JP7144420B2 - 端末、無線通信方法及びシステム - Google Patents

端末、無線通信方法及びシステム Download PDF

Info

Publication number
JP7144420B2
JP7144420B2 JP2019535567A JP2019535567A JP7144420B2 JP 7144420 B2 JP7144420 B2 JP 7144420B2 JP 2019535567 A JP2019535567 A JP 2019535567A JP 2019535567 A JP2019535567 A JP 2019535567A JP 7144420 B2 JP7144420 B2 JP 7144420B2
Authority
JP
Japan
Prior art keywords
level
csi
cell
received power
resource
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019535567A
Other languages
English (en)
Other versions
JPWO2019030928A1 (ja
Inventor
浩樹 原田
聡 永田
ジン ワン
リュー リュー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Publication of JPWO2019030928A1 publication Critical patent/JPWO2019030928A1/ja
Application granted granted Critical
Publication of JP7144420B2 publication Critical patent/JP7144420B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • H04B17/327Received signal code power [RSCP]

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

本発明は、次世代移動通信システムにおける端無線通信方法及びシステムに関する。
UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(LTE Rel.8又は9ともいう)からの更なる広帯域化及び高速化を目的として、LTE-A(LTEアドバンスト、LTE Rel.10、11又は12ともいう)が仕様化され、LTEの後継システム(例えば、FRA(Future Radio Access)、5G(5th generation mobile communication system)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、LTE Rel.13、14又は15以降などともいう)も検討されている。
LTE Rel.10/11では、広帯域化を図るために、複数のコンポーネントキャリア(CC:Component Carrier)を統合するキャリアアグリゲーション(CA:Carrier Aggregation)が導入されている。各CCは、LTE Rel.8のシステム帯域を一単位として構成される。また、CAでは、同一の基地局(例えば、eNB(evolved Node B)、BS(Base Station)などと呼ばれる)の複数のCCがユーザ端末(UE:User Equipment)に設定される。
一方、LTE Rel.12では、異なる無線基地局の複数のセルグループ(CG:Cell Group)がUEに設定されるデュアルコネクティビティ(DC:Dual Connectivity)も導入されている。各セルグループは、少なくとも一つのセル(CC)で構成される。DCでは、異なる無線基地局の複数のCCが統合されるため、DCは、基地局間CA(Inter-eNB CA)などとも呼ばれる。
また、LTE Rel.8-12では、下り(DL:Downlink)伝送と上り(UL:Uplink)伝送とを異なる周波数帯で行う周波数分割複信(FDD:Frequency Division Duplex)と、下り伝送と上り伝送とを同じ周波数帯で時間的に切り替えて行う時分割複信(TDD:Time Division Duplex)とが導入されている。
将来の無線通信システム(例えば、5G、NR)は、様々な無線通信サービスを、それぞれ異なる要求条件(例えば、超高速、大容量、超低遅延など)を満たすように実現することが期待されている。
例えば、5G/NRでは、eMBB(enhanced Mobile Broad Band)、mMTC(massive Machine Type Communication)、URLLC(Ultra Reliable and Low Latency Communications)などと呼ばれる無線通信サービスの提供が検討されている。
また、LTEでは、UEが受信品質を測定し報告することが規定されている。しかしながら、NRでは、どのように受信品質を測定するかがまだ決まっていない。受信信号が適切に測定されない場合、通信スループットが劣化するおそれがある。
本発明はかかる点に鑑みてなされたものであり、受信品質を適切に測定できる端無線通信方法及びシステムを提供することを目的の1つとする。
本発明の一態様に係る端末は、複数の各ビームに対し、ビーム毎のチャネル状態情報参照信号(CSI-RS)リソースにおける第1受信電力を測定し、ビーム毎の前記CSI-RSリソースにおける第2受信電力を測定する受信部と、複数の各ビームに対し、前記ビーム毎に、前記第1受信電力及び前記第2受信電力の比に基づくそれぞれの測定結果を導出する制御部と、を有し、前記制御部は、前記ビーム毎の前記測定結果を導出することによって複数の測定結果を導出し、前記複数の測定結果のうち、閾値を上回る上位の値の平均として、セルの測定の結果を導出し、前記平均に用いられる値の数は、ある数を超えないことを特徴とする
本発明によれば、受信品質を適切に測定できる。
SSブロックの概念説明図である。 図2A及び図2Bは、SSブロックに基づくRSSI測定の一例を示す図である。 図3A-図3Dは、複数のビームにそれぞれ対応する複数のCSI-RSリソース構成がTDMされる場合のビームレベルRSSIの測定リソースの一例を示す図である。 図4A-図4Dは、複数のビームにそれぞれ対応する複数のCSI-RSリソース構成がFDMされる場合のビームレベルRSSIの測定リソースの一例を示す図である。 RSRP測定とUE受信ビームの関係についての想定aの一例を示す図である。 態様1-1~態様1-3の関係の一例を示す図である。 図7A-図7Eは、複数のビームにそれぞれ対応する複数のCSI-RSリソース構成がTDMされる場合のセルレベルRSSIの測定リソースの一例を示す図である。 図8A-図8Cは、複数のビームにそれぞれ対応する複数のCSI-RSリソース構成がTDM及びFDMされる場合のセルレベルRSSIの測定リソースの一例を示す図である。 態様2-1~態様2-4の関係の一例を示す図である。 図10A-図10Cは、第1の実施形態及び第2の実施形態の関係の一例を示す図である。 本発明の一実施形態に係る無線通信システムの概略構成の一例を示す図である。 本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。 本発明の一実施形態に係る無線基地局の機能構成の一例を示す図である。 本発明の一実施形態に係るユーザ端末の全体構成の一例を示す図である。 本発明の一実施形態に係るユーザ端末の機能構成の一例を示す図である。 本発明の一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。
既存のLTEにおいては、UEは接続中のサービングキャリアの測定を行う同周波測定(Intra-frequency measurement)、サービングキャリアと異なる非サービングキャリアの測定を行う異周波測定(Inter-frequency measurement)をサポートする。同周波測定及び異周波測定では、対象のキャリアの参照信号受信電力(RSRP:Reference Signal Received Power)、受信信号強度(RSSI:Received Signal Strength Indicator)及び参照信号受信品質(RSRQ:Reference Signal Received Quality)の少なくとも一つが測定される。
RSRPは、所定の周波数帯域幅内のCRS(Cell-specific Reference Signal)を運ぶリソースエレメントの電力寄与[W]にわたる線形平均(リソースエレメント当たりの電力)として定義される。上位レイヤがディスカバリ信号に基づく測定を指示する場合、UEは、設定されたディスカバリ信号機会内のサブフレームにおいてRSRPを測定する。RSRPのための参照点は、UEのアンテナコネクタである。
RSRQは、N×RSRP/RSSIとして定義される。ここでNはRSSI測定帯域幅のRB(resource block)数である。分子(RSRP)及び分母(RSSI)の測定はリソースブロックの同じセットにわたって行われる。
RSSIは、チャネル間のサービングセル及び非サービングセル、隣接チャネル干渉、熱雑音等を含む、全ての信号源から、UEによりN個のRBにわたる測定帯域幅内の測定サブフレームの或るOFDMシンボルにおいてだけ観測される送受信電力[W]の線形平均である。
上位レイヤにより他のリソースが指示されない限り、RSSIは、測定サブフレームのアンテナポート0に対する参照シンボルを含むOFDMからのみ測定される。上位レイヤがRSRQ測定の実行に対して全てのOFDMシンボルを指示する場合、RSSIは、測定サブフレームのDL部分の全てのOFDMシンボルから測定される。上位レイヤがRSRQ測定の実行に対して或るサブフレームを指示する場合、RSSIは、指示されたサブフレームのDL部分の全てのOFDMシンボルから測定される。
上位レイヤがディスカバリ信号に基づく測定を指示する場合、UEは、設定されたディスカバリ信号機会内のサブフレームにおいてRSSIを測定する。
RSRQのための参照点は、UEのアンテナコネクタである。
また、CSI(Channel State Information)-RS(Reference Signal)を用いるRSRP(CSI-RSRP:CSI-Reference Signal Received Power)が定義されている。CSI-RSRPは、ディスカバリ信号機会内のサブフレーム内の測定周波数帯域幅内のディスカバリ信号測定のために設定されたCSI-RSを運ぶリソースエレメントの電力寄与[W]にわたる線形平均として定義される。CSI-RSRQのための参照点は、UEのアンテナコネクタである。
接続モード(接続状態、RRC_CONNECTED)のUEは、RS-SINR(Reference Signal-Signal to Noise and Interference Ratio)を測定してもよい。RS-SINRは、CRSを運ぶリソースエレメントの電力寄与[W]にわたる線形平均が、同じ周波数帯域幅内のCRSを運ぶリソースエレメントにわたる雑音及び干渉の電力寄与[W]の線形平均によって除された値として定義される。RS-SINRのための参照点は、UEのアンテナコネクタである。なお、RS-SINRを、単にSINRと呼ぶことがある。
また、LAA(License-Assisted Access)のためのRMTC(RSSI Measurement Timing Configuration)が定義されている。UEは、受信されたパラメータに従ってRMTCを設定する。パラメータは、周期、サブフレームオフセット、測定時間を含む。RMTCによれば、RSSIの測定報告のために、RSRQのためのRSSIの設定に比べて柔軟にリソースを設定できる。
