WO2021009875A1 - 端末及び無線通信方法 - Google Patents

端末及び無線通信方法 Download PDF

Info

Publication number
WO2021009875A1
WO2021009875A1 PCT/JP2019/028130 JP2019028130W WO2021009875A1 WO 2021009875 A1 WO2021009875 A1 WO 2021009875A1 JP 2019028130 W JP2019028130 W JP 2019028130W WO 2021009875 A1 WO2021009875 A1 WO 2021009875A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
transmission
band
resource
frequency
Prior art date
Application number
PCT/JP2019/028130
Other languages
English (en)
French (fr)
Inventor
祐輝 松村
翔平 吉岡
浩樹 原田
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to CN201980100444.3A priority Critical patent/CN114402679A/zh
Priority to PCT/JP2019/028130 priority patent/WO2021009875A1/ja
Priority to EP19937970.2A priority patent/EP4002933A1/en
Publication of WO2021009875A1 publication Critical patent/WO2021009875A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present disclosure relates to terminals and wireless communication methods in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • 3GPP Rel.10-14 LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • a successor system to LTE for example, 5th generation mobile communication system (5G), 5G + (plus), New Radio (NR), 3GPP Rel.15 or later, etc.) is also being considered.
  • 5G 5th generation mobile communication system
  • 5G + plus
  • NR New Radio
  • 3GPP Rel.15 or later, etc. is also being considered.
  • FR frequency range
  • PAPR Peak-to-Average Power Patio
  • one of the purposes of the present disclosure is to provide a terminal and a wireless communication method capable of appropriately performing communication even when using a high frequency band.
  • the terminal is set for the receiving unit for receiving the channel state information (CSI) -reference signal (RS), the first band for transmitting the CSI-RS, and the CSI-RS. It has a second band to be measured, and a control unit that performs measurement using any of the above.
  • CSI channel state information
  • RS channel state information -reference signal
  • communication can be appropriately performed even when a high frequency band is used.
  • FIG. 1 is a diagram showing an example of a CSI-RS position in a slot.
  • 2A-2D are diagrams showing an example of FD-OCC and TD-OCC.
  • FIG. 3 is a diagram showing an example of CSI-RS positions for each number of ports.
  • FIG. 4 is a diagram showing an example of mapping of CSI-RS of 32 ports.
  • 5A-5C are diagrams showing an example of a CDM in PUCCH format 4.
  • FIG. 6 is a diagram showing an example of FR.
  • 7A and 7B are diagrams showing an example of CSI-RS to which CS is applied.
  • 8A and 8B are diagrams showing an example of the relationship between the CSI-RS bandwidth and the number of CSs.
  • FIGS. 9A and 9B are diagrams showing an example of CSI-RS to which FD-OCC is applied.
  • 10A and 10B are diagrams showing an example of FDM or CSI-RS to which FDM and TDM are applied.
  • FIG. 11 is a diagram showing an example of CSI-RS to which TDM is applied.
  • 12A and 12B are diagrams showing an example of CSI-RS to which TD-OCC is applied.
  • FIG. 13 is a diagram showing an example of the relationship between SCS and TD-OCC length.
  • FIG. 14 is a diagram showing an example of CSI-RS to which CS of the time domain is applied.
  • FIG. 15 is a diagram showing an example of the relationship between the number of CSI-RS symbols and the number of CS.
  • FIG. 16 is a diagram showing an example of a configuration in which a diffusion code is applied to CSI-RS.
  • FIG. 17 is a diagram showing an example of the spectrum of CSI-RS to which the diffusion code is applied.
  • 18A-18C is a diagram showing an example of CSI-RS to which a large SCS is applied.
  • 19A and 19B are diagrams showing an example of the SCS switching period.
  • FIG. 20 is a diagram showing an example of the relationship between the SCS and the SCS switching period.
  • 21A-21F is a diagram showing an example of CSI-RS to which comb is applied.
  • FIG. 22 is a diagram showing an example of CSI-RS transmission of a plurality of TRPs.
  • FIG. 23A and 23B are diagrams showing an example of CSI-RS transmitted from a plurality of TRPs.
  • FIG. 24 is a diagram showing an example of the relationship between the CSI-RS transmission band and the CSI-RS resource.
  • FIG. 25 is a diagram showing an example of the CSI-RS transmission band to which the CDM is applied.
  • FIG. 26 is a diagram showing an example of the CSI-RS resource band to which the CDM is applied.
  • FIG. 27 is a diagram showing an example of frequency hopping in the CSI-RS resource band.
  • FIG. 28 is a diagram showing an example of frequency hopping in the CSI-RS transmission band.
  • FIG. 29 is a diagram showing an example of the relationship between the CSI-RS transmission band and the CSI-RS resource band.
  • FIG. 30 is a diagram showing an example of CSI-RS in 1-slot PDSCH transmission.
  • FIG. 31 is a diagram showing an example of CSI-RS in PDSCH transmission over a plurality of slots.
  • FIG. 32 is a diagram showing an example of CSI-RS transmission using DFT-s-OFDM.
  • FIG. 33 is a diagram showing an example of a configuration using DFT-s-OFDM.
  • 34A and 34B are diagrams showing an example of DFT-s-OFDM for data with CSI-RS inserted.
  • 35A and 35B are diagrams showing an example of CSI-RS transmission over a plurality of slots.
  • FIG. 36 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 36 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 37 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • FIG. 38 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • FIG. 39 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • CSI-RS Channel state information
  • BM beam management
  • BFR beam failure recovery
  • fine tracking of time and frequency For example, CSI-RS is used.
  • CSI-RS supports 1, 2, 4, 8, 12, 16, 24, 32 ports (antenna port, CSI-RS port).
  • CSI-RS supports periodic, semi-persistent, and aperiodic transmissions.
  • the frequency density of the CSI-RS can be set to adjust the overhead and CSI estimation accuracy.
  • FIG. 1 is a diagram showing an example of a CSI-RS location in a slot.
  • Each row in the table includes row number, number of ports, frequency domain density, CDM type, time / frequency position (component resource position (k bar, l bar)), code division multiplexing (CDM) group index, and component resource.
  • Each resource position ((RE, symbol), (k', l')) is shown.
  • the time / frequency position is the position of the CSI-RS time and frequency resource (component resource) corresponding to one port.
  • the k bar is a notation in which "k" is overlined.
  • the k-bar indicates the start resource element (RE) index of the component resource, and the l-bar indicates the start symbol (OFDM symbol) index of the component resource.
  • the CDM group includes no CDM (no CDM, N / A), FD-CDM2, CDM4, and CDM8.
  • the FD-CDM2 multiplexes a 2-port CSI-RS at the same time and frequency by multiplying a frequency domain (FD) -orthogonal cover code (OCC) of length 2 in RE units (FD2). ).
  • the CDM4 multiplexes the 4-port CSI-RS at the same time and frequency by multiplying the length 2 FD-OCC and the length 2 time domain (TD) -OCC in RE unit symbol units (FD2TD2). .
  • the CDM8 multiplexes 8-port CSI-RS at the same time and frequency by multiplying the length 2 FD-OCC and the length 4 TD-OCC in units of RE units and symbols (FD2TD4).
  • FIGS. 2A-2D are diagrams showing an example of FD-OCC and TD-OCC.
  • the FD-OCC series is represented by w f (k')
  • the TD-OCC series is represented by w t (k').
  • FIG. 2A shows the case where the CDM type is no CDM.
  • FIG. 2B shows a case where the CDM type is FD-CDM2.
  • FIG. 2C shows the case where the CDM type is CDM4.
  • FIG. 2D shows the case where the CDM type is CDM8.
  • FIG. 3 is a diagram showing an example of CSI-RS positions for each number of ports based on FIG. 1. This figure shows the frequency density, component resource size (frequency direction size [RE], time direction size [symbol]), and CDM type for each number of ports.
  • frequency direction size [RE] frequency direction size [RE]
  • time direction size [symbol] time direction size [symbol]
  • FIG. 4 shows an example of CSI-RS resource element (RE) mapping in which the number of ports is 32 and the component resource size is set to 2RE ⁇ 2 symbols (row index 17 in FIG. 1).
  • 4 component resources of 2RE x 2 symbols are multiplexed in the frequency domain (frequency division multiplexing (FDM)), and 2 in the time domain (time division multiplexing (TDM)).
  • FDM frequency division multiplexing
  • TDM time division multiplexing
  • 4x2 component resources are mapped.
  • FDM frequency division multiplexing
  • CDM code division multiplexing
  • CDM code division multiplexing
  • the UE can measure many channel states and improve the measurement accuracy.
  • PUCCH format 4 includes FD-OCC and DFT-s-OFDM (transform precoding) on the data symbol, cyclic shift (CS) on the DMRS symbol, and phase rotation. To support.
  • the FD-OCC applied to the data (uplink control information (UCI)) of the PUCCH format 4 for each multiple N SF PUCCH (spreading factor) N SF PUCCH is orthogonal. Associated with the series index.
  • FIG. 5A shows a case where the multiple number is 2.
  • FIG. 5B shows a case where the multiple number is 4.
  • the data up to the multiple number is CDM.
  • the CS index applied to the DMRS of PUCCH format 4 is associated with the orthogonal series index.
  • the DMRS is CDMed by applying a CS based on the CS index to the DMRS of PUCCH format 4.
  • FR frequency range
  • FIG. 6 is a diagram showing an example of FR.
  • FR4 is, for example, 52.6 GHz to 114.25 GHz.
  • the frequency range of the existing Rel-15 NR is 410 MHz-7.152 GHz for FR1 and 24.25 GHz-52.6 GHz for FR2.
  • FR3 is, for example, 7.152 GHz to 24.25 GHz.
  • FR4 may be called FRx (x is an arbitrary character string).
  • a large (wide) subcarrier spacing (SCS) ie, a small number of FFT points
  • a single carrier waveform ie, a mechanism for reducing PAPR in a large SCS
  • a narrow beam ie, a large number of beams.
  • CP-OFDM and DFT-S-OFDM having a wider subcarrier interval than Rel-15NR are used. It is conceivable to use it.
  • a large SCS results in at least one of a short symbol length and a short cyclic prefix (CP) length and a short slot length.
  • a low PAPR DL control channel structure is preferred for maximizing coverage and power amplification efficiency.
  • the DL channel (for example, PDCCH, etc.) is designed based on the OFDM waveform, but in the frequency band higher than 52.6 GHz, it is assumed that a channel design based on a single carrier is considered.
  • the base station transmits CSI-RS in the high frequency band. For example, it is not clear how to support multiple antenna ports on the CSI-RS. If CSI-RS is not transmitted properly at high frequencies, it may lead to deterioration of system performance.
  • the present inventors have conceived the configuration and control method of CSI-RS at high frequencies.
  • the antenna port and the CSI-RS port may be read as each other.
  • DFT-s-OFDM and transform precoding may be read interchangeably.
  • beam quasi co-location (QCL) assumption, QCL relationship, transmission configuration indicator (TCI) state, spatial domain filter spatial domain receive filter, reference signal (RS), SS / PBCH block (SSB), CSI- RS, may be read interchangeably.
  • QCL quasi co-location
  • TCI transmission configuration indicator
  • RS reference signal
  • SSB SS / PBCH block
  • CSI- RS CSI- RS
  • a channel / signal may be read as at least one of a channel and a signal.
  • Each embodiment may be applied to a frequency higher than a predetermined frequency (for example, 7.125 GHz, 24.25 GHz, 52.6 GHz, etc.). It should be noted that each embodiment can be applied not only to FR4 (for example, a predetermined frequency range higher than 52.6 GHz) but also for other FRs (for example, FR1, FR2, FR3, etc.). FRx (x is an arbitrary alphanumeric character) of the present disclosure may be read as an arbitrary FRx.
  • the CSI-RS sequence may be defined by a low-Peak to Average Power Ratio (low PAPR) sequence.
  • the UE may assume that the CSI-RS sequence is defined by the low PAPR sequence.
  • the low PAPR series may be a Constant Amplitude Zero Auto Correlation (CAZAC) series or a series conforming to the CAZAC series (for example, a computer-generated (CGS)) series.
  • CAZAC Constant Amplitude Zero Auto Correlation
  • CGS computer-generated
  • the CGS may be specified in the specification (eg, table).
  • the CSI-RS series may be CGS, and if the CSI-RS series length is M or more, the CSI-RS series is the CAZAC series (eg, Zadoff-Chu series). It may be.
  • M may be 30.
  • the length of the CAZAC series may be a prime number or a prime number -1.
  • cross-correlation can be reduced and cell-cell interference can be reduced.
  • Cross-correlation can be further reduced by increasing the low PAPR sequence length.
  • the DFT-s-OFDM may be applied to CSI-RS.
  • the CSI-RS sequence may be a pseudo-Random sequence (pseudo-Noise (PN) sequence, for example, a Gold sequence, a Gold sequence of length 31 or an M sequence).
  • PN pseudo-Random sequence
  • the initial value init used to generate the pseudo-random sequence may be based on at least one of the upper layer signaling and cell ID.
  • the CSI-RS series may be an all-one series.
  • At least one of offset quadrature phase shift keying (OQPSK), ⁇ / 2 shift binary phase shift keying (BPSK), and DFT-s-OFDM may be applied.
  • CP-OFDM transform precoding disabled
  • DFT-s-OFDM transform precoding enabled
  • Multiple antenna ports may be supported for CSI-RS.
  • the antenna port may be associated with at least one of the following resources 1-6.
  • -Resource 3 TD-OCC (index) By associating the multiple antenna ports with different TD-OCCs, the CSI-RS of the multiple antenna ports is CDMed at the same time / frequency resource.
  • -Resource 4 Frequency resource (RE index)
  • the CSI-RS of the multiple antenna ports is FDMed by associating the multiple antenna ports with different frequency resources.
  • -Resource 5 Time resource (symbol index)
  • the CSI-RS of the multiple antenna ports is TDMed by associating the multiple antenna ports with different time resources.
  • the CSI-RS of a plurality of antenna ports may be TDM.
  • Resource 6 diffusion code (code index) By associating the multiple antenna ports with different spreading codes, the CSI-RS of the multiple antenna ports is CDMed at the same time / frequency resource.
  • the association (mapping) between the antenna port index and at least one of resources 1 to 6 may be set by upper layer signaling or may be specified in the specifications.
  • the number of antenna ports can be further increased by combining resources 1 to 6.
  • the plurality of antenna ports may correspond to different layers (multiple input, multiple output (MIMO) layers), or may correspond to different UEs.
  • the number of antenna ports may be larger than the number of layers, may be larger than the number of UEs, or may be larger than the number of layers ⁇ the number of UEs. Multiple layers may support different antenna ports. Multiple UEs may support different antenna ports.
