WO2020063334A1 - 一种控制信道波束指示方法及设备 - Google Patents

一种控制信道波束指示方法及设备 Download PDF

Info

Publication number
WO2020063334A1
WO2020063334A1 PCT/CN2019/105199 CN2019105199W WO2020063334A1 WO 2020063334 A1 WO2020063334 A1 WO 2020063334A1 CN 2019105199 W CN2019105199 W CN 2019105199W WO 2020063334 A1 WO2020063334 A1 WO 2020063334A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci
indication information
communication device
network device
indication
Prior art date
Application number
PCT/CN2019/105199
Other languages
English (en)
French (fr)
Inventor
施弘哲
葛士斌
毕晓艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020063334A1 publication Critical patent/WO2020063334A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a control channel beam indication method and device.
  • the 5th generation (5G) system will use a higher carrier frequency (generally greater than 6GHz) compared to long term evolution (LTE), such as the 28GHz, 38GHz, or 72GHz band And so on to achieve wireless communication with larger bandwidth and higher transmission rate. Due to the high carrier frequency, the wireless signal transmitted by it experiences more severe fading during the space propagation process, and it is difficult to detect the wireless signal even at the receiving end. For this reason, beamforming (BF) technology will be used in 5G communication systems to obtain beams with good directivity to increase the power in the transmission direction and improve the signal-to-interference and noise ratio at the receiving end. , SINR).
  • LTE long term evolution
  • SINR signal-to-interference and noise ratio
  • a network-side device may instruct a terminal device to receive a beam used by the DCI through radio resource control (RRC) signaling and media access control layer control element (MAC CE) signaling.
  • RRC radio resource control
  • MAC CE media access control layer control element
  • multiple downlink control information may be transmitted to terminal equipment in the same time slot.
  • multiple transmission and reception points TRP can cooperate with each other to perform data transmission with a terminal device.
  • the DCI may be divided into a primary DCI and a secondary DCI.
  • the primary DCI carries complete instruction information, and a wider beam can be selected to meet the coverage requirements; while the secondary DCI carries instruction information with higher real-time requirements, which requires better reception quality, and a narrow beam can be selected.
  • the delay is long, and it may not be able to meet the needs of the terminal device to receive multiple DCIs in the above situation.
  • the present application provides a control channel beam indicating method and device, which are used to implement a DCI to indicate a receiving beam of another DCI.
  • control channel beam indication method which includes:
  • the communication device receives the first DCI sent by the network device, and the first DCI includes indication information used to indicate the first beam; the communication device receives the second DCI according to the indication information of the first beam.
  • the communication device can determine a beam that receives the second DCI according to the received first DCI. Since the minimum scheduling time of DCI signaling is shorter than MAC CE signaling and RRC signaling, and the time required for a communication device to parse DCI signaling is DCI signaling, MAC signaling, and RRC signaling in descending order, the above method of this application Compared with the conventional method of collectively instructing to receive a beam of the second DCI through RRC signaling and MAC signaling, the embodiment helps to reduce delay and improve transmission efficiency. Further, the traditional indication method has a long time delay. In order to ensure the communication quality, it is not appropriate to use a narrow beam to transmit the second DCI. Because the transmission delay is reduced in this application, a narrow beam can be used to transmit the second DCI, which helps to improve Two DCI transmission quality.
  • the communication device further receives indication information of the first beam set, and the foregoing indication information of the first beam may be used to indicate one beam in the first beam set.
  • the foregoing indication information of the first beam set may be used to indicate that the first DCI beam set is received, and the first DCI and the second DCI multiplex a beam set to reduce signaling overhead; or, The indication information of the first beam set can be used to instruct the beam set receiving the second DCI, so the network device can configure the beam set for the communication device more flexibly; or, the indication information of the first beam set can also be used to instruct the reception of the first Physical downlink shared channel (PDSCH) beam set, where the first PDSCH is the PDSCH scheduled by the first DCI; or the indication information of the first beam set may also be used to indicate the beam set that receives the second PDSCH .
  • PDSCH Physical downlink shared channel
  • the foregoing indication information of the first beam set may be sent to the communication device through MAC CE signaling or RRC signaling.
  • the communication device when the indication information of the first beam set is used to receive the beam set of the first DCI and the indication information of the first beam set is sent to the communication device through MAC CE signaling, the communication device according to the first A preset beam receives the first DCI.
  • the network device instructs the communication device to receive the first DCI beam set through RRC signaling, and then instructs one beam in the beam set to transmit the first DCI through MAC signaling. Therefore, if the network device passes the MAC CE signal If the instruction information of the first beam set is sent, how to instruct the communication device to send the beam of the first DCI becomes a problem.
  • the first preset beam may be configured in advance, or the communication device may determine the first preset beam according to a preset rule, so that when the network device does not directly instruct the communication device to receive the first DCI beam, the communication device can Receive a first DCI according to a first preset beam.
  • the first preset beam is a beam in the first beam set that meets a preset rule. Further, the first preset beam may be the first beam in the first beam set.
  • the indication information of the first beam is indicated by a first indication field in the first DCI, and the first indication field is only used to indicate a beam that receives the second DCI, that is, in the first DCI A new indication field is set to indicate the first beam.
  • the indication information of the first beam may also be indicated by a second indication field in the first DCI, where the second indication field is used to indicate a beam for sending the first PDSCH scheduled by the first DCI and / or is used to instruct to send the first PDSCH.
  • the two DCI beams, that is, the second indication domain included in the first DCI for indicating the first PDSCH is multiplexed.
  • the communication device receives the second DCI according to the indication information of the first beam within a preset time period after receiving the first DCI, that is, a validity period is set for the first beam. For other time periods, the communication device may no longer receive the second DCI according to the indication information of the first beam.
  • the communication device receives the second DCI according to the second preset beam. For example, if the network device does not send a new first DCI for a long time, if the communication device receives the second DCI according to the beam indicated a long time ago, the communication quality may not be high or the second DCI may not be received due to the movement of the communication device.
  • the communication device uses a preset beam, for example, a wide beam, to receive the second DCI to ensure communication quality. It can be understood that the second preset beam may also be the first beam.
  • the first DCI is the primary DCI and the second DCI is the secondary DCI, where the secondary DCI only includes a part of the indication domains included in the primary DCI; or, the first DCI is a public DCI and the second DCI is Dedicated DCI, in which the public DCI includes a public indication domain and the exclusive DCI includes a dedicated indication domain; the combination of the public DCI and the exclusive DCI is used for communication equipment to complete scheduling.
  • the first DCI is sent by the first network device
  • the second DCI is sent by the second network device, that is, the first network device cooperates with the second network device to transmit data with the communication device.
  • the communication device may also send its own capability information to the network device, and the capability information is used to indicate whether the communication device supports
  • the indication information in a DCI determines a beam that receives the second DCI. If supported, the network device may send the beam of the second DCI through the first DCI. If not, the network device may instruct the communication device to send the beam of the second DCI according to the conventional method.
  • an embodiment of the present application provides a control channel beam indication method, including:
  • the network device sends first downlink control information DCI to the communication device, and the first DCI includes indication information for indicating a first beam; the network device sends a second DCI according to the first beam.
  • the foregoing method further includes: the network device sends indication information of a first beam set, and the indication information of the first beam is used to indicate one beam in the first beam set.
  • the indication information of the first beam set is used to instruct receiving the first DCI beam set; or, the indication information of the first beam set is used to instruct receiving the second DCI A beam set of DCI; or the indication information of the first beam set is used to indicate a beam set that receives a first physical downlink shared channel PDSCH, where the first PDSCH is the PDSCH scheduled by the first DCI; or The indication information of the first beam set is used to indicate a beam set that receives a second PDSCH, and the second PDSCH is a PDSCH scheduled by the second DCI.
  • the indication information of the first beam set is sent to the communication device through MAC access CE signaling or radio resource control RRC signaling.
  • the indication information of the first beam set is used to indicate that the beam set receiving the first DCI is received, and the indication information of the first beam set is through a medium access control layer control element MAC.
  • the method further includes: the network device sends the first DCI according to a first preset beam.
  • the first preset beam is a beam in the first beam set that meets a preset rule. Further, the first preset beam may be a first beam in a first beam set.
  • the indication information of the first beam is indicated by a first indication field in the first DCI, and the first indication field is only used to indicate a beam that receives the second DCI;
  • the indication information of the first beam is indicated by a second indication field in the first DCI, and the second indication field is used to indicate a beam that receives the first information and / or is used to indicate that the second beam is received. DCI beam.
  • the first information includes a first PDSCH scheduled by the first DCI.
  • the sending, by the network device, the second DCI according to the first beam includes: sending, by the network device, the first DCI according to the first beam within a preset time period after sending the first DCI.
  • the second DCI includes: sending, by the network device, the first DCI according to the first beam within a preset time period after sending the first DCI. The second DCI.
  • the foregoing method further includes: outside the preset time period, the network device sends the second DCI according to a second preset beam.
  • the first DCI is a primary DCI and the second DCI is a secondary DCI, wherein the secondary DCI includes only a part of the indication domains included in the primary DCI; or, the first DCI One DCI is a public DCI, and the second DCI is a dedicated DCI, wherein the public DCI includes a common indication domain and the dedicated DCI includes a dedicated indication domain; the public DCI and the dedicated DCI are combined for the DCI
  • the communication device completes the scheduling.
  • the method before the network device sends the second DCI according to the first beam, the method further includes: the network device receives capability information sent by the communication device, where the capability information is used to indicate The communication device supports determining, according to the indication information in the first DCI, a beam that receives the second DCI.
  • the network device includes a first network device and a second network device; the first DCI is sent by the first network device, and the second DCI is sent by the second network device.
  • an embodiment of the present application provides a communication device, which may include a receiving unit and a processing unit, for implementing the method according to any one of the first aspect.
  • an embodiment of the present application provides a network device.
  • the network device may include a sending unit and a processing unit, and is configured to implement the method according to any one of the second aspect.
  • an embodiment of the present application provides a communication device.
  • the device may include a processor and a transceiver.
  • the processor is configured to perform the method according to any one of the first aspect through the transceiver.
  • an embodiment of the present application provides a network device.
  • the device may include a processor and a transceiver.
  • the processor is configured to perform the method according to any one of the second aspect by using the transceiver.
  • an embodiment of the present application provides a communication device.
  • the device includes a processor and a memory.
  • the memory is used to store a program, and the processor is used to call a program in the memory to execute the method according to any one of the first aspect.
  • an embodiment of the present application provides a network device.
  • the device includes a processor and a memory.
  • the memory is used to store a program, and the processor is used to call a program in the memory to execute the method according to any one of the second aspect.
  • an embodiment of the present application provides a device, where the device includes a processor, and the processor implements the method according to any one of the first aspect or the second aspect when executing a computer program.
  • an embodiment of the present application provides a chip for supporting a device to implement the method described in any one of the first aspect or the second aspect.
  • the chip further includes a storage unit, where the storage unit is configured to store program instructions and data necessary for the device.
  • an embodiment of the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores computer instructions, and when the instructions are run on a computer, the computer executes the instructions as in the first aspect or the second aspect. The method of any one of the aspects.
  • an embodiment of the present application provides a computer program product containing instructions, which when executed on a computer, causes the computer to execute the method according to any one of the first aspect or the second aspect.
  • FIG. 1 is a schematic diagram of a multi-point application scenario provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of CORESET and SS configuration provided by an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a control channel beam indication method according to an embodiment of the present application.
  • FIG. 4 is one of the schematic diagrams of preset time periods provided by the embodiments of the present application.
  • FIG. 5 is a second schematic diagram of a preset time period provided by an embodiment of the present application.
  • FIG. 6 is a third schematic diagram of a preset time period provided by an embodiment of the present application.
  • FIG. 7 is a fourth schematic diagram of a preset time period provided by an embodiment of the present application.
  • FIG. 8 is one of the structural schematic diagrams of the equipment provided by the embodiment of the present application.
  • FIG. 9 is a second schematic structural diagram of a device according to an embodiment of the present application.
  • FIG. 10 is a third schematic structural diagram of a device according to an embodiment of the present application.
  • FIG. 11 is a fourth schematic structural diagram of a device according to an embodiment of the present application.
  • high frequency bands may be used for communication transmission.
  • network devices can use larger-scale transmit antenna arrays to gain by beamforming.
  • the beamforming technology may specifically be a digital beamforming technology, an analog beamforming technology, or a hybrid digital / analog beamforming technology.
  • Beams can be understood as spatial filters or spatial parameters.
  • the beam used to send the signal can be called a transmission beam (transmission beam, Tx beam), which can be a spatial transmission filter (spatial domain transmission filter) or a spatial transmission parameter (spatial domain transmission parameter); the transmission beam can refer to the signal via the antenna The distribution of signal strength in different directions in space after transmission.
  • the beam used to receive the signal can be called a receive beam (reception beam, Rx beam), which can be a spatial receive filter (spatial domain receive filter) or a spatial receive parameter (spatial domain receive parameter); the receive beam can refer to the antenna receiving wireless Signal intensity distribution in different directions in space.
  • Rx beam reception beam
  • Rx beam spatial receive filter
  • the receive beam can refer to the antenna receiving wireless Signal intensity distribution in different directions in space.
  • the beam pairing relationship that is, the pairing relationship between the transmitting beam and the receiving beam, that is, the pairing relationship between the spatial transmitting filter and the spatial receiving filter. Transmitting a signal between a transmitting beam and a receiving beam having a beam pairing relationship can obtain a large beamforming gain.
  • the transmitting end can send the reference signal by means of beam scanning, and the receiving end can also receive the reference signal by means of beam scanning.
  • the transmitting end can use beamforming technology to form beams in different directions in space, and poll on multiple beams in different directions, that is, to transmit reference signals through beams in different directions; the receiving end can also use beams
  • the forming technology forms beams in different directions in space, and polls multiple beams in different directions to receive reference signals through the beams in different directions.
  • a network device can send a reference signal through one or more transmit beams, and a communication device receives the reference signal through one or more receive beams. In this way, the pairing relationship between the transmit beam and the receive beam is traversed.
  • the result obtained based on the reference signal measurement can be Report to network equipment through channel state information (channel state information).
  • the reported parameters are examples of the reference signal received power RSRP (reference signal receiving power).
  • the communication device can measure the resource identifier of one or more reference signals with the largest RSRP (such as the channel state information reference signal resource index (CSI-RS resource index)). , CRI) or Synchronous Block Index (SSB index) is reported through CSI.
  • CSI-RS resource index channel state information reference signal resource index
  • CRI channel state information reference signal resource index
  • SSB index Synchronous Block Index
  • the network device can determine one or more transmit beams from the reported CRI or SSB index, and use this one during subsequent data transmission with the communication device. Or a plurality of transmission beams for transmission, and the communication device may select a reception beam that is matched with the one or more transmission beams (obtain a corresponding relationship during beam training) for reception.
  • Transmission configuration indicator (transmission configuration indicator) (TCI) is used to indicate the quasi-co-location (QCL) relationship between the target reference signal and the referenced reference signal, that is, some parameters representing the target reference signal (see below)
  • the parameters corresponding to different QCL types are the same as those of the reference signal.
  • the target reference signal is generally a demodulation reference signal (DMRS)
  • the referenced signal can be a channel state information reference signal (CSI-RS) and a synchronization signal block (SS / PBCH block, SSB).
  • TCI state TCI state
  • QCL types can be divided into four types:
  • Type A Doppler frequency shift, Doppler spread, average delay, delay spread.
  • Type B Doppler frequency shift, Doppler spread.
  • Type C Doppler shift, average delay.
  • Type D space receiving parameters.
  • the space receiving parameters in type D may include one or more of the following: angle of arrival (AOA), average AOA, AOA extension, angle of departure (AOD), average AOD, AOD extension, Receive antenna spatial correlation parameters, transmit antenna spatial correlation parameters, transmit beams, receive beams, and resource identifiers. Therefore, when the QCL type is type D, the TCI state can be used to indicate the beam, that is, the beam indication information.
  • a beam indicated by a TCI state with a QCL type of D is usually a transmission beam used by a transmitting end.
  • the TRP can indicate the transmit beam used by the TRP to send a signal through the TCI status
  • the terminal device can determine the pairing relationship with the transmit beam according to the received beam indicated by the TCI status and the beam pairing relationship obtained by beam scanning And receive signals through the receiving beam.
  • the TRP can obtain clear receiving beam information used by the receiving end through beam training and reporting, and then can transmit the applicable receiving beam indication information to the terminal device in the beam indication through the TCI state or other similar indication means.
  • FIG. 1 exemplarily illustrates a multi-point application scenario.
  • TRP_A and TRP_B cooperate with each other to perform data transmission with the terminal device.
  • the two TRPs can communicate with each other through their respective physical downlink control channels (PDCCH).
  • the terminal device sends DCI.
  • PDCCH physical downlink control channels
  • TRP_A and TRP_B are located in different directions of the terminal device, the beams received by the terminal device from the DCIs of the two TRPs are different. Therefore, the TCI states used to indicate the beams receiving the two DCIs are different and need to be indicated separately. .
  • the distance between the terminal equipment and the two TRPs is different, it may result in a power difference of 3-6 dB between receiving wireless signals from the two TRPs.
  • one possible design is to use a wider beam to transmit DCI for closer TRPs, and use a narrower beam to transmit DCI for longer TRPs to improve communication quality.
  • a method for indicating a beam for receiving control signaling may send a control resource unit (CORESET) to a communication device through RRC signaling, such as physical downlink control channel information configuration information (PDCCH-Config) in RRC signaling.
  • CORESET index information may include one or more CORESET ID indexes
  • the search space index information may also include one or more search spaces.
  • the ID index, through the CORESET index information and the search space index information can be associated with the corresponding CORESET and search space configuration information.
  • the search space configuration information includes a CORESET ID index. Therefore, each search space corresponds to a CORESET (different search spaces may correspond to the same or different CORESETs).
  • the configuration information of each CORESET includes a parameter for indicating a TCI state set, and the TCI state set may include one or more TCI states, that is, a beam for receiving a PDCCH, and DCI is carried on the PDCCH.
  • the network device can activate a beam through MAC CE signaling, that is, the MAC CE signaling carries a TCI status indication information, and the terminal device can according to the CORESET corresponding to the TCI status carried by the MAC-CE signaling and corresponding to the CORESET Search space, determine the corresponding PDCCH time-frequency resource, and use the beam indicated by the TCI status to monitor DCI on the PDCCH time-frequency resource.
  • DCI transmission is not scheduled on all PDCCH time-frequency resources, but the terminal device needs to monitor these time-frequency resources according to the beam indicated by the TCI state.
  • this behavior can also be described by "receiving" DCI. Unless otherwise specified, receiving and monitoring are interchangeable in this context.
  • this indication method has a long delay. Because the terminal equipment may be mobile, DCI is generally transmitted using a wide beam to ensure that the mobile terminal equipment is still within the coverage of the wide beam before the next MAC CE signaling is issued. Therefore, it is difficult to achieve DCI transmission through a narrow beam.
  • the embodiments of the present application provide a control channel beam indicating method and device, which are used to implement a DCI to indicate a receiving beam of another DCI, which is helpful to reduce delay.
  • the network device is a base station for next-generation communication, such as a 5G gNB or a small station, a micro station, a TRP, or a relay station, an access point, and the like.
  • Communication equipment can refer to terminal equipment, user equipment (UE), access terminal equipment, user unit, user station, mobile station, mobile station, remote station, remote terminal device, mobile device, user terminal device, wireless communication device , User agent, or user device.
  • Communication devices can also be cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital processing (PDA), and wireless communications Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the future 5G network, or public land mobile network (PLMN) in future evolution Terminal equipment and the like are not limited in this embodiment of the present application.
  • control channel beam indication method provided in the embodiment of the present application may be shown in FIG. 3 and includes the following steps:
  • Step 301 The network device sends a first DCI to the communication device, where the first DCI includes indication information for indicating a first beam.
  • the first DCI sent by the network device may be DCI in any format, for example, DCI scheduling downlink PDSCH, DCI scheduling uplink PUSCH, and slot DCI notification for the purpose of DCI, or may be It is DCI used in future technology evolution, which is not limited in the present invention.
  • the first DCI in the embodiment of the present invention includes indication information for indicating the first beam, so as to enable the communication device to receive the second DCI according to the indication information of the first beam.
  • the first beam may refer to a beam transmitted by the network device to the second DCI, or a beam received by the communication device to the second DCI.
  • the pairing relationship is transmitted through the beam Obtained through training, so the first beam can also refer to a pair of transmit and receive beams used to send and receive the second DCI.
  • the first beam indication information may be a TCI state, and the TCI state is determined by a TCI state serial number (TCI state ID).
  • TCI state ID TCI state serial number
  • the present invention does not exclude the possibility that the QCL information such as type_D or other forms of beam indication information may be used as the first beam indication information in the evolution of future technologies.
  • Step 302 The network device sends the second DCI according to the first beam, and the communication device receives the second DCI according to the indication information of the first beam.
  • the first beam indicated by the network device in step 301 may instruct the network device to transmit the beam of the second DCI, or may instruct the communication device to receive the beam of the second DCI, and may also indicate the beam used to transmit the second DCI. Correct. If the first beam is a beam that the network device sends the second DCI, the communication device determines a receiving beam having a beam pairing relationship with the first beam, and receives the second DCI on the determined receiving beam.
  • the communication device receives the second DCI on the first beam, and the network device sends the second DCI on the transmission beam having a beam pairing relationship with the first beam;
  • the communication device receives the second DCI on the receiving beam in the beam pair, and the network device sends the second DCI on the transmitting beam in the beam pair.
  • the communication device may determine a beam for receiving the second DCI according to the received indication information of the first beam carried by the first DCI.
  • DCI signaling belongs to the physical layer signaling
