰测量信号的强度与上行链路的调制编码策略之间的对应关系和/或所述干扰测量信号的强度与传输功率控制参数之间的对应关系。
  68. 根据权利要求67所述的终端,其特征在于,所述信令为无线资源控制信令,MAC层信令或物理层信令中的至少一项。
  69. 根据权利要求68所述的终端,其特征在于,所述物理层信令为上行授权信令或下行控制信息中的信令。
  70. 根据权利要求66所述的终端,其特征在于,所述传输功率控制参数包括以下几项中的任意一项或多项:目标功率值、路损补偿因子、闭环传输功率值及交叉链路干扰参数。
  71. 根据权利要求70所述的终端,其特征在于,
    接收器,用于当干扰测量是中期或长期时,接收由所述第二网络设备通过高层信令发送给第二终端的交叉链路干扰参数;以及当干扰测量是短期时,接收由所述第二网络设备通过MAC层信令或物理层信令发送给第二终端的交叉链路干扰参数。
  72. 根据权利要求66所述的终端,其特征在于,所述干扰测量信号的强度与上行链路的调制编码策略之间的对应关系,包括:所述干扰测量信号的强度级别与上行链路的调制编码策略之间的对应关系。
  73. 根据权利要求66所述的终端,其特征在于,所述干扰测量信号的强度与传输功率控制参数之间的对应关系,包括:所述干扰测量信号的强度级别与传输功率控制参数之间的对应关系。
  74. 根据权利要求72或73所述的终端,其特征在于,所述强度级别由信号强度门限值确定。
  75. 一种终端,其特征在于,包括:
    处理器,用于根据干扰测量资源的信息及干扰测量信号的信息,测量其他终端发射的干扰测量信号,以得到所述干扰测量信号的强度,其中干扰测量信号为用于测量不同方向链路之间的干扰的信号,所述不同方向包括所述其他终端与第一网络设备之间的下行方向及所述终端与第二网络设备之间的上行方向。
  76. 根据权利要求75所述的终端,其特征在于,还包括:
    发射器:用于所述干扰测量信号的强度发送至第一网络设备。
  77. 根据权利要求75所述的终端,其特征在于,处理器测量得到的所述干扰测量信号的强度的类型包括以下几项中的任意一项或多项:参考信号接收功率、参考信号接收质量、接收信号强度指示、信道质量指示及信道状态指示。
  78. 根据权利要求75所述的终端,其特征在于,
    处理器,还用于建立所述干扰测量信号的强度的类型与上行链路方向的关联关系。
  79. 根据权利要求78所述的终端,其特征在于,还包括:
    发射器:用于将所述干扰测量信号的强度的类型与上行链路方向的关联关系发送至第一网络设备。
  80. 根据权利要求79所述的终端,其特征在于,发射器用于将所述干扰测量信号的强度的类型与上行链路方向的关联关系发送至第一网络设备,包括:
    发射器,具体用于通过以下两种资源中的任意一种资源,将所述干扰测量信号的强度的类型与上行链路方向的关联关系发送至第一网络设备;其中,资源包括:包含PDCCH、PDSCH以及PUCCH的子帧中位于PUCCH的被预留的资源、包含PDCCH、PUSCH以及PUCCH的子帧中位于PUSCH或PUCCH的被预留的资源。
  81. 根据权利要求76所述的终端,其特征在于,发射器用于所述干扰测量信号的强度 发送至第一网络设备,包括:
    发射器,具体用于通过以下两种资源中的任意一种资源,将所述干扰测量信号的强度发送至第一网络设备;其中,资源包括:包含PDCCH、PDSCH以及PUCCH的子帧中位于PUCCH的被预留的资源、包含PDCCH、PUSCH以及PUCCH的子帧中位于PUSCH或PUCCH的被预留的资源。
  82. 根据权利要求80或81所述的终端,其特征在于,所述被预留的资源包含在由第一网络设备发送的RRC信令,MAC层信令及物理层信令中的至少一种信令中。
  83. 一种网络设备,其特征在于,包括:
    发射器,用于在干扰测量资源上向另一网络设备发送干扰测量信号;其中干扰测量信号为用于测量不同方向链路之间的干扰的信号。
  84. 根据权利要求83所述的网络设备,其特征在于,包括:
    发射器,还用于向与所述网络设备关联的终端发送所述干扰测量资源的指示信息和/或干扰测量信号的指示信息,以使所述终端依据所述指示信息进行接收数据的速率匹配或打孔的数据操作。
  85. 根据权利要求84所述的网络设备,其特征在于,所述干扰测量资源的指示信息和/或所述干扰测量信号的指示信息通过RRC信令,MAC层信令以及物理层信令中的至少一种进行发送。
  86. 一种网络设备,其特征在于,包括:
    处理器,用于根据干扰测量资源的信息及干扰测量信号的信息,测量另一网络设备发射的干扰测量信号,以得到所述干扰测量信号的强度。
  87. 根据权利要求86所述的网络设备,其特征在于,还包括:
    发射器,用于向所述另一网络设备发送所述干扰测量信号的强度。
  88. 根据权利要求86所述的网络设备,其特征在于,还包括:
    发射器,用于向所述网络设备关联的终端发送所述干扰测量资源的指示信息和/或干扰测量信号的指示信息,以使所述终端依据所述指示信息进行上行传输数据的速率匹配或打孔的数据操作。
  89. 根据权利要求88所述的网络设备,其特征在于,所述干扰测量资源的指示信息和/或所述干扰测量信号的指示信息通过RRC信令,MAC层信令以及物理层信令中的至少一种进行发送。
PCT/CN2017/083151 2017-03-24 2017-05-05 干扰测量方法及相关设备 WO2018171006A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201780001806.4A CN108934188B (zh) 2017-03-24 2017-05-05 干扰测量方法及相关设备
AU2017405544A AU2017405544B2 (en) 2017-03-24 2017-05-05 Interference measurement method and related device
EP17902263.7A EP3592024B1 (en) 2017-03-24 2017-05-05 Transmission power control based on interference measurement signals and interference measurement resources
JP2019552531A JP6899446B2 (ja) 2017-03-24 2017-05-05 干渉測定方法及び関連するデバイス
US16/496,490 US11284355B2 (en) 2017-03-24 2017-05-05 Interference measurement method and related device
RU2019133487A RU2749350C2 (ru) 2017-03-24 2017-05-05 Способ измерения помех и сопутствующее устройство
CA3057541A CA3057541A1 (en) 2017-03-24 2017-05-05 Interference measurement method and related device
KR1020197030735A KR102319178B1 (ko) 2017-03-24 2017-05-05 간섭 측정 방법 및 관련 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710182073 2017-03-24
CN201710182073.0 2017-03-24