  • a CSI-RS resource containing at least one of resources 1 to 6 may be associated with at least one of an antenna port and a group of antenna ports (antenna port group).
  • Multiple antenna ports may be associated with different CSs.
  • the CSI-RS series length is 72 and the CSI-RS series is [X 0 , X 1 , ..., X 71 ].
  • which is CS, may be based on the CS index.
  • ports # 0, # 1, # 2, and # 3 may be associated with CS indexes 0, 2 , 4 , and 6 (CS ⁇ 0, ⁇ 2 , ⁇ 4 , ⁇ 6 ), respectively. ..
  • DFT-s-OFDM may be applied to the cyclically shifted CSI-RS sequence.
  • the number of CSs associated with multiple antenna ports may be constant.
  • the number of CSs associated with the plurality of antenna ports may be, for example, the number of REs per PRB (eg, 12). In this case, orthogonality and quality can be improved.
  • the number of CSs associated with multiple antenna ports is the same as the total sequence length (eg, CSI-RS bandwidth, number of REs used for CSI-RS (number of REs per PRB x number of PRBs used for CSI-RS)). It may be. In this case, the multiple capacity can be improved.
  • the number of CSs associated with the multiple antenna ports may depend on the CSI-RS bandwidth (eg, the number of PRBs or REs used for CSI-RS).
  • the association eg, table
  • the CSI-RS bandwidth CSI-RS sequence length
  • the number of CSs associated with the plurality of antenna ports may be specified in the specification, or the upper layer. It may be set or updated by signaling. For example, if the CSI-RS bandwidth is 24-57RE, 24 CSs may be associated with different antenna ports, as shown in FIG. 8B. In this case, orthogonality and quality can be improved. Multiple capacities can be improved when the CSI-RS bandwidth is wide.
  • the number of CSs and the number of antenna ports can be increased, and channels in a wide band can be measured.
  • Multiple antenna ports may be associated with different FD-OCCs.
  • the FD-OCC length may be equal to the CSI-RS series length.
  • the CSI-RS series length and the FD-OCC length are 72
  • the CSI-RS series is [X 0 , X 1 , ..., X 71 ]
  • the FD-OCC is [M. 0 , M 1 , ..., M 71 ].
  • FD-OCC may be multiplied in RE units for the CSI-RS sequence.
  • CSI-RSs of multiple antenna ports may be CDMed by multiplying them by different FD-OCCs.
  • the FD-OCC index and FD-OCC association may be specified in the specification or set or updated by higher layer signaling.
  • DFT-s-OFDM may be applied to the CSI-RS series obtained by multiplying each RE by FD-OCC.
  • the FD-OCC index and FD-OCC association may be specified in the specification for each parameter related to CSI-RS sequence length or CSI-RS bandwidth or FD-OCC length.
  • a table for each CSI-RS bandwidth eg, 4PRB, 6PRB, 10PRB, etc.
  • the UE may determine which table to use based on the parameters set by higher layer signaling.
  • Multiple antenna ports may be associated with at least one of different frequency resources and different time resources.
  • CSI-RS corresponding to a plurality of antenna ports or a group of a plurality of antenna ports may be multiplexed by at least one of FDM and TDM.
  • the CSI-RSs of ports # 0 to # 3 may be CDMed using different CSs in one time and frequency resource.
  • the CSI-RSs of ports # 4 to # 7 may be CDMed with different CSs at different time and frequency resources.
  • CSI-RS corresponding to a plurality of antenna ports may be FDM.
  • CSI-RS of ports # 0 to # 3 and CSI-RS of ports # 4 to # 7 may be FDMed.
  • CSI-RS corresponding to a plurality of antenna ports may be FDM and TDM.
  • CSI-RS of ports # 0 to # 3 and CSI-RS of ports # 4 to # 7 may be FDM and TDM.
  • the CSI-RS of ports # 0 to # 3 and the CSI-RS of ports # 4 to # 7 do not have to be mapped to consecutive symbols.
  • CSI-RS corresponding to a plurality of antenna ports may be TDM.
  • CSI-RS of ports # 0 to # 3 and CSI-RS of ports # 4 to # 7 may be TDM.
  • the CSI-RS of ports # 0 to # 3 and the CSI-RS of ports # 4 to # 7 do not have to be mapped to consecutive symbols.
  • Multiple antenna ports may be associated with different TD-OCCs.
  • the TD-OCC length may be equal to the number of CSI-RS symbols.
  • TD-OCC may be multiplied by symbol for CSI-RS.
  • the CSI-RS sequence of each symbol may be the same or different.
  • CSI-RSs of multiple antenna ports may be CDMed by multiplying them by different TD-OCCs.
  • the association between the TD-OCC index and the TD-OCC may be specified in the specification or set or updated by higher layer signaling.
  • CSI-RS and TD-OCC may be mapped to continuous symbols.
  • the TD-OCC length may be equal to the CSI-RS time length (number of symbols).
  • CSI-RS and TD-OCC may be mapped to discontinuous symbols.
  • the TD-OCC length may be equal to the number of CSI-RS symbols.
  • the CSI-RS associated with each port may be a low PAPR series having a series length corresponding to the bandwidth (number of REs).
  • DFT-s-OFDM may be applied to the CSI-RS series obtained by multiplying each symbol by TD-OCC.
  • the association between the TD-OCC index and the TD-OCC may be specified in the specifications for each parameter related to the TD-OCC length (number of symbols) or the number of CSI-RS symbols (time length).
  • a table for each number of CSI-RS symbols may be specified in the specifications. The UE may determine which table to use based on the parameters set by higher layer signaling.
  • the TD-OCC supports multiple antenna ports of CSI-RS because the symbol length is reduced by expanding the SCS.
  • a plurality of TD-OCC lengths (for example, 2, 4, 8, 12, 16, 7) Associated with a plurality of SCSs may be specified in the specifications. For example, as shown in FIG. 13, 1 (without CDM) TD-OCC length may be associated with the 15 kHz SCS, and more than 1 TD-OCC length may be associated with the 960 kHz SCS.
  • the UE may select a TD-OCC length that depends on the set CSI-RS resource (for example, at least one of CSI-RS SCS and CSI-RS symbol number (time length)).
  • the SCS becomes larger and the symbol length becomes shorter, the fluctuation of the signal due to movement becomes smaller. Therefore, even if the number of symbols of CSI-RS and the TD-OCC length are increased, the orthogonality of TD-OCC can be maintained.
  • [Modification example of resource 1] CS may be applied to the time domain.
  • symbol-level (per symbol) sequence hopping is applied to the CSI-RS sequence
  • the same sequence for example, base sequence
  • Series hopping may be stopped across the symbols of).
  • the sequence of all symbols to which CS applies may follow the sequence of the first symbol.
  • All symbols to which CS is applied may be all symbols of CSI-RS or some symbols of CSI-RS.
  • which is one of the 12 CSs shown in FIG. 7B, may be applied to CSI-RS over 12 symbols.
  • the UE may set a CSI-RS resource including a CS index for determining CS ( ⁇ ) by upper layer signaling.
  • CSI-RS may be mapped to a plurality of consecutive symbols, or may be mapped to a plurality of discontinuous symbols.
  • the number of CSs associated with the multiple antenna ports may be constant (for example, 2, 4, 8, etc.). In this case, orthogonality and quality can be improved.
  • the number of CSs associated with the multiple antenna ports may be the same as the number of symbols (time length) of the entire CSI-RS. In this case, the multiple capacity can be improved.
  • the number of CSs associated with multiple antenna ports may depend on the number of CSI-RS symbols (time length). As shown in FIG. 15, the association (eg, table) between the number of CSI-RS symbols and the number of CSs associated with multiple antenna ports may be specified in the specification and may be set or updated by higher layer signaling. May be good. In this case, orthogonality and quality can be improved. Further, the larger the number of CSI-RS symbols, the more the multiple capacity can be improved.
  • Multiple antenna ports may be associated with different spreading codes.
  • the base station selects one spread code from the spread code set (eg, codes A, B, C, D) and picks the selected spread code (eg, code A) from the UE. May be notified to.
  • the base station transmits the signal obtained by spreading the CSI-RS using the spreading code (multiplying the CSI-RS by the spreading code).
  • the UE receives signals corresponding to a plurality of spreading codes and despreads the received signal using the notified spreading code (CSI-RS is multiplied by the same spreading code on the received signal) to obtain CSI-RS. May be measured.
  • the base station and the UE may multiply the spread code every time shorter than the symbol.
  • the UE may be notified of one of a plurality of spread code candidates (diffuse code set), or may generate a spread code based on UE-specific parameters (eg, UE index).
  • the UE increases the power spectral density of the CSI-RS corresponding to the spreading code by performing despreading using the same spreading code as the spreading code applied by the base station, and thus the CSI. -RS can be measured.
  • the UE can consider a received signal to which a spreading code other than the spreading code applied to the UE is applied as noise.
  • the diffusion code may be a PN sequence, an orthogonal variable spreading factor (OVSF) code, or a code having ⁇ 0,1 ⁇ or ⁇ -1,1 ⁇ as an element. ..
  • OVSF orthogonal variable spreading factor
  • the CSI-RS may have an SCS that is m times larger for a particular type of channel / signal.
  • the specific type of channel / signal may be, for example, at least one of PDSCH, PDCCH, PDSCH DMRS, and PDCCH DMRS.
  • m may be 2 n .
  • m or n may be set by higher layer signaling or may be specified in the specification.
  • the symbol length can be shortened and the CSI-RS time can be shortened.
  • the CSI-RS # 1 and CSI-RS # are within a limited time.
  • Different beams can be applied to 2.
  • different beams may be applied to CSI-RS # 1 and CSI-RS # 2 depending on the time by using analog beamforming.
  • CSI-RS # 1 and CSI-RS # 2 may have different QCL type D relationships (may be associated with different beams (RS)).
  • the UE can measure two beams within the time corresponding to one symbol of a particular type of channel / signal. By increasing the SCS of the CSI-RS, the time of the CSI-RS can be suppressed even when the number of beams is large.
  • the UE can measure a wider band.
  • the UE may not be required to perform at least one of transmission and reception and decoding and monitoring of channels / signals.
  • the SCS switching period may be within the period of a specific type of channel / signal. In this case, the measurement accuracy of CSI-RS can be maintained.
  • the SCS switching period may be within the CSI-RS period. In this case, the quality of a specific type of channel / signal can be maintained.
  • the association (eg, table) between the SCS of the CSI-RS or the SCS of a particular type of channel / signal and the SCS switching time length may be specified in the specification, or higher layer signaling or It may be determined by the UE based on the UE capability.
  • a table showing the association between the CSI-RS SCS or the SCS of a particular type of channel / signal and the SCS switching time length may be specified in the specification for at least one parameter of higher layer signaling and UE capability. ..
  • the UE may select one of a plurality of tables based on at least one of higher layer signaling and UE capability.
  • the UE may expect that the channel / signal will not be scheduled for a period of a specific time length immediately before or after the CSI-RS.
  • the specific time length may be the SCS switching time length.
  • ⁇ Comb ⁇ CSI-RS resources may be FDMed using a comb (comb) arrangement.
  • CSI-RS may be mapped according to comb in the frequency domain.
  • the comb density may be set by higher layer signaling or may be specified in the specification.
  • the frequency resource index (comb index, comb value, for example, comb # 1, comb # 2, etc.) may be set by higher layer signaling.
  • the specification may specify the association (mapping) between a plurality of frequency resource indexes and different antenna ports.
  • the CSI-RS series may be mapped to the RE used for transmission.
  • FIG. 21A when the comb density is 1, the CSI-RS is mapped to a continuous PRB.
  • FIG. 21B when the comb density is 2, CSI-RS is mapped to one RE every 2 REs.
  • FIG. 21C when the comb density is 3, CSI-RS is mapped to one RE every 3 REs.
  • FIG. 21D when the comb density is 4, CSI-RS is mapped to one RE every 4 REs.
  • FIG. 21E when the comb density is 6, CSI-RS is mapped to one RE every 6 REs.
  • FIG. 21F when the comb density is 12, CSI-RS is mapped to one RE every 12 REs.
  • the CSI-RS series punctured according to the comb may be mapped to the RE used for transmission.
  • the band of CSI-RS can be expanded while maintaining low PAPR.
  • the UE can appropriately receive CSI-RS of a plurality of antenna ports.
  • the low PAPR series CSI-RS interference can be suppressed and the accuracy of CSI measurement can be improved.
  • the low PAPR series CSI-RS associated with ports # 0 to # 3 and the low PAPR series CSI-RS associated with ports # 4 to # 7 are The PAPR when FDM is performed is higher than the PAPR of each CSI-RS.
  • CSI-RS may follow at least one of the following CSI-RS transmission methods 1 and 2.
  • ⁇ CSI-RS transmission method 1 Multiple transmitters for DL transmission may transmit CSI-RS at the same time.
  • Transmitter, transmitter / receiver, transmission / reception point (TRP), radio frequency (RF) section (circuit), panel, antenna panel, antenna port group, RS port group, CORESET group are read as each other. May be done.
  • One cell may be covered with a plurality of TRPs.
  • TRP # 1 transmits CSI-RS # 1 of ports # 0 to # 3 (antenna port group # 1)
  • TRP # 2 transmits ports # 4 to # 7 (antenna port group).
  • CSI-RS # 1 of # 2) may be transmitted.
  • the CSI-RS of the antenna port group # 1 and the CSI-RS of the antenna port group # 2 may be FDMed.
  • the UE may receive the CSI-RS of the antenna port group # 1 and the CSI-RS of the antenna port group # 2 in one symbol.
  • the CSI-RS resource for the first antenna port group and the CSI-RS resource for the second antenna port group may be set independently.
  • the CSI-RS of the first antenna port group and the CSI-RS of the second antenna port group may have different phases or may not have a QCL relationship (to different QCL parameters). May be associated).
  • the QCL parameter may be an RS for the QCL (eg, RS index, resource index, etc.).
  • the CSI-RSs of a plurality of antenna ports in one antenna port group may have a QCL relationship (may be associated with the same QCL parameter).
  • the UE may set at least one of the QCL parameters and the TCI state for at least one of the antenna port, the antenna port group, and the CSI-RS resource.
  • the TCI states of multiple PDSCHs associated with different antenna port groups may indicate different CSI-RS resources.
  • TRP # 1 transmits a CSI-RS that maps the low PAPR series X 0 , X 1 , ..., X 47 associated with ports # 0 to # 3 to 4PRB (48RE). You may.
  • TRP # 2 maps the low PAPR series X 0 , X 1 , ..., X 47 associated with ports # 4 to # 7 to another 4PRB (48RE) of the same symbol.
  • RS may be transmitted.