  • MAC CE signaling belongs to the MAC layer signaling
  • RRC signaling belongs to the RRC layer signaling
  • the minimum scheduling time unit of DCI signaling is only one transmission time interval (TTI)
  • TTI transmission time interval
  • the communication device analyzes the signaling through physical layer analysis, MAC layer analysis, and RRC layer analysis in order. Therefore, the communication device has the shortest delay in parsing DCI signaling.
  • the delay in parsing MAC signaling and CE signaling is second, and the delay in parsing RRC signaling is the longest. Therefore, the technical solution of the foregoing method embodiment of the present application is helpful to reduce the delay of beam indication signaling and improve the flexibility of control channel beam switching. In this application, because the transmission delay is reduced, a narrow beam can be used to transmit the second DCI, which helps to improve the transmission quality of the second DCI.
  • the network device may send the primary DCI (that is, the first DCI in the embodiment of the present application) and the secondary DCI (that is, the second DCI in the embodiment of the present application) to the communication device, and the network device carries the primary DCI
  • the first beam indication information is used to instruct the sending beam of the auxiliary DCI (of course, it can also be the indication information of receiving the receiving beam of the second DCI or the indication information of the beam pair.
  • the following uses the transmitting beam
  • the communication device determines a receiving beam having a beam pairing relationship with the transmitting beam according to the first beam indication information carried in the primary DCI, and receives the secondary DCI on the receiving beam.
  • the secondary DCI includes a part of the indication domains included in the indication domain included in the primary DCI.
  • the indication information included in the primary DCI may have different requirements for real-time performance.
  • the instruction information with higher real-time requirements may be combined into a secondary DCI, so that the network device can schedule the secondary DCI with a flexible scheduling frequency.
  • the main DCI with large signaling overhead can be scheduled using a relatively low scheduling frequency.
  • the first DCI may also be a public DCI
  • the second DCI is a dedicated DCI
  • the transmission beam is used as an example for illustration.
  • the public DCI sent by the network device to the communication device carries the first beam indication information. , Indicating information for sending a sending beam of dedicated DCI.
  • the communication device determines a receiving beam having a pairing relationship with the transmitting beam according to the first beam indication information carried in the public DCI, and receives a dedicated DCI on the receiving beam.
  • the public DCI contains some indication information, which does not have high requirements for real-time performance
  • the dedicated DCI contains another part of the indication information, which requires higher scheduling flexibility.
  • the communication device needs to obtain complete instruction information and complete scheduling or other configuration according to the public DCI and the dedicated DCI. Specifically, after receiving the public DCI, the communication device waits for the next dedicated DCI; after receiving the dedicated DCI, the communication device obtains all DCI indication information in combination with the previously received public DCI, and completes scheduling or other configuration. Compared with the foregoing embodiments of the primary and secondary DCIs, this embodiment can further reduce unnecessary signaling overhead, that is, the first DCI only includes common indication information.
  • the network device may be a network device; or, the network device may include a first network device and a second network device, and the first DCI (main DCI or public DCI) is sent by the first network device.
  • the second DCI secondary DCI or dedicated DCI
  • the first DCI and the second DCI are respectively the primary and secondary DCIs, or when they are public and exclusive DCIs respectively, the information carried by the first DCI is often more important, or the information of the first DCI is replaced slowly; and the second DCI It can carry some indication information that requires more flexible scheduling.
  • the first DCI can be transmitted and received through a wide beam, and the second DCI can be transmitted and received through a narrow beam.
  • the time interval between any two first DCIs sent by the network device is not less than a preset threshold.
  • the communication device does not expect to continuously receive two first DCIs within a preset threshold time interval; in this case, the communication device may discard or not process the first DCI after receiving the first DCI in this time interval Received the next first DCI.
  • the network device may include a first network device and a second network device, the first DCI is a DCI sent by the first network device, and the second DCI is a DCI sent by the second network device.
  • TRP_A may be used as the first network device
  • DCI sent by TRP_A to the communication device is the first DCI
  • TRP_B is used as the second network device
  • TRP_B is sent to the communication device.
  • DCI is the second DCI. Because TRP_A and TRP_B cooperate with each other to perform data transmission with the communication device, TRP_A can obtain the transmission beam information used by TRP_B to send the second DCI.
  • TRP_A can carry the first DCI to instruct TRP_B to send the second DCI
  • the indication information of the transmission beam At this time, the first DCI and the second DCI may use the same DCI format, but indication information of the first beam is added to the first DCI.
  • the first DCI and the second DCI may also be sent on different carriers.
  • each carrier is a serving cell.
  • a communication device can access more than one serving cell and can receive more than one DCI.
  • the first DCI is the primary DCI (or the public DCI) and the second DCI is the secondary DCI (or the dedicated DCI)
  • the first DCI can be sent through the primary serving cell
  • the second DCI can be sent through the primary serving cell.
  • the transmission may also be performed through a secondary serving cell.
  • the different carriers may be in the same frequency band, That is, only the carrier ID or the serving cell ID is different, and the actual frequency band is the same.
  • the first DCI and the second DCI may be sent on different bandwidth divisions (BWP).
  • BWP bandwidth divisions
  • the communication device may also receive more than one DCI.
  • a possible embodiment at this time is that if the first DCI is the primary DCI (or the public DCI) and the second DCI is the secondary DCI (or the dedicated DCI), the first DCI may be sent through the primary BWP (or the initial BWP).
  • the second DCI can be sent either through the main BWP or through another BWP.
  • the first DCI and the second DCI are from the main BWP of two different carriers, the first DCI can be transmitted through the smaller or lowest carrier ID.
  • the communication device may further receive the indication information of the first beam set sent by the network device, and the indication information of the first beam set may be used to indicate one beam in the first beam set.
  • the network device may first send indication information of the first beam set to the communication device through RRC signaling or MAC signaling, and the first network device instructs one beam in the first beam set to send the second DCI through the first DCI. Just fine.
  • the first beam set indicated by the network device may include four cases:
  • the beam in the first beam set may also be a candidate beam for sending the first DCI, that is, the first DCI and the second DCI share the first beam set, and the network device may select the beam from the first beam set. Select a beam that sends the first DCI and a beam that sends the second DCI.
  • the network device may send the indication information of the first beam set to the communication device through RRC signaling, and then, by using the first beam indication information indication in the first DCI, activate one beam in the first beam set for sending the second DCI.
  • the application does not limit the indication method of the beam that sends the first DCI.
  • the network device may instruct to activate one beam in the first beam set for sending the first DCI through MAC-CE signaling, or ,
  • the network device and the communication device may also send and receive the first DCI according to the first preset beam.
  • the network device may send indication information for indicating the initial beam set to the communication device through RRC signaling (for example, the initial beam set may include 64 candidate beams); and then the network device may communicate to the communication through MAC CE signaling.
  • the device sends the indication information of the first beam set.
  • the first beam set may be a subset of the initial beam set (for example, 8 beams are selected as the first beam from the 64 beams through MAC CE signaling).
  • the network device may carry indication information in the first DCI to instruct selecting a beam from the first set of beams as a beam for sending the second DCI.
  • the network device cannot indicate the beam used to send the first DCI through MAC CE signaling.
  • the network device may send the first DCI using the first preset beam. Accordingly, The communication device receives the first DCI according to the first preset beam.
  • the first preset beam may be a preset beam, for example, the protocol selects the beam selected during initial synchronous access as the first preset beam (whether or not the beam is included in the first beam set).
  • the first preset beam may also be a beam selected from the first beam set according to a preset rule. For example, the first beam in the first beam set is selected as the first preset beam. Generally speaking, the order of each beam in the first beam set is sorted according to the index value of the beam. Therefore, selecting the first beam in the first beam set can also be understood as the first beam set. The beam with the smallest index value is selected as the first preset beam.
  • the beams in the first beam set may only be candidate beams for sending the second DCI, that is, the first beam set is not shared by other DCI or PDSCH.
  • the network device may indicate the first beam set to the communication device through RRC signaling, and then, by using the first beam indication information in the first DCI, activate one beam in the first beam set for sending the second DCI.
  • the network device may send the indication information indicating the initial beam set to the communication device through the RRC information; and then send the indication information of the first beam set to the communication device through the MAC CE signaling.
  • the first beam set may be A subset of the foregoing initial beam set; thereafter, the network device indicates, using the first beam indication information carried in the first DCI, that the first beam is one beam in the first beam set.
  • the application does not limit the indication method of the beam that sends the first DCI, and the network device may indicate it through MAC CE or other signaling, or may use the first preset beam to send the first DCI.
  • the beams in the first beam set may also be candidate beams for transmitting the first PDSCH, that is, the second DCI and the first PDSCH share the first beam set; where the first PDSCH is the first DCI scheduling PDSCH.
  • the network device may indicate the beam set for transmitting the first PDSCH to the communication device through RRC signaling, MAC signaling, or other signaling. In order to save signaling overhead, the network device may not need to send another signaling instruction for sending the first PDSCH. For the two DCI beam sets, one beam may be selected from the beam set that sends the first PDSCH, as the beam that sends the second DCI.
  • the network device indicates the first beam set to the communication device through RRC signaling, and then instructs by using the first beam indication information in the first DCI to activate one beam in the first beam set for sending the second DCI.
  • the network may indicate the initial beam set to the communication device through RRC; and then indicate the first beam set to the communication device through MAC CE signaling.
  • the first beam set may be a subset of the foregoing initial beam set; thereafter, the network The device instructs, through the first beam indication information carried in the first DCI, to select one beam from the first beam set as a beam to send the second DCI.
  • the application does not limit the method for indicating the beam that sends the first DCI.
  • the beams in the first beam set may also be candidate beams for transmitting the second PDSCH, that is, the second DCI and the second PDSCH share the first beam set; where the second PDSCH is the second DCI scheduling PDSCH.
  • the network device may indicate the beam set for receiving the second PDSCH to the communication device through RRC signaling, MAC CE signaling, or other signaling, which is similar to the case 3, and is not repeated here.
  • the network device can indicate the first beam set to the communication device through RRC signaling or MAC CE signaling.
  • the network device may first indicate the initial beam set to the communication device through RRC signaling (for example, the initial beam set may include 64 backup devices). Select beams), and then indicate the first beam set to the communication device through MAC CE signaling.
  • the first beam set may be a subset of the initial beam set (for example, 8 beams are further selected from the 64 beams mentioned above).
  • the network device may indicate the first beam set to the communication device through RRC signaling. At this time, it is not necessary to indicate the information about the first beam or the first beam set through MAC signaling.
  • the TCI state set indicated in the RRC signaling may be configured corresponding to one or more CORESETs, and one CORESET is One or more search spaces may be associated, so the TCI state set is associated with the one or more CORESETs and one or more search spaces associated with them.
  • the TCI state set may also correspond to only at least one search space configuration, or only correspond to at least one CORESET configuration.
  • a TCI state set corresponds to one or more CORESETs and all search space configurations, or a TCI state set corresponds to one or more search spaces and all CORESET configurations.
  • the communication device may receive the first DCI and the second DCI by using different beams. Since the first DCI and the second DCI may be sent on the same time-frequency resource, this requires the communication device to monitor the first DCI and the second DCI on the same time-frequency resource using two different beams at the same time. If the communication device does not have the ability to receive wireless signals using two receiving beams at the same time, it cannot handle the above situation.
  • the communication device may be unable to determine on which time-frequency resources the beam receiving the first DCI is used and on which time-frequency resources the beam receiving the second DCI is used.
  • the network device may associate different CORESETs and search spaces for the first DCI and the second DCI, so that their time domain resources do not overlap. In this way, the communication device can switch different receiving beams on the corresponding PDCCH time-frequency resources according to the instruction to monitor the first DCI and the second DCI.
  • the formats of the first DCI and the second DCI are different.
  • a network device configures one or more search spaces for a communication device, it can associate a DCI format for each search space.
  • the communication device monitors DCI based on the time domain resources associated with a search space configuration, that is, It can be determined whether the DCI monitored in the search space is the first DCI or the second DCI, so that the corresponding receive beam is used to monitor the DCI in the search space.
  • a new configuration information may be added to indicate a mapping relationship between the first DCI, the second DCI and the CORESET ID and / or the search space ID.
  • it can be divided into two cases.
  • the format of the first DCI and the second DCI are different.
  • the configuration information may be a mapping relationship between DCI format1 and CORESET ID list 1 and / or Search space ID list 1 and a mapping relationship between DCI format 2 and CORESET ID list 2 and / or Search space ID list 2.
  • the communication device can receive the first DCI and the second DCI on the respective time-frequency resources using different beams according to the respective beam indication information of the first DCI and the second DCI.
  • the first DCI and the second DCI are the same DCI format, then based on the first case, DCI format1 and DCI format2 can be replaced with other ones that can characterize the first DCI and the second DCI.
  • the information of the beam indicating method of the first DCI and the second DCI is used to characterize the first DCI and the second DCI.
  • the beam that sends the first DCI may be indicated by RRC signaling, MAC_CE signaling, and a default rule method
  • the beam that sends the second DCI is through RRC signaling, MAC_CE signaling, and the first DCI indication. Therefore, for the first DCI and the second DCI, they have different beam indication methods. Therefore, in the configuration information added in the foregoing example, DCI format1 can be replaced with "control channel beam indication: RRC + MAC_CE + Default".
  • DCI format2 can be replaced with "Control Channel Beam Indication: RRC + MAC_CE + DCI"; as in Cases 2, 3, and 4, the beam sending the first DCI can be indicated by RRC signaling and MAC_CE signaling, and the second DCI is sent. The beam can be indicated by RRC signaling, MAC_CE signaling, and the first DCI.
  • the DCI_format1 in the foregoing example can be replaced with "control channel beam indication method: two-level signaling indication”
  • DCI_format2 can be replaced with "control channel beam Indication method: Three-level signaling indication. " It should be understood that the format of the above configuration information is merely an example.
  • DCI_format1 and DCI_format2 may also be replaced with the identifiers of the corresponding candidate beam sets.
  • the terminal device By associating the identification of the beam indicating method or candidate beam set characterizing the first DCI and the second DCI with the corresponding CORESET and the search space list, and issuing it as configuration information, it can also help the terminal device know which one to receive before parsing. Beams are used to monitor the current PDCCH. This method can also be applied to the first case, that is, the scenario where the first DCI and the second DCI have different formats. It should be understood that all reasonable replacements that meet the above principles should be regarded as the protection of the present invention.
  • the content explicitly configured in the PDCCH configuration described above can also be implemented by a protocol agreed method, that is, the protocol stipulates a mapping relationship between the first DCI, the second DCI and the CORESET ID and / or the search space ID.
  • the protocol stipulates a mapping relationship between the first DCI, the second DCI and the CORESET ID and / or the search space ID.
  • the protocol may agree that the first DCI is monitored on the PDCCH time-frequency resources associated with CORESET ID # 0 and / or search space ID # 0, and the second The DCI is monitored on the PDCCH time-frequency resources associated with the above-mentioned CORESET and search space. In this embodiment, there is no need to modify the signaling configuration of RRC.
  • the communication device can use the two beams to monitor the first simultaneously.
  • the DCI and the second DCI may not use the above-mentioned association method between CORESET and search space.
  • the communication device can report the capability to the network device, and based on the capability information, the network device determines that the first DCI can be used to indicate the transmission beam of the second DCI, and the first DCI and the second DCI can be configured with the same Time-frequency resources. If the communication device does not notify the network device that has the above capabilities, the communication device does not expect to receive two or more beam indication information for instructing to use two beams to monitor time-frequency resources on the same PDCCH.
  • the above-mentioned association method of CORESET and search space may not be adopted.
  • a new indication field may be added to the first DCI, and the added new indication field is only used to instruct sending the second beam.
  • Indication information of the first beam of the DCI For example, if the first beam set includes 8 beams, the added new indication field may include 3 bits, and the combination of these 3 bits may correspond to 8 different values, respectively corresponding to 8 in the first beam set. Beam.
  • the network device may also multiplex an indication field included in the existing DCI, that is, the multiplexed indication field may be used to indicate the content originally indicated by the indication field and / or used to indicate reception.
  • the first DCI may include an indication domain "TCI status", which is used to indicate a beam for transmitting the first PDSCH scheduled by the first DCI, and the network device may reuse the indication domain "TCI status", so that the indication domain may be used to indicate transmission.
  • the indication field "TCI" includes 3 bits, including 8 different values, the meaning of each value can be shown in Table 1.
  • TCI status indication field value meaning 000 Default beam 001 TCIstateID1, indicating beam 1 that sends the first PDSCH 010 TCIstateID2, indicating beam 2 that sends the first PDSCH 011 TCIstateID3, indicating beam 3 that sends the first PDSCH 100 TCIstateID4, indicating beam 4 that sends the first PDSCH 101 TCIstateID5, indicating beam 5 that sends the first PDSCH 110 TCIstateID6, indicating beam 6 that sends the second DCI 111 TCIstateID7, indicating beam 7 that sends the second DCI
  • "default beam” may indicate that the first PDSCH is transmitted through the default beam and / or the second DCI is transmitted by sending the default beam. Since the number of bits in the TCI status indication field remains unchanged, the value of the beam used to indicate that the first PDSCH is transmitted is reduced, and the network device can reduce the number of beams included in the beam set that transmits the first PDSCH; The number of beam values of the two DCIs determines the number of the first beam set. Alternatively, the number of bits in the TCI status indication field can also be increased. For example, if it is increased to 4 bits, it can include 16 different values, so that the beam that sends the first PDSCH can be selected from a larger number of beams. The second DCI is selected and transmitted from a large number of beams.
  • Table 1 is only an example. Whether the default beam exists, the number of beams used to indicate the transmission of the first PDSCH, and the number of beams used to indicate the transmission of the second DCI can be adjusted according to requirements. There are no restrictions on this.
  • the indication field in the foregoing embodiment may be used to indicate a beam for sending a first PDSCH or a beam for sending a second DCI.
  • an indication domain may also perform joint indication on the beam that sends the first PDSCH and the beam that is used to send the second DCI.
  • the value and meaning of the indication field can be shown in Table 2.
  • TCI status indication field value meaning 000 Default beam 001 First PDSCH: beam 1; second DCI: beam 2 010 First PDSCH: beam 1; second DCI: beam 3 011 First PDSCH: beam 2; second DCI: beam 3 100 First PDSCH: beam 3; second DCI: beam 3 101 First PDSCH: beam 4; second DCI: beam 5 110 First PDSCH: beam 4; second DCI: beam 6 111 First PDSCH: beam 5; second DCI: beam 7
  • Table 2 is only an example. Whether a default beam exists, and a combination of a beam used to indicate sending the first PDSCH and a beam used to indicate sending the second DCI can be adjusted according to requirements. No restrictions.
  • the format of the first DCI and the second DCI may be the same. Indicating the indication information of the first beam in a manner, then the first DCI and the second DCI include the indication field, but the value range of the indication field in the first DCI and the second DCI may be different.
  • Table 1 is used as an example. The two states of "110 and 111" of the second DCI have no effect, so the actual value range is "000-101". If the network device indicates the indication information of the first beam by adding a new indication field, the value of the new indication field in the second DCI is the default value, that is, it is not used to indicate the receiving beams of other DCIs.
  • a preset time period may be set for the first beam. Both the first DCI and the second DCI are dynamically scheduled, and there is no fixed sending period. If the network device does not send a new first DCI for a long time, the communication device may move to a place beyond the coverage of the beam, resulting in The reception quality of the second DCI is degraded. Therefore, a preset time period may be set for the first beam indicated by the first DCI to limit the effective action time of the first beam indication information, that is, the indication of the first beam is outside the preset time period. Information is invalid.
  • the above preset time period is a continuous period of time.
  • the communication device monitors the second DCI
  • the communication device monitors the second DCI according to the first beam indication information carried by the first DCI; accordingly, within the preset time period , The network device sends the second DCI using the first beam.
  • the communication device monitors the second DCI according to the second preset beam; correspondingly, the network device sends the second DCI through the second preset beam.
  • the second preset beam may also be the first beam.
  • the second preset beam may be a preset beam, for example, the protocol selects a beam selected during initial synchronous access as the second preset beam; or may be a beam selected from the foregoing first beam set according to a preset rule.
  • the beam for example, always selects the first beam in the first beam set as the second preset beam.
  • the order of each beam in the first beam set is sorted according to the index value of the beam. Therefore, selecting the first beam in the first beam set can also be understood as the first beam set.
  • the beam with the smallest index value is selected as the second preset beam.
  • the network device sends the first DCI_A at time n1.
  • the communication device receives the first DCI_A at time n1, and the first DCI_A carries indication information of the first beam (beam 1).
  • the time n1 may refer to a certain time-domain symbol or a certain slot, for example, the network device sends the first orthogonal frequency division multiplexing (OFDM) symbol on the third orthogonal frequency division multiplexing (OFDM) symbol.
  • OFDM orthogonal frequency division multiplexing
  • DCI_A then the communication device also received the first DCI_A on the third OFDM symbol. Because the two devices are synchronized, the third OFDM symbol in this example is in the same time slot of the same radio frame when viewed from both devices.
  • the T1 time period may be a relative time length in OFDM symbols and time slots, for example, three time slots, or an absolute time length in milliseconds (ms), microseconds (us), for example 3ms.
  • the network device does not use beam 1 to send the first DCI. Two DCI.
  • the network device has a second DCI_A to be sent. Then, the network device can send the second DCI_A according to the beam indicated by the previous first DCI, and the communication device can also receive The beam receives the second DCI_A. If the moment of sending and receiving the second DCI_A has exceeded the effective range of the beam indicated by the previous first DCI, the network device and the communication device can send and receive the second DCI_A according to the second preset beam.
  • the communication device acquires the indication information of the beam 1, and then can receive the second DCI according to the indication information of the beam 1. Therefore, the time n2 can be set as the start time of the foregoing preset time period, that is, starting from the time n2, the network device sends the second DCI using the beam 1, and the communication device receives the second DCI according to the beam 1.
  • T2 can be a relative time length in OFDM symbols and time slots, or an absolute time length in milliseconds and microseconds
  • the start time of the time period is time n2
  • the end time is time n3 (n2 + T2), that is, the network device and the communication device send and receive the second DCI_B and the second DCI_C according to the beam 1.
  • the network device and the communication device receive and send the second DCI_D according to the second preset beam.
  • the narrow beam has a large gain and a long propagation distance, it is more sensitive to the movement of the communication device.
  • the wide beam can be set as the second preset beam In order to make the communication device move within a certain range, the second DCI can be received.