Publications (1)

Publication Number Publication Date
WO2018171006A1 true WO2018171006A1 (zh) 2018-09-27

Family

ID=63583876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/083151 WO2018171006A1 (zh) 2017-03-24 2017-05-05 干扰测量方法及相关设备

Country Status (9)

Country Link
US (1) US11284355B2 (zh)
EP (1) EP3592024B1 (zh)
JP (1) JP6899446B2 (zh)
KR (1) KR102319178B1 (zh)
CN (1) CN108934188B (zh)
AU (1) AU2017405544B2 (zh)
CA (1) CA3057541A1 (zh)
RU (1) RU2749350C2 (zh)
WO (1) WO2018171006A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111278119A (zh) * 2019-01-04 2020-06-12 维沃移动通信有限公司 干扰处理方法、基站及终端
WO2020145880A1 (en) * 2019-01-11 2020-07-16 Telefonaktiebolaget Lm Ericsson (Publ) First network node, first ue and methods performed therein for handling communication
CN111800875A (zh) * 2020-06-12 2020-10-20 达闼机器人有限公司 资源分配方法、装置、存储介质及网络设备
WO2021248397A1 (en) * 2020-06-11 2021-12-16 Qualcomm Incorporated Cross-link interference measurement over multiple beams
RU2792032C1 (ru) * 2019-03-30 2023-03-15 Хуавэй Текнолоджиз Ко., Лтд. Способ связи и аппаратура связи