  • ⁇ CSI-RS transmission method 2 One CSI-RS for at least one of the plurality of UEs and the plurality of antenna ports may be transmitted for each specific type of band.
  • the specific type of band may be read as a partial band (bandwidth part (BWP)), a component carrier (CC), a system band, and the like.
  • BWP bandwidth part
  • CC component carrier
  • system band and the like.
  • One CSI-RS may be transmitted in one symbol on one serving cell.
  • One CSI-RS may be transmitted by one transmitter.
  • CSI-RS may be transmitted uniquely to the cell.
  • the CSI-RS resource set in the UE may be unique to the UE.
  • CSI-RS may be mapped using comb.
  • the width of the transmitted CSI-RS bandwidth (CSI-RS transmission bandwidth) is that of the CSI-RS resource set for at least one measurement and reporting. It may be larger than the width (CSI-RS resource bandwidth) of the bandwidth (CSI-RS resource bandwidth, CSI-RS measurement bandwidth, CSI-RS set bandwidth).
  • the CSI-RS transmission band may include the CSI-RS resource band.
  • the CSI-RS of the low PAPR sequence having the sequence length M may be mapped to the entire BWP (CSI-RS transmission band) and transmitted.
  • the UE may be configured with a CSI-RS resource that has a portion of the BWP band (CSI-RS resource band) for at least one measurement and reporting.
  • the CSI-RS transmission bandwidth (CSI-RS transmission bandwidth, CSI-RS sequence length) and the CSI-RS resource for at least one of measurement and reporting may be set independently.
  • the CSI-RS transmission bandwidth (CSI-RS transmission bandwidth, CSI-RS series length) may not be set.
  • the CSI-RS transmission bandwidth may be the width of the bandwidth (BWP or system bandwidth).
  • the UE may be configured with a plurality of CSI-RS resources corresponding to a plurality of antenna ports.
  • a plurality of CSI-RS resources may have different CSI-RS resource bands of the same symbol.
  • the frequency utilization efficiency can be improved as in the case of FDM of a plurality of CSI-RS.
  • PAPR can be suppressed low by transmitting one CSI-RS series over the CSI-RS transmission band.
  • two CSI-RSs are transmitted by different transmitters as in the CSI-RS transmission method 1, it is difficult to maintain the phase continuity, but as in the CSI-RS transmission method 2, the CSI By transmitting one CSI-RS over the -RS transmission band, phase continuity is maintained in a plurality of CSI-RS resource bands within the CSI-RS transmission band.
  • the CSI-RS sequence can be lengthened, the number of CSI-RSs that can be cross-correlated in the same symbol and band can be increased, and the CSI to be multiplexed
  • the cross-correlation between -RS can be kept low.
  • the CDM (CDM index) may be applied to the entire CSI-RS transmission band.
  • the CDM may be at least one of OCC (at least one of FD-OCC and TD-OCC) and CS.
  • the CDM index may be read as an orthogonal index, a series index, an OCC index, a CS index, and the like.
  • the UE may set the CDM index for the CSI-RS transmission band.
  • the UE may receive the entire CSI-RS of the CSI-RS transmission band.
  • the CSI-RS transmission bandwidth may be determined based on the length of the sequence for the CDM (low PAPR sequence, at least one of OCC).
  • the length of the sequence for the CDM may be determined based on the CSI-RS transmit bandwidth.
  • the UE may measure the CSI in the CSI-RS resource band. Even in this case, the CDM may be applied to the entire CSI-RS transmission band in order to maintain the orthogonality of the CSI-RS series.
  • the UE may measure the entire CSI-RS transmission band and separate the received signal of each antenna port using the set CDM index.
  • the UE may acquire the entire CSI of the CSI-RS transmission band.
  • the UE is for at least one of measurement, reporting, CSI reporting, layer 1 (L1) -reference signal received power (RSRP), L1-signal to interference plus noise (SINR), interference, CSI feedback, L3-RSRP.
  • RSRP layer 1
  • SINR interference plus noise
  • CSI feedback L3-RSRP.
  • CSI may be measured only with CSI-RS resources.
  • the UE may apply the CDM to the CSI-RS resource band.
  • the CSI-RS resource bandwidth may be determined based on the length of the sequence for the CDM (low PAPR sequence, at least one of OCC).
  • the length of the sequence for the CDM may be determined based on the CSI-RS transmit resource width.
  • the CDM index may be applied to the CSI-RS resource bandwidth.
  • the UE may set a CDM index for the CSI-RS resource bandwidth.
  • the UE may receive CSI-RS only in the CSI-RS resource band. By receiving the CSI-RS of only the CSI-RS resource band, the UE receives a narrow band as compared with the case of receiving the entire CSI-RS of the CSI-RS transmission band, so that the power consumption can be suppressed. Can (save the UE battery).
  • the CSI-RS resource band may hop at at least one of the symbol level and the slot level (frequency hopping).
  • the hopping function for the CSI-RS resource bandwidth may include at least one of a symbol index, a slot index, and a UE index (eg, RNTI).
  • the CSI-RS resource bandwidth may be based on at least one of a symbol index, a slot index, and a UE index (eg, RNTI).
  • the CSI-RS resource may span multiple discontinuous symbols.
  • the CSI-RS resource bandwidth is part of the CSI-RS transmit bandwidth and may hop based on the symbol index.
  • the UE can measure a wide measurement bandwidth.
  • the UE can measure the CSI-RS resources of a plurality of antenna ports with the same symbol, and can improve the frequency utilization efficiency.
  • the CSI-RS transmission band may be a part of a specific type of band.
  • the CSI-RS transmission band may hop within a particular type of band.
  • the specific type of band may be read as BWP, CC, system band, and the like.
  • the CSI-RS transmission band may hop at at least one of the symbol level and the slot level (frequency hopping).
  • the hopping function for the CSI-RS transmission band may include at least one of a symbol index, a slot index, and a UE index (eg, RNTI).
  • the CSI-RS resource bandwidth may be based on at least one of a symbol index, a slot index, and a UE index (eg, RNTI).
  • the CSI-RS resource band may be the entire CSI-RS transmission band or a part of the CSI-RS transmission band.
  • the CSI-RS resource bandwidth may hop at at least one of the symbol level and the slot level.
  • the power consumption of the UE can be reduced as compared with the case where the CSI-RS transmission band is the entire specific type band.
  • the UE may measure the CSI in the CSI-RS resource band and report the CSI.
  • the UE uses the portion of the CSI-RS resource band that overlaps the CSI-RS transmission band.
  • the CSI may be measured and reported in. If the CSI-RS resource bandwidth partially overlaps the CSI-RS transmit bandwidth, the UE may measure the CSI over the entire CSI-RS transmit bandwidth and report the CSI. If the CSI-RS resource bandwidth partially overlaps the CSI-RS transmit bandwidth, the UE may (or may not) drop the CSI report without measuring the CSI.
  • the UE may measure the CSI over the entire CSI-RS transmit bandwidth and report the CSI. .. If the CSI-RS resource bandwidth partially overlaps the CSI-RS transmit bandwidth, the UE may (or may not) drop the CSI report without measuring the CSI.
  • the UE receives CSI-RS of a part of the band, so that the power consumption can be suppressed (the battery of the UE can be saved).
  • Data and CSI-RS may be multiplexed.
  • the data may be read as PDSCH, data carried by PDSCH.
  • Data and CSI-RS may be multiplexed according to any of the multiplexing methods 1 and 2 described later.
  • the UE may be set (or switched) by either of the multiplexing methods 1 and 2 by the upper layer signaling.
  • the UE may assume that the CSI-RS is a low PAPR series.
  • the UE has CSI-RS of Rel. It may be assumed that there are 15 sequences (for example, pseudo-random sequences).
  • Data and CSI-RS may be TDM.
  • the data and CSI-RS FDM may lead to a large PAPR.
  • the PAPR of CSI-RS can be kept low.
  • the UE may be set to at least one of CSI-RS and PDSCH according to one of the following setting methods 1 and 2.
  • the UE may not expect the CSI-RS and PDSCH to be configured on the same OFDM symbol.
  • the UE may not expect CSI-RS and PDCCH to be set on the same symbol.
  • the UE may not expect the CSI-RS and PDSCH DMRS to be set on the same OFDM symbol.
  • the UE may not expect the CSI-RS and PDCCH DMRS to be set on the same symbol.
  • the UE is configured with CSI-RS and certain types of DL transmissions (channels / signals) on the same OFDM symbol, the UE is required to monitor or measure the CSI-RS on its OFDM. It does not have to be. If the UE is configured with CSI-RS and certain types of DL transmission on the same OFDM symbol, the UE monitors or measures all CSI-RS resources with at least one OFDM symbol overlapping. It doesn't have to be. If the UE is configured with CSI-RS and a particular type of DL transmission on the same OFDM symbol, the UE is at least one of monitoring, measuring, decoding, and demodulating the particular type of DL transmission on that OFDM symbol. It does not have to be required to do.
  • the UE monitors, measures, decodes, monitors, measures, decodes, of certain types of DL transmissions with at least one OFDM symbol overlapping. It may not be necessary to perform at least one of demodulation.
  • the time domain position of CSI-RS is Rel. It may differ from the 15 CSI-RS time domain locations.
  • the CSI-RS may be located only before or after the PDSCH symbol. CSI-RS does not have to interrupt the PDSCH.
  • CSI-RS may be arranged after PDSCH in one slot.
  • the UE may assume that the CSI-RS at the last N symbol of a period is set (instructed, activated).
  • the period may be one of a slot, a subslot, and a subframe.
  • the UE may be set to N (for example, 4).
  • the UE may assume that the CSI-RS in the first N symbols or the last N symbols of the M period is set (instructed, activated).
  • the period may be one of a slot, a subslot, and a subframe.
  • One PDSCH may be transmitted over an M period, or M repetitions may be transmitted.
  • Data and CSI-RS may be multiplexed by at least one of TDM and FDM.
  • the data and CSI-RS may be transmitted by different transmitters and the data and CSI-RS may be FDM.
  • the PAPR of CSI-RS can be suppressed low.
  • FDM the data and CSI-RS, the frequency utilization efficiency can be improved. Due to the different channels (paths) and phases between the data and the CSI-RS, it is difficult to use the data and channel measurement results based on the FDM CSI-RS to demodulate the data.
  • CSI-RS may be mapped according to either of the following mapping methods 1 and 2.
  • DFT-s-OFDM may be applied after the CSI-RS mapping.
  • the CSI-RS mapping is described in Rel. It may be the same as 15 CSI-RS.
  • the CSI-RS sequence may be mapped, the PDSCH may be mapped, and DFT-s-OFDM may be applied to the obtained signal.
  • the CSI-RS may be a high PAPR sequence (eg, a pseudo-random sequence) or a low PAPR sequence.
  • PAPR can be suppressed by applying DFT-s-OFDM.
  • the CSI-RS may be mapped to the pre-DFT time domain.
  • the CSI-RS sequence may be mapped to the time domain and M point DFT.
  • the output (frequency domain) of the M-point DFT may be mapped to M subcarriers among the N subcarriers (subcarrier mapping) and N-point IDFT.
  • the output (time domain) of the N point IDFT may be converted in parallel / serial (P / S), added with a guard interval, and transmitted.
  • the CSI-RS series may be a low PAPR series, a pseudo-random series, or another series.
  • a CSI-RS sample may be inserted into the data sample in the time domain.
  • the data in which the CSI-RS is inserted may be input to the M point DFT and transmitted in the same manner as in FIG. 33.
  • data and CSI-RS can be appropriately multiplexed.
  • the low PAPR sequence of CSI-RS may be set in the same manner as the sequence of sounding reference signal (SRS).
  • the low PAPR sequence of CSI-RS may be the same as the sequence of SRS.
  • At least one of the following mechanisms for SRS may be used for CSI-RS.
  • SRS configuration for example, low PAPR series generation
  • -Series generation for example, low PAPR series generation
  • Resource allocation for example, low PAPR series generation
  • Series hopping for example, Frequency hopping
  • the number of antenna ports of CSI-RS may be limited by the maximum number P.
  • P is Rel. It may be less than the maximum number of 15 CSI-RS or SRS antenna ports.
  • P may be greater than the maximum number of antenna ports of SRS, and Rel. It may be greater than the maximum number of 15 SRS antenna ports, and Rel. It may be greater than the maximum number of 15 CSI-RS antenna ports.
  • At frequencies higher than the predetermined frequency (eg FR4), at least one parameter of the maximum number of CSI-RS antenna ports, the maximum number of MIMO layers, and the maximum number of UEs to be multiplexed is greater than the predetermined frequency. May be smaller or larger than the parameter at lower frequencies (eg FR1).
  • the CSI-RS resource including the CSI-RS series may be set or determined uniquely to the cell.
  • the CSI-RS resource including the CSI-RS series may be set or determined uniquely to the UE.
  • At least one of periodic (P) -CSI-RS, semi-persistent (SP) -CSI-RS, and aperiodic (aperiodic (A))-CSI-RS may be supported.
  • the cell-specific CSI-RS transmission power may be set or determined by the ratio to a specific type of DL transmission.
  • the specific type of DL transmission may be, for example, any of SSB, PDCCH, and PDSCH.
  • the UE-specific CSI-RS transmission power may be determined based on the SRS transmission power control. In this case, the performance for the UE at the cell end can be improved.
  • the UE may measure and report path loss to determine the UE-specific CSI-RS transmit power.
  • the UE may transmit RS (eg, SRS) in order for the base station to estimate the path loss for determining the UE-specific CSI-RS transmit power.
  • RS may be referred to as a path loss measurement UL RS or the like.
  • the implementation becomes simple by determining the CSI-RS resource based on the SRS resource.
  • the CSI-RS series may be set by at least one of the following setting methods 1 and 2.
  • the UE may explicitly set, direct or activate a low PAPR or high PAPR sequence for CSI-RS based on higher layer signaling and at least one of MAC CE and DCI.
  • the UE may implicitly set or direct or activate a low PAPR or high PAPR sequence for CSI-RS based on higher layer signaling and at least one of MAC CE and DCI.
  • the UE may monitor or measure the high PAPR series CSI-RS.
  • the particular type of channel / signal may be PDSCH or PDCCH.
  • the PAPR of the CP-OFDM waveform may be higher than the PAPR of the DFT-s-OFDM waveform.
  • the UE may monitor or measure the low PAPR series CSI-RS.
  • the PAPR of the DFT-s-OFDM waveform may be lower than the PAPR of the CP-OFDM waveform.
  • an appropriate CSI-RS series can be used.
  • the number of symbols to which CSI-RS is mapped may increase.
  • One CSI-RS resource may span multiple periods.
  • the UE may receive one CSI-RS over a plurality of periods.
  • the period may be one of a slot, a subslot, and a subframe.