  • the T1 time period may include, in addition to the time when the communication device parses the first DCI, the preparation time for beam switching of the communication device. In this case, the communication device can parse out the T1 time period. The content of the first DCI and the switching of the receiving beam is completed according to the indication information of the first beam.
  • the length of the T1 time period may be reported to the network device through the capability information of the communication device, or may be predefined by the protocol.
  • the length of the T2 time period may be predefined by the protocol, or may be indicated by the network device through downlink control signaling (RRC / MAC-CE / DCI), or may be reported by the communication device to the network device (for example, Through capability information), the present invention does not limit this.
  • the length of the preset time period (T2) is fixed. In other embodiments, the preset time period may not be a fixed time period.
  • the start time of the preset time period of the first beam (beam 1) indicated by the first DCI_A is still at the time of n2 (n1 + T1), wherein the T1 time period is similar to the foregoing embodiment, this I will not repeat them here.
  • the length of the T2 time period is no longer a fixed time length.
  • the end time of the preset time period T2 can be set as the preset of the first beam (beam 2) indicated by the next first DCI (first DCI_B). The start time of the time period.
  • the sending time of the first DCI_B is time n3, then the preset time period of the beam 2 indicated by the first DCI_B is time n4 (n3 + T1); in this case, the time indicated by the first DCI_A
  • the effective range of the beam 1 is from n2 to n4, and then it enters the effective range of the beam 2 indicated by the first DCI_B, and so on.
  • the end time of the preset time period may also be the time when the MAC-CE signaling for receiving the first beam set is received.
  • the start time of the preset time period of beam 1 indicated by the first DCI_A is time n2 (n1 + T1), and the time period T1 and
  • the communication device received MAC CE_2 for updating the information in the first beam set, and the communication device obtained the updated first beam set information at time n4 (n3 + T3), so the preset of beam 1
  • the end time of the time period is time n4.
  • the T3 time period is the time for the communication device to parse the MAC CE signaling, or the time to parse the MAC CE signaling plus the beam switching time. After the time n4, before the next first DCI transmission / reception, the network device and the communication device transmit / receive the second DCI according to the second preset beam.
  • the end time of the preset time period is still the start time of the preset time period of the first beam indicated by the next first DCI.
  • the communication device receives the new MAC CE signaling within the preset time period, , The first beam is updated according to the new first set indicated by the new MAC CE signaling.
  • the first beam set indicated by MAC CE_1 includes beam 1, beam 2, ..., beam 8, and the first beam indicated by the first DCI_A sent at time n1 is the second beam in the first beam set, that is, The first beam is beam 2, then the communication device starts receiving the second DCI according to the beam 2 from the time n2 (n1 + T1). As shown in FIG. 7, the second DCI_B and the second DCI_C are received according to the beam 2.
  • the communication device is at Received MAC CE_2 at time n3, and determined that the updated first beam set includes beam 9, beam 10, ..., beam 16 at time n4 (n3 + T3), then the communication device determines the update according to the first DCI_A and MAC CE_2
  • the first beam is the beam 10
  • the communication device receives the second DCI_E according to the beam 10.
  • the communication device receives the first DCI_B at time n5, and the first beam indicated by the first DCI_B takes effect from time n6 (n5 + T1).
  • the length of the preset time period is still the time interval from the previous first DCI to the next first DCI to take effect, regardless of whether there is signaling in the middle to update the first beam set, but the actually indicated first beam follows the first beam.
  • the collection is updated.
  • MAC-CE signaling is used as an example for the first beam set indication signaling. It should be understood that the signaling used to indicate the first beam set may also be replaced with RRC signaling, which is not limited in the present invention. .
  • the embodiment of the present application also provides a method for calculating a start time of a preset time period. If the first beam indication information is carried in the first DCI for data scheduling and sent to the communication device, after the network device sends the first DCI, if the communication device successfully parses the DCI scheduled data, it will send it to the network device. A positive response message (ACK message). Therefore, the network device can use the time when the ACK message is received as the start time of the preset time period, and the communication device can use the time when the ACK message is sent as the start time of the preset time period.
  • ACK message positive response message
  • the unit of the receiving or sending time or time of the signaling or message in the communication protocol may be a relative time unit, such as a frame, a subframe, a half frame, a time slot, a symbol, etc., or may be Absolute time units, such as seconds, milliseconds, subtle, etc., are not limited in the present invention.
  • the beam receiving the second DCI can be instructed by using the first DCI, and the signaling delay indicating instructing to transmit or receive the beam of the second DCI can be reduced, thereby facilitating the realization of flexible transmission of the second beam through the narrow beam.
  • DCI to improve communication quality.
  • the communication quality of the communication device with the first network device and the second network device is in a good state, or the communication between the communication device and the first network device and the second network device is good The quality is similar, and the above-mentioned method provided in the embodiment of the present application may not be adopted. When there is a large difference in communication quality, the above-mentioned method may be adopted.
  • the DCI sent by the network device with higher communication quality indicates the DCI sent by the network device with poor communication quality. Transmit beam.
  • the communication device may separately measure RSRP (or other beam quality measurement parameters such as RSRQ) for the first network device and the second network device, and report the measurement results. According to the measurement results reported by the communication device, if the network device determines that the RSRP measured and reported by the communication device for the first network device is better than the RSRP measured and reported by the second network device, and the difference is greater than a preset threshold, the communication device may be determined.
  • the above method is applied, that is, the first DCI sent by the first network device indicates a beam for receiving the DCI sent by the second network device.
  • the threshold may be agreed by the protocol, or may be reported by the communication device to the network device (for example, by reporting capability information), or may be obtained through calculation of other parameters, which is not limited in the present invention.
  • the communication device may measure RSRP separately for the first network device and the second network device. If the communication device determines that the RSRP measured for the first network device is better than the RSRP measured for the second network device, and the difference is greater than a preset threshold , The network device is notified, so that the network device instructs to transmit the beam of the second DCI by using the foregoing method.
  • the preset threshold may be agreed by the protocol, or may be delivered by the network device to the communication device through downlink control signaling (RRC, MAC-CE, or DCI, etc.).
  • the communication device may send its own capability information to the network device in advance, and the capability information is used for Indicates whether to support determining a beam to receive the second DCI according to the indication information in the first DCI, so that the network device determines whether the control channel beam indication method provided in the embodiment of the present application can be used to communicate with the communication device.
  • the capability information reported by the communication device may be actively reported according to the communication protocol, or after receiving the query request sent by the network device, the capability information is sent to the network device in the response to the request. of.
  • an embodiment of the present application provides a communication device, which is used to implement the functions of the communication device in the foregoing method embodiments.
  • the communication device may be a terminal device or a terminal-side device.
  • the communication device 800 may include a receiving unit 810 and a processing unit 820.
  • the processing unit 820 is configured to receive the first DCI sent by the network device through the receiving unit 810.
  • the first DCI includes indication information for indicating the first beam, and receives the second DCI according to the indication information of the first beam. .
  • the processing unit 820 is further configured to receive the indication information of the first beam set through the receiving unit 810, where the indication information of the first beam is used to indicate one beam in the first beam set.
  • the indication information of the first beam set is used to instruct receiving the first DCI beam set; or, the indication information of the first beam set is used to instruct receiving the second DCI DCI beam set; or, the indication information of the first beam set is used to indicate a beam set that receives a first PDSCH, where the first PDSCH is the PDSCH scheduled by the first DCI; or, the first beam set
  • the indication information is used to indicate a beam set for receiving a second PDSCH, where the second PDSCH is a PDSCH scheduled by the second DCI.
  • the indication information of the first beam set is sent to the communication device through MAC CE signaling or RRC signaling.
  • the indication information of the first beam set is used to indicate that the beam set that receives the first DCI is received, and the indication information of the first beam set is sent to all devices through MAC CE signaling.
  • the processing unit 820 is further configured to receive the first DCI through the receiving unit 810 according to the first preset beam.
  • the first preset beam is a beam in the first beam set that meets a preset rule. Further, the first preset beam is the first beam in the first beam set.
  • the indication information of the first beam is indicated by a first indication field in the first DCI, and the first indication field is only used to indicate a beam that receives the second DCI;
  • the indication information of the first beam is indicated by a second indication field in the first DCI, and the second indication field is used to indicate a beam that receives the first information and / or is used to indicate that the second beam is received. DCI beam.
  • the first information includes a first PDSCH scheduled by the first DCI.
  • the processing unit 820 is specifically configured to pass the receiving unit 810 through the receiving unit according to the indication information of the first beam within a preset time period after receiving the first DCI. 810 receives the second DCI.
  • the processing unit 820 is further configured to receive the second DCI according to a second preset beam through the receiving unit 810 outside a preset time period.
  • the first DCI is a primary DCI and the second DCI is a secondary DCI, wherein the secondary DCI includes only a part of the indication domains included in the primary DCI; or, the first DCI One DCI is a public DCI, and the second DCI is a dedicated DCI, wherein the public DCI includes a common indication domain and the dedicated DCI includes a dedicated indication domain; the public DCI and the dedicated DCI are combined for the DCI
  • the communication device completes the scheduling.
  • the network device includes a first network device and a second network device, the first DCI is sent by the first network device, and the second DCI is sent by the second network device.
  • the communication device 800 further includes a sending unit 830; the processing unit 820 is further configured to: before receiving the second DCI through the receiving unit 810 according to the indication information of the first beam, send the Sending capability information of the communication device to the network device, where the capability information is used to indicate whether the communication device supports determining to receive a beam of a second DCI according to the indication information in the first DCI.
  • the receiving unit 810 and the sending unit 830 may be separately provided or integrated as a transceiver unit.
  • the embodiment of the present application provides a network device for implementing the functions of the network device in the foregoing method embodiment.
  • the network device 900 may include a sending unit 910 and a processing unit 920.
  • the processing unit 920 is configured to send the first DCI through the sending unit 910.
  • the first DCI includes indication information for indicating the first beam, and sends the second DCI according to the first beam.
  • the processing unit 920 is further configured to send indication information of the first beam set through the sending unit 910, where the indication information of the first beam is used to indicate one beam in the first beam set .
  • the indication information of the first beam set is used to instruct receiving the first DCI beam set; or, the indication information of the first beam set is used to instruct receiving the second DCI DCI beam set; or, the indication information of the first beam set is used to indicate a beam set that receives a first PDSCH, where the first PDSCH is the PDSCH scheduled by the first DCI; or, the first beam set
  • the indication information is used to indicate a beam set for receiving a second PDSCH, where the second PDSCH is a PDSCH scheduled by the second DCI.
  • the indication information of the first beam set is sent to the communication device through MAC CE signaling or RRC signaling.
  • the indication information of the first beam set is used to indicate that the beam set that receives the first DCI is received, and the indication information of the first beam set is sent to all devices through MAC CE signaling.
  • the processing unit 920 is further configured to send the first DCI through the sending unit 910 according to a first preset beam.
  • the first preset beam is a beam in the first beam set that meets a preset rule. Further, the first preset beam is the first beam in the first beam set.
  • the indication information of the first beam is indicated by a first indication field in the first DCI, and the first indication field is only used to indicate a beam that receives the second DCI;
  • the indication information of the first beam is indicated by a second indication field in the first DCI, and the second indication field is used to indicate a beam that receives the first information and / or is used to indicate that the second beam is received. DCI beam.
  • the first information includes a first PDSCH scheduled by the first DCI.
  • the processing unit 920 is specifically configured to: within a preset time period after sending the first DCI through the sending unit 910, send the second through the sending unit 910 according to a first beam DCI.
  • the processing unit 920 is further configured to send the second DCI according to a second preset beam through the sending unit 910 outside a preset time period.
  • the first DCI is a primary DCI and the second DCI is a secondary DCI, wherein the secondary DCI includes only a part of the indication domains included in the primary DCI; or, the first DCI One DCI is a public DCI, and the second DCI is a dedicated DCI, wherein the public DCI includes a common indication domain and the dedicated DCI includes a dedicated indication domain; the public DCI and the dedicated DCI are combined for the DCI
  • the communication device completes the scheduling.
  • the network device includes a first network device and a second network device; the first DCI is sent by the first network device, and the second DCI is sent by the second network device.
  • the network device 900 further includes a receiving unit 930, and the processing unit 920 is further configured to: before sending the second DCI according to the first beam through the sending unit 910, receive the communication device through the receiving unit 930 Capability information, the capability information is used to instruct the communication device to support determining a beam that receives a second DCI according to the indication information in the first DCI.
  • the receiving unit 810 and the sending unit 830 may be separately provided or integrated as a transceiver unit.
  • each of the above units is only a division of logical functions. In actual implementation, it may be fully or partially integrated into a physical entity, or it may be physically separated. And these units can all be implemented in the form of software call through processing elements; they can also be all implemented in hardware; some units can also be implemented in software through process element calls, and some units can be implemented in hardware.
  • the receiving unit and the sending unit can be set independently, or can form a transceiver unit. In addition, the transceiver unit and the processing unit can be integrated together or can be implemented independently.
  • the processing element described herein may be an integrated circuit with signal processing capabilities.
  • each step of the above method or each of the above units may be completed by an integrated logic circuit of hardware in a processor element or an instruction in the form of software.
  • the above sending unit is a unit that controls sending, and can send information through a sending device, such as an antenna and a radio frequency device.
  • the receiving unit can also receive information through a receiving device, such as an antenna and a radio frequency device.
  • an embodiment of the present application further provides a communication device, which is used to implement the functions of the communication device in the foregoing method embodiments.
  • the device 1000 includes a processor 1010 and a transceiver 1020.
  • the processor 1010 is configured to receive, through the transceiver 1020, a first DCI sent by a network device, where the first DCI includes indication information used to indicate a first beam, and receive according to the indication information of the first beam. Second DCI.
  • the processor is further configured to receive, through the transceiver 1020, indication information of a first beam set, where the indication information of the first beam is used to instruct the first beam set Of a beam.
  • the indication information of the first beam set is used to instruct receiving the first DCI beam set; or the indication information of the first beam set is used to instruct receiving the second DCI A beam set of DCI; or the indication information of the first beam set is used to indicate a beam set that receives a first physical downlink shared channel PDSCH, where the first PDSCH is the PDSCH scheduled by the first DCI; or The indication information of the first beam set is used to indicate a beam set that receives a second PDSCH, and the second PDSCH is a PDSCH scheduled by the second DCI.
  • the indication information of the first beam set is sent to the communication device through MAC CE signaling or RRC signaling.
  • the first preset beam is a beam in the first beam set that meets a preset rule. Further, the first preset beam is the first beam in the first beam set.
  • the indication information of the first beam is indicated by a first indication field in the first DCI, and the first indication field is only used to indicate a beam that receives the second DCI;
  • the indication information of the first beam is indicated by a second indication field in the first DCI, and the second indication field is used to indicate a beam that receives the first information and / or is used to indicate that the second beam is received. DCI beam.
  • the first information includes a first PDSCH scheduled by the first DCI.
  • the indication information of the first beam set is used to indicate that the beam set that receives the first DCI is received, and the indication information of the first beam set is sent to all devices through MAC CE signaling.
  • the processor 1010 is further configured to receive the first DCI through the transceiver 1020 according to a first preset beam.
  • the processor 1010 is specifically configured to: within a preset time period after receiving the first DCI through the transceiver 1020, pass the first DCI according to the indication information of the first beam.
  • the transceiver receives the second DCI.
  • the processor 1010 is further configured to receive the second DCI through the transceiver 1020 according to a second preset beam outside a preset period of time.
  • the first DCI is a primary DCI and the second DCI is a secondary DCI, wherein the secondary DCI includes only a part of the indication domains included in the primary DCI; or, the first DCI One DCI is a public DCI, and the second DCI is a dedicated DCI, wherein the public DCI includes a common indication domain and the dedicated DCI includes a dedicated indication domain; the public DCI and the dedicated DCI are combined for the DCI
  • the communication device completes the scheduling.
  • the first DCI is sent by a first network device
  • the second DCI is sent by a second network device.
  • the processor 1010 is further configured to: before receiving the second DCI through the transceiver 1020 according to the indication information of the first beam, send the communication through the transceiver 1020
  • the capability information of the device is sent to the network device, and the capability information is used to indicate whether the communication device supports determining to receive a beam of the second DCI according to the indication information in the first DCI.
  • the embodiment of the present application further provides a network device, which is used to implement the functions of the network device in the foregoing method embodiment.
  • the network device 1100 includes a processor 1110 and a transceiver 1120.
  • the processor 1110 is configured to send a first DCI to a communication device through the transceiver 1120, where the first DCI includes instruction information for indicating a first beam; and according to the transceiver 1120, The first beam sends a second DCI.
  • the processor 1110 is further configured to send indication information of a first beam set through the transceiver 1120, where the indication information of the first beam is used to indicate the first beam set In one beam.
  • the indication information of the first beam set is used to instruct receiving the first DCI beam set; or the indication information of the first beam set is used to instruct receiving the second DCI A beam set of DCI; or the indication information of the first beam set is used to indicate a beam set that receives a first physical downlink shared channel PDSCH, where the first PDSCH is the PDSCH scheduled by the first DCI; or The indication information of the first beam set is used to indicate a beam set that receives a second PDSCH, and the second PDSCH is a PDSCH scheduled by the second DCI.
  • the indication information of the first beam set is sent to the communication device through MAC CE signaling or RRC signaling.
  • the indication information of the first beam set is used to indicate that the beam set that receives the first DCI is received, and the indication information of the first beam set is sent to all devices through MAC CE signaling.
  • the processor 1110 is further configured to send the first DCI through the transceiver 1120 according to a first preset beam.
  • the first preset beam is a beam in the first beam set that meets a preset rule. Further, the first preset beam is the first beam in the first beam set.
  • the indication information of the first beam is indicated by a first indication field in the first DCI, and the first indication field is only used to indicate a beam that receives the second DCI;
  • the indication information of the first beam is indicated by a second indication field in the first DCI, and the second indication field is used to indicate a beam that receives the first information and / or is used to indicate that the second beam is received. DCI beam.
  • the first information includes a first PDSCH scheduled by the first DCI.
  • the processor 1110 when the processor 1110 sends the second DCI according to the first beam through the transceiver 1120, the processor 1110 is specifically configured to: send the first DCI through the transceiver 1120 In a subsequent preset time period, the second DCI is sent according to the first beam.
  • the processor 1110 is further configured to send the second DCI according to a second preset beam through the transceiver 1120 outside a preset period of time.
  • the first DCI is a primary DCI and the second DCI is a secondary DCI, wherein the secondary DCI includes only a part of the indication domains included in the primary DCI; or, the first DCI One DCI is a public DCI, and the second DCI is a dedicated DCI, wherein the public DCI includes a common indication domain and the dedicated DCI includes a dedicated indication domain; the public DCI and the dedicated DCI are combined for the DCI
  • the communication device completes the scheduling.
  • the network device includes a first network device and a second network device, the first DCI is sent by the first network device, and the second DCI is sent by the second network device.
  • the structures of the first network device and the second network device are similar to those shown in FIG. 11.
  • the processor 1110 before the processor 1110 sends the second DCI according to the first beam through the transceiver 1120, the processor 1110 is further configured to receive, by using the transceiver 1120, the data sent by the communication device. Capability information, where the capability information is used to indicate that the communication device supports determining a beam to receive a second DCI according to the indication information in the first DCI.
  • an embodiment of the present application provides a communication device.
  • the communication device includes a processor and a memory.
  • the memory is used to store a program.
  • the processor is used to call a program in the memory to execute a function performed by the communication device in the foregoing method. .
  • an embodiment of the present application provides a network device.
  • the network device includes a processor and a memory.
  • the memory is used to store a program, and the processor is used to call a program in the memory to execute a function performed by the network device in the foregoing method. .
  • an embodiment of the present application provides a device, where the device includes a processor, and the processor executes a computer program to implement a function performed by a communication device in the foregoing method, or implements a network device in the foregoing method. Functions performed.
  • an embodiment of the present application provides a chip for supporting a device to implement a function performed by a communication device in the foregoing method, or for performing a function performed by a network device in the foregoing method.
  • the chip further includes a storage unit, where the storage unit is configured to store program instructions and data necessary for the device.
  • an embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores computer instructions, and when the instructions are run on a computer, the computer is caused to execute the communication device The function performed, or is used to perform the function performed by the network device in the foregoing method.
  • an embodiment of the present application provides a computer program product including instructions, which when executed on a computer, causes the computer to perform a function performed by a communication device in the foregoing method, or is used to execute the method. Functions performed by network devices.
  • this application may be provided as a method, a system, or a computer program product. Therefore, this application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Moreover, this application may take the form of a computer program product implemented on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) containing computer-usable program code.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing device to work in a particular manner such that the instructions stored in the computer-readable memory produce a manufactured article including an instruction device, the instructions
  • the device implements the functions specified in one or more flowcharts and / or one or more blocks of the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing device, so that a series of steps can be performed on the computer or other programmable device to produce a computer-implemented process, which can be executed on the computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more flowcharts and / or one or more blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种控制信道波束指示方法及设备。在该方法中,通信设备接收网络设备发送的第一DCI,该第一DCI中包括用于指示第一波束的指示信息;网络设备和通信设备根据第一波束发送、接收第二DCI。在上述方法中,通信设备能够根据接收到的第一DCI确定接收第二DCI的波束,由于通信设备通过DCI信令确定接收第二DCI的波束的时延,小于传统的根据RRC信令和MAC CE信令确定接收第二DCI的波束的时延,有助于提高传输效率。进一步地,传统的指示方法时延较长,为了保证通信质量不宜采用窄波束传输第二DCI,而本申请中由于降低了传输时延,可以采用窄波束传输第二DCI,有助于提升第二DCI的传输质量。