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108882384B (zh) * 2017-05-12 2022-08-02 华硕电脑股份有限公司 无线通信系统中改善调度的方法和设备
WO2018223386A1 (en) * 2017-06-09 2018-12-13 Zte Corporation System and method for measuring and controlling cross-link interference in wireless communications
US11425734B2 (en) * 2017-08-10 2022-08-23 Ntt Docomo, Inc. User equipment and reference signal transmission method
US11405811B2 (en) * 2018-01-16 2022-08-02 Sony Corporation Communication apparatus and communication method
EP3755083A4 (en) * 2018-02-12 2021-10-27 Beijing Xiaomi Mobile Software Co., Ltd. INFORMATION TRANSMISSION PROCESS, BASE STATION AND USER EQUIPMENT
US20220104214A1 (en) * 2019-01-23 2022-03-31 Apple Inc. Data channel mapping type and dm-rs configuration to enable l1 cli measurement and reporting
US11445449B2 (en) * 2020-02-25 2022-09-13 Shanghai Langbo Communication Technology Company Limited Power control method and device to trade off desired signal power and interference among multiple wireless devices
US11665648B2 (en) * 2019-02-25 2023-05-30 Shanghai Langbo Communication Technology Company Limiied Method and device in a node used for wireless communication
CN114867114A (zh) * 2019-04-30 2022-08-05 华为技术有限公司 一种通信方法及设备
US11838229B2 (en) * 2019-10-17 2023-12-05 Qualcomm Incorporated Enhanced ultra-reliable/low-latency communications over-the-air mechanism for shared spectrum
CN114616854A (zh) * 2019-11-07 2022-06-10 华为技术有限公司 一种配置cli测量的方法及通信装置
US11729650B2 (en) * 2019-11-18 2023-08-15 Qualcomm Incorporated Neighbor measurement adjustment for dual connectivity
CN114451004A (zh) * 2019-12-13 2022-05-06 Oppo广东移动通信有限公司 一种cli测量的方法及装置、终端设备、网络设备
WO2021142568A1 (en) 2020-01-13 2021-07-22 Qualcomm Incorporated Uplink power control for cross-link interference scenarios
US20240015745A1 (en) * 2020-03-23 2024-01-11 Qualcomm Incorporated Sub-band interference level indication using physical uplink control channel communication
WO2021246541A1 (ko) * 2020-06-02 2021-12-09 엘지전자 주식회사 전 이중 통신을 지원하는 무선통신시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치
US20230189163A1 (en) * 2020-07-01 2023-06-15 Qualcomm Incorporated Power control based on reciprocity for cross link interference
CN114554520A (zh) * 2020-11-26 2022-05-27 维沃移动通信有限公司 干扰测量方法、装置、终端及网络侧设备
US11510132B2 (en) * 2021-03-17 2022-11-22 Sprint Spectrum L.P. Use of cell-edge FDD coverage to separate cell-center TDD coverage from adjacent TDD coverage with conflicting TDD configuration
CN113115352B (zh) * 2021-04-02 2022-02-22 北京云智软通信息技术有限公司 干扰源的测量方法、装置及基站
US20220400447A1 (en) * 2021-06-09 2022-12-15 Rakuten Mobile, Inc. Cell sector transmission system
CN115707352A (zh) * 2021-06-17 2023-02-17 北京小米移动软件有限公司 一种通信方法及其装置
CN114025126B (zh) * 2021-11-09 2022-08-26 深圳市中讯网联科技有限公司 一种大容量视频会议终端动态认证和注册方法
KR20230069401A (ko) * 2021-11-12 2023-05-19 삼성전자주식회사 수신 장치 및 이의 동작 방법
CN116264488A (zh) * 2021-12-14 2023-06-16 维沃移动通信有限公司 干扰测量方法、装置、设备及存储介质
CN116489802B (zh) * 2023-06-21 2023-09-29 中国电信股份有限公司 传输配置的调整方法、装置、计算机设备和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090060951A (ko) * 2007-12-10 2009-06-15 한국전자통신연구원 단일 무선 채널에서 복수 스트림 병렬 전송을 위한 핸드쉐이크 방법, 전송전력 결정 방법 및 그 장치
CN101697628A (zh) * 2009-10-23 2010-04-21 北京邮电大学 一种宏蜂窝和家庭基站混合网络中下行链路动态资源分配的方法
CN102378190A (zh) * 2010-08-13 2012-03-14 中兴通讯股份有限公司 微小区无线接入点及其信道配置方法、频谱资源管理系统
CN102845096A (zh) * 2010-04-13 2012-12-26 高通股份有限公司 无线通信网络中收到功率和收到质量的测量
CN102892121A (zh) * 2011-07-22 2013-01-23 中兴通讯股份有限公司 降低微小区对宏小区终端下行带外辐射干扰的方法及系统
CN104956716A (zh) * 2012-11-26 2015-09-30 爱立信(中国)通信有限公司 用于测量干扰的方法和无线电网络节点