  • one CSI-RS resource may span multiple slots.
  • TD-OCC may be applied to CSI-RS over multiple periods. For example, TD-OCC may be applied across multiple slots.
  • the UE may receive one CSI-RS using a low PAPR sequence over two slots.
  • the time domain position and frequency domain position in each slot may be the same.
  • the UE may receive one CSI-RS using a high PAPR sequence (CSI-RS sequence of Rel.15) over two slots.
  • CSI-RS sequence of Rel.15 The time domain position and frequency domain position in each slot are described in Rel. It may be the same as 15 CSI-RS.
  • CSI-RS (CSI-RS resource, CSI-RS series, CSI-RS position, at least one) in one slot may be repeated over a plurality of slots.
  • TD-OCC may be applied within one slot (each slot).
  • the CSI-RS over one slot and the CSI-RS over multiple slots may be CDMed by multiplying by different TD-OCCs over one slot.
  • the CSI-RS series may be generated over multiple slots.
  • the CSI-RS sequence may differ depending on at least one of the slots and symbols.
  • TD-OCC may be applied across multiple slots.
  • the CSI-RS over a plurality of slots and the CSI-RS over the same plurality of slots may be CDMed by multiplying by different TD-OCCs over the same plurality of slots.
  • the CSI-RS sequence length can be lengthened and the number of multiplexed CSI-RSs can be increased.
  • the TD-OCC length can be increased and the number of multiplexed CSI-RSs can be increased.
  • the measurement accuracy can be improved by mapping one CSI-RS to more symbols.
  • ⁇ Other embodiments At frequencies higher than a given frequency (eg, 7.125 GHz, 24.25 GHz, 52.6 GHz, etc.) (eg, at least one of FR2, FR3, FR4), the low PAPR series and Rel. Both of the 15 CSI-RS sequences (pseudo-random sequence, high PAPR sequence) may be supported for CSI-RS.
  • the UE may be set by higher layer signaling whether to use the low PAPR sequence or the high PAPR sequence for CSI-RS.
  • the base station having a specific function is Rel.
  • CSI-RS based on 15 CSI-RS sequences may be transmitted.
  • Only low PAPR sequences may be supported for CSI-RS at frequencies higher than the predetermined frequency.
  • the UE may perform Rel. You do not have to expect to receive the CSI-RS of the 15 CSI-RS series.
  • the UE may report at least one of the following information regarding support for CSI-RS in the low PAPR series as part of the UE capability. -Whether or not to support CSI-RS of low PAPR series-Maximum number of antenna ports-Multiple antenna port multiplexing method (parameters related to at least one of TDM, FDM, CDM (OCC, CS, etc.), TRP) CSI-RS density (at least one density of time, frequency, CS)
  • the CSI-RS may be non-zero power (NZP) -CSI-RS or zero power (ZP) -CSI-RS.
  • NZP non-zero power
  • ZP zero power
  • Each of the above embodiments may be applied only to NZP-CSI-RS.
  • ZP-CSI-RS at frequencies higher than the predetermined frequency, Rel. Fifteen ZP-CSI-RS may be applied. In ZP-CSI-RS, the problem of PAPR does not occur.
  • a low PAPR series CSI-RS may be applied to ZP-CSI-RS at a frequency higher than a predetermined frequency.
  • the resource for the low PAPR series CSI-RS may be applied to the ZP-CSI-RS.
  • the same method for NZP-CSI-RS and ZP-CSI-RS in CSI-RS mapping and the like UE processing becomes simple. If the low PAPR series CSI-RS is not set or applied to the NZP-CSI-RS, Rel. Fifteen ZP-CSI-RS may be applied.
  • the case where the frequency is higher than the predetermined frequency (for example, FR4), the case where the specific subcarrier interval is set, and the case where the specific subcarrier interval is set in the predetermined cell may be read as each other. ..
  • the specific subcarrier interval is a subcarrier interval larger than a predetermined value (for example, 120 kHz), or a subcarrier interval when the parameter ⁇ corresponding to the numerology is larger than a predetermined value (for example, 3). You may.
  • the frequency range (for example, FR4) may be divided into a plurality of parts (for example, sub-frequency ranges or sub-FRs). At least one of the above plurality of embodiments may be applied to all or part of the frequencies in one frequency range. It is not necessary to apply at least one of the above plurality of embodiments to frequencies other than that frequency (for example, according to Rel.15).
  • the UE may acquire the CSI by measuring at least one CSI-RS resource of the plurality of antenna ports to which at least one embodiment described above is applied.
  • wireless communication system Wireless communication system
  • communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 36 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
  • the wireless communication system 1 may support dual connectivity between a plurality of Radio Access Technology (RAT) (Multi-RAT Dual Connectivity (MR-DC)).
  • MR-DC is a dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and a dual connectivity between NR and LTE (NR-E).
  • -UTRA Dual Connectivity (NE-DC) may be included.
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the NR base station (gNB) is MN
  • the LTE (E-UTRA) base station (eNB) is SN.
  • the wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
  • a plurality of base stations in the same RAT for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )
  • NR-NR Dual Connectivity NR-DC
  • gNB NR base stations
  • the wireless communication system 1 includes a base station 11 that forms a macro cell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. You may prepare.
  • the user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure.
  • the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
  • the user terminal 20 may be connected to at least one of the plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
  • CA Carrier Aggregation
  • DC dual connectivity
  • CC Component Carrier
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • the macro cell C1 may be included in FR1 and the small cell C2 may be included in FR2.
  • FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR2 may be in a frequency band higher than 24 GHz (above-24 GHz).
  • the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
  • the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the plurality of base stations 10 may be connected by wire (for example, an optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, an optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the upper station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to a relay station (relay) is IAB. It may be called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal that supports at least one of communication methods such as LTE, LTE-A, and 5G.
  • a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DL Downlink
  • UL Uplink
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple. Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the wireless access method may be called a waveform.
  • another wireless access system for example, another single carrier transmission system, another multi-carrier transmission system
  • the UL and DL wireless access systems may be used as the UL and DL wireless access systems.
  • downlink shared channels Physical Downlink Shared Channel (PDSCH)
  • broadcast channels Physical Broadcast Channel (PBCH)
  • downlink control channels Physical Downlink Control
  • Channel PDCCH
  • the uplink shared channel Physical Uplink Shared Channel (PUSCH)
  • the uplink control channel Physical Uplink Control Channel (PUCCH)
  • the random access channel shared by each user terminal 20 are used.
  • Physical Random Access Channel (PRACH) Physical Random Access Channel or the like may be used.
  • PDSCH User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH.
  • User data, upper layer control information, and the like may be transmitted by the PUSCH.
  • MIB Master Information Block
  • PBCH Master Information Block
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
  • DCI Downlink Control Information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • the DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • the PDSCH may be read as DL data
  • the PUSCH may be read as UL data.
  • a control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used for PDCCH detection.
  • CORESET corresponds to a resource that searches for DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates).
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or a plurality of aggregation levels.
  • One or more search spaces may be referred to as a search space set.
  • the "search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. of the present disclosure may be read as each other.
  • channel state information (Channel State Information (CSI)
  • delivery confirmation information for example, may be called Hybrid Automatic Repeat reQuest ACK knowledgement (HARQ-ACK), ACK / NACK, etc.
  • scheduling request (Scheduling Request () Uplink Control Information (UCI) including at least one of SR)
  • the PRACH may transmit a random access preamble for establishing a connection with the cell.
  • downlinks, uplinks, etc. may be expressed without “links”. Further, it may be expressed without adding "Physical" at the beginning of various channels.
  • a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation).
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • DeModulation Demodulation reference signal
  • Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like.
  • SS, SSB and the like may also be called a reference signal.
  • a measurement reference signal Sounding Reference Signal (SRS)
  • a demodulation reference signal DMRS
  • UL-RS Uplink Reference Signal
  • UE-specific Reference Signal UE-specific Reference Signal
  • FIG. 37 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • the base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140.
  • the control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
  • the functional blocks of the feature portion in the present embodiment are mainly shown, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like.
  • the control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120.
  • the control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
  • the transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123.
  • the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
  • the transmitter / receiver 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure. be able to.
  • the transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
  • the receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
  • the transmitting / receiving antenna 130 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 120 processes, for example, Packet Data Convergence Protocol (PDCP) layer processing and Radio Link Control (RLC) layer processing (for example, RLC) for data, control information, etc. acquired from control unit 110.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 120 performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted.
  • the base band signal may be output by performing processing (if necessary), inverse fast Fourier transform (IFFT) processing, precoding, digital-analog transform, and other transmission processing.
  • IFFT inverse fast Fourier transform
  • the transmission / reception unit 120 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
  • the transmission / reception unit 120 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
  • the transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) Processing (if necessary), filtering, decoding, demodulation, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmission / reception unit 120 may perform measurement on the received signal.
  • the measuring unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal.
  • the measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)).
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • Signal strength for example, Received Signal Strength Indicator (RSSI)
  • propagation path information for example, CSI
  • the measurement result may be output to the control unit 110.
  • the transmission line interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, and the like, and provides user data (user plane data) and control plane for the user terminal 20. Data or the like may be acquired or transmitted.
  • the transmitting unit and the receiving unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • control unit 110 may receive a phase tracking reference signal (Phase Tracking Reference Signal (PTRS)) for the uplink control channel (PUCCH) from the user terminal 20.
  • PTRS Phase Tracking Reference Signal
  • the control unit 110 may reduce (correct) the phase noise of the PUCCH based on the PTRS.
  • FIG. 38 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • the user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230.
  • the control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
  • this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230.
  • the control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
  • the transmission / reception unit 220 may include a baseband unit 221 and an RF unit 222, and a measurement unit 223.
  • the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
  • the transmitter / receiver 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure.
  • the transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
  • the receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
  • the transmitting / receiving antenna 230 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing for example, RLC retransmission control
  • MAC layer processing for example, for data, control information, etc. acquired from the control unit 210.
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output the baseband signal.
  • Whether or not to apply the DFT process may be based on the transform precoding setting.
  • the transmission / reception unit 220 transmission processing unit 2211 described above for transmitting a channel (for example, PUSCH) using the DFT-s-OFDM waveform when the transform precoding is enabled.
  • the DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
  • the transmission / reception unit 220 may perform modulation, filtering, amplification, etc. to the radio frequency band on the baseband signal, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
  • the transmission / reception unit 220 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
  • the transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmission / reception unit 220 may perform measurement on the received signal.
  • the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal.
  • the measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 210.
  • the transmitter and receiver of the user terminal 20 in the present disclosure may be composed of at least one of the transmitter / receiver 220 and the transmitter / receiver antenna 230.
  • the transmission / reception unit 220 may receive the first channel state information (CSI) -reference signal (RS) based on the sequence having a PAPR lower than the peak average power ratio (PAPR) of the pseudo-random sequence.
  • the control unit 210 may perform the measurement using the first CSI-RS.
  • the first CSI-RS includes a frequency domain cyclic shift, a time domain cyclic shift, a frequency domain orthogonal cover code (FD-OCC), a time domain orthogonal cover code (TD-OCC), and frequency resources (eg, other A parameter (eg, a parameter indicating at least one of an antenna port's CSI-RS and FDM frequency resource), a time resource (eg, another antenna port's CSI-RS and TDM time resource), a comb, and a diffusion code.
  • a first value of a CSI-RS resource) and a first antenna port eg, an antenna port, at least one of an antenna port group).
  • the second CSI-RS may be associated with a second value of the parameter and a second antenna port.
  • the first CSI-RS may be transmitted from the first transmitter (for example, TRP # 1)
  • the second CSI-RS may be transmitted from the second transmitter (for example, TRP # 2)
  • the first CSI-RS may be transmitted.
  • the 1 CSI-RS and the second CSI-RS may be frequency division multiplexing (Embodiment 2 / CSI-RS transmission method 1).
  • the subcarrier spacing of the first CSI-RS may be larger than the subcarrier spacing of a specific type of channel or signal (Embodiment 1 / SCS).
  • the first CSI-RS is Rel. It may be transmitted at frequencies higher than the frequency range of 15.
  • the transmission / reception unit 220 may receive the channel state information (CSI) -reference signal (RS).
  • the control unit 210 has a first band in which the CSI-RS is transmitted (for example, a CSI-RS transmission band) and a second band set for the CSI-RS (for example, a CSI-RS resource band).
  • the measurement may be performed using any of (Embodiment 2 / CSI-RS transmission method 2, Embodiment 3).
  • Frequency hopping may be applied to at least one of the first band and the second band.
  • control unit may perform measurement using the second band.
  • the measurement may be performed using the first band or the second band, or the measurement may not be performed.
  • the measurement may be performed using the first band, or the measurement may not be performed.
  • the transmitter / receiver 220 has channel state information (CSI) -reference signal (RS) and physical downlink sharing to which at least one of time division multiplexing, frequency division multiplexing, transform precoding, and sounding reference signal (SRS) configuration is applied.
  • CSI channel state information
  • RS reference signal
  • PDSCH channel paging reference signal
  • the control unit 210 may perform measurement using the CSI-RS and demodulate the PDSCH (Embodiments 4 to 7).
  • the CSI-RS and the PDSCH may be time-division-multiplexed, the CSI-RS may have a length of a certain number of symbols and may be transmitted at the beginning or end of the period in which the PDSCH is transmitted. (Embodiment 4 / Multiplexing Method 1).
  • Transform precoding may be applied to the CSI-RS and the PDSCH (Embodiment 4 / Multiplexing Method 2).
  • the CSI-RS may span a plurality of slots (Embodiment 4 / Multiplexing Method 1, Embodiment 7).
  • the CSI-RS may be based on a pseudo-random sequence and transform precoding is applied to the PDSCH.
  • the CSI-RS may be based on a sequence having a PAPR lower than the peak average power ratio (PAPR) of the pseudo-random sequence (Embodiment 6).
  • PAPR peak average power ratio
  • each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by two or more devices that are physically or logically separated). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block that functions transmission may be referred to as a transmitting unit, a transmitter, or the like.
  • the method of realizing each of them is not particularly limited.
  • the base station, user terminal, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
  • FIG. 39 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • the base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors.
  • the processor 1001 may be mounted by one or more chips.
  • the processor 1001 For each function of the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • predetermined software program
  • the processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission / reception unit 120 220
  • the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
  • the memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EEPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disc (Compact Disc ROM (CD-ROM)), a digital versatile disk, etc.). At least one of Blu-ray® disks, removable disks, hard disk drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers, and other suitable storage media. It may be composed of.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). It may be configured to include.
  • the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmission / reception unit 120 (220) may be physically or logically separated from the transmission unit 120a (220a) and the reception unit 120b (220b).