ところで、将来の無線通信システム(例えば、LTE Rel.14、15以降、5G、NRなど。以下、NRともいう)においては、同期信号及びブロードキャストチャネルを含むリソースユニットをSSブロック(Synchronization Signal Block、同期信号ブロック、SS/PBCH(Physical Broadcast Channel)ブロック)と定義し、SSブロックに基づいて初期接続を行うことが検討されている。
図1は、SSブロックの概念説明図である。SSブロックは、既存のLTEシステムのPSS(Primary Synchronization Signal)、SSS(Secondary Synchronization Signal)及びPBCHと同様の用途に用いることができるNR用のPSS(NR-PSS)、NR用のSSS(NR-SSS)及びNR用のPBCH(NR-PBCH)を少なくとも含んでいる。よって、SSブロックは、SS/PBCHブロックと呼ばれてもよい。なお、PSS及びSSSと異なる同期信号(TSS:Tertiary SS)がSSブロックに含まれてもよい。
NR-PBCHは、ブロードキャスト情報と、ブロードキャスト情報の復調のためのDMRS(Demodulation Reference Signal、PBCH用DMRS)とを含んでもよい。
SSブロックの長さは、例えば複数のOFDMシンボルである。本例では、1シンボルのPSSと、1シンボルのSSSと、2シンボルのPBCHとが、時分割多重(TDM:Time Division Multiplexing)される。PSSとSSS、又はPSSとPBCHは、時分割多重(TDM:Time Division Multiplexing)されてもよいし、周波数分割多重(FDM:Frequency Division Multiplexing)されてもよい。
1つ又は複数のSSブロックの集合は、SSバーストと呼ばれてもよい。本例では、SSバーストは時間的に連続する複数のSSブロックから構成されるが、これに限られない。例えば、SSバーストは、周波数及び/又は時間リソースが連続するSSブロックで構成されてもよいし、周波数及び/又は時間リソースが非連続のSSブロックで構成されてもよい。
SSバーストは、所定の周期(SSバースト周期と呼ばれてもよい)ごとに送信されることが好ましい。あるいは、SSバーストは、周期ごとに送信しなくても(非周期で送信しても)よい。SSバースト長及び/又はSSバースト周期は、1つ又は複数のサブフレーム、1つ又は複数のスロットなどの期間で送信されてもよい。
SSバーストは、複数のSSブロックを含んでもよい。
また、1つ又は複数のSSバーストは、SSバーストセット(SSバーストシリーズ)と呼ばれてもよい。例えば、基地局(BS(Base Station)、送受信ポイント(TRP:Transmission/Reception Point)、eNB(eNodeB)、gNBなどと呼ばれてもよい)及び/又はUEは、1つのSSバーストセットに含まれる1つ以上のSSバーストを用いて、複数のSSブロックをビームスイーピング(beam sweeping)して送信してもよい。
なお、SSバーストセットは周期的に送信されることが好ましい。UEは、SSバーストセットが周期的に(SSバーストセット周期で)送信されると想定して受信処理を制御してもよい。SSバーストセット周期は、デフォルト値(例えば、20ms)であってもよいし、NW(ネットワーク、例えば基地局)から上位レイヤシグナリングを介して通知されてもよい。
NRにおいては、セルが複数のビームによって構成されるシナリオ(マルチビームシナリオ)が検討されている。なお、「ビーム」は、「リソース」、「空間リソース」、「アンテナポート」などで読み替えられてもよい。異なるSSブロック又はCSI-RSリソース構成が異なる基地局送信ビーム(送信ビーム)を用いて送信されてもよい。異なるSSブロックが異なるSSブロックインデックス又はビームインデックスを示す情報を含んでいてもよい。
また、マルチビームシナリオにおいて、UEは、適切な基地局送信ビーム(又は基地局送信ビーム及びUE受信ビームの組み合わせ)の選択のためにビームレベル(基地局送信ビーム毎)の受信品質の測定報告を行うことが考えられる。また、マルチビームシナリオにおいて、UEは、適切なセル選択のためにセルレベル(セル毎)の受信品質を測定して測定報告を行うことが考えられる。
また、NRにおいては、CSI-RSに基づくRSRPとして、ビーム(CSI-RS構成)毎のRSRP(ビームレベルRSRP、CSI-RS RSRP)と、セル毎のRSRP(セルレベルRSRP、セル品質)と、が検討されている。SSブロックRSRPは、SSS、又はSSS及びPBCH用DMRSから測定される。CSI-RS RSRPは、接続モードにおいてCSI-RSから測定される。
セルレベルRSRPは、上位N個のビームから導出されてもよい。ここでNは上位レイヤシグナリングにより1以上に設定されてもよい。ビーム数が1より多い場合、複数のビームからセルレベルRSRPを導出するために平均化が用いられてもよい。
RRM(Radio Resource Management)目的のために設定されたCSI-RSは、セルレベル品質を導出するために用いられてもよい。
RRM測定のために、無線基地局からのCSI-RS構成情報(CSI-RSリソース構成情報)により、送信ビーム毎のCSI-RSリソース構成がUEに設定されてもよい。各CSI-RSリソース構成は、1つ以上のCSI-RSのための時間リソース及び/又は周波数リソース(CSI-RS RE(Resource Element))を示していてもよい。CSI-RS構成情報は、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング)を用いて通知されてもよいし、ブロードキャスト情報(例えば、SIB(System Information Block))を用いて通知されてもよいし、上位レイヤシグナリング及びブロードキャスト情報の組み合わせを用いて通知されてもよい。
SSブロックに基づいて受信強度(RSSI、又はSINRのための雑音及び干渉)を測定する場合、他のセル内のデータトラフィックに基づく実際の干渉の影響を反映しないことがあると考えられる。
例えば、同期ネットワークにおいて、異なるセルからのSSブロック送信は衝突する。SSブロックのシンボル及びSSブロックの帯域幅に基づくビームレベルRSSI測定は、実際の干渉を反映しないことがある。
例えば、図2Aに示すように、SSブロック内にRSSI測定のためのリソースが設定され、図2Bに示すように、セルAのSSブロック1内の測定リソースにおいてセルB、CにおいてもSSブロック送信が行われる場合、測定される干渉(受信強度)は、他のセル内のデータトラフィックによらず、ほとんど変わらない。
そこで、本発明者らは、CSI-RSに基づく受信品質(例えば、RSRQ又はRS-SINR)を導出する方法を検討し、本発明に至った。
具体的には、他のセル内のデータトラフィックに基づく実際の干渉の影響を反映するための、CSI-RSに基づく受信品質を定義する。ビームレベル受信品質とセルレベル受信品質の両方が考慮される。
また、CSI-RSに基づくビームレベルRSSI(又はSINRのための雑音及び干渉)を、どのように測定するかを定義する。また、ビームレベルRSSI(又はSINRのための雑音及び干渉)に基づくビームレベルRSRQ(又はSINR)を、どのように導出するかを定義する。また、ビームレベルRSRQ(又はSINR)に基づくセルレベルRSRQ(又はSINR)を、どのように導出するかを定義する。
また、CSI-RSに基づくセルレベルRSSI(又はSINRのための雑音及び干渉)を、どのように測定又は導出するかを定義する。また、セルレベルRSSI(又はSINRのための雑音及び干渉)に基づくセルレベルRSRQ(又はSINR)を、どのように導出するかを定義する。
以下において、受信強度はRSSIであってもよく、受信品質はRSRQであってもよい。この場合、ビームレベル受信強度はビームレベルRSSIであってもよく、ビームレベル受信品質はビームレベルRSRQであってもよく、セルレベル受信強度はセルレベルRSSIであってもよく、セルレベル受信品質はセルレベルRSRQであってもよい。
以下において、受信強度はSINRのための雑音及び干渉(noise plus interference)であってもよく、受信品質はSINRであってもよい。この場合、ビームレベル受信強度はビームレベルの雑音及び干渉であってもよく、ビームレベル受信品質はビームレベルSINRであってもよく、セルレベル受信強度はセルレベルの雑音及び干渉であってもよく、セルレベル受信品質はセルレベルSINRであってもよい。
また、RSSIは、SINRのための雑音及び干渉と読み替えられてもよい。RSRQは、SINRと読み替えられてもよい。また、基地局送信ビーム毎の結果は、CSI-RSリソース構成毎の結果と読み替えられてもよい。
以下、受信強度又は受信品質の測定が、受信強度又は受信品質の導出を含むことがある。また、受信強度又は受信品質を得るために他の結果からの導出を行わない場合、受信強度又は受信品質を直接測定する、ということがある。
(無線通信方法)
<第1の実施形態>
本発明の第1の実施形態において、UEは、CSI-RSに基づいてビームレベル受信強度(ビームレベルRSSI、又はビームレベルの雑音及び干渉)を測定する。
以下の態様1-1及び態様1-2においては、ビームレベル受信強度測定のためのリソース(測定リソース)の決定方法について説明する。
《態様1-1》
ビームレベル受信強度測定は、CSI-RS構成情報に基づいて行われてもよい。
ビームレベル受信強度測定のためのOFDMシンボル(時間リソース)は、対応するCSI-RS RE(リソースエレメント)を含んでもよいし、対応するCSI-RS REの一部を含んでもよい。
ビームレベル受信強度の測定帯域幅(周波数リソース)が、対応するCSI-RSリソースに対して通知されてもよい。
RRM測定のためのCSI-RS構成情報に対して、測定リソースのための時間リソース及び/又は周波数リソースを示す情報は、CSI-RS構成情報に含まれてもよいし、別のRRCシグナリングにより通知されてもよい。
図3は、複数のビームにそれぞれ対応する複数のCSI-RSリソース構成がTDMされる場合のビームレベルRSSIの測定リソースの一例を示す図である。異なるシンボル又はスロット内のCSI-RSにおいて複数の異なるビームが送信される。
図3Aに示す例では、ビーム1を用いるCSI-RSリソース構成1と、ビーム2を用いるCSI-RSリソース構成2と、がTDMされている。CSI-RSリソース構成1及び2のそれぞれにおけるCSI-RSの周波数リソースは分散している(離散的である)。
図3AのCSI-RSリソース構成1及び2が設定された場合、図3Bに示すように、CSI-RSリソース構成1(ビーム1)及びCSI-RSリソース構成2(ビーム2)のそれぞれに対応するRSSIの測定リソースは、対応するシンボルにおいて、対応するCSI-RS REを含み且つ測定帯域幅全体の周波数リソースであってもよい。
図3AのCSI-RSリソース構成1及び2が設定された場合、図3Cに示すように、CSI-RSリソース構成1及び2のそれぞれに対応するRSSIの測定リソースとして、対応するシンボルにおいて測定帯域幅内の一部の周波数リソース(例えば、対応するCSI-RS RE)が設定されてもよい。
図3AのCSI-RSリソース構成1及び2が設定された場合、図3Dに示すように、CSI-RSリソース構成1及び2のそれぞれに対応するRSSIの測定リソースは、対応するシンボル且つ測定帯域幅全体のうち、CSI-RS REを含まないREであってもよい。
図4は、複数のビームにそれぞれ対応する複数のCSI-RSリソース構成がFDMされる場合のビームレベルRSSIの測定リソースの一例を示す図である。異なるPRB内のCSI-RSにおいて複数の異なる送信ビームが送信される。