Description

一种控制信道波束指示方法及设备
相关申请的交叉引用
本申请要求在2018年09月28日提交中国专利局、申请号为201811142529.1、申请名称为“一种控制信道波束指示方法及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种控制信道波束指示方法及设备。
背景技术
第5代移动通信(the 5th generation,5G)系统中将会采用相对于长期演进(long term evolution,LTE)更高的载波频率(一般地,大于6GHz以上),比如28GHz、38GHz、或者72GHz频段等,来实现更大带宽、更高传输速率的无线通信。由于载波频率较高,使得其发射的无线信号在空间传播过程中经历更加严重的衰落,甚至在接收端难以检测出该无线信号。为此,5G通信系统中将采用波束赋形(beamforming,BF)技术来获得具有良好方向性的波束,以提高在发射方向上的功率,改善接收端的信干噪比(signal to interference plus noise ratio,SINR)。
由于网络侧设备和终端设备都需要波束赋形,因此产生了发射波束和接收波束之间的配对问题,即,发射波束和接收波束互相要尽可能地对准,将波束赋形的增益最大化,保证通信的质量以及小区的覆盖。例如,网络侧设备可以通过无线资源控制(radio resource control,RRC)信令以及介质访问控制层控制元素(media access control control element,MAC CE)信令指示终端设备接收DCI所采用的波束。
在5G或未来通信系统中,可能会在同一时隙中向终端设备传输多个下行控制信息(downlink control information,DCI)。例如,多个发送接收点(transmission reception point,TRP)可以相互协作,与一个终端设备进行数据传输。又例如,为了节省DCI的指示开销,可以将DCI分为主DCI和辅DCI。主DCI携带了完整的指示信息,可以选择较宽的波束,以满足覆盖需求;而辅DCI中携带了实时性要求较高的指示信息,需要较好的接收质量,可以选择窄波束。
然而,若采用传统的波束指示方法分别指示终端设备接收多个DCI的波束,时延较长,可能无法满足上述情况中终端设备接收多个DCI的需求。
发明内容
本申请提供一种控制信道波束指示方法及设备,用以实现通过一个DCI指示另一DCI的接收波束。
第一方面,本申请提供了一种控制信道波束指示方法,该方法包括:
通信设备接收网络设备发送的第一DCI,该第一DCI中包括用于指示第一波束的指示信息;通信设备根据第一波束的指示信息接收第二DCI。
在上述方法中,通信设备能够根据接收到的第一DCI确定接收第二DCI的波束。由于DCI信令的最小调度时间小于MAC CE信令和RRC信令,且通信设备解析DCI信令的时间从小到大依次为DCI信令、MAC CE信令、RRC信令,故本申请上述方法实施例与传统的通过RRC信令和MAC CE信令共同指示接收第二DCI的波束的方法相比,有助于降低时延,提高传输效率。进一步地,传统的指示方法时延较长,为了保证通信质量不宜采用窄波束传输第二DCI,而本申请中由于降低了传输时延,可以采用窄波束传输第二DCI,有助于提升第二DCI的传输质量。
在一种可能的实现方式中,通信设备还接收第一波束集合的指示信息,则上述第一波束的指示信息可以用于指示第一波束集合中的一个波束。
在一种可能的实现方式中,上述第一波束集合的指示信息可以用于指示接收第一DCI的波束集合,第一DCI和第二DCI复用一个波束集合,可以减少信令开销;或者,第一波束集合的指示信息可以用于指示接收第二DCI的波束集合,那么网络设备可以更加灵活地为通信设备配置波束集合;或者,第一波束集合的指示信息也可以用于指示接收第一物理下行共享信道(physical downlink shared channel,PDSCH)的波束集合,其中,第一PDSCH为第一DCI调度的PDSCH;或者,第一波束集合的指示信息还可以用于指示接收第二PDSCH的波束集合。
在一种可能的实现方式中,上述第一波束集合的指示信息可以通过MAC CE信令或RRC信令发送给通信设备。
在一种可能的实现方式中,当第一波束集合的指示信息用于接收第一DCI的波束集合且第一波束集合的指示信息通过MAC CE信令发送给该通信设备时,通信设备根据第一预设波束接收第一DCI。传统方式中,网络设备通过RRC信令指示通信设备接收第一DCI的波束集合,然后通过MAC CE信令指示波束集合中的一个波束用于发送第一DCI,因此,若网络设备通过MAC CE信令发送第一波束集合的指示信息,那么如何指示通信设备发送第一DCI的波束将成为一个问题。为了解决这个问题,可以预先配置第一预设波束,或者令通信设备按照预设规则确定第一预设波束,以实现在网络设备没有直接指示通信设备接收第一DCI的波束时,通信设备能够根据第一预设波束接收第一DCI。
在一种可能的实现方式中,第一预设波束为第一波束集合中的满足预设规则的波束。进一步的,第一预设波束可以为第一波束集合中的第一个波束。
在一种可能的实现方式中,第一波束的指示信息通过第一DCI中的第一指示域来指示,该第一指示域仅用于指示接收第二DCI的波束,即,在第一DCI中设置一个新的指示域用于指示第一波束。或者,第一波束的指示信息也可以通过第一DCI中的第二指示域来指示,该第二指示域用于指示发送第一DCI调度的第一PDSCH的波束和/或用于指示发送第二DCI的波束,即,对第一DCI中包含的用于指示第一PDSCH的第二指示域进行复用。
在一种可能的实现方式中,通信设备在接收到第一DCI之后的预设时间段内,根据第一波束的指示信息接收第二DCI,即,为第一波束设置了一个有效期,有效期之外的其他时间段,通信设备可以不再根据第一波束的指示信息接收第二DCI。
进一步地,在预设时间段之后,通信设备根据第二预设波束接收第二DCI。例如,网络设备长时间没有发送新的第一DCI,若通信设备根据较长时间前指示的波束接收第二DCI,可能由于通信设备的移动导致通信质量不高或无法接收第二DCI,因此,通信设备使用预设的波束,例如可以是宽波束,来接收第二DCI,以保证通信质量。可以理解的, 第二预设波束也可以是所述第一波束。
在一种可能的实现方式中,第一DCI为主DCI,第二DCI为辅DCI,其中,辅DCI仅包括部分主DCI包含的指示域;或者,第一DCI为公共DCI,第二DCI为专属DCI,其中,公共DCI包括公共指示域,专属DCI包括专属指示域;公共DCI和专属DCI相结合用于通信设备完成调度。
在一种可能的实现方式中,第一DCI为第一网络设备发送的,第二DCI为第二网络设备发送的,即,第一网络设备与第二网络设备协作,与通信设备传输数据。
在一种可能的实现方式中,通信设备在根据第一波束的指示信息接收第二DCI之前,还可以将自身的能力信息发送给网络设备,该能力信息用于指示该通信设备是否支持根据第一DCI中的指示信息确定接收第二DCI的波束。若支持,网络设备可以通过第一DCI指示发送第二DCI的波束,若不支持,网络设备可以按照传统的方法指示通信设备发送第二DCI的波束。
第二方面,本申请实施例提供了一种控制信道波束指示方法,包括:
网络设备向通信设备发送第一下行控制信息DCI,所述第一DCI中包括用于指示第一波束的指示信息;所述网络设备根据所述第一波束发送第二DCI。
在一种可能的实现方式中,上述方法还包括:所述网络设备发送第一波束集合的指示信息,所述第一波束的指示信息用于指示所述第一波束集合中的一个波束。
在一种可能的实现方式中,所述第一波束集合的指示信息用于指示接收所述第一DCI的波束集合;或者,所述第一波束集合的指示信息用于指示接收所述第二DCI的波束集合;或者,所述第一波束集合的指示信息用于指示接收第一物理下行共享信道PDSCH的波束集合,所述第一PDSCH为所述第一DCI调度的PDSCH;或者,所述第一波束集合的指示信息用于指示接收第二PDSCH的波束集合,所述第二PDSCH为所述第二DCI调度的PDSCH。
在一种可能的实现方式中,所述第一波束集合的指示信息是通过介质访问控制层控制元素MAC CE信令或者无线资源控制RRC信令发送给所述通信设备的。
在一种可能的实现方式中,所述第一波束集合的指示信息用于指示接收所述第一DCI的波束集合,且所述第一波束集合的指示信息是通过介质访问控制层控制元素MAC CE信令发送给所述通信设备时,所述方法还包括:所述网络设备根据第一预设波束发送所述第一DCI。
在一种可能的实现方式中,所述第一预设波束为所述第一波束集合中的满足预设规则的波束。进一步地,该第一预设波束可以为第一波束集合中的第一个波束。
在一种可能的实现方式中,所述第一波束的指示信息通过所述第一DCI中的第一指示域指示,所述第一指示域仅用于指示接收所述第二DCI的波束;或者,所述第一波束的指示信息通过所述第一DCI中的第二指示域指示,所述第二指示域用于指示接收第一信息的波束和/或用于指示接收所述第二DCI的波束。
在一种可能的实现方式中,所述第一信息包括所述第一DCI调度的第一PDSCH。
在一种可能的实现方式中,所述网络设备根据所述第一波束发送第二DCI,包括:所述网络设备在发送所述第一DCI之后的预设时间段内,根据第一波束发送所述第二DCI。
在一种可能的实现方式中,上述方法还包括:在预设时间段之外,所述网络设备根据第二预设波束发送所述第二DCI。
在一种可能的实现方式中,所述第一DCI为主DCI,所述第二DCI为辅DCI,其中,所述辅DCI仅包括部分所述主DCI包含的指示域;或者,所述第一DCI为公共DCI,所述第二DCI为专属DCI,其中,所述公共DCI包括公共指示域,所述专属DCI包括专属指示域;所述公共DCI和所述专属DCI相结合用于所述通信设备完成调度。
在一种可能的实现方式中,在所述网络设备根据所述第一波束发送第二DCI之前,还包括:所述网络设备接收所述通信设备发送的能力信息,所述能力信息用于指示所述通信设备支持根据所述第一DCI中的指示信息确定接收第二DCI的波束。
在一种可能的实现方式中,所述网络设备包括第一网络设备和第二网络设备;所述第一DCI为第一网络设备发送的,所述第二DCI为第二网络设备发送的。
第三方面,本申请实施例提供了一种通信设备,该通信设备可以包括接收单元和处理单元,用于实现如第一方面中任一项所述方法。
第四方面,本申请实施例提供了一种网络设备,该网络设备可以包括发送单元和处理单元,用于实现如第二方面中任一项所述方法。
第五方面,本申请实施例提供了一种通信设备,该设备可以包括处理器和收发器,所述处理器用于通过收发器执行如第一方面中任一项所述方法。
第六方面,本申请实施例提供了一种网络设备,该设备可以包括处理器和收发器,所述处理器用于通过收发器执行如第二方面中任一项所述方法。
第七方面,本申请实施例提供了一种通信设备,该设备包括处理器和存储器,存储器用于存储程序,处理器用于调用存储器中的程序执行如第一方面中任一项所述方法。
第八方面,本申请实施例提供了一种网络设备,该设备包括处理器和存储器,存储器用于存储程序,处理器用于调用存储器中的程序执行如第二方面中任一项所述方法。
第九方面,本申请实施例提供了一种设备,所述设备包括处理器,所述处理器执行计算机程序时实现如第一方面或第二方面中任一项所述方法。
第十方面,本申请实施例提供了一种芯片,用于支持设备实现上述第一方面或第二方面中任一项所述方法。在一种可能的设计中,所述芯片还包括存储单元,所述存储单元,用于保存设备必要的程序指令和数据。
第十一方面,本申请实施例提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机指令,当所述指令在计算机上运行时,使得计算机执行如第一方面或第二方面中任一项所述方法。
第十二方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如第一方面或第二方面中任一项所述方法。
附图说明
图1为本申请实施例提供的协作多点的应用场景示意图;
图2为本申请实施例提供的CORESET和SS配置示意图;
图3为本申请实施例提供的控制信道波束指示方法的流程示意图;
图4为本申请实施例提供的预设时间段示意图之一;
图5为本申请实施例提供的预设时间段示意图之二;
图6为本申请实施例提供的预设时间段示意图之三;
图7为本申请实施例提供的预设时间段示意图之四;
图8为本申请实施例提供的设备的结构示意图之一;
图9为本申请实施例提供的设备的结构示意图之二;
图10为本申请实施例提供的设备的结构示意图之三;
图11为本申请实施例提供的设备的结构示意图之四。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
在5G或未来的通信系统中,可能会利用高频段进行通信传输。为了在高频场景下对抗路径损耗,网络设备可以使用更大规模的发射天线阵列,通过波束赋形来获得增益。波束赋形技术具体可以为数字波束赋形技术、模拟波束赋形技术或者混合数字/模拟波束赋形技术等。
波束,可以理解为空间滤波器(spatial filter)或空间参数(spatial parameters)。用于发送信号的波束可以称为发射波束(transmission beam,Tx beam),可以为空间发送滤波器(spatial domain transmit filter)或空间发射参数(spatial domain transmit parameter);发射波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布。用于接收信号的波束可以称为接收波束(reception beam,Rx beam),可以为空间接收滤波器(spatial domain receive filter)或空间接收参数(spatial domain receive parameter);接收波束可以是指天线接收无线信号时在空间不同方向上的信号强度分布。应当理解,本申请并不排除在通信协议的演进过程中,或未来的协议中定义其他的术语来表示相同或相似的含义的可能。本申请中将以“波束”为例进行说明。
为了满足大范围的覆盖需求,不仅网络设备可以采用波束赋形,终端设备也可以采用波束赋形。这样一来,便产生了发射波束和接收波束之间的配对问题。
波束配对关系,即,发射波束与接收波束之间的配对关系,也就是空间发射滤波器与空间接收滤波器之间的配对关系。在具有波束配对关系的发射波束和接收波束之间传输信号可以获得较大的波束赋形增益。
发送端可通过波束扫描的方式发送参考信号,接收端也可通过波束扫描的方式接收参考信号。具体地,发送端可以利用波束赋形技术在空间形成不同方向的波束,并在多个不同方向的波束上轮询,即,将参考信号通过不同方向的波束发射出去;接收端也可以利用波束赋形技术在空间形成不同方向的波束,并在多个不同方向的波束上轮询,以通过不同方向的波束接收参考信号。
例如,网络设备可以通过一个或多个发送波束发送参考信号,通信设备通过一个或多个接收波束接收参考信号,这样便遍历了发送波束和接收波束的配对关系,基于参考信号测量获得的结果可以通过信道状态信息(channel state information,CSI)上报给网络设备。以上报参数为参考信号接收功率RSRP(reference signal receiving power)举例,通信设备可以将测量得到RSRP最大的一个或多个参考信号的资源标识(例如信道状态信息参考信号资源索引(CSI-RS resource index,CRI)或同步块索引(SSB index)通过CSI上报。网络设备则可以从所上报的CRI或SSB index确定一个或多个发送波束,并在后续与该通信设备进行数据传输时,采用该一个或多个发送波束进行发送,而通信设备则可以选择与该 一个或多个发送波束相匹配的(波束训练时获得对应关系)接收波束进行接收。
传输配置指示(transmissionconfiguration indicator,TCI)用于指示目标参考信号与被引用的参考信号之间的准共址(quasi-co-location,QCL)关系,即,表示目标参考信号的一些参数(见下述不同QCL类型对应的参数)与被引用的参考信号的参数相同。其中,目标参考信号一般为解调参考信号(demodulation reference signal,DMRS),被引用的参考信号可以是信道状态信息参考信号(CSI-RS)和同步信号块(SS/PBCH block,SSB),一个TCI状态(TCI state)可以用于指示目标参考信号与一个或两个被引用的参考信号的QCI关系,以及关联的QCL类型。QCL类型可以分为四种:
类型A(type A):多普勒频移、多普勒扩展、平均时延、时延扩展。
类型B(type B):多普勒频移、多普勒扩展。
类型C(type C):多普勒频移、平均时延。
类型D(type D):空间接收参数。
其中,类型D中的空间接收参数可以包括以下一项或多项:到达角(angle of arrival,AOA)、平均AOA、AOA扩展、离开角(angle of departure,AOD)、平均AOD、AOD扩展、接收天线空间相关性参数、发送天线空间相关性参数、发送波束、接收波束以及资源标识。因此,当QCL类型为类型D时,TCI状态可用于指示波束,即波束指示信息。
一般来说,一个QCL类型为D的TCI状态所指示的波束通常为发送端所使用的发送波束。例如,TRP可以通过TCI状态指示该TRP发送信号所使用的发送波束,终端设备可以根据接收到的TCI状态所指示的发送波束,结合波束扫描获得的波束配对关系,确定与该发射波束具有配对关系的接收波束,并通过该接收波束接收信号。
然而,在本申请实施例中,不排除TCI状态直接指示接收端所使用的接收波束的可能。例如,TRP通过波束训练和上报获得明确的接收端所使用的接收波束的信息,便可以在波束指示中通过TCI状态或其他相似的指示手段携带所适用的接收波束指示信息发送给终端设备。
此外,随着移动通信的快速发展,在系统容量、瞬时峰值速率、频谱效率、小区边缘用户吞吐量以及时延等诸多方面有了更高的要求。为了满足上述要求,在5G或未来的通信系统中,可以采用协作多点(coordination multiple point,CoMP)传输技术,该技术可以解决小区间干扰问题并提升小区边缘用户吞吐量,无论是在上行还是下行,都可以提高系统性能。图1示例性的给出了一种协作多点的应用场景,TRP_A与TRP_B相互协作与终端设备进行数据传输,两个TRP可以分别通过各自的物理下行控制信道(physical downlink control channel,PDCCH)向终端设备发送DCI。由于TRP_A与TRP_B位于终端设备的不同方向上,终端设备接收来自这两个TRP的DCI的波束是不同的,因此,用于指示接收这两个DCI的波束的TCI状态是不同的,需要分别指示。
由于终端设备到这两个TRP之间的距离不同,可能导致接收来自这两个TRP的无线信号存在3-6dB的功率差。为了补偿这个功率差带来的性能损失,一种可能的设计,是距离较近的TRP采用较宽的波束传输DCI,而距离较远的TRP使用较窄的波束传输DCI,以提升通信质量。
指示用于接收控制信令的波束的方法,可以通过RRC信令,如RRC信令中的物理下行控制信道信息配置信息(PDCCH-Config)向通信设备发送控制资源单元(control resource set,CORESET)索引信息和搜索空间(search space,SS)索引信息,如图2所示,CORESET 索引信息中可以包括一个或多个CORESET的ID索引,搜索空间索引信息中也可以包括一个或多个搜索空间的ID索引,通过CORESET索引信息和搜索空间索引信息可以关联到对应的CORESET、搜索空间的配置信息。在搜索空间配置信息中,包括一个CORESET的ID索引,因此,每个搜索空间对应一个CORESET(不同搜索空间可以对应相同或不同的CORESET)。每个CORESET的配置信息中包括用于指示TCI状态集合的参数,该TCI状态集合中可以包括一个或多个TCI状态,即,用于指示接收PDCCH的波束,而DCI承载在PDCCH上。然后网络设备可以通过MAC CE信令激活一个波束,即,MAC CE信令中携带一个TCI状态的指示信息,终端设备可以根据该MAC-CE信令携带的TCI状态对应的CORESET以及与该CORESET对应的搜索空间,确定相应的PDCCH时频资源,并使用该TCI状态指示的波束在上述PDCCH时频资源上监测DCI。
在这里使用“监测”的原因是并非在所有的PDCCH时频资源上均会调度DCI传输,但终端设备要根据所述TCI状态所指示的波束监测这些时频资源。在本发明实施例中,为了描述方便,也可以用“接收”DCI描述这个行为,在没有特别说明的情况下,接收和监测在这个语境下可以互换。
然而,该指示方法存在较长的时延。由于终端设备可能是移动的,通常采用宽波束传输DCI,以确保在下一次MAC CE信令下发之前,移动后的终端设备仍在该宽波束的覆盖范围内。因此,这样难以实现通过窄波束传输DCI。
为此,本申请实施例提供了一种控制信道波束指示方法及设备,用以实现通过一个DCI指示另一DCI的接收波束,有助于降低时延。
在本申请实施例中,网络设备是下一代通信的基站,如5G的gNB或小站、微站,TRP,还可以是中继站、接入点等等。
通信设备可以指终端设备、用户设备(user equipment,UE)、接入终端设备、用户单元、用户站、移动站、移动台、远方站、远程终端设备、移动设备、用户终端设备、无线通信设备、用户代理或用户装置。通信设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例提供的控制信道波束指示方法的流程可以如图3所示,包括以下步骤:
步骤301、网络设备向通信设备发送第一DCI,该第一DCI中包括用于指示第一波束的指示信息。
网络设备发送的第一DCI,可以是任一种格式(format)的DCI,例如,调度下行PDSCH的DCI,调度上行PUSCH的DCI,以时隙格式(slot format)通知为目的DCI,或者也可以是未来技术演进中所采用的DCI,本发明对此不作限定。
本发明实施例中所述第一DCI,包括用于指示第一波束的指示信息,以实现通知通信设备根据第一波束的指示信息接收第二DCI。其中,所述第一波束既可以指网络设备发送第二DCI的波束,也可以指通信设备接收第二DCI的波束,此外,由于发射波束和接收波束之间存在配对关系,该配对关系通过波束训练获得,因此第一波束也可以指用于发送、接收第二DCI的收发波束对。
第一波束指示信息,可以为TCI状态,该TCI状态通过TCI状态序号(TCI state ID)确定。本发明不排除未来技术演进中可能出现通过例如type_D的QCL信息或其他形式的波束指示信息作为第一波束指示信息的可能。
本发明实施例中出现第一预设波束,第二预设波束,均可参考上文描述。
步骤302、网络设备根据第一波束发送第二DCI,通信设备根据第一波束的指示信息接收第二DCI。
如前所述,步骤301中网络设备指示的第一波束,可以指示网络设备发送第二DCI的波束,也可以指示通信设备接收第二DCI的波束,还可以指示用于传输第二DCI的波束对。若第一波束为网络设备发送第二DCI的波束,则通信设备确定与第一波束具有波束配对关系的接收波束,并在确定出的接收波束上接收第二DCI。若第一波束为通信设备接收第二DCI的波束,则通信设备在第一波束上接收第二DCI,而网络设备在与第一波束有波束配对关系的发送波束上发送第二DCI;若第一波束指向波束对,则通信设备在该波束对中的接收波束上接收第二DCI,网络设备在该波束对中的发送波束上发送第二DCI。