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the wireless frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the wireless frame may be referred to as a subframe.
  • the subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
  • Numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration.
  • SCS subcarrier Spacing
  • TTI Transmission Time Interval
  • a specific filtering process performed by the transmitter / receiver in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols in the time domain (Orthogonal Frequency Division Multiple Access (OFDMA) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.). Further, the slot may be a time unit based on numerology.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be called a sub slot. A minislot may consist of a smaller number of symbols than the slot.
  • a PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as a PDSCH (PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
  • the wireless frame, subframe, slot, mini slot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • the time units such as frames, subframes, slots, mini slots, and symbols in the present disclosure may be read as each other.
  • one subframe may be called TTI
  • a plurality of consecutive subframes may be called TTI
  • one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • one or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
  • PRB Physical RB
  • SCG sub-carrier Group
  • REG resource element group
  • PRB pair an RB. It may be called a pair or the like.
  • the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)).
  • RE Resource Element
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth) represents a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. May be good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots, and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, radio resources may be indicated by a given index.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may be voltage, current, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • the input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
  • the notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using another method.
  • the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (master information block (MIB), system information block (SIB), etc.), medium access control (MAC) signaling), other signals or combinations thereof May be carried out by.
  • DCI downlink control information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB master information block
  • SIB system information block
  • MAC medium access control
  • the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like.
  • the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
  • CE MAC Control Element
  • the notification of predetermined information is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
  • the determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
  • Software is an instruction, instruction set, code, code segment, program code, program, subprogram, software module, whether called software, firmware, middleware, microcode, hardware description language, or another name.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted to mean.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • Network may mean a device (eg, a base station) included in the network.
  • precoding "precoding weight”
  • QCL Quality of Co-Co-Location
  • TCI state Transmission Configuration Indication state
  • space "Spatial relation”, “spatial domain filter”, “transmission power”, “phase rotation”, "antenna port”, “antenna port group”, “layer”, “number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, "antenna”, “antenna element", “panel” are compatible.
  • Base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission point (Transmission Point (TP))
  • RP Reception point
  • TRP Transmission / Reception Point
  • Panel , "Cell”, “sector”, “cell group”, “carrier”, “component carrier” and the like
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)).
  • Communication services can also be provided by Head (RRH))).
  • RRH Head
  • the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read by the user terminal.
  • communication between a base station and a user terminal is replaced with communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the user terminal 20 may have the function of the base station 10 described above.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the uplink, downlink, and the like may be read as side channels.
  • the user terminal in the present disclosure may be read as a base station.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • the operation performed by the base station may be performed by its upper node (upper node) in some cases.
  • various operations performed for communication with a terminal are performed by the base station and one or more network nodes other than the base station (for example,).
  • Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
  • each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution.
  • the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction.
  • the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • Future Radio Access FAA
  • New-Radio Access Technology RAT
  • NR New Radio
  • NX New radio access
  • Future generation radio access FX
  • GSM Global System for Mobile communications
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • a plurality of systems may be applied in combination (for example, a combination of LTE or LTE-A and 5G).
  • references to elements using designations such as “first”, “second”, etc. as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
  • determining used in this disclosure may include a wide variety of actions.
  • judgment (decision) means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment”.
  • judgment (decision) means receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access (for example). It may be regarded as “judgment (decision)" of "accessing” (for example, accessing data in memory).
  • judgment (decision) is regarded as “judgment (decision)” of solving, selecting, choosing, establishing, comparing, and the like. May be good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of some action.
  • the "maximum transmission power" described in the present disclosure may mean the maximum value of the transmission power, may mean the nominal UE maximum transmit power, or may mean the rated maximum transmission power (the). It may mean rated UE maximum transmit power).
  • connection are any direct or indirect connections or connections between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are “connected” or “joined” to each other.
  • the connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • the radio frequency domain microwaves. It can be considered to be “connected” or “coupled” to each other using frequency, electromagnetic energy having wavelengths in the light (both visible and invisible) regions, and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本開示の一態様に係る端末は、チャネル状態情報(CSI)-参照信号(RS)を受信する受信部と、前記CSI-RSが送信される第1帯域と、前記CSI-RSに対して設定される第2帯域と、のいずれかを用いて測定を行う制御部と、を有する。本開示の一態様によれば、高い周波数帯を利用する場合であっても通信を適切に行うことができる。

Description

端末及び無線通信方法
 本開示は、次世代移動通信システムにおける端末及び無線通信方法に関する。
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
 将来の無線通信システム(例えば、Rel.16以降のNR)では、所定周波数(例えば、7.125GHz、24.25GHz、52.6GHzなど)よりも高い周波数又は周波数範囲(frequency range(FR))を利用することが検討されている。
 所定周波数よりも高い周波数帯では、位相雑音(phase noise)が大きくなること、ピーク電力対平均電力比PAPR(Peak-to-Average Power Patio)について高いセンシティビティ(sensitivity)を有することが想定される。
 しかしながら、所定周波数よりも高い周波数における通信制御(例えば、チャネル/信号のデザイン、変調制御又はマッピング制御等)をどのように行うかについて十分に検討されていない。
 そこで、本開示は、高い周波数帯を利用する場合であっても通信を適切に行うことができる端末及び無線通信方法を提供することを目的の1つとする。
 本開示の一態様に係る端末は、チャネル状態情報(CSI)-参照信号(RS)を受信する受信部と、前記CSI-RSが送信される第1帯域と、前記CSI-RSに対して設定される第2帯域と、のいずれかを用いて測定を行う制御部と、を有する。
 本開示の一態様によれば、高い周波数帯を利用する場合であっても通信を適切に行うことができる。