図4Aに示す例では、ビーム1を用いるCSI-RSリソース構成1と、ビーム2を用いるCSI-RSリソース構成2と、がFDMされている。CSI-RSリソース構成1及び2のそれぞれにおけるCSI-RSの周波数リソースは分散している(離散的である)。
図4AのCSI-RSリソース構成1及び2が設定された場合、図4Bに示すように、CSI-RSリソース構成1及び2のそれぞれに対応するRSSIの測定リソースは、対応するCSI-RS REを含み且つ対応する測定帯域幅内の連続する周波数リソースであってもよい。
図4AのCSI-RSリソース構成1及び2が設定された場合、図4Cに示すように、CSI-RSリソース構成1及び2のそれぞれに対応するRSSIの測定リソースとして、測定帯域幅内の一部の周波数リソース(例えば、CSI-RS RE)が設定されてもよい。
図4AのCSI-RSリソース構成1及び2が設定された場合、図4Dに示すように、CSI-RSリソース構成1及び2のそれぞれに対応するRSSIの測定リソースは、対応するシンボル且つ対応する測定帯域幅のうち、CSI-RS REを含まないREであってもよい。
以上の態様1-1によれば、UEは、CSI-RSに基づくビームレベルRSSI又は、ビームレベルの雑音及び干渉を測定できる。また、CSI-RSを用いることにより、他のセル内のデータトラフィックに基づく実際の干渉の影響を反映するビームレベル受信強度を測定できる。
《態様1-2》
UEは、ビームレベルRSRQ及びビームレベル受信強度に基づいて、ビームレベル受信品質を導出してもよい。
RSRQは、各CSI-RSに対し、RSRPとRSSIから、LTEと同様の式により求められてもよい(例えば、RSRQ=N×RSRP/RSSI)。
ビームレベルRSRQは、この式を用いて、測定されたビームレベルRSRPと、測定されたビームレベルRSSIと、により導出されてもよい。
SINRは、各CSI-RSに対し、RSRPと雑音及び干渉とから、LTEと同様の式により求められてもよい(例えば、SINR=RSRP/(noise plus interference))。
ビームレベルSINRは、この式を用いて、測定されたビームレベルRSRPと、測定されたビームレベルの雑音及び干渉と、により導出されてもよい。
以上の態様1-2によれば、UEは、CSI-RSに基づいて、正確なビームレベルRSRQ又はビームレベルSINRを導出できる。
《態様1-3》
UEは、ビームレベル受信品質に基づいて、セルレベル受信品質を導出してもよい。
セルレベル受信品質は、少なくとも1つのビームレベル受信品質の結合として導出される。ここでは、ビームレベル受信品質をビームレベル結果と呼び、セルレベル受信品質をセルレベル結果と呼ぶ。
結合のために選択されるビームレベル結果は、例えば、全てのビームレベル結果であってもよいし、上位N個のビームレベル結果であってもよいし、絶対値の閾値を超えるビームレベル結果のうち最も高いビームレベル結果であってもよいし、最も高いビームレベル結果に対する相対的な閾値の範囲内のビームレベル結果のうち最も高いビームレベル結果であってもよいし、絶対値の閾値を超えるビームレベル結果のうち上位の多くともN個のビームレベル結果であってもよいし、最も高いビームレベル結果に対する相対的な閾値の範囲内のビームレベル結果のうち上位の多くともN個のビームレベル結果であってもよい。
選択されたビームレベル結果の結合方法は、選択されたビームレベル結果の平均であってもよいし、選択されたビームレベル結果の重み付け平均であってもよい。
以上の態様1-3によれば、UEは、ビームレベルRSRQからセルレベルRSRQを導出することができる。また、UEは、ビームレベルSINRからセルレベルSINRを導出することができる。
《態様1-4》
UEは、UE受信ビーム(受信ビーム)を用いてビームレベル受信強度を測定してもよい。
RSRP測定のためのUE受信ビームについて、次の想定a又は想定bを用いることができる。
想定aにおいて、ビームレベルRSRPは、ビームペアリンクから得られる最も高いRSRPであってもよい。ビームペアリンクは、例えば、基地局送信ビームとUE受信ビームとの組み合わせである。図5に示すように、UEは、同じCSI-RSリソース構成(同じ送信ビーム)において複数のUE受信ビームを用いてRSRP測定を行い、当該CSI-RSリソース構成に対する最も高いRSRPを決定する。この図の例において、UEは、CSI-RSリソース構成1~4のうち、CSI-RSリソース構成1において受信ビーム1~4を用いてRSRPを測定し、受信ビーム3に対応するRSRPが最も高いため、このRSRPをCSI-RSリソース構成1に対するビームレベルRSRPと見なす。
想定bにおいて、UEは、UEの実装に基づいて、RSRP測定のためのUE受信ビームを決定する。例えば、UEは、ランダムに受信ビームを決定してもよいし、幾つかの受信ビームを用いて測定されるRSRPの平均をビームレベルRSRPと見なしてもよい。RSRP測定のためのUE受信ビームは、最も高いRSRPに対応するUE受信ビームとは限らない。
UEは、次の選択肢a又はbを用いて、ビームレベル受信強度測定のためのUE受信ビームを決定してもよい。
選択肢aは、想定aのビームレベルRSRP測定を行う場合のビームレベル受信強度測定である。UEは、或るCSI-RSリソース構成に対する最も高いRSRPの測定に用いられた受信ビームを用いて、当該CSI-RSリソース構成に対するビームレベル受信強度を測定する。
選択肢bは、想定bのビームレベルRSRP測定を行う場合のビームレベル受信強度測定である。UEは、想定bと同様にビームレベル受信強度測定に用いる受信ビームを決定する。例えば、UEは、ランダムに受信ビームを決定してもよいし、幾つかの受信ビームを用いて測定される受信強度の平均をビームレベル受信強度と見なしてもよい。ビームレベル受信強度に用いられる受信ビームは、ビームレベルRSRPに用いられる受信ビームと同じであってもよい。
以上の態様1-4によれば、UEが複数の受信ビームを用いる場合であっても、ビームレベルRSRP測定に用いる受信ビームと、ビームレベル受信強度測定に用いる受信ビームと、を整合させ、測定の精度を高めることができる。或るCSI-RSリソース構成に対して或る受信ビームのRSRPが最も高く、別のCSI-RSリソース構成に対して別の受信ビームのRSRPが最も高い場合、受信ビームを異なることにより干渉も異なる。また、或る送信ビームに対応するリソースにおいて測定される干渉と、別の送信ビームに対応するリソースにおいて測定される干渉は異なる。
《態様1-1~態様1-3の関係》
図6は、態様1-1~態様1-3の関係の一例を示す図である。
態様1-1によれば、UEは、各CSI-RSリソース構成に基づいてビームレベル受信強度を測定する。
態様1-2によれば、UEは、ビームレベルRSRPとビームレベル受信強度に基づいて、ビームレベル受信品質を導出する。
態様1-3によれば、UEは、1以上のビームレベル受信品質に基づいて、セルレベル受信品質を導出する。
<第2の実施形態>
本発明の第2の実施形態において、UEは、セルレベルRSRP又はセルレベル受信強度(セルレベルRSSI、又はセルレベルの雑音及び干渉)を導出又は測定する。
《態様2-1》
UEは、ビームレベル受信強度に基づいて、セルレベル受信強度を導出してもよい。
UEは、態様1-1又は態様1-2から得られる幾つかのビームレベル受信強度の結合を、セルレベル受信強度として導出してもよい。ここでは、ビームレベル受信強度をビームレベル結果と呼び、セルレベル受信強度をセルレベル結果と呼ぶ。
結合のために選択されるビームレベル結果は、例えば、全てのビームレベル結果であってもよいし、上位N個のビームレベル結果であってもよいし、絶対値の閾値を超えるビームレベル結果のうち最も高いビームレベル結果であってもよいし、最も高いビームレベル結果に対する相対的な閾値の範囲内のビームレベル結果のうち最も高いビームレベル結果であってもよいし、絶対値の閾値を超えるビームレベル結果のうち上位の多くともN個のビームレベル結果であってもよいし、最も高いビームレベル結果に対する相対的な閾値の範囲内のビームレベル結果のうち上位の多くともN個のビームレベル結果であってもよい。
選択されたビームレベル結果の結合方法は、選択されたビームレベル結果の平均であってもよいし、選択されたビームレベル結果の重み付け平均であってもよい。
以上の態様2-1によれば、UEは、ビームレベルRSSIからセルレベルRSSIを導出できる。また、UEは、ビームレベルの雑音及び干渉からセルレベルの雑音及び干渉を導出できる。
《態様2-2》
UEは、セルレベル受信強度を測定してもよい。
UEは、RRM測定のためのCSI-RS構成情報に基づいて、CSI-RSに基づくセルレベル受信強度測定を行ってもよい。UEは、更に追加情報に基づいてCSI-RSに基づくセルレベル受信強度測定を行ってもよい。追加情報は、RRCシグナリングにより通知されてもよい。
UEは、次の選択肢a又は選択肢bを用いてCSI-RSに基づくセルレベル受信強度測定を行ってもよい。
選択肢aにおいて、UEは、指示された全てのCSI-RSリソースを含むOFDMシンボルの、指示された測定帯域幅において、測定を行ってもよいし、当該OFDMシンボルの測定帯域幅の一部(例えば、CSI-RS REだけ)において、測定を行ってもよい。
選択肢bにおいて、UEは、追加情報により指示されたCSI-RSリソースを含むOFDMシンボルにおいて、測定を行ってもよいし、当該OFDMシンボルの測定帯域幅の一部(例えば、CSI-RS REだけ)において、測定を行ってもよい。追加情報は、デフォルトCSI-RSリソースを指示してもよいし、CSI-RSリソースのグルーピングを指示していてもよい。
図7は、複数のビームにそれぞれ対応する複数のCSI-RSリソース構成がTDMされる場合のセルレベルRSSIの測定リソースの一例を示す図である。異なるシンボル又はスロット内のCSI-RSにおいて複数の異なるビームが送信される。
図7Aに示す例では、ビーム1を用いるCSI-RSリソース構成1と、ビーム2を用いるCSI-RSリソース構成2と、がTDMされている。CSI-RSリソース構成1及び2のそれぞれにおけるCSI-RSの周波数リソースは分散している(離散的である)。
図7Bに示すように、セルレベルRSSIのためのデフォルトのCSI-RSリソース構成として、CSI-RSリソース構成1(ビーム1)が指示された場合、セルレベルRSSIの測定リソースは、CSI-RSリソース構成1のシンボルにおいて測定帯域幅全体の周波数リソースであってもよい。また、セルレベルRSSIの測定リソースは、デフォルトのCSI-RSリソース構成内の全てのCSI-RS REであってもよい。また、デフォルトのCSI-RSリソース構成が指示されない場合、セルレベルRSSIの測定リソースは、全てのCSI-RSリソース構成のシンボルにおいて測定帯域幅全体の周波数リソースであってもよいし、全てのCSI-RS REであってもよい。
図7Cに示すように、セルレベルRSSIのためのCSI-RSリソースのグルーピングとして、CSI-RSリソース構成1(ビーム1)及びCSI-RSリソース構成2(ビーム2)が指示された場合、セルレベルRSSIの測定リソースは、CSI-RSリソース構成1及び2のシンボルにおいて測定帯域幅全体の周波数リソースであってもよい。また、セルレベルRSSIの測定リソースは、全てのCSI-RS REであってもよい。
図7Dに示すように、セルレベルRSSIのためのデフォルトのCSI-RSリソース構成として、CSI-RSリソース構成1(ビーム1)が指示された場合、セルレベルRSSIの測定リソースは、CSI-RSリソース構成1のシンボルにおいて測定帯域幅全体のうち、CSI-RS REを含まないREであってもよい。また、デフォルトのCSI-RSリソース構成が指示されない場合、セルレベルRSSIの測定リソースは、全てのCSI-RSリソース構成のシンボルにおいて測定帯域幅全体のうち、CSI-RS REを含まないREであってもよい。