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2412547B (en) 2004-03-26 2006-07-19 Motorola Inc System unit and method of frequency re-planning
KR101568696B1 (ko) 2009-04-09 2015-11-12 세종대학교산학협력단 무선통신 스케줄링 제어 시스템 및 그 방법
KR101910475B1 (ko) 2011-02-22 2018-10-24 삼성전자 주식회사 단말 및 그 단말에서 랜덤 억세스 수행을 위한 전력 제어 방법
WO2012115445A2 (en) 2011-02-22 2012-08-30 Samsung Electronics Co., Ltd. User equipment and power control method for random access
EP2724574B1 (en) 2011-06-21 2017-07-12 Telefonaktiebolaget LM Ericsson (publ) A user equipment and a method therein for transmission power control of uplink transmissions
KR101767997B1 (ko) 2011-06-24 2017-08-14 삼성전자 주식회사 직교 주파수 분할 다중 접속 이동통신 시스템을 기반으로 하는 분산 안테나 시스템에서 하향링크 간섭 측정 방법 및 장치
CN102300244B (zh) 2011-07-15 2019-02-05 中兴通讯股份有限公司 一种干扰测量参考信息的通知方法、干扰测量方法及装置
EP2793414B1 (en) 2011-12-16 2016-09-14 LG Electronics Inc. Method for measuring channel state information in a wireless access system and apparatus for same
IL218527A0 (en) 2012-03-07 2012-04-30 Mariana Goldhamer Collaborative measurements in cellular networks
CN104247524B (zh) * 2012-05-11 2019-01-22 诺基亚技术有限公司 用于异构网络中的灵活时分双工操作的设置和维护框架
CN103580835B (zh) 2012-08-02 2018-08-14 中兴通讯股份有限公司 在干扰测量资源上进行干扰测量的方法及设备
US9794051B2 (en) 2012-10-08 2017-10-17 Qualcomm Incorporated Enhanced uplink and downlink power control for LTE TDD eIMTA
CN103068050B (zh) 2012-12-25 2016-12-28 上海无线通信研究中心 一种时分双工系统中基于干扰感知的上下行时隙资源配置方法
WO2014166061A1 (en) 2013-04-09 2014-10-16 Qualcomm Incorporated eNB-eNB AND UE-UE MEASUREMENT FOR INTERFERENCE MITIGATION
KR101664876B1 (ko) * 2013-05-14 2016-10-12 삼성전자 주식회사 무선 통신 시스템에서 셀간 간섭 제어를 위한 간섭 측정 방법 및 장치
CN104284361A (zh) 2013-07-08 2015-01-14 中兴通讯股份有限公司 一种干扰测量方法、网络侧设备及终端侧设备
WO2015103733A1 (en) 2014-01-07 2015-07-16 Qualcomm Incorporated TWO SUBFRAME SET CSI FEEDBACK FOR eIMTA IN LTE
US10122488B2 (en) 2014-02-18 2018-11-06 Lg Electronics Inc. Method for transreceiving signals using user-specific flexible TDD technology in wireless communication system and device for same
EP2930994B1 (en) 2014-04-07 2016-05-18 Alcatel Lucent Mitigating UL-to-DL interference
CN105025519B (zh) * 2014-04-30 2019-06-14 电信科学技术研究院 干扰信号测量方法及相关设备
WO2016060466A1 (ko) 2014-10-17 2016-04-21 엘지전자 주식회사 Fdr 전송을 지원하는 무선 통신 시스템에서 디바이스 간 간섭을 측정하는 방법 및 이를 위한 장치
US10727995B2 (en) * 2017-05-18 2020-07-28 Qualcomm Incorporated Configuring reference signal transmission in wireless communications