図1は、スロット内のCSI-RS位置の一例を示す図である。 図2A-図2Dは、FD-OCC及びTD-OCCの一例を示す図である。 図3は、ポート数毎のCSI-RS位置の一例を示す図である。 図4は、32ポートのCSI-RSのマッピングの一例を示す図である。 図5A-図5Cは、PUCCHフォーマット4におけるCDMの一例を示す図である。 図6は、FRの一例を示す図である。 図7A及び図7Bは、CSが適用されたCSI-RSの一例を示す図である。 図8A及び図8Bは、CSI-RS帯域幅とCS数の関係の一例を示す図である。 図9A及び図9Bは、FD-OCCが適用されたCSI-RSの一例を示す図である。 図10A及び図10Bは、FDM、又はFDM及びTDMが適用されたCSI-RSの一例を示す図である。 図11は、TDMが適用されたCSI-RSの一例を示す図である。 図12A及び図12Bは、TD-OCCが適用されたCSI-RSの一例を示す図である。 図13は、SCSとTD-OCC長の関係の一例を示す図である。 図14は、時間ドメインのCSが適用されたCSI-RSの一例を示す図である。 図15は、CSI-RSシンボル数とCS数の関係の一例を示す図である。 図16は、CSI-RSに拡散符号を適用する構成の一例を示す図である。 図17は、拡散符号が適用されたCSI-RSのスペクトラムの一例を示す図である。 図18A-図18Cは、大きいSCSが適用されたCSI-RSの一例を示す図である。 図19A及び図19Bは、SCS切替期間の一例を示す図である。 図20は、SCSとSCS切替期間の関係の一例を示す図である。 図21A-図21Fは、combが適用されたCSI-RSの一例を示す図である。 図22は、複数TRPのCSI-RS送信の一例を示す図である。 図23A及び図23Bは、複数TRPから送信されるCSI-RSの一例を示す図である。 図24は、CSI-RS送信帯域とCSI-RSリソースの関係の一例を示す図である。 図25は、CDMが適用されるCSI-RS送信帯域の一例を示す図である。 図26は、CDMが適用されるCSI-RSリソース帯域の一例を示す図である。 図27は、CSI-RSリソース帯域の周波数ホッピングの一例を示す図である。 図28は、CSI-RS送信帯域の周波数ホッピングの一例を示す図である。 図29は、CSI-RS送信帯域とCSI-RSリソース帯域の関係の一例を示す図である。 図30は、1スロットのPDSCH送信におけるCSI-RSの一例を示す図である。 図31は、複数スロットにわたるPDSCH送信におけるCSI-RSの一例を示す図である。 図32は、DFT-s-OFDMを用いるCSI-RS送信の一例を示す図である。 図33は、DFT-s-OFDMを用いる構成の一例を示す図である。 図34A及び図34Bは、CSI-RSを挿入したデータに対するDFT-s-OFDMの一例を示す図である。 図35A及び図35Bは、複数スロットにわたるCSI-RS送信の一例を示す図である。 図36は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図37は、一実施形態に係る基地局の構成の一例を示す図である。 図38は、一実施形態に係るユーザ端末の構成の一例を示す図である。 図39は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。
(CSI-RS)
 Rel.15において、channel state information(CSI)取得、ビーム管理(beam management(BM))、ビーム障害回復(beam failure recovery(BFR))、時間及び周波数の細かい追従(tracking)の少なくとも1つのためのDL RSとして、例えば、CSI-RSが用いられる。CSI-RSは、1、2、4、8、12、16、24、32ポート(アンテナポート、CSI-RSポート)をサポートする。CSI-RSは、周期的(periodic)、セミパーシステント(semi-persistent)、非周期的(aperiodic)の送信をサポートする。オーバーヘッド及びCSI推定精度を調整するために、CSI-RSの周波数密度(density)が設定可能である。
 図1は、スロット内のCSI-RS位置(location)の一例を示す図である。テーブルの各行は、行番号、ポート数、周波数ドメインの密度、CDMタイプ、時間/周波数位置(コンポーネントリソースの位置(kバー,lバー))、code division multiplexing(CDM)グループインデックス、コンポーネントリソース内の各リソース位置((RE,シンボル)、(k’,l’))を示す。ここで、時間/周波数位置は、1つのポートに対応するCSI-RSの時間及び周波数のリソース(コンポーネントリソース)の位置である。kバーは「k」にオーバーラインを付した表記である。kバーは、コンポーネントリソースの開始リソースエレメント(RE)インデックスを示し、lバーは、コンポーネントリソースの開始シンボル(OFDMシンボル)インデックスを示す。
 CDMグループとして、no CDM(CDMなし、N/A)、FD-CDM2、CDM4、CDM8がある。FD-CDM2は、長さ2の周波数ドメイン(FD)-直交カバーコード(orthogonal cover code(OCC))をRE単位で乗ずることによって同一の時間及び周波数に2ポートのCSI-RSを多重する(FD2)。CDM4は、長さ2のFD-OCCと長さ2の時間ドメイン(TD)-OCCとをRE単位シンボル単位で乗ずることによって同一の時間及び周波数に4ポートのCSI-RSを多重する(FD2TD2)。CDM8は、長さ2のFD-OCCと長さ4のTD-OCCとをRE単位シンボル単位で乗ずることによって同一の時間及び周波数に8ポートのCSI-RSを多重する(FD2TD4)。
 図2A-図2Dは、FD-OCC及びTD-OCCの一例を示す図である。FD-OCCの系列はw(k’)で表され、TD-OCCの系列はw(k’)で表される。図2Aは、CDMタイプがno CDMである場合を示す。図2Bは、CDMタイプがFD-CDM2である場合を示す。図2Cは、CDMタイプがCDM4である場合を示す。図2Dは、CDMタイプがCDM8である場合を示す。
 図3は、図1に基づく、ポート数毎のCSI-RS位置の一例を示す図である。この図は、ポート数毎に、周波数密度、コンポーネントリソースサイズ(周波数方向のサイズ[RE],時間方向のサイズ[シンボル])、CDMタイプ、を示す。
 例えば、図4は、ポート数が32、コンポーネントリソースサイズが2RE×2シンボルに設定されるCSI-RSのリソースエレメント(RE)マッピングの一例を示す(図1の行インデックス17)。1PRB×1スロットの周波数ドメイン及び時間ドメインにおいて、2RE×2シンボルのコンポーネントリソースが、周波数ドメインで4個多重(frequency division multiplexing(FDM))され、時間ドメインで2個多重(time division multiplexing(TDM))されることによって、4×2個のコンポーネントリソースがマップされる。さらに、各コンポーネントリソースにおけるCSI-RSに、長さ2REのFD-OCCと、長さ2シンボルのTD-OCCと、が乗算されることによって、4個のCSI-RSが多重(code division multiplexing(CDM))される(CDM4、FD2TD2)。したがって、1PRB×1スロットのリソースにおいて32ポートのCSI-RSが送信される。
 CSI-RSのポートの最大数32がレイヤの最大数8よりも多いことによって、UEは多くのチャネル状態を測定でき、測定精度を向上できる。
(PUCCHフォーマット4におけるCDM)
 また、Rel.15 NRのULにおいて、PUCCHフォーマット4は、データシンボル上のFD-OCC及びDFT-s-OFDM(トランスフォームプリコーディング)と、DMRSシンボル上の巡回シフト(cyclic shift(CS)、位相回転)と、をサポートする。
 図5A及び図5Bに示すように、多重数(拡散率、spreading factor)NSF PUCCH,4毎に、PUCCHフォーマット4のデータ(uplink control information(UCI))に適用されるFD-OCCは、直交系列インデックスに関連付けられる。図5Aは、多重数が2である場合を示す。図5Bは、多重数が4である場合を示す。PUCCHフォーマット4のデータに多重数のFD-OCCを乗ずることによって、多重数までのデータがCDMされる。
 図5Cに示すように、PUCCHフォーマット4のDMRSに適用されるCSインデックスは、直交系列インデックスに関連付けられる。PUCCHフォーマット4のDMRSにCSインデックスに基づくCSを適用することによって、DMRSがCDMされる。
(FR)
 NRでは、52.6GHzまでの(up to 52.6GHz)周波数帯を利用することが検討されてきた。Rel.16以降のNRでは、52.6GHzよりも高い(above 52.6GHz)周波数帯を利用することが検討されている。なお、周波数帯は、周波数レンジ(frequency range(FR))と適宜言い換えられてもよい。
 図6は、FRの一例を示す図である。FR4は、例えば、52.6GHzから114.25GHzである。なお、既存のRel-15 NRにおける周波数範囲としては、FR1が410MHz-7.152GHzであり、FR2が24.25GHz-52.6GHzが該当する。FR3は、例えば、7.152GHzから24.25GHzである。また、FR4は、FRx(xは任意の文字列)と呼ばれてもよい。
 52.6GHzよりも高い周波数帯では、位相雑音(phase noise)が大きくなること、伝搬ロス(propagation loss)が大きくなることが想定される。また、ピーク電力対平均電力比(Peak-to-Average Power Patio(PAPR))及びパワーアンプ(Power Amplifier(PA))の非線形性について高いセンシティビティを有する問題が想定される。
 よって、大きい(広い)サブキャリア間隔(subcarrier spacing(SCS))(すなわち、少ないFFTポイント数)、シングルキャリア波形、大きいSCSにおけるPAPR低減の仕組み、狭いビーム(すなわち、多いビーム数)、の少なくとも1つが要求される。
 上述した事項を考慮すると、52.6GHzよりも高い周波数帯(又は、above 52.6GHz用の波形)では、Rel-15 NRよりもサブキャリア間隔がより広いCP-OFDM及びDFT-S-OFDMなどを用いることが考えられる。
 大きいSCSは、短いシンボル長及び短いcyclic prefix(CP)長及び短いスロット長の少なくとも1つを招く。カバレッジ及び電力増幅効率の最大化のためには、低PAPRのDL制御チャネル構造が好ましい。
 また、Rel.15では、DLチャネル(例えば、PDCCH等)は、OFDM波形に基づいてデザインされているが、52.6GHzよりも高い周波数帯では、シングルキャリアに基づくチャネルデザインを検討することも想定される。
 高い周波数帯において、基地局がCSI-RSをどのように送信するかが明らかでない。例えば、CSI-RSの複数アンテナポートをどのようにサポートするかが明らかでない。高い周波数においてCSI-RSが適切に送信されなければ、システム性能の劣化を招くおそれがある。
 そこで、本発明者らは、高い周波数におけるCSI-RSの構成、制御方法などを着想した。
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、少なくとも2つを組み合わせて適用されてもよい。
 本開示において、アンテナポート、CSI-RSポート、は互いに読み替えられてもよい。本開示において、DFT-s-OFDM、トランスフォームプリコーディング(transform precoding)は、互いに読み替えられてもよい。
 本開示において、ビーム、quasi co-location(QCL)想定、QCL関係、transmission configuration indicator(TCI)状態、空間ドメインフィルタ空間ドメイン受信フィルタ、reference signal(RS)、SS/PBCHブロック(SSB)、CSI-RS、は互いに読み替えられてもよい。
 本開示において、チャネル/信号は、チャネル及び信号の少なくとも1つと読み替えられてもよい。
 各実施形態は、所定周波数(例えば、7.125GHz、24.25GHz、52.6GHzなど)よりも高い周波数に適用されてもよい。なお、各実施形態は、FR4(例えば、52.6GHzよりも高い所定の周波数範囲)だけでなく、他のFR(例えば、FR1、FR2、FR3など)にも適用することができる。本開示のFRx(xは任意の英数字)は、任意のFRxで読み替えられてもよい。
(無線通信方法)
<実施形態1>
《CSI-RS系列》
 CSI-RS系列が、low-Peak to Average Power Ratio(低PAPR)系列によって定義されてもよい。UEは、CSI-RS系列が低PAPR系列によって定義されると想定してもよい。
 低PAPR系列は、Constant Amplitude Zero Auto Correlation(CAZAC)系列であってもよいし、CAZAC系列に準ずる系列(例えば、計算機生成系列(computer-generated(CGS)))であってもよい。CGSは、仕様(例えば、テーブル)に規定されてもよい。
 CSI-RS系列長がMより小さい場合、CSI-RS系列はCGSであってもよく、CSI-RS系列長がM以上である場合、CSI-RS系列はCAZAC系列(例えば、Zadoff-Chu系列)であってもよい。例えば、Mは、30であってもよい。CAZAC系列の長さは、素数であってもよいし、素数-1であってもよい。
 CSI-RSに低PAPR系列を用いることによって、相互相関を低減し、セル間干渉を低減できる。低PAPR系列長を長くすることによって、より相互相関を低減できる。
 CSI-RSは、DFT-s-OFDMを適用されてもよい。CSI-RS系列は、疑似ランダム(Pseudo-Random)系列(擬似雑音(Pseudo-Noise(PN))系列、例えば、Gold系列、長さ31のGold系列、M系列)であってもよい。擬似ランダム系列の生成に用いられる初期値cinitは、上位レイヤシグナリング及びセルIDの少なくとも1つに基づいてもよい。CSI-RS系列は、オール1系列であってもよい。
 CSI-RSは、offset quadrature phase shift keying(OQPSK)と、π/2シフトbinary phase shift keying(BPSK)と、DFT-s-OFDMとの少なくとも1つを適用されてもよい。
 CSI-RS系列に低PAPR系列以外の系列を用いる場合であっても、DFT-s-OFDM(トランスフォームプリコーディング有効)を適用することによって、CP-OFDM(トランスフォームプリコーディング無効)を適用する場合に比べて、PAPRを低くできる。
《複数アンテナポート》
 CSI-RSに対して複数アンテナポートがサポートされてもよい。
 アンテナポート(CSI-RSポート)は、次のリソース1~6の少なくとも1つに関連付けられてもよい。
・リソース1:CS(インデックス)
 複数アンテナポートが異なるCSに関連付けられることによって、複数アンテナポートのCSI-RSが同じ時間/周波数リソース(例えば、コンポーネントリソース)においてCDMされる。
・リソース2:FD-OCC(インデックス)
 複数アンテナポートが異なるFD-OCCに関連付けられることによって、複数アンテナポートのCSI-RSが同じ時間/周波数リソースにおいてCDMされる。
・リソース3:TD-OCC(インデックス)
 複数アンテナポートが異なるTD-OCCに関連付けられることによって、複数アンテナポートのCSI-RSが同じ時間/周波数リソースにおいてCDMされる。
・リソース4:周波数リソース(REインデックス)
 複数アンテナポートが異なる周波数リソースに関連付けられることによって、複数アンテナポートのCSI-RSがFDMされる。
・リソース5:時間リソース(シンボルインデックス)
 複数アンテナポートが異なる時間リソースに関連付けられることによって、複数アンテナポートのCSI-RSがTDMされる。1つのCSI-RSが複数シンボル上で送信される場合に、複数アンテナポートのCSI-RSがTDMされてもよい。
・リソース6:拡散符号(符号インデックス)
 複数アンテナポートが異なる拡散符号に関連付けられることによって、複数アンテナポートのCSI-RSが同じ時間/周波数リソースにおいてCDMされる。
 アンテナポートインデックスとリソース1~6の少なくとも1つとの関連付け(マッピング)は、上位レイヤシグナリングによって設定されてもよいし、仕様に規定されてもよい。リソース1~6を組み合わせることによって、アンテナポート数を更に増やすことができる。
 複数のアンテナポートは、異なるレイヤ(multiple input multiple output(MIMO)レイヤ)に対応してもよいし、異なるUEに対応してもよい。アンテナポート数は、レイヤ数より多くてもよいし、UE数より多くてもよいし、レイヤ数×UE数より多くてもよい。複数のレイヤが異なるアンテナポートに対応してもよい。複数のUEが異なるアンテナポートに対応してもよい。
 リソース1~6の少なくとも1つを含むCSI-RSリソースが、アンテナポートと、アンテナポートのグループ(アンテナポートグループ)との少なくとも1つに関連付けられてもよい。
[リソース1の具体例]
 複数アンテナポートは、異なるCSに関連付けられてもよい。例えば、図7Aに示すように、CSI-RS系列長が72であり、CSI-RS系列が[X,X,…,X71]であるとする。CSであるαは、CSインデックスに基づいてもよい。図7Bに示すように、ポート#0、#1、#2、#3はそれぞれCSインデックス0、2、4、6(CS α0、α、α、α)に関連付けられてもよい。巡回シフトされたCSI-RS系列に対してDFT-s-OFDMが適用されてもよい。
 複数アンテナポートに関連付けられるCS数(CSI-RSの複数アンテナポートをサポートするためのCS数)は、一定であってもよい。複数アンテナポートに関連付けられるCS数は、例えば、PRB当たりのRE数(例えば、12)であってもよい。この場合、直交性及び品質を向上できる。