図7Eに示すように、セルレベルRSSIのためのCSI-RSリソースのグルーピングとして、CSI-RSリソース構成1(ビーム1)及びCSI-RSリソース構成2(ビーム2)が指示された場合、セルレベルRSSIの測定リソースは、CSI-RSリソース構成1及び2のシンボルにおいて測定帯域幅全体のうち、CSI-RS REを含まないREであってもよい。
図8は、複数のビームにそれぞれ対応する複数のCSI-RSリソース構成がTDM及びFDMされる場合のセルレベルRSSIの測定リソースの一例を示す図である。
図8Aに示すように、1つのRB内の異なる時間/周波数リソース内のCSI-RSにおいて複数の異なるビームが送信される。
図8Aの複数のCSI-RSリソース構成が設定された場合、図8Bに示すように、セルレベルRSSIの測定リソースは、全てのCSI-RSリソースを含む測定帯域幅全体であってもよい。また、セルレベルRSSIの測定リソースは、全てのCSI-RS REであってもよい。
図8Aの複数のCSI-RSリソース構成が設定された場合、図8Cに示すように、セルレベルRSSIの測定リソースは、全てのCSI-RSリソースを含む測定帯域幅全体のうち、CSI-RS REを含まないREであってもよい。
異なる目的、異なるビームフォーミング方式に対して、測定リソースの異なる設定方法が適している。
以上の態様2-2によれば、UEは、セルレベルRSSI、又はセルレベルの雑音及び干渉を測定できる。
《態様2-3》
UEは、ビームレベルRSRPを用いずに、又はビームレベル受信強度を用いずに、ビームレベル受信品質を導出してもよい。
UEは、次の態様2-3-a又は態様2-3-bを用いて、ビームレベル受信品質を導出してもよい。
態様2-3-aにおいて、UEは、測定されたビームレベルRSRPと、測定又は導出されたセルレベル受信強度と、に基づいて、ビームレベル受信品質を導出する。すなわち、UEは、受信強度だけについて、セルレベルの結果を用いる。
この場合、サービングセルの全てのCSI-RSリソース構成(ビーム)に共通のセルレベル受信強度を用いるため、全てのCSI-RSリソース構成においてビームレベルRSRP及びビームレベル受信品質の間の関係が同一になり、態様2-3-aの意義は小さくなる。一方で、他のキャリアにおける異周波測定、又は周辺セルの測定は単純であるため、態様2-3-aを用いることができる。
態様2-3-bにおいて、UEは、導出されたセルレベルRSRPと、測定されたビームレベル受信強度と、に基づいて、ビームレベル受信品質を導出する。すなわち、UEは、RSRPだけについて、セルレベルの結果を用いる。
RSRPがビーム毎ではないため、選択肢bの意義は小さくなる。
以上の態様2-3によれば、RSRPと受信強度の一方がセルレベルの結果であっても、UEは、ビームレベルRSRQ又はビームレベルSINRを導出できる。
《態様2-4》
UEは、態様2-1~態様2-3の少なくともいずれかの結果に基づいて、セルレベル受信品質を導出してもよい。
UEは、次の態様2-4-a又は態様2-4-bを用いて、セルレベル受信品質を導出してもよい。
態様2-4-aにおいて、UEは、導出されたセルレベルRSRPと、測定又は導出されたセルレベル受信強度と、に基づいて、セルレベル受信品質を導出する。
2つの導出された値に基づくことにより、不正確なセルレベル受信品質が導出される場合がある。
態様2-4-bにおいて、UEは、態様2-3により導出されたビームレベル受信品質の結合に基づいて、セルレベル受信品質を導出する。ここでは、ビームレベル受信品質をビームレベル結果と呼び、セルレベル受信品質をセルレベル結果と呼ぶ。
結合のために選択されるビームレベル結果は、例えば、全てのビームレベル結果であってもよいし、上位N個のビームレベル結果であってもよいし、絶対値の閾値を超えるビームレベル結果のうち最も高いビームレベル結果であってもよいし、最も高いビームレベル結果に対する相対的な閾値の範囲内のビームレベル結果のうち最も高いビームレベル結果であってもよいし、絶対値の閾値を超えるビームレベル結果のうち上位の多くともN個のビームレベル結果であってもよいし、最も高いビームレベル結果に対する相対的な閾値の範囲内のビームレベル結果のうち上位の多くともN個のビームレベル結果であってもよい。
選択されたビームレベル結果の結合方法は、選択されたビームレベル結果の平均であってもよいし、選択されたビームレベル結果の重み付け平均であってもよい。
以上の態様2-4によれば、UEは、態様2-1~態様2-3の少なくともいずれかの結果に基づいて、セルレベルRSRQ又はセルレベルSINRを導出することができる。
《態様2-1~態様2-4の関係》
図9は、態様2-1~態様2-4の関係の一例を示す図である。
態様2-1、態様2-2によれば、UEは、セルレベル受信強度を測定又は導出できる。態様2-1によれば、UEは、ビームレベル受信強度からセルレベル受信強度を導出できる。態様2-2によれば、UEは、セルレベル受信強度を測定できる。
態様2-3-aによれば、UEは、ビームレベルRSRPとセルレベル受信強度とに基づいて、ビームレベル受信品質を導出できる。態様2-3-bによれば、UEは、セルレベルRSRPとビームレベル受信強度とに基づいて、ビームレベル受信品質を導出できる。
態様2-4-aによれば、UEは、セルレベルRSRPとセルレベル受信強度とに基づいて、セルレベル受信品質を導出できる。態様2-4-bによれば、UEは、態様2-3により導出されるビームレベル受信品質の結合に基づいて、セルレベル受信品質を導出する。
《第1の実施形態及び第2の実施形態の関係》
図10Aに示すように、UEは、各CSI-RSリソース構成に基づいてビームレベルRSRPを直接測定してもよい。UEは、1以上のビームレベルRSRPに基づいてセルレベルRSRPを導出してもよい。
図10Bに示すように、態様1-1において、UEは、各CSI-RSリソース構成に基づいてビームレベル受信強度を直接測定してもよい。態様2-2のように、UEは、セルレベル受信強度を直接測定してもよい。態様2-1のように、UEは、1以上のビームレベル受信品質に基づいて、セルレベル受信強度を導出してもよい。
図10Cに示すように、態様1-3において、UEは、測定されたビームレベルRSRPと、態様1-1により測定されたビームレベル受信強度と、に基づいて、ビームレベル受信品質を導出してもよい。このケースは、最も高い精度のビームレベル受信品質を得られる。
態様2-3-aにおいて、UEは、測定されたビームレベルRSRPと、態様2-2により測定されたセルレベル受信強度と、に基づいて、ビームレベル受信品質を導出してもよい。このケースは、他のキャリア上の異周波測定、又は周辺セルの測定に用いられる。
態様2-3-aにおいて、UEは、測定されたビームレベルRSRPと、態様2-1により測定されたセルレベル受信強度と、に基づいて、ビームレベル受信品質を導出してもよい。このケースは、意義が小さい。
態様2-3-bにおいて、UEは、導出されたセルレベルRSRPと、態様1-1により測定されたビームレベル受信強度と、に基づいて、ビームレベル受信品質を導出してもよい。このケースは、意義が小さい。
UEは、導出されたセルレベルRSRPと、測定又は導出されたセルレベル受信強度と、に基づいて、セルレベル受信品質を導出してもよい。また、UEは、導出されたビームレベル受信品質に基づいて、セルレベル受信品質を導出してもよい。
<他の実施形態>
NRは、上述した受信強度及び/又は受信品質の測定(又は導出)方法の異なるタイプをサポートしてもよい。測定方法は、設定可能であってもよいし、UE RRC状態(アイドルモード及び接続モード)、異なる目的(例えば、同周波測定及び異周波測定)、UE能力(capability)の少なくともいずれかに従ってUEに適用されてもよい。
例えば、NRは、サービングセル測定におけるビームレベル受信強度測定に対して態様1-1を設定し、周辺セル測定及び/又は異周波測定におけるセルレベル受信強度測定に対して態様2-2を設定してもよい。
例えば、NRは、サービングキャリア上のサービングセル及び周辺セルの同周波測定のためのビームレベル受信強度測定に対して態様1-1を設定し、他のキャリア上の異周波測定のためのセルレベル受信強度測定に対して態様2-2を設定してもよい。
例えば、無線基地局が、デジタル又はハイブリッドビームフォーミング方式を用いて1つのRB内の複数のCSI-RSリソースを送信する場合、無線基地局は、セルレベル受信強度測定に対して態様2-2の選択肢aを用いてもよい。
(無線通信システム)
以下、本発明の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本発明の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
図11は、本発明の一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。
なお、無線通信システム1は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、NR(New Radio)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)などと呼ばれてもよいし、これらを実現するシステムと呼ばれてもよい。
無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12(12a-12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。各セル及びユーザ端末20の配置、数などは、図に示すものに限られない。
ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、マクロセルC1及びスモールセルC2を、CA又はDCにより同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、5個以下のCC、6個以上のCC)を用いてCA又はDCを適用してもよい。
ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、legacy carrierなどとも呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。
無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線接続(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線接続する構成とすることができる。
無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されるものではない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。
各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末(移動局)だけでなく固定通信端末(固定局)を含んでもよい。
無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア-周波数分割多元接続(SC-FDMA:Single Carrier Frequency Division Multiple Access)及び/又はOFDMAが適用される。
OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックの帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限らず、他の無線アクセス方式が用いられてもよい。