在上述方法中,通信设备可以根据接收到的第一DCI携带的第一波束的指示信息确定用于接收第二DCI的波束。DCI信令属于物理层信令,MAC CE信令属于MAC层信令,RRC信令属于RRC层信令,DCI信令的最小调度时间单元仅为一个传输时间间隔(transmission time interval,TTI),小于MAC CE信令和RRC信令的最小调度时间单元,且通信设备解析信令时依次经过物理层解析、MAC层解析、RRC层解析,故通信设备对DCI信令进行解析的时延最短,解析MAC CE信令的时延次之,解析RRC信令的时延最长。因此,本申请上述方法实施例的技术方案有助于降低波束指示信令的时延,提高控制信道波束切换的灵活度。本申请中由于降低了传输时延,可以采用窄波束传输第二DCI,有助于提升第二DCI的传输质量。
在一些实施例中,网络设备可以向通信设备发送主DCI(即本申请实施例中的第一DCI)和辅DCI(即本申请实施例中的第二DCI),网络设备在主DCI中携带第一波束指示信息,用于指示发送辅DCI的发送波束的指示信息(当然也可以是接收第二DCI的接收波束的指示信息,或者波束对的指示信息,为了方便描述,以下均以发送波束为例进行举例说明),通信设备根据主DCI中携带的第一波束指示信息,确定与发送波束具有波束配对关系的接收波束,并在该接收波束上接收辅DCI。其中,辅DCI中包括主DCI包括的指示域中的部分指示域。主DCI中包括的指示信息对实时性的要求可能不尽相同,可选的,将部分实时性要求较高的指示信息组合成一个辅DCI,使得网络设备可以以灵活的调度频率调度辅DCI,而信令开销较大的主DCI则可以采用相对较低的调度频率进行调度。通信设备在接收到第一DCI时,即可按照该DCI的指示完成数据调度或其他配置;通信设备接收到第二DCI时,由于第二DCI中仅包括部分指示信息,则需要结合之前收到的第一DCI中与第二DCI不重叠的部分指示信息完成数据调度或其他配置。这样一来,既能满足实时性要求,又可以节省不必要的信令开销。
在另外一些实施例中,第一DCI还可以为公共DCI,第二DCI为专属DCI,仍以发送波束为例进行举例说明,网络设备向通信设备发送的公共DCI中携带了第一波束指示信息,用于指示发送专属DCI的发送波束的指示信息。通信设备根据公共DCI中携带的第一波束指示信息,确定与发送波束具有配对关系的接收波束,并在该接收波束上接收专属DCI。其中,公共DCI中包含部分指示信息,这些指示信息对实时性的要求不高,而专属DCI 中包含另外一部分指示信息,这些指示信息需要更高的调度灵活性。此时,通信设备需要根据公共DCI和专属DCI获取完整的指示信息,完成调度或其他配置。具体地,通信设备在接收到公共DCI后,等待下一个专属DCI;通信设备在接收到专属DCI后,结合之前接收到的公共DCI获得全部DCI的指示信息,完成调度或其他配置。与前述主、辅DCI的实施例相比,该实施例可以进一步降低不必要的信令开销,即第一DCI仅包括公共的指示信息。
在上述两种实现方式中,网络设备可以是一个网络设备;或者,网络设备可以包括第一网络设备和第二网络设备,第一DCI(主DCI或公共DCI)由第一网络设备发送,第二DCI(辅DCI或专属DCI)可以是第一网络设备发送的,也可以是第二网络设备发送的。
当第一DCI和第二DCI分别为主、辅DCI时,或者,分别为公共、专属DCI时,第一DCI携带的信息往往较为重要,或者第一DCI的信息更替较慢;而第二DCI可以携带一些对灵活调度要求更高的指示信息。此时,第一DCI可以通过宽波束发送和接收,第二DCI则可以通过窄波束发送和接收。为了避免频繁发送第一DCI增加通信设备的监测复杂度,网络设备所发送的任意两个第一DCI之间的时间间隔不小于一个预设阈值。或者,通信设备不期望在一个预设阈值的时间间隔内连续接收到两个第一DCI;在此种情况下,通信设备可以在接收到一个第一DCI之后,丢弃或不处理在该时间间隔内收到的下一个第一DCI。
还有一些实施例中,网络设备可以包括第一网络设备和第二网络设备,第一DCI为第一网络设备发送的DCI,第二DCI为第二网络设备发送的DCI。例如,在如图1所示的协作多点场景下,可以将TRP_A作为第一网络设备,TRP_A向通信设备发送的DCI为第一DCI,将TRP_B作为第二网络设备,TRP_B向通信设备发送的DCI为第二DCI。由于TRP_A与TRP_B相互协作与通信设备进行数据传输,TRP_A可以获取到TRP_B发送第二DCI所使用的发送波束信息,因此,TRP_A可以在第一DCI中携带用于指示TRP_B发送第二DCI所使用的发送波束的指示信息。此时,第一DCI和第二DCI可以使用相同的DCI格式,但第一DCI中增加了第一波束的指示信息。
在一种可能的实现方式中,第一DCI和第二DCI还可以在不同的载波上发送。例如在载波聚合(carrier aggregation,CA)技术中,每一个载波都是一个服务小区(serving cell),一个通信设备可以接入超过一个服务小区,便也可以接收到超过一个DCI。
如果第一DCI为主DCI(或公共DCI),第二DCI为辅DCI(或专属DCI)时,第一DCI可以通过主服务小区(primary serving cell)发送,第二DCI既可以通过主服务小区发送,也可以通过辅服务小区(secondaryserving cell)发送。
如果第一DCI和第二DCI分别通过第一和第二网络设备发送,且该第一和第二网络设备在不同的载波上,在这种情况下,不同的载波可以是相同的频率段,即仅有载波ID或者服务小区ID的不同,实际发送的频段是一样的。
再例如,第一DCI和第二DCI可以在不同的带宽分部(bandwidth part,BWP)上发送。当多个BWP为一个通信设备服务时(无论来自同一个载波或不同载波),所述通信设备也可以接收到超过一个DCI。此时一种可能的实施例为,如果第一DCI为主DCI(或公共DCI),第二DCI为辅DCI(或专属DCI)时,第一DCI可以通过主BWP(或初始BWP)发送,第二DCI既可以通过主BWP发送,也可以通过其他BWP发送。当第一DCI和第二DCI来自两个不同载波的主BWP时,则第一DCI可以通过载波ID较小的或者最低的 那一个发送。
在上述步骤301之前,通信设备还可以接收网络设备发送的第一波束集合的指示信息,则上述第一波束的指示信息可以用于指示第一波束集合中的一个波束。
例如,网络设备可以先通过RRC信令或MAC CE信令向通信设备发送第一波束集合的指示信息,第一网络设备通过第一DCI指示第一波束集合中的一个波束用于发送第二DCI即可。
网络设备所指示的第一波束集合可以包括四种情况:
情况1、第一波束集合中的波束,也可以为候选的用于发送第一DCI的波束,即,第一DCI和第二DCI共用第一波束集合,网络设备可以从上述第一波束集合中选择发送第一DCI的波束、发送第二DCI的波束。
例如,网络设备可以通过RRC信令向通信设备发送第一波束集合的指示信息,然后,通过第一DCI中的第一波束指示信息指示,激活第一波束集合中的一个波束用于发送第二DCI。在该情况下,本申请对发送第一DCI的波束的指示方法不做限定,如,网络设备可以通过MAC-CE信令指示激活第一波束集合中的一个波束用于发送第一DCI,或者,网络设备和通信设备也可以根据第一预设波束发送、接收第一DCI。
又例如,网络设备可以通过RRC信令向通信设备发送用于指示初始波束集合的指示信息(如:初始波束集合中可以包括64个备选波束);然后网络设备可以通过MAC CE信令向通信设备发送第一波束集合的指示信息,此时,第一波束集合可以为上述初始波束集合的子集(如:从上述64个波束中进一步通过MAC CE信令选择出8个波束作为第一波束集合);之后,网络设备可以通过在第一DCI中携带指示信息,用于指示从第一波束集合中选取一个波束作为发送第二DCI的波束。在此种情况下,网络设备无法通过MAC CE信令指示用于发送第一DCI的波束,在一种可能的实现方式中,网络设备可以采用第一预设波束发送第一DCI,相应的,通信设备根据该第一预设波束接收第一DCI。
上述第一预设波束可以为预设的某个波束,例如,协议约定初始同步接入时选择的波束作为第一预设波束(无论该波束是否被包括在第一波束集合中)。此外,第一预设波束也可以为根据预设规则从上述第一波束集合中选择的波束,例如,选取第一波束集合中的第一个波束作为第一预设波束。通常来说,第一波束集合中各个波束的先后顺序,是按照波束的索引值从小到大排序的,因此,选取第一波束集合中的第一个波束,也可以理解为从第一波束集合中选择索引值最小的波束作为第一预设波束。
情况2、第一波束集合中的波束,仅可以为候选的用于发送第二DCI的波束,即,第一波束集合不被其他DCI或PDSCH共用。
例如,网络设备可以通过RRC信令向通信设备指示第一波束集合,然后,通过第一DCI中的第一波束指示信息指示,激活第一波束集合中的一个波束用于发送第二DCI。
又例如,网络设备可以通过RRC信息向通信设备发送用于指示初始波束集合的指示信息;然后通过MAC CE信令向通信设备发送第一波束集合的指示信息,此时,第一波束集合可以为上述初始波束集合的子集;之后,网络设备通过第一DCI中携带的第一波束指示信息,指示所述第一波束为第一波束集合中的一个波束。
在情况2中,本申请对发送第一DCI的波束的指示方法不做限定,网络设备可以通过MAC CE或其他信令指示,也可以采用第一预设波束发送第一DCI。
情况3、第一波束集合中的波束,还可以是候选的用于发送第一PDSCH的波束,即, 第二DCI和第一PDSCH共用第一波束集合;其中,第一PDSCH为第一DCI调度的PDSCH。网络设备可以通过RRC信令、MAC CE信令或其他信令向通信设备指示用于发送第一PDSCH的波束集合,为了节省信令开销,网络设备可以不必再发送其他信令指示用于发送第二DCI的波束集合,可以从发送第一PDSCH的波束集合中选取一个波束,作为发送第二DCI的波束。
例如,网络设备通过RRC信令向通信设备指示第一波束集合,然后,通过第一DCI中的第一波束指示信息指示,激活第一波束集合中的一个波束用于发送第二DCI。
又例如,网络可以通过RRC向通信设备指示初始波束集合;然后通过MAC CE信令向通信设备指示第一波束集合,此时,第一波束集合可以为上述初始波束集合的子集;之后,网络设备通过第一DCI中携带的第一波束指示信息,指示从第一波束集合中选取一个波束作为发送第二DCI的波束。
在情况3中,本申请对发送第一DCI的波束的指示方法不做限定。
情况4、第一波束集合中的波束,还可以是候选的用于发送第二PDSCH的波束,即,第二DCI与第二PDSCH共用第一波束集合;其中,第二PDSCH为第二DCI调度的PDSCH。网络设备可以通过RRC信令、MAC CE信令或其他信令向通信设备指示用于接收第二PDSCH的波束集合,与情况3类似,此处不再赘述。
不论在哪种情况下,网络设备都可以通过RRC信令或MAC CE信令向通信设备指示第一波束集合。例如,网络设备通过MAC CE信令向通信设备指示第一波束集合时,通常情况下,网络设备可以先通过RRC信令向通信设备指示初始波束集合(如:初始波束集合中可以包括64个备选波束),然后通过MAC CE信令向通信设备指示第一波束集合,此时,第一波束集合可以为上述初始波束集合的子集(如:从上述64个波束中进一步选择出8个波束作为第一波束集合)。又例如,网络设备可以通过RRC信令向通信设备指示第一波束集合,此时,可以不必再通过MAC CE信令指示关于第一波束或第一波束集合的信息。
如前所述,RRC信令中所指示的TCI状态集合(可对应上述实施例中的初始波束集合,或者第一波束集合),可以是对应于一个或多个CORESET配置的,并且一个CORESET又可以关联一个或多个搜索空间,因此所述TCI状态集合与上述一个或多个CORESET及其所关联的一个或多个搜索空间关联。但本申请实施例对此不做限制,该TCI状态集合,还可以是仅对应于至少一个搜索空间配置的,或仅对应于至少一个CORESET配置的。例如,一个TCI状态集合对应一个或多个CORESET和所有搜索空间配置,或一个TCI状态集合对应一个或多个搜索空间和所有CORESET配置。
在本申请实施例中,通信设备可以采用不同波束接收第一DCI和第二DCI。由于该第一DCI和第二DCI可能在同一时频资源上发送,这便需要通信设备同时使用两个不同波束在同一时频资源上监测第一DCI和第二DCI。若通信设备不具有同时使用两个接收波束接收无线信号的能力,便无法处理上述情况。此外,即使网络设备没有在同一时频资源上发送第一DCI和第二DCI,但通信设备不能预先知道网络设备发送第一DCI和第二DCI的调度信息,即在接收到并解析出DCI的内容之前,通信设备可能无法确定在哪些时频资源上使用接收第一DCI的波束,在哪些时频资源上使用接收第二DCI的波束。在一种实现方式中,网络设备可以为第一DCI和第二DCI关联不同的CORESET和搜索空间,使得它们 的时域资源不会重叠。这样通信设备便可以根据指示在对应的PDCCH时频资源上切换不同的接收波束以监测第一DCI和第二DCI。
例如,如果第一DCI和第二DCI分别为主、辅DCI,或者分别为公共、专属DCI等,则第一DCI和第二DCI的格式不同。网络设备为通信设备配置一个或多个搜索空间时,可以为每个搜索空间关联一种DCI格式,这种情况下,通信设备根据某个搜索空间配置所关联的时域资源监测DCI时,即可确定在该搜索空间中监测的DCI为第一DCI还是第二DCI,从而使用相应的接收波束在该搜索空间中监测DCI。
再例如,在PDCCH配置中,可以增加一项新的配置信息,用于表示第一DCI、第二DCI与CORESET ID和/或搜索空间ID的映射关系。这时还可以分为两种情况,第一种情况下,第一DCI和第二DCI的格式不同,假设第一DCI的格式为DCI format1,第二DCI的格式为DCI format2,那么新增的配置信息可以为DCI format1与CORESET ID列表1和/或Search Space ID列表1的映射关系,以及DCI format2与CORESET ID列表2和/或Search Space ID列表2的映射关系。通过上述映射关系,通信设备便可以依照第一DCI和第二DCI各自的波束指示信息使用不同的波束在各自的时频资源上分别接收第一DCI和第二DCI。在第二种情况下,第一DCI和第二DCI为相同的DCI格式,那么可以在第一种情况的基础上,将DCI format1和DCI format2替换为其他可以表征第一DCI和第二DCI,例如,采用第一DCI和第二DCI的波束指示方法这一项信息来表征第一DCI和第二DCI。具体的,在上述情况1中,发送第一DCI的波束可以通过RRC信令、MAC_CE信令以及默认规则的方法指示,而发送第二DCI的波束是通过RRC信令,MAC_CE信令和第一DCI指示,因此对第一DCI和第二DCI而言,它们有不同的波束指示方法,因此前述例子中新增的配置信息中DCI format1可以替换为“控制信道波束指示:RRC+MAC_CE+Default”,DCI format2可以替换为“控制信道波束指示:RRC+MAC_CE+DCI”;如情况2、3、4中,发送第一DCI的波束可以通过RRC信令和MAC_CE信令指示,而发送第二DCI的波束则可以通过RRC信令、MAC_CE信令以及第一DCI指示,则前述例子中的DCI_format1可以替换为“控制信道波束指示方法:两级信令指示”,而DCI_format2可以替换为“控制信道波束指示方法:三级信令指示”。应理解,以上配置信息的格式仅为举例。再例如,对于上述情况2、情况3、情况4,第一DCI和第二DCI的候选波束集合不是同一个,此时,DCI_format1和DCI_format2也可以替换为相应的候选波束集合的标识。通过将表征第一DCI和第二DCI的波束指示方法或候选波束集合的标识等于相应的CORESET和搜索空间列表关联,作为配置信息下发,也可以帮助终端设备在解析之前获知应该用哪一个接收波束去监测当前的PDCCH,这种方法也可以应用于第一种情况,即第一DCI和第二DCI有不同格式的场景下。应理解,符合上述原则的合理替换均应视为本发明保护的成果。
再例如,上述在PDCCH配置中显式配置的内容也可以通过协议约定的方法实现,即协议约定第一DCI、第二DCI与CORESET ID和/或搜索空间ID的映射关系。例如,第一DCI为公共DCI,第二DCI为专属DCI时,协议可以约定,第一DCI在CORESET ID#0和/或搜索空间ID#0所关联的PDCCH时频资源上监测,而第二DCI在除上述CORESET和搜索空间所关联的PDCCH时频资源上监测。在该实施例中,不需要修改RRC的信令配置。
若通信设备具有同时使用两个接收波束接收无线信号的能力,即使网络设备为通信设备配置的监测第一DCI和第二DCI的时频资源相同,通信设备也可以同时使用两个波束监 测第一DCI和第二DCI,此时,可不采用上述CORESET和搜索空间的关联方法。可选地,通信设备可以将该能力上报给网络设备,则网络设备基于这项能力信息确定可以使用第一DCI指示第二DCI的发送波束,且可以为第一DCI和第二DCI配置相同的时频资源。如果通信设备并没有通知网络设备具备上述能力,则该通信设备不期望收到两个及以上的波束指示信息用于指示在同一个PDCCH上使用两个波束监测时频资源。
当第一DCI和第二DCI可以通过不同的载波ID,服务小区ID或BWP ID区分时,则也可以不采用上述CORESET和搜索空间的关联方法。
可选地,网络设备在通过第一DCI指示用于发送第二DCI的第一波束时,可以在第一DCI中增加一个新的指示域,该增加的新指示域仅用于指示发送第二DCI的第一波束的指示信息。例如,若第一波束集合中包括8个波束,那么增加的新指示域可以包括3个比特,这3个比特的组合可以对应8个不同的取值,分别对应第一波束集合中的8个波束。
此外,网络设备也可以通过对现有DCI中包括的某个指示域进行复用,即,复用后的指示域,可以用于指示该指示域原本所指示的内容和/或用于指示接收第二DCI的第一波束的信息。第一DCI中可以包括指示域“TCI状态”,用于指示发送第一DCI调度的第一PDSCH的波束,网络设备可以复用该指示域“TCI状态”,令该指示域可以用于指示发送第一DCI调度的第一PDSCH的波束和/或用于指示发送第二DCI的波束。例如,若该指示域“TCI”包括3个比特,包括8个不同的取值,每个取值的含义可以如表1所示。
表1
TCI状态指示域的取值 含义
000 默认波束
001 TCIstateID1,指示发送第一PDSCH的波束1
010 TCIstateID2,指示发送第一PDSCH的波束2
011 TCIstateID3,指示发送第一PDSCH的波束3
100 TCIstateID4,指示发送第一PDSCH的波束4
101 TCIstateID5,指示发送第一PDSCH的波束5
110 TCIstateID6,指示发送第二DCI的波束6
111 TCIstateID7,指示发送第二DCI的波束7
在表1中,“默认波束”可以表示通过默认波束发送第一PDSCH和/或发送默认波束发送第二DCI。由于TCI状态指示域的比特数量不变,用于指示发送第一PDSCH的波束的取值减少,网络设备可以减少发送第一PDSCH的波束集合中包含的波束数量;还可以根据用于指示发送第二DCI的波束的取值数量,确定第一波束集合的数量。或者,还可以增加TCI状态指示域的比特数量,例如,增加至4个比特,则可包括16个不同的取值,实现可以从更多数量的波束中选取发送第一PDSCH的波束,从更多数量的波束中选取发送第二DCI。
应当理解,上述表1仅为举例,默认波束是否存在、用于指示发送第一PDSCH的波束的数量以及用于指示发送第二DCI的波束的数量,都可以根据需求进行调整,本申请实施例对此不做限制。
上述实施例中的指示域,可以用于指示发送第一PDSCH的波束或用于发送第二DCI的波束。在另外一些实施例中,一个指示域也可以对发送第一PDSCH的波束和用于发送 第二DCI的波束进行联合指示。例如,该指示域的取值与含义可以如表2所示。
表2
TCI状态指示域的取值 含义
000 默认波束
001 第一PDSCH:波束1;第二DCI:波束2
010 第一PDSCH:波束1;第二DCI:波束3
011 第一PDSCH:波束2;第二DCI:波束3
100 第一PDSCH:波束3;第二DCI:波束3
101 第一PDSCH:波束4;第二DCI:波束5
110 第一PDSCH:波束4;第二DCI:波束6
111 第一PDSCH:波束5;第二DCI:波束7
应当理解,上述表2仅为举例,默认波束是否存在、用于指示发送第一PDSCH的波束与用于指示发送第二DCI的波束的组合,都可以根据需求进行调整,本申请实施例对此不做限制。
当第一DCI和第二DCI为不同的网络设备发送时,即,在协作多点场景下,那么第一DCI和第二DCI的格式(format)可以相同,若网络设备通过复用指示域的方式指示第一波束的指示信息,那么第一DCI和第二DCI中均包括该指示域,但第一DCI和第二DCI中该指示域的取值范围可能不同,例如,以表1举例,第二DCI的“110和111”这两个状态是没有作用的,因此其实际的取值范围为“000-101”。若网络设备通过增加新的指示域指示第一波束的指示信息,那么第二DCI中该新增指示域的值为缺省值,即,不用于指示其他DCI的接收波束。
在一种可能的实现方式中,可以为第一波束设置一个预设时间段。第一DCI和第二DCI都是动态调度的,且没有固定的发送周期,若网络设备长时间没有发送新的第一DCI,通信设备可能会移动到超出该波束的覆盖范围的地方,从而导致第二DCI的接收质量下降。因此,可以为第一DCI所指示的第一波束设置一个预设时间段,用于限定该第一波束指示信息的有效作用时间,即,在预设时间段之外,该第一波束的指示信息失效。上述预设时间段是一段持续的时间。
通信设备在监测第二DCI时,如果确定当前处于上述预设时间段内,则通信设备根据该第一DCI所携带的第一波束指示信息监测第二DCI;相应的,在预设时间段内,网络设备则使用第一波束发送第二DCI。反之,如果确定当前不在预设时间段内,则通信设备根据第二预设波束监测第二DCI;相对应地,网络设备通过第二预设波束发送第二DCI。可以理解的,第二预设波束也可以是所述第一波束。
上述第二预设波束可以为预设的某个波束,例如,协议约定初始同步接入时选择的波束作为第二预设波束;也可以为根据预设规则从前述第一波束集合中选择的波束,例如总是选取第一波束集合中的第一个波束作为第二预设波束。通常来说,第一波束集合中各个波束的先后顺序,是按照波束的索引值从小到大排序的,因此,选取第一波束集合中的第一个波束,也可以理解为从第一波束集合中选择索引值最小的波束作为第二预设波束。
以图4为例对所述预设时间段对第一波束的有效作用范围进行说明。
网络设备在n1时刻发送了第一DCI_A,相对应的,通信设备在n1时刻收到第一DCI_A,该第一DCI_A携带有第一波束(波束1)的指示信息。其中,n1时刻可以指某个时域符号,或者某个时隙(slot)等,例如,网络设备在第3个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号上发送了第一DCI_A,那么通信设备也是在第3个OFDM符号上接收到了第一DCI_A。由于双方设备之间是同步的,因此本例中第3个OFDM符号从收发双方设备看都是在同一个无线帧的同一个时隙内。
然而,在n1时刻,由于通信设备刚接收到第一DCI_A,还没有完成对第一DCI_A的解析,不知道该第一DCI_A的内容。在经过T1时间段后,通信设备完成了对第一DCI_A的解析,获取到第一DCI携带的波束1的指示信息。其中,T1时间段可以是以OFDM符号、时隙为单位的相对时间长度,例如3个时隙,或者,也可以是以毫秒(ms)、微秒(us)为单位的绝对时间长度,例如3ms。