 複数アンテナポートに関連付けられるCS数は、全体の系列長(例えば、CSI-RS帯域幅、CSI-RSに用いられるRE数(PRB当たりのRE数×CSI-RSに用いられるPRB数))と同じであってもよい。この場合、多重キャパシティを向上できる。
 複数アンテナポートに関連付けられるCS数は、CSI-RS帯域幅(例えば、CSI-RSに用いられるPRB数又はRE数)に依存してもよい。図8Aに示すように、CSI-RS帯域幅(CSI-RS系列長)と、複数アンテナポートに関連付けられるCS数と、の関連付け(例えば、テーブル)が仕様に規定されてもよいし、上位レイヤシグナリングによって設定又は更新されてもよい。例えば、CSI-RS帯域幅が24~57REである場合、図8Bに示すように、24個のCSが異なるアンテナポートに関連付けられてもよい。この場合、直交性及び品質を向上できる。CSI-RS帯域幅が広い場合に多重キャパシティを向上できる。
 CSI-RS帯域幅を広くすることによって、CS数及びアンテナポート数を多くでき、広い帯域のチャネルを測定できる。
[リソース2の具体例]
 複数アンテナポートは、異なるFD-OCCに関連付けられてもよい。FD-OCC長はCSI-RS系列長に等しくてもよい。
 例えば、図9Aに示すように、CSI-RS系列長及びFD-OCC長が72であり、CSI-RS系列が[X,X,…,X71]であり、FD-OCCが[M,M,…,M71]であるとする。CSI-RS系列に対してFD-OCCがRE単位で乗算されてもよい。複数アンテナポートのCSI-RSに対して異なるFD-OCCが乗算されることによって、それらのCSI-RSがCDMされてもよい。
 図9Bに示すように、FD-OCCインデックス及びFD-OCCの関連付け(例えば、テーブル)が、仕様に規定されてもよいし、上位レイヤシグナリングによって設定又は更新されてもよい。
 RE毎にFD-OCCを乗じたCSI-RS系列に対してDFT-s-OFDMが適用されてもよい。
 FD-OCCインデックス及びFD-OCCの関連付け(例えば、テーブル)が、CSI-RS系列長又はCSI-RS帯域幅又はFD-OCC長に関するパラメータ毎に、仕様に規定されてもよい。例えば、CSI-RS帯域幅(例えば、4PRB、6PRB、10PRBなど)毎のテーブルが仕様に規定されてもよい。UEは、上位レイヤシグナリングによって設定されるパラメータに基づいて、どのテーブルが用いられるかを決定してもよい。
[リソース4/5の具体例]
 複数アンテナポートは、異なる周波数リソース及び異なる時間リソースの少なくとも1つに関連付けられてもよい。複数のアンテナポート又は複数のアンテナポートのグループに対応するCSI-RSがFDM及びTDMの少なくとも1つによって多重されてもよい。
 図10A、図10B、図11の例において、ポート#0~#3のCSI-RSは、1つの時間及び周波数のリソースにおいて異なるCSを用いてCDMされてもよい。ポート#4~#7のCSI-RSは、別の時間及び周波数のリソースにおいて異なるCSを用いてCDMされてもよい。
 複数のアンテナポートに対応するCSI-RSがFDMされてもよい。例えば、図10Aに示すように、ポート#0~#3のCSI-RSとポート#4~#7のCSI-RSとがFDMされてもよい。
 複数のアンテナポートに対応するCSI-RSがFDM及びTDMされてもよい。例えば、図10Bに示すように、ポート#0~#3のCSI-RSとポート#4~#7のCSI-RSとがFDM及びTDMされてもよい。ポート#0~#3のCSI-RSとポート#4~#7のCSI-RSとは、連続するシンボルにマップされなくてもよい。
 複数のアンテナポートに対応するCSI-RSがTDMされてもよい。例えば、図11に示すように、ポート#0~#3のCSI-RSとポート#4~#7のCSI-RSとがTDMされてもよい。ポート#0~#3のCSI-RSとポート#4~#7のCSI-RSとは、連続するシンボルにマップされなくてもよい。
[リソース3の具体例]
 複数アンテナポートは、異なるTD-OCCに関連付けられてもよい。TD-OCC長はCSI-RSシンボル数に等しくてもよい。
 例えば、図12Aに示すように、CSI-RSシンボル数及びTD-OCC長が2であり、TD-OCCが[M,M]であるとする。CSI-RSに対してTD-OCCがシンボル単位で乗算されてもよい。各シンボルのCSI-RS系列は、同じであってもよいし、異なってもよい。複数アンテナポートのCSI-RSに対して異なるTD-OCCが乗算されることによって、それらのCSI-RSがCDMされてもよい。
 図12Bに示すように、TD-OCCインデックス及びTD-OCCの関連付け(例えば、テーブル)が、仕様に規定されてもよいし、上位レイヤシグナリングによって設定又は更新されてもよい。
 CSI-RS及びTD-OCCは、連続シンボルにマップされてもよい。この場合、TD-OCC長は、CSI-RS時間長(シンボル数)に等しくてもよい。CSI-RS及びTD-OCCは、不連続シンボルにマップされてもよい。この場合、TD-OCC長は、CSI-RSシンボル数に等しくてもよい。
 各ポートに関連付けられたCSI-RSは、帯域幅(RE数)に対応する系列長を有する低PAPR系列であってもよい。
 シンボル毎にTD-OCCを乗じたCSI-RS系列に対してDFT-s-OFDMが適用されてもよい。
 TD-OCCインデックス及びTD-OCCの関連付け(例えば、テーブル)が、TD-OCC長(シンボル数)又はCSI-RSシンボル数(時間長)に関するパラメータ毎に、仕様に規定されてもよい。例えば、CSI-RSシンボル数毎のテーブルが仕様に規定されてもよい。UEは、上位レイヤシグナリングによって設定されるパラメータに基づいて、どのテーブルが用いられるかを決定してもよい。
 SCSの拡大によってシンボル長が縮小するため、TD-OCCは、CSI-RSの複数アンテナポートをサポートすることが好ましい。
 複数のSCSにそれぞれ関連付けられた複数のTD-OCC長(例えば、2、4、8、12、16、…など)が仕様に規定されてもよい。例えば、図13に示すように、15kHzのSCSに対して1(CDMなし)のTD-OCC長が関連付けられ、960kHzのSCSに1より多いTD-OCC長が関連付けられてもよい。UEは、設定されたCSI-RSリソース(例えば、CSI-RSのSCS、CSI-RSのシンボル数(時間長)、の少なくとも1つ)に依存するTD-OCC長を選択してもよい。
 SCSが大きくなり、シンボル長が短くなると、移動による信号の変動が小さくなるため、CSI-RSのシンボル数及びTD-OCC長を長くしても、TD-OCCの直交性を維持できる。
[リソース1の変形例]
 CSが時間ドメインに適用されてもよい。
 CSI-RS系列にシンボルレベル(シンボル毎)の系列ホッピングが適用される場合、CSが適用される全てのシンボルに同じ系列(例えば、base sequence)が適用されてもよい(CSが適用される全てのシンボルにわたって系列ホッピングが停止されてもよい)。例えば、CSが適用される全てのシンボルの系列が最初のシンボルの系列に従ってもよい。CSが適用される全てのシンボルは、CSI-RSの全てのシンボルであってもよいし、CSI-RSの一部のシンボルであってもよい。
 例えば、図14に示すように、12シンボルにわたるCSI-RSに対し、図7Bに示された12個のCSの1つであるαが適用されてもよい。言い換えれば、12シンボルのCSI-RSに対し、TD-OCCの乗算と同様、CSを示す系列[exp(jα・0),exp(jα・1),…,exp(jα・11)](αに基づく直交系列)がシンボル単位で乗算されてもよい。
 UEは、CS(α)を決定するためのCSインデックスを含むCSI-RSリソースを、上位レイヤシグナリングによって設定されてもよい。
 CSI-RSは、連続する複数シンボルにマップされてもよいし、不連続の複数シンボルにマップされてもよい。
 複数アンテナポートに関連付けられるCS数(CSI-RSの複数アンテナポートをサポートするためのCS数)は、一定(例えば、2、4、8など)であってもよい。この場合、直交性及び品質を向上できる。
 複数アンテナポートに関連付けられるCS数は、CSI-RS全体のシンボル数(時間長)と同じであってもよい。この場合、多重キャパシティを向上できる。
 複数アンテナポートに関連付けられるCS数は、CSI-RSシンボル数(時間長)に依存してもよい。図15に示すように、CSI-RSシンボル数と、複数アンテナポートに関連付けられるCS数と、の関連付け(例えば、テーブル)が仕様に規定されてもよいし、上位レイヤシグナリングによって設定又は更新されてもよい。この場合、直交性及び品質を向上できる。また、CSI-RSシンボル数が多いほど多重キャパシティを向上できる。
[リソース6の具体例]
 複数アンテナポートは、異なる拡散符号に関連付けられてもよい。例えば、図16に示すように、基地局は、拡散符号セット(例えば、符号A、B、C、D)から1つの拡散符号を選択し、選択された拡散符号(例えば、符号A)をUEへ通知してもよい。基地局は、拡散符号を用いてCSI-RSを拡散して(CSI-RSに拡散符号を乗じて)得られる信号を送信する。UEは、複数の拡散符号に対応する信号を受信し、通知された拡散符号を用いて受信信号を逆拡散する(受信信号にCSI-RSに同じ拡散符号を乗ずる)ことによって得られるCSI-RSを測定してもよい。基地局及びUEは、シンボルよりも短い時間毎に拡散符号を乗じてもよい。UEは、拡散符号の複数の候補(拡散符号セット)の1つを通知されてもよいし、UE固有のパラメータ(例えば、UEインデックス)に基づいて拡散符号を生成してもよい。
 図17に示すように、UEは、基地局が適用した拡散符号と同じ拡散符号を用いて逆拡散を行うことによって、当該拡散符号に対応するCSI-RSの電力スペクトル密度が大きくなるので、CSI-RSを測定できる。UEは、当該UEに対して適用された拡散符号以外の拡散符号が適用された受信信号は雑音と見なすことができる。
 拡散符号は、PN系列でもよいし、直交可変拡散率(orthogonal variable spreading factor(OVSF))符号でもよいし、{0,1}又は{-1,1}を要素とする符号であってもよい。
《SCS》
 CSI-RSは、特定種類のチャネル/信号に対してm倍大きいSCSを有してもよい。特定種類のチャネル/信号は、例えば、PDSCH、PDCCH、PDSCHのDMRS,PDCCHのDMRS、の少なくとも1つであってもよい。mは2であってもよい。m又はnは、上位レイヤシグナリングによって設定されてもよいし、仕様に規定されてもよい。
 例えば、図18A及び図18Bに示すように、SCSをXから2Xへ増加させることによって、シンボル長が短くなり、CSI-RSの時間を短縮できる。
 例えば、図18Cに示すように、SCSが2Xである場合に、1つのCSI-RS#1、#2をTDMすることによって、限られた時間内に、CSI-RS#1及びCSI-RS#2に対して異なるビームを適用できる。例えば、CSI-RS#1及びCSI-RS#2に対し、アナログビームフォーミングを用いて時間によって異なるビームが適用されてもよい。CSI-RS#1及びCSI-RS#2は、異なるQCLタイプD関係(relation)を有していてもよい(異なるビーム(RS)に関連付けられてもよい)。UEは、特定種類のチャネル/信号の1シンボルに対応する時間内に、2つのビームを測定できる。CSI-RSのSCSを大きくすることによって、ビーム数が多くなる場合であってもCSI-RSの時間を抑えることができる。
 CSI-RSのSCSを大きくして、CSI-RSの帯域を広くすることによって、UEは、より広い帯域を測定できる。
 SCSの切り替え中において、UEは、チャネル/信号の、送信及び受信及び復号及びモニタの少なくとも1つを行うことを必要とされなくてもよい。
 図19Aに示すように、SCS切替期間は、特定種類のチャネル/信号の期間内であってもよい。この場合、CSI-RSの測定精度を保つことができる。
 図19Bに示すように、SCS切替期間は、CSI-RSの期間内であってもよい。この場合、特定種類のチャネル/信号の品質を保つことができる。
 図20に示すように、CSI-RSのSCS又は特定種類のチャネル/信号のSCSと、SCS切替時間長と、の関連付け(例えば、テーブル)が仕様に規定されてもよいし、上位レイヤシグナリング又はUE能力に基づき、UEによって決定されてもよい。CSI-RSのSCS又は特定種類のチャネル/信号のSCSと、SCS切替時間長との、関連付けを示すテーブルが、上位レイヤシグナリング及びUE能力の少なくとも1つのパラメータ毎に、仕様に規定されてもよい。UEは、上位レイヤシグナリング及びUE能力の少なくとも1つに基づき、複数のテーブルの1つを選択してもよい。
 SCSの切り替え(変更)を設定(指示)された場合、UEは、CSI-RSの直前又は直後の特定の時間長の期間にチャネル/信号をスケジュールされないと期待してもよい。特定の時間長は、SCS切替時間長であってもよい。
《comb》
 CSI-RSリソースはcomb(櫛歯状)配置を用いてFDMされてもよい。CSI-RSは、周波数ドメインにおいてcombに従ってマップされてもよい。
 comb密度は、上位レイヤシグナリングによって設定されてもよいし、仕様に規定されてもよい。
 周波数リソースインデックス(combインデックス、comb値、例えば、comb#1、comb#2など)は、上位レイヤシグナリングによって設定されてもよい。複数の周波数リソースインデックスと異なるアンテナポートとの関連付け(マッピング)が仕様に規定されてもよい。
 CSI-RS系列は、送信に用いられるREにマップされてもよい。図21Aに示すように、comb密度が1である場合、CSI-RSは連続するPRBにマップされる。図21Bに示すように、comb密度が2である場合、2RE毎に1つのREへCSI-RSがマップされる。図21Cに示すように、comb密度が3である場合、3RE毎に1つのREへCSI-RSがマップされる。図21Dに示すように、comb密度が4である場合、4RE毎に1つのREへCSI-RSがマップされる。図21Eに示すように、comb密度が6である場合、6RE毎に1つのREへCSI-RSがマップされる。図21Fに示すように、comb密度が12である場合、12RE毎に1つのREへCSI-RSがマップされる。
 combに合わせてパンクチャされたCSI-RS系列が、送信に用いられるREにマップされてもよい。
 低PAPR系列及びcombをCSI-RSに用いることによって、低PAPRを保ちつつ、CSI-RSの帯域を広げることができる。
 この実施形態によれば、UEは、複数アンテナポートのCSI-RSを適切に受信できる。低PAPR系列のCSI-RSが用いられることによって、干渉を抑え、CSI測定の精度を高めることができる。
<実施形態2>
 CSI-RS系列が低PAPR系列である場合であっても、複数のCSI-RSのFDMは高いPAPRを引き起こすと考えられる。
 例えば、前述の図10Aに示すように、ポート#0~#3に関連付けられた低PAPR系列のCSI-RSと、ポート#4~#7に関連付けられた低PAPR系列のCSI-RSとが、FDMされる場合のPAPRは、それぞれのCSI-RSのPAPRよりも高くなる。
 CSI-RSは、次のCSI-RS送信方法1、2の少なくとも1つに従ってもよい。
《CSI-RS送信方法1》
 DL送信のための複数の送信機が同時にCSI-RSを送信してもよい。送信機、送受信機、送受信ポイント(transmission/reception point(TRP))、高周波(radio frequency(RF))部(回路)、パネル、アンテナパネル、アンテナポートグループ、RSポートグループ、CORESETグループ、は互いに読み替えられてもよい。1つのセルが複数のTRPを用いてカバーされてもよい。
 例えば、図22に示すように、TRP#1がポート#0~#3(アンテナポートグループ#1)のCSI-RS#1を送信し、TRP#2がポート#4~#7(アンテナポートグループ#2)のCSI-RS#1を送信してもよい。前述の図10Aに示すように、アンテナポートグループ#1のCSI-RSと、アンテナポートグループ#2のCSI-RSとが、FDMされてもよい。UEは、アンテナポートグループ#1のCSI-RSと、アンテナポートグループ#2のCSI-RSとを、1つのシンボルにおいて受信してもよい。
 第1アンテナポートグループ用のCSI-RSリソースと、第2アンテナポートグループ用のCSI-RSリソースと、は独立に設定されてもよい。第1アンテナポートグループのCSI-RSと、第2アンテナポートグループのCSI-RSとは、互いに異なる位相を有していてもよいし、QCL関係を有していなくてもよい(異なるQCLパラメータに関連付けられてもよい)。QCLパラメータは、QCLのためのRS(例えば、RSインデックス、リソースインデックスなど)であってもよい。1つのアンテナポートグループ内の複数のアンテナポートのCSI-RSは、QCL関係を有していてもよい(同じQCLパラメータに関連付けられてもよい)。UEは、アンテナポート、アンテナポートグループ、CSI-RSリソース、の少なくとも1つ毎に、QCLパラメータ及びTCI状態の少なくとも1つを設定されてもよい。
 互いに異なるアンテナポートグループに関連付けられた複数のPDSCHのTCI状態は、互いに異なるCSI-RSリソースを示してもよい。
 例えば、図23Aに示すように、TRP#1は、ポート#0~#3に関連付けられた低PAPR系列X,X,…,X47を4PRB(48RE)にマップしたCSI-RSを送信してもよい。図23Bに示すように、TRP#2は、ポート#4~#7に関連付けられた低PAPR系列X,X,…,X47を同じシンボルの別の4PRB(48RE)にマップしたCSI-RSを送信してもよい。
《CSI-RS送信方法2》
 複数のUE及び複数のアンテナポートの少なくとも1つに対する1つのCSI-RSが、特定種類の帯域毎に送信されてもよい。特定種類の帯域は、部分帯域(bandwidth part(BWP))、コンポーネントキャリア(CC)、システム帯域、などに読み替えられてもよい。
 1つのCSI-RSは、1つのサービングセル上の1つのシンボルにおいて送信されてもよい。1つのCSI-RSは、1つの送信機によって送信されてもよい。CSI-RSは、セル固有に送信されてもよい。UEに設定されるCSI-RSリソースは、UE固有であってもよい。