無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHにより、ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHにより、MIB(Master Information Block)が伝送される。
下りL1/L2制御チャネルは、PDCCH(Physical Downlink Control Channel)、EPDCCH(Enhanced Physical Downlink Control Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)などを含む。PDCCHにより、PDSCH及び/又はPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。
なお、DCIによってスケジューリング情報が通知されてもよい。例えば、DLデータ受信をスケジューリングするDCIは、DLアサインメントと呼ばれてもよいし、ULデータ送信をスケジューリングするDCIは、ULグラントと呼ばれてもよい。
PCFICHにより、PDCCHに用いるOFDMシンボル数が伝送される。PHICHにより、PUSCHに対するHARQ(Hybrid Automatic Repeat reQuest)の送達確認情報(例えば、再送制御情報、HARQ-ACK、ACK/NACKなどともいう)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。
無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHにより、ユーザデータ、上位レイヤ制御情報などが伝送される。また、PUCCHにより、下りリンクの無線品質情報(CQI:Channel Quality Indicator)、送達確認情報、スケジューリングリクエスト(SR:Scheduling Request)などが伝送される。PRACHにより、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
無線通信システム1では、下り参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)などが伝送される。また、無線通信システム1では、上り参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。
(無線基地局)
図12は、本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
下りリンクにより無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化、逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102により増幅され、送受信アンテナ101から送信される。送受信部103は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの呼処理(設定、解放など)、無線基地局10の状態管理、無線リソースの管理などを行う。
伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
また、送受信部103は、チャネル状態の測定のための1つ以上の参照信号リソース(例えば、CSI-RSリソース構成)において参照信号(例えば、CSI-RS)を送信してもよい。
図13は、本発明の一実施形態に係る無線基地局の機能構成の一例を示す図である。なお、本例では、本実施形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有しているとする。
ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。なお、これらの構成は、無線基地局10に含まれていればよく、一部又は全部の構成がベースバンド信号処理部104に含まれなくてもよい。
制御部(スケジューラ)301は、無線基地局10全体の制御を実施する。制御部301は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
制御部301は、例えば、送信信号生成部302による信号の生成、マッピング部303による信号の割り当てなどを制御する。また、制御部301は、受信信号処理部304による信号の受信処理、測定部305による信号の測定などを制御する。
制御部301は、システム情報、下りデータ信号(例えば、PDSCHで送信される信号)、下り制御信号(例えば、PDCCH及び/又はEPDCCHで送信される信号。送達確認情報など)のスケジューリング(例えば、リソース割り当て)を制御する。また、制御部301は、上りデータ信号に対する再送制御の要否を判定した結果などに基づいて、下り制御信号、下りデータ信号などの生成を制御する。また、制御部301は、同期信号(例えば、PSS(Primary Synchronization Signal)/SSS(Secondary Synchronization Signal))、下り参照信号(例えば、CRS、CSI-RS、DMRS)などのスケジューリングの制御を行う。
制御部301は、上りデータ信号(例えば、PUSCHで送信される信号)、上り制御信号(例えば、PUCCH及び/又はPUSCHで送信される信号。送達確認情報など)、ランダムアクセスプリアンブル(例えば、PRACHで送信される信号)、上り参照信号などのスケジューリングを制御する。
送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
送信信号生成部302は、例えば、制御部301からの指示に基づいて、下りデータの割り当て情報を通知するDLアサインメント及び/又は上りデータの割り当て情報を通知するULグラントを生成する。DLアサインメント及びULグラントは、いずれもDCIであり、DCIフォーマットに従う。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI:Channel State Information)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理が行われる。
マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。
受信信号処理部304は、受信処理により復号された情報を制御部301に出力する。例えば、HARQ-ACKを含むPUCCHを受信した場合、HARQ-ACKを制御部301に出力する。また、受信信号処理部304は、受信信号及び/又は受信処理後の信号を、測定部305に出力する。
測定部305は、受信した信号に関する測定を実施する。測定部305は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
例えば、測定部305は、受信した信号に基づいて、RRM(Radio Resource Management)測定、CSI(Channel State Information)測定などを行ってもよい。測定部305は、受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio))、信号強度(例えば、RSSI(Received Signal Strength Indicator))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部301に出力されてもよい。
(ユーザ端末)
図14は、本発明の一実施形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本発明に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤ及びMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、ブロードキャスト情報もアプリケーション部205に転送されてもよい。
一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202により増幅され、送受信アンテナ201から送信される。
また、送受信部203は、チャネル状態の測定のための1つ以上の参照信号リソース(例えば、CSI-RSリソース構成)において参照信号(例えば、CSI-RS)を受信してもよい。
また、送受信部203は、第1受信電力(例えば、ビームレベルRSRP及び/又はセルレベルRSRP)、第2受信電力(例えば、ビームレベル受信強度及び/又はセルレベル受信強度)、及び受信品質(例えば、ビームレベル受信品質及び/又はセルレベル受信品質)、の少なくともいずれかを含む報告を無線基地局へ送信してもよい。
図15は、本発明の一実施形態に係るユーザ端末の機能構成の一例を示す図である。なお、本例においては、本実施形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有しているとする。
ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。なお、これらの構成は、ユーザ端末20に含まれていればよく、一部又は全部の構成がベースバンド信号処理部204に含まれなくてもよい。
制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本発明に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
制御部401は、例えば、送信信号生成部402による信号の生成、マッピング部403による信号の割り当てなどを制御する。また、制御部401は、受信信号処理部404による信号の受信処理、測定部405による信号の測定などを制御する。
制御部401は、無線基地局10から送信された下り制御信号及び下りデータ信号を、受信信号処理部404から取得する。制御部401は、下り制御信号及び/又は下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号及び/又は上りデータ信号の生成を制御する。
制御部401は、無線基地局10から通知された各種情報を受信信号処理部404から取得した場合、当該情報に基づいて制御に用いるパラメータを更新してもよい。
送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本発明に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認情報、チャネル状態情報(CSI)などに関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、無線基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。
マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本発明に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、無線基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本発明に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本発明に係る受信部を構成することができる。
受信信号処理部404は、受信処理により復号された情報を制御部401に出力する。受信信号処理部404は、例えば、ブロードキャスト情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号及び/又は受信処理後の信号を、測定部405に出力する。