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090060951A (ko) * 2007-12-10 2009-06-15 한국전자통신연구원 단일 무선 채널에서 복수 스트림 병렬 전송을 위한 핸드쉐이크 방법, 전송전력 결정 방법 및 그 장치
CN101697628A (zh) * 2009-10-23 2010-04-21 北京邮电大学 一种宏蜂窝和家庭基站混合网络中下行链路动态资源分配的方法
CN102845096A (zh) * 2010-04-13 2012-12-26 高通股份有限公司 无线通信网络中收到功率和收到质量的测量
CN102378190A (zh) * 2010-08-13 2012-03-14 中兴通讯股份有限公司 微小区无线接入点及其信道配置方法、频谱资源管理系统
CN102892121A (zh) * 2011-07-22 2013-01-23 中兴通讯股份有限公司 降低微小区对宏小区终端下行带外辐射干扰的方法及系统
CN104956716A (zh) * 2012-11-26 2015-09-30 爱立信(中国)通信有限公司 用于测量干扰的方法和无线电网络节点

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3592024A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111278119A (zh) * 2019-01-04 2020-06-12 维沃移动通信有限公司 干扰处理方法、基站及终端
CN111278119B (zh) * 2019-01-04 2024-04-19 维沃移动通信有限公司 干扰处理方法、基站及终端
WO2020145880A1 (en) * 2019-01-11 2020-07-16 Telefonaktiebolaget Lm Ericsson (Publ) First network node, first ue and methods performed therein for handling communication
RU2792032C1 (ru) * 2019-03-30 2023-03-15 Хуавэй Текнолоджиз Ко., Лтд. Способ связи и аппаратура связи
WO2021248397A1 (en) * 2020-06-11 2021-12-16 Qualcomm Incorporated Cross-link interference measurement over multiple beams
CN111800875A (zh) * 2020-06-12 2020-10-20 达闼机器人有限公司 资源分配方法、装置、存储介质及网络设备
CN111800875B (zh) * 2020-06-12 2023-01-13 达闼机器人股份有限公司 资源分配方法、装置、存储介质及网络设备

Also Published As

Publication number Publication date
EP3592024A1 (en) 2020-01-08
KR20190128220A (ko) 2019-11-15
AU2017405544B2 (en) 2021-06-10
EP3592024B1 (en) 2023-04-26
RU2749350C2 (ru) 2021-06-09
AU2017405544A1 (en) 2019-10-24
CA3057541A1 (en) 2018-09-27
RU2019133487A (ru) 2021-04-26
EP3592024A4 (en) 2020-05-27
KR102319178B1 (ko) 2021-10-28
JP6899446B2 (ja) 2021-07-07
US20210112503A1 (en) 2021-04-15
RU2019133487A3 (zh) 2021-04-26
JP2020516138A (ja) 2020-05-28
CN108934188B (zh) 2021-02-05
US11284355B2 (en) 2022-03-22
CN108934188A (zh) 2018-12-04

Similar Documents

Publication Publication Date Title
WO2018171006A1 (zh) 干扰测量方法及相关设备
US10721692B2 (en) Radio communication method, local area base station apparatus, mobile terminal apparatus and radio communication system
US10462755B2 (en) Techniques and apparatuses for power headroom reporting in new radio
US11297521B2 (en) Determining and sending a measurement result performed per beam
CN110637495B (zh) 无线通信系统中通过波束发送和接收信号的方法及用于该方法的装置
CN110226293B (zh) 无线通信的方法、装置和非暂时性计算机可读介质
WO2020144624A1 (en) Cli measurement configuration and reporting
WO2020063334A1 (zh) 一种控制信道波束指示方法及设备
US9820295B2 (en) Over-the air signaling for coordination of time-division duplexing
JP6153574B2 (ja) ユーザ端末、無線基地局及び無線通信方法
JP2023543204A (ja) 干渉の低減及び調整のための方法及びその装置
US10952233B2 (en) User terminal, radio base station and radio communication method
CN112385171A (zh) 针对协调多点通信的探测参考信号和信道状态信息参考信号增强
EP3029978B1 (en) Wireless base station, user terminal, and wireless communication method
JP6234726B2 (ja) 基地局、ユーザ端末及び無線通信方法
US10609652B2 (en) User terminal, radio base station and radio communication method
AU2017427495B2 (en) User terminal and radio communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17902263

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3057541

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2019552531

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017902263

Country of ref document: EP

Effective date: 20191002

ENP Entry into the national phase

Ref document number: 20197030735

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017405544

Country of ref document: AU

Date of ref document: 20170505

Kind code of ref document: A