在n1时刻到n2时刻之间,由于通信设备还未获取到波束1的指示信息,通信设备不能根据波束1接收第二DCI,因此,在此时间段内,网络设备也不使用波束1发送第二DCI。而在该时间段内,网络设备有第二DCI_A待发送,那么网络设备可以根据上一个第一DCI所指示的波束发送第二DCI_A,通信设备也根据接收到的上一个第一DCI所指示的波束接收第二DCI_A。若发送、接收第二DCI_A的时刻,已经超出了上一个第一DCI所指示的波束的有效作用范围,则网络设备和通信设备可以根据第二预设波束发送、接收第二DCI_A。
从n2(n1+T1)时刻开始,通信设备获取到波束1的指示信息,便可以根据波束1的指示信息接收第二DCI。因此,可以将n2时刻设为上述预设时间段的起始时间,即,从n2时刻开始,网络设备使用波束1发送第二DCI,通信设备根据波束1接收第二DCI。假设预设时间段的长度为T2(T2可以是以OFDM符号、时隙为单位的相对时间长度,也可以是以毫秒、微秒为单位的绝对时间长度),则如图4所示,预设时间段的起始时刻为n2时刻,结束时刻为n3(n2+T2)时刻,即,网络设备和通信设备根据波束1发送、接收第二DCI_B和第二DCI_C。
在n3时刻之后,即超出了波束1的有效作用范围,若仍没有新的第一DCI指示新的第一波束,则网络设备和通信设备根据第二预设波束接收、发送第二DCI_D。
进一步地,窄波束虽然增益大、传播距离长,但对通信设备的移动较为敏感,为了保证通信设备在第二预设波束上接收无线信号的质量,可以将宽波束设置为第二预设波束,以使通信设备在一定范围内移动,都能够接收到第二DCI。
在一些实施方式中,所述T1时间段除了包括通信设备解析第一DCI的时间,还可以包括通信设备波束切换的准备时间,在这种情况下,通信设备在T1时间段内,能够解析出第一DCI的内容,并根据第一波束的指示信息完成接收波束的切换。
其中,该T1时间段的长度,可以通过通信设备的能力信息上报给网络设备,或者,也可以是协议预定义的。
类似的,T2时间段的长度可以是协议预定义的,也可以是网络设备通过下行控制信令(RRC/MAC-CE/DCI)指示的,也可以是通信设备上报给网络设备的(例如,通过能力信息),本发明对此不做限定。
在如图4所示的实施例中,预设时间段(T2)的长度是固定的。而在另外一些实施方式中,预设时间段也可以不是一段固定的时间长度。
以图5为例,第一DCI_A所指示的第一波束(波束1)的预设时间段的起始时间仍为n2(n1+T1)时刻,其中,T1时间段与前述实施例类似,此次不再赘述。但是T2时间段的长度不再是一个固定的时间长度,可以将预设时间段T2的结束时刻设为下一个第一DCI(第一DCI_B)所指示的第一波束(波束2)的预设时间段的起始时间。例如,第一DCI_B的发送时刻为n3时刻,那么该第一DCI_B所指示的波束2的预设时间段起始时间为n4(n3+T1)时刻;在这种情况下,第一DCI_A所指示的波束1的有效作用范围是从n2时刻开始持续到n4时刻结束,然后,便进入了第一DCI_B所指示的波束2的有效作用范围,以此类推。
此外,预设时间段的结束时间也可以是收到用于指示第一波束集合的MAC-CE信令的时刻。例如,如图6所示,在通信设备在n1时刻收到第一DCI_A,第一DCI_A所指示的波束1的预设时间段的起始时间为n2(n1+T1)时刻,T1时间段与前述实施例类似,此次不再赘述。在n3时刻,通信设备收到了MAC CE_2,用于更新第一波束集合中的信息,通信设备在n4(n3+T3)时刻获取到更新后的第一波束集合的信息,那么波束1的预设时间段的结束时间则为n4时刻,其中,T3时间段为通信设备解析MAC CE信令的时间,或者为解析MAC CE信令的时间加上波束切换的时间。在n4时刻之后,下一个第一DCI发送/接收之前,网络设备和通信设备根据第二预设波束发送/接收第二DCI。
又或者,预设时间段的结束时间仍为下一个第一DCI所指示的第一波束的预设时间段起始时间,若通信设备在预设时间段内接收到新的MAC CE信令后,则根据新的MAC CE信令所指示的新的第一集合,更新第一波束。例如,MAC CE_1指示的第一波束集合包括波束1、波束2、...、波束8,在n1时刻发送的第一DCI_A指示的第一波束为第一波束集合中的第二个波束,即第一波束为波束2,那么通信设备从n2(n1+T1)时刻开始根据波束2接收第二DCI,如图7所示,根据波束2接收第二DCI_B、第二DCI_C;之后,通信设备在n3时刻接收到MAC CE_2,在n4(n3+T3)时刻确定更新后的第一波束集合包括波束9、波束10、...、波束16,则通信设备根据第一DCI_A以及MAC CE_2确定更新后的第一波束为波束10,则通信设备根据波束10接收第二DCI_E。通信设备在n5时刻接收到第一DCI_B,该第一DCI_B所指示的第一波束从n6(n5+T1)时刻开始生效。故,预设时间段的长度仍然为前一个第一DCI生效到后一个第一DCI生效的时间间隔,无论中间是否有信令更新第一波束集合,但实际指示的第一波束随第一波束集合的更新而更新。
以上实施例中以MAC-CE信令为例作为第一波束集合的指示信令,应理解,用于指示第一波束集合的信令也可以替换为RRC信令,本发明对此不做限定。
此外,为了应对网络设备发送了第一DCI而通信设备没有接收到第一DCI的情况,本申请实施例还提供了一种预设时间段起始时间计算的方式。如果第一波束指示信息携带于用于数据调度的第一DCI中发送给通信设备,则在网络设备发送了第一DCI后,若通信设备成功解析该DCI调度的数据后,将向网络设备发送肯定应答消息(ACK消息),因此,网络设备可以将收到该ACK消息的时刻作为预设时间段的起始时间,通信设备将发送该ACK消息的时刻作为预设时间段的起始时间。
在本发明实施例中所述的信令或消息的接收、发送时刻或时间在通信协议中的单位可以为相对时间单位,如帧,子帧,半帧,时隙,符号等,也可以为绝对时间单位,例如秒,毫秒,微妙等,本发明对此不做限定。
使用本申请实施例提供的上述方法,可以通过第一DCI指示接收第二DCI的波束,减 少指示发送或接收第二DCI的波束的信令时延,进而便于实现通过灵活切换窄波束传输第二DCI以提高通信质量。然而,在协作多点的情况下,若通信设备与第一网络设备和第二网络设备的通信质量都处于较好的状态,或者通信设备与第一网络设备、第二网络设备之间的通信质量相差不多,可以不采用本申请实施例提供的上述方法;在通信质量相差较多时,可以采用上述方法,通过通信质量较高的网络设备发送的DCI指示通信质量较差的网络设备发送的DCI的发送波束。例如,通信设备可以针对第一网络设备和第二网络设备分别测量RSRP(或者其他波束质量测量参数如RSRQ),并将测量结果上报。网络设备根据通信设备上报的测量结果,若确定通信设备针对第一网络设备测量上报的RSRP优于针对第二网络设备测量上报的RSRP,且差值大于预设阈值,则可以确定对该通信设备应用上述方法,即,通过第一网络设备发送的第一DCI指示用于接收第二网络设备发送的DCI的波束。该阈值可以是协议约定的,也可以是通信设备上报给网络设备的(例如,通过能力信息上报),还可以是通过其他参数计算获得,本发明对此不做限定。又例如,通信设备可以针对第一网络设备和第二网络设备分别测量RSRP,若通信设备确定针对第一网络设备测量的RSRP优于针对第二网络设备测量的RSRP,且差值大于预设阈值,则通知网络设备,以使网络设备通过上述方法指示发送第二DCI的波束。该预设阈值可以是协议约定的,也可以是网络设备通过下行控制信令(RRC、MAC-CE或DCI等)下发给通信设备的。
考虑到有些通信设备可能不具有根据第一DCI确定接收第二DCI的波束的能力,在一种可能的实现方式中,通信设备可以预先将自身的能力信息发送给网络设备,该能力信息用于指示是否支持根据第一DCI中的指示信息确定接收第二DCI的波束,以使网络设备确定是否能够采用本申请实施例提供控制信道波束指示方法与通信设备进行通信。可选地,通信设备上报自身的能力信息,可以是根据通信协议规定主动上报的,也可以是在接收到网络设备发送的询问请求后,在对该请求的响应中携带能力信息发送给网络设备的。
基于相同的技术构思,本申请实施例提供一种通信设备,用于实现上述方法实施例中通信设备的功能。通信设备可以是终端设备或者终端侧的设备。如图8所示,该通信设备800可以包括接收单元810和处理单元820。
其中,处理单元820用于通过接收单元810接收网络设备发送的第一DCI,所述第一DCI中包括用于指示第一波束的指示信息,根据所述第一波束的指示信息接收第二DCI。
在一种可能的实现方式中,处理单元820还用于通过接收单元810接收第一波束集合的指示信息,所述第一波束的指示信息用于指示所述第一波束集合中的一个波束。
在一种可能的实现方式中,所述第一波束集合的指示信息用于指示接收所述第一DCI的波束集合;或者,所述第一波束集合的指示信息用于指示接收所述第二DCI的波束集合;或者,所述第一波束集合的指示信息用于指示接收第一PDSCH的波束集合,所述第一PDSCH为所述第一DCI调度的PDSCH;或者,所述第一波束集合的指示信息用于指示接收第二PDSCH的波束集合,所述第二PDSCH为所述第二DCI调度的PDSCH。
在一种可能的实现方式中,所述第一波束集合的指示信息是通过MAC CE信令或者RRC信令发送给所述通信设备的。
在一种可能的实现方式中,所述第一波束集合的指示信息用于指示接收所述第一DCI的波束集合,且所述第一波束集合的指示信息是通过MAC CE信令发送给所述通信设备时, 处理单元820还用于通过接收单元810根据第一预设波束接收第一DCI。
在一种可能的实现方式中,所述第一预设波束为所述第一波束集合中的满足预设规则的波束。进一步的,该第一预设波束为第一波束集合中的第一个波束。
在一种可能的实现方式中,所述第一波束的指示信息通过所述第一DCI中的第一指示域指示,所述第一指示域仅用于指示接收所述第二DCI的波束;或者,所述第一波束的指示信息通过所述第一DCI中的第二指示域指示,所述第二指示域用于指示接收第一信息的波束和/或用于指示接收所述第二DCI的波束。
在一种可能的实现方式中,所述第一信息包括所述第一DCI调度的第一PDSCH。
在一种可能的实现方式中,处理单元820具体用于:通过接收单元810在接收到所述第一DCI之后的预设时间段内,根据所述第一波束的指示信息通过所述接收单元810接收所述第二DCI。
在一种可能的实现方式中,处理单元820还用于:通过接收单元810在预设时间段之外,根据第二预设波束接收所述第二DCI。
在一种可能的实现方式中,所述第一DCI为主DCI,所述第二DCI为辅DCI,其中,所述辅DCI仅包括部分所述主DCI包含的指示域;或者,所述第一DCI为公共DCI,所述第二DCI为专属DCI,其中,所述公共DCI包括公共指示域,所述专属DCI包括专属指示域;所述公共DCI和所述专属DCI相结合用于所述通信设备完成调度。
在一种可能的实现方式中,所述网络设备包括第一网络设备和第二网络设备,所述第一DCI为第一网络设备发送的,所述第二DCI为第二网络设备发送的。
在一种可能的实现方式中,通信设备800还包发送单元830;处理单元820还用于:在通过接收单元810根据所述第一波束的指示信息接收第二DCI之前,通过发送单元830将所述通信设备的能力信息发送给所述网络设备,所述能力信息用于指示所述通信设备是否支持根据所述第一DCI中的指示信息确定接收第二DCI的波束。上述接收单元810和发送单元830可以分离设置或者集成在一起作为收发单元。
基于相同的技术构思,本申请实施例提供一种网络设备,用于实现上述方法实施例中网络设备的功能。如图9所示,该网络设备900可以包括发送单元910和处理单元920。
其中,处理单元920用于通过发送单元910发送第一DCI,所述第一DCI中包括用于指示第一波束的指示信息,根据所述第一波束发送第二DCI。
在一种可能的实现方式中,处理单元920还用于:通过发送单元910发送第一波束集合的指示信息,所述第一波束的指示信息用于指示所述第一波束集合中的一个波束。
在一种可能的实现方式中,所述第一波束集合的指示信息用于指示接收所述第一DCI的波束集合;或者,所述第一波束集合的指示信息用于指示接收所述第二DCI的波束集合;或者,所述第一波束集合的指示信息用于指示接收第一PDSCH的波束集合,所述第一PDSCH为所述第一DCI调度的PDSCH;或者,所述第一波束集合的指示信息用于指示接收第二PDSCH的波束集合,所述第二PDSCH为所述第二DCI调度的PDSCH。
在一种可能的实现方式中,所述第一波束集合的指示信息是通过MAC CE信令或者RRC信令发送给所述通信设备的。
在一种可能的实现方式中,所述第一波束集合的指示信息用于指示接收所述第一DCI的波束集合,且所述第一波束集合的指示信息是通过MAC CE信令发送给所述通信设备时, 处理单元920还用于:通过发送单元910根据第一预设波束发送所述第一DCI。
在一种可能的实现方式中,所述第一预设波束为所述第一波束集合中的满足预设规则的波束。进一步的,第一预设波束为第一波束集合中的第一个波束。
在一种可能的实现方式中,所述第一波束的指示信息通过所述第一DCI中的第一指示域指示,所述第一指示域仅用于指示接收所述第二DCI的波束;或者,所述第一波束的指示信息通过所述第一DCI中的第二指示域指示,所述第二指示域用于指示接收第一信息的波束和/或用于指示接收所述第二DCI的波束。
在一种可能的实现方式中,所述第一信息包括所述第一DCI调度的第一PDSCH。
在一种可能的实现方式中,处理单元920具体用于:在通过发送单元910发送所述第一DCI之后的预设时间段内,根据第一波束通过所述发送单元910发送所述第二DCI。
在一种可能的实现方式中,处理单元920还用于:通过发送单元910在预设时间段之外,根据第二预设波束发送所述第二DCI。
在一种可能的实现方式中,所述第一DCI为主DCI,所述第二DCI为辅DCI,其中,所述辅DCI仅包括部分所述主DCI包含的指示域;或者,所述第一DCI为公共DCI,所述第二DCI为专属DCI,其中,所述公共DCI包括公共指示域,所述专属DCI包括专属指示域;所述公共DCI和所述专属DCI相结合用于所述通信设备完成调度。
在一种可能的实现方式中,所述网络设备包括第一网络设备和第二网络设备;所述第一DCI为第一网络设备发送的,所述第二DCI为第二网络设备发送的。
在一种可能的实现方式中,网络设备900还包括接收单元930,处理单元920还用于:在通过发送单元910根据第一波束发送第二DCI之前,通接收单元930接收所述通信设备发送的能力信息,所述能力信息用于指示所述通信设备支持根据所述第一DCI中的指示信息确定接收第二DCI的波束。上述接收单元810和发送单元830可以分离设置或者集成在一起作为收发单元。
需要说明的是,以上各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元通过软件通过处理元件调用的形式实现,部分单元通过硬件的形式实现。接收单元、发送单元可以独立设置,也可以组成一个收发单元。此外,收发单元与处理单元可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。此外,以上发送单元是一种控制发送的单元,可以通过发送装置,例如天线和射频装置发送信息。同理,接收单元也可以通过接收装置,例如天线和射频装置接收信息。
基于相同的技术构思,本申请实施例还提供了一种通信设备,用于实现上述方法实施例中通信设备的功能。如图10所示,设备1000包括处理器1010和收发器1020。
所述处理器1010,用于通过所述收发器1020接收网络设备发送的第一DCI,所述第一DCI中包括用于指示第一波束的指示信息,根据所述第一波束的指示信息接收第二DCI。
在一种可能的实现方式中,所述处理器还用于:通过所述收发器1020接收第一波束集合的指示信息,所述第一波束的指示信息用于指示所述第一波束集合中的一个波束。
在一种可能的实现方式中,所述第一波束集合的指示信息用于指示接收所述第一DCI 的波束集合;或者,所述第一波束集合的指示信息用于指示接收所述第二DCI的波束集合;或者,所述第一波束集合的指示信息用于指示接收第一物理下行共享信道PDSCH的波束集合,所述第一PDSCH为所述第一DCI调度的PDSCH;或者,所述第一波束集合的指示信息用于指示接收第二PDSCH的波束集合,所述第二PDSCH为所述第二DCI调度的PDSCH。
在一种可能的实现方式中,所述第一波束集合的指示信息是通过MAC CE信令或者RRC信令发送给所述通信设备的。
在一种可能的实现方式中,所述第一预设波束为所述第一波束集合中的满足预设规则的波束。进一步的,该第一预设波束为第一波束集合中的第一个波束。
在一种可能的实现方式中,所述第一波束的指示信息通过所述第一DCI中的第一指示域指示,所述第一指示域仅用于指示接收所述第二DCI的波束;或者,所述第一波束的指示信息通过所述第一DCI中的第二指示域指示,所述第二指示域用于指示接收第一信息的波束和/或用于指示接收所述第二DCI的波束。
在一种可能的实现方式中,所述第一信息包括所述第一DCI调度的第一PDSCH。
在一种可能的实现方式中,所述第一波束集合的指示信息用于指示接收所述第一DCI的波束集合,且所述第一波束集合的指示信息是通过MAC CE信令发送给所述通信设备时,所述处理器1010还用于:通过所述收发器1020,根据第一预设波束接收第一DCI。
在一种可能的实现方式中,所述处理器1010具体用于:在通过所述收发器1020接收到所述第一DCI之后的预设时间段内,根据所述第一波束的指示信息通过所述收发器接收所述第二DCI。
在一种可能的实现方式中,所述处理器1010还用于:在预设时间段之外,根据第二预设波束通过所述收发器1020接收所述第二DCI。
在一种可能的实现方式中,所述第一DCI为主DCI,所述第二DCI为辅DCI,其中,所述辅DCI仅包括部分所述主DCI包含的指示域;或者,所述第一DCI为公共DCI,所述第二DCI为专属DCI,其中,所述公共DCI包括公共指示域,所述专属DCI包括专属指示域;所述公共DCI和所述专属DCI相结合用于所述通信设备完成调度。
在一种可能的实现方式中,所述第一DCI为第一网络设备发送的,所述第二DCI为第二网络设备发送的。
在一种可能的实现方式中,所述处理器1010还用于:在根据所述第一波束的指示信息通过所述收发器1020接收第二DCI之前,通过所述收发器1020将所述通信设备的能力信息发送给所述网络设备,所述能力信息用于指示所述通信设备是否支持根据所述第一DCI中的指示信息确定接收第二DCI的波束。
基于相同的技术构思,本申请实施例还提供了一种网络设备,用于实现上述方法实施例中网络设备的功能。如图11所示,网络设备1100包括处理器1110和收发器1120。
其中,所述处理器1110,用于通过所述收发器1120向通信设备发送第一DCI,所述第一DCI中包括用于指示第一波束的指示信息;通过所述收发器1120根据所述第一波束发送第二DCI。
在一种可能的实现方式中,所述处理器1110还用于:通过所述收发器1120发送第一波束集合的指示信息,所述第一波束的指示信息用于指示所述第一波束集合中的一个波束。
在一种可能的实现方式中,所述第一波束集合的指示信息用于指示接收所述第一DCI 的波束集合;或者,所述第一波束集合的指示信息用于指示接收所述第二DCI的波束集合;或者,所述第一波束集合的指示信息用于指示接收第一物理下行共享信道PDSCH的波束集合,所述第一PDSCH为所述第一DCI调度的PDSCH;或者,所述第一波束集合的指示信息用于指示接收第二PDSCH的波束集合,所述第二PDSCH为所述第二DCI调度的PDSCH。
在一种可能的实现方式中,所述第一波束集合的指示信息是通过MAC CE信令或者RRC信令发送给所述通信设备的。
在一种可能的实现方式中,所述第一波束集合的指示信息用于指示接收所述第一DCI的波束集合,且所述第一波束集合的指示信息是通过MAC CE信令发送给所述通信设备时,所述处理器1110还用于:通过所述收发器1120根据第一预设波束发送所述第一DCI。
在一种可能的实现方式中,所述第一预设波束为所述第一波束集合中的满足预设规则的波束。进一步的,第一预设波束为第一波束集合中的第一个波束。
在一种可能的实现方式中,所述第一波束的指示信息通过所述第一DCI中的第一指示域指示,所述第一指示域仅用于指示接收所述第二DCI的波束;或者,所述第一波束的指示信息通过所述第一DCI中的第二指示域指示,所述第二指示域用于指示接收第一信息的波束和/或用于指示接收所述第二DCI的波束。
在一种可能的实现方式中,所述第一信息包括所述第一DCI调度的第一PDSCH。
在一种可能的实现方式中,所述处理器1110在通过所述收发器1120根据所述第一波束发送第二DCI时,具体用于:通过所述收发器1120在发送所述第一DCI之后的预设时间段内,根据第一波束发送所述第二DCI。
在一种可能的实现方式中,所述处理器1110还用于:通过所述收发器1120在预设时间段之外,根据第二预设波束发送所述第二DCI。
在一种可能的实现方式中,所述第一DCI为主DCI,所述第二DCI为辅DCI,其中,所述辅DCI仅包括部分所述主DCI包含的指示域;或者,所述第一DCI为公共DCI,所述第二DCI为专属DCI,其中,所述公共DCI包括公共指示域,所述专属DCI包括专属指示域;所述公共DCI和所述专属DCI相结合用于所述通信设备完成调度。
在一种可能的实现方式中,所述网络设备包括第一网络设备和第二网络设备,所述第一DCI为第一网络设备发送的,所述第二DCI为第二网络设备发送的。其中,第一网络设备和第二网络设备的结构与图11所示类似。
在一种可能的实现方式中,所述处理器1110在通过所述收发器1120根据所述第一波束发送第二DCI之前,还用于:通过所述收发器1120接收所述通信设备发送的能力信息,所述能力信息用于指示所述通信设备支持根据所述第一DCI中的指示信息确定接收第二DCI的波束。
基于相同的技术构思,本申请实施例提供了一种通信设备,该通信设备包括处理器和存储器,存储器用于存储程序,处理器用于调用存储器中的程序执行上述方法中通信设备所执行的功能。
基于相同的技术构思,本申请实施例提供了一种网络设备,该网络设备包括处理器和存储器,存储器用于存储程序,处理器用于调用存储器中的程序执行上述方法中网络设备所执行的功能。
基于相同的技术构思,本申请实施例提供了一种设备,所述设备包括处理器,所述处 理器执行计算机程序时实现上述方法中通信设备所执行的功能,或者,实现上述方法中网络设备所执行的功能。
基于相同的技术构思,本申请实施例提供了一种芯片,用于支持设备实现上述方法中通信设备所执行的功能,或者,用于执行上述方法中网络设备所执行的功能。在一种可能的设计中,所述芯片还包括存储单元,所述存储单元,用于保存设备必要的程序指令和数据。
基于相同的技术构思,本申请实施例提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机指令,当所述指令在计算机上运行时,使得计算机执行上述方法中通信设备所执行的功能,或者,用于执行上述方法中网络设备所执行的功能。
基于相同的技术构思,本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述方法中通信设备所执行的功能,或者,用于执行上述方法中网络设备所执行的功能。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (48)