測定部405は、受信した信号に関する測定を実施する。測定部405は、本発明に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
例えば、測定部405は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部405は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部401に出力されてもよい。
また、測定部405は、参照信号の第1受信電力(例えば、ビームレベルRSRP又はセルレベルRSRP)、及び1つ以上の参照信号リソースに関連付けられた無線リソースにおける第2受信電力(例えば、ビームレベル受信強度又はセルレベル受信強度)、を測定してもよい。また、測定部405は、第1受信電力及び前記第2受信電力に基づいて、セルの受信品質(例えば、ビームレベル受信品質又はセルレベル受信品質)を導出してもよい。
また、測定部405は、各参照信号リソースにおける第1受信電力を測定し、各参照信号リソースに関連付けられた無線リソースにおける第2受信電力を測定し、各参照信号リソースに対応する第1受信電力と各参照信号リソースに対応する第2受信電力とに基づいて、各参照信号リソースに対応する受信品質を導出してもよい。
また、測定部405は、各参照信号リソースの受信品質に基づいて、セルの受信品質を導出してもよい。
また、測定部405は、無線リソースは、対応する参照信号リソース、又は対応する参照信号リソースを含み且つ無線基地局から通知された帯域幅を有するリソース、であってもよい。
また、無線リソースは、無線基地局から通知された参照信号リソース、又は無線基地局から通知された参照信号リソースを含み且つ無線基地局から通知された帯域幅を有するリソース、であり、測定部405は、無線リソースにおいてセルの第2受信電力を測定してもよい。
また、測定部405は、各参照信号リソースに対応する第2受信電力(例えば、ビームレベル受信強度)に基づいて、セルの第2受信電力(例えば、セルレベル受信強度)を導出してもよい。
また、測定部405は、各参照信号リソースに対応する第1受信電力(例えば、ビームレベルRSRP)と、セルの第2受信電力(例えば、セルレベル受信強度)と、に基づいて、セルの受信品質(例えば、セルレベル受信品質)を導出してもよい。また、測定部405は、セルの第1受信電力(例えば、セルレベルRSRP)と、各参照信号リソースに対応する第2受信電力(例えば、ビームレベル受信強度)と、に基づいて、セルの受信品質(例えば、セルレベル受信品質)を導出してもよい。
(ハードウェア構成)
なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線を用いて)接続し、これら複数の装置を用いて実現されてもよい。
例えば、本発明の一実施形態における無線基地局、ユーザ端末などは、本発明の無線通信方法の処理を行うコンピュータとして機能してもよい。図16は、本発明の一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の無線基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。無線基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、1以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
無線基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御したりすることによって実現される。
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001によって実現されてもよい。
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び/又は時分割複信(TDD:Time Division Duplex)を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004によって実現されてもよい。
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
また、無線基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
なお、本明細書において説明した用語及び/又は本明細書の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及び/又はシンボルは信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
また、無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジーに依存しない固定の時間長(例えば、1ms)であってもよい。
さらに、スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。また、スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。
無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及び/又はTTIは、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、無線基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、及び/又はコードワードの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、及び/又はコードワードがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、又はロングサブフレームなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、又は、サブスロットなどと呼ばれてもよい。
なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
また、本明細書において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
本明細書においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。例えば、様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
本明細書において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
また、情報、信号などは、上位レイヤから下位レイヤ、及び/又は下位レイヤから上位レイヤへ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
情報の通知は、本明細書において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))を用いて通知されてもよい。
また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び/又は無線技術(赤外線、マイクロ波など)を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び/又は無線技術は、伝送媒体の定義内に含まれる。
本明細書において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。
本明細書においては、「基地局(BS:Base Station)」、「無線基地局」、「eNB」、「gNB」、「セル」、「セクタ」、「セルグループ」、「キャリア」及び「コンポーネントキャリア」という用語は、互換的に使用され得る。基地局は、固定局(fixed station)、NodeB、eNodeB(eNB)、アクセスポイント(access point)、送信ポイント、受信ポイント、送受信ポイント、フェムトセル、スモールセルなどの用語で呼ばれる場合もある。
基地局は、1つ又は複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び/又は基地局サブシステムのカバレッジエリアの一部又は全体を指す。
本明細書においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」及び「端末」という用語は、互換的に使用され得る。
移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
基地局及び/又は移動局は、送信装置、受信装置などと呼ばれてもよい。
また、本明細書における無線基地局は、ユーザ端末で読み替えてもよい。例えば、無線基地局及びユーザ端末間の通信を、複数のユーザ端末間(D2D:Device-to-Device)の通信に置き換えた構成について、本発明の各態様/実施形態を適用してもよい。この場合、上述の無線基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、「サイド」と読み替えられてもよい。例えば、上りチャネルは、サイドチャネルと読み替えられてもよい。
同様に、本明細書におけるユーザ端末は、無線基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を無線基地局10が有する構成としてもよい。
本明細書において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
本明細書において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
本明細書において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
本明細書において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
本明細書において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本明細書において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
本明細書において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
本明細書において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」と読み替えられてもよい。
本明細書において、2つの要素が接続される場合、1又はそれ以上の電線、ケーブル及び/又はプリント電気接続を用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び/又は光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
本明細書において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も同様に解釈されてもよい。
本明細書又は請求の範囲において、「含む(including)」、「含んでいる(comprising)」、及びそれらの変形が使用されている場合、これらの用語は、用語「備える」と同様に、包括的であることが意図される。さらに、本明細書あるいは請求の範囲において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されないということは明らかである。本発明は、請求の範囲の記載に基づいて定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とし、本発明に対して何ら制限的な意味をもたらさない。