  1. 一种控制信道波束指示方法,其特征在于,包括:
    通信设备接收网络设备发送的第一下行控制信息DCI,所述第一DCI中包括用于指示第一波束的指示信息;
    所述通信设备根据所述第一波束的指示信息接收第二DCI。
  2. 如权利要求1所述的方法,其特征在于,还包括:
    所述通信设备接收第一波束集合的指示信息,所述第一波束的指示信息用于指示所述第一波束集合中的一个波束。
  3. 如权利要求2所述的方法,其特征在于,所述第一波束集合的指示信息用于指示接收所述第一DCI的波束集合;或者
    所述第一波束集合的指示信息用于指示接收所述第二DCI的波束集合;或者
    所述第一波束集合的指示信息用于指示接收第一物理下行共享信道PDSCH的波束集合,所述第一PDSCH为所述第一DCI调度的PDSCH;或者
    所述第一波束集合的指示信息用于指示接收第二PDSCH的波束集合,所述第二PDSCH为所述第二DCI调度的PDSCH。
  4. 如权利要求2或3所述的方法,其特征在于,所述第一波束集合的指示信息是通过介质访问控制层控制元素MAC CE信令或者无线资源控制RRC信令发送给所述通信设备的。
  5. 如权利要求2所述的方法,其特征在于,所述第一波束集合的指示信息用于指示接收所述第一DCI的波束集合,且所述第一波束集合的指示信息是通过MAC CE信令发送给所述通信设备时,所述方法还包括:
    所述通信设备根据第一预设波束接收所述第一DCI。
  6. 如权利要求5所述的方法,其特征在于,所述第一预设波束为所述第一波束集合中的满足预设规则的波束。
  7. 如权利要求1-6中任一项所述的方法,其特征在于,所述第一波束的指示信息通过所述第一DCI中的第一指示域指示,所述第一指示域仅用于指示接收所述第二DCI的波束;或者
    所述第一波束的指示信息通过所述第一DCI中的第二指示域指示,所述第二指示域用于指示接收第一信息的波束和/或用于指示接收所述第二DCI的波束。
  8. 如权利要求7所述的方法,其特征在于,所述第一信息包括所述第一DCI调度的第一PDSCH。
  9. 如权利要求1-8中任一项所述的方法,其特征在于,所述通信设备根据所述第一波束的指示信息接收第二DCI,包括:
    所述通信设备在接收到所述第一DCI之后的预设时间段内,根据所述第一波束的指示信息接收所述第二DCI。
  10. 如权利要求9所述的方法,其特征在于,还包括:
    在预设时间段之外,所述通信设备根据第二预设波束接收所述第二DCI。
  11. 如权利要求1-10中任一项所述的方法,其特征在于,所述第一DCI为主DCI,所述第二DCI为辅DCI,其中,所述辅DCI仅包括部分所述主DCI包含的指示域;或者
    所述第一DCI为公共DCI,所述第二DCI为专属DCI,其中,所述公共DCI包括公共指示域,所述专属DCI包括专属指示域;所述公共DCI和所述专属DCI相结合用于所述通信设备完成调度。
  12. 如权利要求1-11中任一项所述的方法,其特征在于,所述第一DCI为第一网络设备发送的,所述第二DCI为第二网络设备发送的。
  13. 如权利要求1-12中任一项所述的方法,其特征在于,在所述通信设备在根据所述第一波束的指示信息接收第二DCI之前,还包括:
    所述通信设备将所述通信设备的能力信息发送给所述网络设备,所述能力信息用于指示所述通信设备是否支持根据所述第一DCI中的指示信息确定接收第二DCI的波束。
  14. 一种控制信道波束指示方法,其特征在于,包括:
    网络设备向通信设备发送第一下行控制信息DCI,所述第一DCI中包括用于指示第一波束的指示信息;
    所述网络设备根据所述第一波束发送第二DCI。
  15. 如权利要求14所述的方法,其特征在于,还包括:
    所述网络设备发送第一波束集合的指示信息,所述第一波束的指示信息用于指示所述第一波束集合中的一个波束。
  16. 如权利要求15所述的方法,其特征在于,所述第一波束集合的指示信息用于指示接收所述第一DCI的波束集合;或者
    所述第一波束集合的指示信息用于指示接收所述第二DCI的波束集合;或者
    所述第一波束集合的指示信息用于指示接收第一物理下行共享信道PDSCH的波束集合,所述第一PDSCH为所述第一DCI调度的PDSCH;或者
    所述第一波束集合的指示信息用于指示接收第二PDSCH的波束集合,所述第二PDSCH为所述第二DCI调度的PDSCH。
  17. 如权利要求15或16所述的方法,其特征在于,所述第一波束集合的指示信息是通过介质访问控制层控制元素MAC CE信令或者无线资源控制RRC信令发送给所述通信设备的。
  18. 如权利要求15所述的方法,其特征在于,所述第一波束集合的指示信息用于指示接收所述第一DCI的波束集合,且所述第一波束集合的指示信息是通过介质访问控制层控制元素MAC CE信令发送给所述通信设备时,所述方法还包括:
    所述网络设备根据第一预设波束发送所述第一DCI。
  19. 如权利要求18所述的方法,其特征在于,所述第一预设波束为所述第一波束集合中的满足预设规则的波束。
  20. 如权利要求14-19中任一项所述的方法,其特征在于,所述第一波束的指示信息通过所述第一DCI中的第一指示域指示,所述第一指示域仅用于指示接收所述第二DCI的波束;或者
    所述第一波束的指示信息通过所述第一DCI中的第二指示域指示,所述第二指示域用于指示接收第一信息的波束和/或用于指示接收所述第二DCI的波束。
  21. 如权利要求20所述的方法,其特征在于,所述第一信息包括所述第一DCI调度的第一PDSCH。
  22. 如权利要求14-21中任一项所述的方法,其特征在于,所述网络设备根据所述第 一波束发送第二DCI,包括:
    所述网络设备在发送所述第一DCI之后的预设时间段内,根据第一波束发送所述第二DCI。
  23. 如权利要求22所述的方法,其特征在于,还包括:
    在预设时间段之外,所述网络设备根据第二预设波束发送所述第二DCI。
  24. 如权利要求14-23中任一项所述的方法,其特征在于,所述第一DCI为主DCI,所述第二DCI为辅DCI,其中,所述辅DCI仅包括部分所述主DCI包含的指示域;或者
    所述第一DCI为公共DCI,所述第二DCI为专属DCI,其中,所述公共DCI包括公共指示域,所述专属DCI包括专属指示域;所述公共DCI和所述专属DCI相结合用于所述通信设备完成调度。
  25. 如权利要求14-24中任一项所述的方法,其特征在于,所述网络设备包括第一网络设备和第二网络设备;
    所述网络设备向通信设备发送第一DCI,包括:
    所述第一网络设备向通信设备发送第一DCI;
    所述网络设备根据所述第一波束发送第二DCI,包括:
    所述第二网络设备根据所述第一波束发送第二DCI。
  26. 如权利要求14-25中任一项所述的方法,其特征在于,在所述网络设备根据所述第一波束发送第二DCI之前,还包括:
    所述网络设备接收所述通信设备发送的能力信息,所述能力信息用于指示所述通信设备支持根据所述第一DCI中的指示信息确定接收第二DCI的波束。
  27. 一种通信设备,其特征在于,包括:收发器和处理器;
    所述处理器,用于通过所述收发器接收网络设备发送的第一下行控制信息DCI,所述第一DCI中包括用于指示第一波束的指示信息;根据所述第一波束的指示信息,通过所述收发器接收第二DCI。
  28. 如权利要求27所述的设备,其特征在于,所述处理器还用于:通过所述收发器接收第一波束集合的指示信息,所述第一波束的指示信息用于指示所述第一波束集合中的一个波束。
  29. 如权利要求28所述的设备,其特征在于,所述第一波束集合的指示信息用于指示接收所述第一DCI的波束集合,且所述第一波束集合的指示信息是通过MAC CE信令发送给所述通信设备时,所述处理器还用于:根据第一预设波束,通过所述收发器接收所述第一DCI。
  30. 如权利要求27-29中任一项所述的设备,其特征在于,所述处理器具体用于:
    在通过所述收发器接收到所述第一DCI之后的预设时间段内,根据所述第一波束的指示信息通过所述收发器接收所述第二DCI。
  31. 如权利要求30所述的设备,其特征在于,所述处理器还用于:在预设时间段之外,根据第二预设波束通过所述收发器接收所述第二DCI。
  32. 如权利要求27-31中任一项所述的设备,其特征在于,所述处理器还用于:
    在根据所述第一波束的指示信息通过所述收发器接收第二DCI之前,通过所述收发器将所述通信设备的能力信息发送给所述网络设备,所述能力信息用于指示所述通信设备是否支持根据所述第一DCI中的指示信息确定接收第二DCI的波束。
  33. 一种网络设备,其特征在于,包括:收发器和处理器;
    所述处理器,用于通过所述收发器向通信设备发送第一下行控制信息DCI,所述第一DCI中包括用于指示第一波束的指示信息;通过所述收发器根据所述第一波束发送第二DCI。
  34. 如权利要求33所述的设备,其特征在于,所述处理器还用于:通过所述收发器发送第一波束集合的指示信息,所述第一波束的指示信息用于指示所述第一波束集合中的一个波束。
  35. 如权利要求34所述的设备,其特征在于,所述第一波束集合的指示信息用于指示接收所述第一DCI的波束集合,且所述第一波束集合的指示信息是通过介质访问控制层控制元素MAC CE信令发送给所述通信设备时,所述处理器还用于:通过所述收发器根据第一预设波束发送所述第一DCI。
  36. 如权利要求33-35中任一项所述的设备,其特征在于,所述处理器具体用于:
    在通过所述收发器发送所述第一DCI之后的预设时间段内,根据第一波束通过所述收发器发送所述第二DCI。
  37. 如权利要求36所述的设备,其特征在于,所述处理器还用于:
    通过所述收发器在预设时间段之外,根据第二预设波束发送所述第二DCI。
  38. 如权利要求33-37中任一项所述的设备,其特征在于,所述处理器还用于:
    在通过所述收发器根据所述第一波束发送第二DCI之前,通过所述收发器接收所述通信设备发送的能力信息,所述能力信息用于指示所述通信设备支持根据所述第一DCI中的指示信息确定接收第二DCI的波束。
  39. 如权利要求28或34所述的设备,其特征在于,所述第一波束集合的指示信息用于指示接收所述第一DCI的波束集合;或者
    所述第一波束集合的指示信息用于指示接收所述第二DCI的波束集合;或者
    所述第一波束集合的指示信息用于指示接收第一物理下行共享信道PDSCH的波束集合,所述第一PDSCH为所述第一DCI调度的PDSCH;或者
    所述第一波束集合的指示信息用于指示接收第二PDSCH的波束集合,所述第二PDSCH为所述第二DCI调度的PDSCH。
  40. 如权利要求28、34或39所述的设备,其特征在于,所述第一波束集合的指示信息是通过介质访问控制层控制元素MAC CE信令或者无线资源控制RRC信令发送给所述通信设备的。
  41. 如权利要求29或35所述的设备,其特征在于,所述第一预设波束为所述第一波束集合中的满足预设规则的波束。
  42. 如权利要求27-29、33-35、39-41中任一项所述的设备,其特征在于,所述第一波束的指示信息通过所述第一DCI中的第一指示域指示,所述第一指示域仅用于指示接收所述第二DCI的波束;或者
    所述第一波束的指示信息通过所述第一DCI中的第二指示域指示,所述第二指示域用于指示接收第一信息的波束和/或用于指示接收所述第二DCI的波束。
  43. 如权利要求42所述的设备,其特征在于,所述第一信息包括所述第一DCI调度的第一PDSCH。
  44. 如权利要求27-31、33-37、39-43中任一项所述的设备,其特征在于,所述第一 DCI为主DCI,所述第二DCI为辅DCI,其中,所述辅DCI仅包括部分所述主DCI包含的指示域;或者
    所述第一DCI为公共DCI,所述第二DCI为专属DCI,其中,所述公共DCI包括公共指示域,所述专属DCI包括专属指示域;所述公共DCI和所述专属DCI相结合用于所述通信设备完成调度。
  45. 如权利要求27-31、33-37、39-44中任一项所述的设备,其特征在于,所述网络设备包括第一网络设备和第二网络设备,所述第一DCI为第一网络设备发送的,所述第二DCI为第二网络设备发送的。
  46. 一种通信系统,其特征在于,包括权利要求27至32任一项所述的设备和权利要求33至45中任一项所述的设备。
  47. 一种计算机可读存储介质,其特征在于,包括指令,当所述指令在计算机上运行时,使得计算机执行权利要求1至13中任一项所述的方法,或使得计算机执行权利要求14至26中任一项所述的方法。
  48. 一种包含指令的计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得计算机执行权利要求1至13中任一项所述的方法,或使得计算机执行权利要求14至26任一项所述的方法。
PCT/CN2019/105199 2018-09-28 2019-09-10 一种控制信道波束指示方法及设备 WO2020063334A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811142529.1 2018-09-28
CN201811142529.1A CN110971361B (zh) 2018-09-28 2018-09-28 一种控制信道波束指示方法及设备