Claims (6)

  1. 複数の各ビームに対し、ビーム毎のチャネル状態情報参照信号(CSI-RS)リソースにおける第1受信電力を測定し、ビーム毎の前記CSI-RSリソースにおける第2受信電力を測定する受信部と、
    複数の各ビームに対し、前記ビーム毎に、前記第1受信電力及び前記第2受信電力の比に基づくそれぞれの測定結果を導出する制御部と、を有し、
    前記制御部は、前記ビーム毎の前記測定結果を導出することによって複数の測定結果を導出し、前記複数の測定結果のうち、閾値を上回る上位の値の平均として、セルの測定の結果を導出し、
    前記平均に用いられる値の数は、ある数を超えない端末。
  2. 前記制御部は、前記第1受信電力と、前記測定結果と、の少なくとも1つを報告する、請求項1に記載の端末。
  3. 前記制御部は、前記第1受信電力のN倍を、前記第2受信電力で除することによって、各ビームに対する前記それぞれの測定結果を導出し、
    Nは、ビーム毎の前記第2受信電力の測定帯域幅におけるリソースブロック数である、請求項1又は請求項2に記載の端末。
  4. 前記制御部は、前記第1受信電力を、前記第2受信電力で除することによって、各ビームに対する前記それぞれの測定結果を導出し、各測定結果は、信号と雑音及び干渉との比である、請求項1又は請求項2に記載の端末。
  5. 複数の各ビームに対し、ビーム毎のチャネル状態情報参照信号(CSI-RS)リソースにおける第1受信電力を測定し、ビーム毎の前記CSI-RSリソースにおける第2受信電力を測定するステップと、
    複数の各ビームに対し、前記ビーム毎に、前記第1受信電力及び前記第2受信電力の比に基づくそれぞれの測定結果を導出するステップと、
    前記ビーム毎の前記測定結果を導出することによって複数の測定結果を導出し、前記複数の測定結果のうち、閾値を上回る上位の値の平均として、セルの測定の結果を導出するステップと、
    を有し、
    前記平均に用いられる値の数は、ある数を超えない、端末の無線通信方法。
  6. 端末と基地局とを具備するシステムであって、
    前記端末は、
    複数の各ビームに対し、ビーム毎のチャネル状態情報参照信号(CSI-RS)リソースにおける第1受信電力を測定し、ビーム毎の前記CSI-RSリソースにおける第2受信電力を測定する受信部と、
    複数の各ビームに対し、前記ビーム毎に、前記第1受信電力及び前記第2受信電力の比に基づくそれぞれの測定結果を導出する制御部と、を有し、
    前記制御部は、前記ビーム毎の前記測定結果を導出することによって複数の測定結果を導出し、前記複数の測定結果のうち、閾値を上回る上位の値の平均として、セルの測定の結果を導出し、
    前記平均に用いられる値の数は、ある数を超えず、
    前記基地局は、
    前記CSI-RSを送信する送信部を有することを特徴とするシステム。
JP2019535567A 2017-08-10 2017-08-10 端末、無線通信方法及びシステム Active JP7144420B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/029222 WO2019030928A1 (ja) 2017-08-10 2017-08-10 ユーザ端末及び無線通信方法

Publications (2)

Publication Number Publication Date
JPWO2019030928A1 JPWO2019030928A1 (ja) 2020-08-13
JP7144420B2 true JP7144420B2 (ja) 2022-09-29

Family

ID=65270995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019535567A Active JP7144420B2 (ja) 2017-08-10 2017-08-10 端末、無線通信方法及びシステム

Country Status (5)

Country Link
US (1) US20200374726A1 (ja)
EP (1) EP3668029A4 (ja)
JP (1) JP7144420B2 (ja)
CN (1) CN111201760B (ja)
WO (1) WO2019030928A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11310858B2 (en) * 2017-08-16 2022-04-19 Lg Electronics Inc. Method and apparatus for managing radio link in unlicensed band
CN109429340B (zh) * 2017-08-25 2023-05-05 阿里巴巴集团控股有限公司 一种无线通信方法和装置
WO2021009875A1 (ja) * 2019-07-17 2021-01-21 株式会社Nttドコモ 端末及び無線通信方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013021531A1 (ja) 2011-08-05 2013-02-14 パナソニック株式会社 端末、送信装置、受信品質報告方法および受信方法
WO2015170689A1 (ja) 2014-05-09 2015-11-12 株式会社Nttドコモ ユーザ装置、基地局、セル選択制御方法、及びパラメータ送信方法
WO2017086011A1 (ja) 2015-11-17 2017-05-26 ソニー株式会社 端末装置、無線通信装置及び通信方法
WO2017101062A1 (en) 2015-12-17 2017-06-22 Intel IP Corporation Method of load balancing in 5g cellular networks

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5927802B2 (ja) * 2011-08-02 2016-06-01 シャープ株式会社 基地局、端末および通信方法
JP5914918B2 (ja) * 2011-08-02 2016-05-11 シャープ株式会社 基地局、端末および通信方法
JP2014093651A (ja) * 2012-11-02 2014-05-19 Ntt Docomo Inc 無線通信方法、無線通信システム、無線基地局及びユーザ端末
JP2017079338A (ja) * 2014-02-28 2017-04-27 シャープ株式会社 端末装置、基地局装置および方法
JP6303000B2 (ja) * 2014-05-08 2018-03-28 株式会社Nttドコモ ユーザ端末、基地局および無線通信方法
JP6093736B2 (ja) * 2014-08-08 2017-03-08 株式会社Nttドコモ ユーザ端末、無線基地局、無線通信方法及び無線通信システム
EP3073693B1 (en) * 2015-03-24 2020-07-22 Panasonic Intellectual Property Corporation of America PDSCH precoding adaptation for LTE in unlicensed bands
WO2017073651A1 (ja) * 2015-10-27 2017-05-04 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
JPWO2022029899A1 (ja) * 2020-08-04 2022-02-10

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013021531A1 (ja) 2011-08-05 2013-02-14 パナソニック株式会社 端末、送信装置、受信品質報告方法および受信方法
WO2015170689A1 (ja) 2014-05-09 2015-11-12 株式会社Nttドコモ ユーザ装置、基地局、セル選択制御方法、及びパラメータ送信方法
WO2017086011A1 (ja) 2015-11-17 2017-05-26 ソニー株式会社 端末装置、無線通信装置及び通信方法
WO2017101062A1 (en) 2015-12-17 2017-06-22 Intel IP Corporation Method of load balancing in 5g cellular networks

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CATT,Consideration on CSI-RS transmission for NR[online],3GPP TSG RAN WG1 #87 R1-1611381,Internet<URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_87/Docs/R1-1611381.zip>,2016年11月05日,pp. 1-3
LG Electronics,SS block based RRM measurement[online],3GPP TSG RAN WG1 adhoc_NR_AH_1706 R1-1710272,Internet<URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_AH/NR_AH_1706/Docs/R1-1710272.zip>,2017年06月17日,pp. 1-5
NEC,UE Beam Selection for derivation of Cell Level Quality in NR[online],3GPP TSG RAN WG2 #97 R2-1701678,Internet<URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_97/Docs/R2-1701678.zip>,2017年02月04日,pp. 1-3
Nokia, Alcatel-Lucent Shanghai Bell,On the role of beam-related content in NR measurement reporting[online],3GPP TSG RAN WG2 adhoc_2017_06_NR R2-1706490,Internet<URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_AHs/2017_06_NR/Docs/R2-1706490.zip>,2017年06月16日,pp. 1-3

Also Published As

Publication number Publication date
CN111201760B (zh) 2023-04-25
JPWO2019030928A1 (ja) 2020-08-13
EP3668029A4 (en) 2021-03-31
EP3668029A1 (en) 2020-06-17
CN111201760A (zh) 2020-05-26
WO2019030928A1 (ja) 2019-02-14
US20200374726A1 (en) 2020-11-26

Similar Documents

Publication Publication Date Title
JP7132329B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7074687B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7321161B2 (ja) 端末、無線通信方法及びシステム
JP7269164B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7183260B2 (ja) 端末、無線通信方法、基地局及びシステム
JPWO2018173232A1 (ja) ユーザ端末及び無線通信方法
WO2018198342A1 (ja) ユーザ端末及び無線通信方法
JP7299159B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7001681B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2018124029A1 (ja) ユーザ端末及び無線通信方法
JP7092766B2 (ja) 端末、無線通信方法及びシステム
JP7144406B2 (ja) 端末、無線通信方法及びシステム
JP2023029395A (ja) 端末、無線通信方法及びシステム
JP2023103342A (ja) 端末、無線通信方法、基地局及びシステム
JP7323535B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2018211607A1 (ja) ユーザ端末及び無線通信方法
JP7293134B2 (ja) 端末、無線通信方法、基地局及びシステム
JP2023159218A (ja) 端末、基地局、無線通信方法及びシステム
JP7301038B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7144420B2 (ja) 端末、無線通信方法及びシステム
JP7299215B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7269234B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7438933B2 (ja) 端末、無線通信方法及びシステム
JPWO2019175989A1 (ja) ユーザ端末及び無線通信方法
JP7111856B2 (ja) 端末、無線通信方法、基地局及びシステム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200807

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220915

R150 Certificate of patent or registration of utility model

Ref document number: 7144420

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150