Publications (1)

Publication Number Publication Date
WO2020063334A1 true WO2020063334A1 (zh) 2020-04-02

Family

ID=69953336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105199 WO2020063334A1 (zh) 2018-09-28 2019-09-10 一种控制信道波束指示方法及设备

Country Status (2)

Country Link
CN (1) CN110971361B (zh)
WO (1) WO2020063334A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113840380A (zh) * 2020-06-24 2021-12-24 华为技术有限公司 一种波束指示方法及通信装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4133845A4 (en) * 2020-05-15 2023-06-14 Apple Inc. COMMAND SIGNALING TO IMPROVE THE RELIABILITY OF A PHYSICAL COMMAND CHANNEL
US20230171786A1 (en) * 2020-06-17 2023-06-01 Qualcomm Incorporated Processing of two-stage downlink control information
CN113839755B (zh) * 2020-06-23 2023-04-18 维沃移动通信有限公司 控制信令获取方法、发送方法、装置、终端和网络侧设备
CN114337755A (zh) * 2020-09-30 2022-04-12 维沃移动通信有限公司 波束信息指示、获取方法、装置、终端及网络侧设备
WO2022082386A1 (zh) * 2020-10-19 2022-04-28 华为技术有限公司 一种无线通信的方法与装置
CN113170467B (zh) * 2021-01-04 2023-01-10 北京小米移动软件有限公司 波束指示方法、装置及通信设备
BR112023013326A2 (pt) * 2021-01-04 2023-11-28 Beijing Xiaomi Mobile Software Co Ltd Método para determinar um feixe padrão, equipamento de usuário, dispositivo de rede, e, meio de armazenamento de computador
US20240073703A1 (en) * 2021-01-07 2024-02-29 Beijing Xiaomi Mobile Software Co., Ltd. Beam determination method and apparatus, and communication device
CN113170470B (zh) * 2021-02-25 2023-09-29 北京小米移动软件有限公司 波束确定方法、装置及通信设备
CA3219459A1 (en) * 2021-05-11 2022-11-17 Zte Corporation Systems and methods for hybrid automatic repeat request acknowledgement procedure and transmission configuration indicator application timeline for beam indication
CN115567175A (zh) * 2021-07-02 2023-01-03 华为技术有限公司 通信处理方法和通信处理装置
CN115913475B (zh) * 2021-08-02 2024-05-24 维沃移动通信有限公司 波束信息确定方法、装置、通信设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107820318A (zh) * 2016-09-10 2018-03-20 北京信威通信技术股份有限公司 一种发送信息的方法及装置
CN108174453A (zh) * 2016-12-07 2018-06-15 中兴通讯股份有限公司 下行控制信息的发送、检测方法及装置、基站及终端
CN108365878A (zh) * 2017-01-26 2018-08-03 华为技术有限公司 一种波束切换方法及相关设备
EP3375123A1 (en) * 2015-11-10 2018-09-19 IDAC Holdings, Inc. Transmission schemes and modes and fallback schemes for the access link of systems operating in higher frequency bands

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2793420B1 (en) * 2010-01-07 2019-05-29 Samsung Electronics Co., Ltd User equipment, base station, and method for enhancing features of uplink reference signals
CN103188799B (zh) * 2011-12-29 2018-03-13 中兴通讯股份有限公司 控制信令的发送方法、检测方法、及其装置
CN107071905B (zh) * 2012-06-29 2020-11-03 华为技术有限公司 设备间通信方法、用户设备和基站
AU2013313884B2 (en) * 2012-09-04 2016-10-20 Samsung Electronics Co., Ltd. Adaptating a number of aggregation levels for control channel elements
CN106559196B (zh) * 2015-09-25 2019-10-22 华为技术有限公司 一种导频分配的方法及装置
US11129152B2 (en) * 2016-02-04 2021-09-21 Lg Electronics Inc. Method and user equipment for receiving dowlink control information, and method and base station for transmitting dowlink control information

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3375123A1 (en) * 2015-11-10 2018-09-19 IDAC Holdings, Inc. Transmission schemes and modes and fallback schemes for the access link of systems operating in higher frequency bands
CN107820318A (zh) * 2016-09-10 2018-03-20 北京信威通信技术股份有限公司 一种发送信息的方法及装置
CN108174453A (zh) * 2016-12-07 2018-06-15 中兴通讯股份有限公司 下行控制信息的发送、检测方法及装置、基站及终端
CN108365878A (zh) * 2017-01-26 2018-08-03 华为技术有限公司 一种波束切换方法及相关设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "Email discussion [86b-23] on multi-steps DL control channel design", 3GPP TSG RAN WG1 MEETING #87, RL-1611656, 18 November 2016 (2016-11-18), XP051176989 *
ZTE: "Discussion on DL beam management", 3GPP TSG RAN WG1 NR AD-HOC#2, RL-1710183, 7 July 2017 (2017-07-07), XP051299407 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113840380A (zh) * 2020-06-24 2021-12-24 华为技术有限公司 一种波束指示方法及通信装置

Also Published As

Publication number Publication date
CN110971361A (zh) 2020-04-07
CN110971361B (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
WO2020063334A1 (zh) 一种控制信道波束指示方法及设备
US10931387B2 (en) Method and apparatus for handling radio link failure in system using multiple reference signals
US11329779B2 (en) Information transmission method and device
CN112567776B (zh) 用于与多天线面板装置进行通信的系统和方法
RU2749350C2 (ru) Способ измерения помех и сопутствующее устройство
US11159347B2 (en) Method for transmitting and receiving signal by means of beam in wireless communication system, and apparatus for said method
CN110226293B (zh) 无线通信的方法、装置和非暂时性计算机可读介质
US10644777B2 (en) Channel state information reference signal (CSI-RS) for layer-3 (L3) mobility
US11638289B2 (en) Techniques and apparatuses for nesting a new radio system and a long term evolution system
US11153774B2 (en) Signal transmission method and device, and system
CN111314952A (zh) 一种测量上报的方法及装置
CN112087291B (zh) 更新传输配置指示tci信息的方法与通信装置
US11172414B2 (en) Coordinated cell determining method and network device
US11963205B2 (en) Resource management method and apparatus
JP2021533652A (ja) Ue固有のrs多重化のための方法
WO2016002323A1 (ja) 基地局、ユーザ端末、無線通信システム、および通信制御方法
WO2021197019A1 (zh) 一种无时隙测量方法及装置
JP2023524891A (ja) リソース決定方法及び装置
WO2022206581A1 (zh) 一种资源映射的方法和装置
WO2015184872A1 (zh) 一种实现无线接入的方法及系统
CN115866660A (zh) 相邻小区上的上行链路波束训练
CN117459985A (zh) 波束指示方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19866673

Country of ref document: EP

Kind code of ref document: A1