 CSI-RSはcombを用いてマップされてもよい。
 送信されるCSI-RSの帯域(CSI-RS送信帯域)の幅(CSI-RS送信帯域幅、CSI-RS系列長)は、測定及び報告の少なくとも1つのために設定されるCSI-RSリソースの帯域(CSI-RSリソース帯域、CSI-RS測定帯域、CSI-RS設定帯域)の幅(CSI-RSリソース帯域幅)より大きくてもよい。CSI-RS送信帯域は、CSI-RSリソース帯域を含んでもよい。
 例えば、図24に示すように、系列長Mを有する低PAPR系列のCSI-RSがBWP全体(CSI-RS送信帯域)にマップされ、送信されてもよい。UEは、測定及び報告の少なくとも1つのために、BWPの一部の帯域(CSI-RSリソース帯域)を有するCSI-RSリソースを設定されてもよい。
 CSI-RS送信帯域(CSI-RS送信帯域幅、CSI-RS系列長)と、測定及び報告の少なくとも1つのためのCSI-RSリソースとが、独立に設定されてもよい。CSI-RS送信帯域(CSI-RS送信帯域幅、CSI-RS系列長)は設定されなくてもよい。例えば、CSI-RS送信帯域幅は、帯域(BWP又はシステム帯域)の幅であってもよい。
 UEは、複数アンテナポートに対応する複数のCSI-RSリソースを設定されてもよい。複数のCSI-RSリソースは、同じシンボルの異なるCSI-RSリソース帯域を有していてもよい。これによって、複数のCSI-RSのFDMと同様に、周波数利用効率を向上できる。
 CSI-RS送信帯域にわたって1つのCSI-RS系列が送信されることによって、PAPRを低く抑えることができる。CSI-RS送信方法1のように2つのCSI-RSが異なる送信機によって送信される場合、位相連続性(phase continuity)を保つことは難しいが、このCSI-RS送信方法2のように、CSI-RS送信帯域にわたる1つのCSI-RSを送信することによって、CSI-RS送信帯域内の複数のCSI-RSリソース帯域において位相連続性は保たれる。
 CSI-RSリソースよりも広い帯域にわたってCSI-RSを送信することによって、CSI-RS系列を長くでき、同じシンボル及び同じ帯域に多重可能なCSI-RSの数を増やすことができ、多重されるCSI-RSの間の相互相関を低く抑えることができる。
 図25に示すように、CSI-RS送信帯域の全体にCDM(CDMインデックス)が適用されてもよい。CDMは、OCC(FD-OCC及びTD-OCCの少なくとも1つ)、CS、の少なくとも1つであってもよい。CDMインデックスは、直交インデックス、系列インデックス、OCCインデックス、CSインデックス、などと読み替えられてもよい。UEは、CSI-RS送信帯域に対してCDMインデックスを設定されてもよい。UEは、CSI-RS送信帯域の全体のCSI-RSを受信してもよい。
 CSI-RS送信帯域幅は、CDM用の系列(低PAPR系列、OCCの少なくとも1つ)の長さに基づいて決定されてもよい。CDM用の系列の長さは、CSI-RS送信帯域幅に基づいて決定されてもよい。
 UEは、CSI-RSリソース帯域においてCSIを測定してもよい。この場合であっても、CSI-RS系列の直交性を保つために、CSI-RS送信帯域の全体にCDMを適用してもよい。
 UEは、CSI-RS送信帯域の全体を測定し、設定されたCDMインデックスを用いて、各アンテナポートの受信信号を分離してもよい。UEは、CSI-RS送信帯域の全体のCSIを取得してもよい。
 UEは、測定、報告、CSI報告、layer 1(L1)-reference signal received power(RSRP)、L1-signal to interference plus noise(SINR)、干渉、CSIフィードバック、L3-RSRP、の少なくとも1つのために、CSI-RSリソースのみにおいてCSIを測定してもよい。
 図26に示すように、UEは、CSI-RSリソース帯域にCDMを適用してもよい。
 CSI-RSリソース帯域幅は、CDM用の系列(低PAPR系列、OCCの少なくとも1つ)の長さに基づいて決定されてもよい。CDM用の系列の長さは、CSI-RS送信リソース幅に基づいて決定されてもよい。
 CDMインデックスは、CSI-RSリソース帯域に適用されてもよい。UEは、CSI-RSリソース帯域に対してCDMインデックスを設定されてもよい。UEは、CSI-RSリソース帯域のみのCSI-RSを受信してもよい。UEは、CSI-RSリソース帯域のみのCSI-RSを受信することによって、CSI-RS送信帯域の全体のCSI-RSを受信する場合に比べて、狭い帯域を受信するため、消費電力を抑えることができる(UEのバッテリをセーブできる)。
 図27に示すように、CSI-RSリソース帯域は、シンボルレベル及びスロットレベルの少なくとも1つにおいてホップしてもよい(周波数ホッピング)。CSI-RSリソース帯域に対するホッピング関数は、シンボルインデックス、スロットインデックス、UEインデックス(例えば、RNTI)、の少なくとも1つを含んでもよい。言い換えれば、CSI-RSリソース帯域は、シンボルインデックス、スロットインデックス、UEインデックス(例えば、RNTI)、の少なくとも1つに基づいてもよい。
 CSI-RSリソースは、不連続な複数のシンボルにわたってもよい。CSI-RSリソース帯域は、CSI-RS送信帯域の一部であり、シンボルインデックスに基づいてホップしてもよい。
 この場合、UEは、広い測定帯域幅を測定することができる。
 この実施形態によれば、UEは、複数のアンテナポートのCSI-RSリソースを同じシンボルにおいて測定でき、周波数利用効率を向上できる。
<実施形態3>
 前述の図24において、UEが、CSI-RSリソース帯域幅よりも広い帯域幅(例えば、CSI-RS送信帯域幅)をモニタする場合、CSI-RSモニタリングにおいて大きい電力を消費する。
 CSI-RS送信帯域は、特定種類の帯域の一部であってもよい。CSI-RS送信帯域は、特定種類の帯域内においてホップしてもよい。特定種類の帯域は、BWP、CC、システム帯域、などに読み替えられてもよい。
 図28に示すように、CSI-RS送信帯域は、シンボルレベル及びスロットレベルの少なくとも1つにおいてホップしてもよい(周波数ホッピング)。CSI-RS送信帯域に対するホッピング関数は、シンボルインデックス、スロットインデックス、UEインデックス(例えば、RNTI)、の少なくとも1つを含んでもよい。言い換えれば、CSI-RSリソース帯域は、シンボルインデックス、スロットインデックス、UEインデックス(例えば、RNTI)、の少なくとも1つに基づいてもよい。
 CSI-RSリソース帯域は、CSI-RS送信帯域の全部であってもよいし、CSI-RS送信帯域の一部であってもよい。CSI-RSリソース帯域は、シンボルレベル及びスロットレベルの少なくとも1つにおいてホップしてもよい。
 CSI-RS送信帯域が特定種類の帯域の一部であることによって、CSI-RS送信帯域が特定種類の帯域の全部である場合に比べて、UEの消費電力を低減できる。
 CSI-RSリソース帯域がCSI-RS送信帯域に含まれる場合(例えば、図29のケースA)、UEは、CSI-RSリソース帯域においてCSIを測定し、当該CSIを報告してもよい。
 CSI-RSリソース帯域がCSI-RS送信帯域と部分的にオーバラップする場合(例えば、図29のケースB)、UEは、CSI-RSリソース帯域のうち、CSI-RS送信帯域とオーバラップする部分においてCSIを測定し、当該CSIを報告してもよい。CSI-RSリソース帯域がCSI-RS送信帯域と部分的にオーバラップする場合、UEは、CSI-RS送信帯域の全体においてCSIを測定し、当該CSIを報告してもよい。CSI-RSリソース帯域がCSI-RS送信帯域と部分的にオーバラップする場合、UEは、CSIを測定せず、CSI報告をドロップしてもよい(行わなくてもよい)。
 CSI-RSリソース帯域がCSI-RS送信帯域とオーバラップしない場合(例えば、図29のケースC)、UEは、CSI-RS送信帯域の全体においてCSIを測定し、当該CSIを報告してもよい。CSI-RSリソース帯域がCSI-RS送信帯域と部分的にオーバラップする場合、UEは、CSIを測定せず、CSI報告をドロップしてもよい(行わなくてもよい)。
 この実施形態によれば、UEは、帯域の一部のCSI-RSを受信するため、消費電力を抑えることができる(UEのバッテリをセーブできる)。
<実施形態4>
 データ及びCSI-RSが多重されてもよい。データは、PDSCH、PDSCHによって運ばれるデータ、と読み替えられてもよい。
 後述する多重方法1、2のいずれかに従って、データ及びCSI-RSが多重されてもよい。
 UEは、上位レイヤシグナリングによって多重方法1、2のいずれかを設定されてもよい(切り替えられてもよい)。
 多重方法1が設定された場合、UEは、CSI-RSが低PAPR系列であると想定してもよい。多重方法2が設定された場合、UEは、CSI-RSがRel.15の系列(例えば、疑似ランダム系列)であると想定してもよい。
《多重方法1》
 データ及びCSI-RSがTDMされてもよい。
 CSI-RS系列が低PAPR系列である場合、データ及びCSI-RSのFDMは、大きいPAPRを招く場合がある。データ及びCSI-RSがTDMされることによって、CSI-RSのPAPRを低く抑えることができる。
 UEは、次の設定方法1、2のいずれかに従って、CSI-RS及びPDSCHの少なくとも1つを設定されてもよい。
[設定方法1]
 UEは、同じOFDMシンボル上にCSI-RS及びPDSCHを設定されると期待しなくてもよい。UEは、同じシンボル上にCSI-RS及びPDCCHを設定されると期待しなくてもよい。UEは、同じOFDMシンボル上にCSI-RS及びPDSCHのDMRSを設定されると期待しなくてもよい。UEは、同じシンボル上にCSI-RS及びPDCCHのDMRSを設定されると期待しなくてもよい。
[設定方法2]
 もしUEが、同じOFDMシンボル上にCSI-RS及び特定種類のDL送信(チャネル/信号)を設定された場合、UEは、そのOFDM上のCSI-RSのモニタ又は測定を行うことを必要とされなくてもよい。もしUEが、同じOFDMシンボル上にCSI-RS及び特定種類のDL送信を設定された場合、UEは、少なくとも1つのOFDMシンボルがオーバラップしている全てのCSI-RSリソースのモニタ又は測定を行うことを必要とされなくてもよい。もしUEが、同じOFDMシンボル上にCSI-RS及び特定種類のDL送信を設定された場合、UEは、そのOFDMシンボル上の特定種類のDL送信のモニタ、測定、復号、復調、の少なくとも1つを行うことを必要とされなくてもよい。もしUEが、同じOFDMシンボル上にCSI-RS及び特定種類のDL送信を設定された場合、UEは、少なくとも1つのOFDMシンボルがオーバラップしている特定種類のDL送信のモニタ、測定、復号、復調、の少なくとも1つを行うことを必要とされなくてもよい。
 CSI-RSの時間ドメイン位置は、Rel.15のCSI-RSの時間ドメイン位置と異なってもよい。CSI-RSは、PDSCHシンボルの前又は後のみに位置してもよい。CSI-RSは、PDSCHに割り込まなくてもよい。
 図30に示すように、1つのスロットにおいて、PDSCHの後にCSI-RSが配置されてもよい。例えば、UEは、或る期間の最後のNシンボルにおけるCSI-RSが設定(指示、アクティベート)されると想定してもよい。期間は、スロット、サブスロット、サブフレーム、の1つであってもよい。UEは、N(例えば、4)を設定されてもよい。
 FR4において、複数スロットのアグリゲーション又は繰り返しが用いられることを想定すると、最後のNシンボルの制限では十分でない可能性がある。
 UEは、M個の期間の最初のNシンボル又は最後のNシンボルにおけるCSI-RSが設定(指示、アクティベート)されると想定してもよい。期間は、スロット、サブスロット、サブフレーム、の1つであってもよい。M個の期間にわたって1つのPDSCHが送信されてもよいし、M個の繰り返しが送信されてもよい。
 例えば、図31に示すように、4スロットにわたるPDSCHがスケジュールされる場合、UEは、最後の1スロット(M=1)の最後の4シンボル(N=4)におけるCSI-RSが設定(指示、アクティベート)されると想定してもよい。
《多重方法2》
 データ及びCSI-RSが、TDM及びFDMの少なくとも1つによって多重されてもよい。
 データ及びCSI-RSが異なる送信機によって送信され、データ及びCSI-RSがFDMされてもよい。この場合、CSI-RSのPAPRを低く抑えることができる。データ及びCSI-RSがFDMされることによって、周波数利用効率を高めることができる。データ及びCSI-RSの間でチャネル(パス)及び位相が異なるため、データとFDMされたCSI-RSに基づくチャネルの測定結果を、データの復調に用いることは難しい。
 CSI-RSは次のマッピング方法1、2のいずれかに従ってマップされてもよい。
[マッピング方法1]
 CSI-RSマッピングの後に、DFT-s-OFDMが適用されてもよい。CSI-RSマッピングは、前述のRel.15のCSI-RSと同じであってもよい。
 例えば、図32に示すように、CSI-RS系列がマップされ、PDSCHがマップされ、得られた信号にDFT-s-OFDMが適用されてもよい。CSI-RSは、高PAPR系列(例えば、疑似ランダム系列)であってもよいし、低PAPR系列であってもよい。
 DFT-s-OFDMを適用することによって、PAPRを抑えることができる。
[マッピング方法2]
 CSI-RSは、DFT前の時間ドメインにマップされてもよい。
 図33に示すように、CSI-RS系列が時間ドメインにマップされ、MポイントDFTされてもよい。MポイントDFTの出力(周波数ドメイン)は、N個のサブキャリアの中のM個のサブキャリアへマップされ(サブキャリアマッピング)、NポイントIDFTされてもよい。NポイントIDFTの出力(時間ドメイン)は、パラレル/シリアル(P/S)変換され、ガードインターバルを付加され、送信されてもよい。
 CSI-RS系列は、低PAPR系列であってもよいし、疑似ランダム系列であってもよし、他の系列であってもよい。
 図34Aに示すように、時間ドメインにおけるデータのサンプルにCSI-RSのサンプルが挿入されてもよい。図34Bに示すように、CSI-RSを挿入されたデータがMポイントDFTに入力され、図33と同様に送信されてもよい。
 この実施形態によれば、データ及びCSI-RSを適切に多重することができる。
<実施形態5>
 CSI-RSの低PAPR系列は、sounding reference signal(SRS)の系列と同様に設定されてもよい。CSI-RSの低PAPR系列は、SRSの系列と同じであってもよい。
 SRSに対する次の機構(SRS構成、SRSリソース)の少なくとも1つが、CSI-RSに対して用いられてもよい。
・系列生成(例えば、低PAPR系列生成)
・リソースアロケーション
・系列ホッピング
・周波数ホッピング
 CSI-RSのアンテナポート数は、最大数Pによって制限されてもよい。Pは、Rel.15のCSI-RS又はSRSのアンテナポートの最大数より少なくてもよい。Pは、SRSのアンテナポートの最大数より多くてもよいし、Rel.15のSRSのアンテナポートの最大数より多くてもよいし、Rel.15のCSI-RSのアンテナポートの最大数より多くてもよい。
 所定周波数よりも高い周波数(例えば、FR4)において、CSI-RSのアンテナポートの最大数と、MIMOレイヤの最大数と、多重されるUEの最大数と、の少なくとも1つのパラメータは、所定周波数よりも低い周波数(例えば、FR1)におけるパラメータよりも小さくてもよいし、大きくてもよい。
 CSI-RS系列を含むCSI-RSリソースは、セル固有に設定又は決定されてもよい。
 CSI-RS系列を含むCSI-RSリソースは、UE固有に設定又は決定されてもよい。
 周期的(periodic(P))-CSI-RSと、セミパーシステント(semi-persistent(SP))-CSI-RSと、非周期的(aperiodic(A))-CSI-RSと、の少なくとも1つに対して、測定及び報告の少なくとも1つがサポートされてもよい。
 セル固有のCSI-RSの送信電力は、特定種類のDL送信に対する比によって設定又は決定されてもよい。特定種類のDL送信は、例えば、SSB、PDCCH、PDSCHのいずれかであってもよい。
 UE固有のCSI-RSの送信電力は、SRSの送信電力制御に基づいて決定されてもよい。この場合、セル端のUEに対する性能を向上できる。
 UE固有のCSI-RSの送信電力の決定のために、UEは、パスロスの測定及び報告を行ってもよい。基地局が、UE固有のCSI-RSの送信電力の決定のためのパスロスを推定するために、UEはRS(例えば、SRS)を送信してもよい。当該RSは、パスロス測定UL RSなどと呼ばれてもよい。
 この実施形態によれば、SRSリソースに基づいてCSI-RSリソースを決定することによって、実装が簡単になる。
<実施形態6>
 低PAPR系列及び高PAPR系列(例えば、Rel.15のCSI-RS系列、疑似ランダム系列)の両方が、CSI-RS用にサポートされてもよい。
 CSI-RS系列は、次の設定方法1、2の少なくとも1つによって設定されてもよい。
《設定方法1》
 UEは、上位レイヤシグナリング及びMAC CE及びDCIの少なくとも1つに基づいて、CSI-RSに対して低PAPR系列又は高PAPR系列を明示的に設定又は指示又はアクティベートされてもよい。
《設定方法2》
 UEは、上位レイヤシグナリング及びMAC CE及びDCIの少なくとも1つに基づいて、CSI-RSに対して低PAPR系列又は高PAPR系列を暗示的に設定又は指示又はアクティベートされてもよい。
 特定種類のチャネル/信号に対してCP-OFDMが設定又は適用された場合、UEは、高PAPR系列のCSI-RSをモニタ又は測定してもよい。特定種類のチャネル/信号は、PDSCHであってもよいし、PDCCHであってもよい。CP-OFDM波形のPAPRは、DFT-s-OFDM波形のPAPRより高くてもよい。
 特定種類のチャネル/信号に対してDFT-s-OFDMが設定又は適用された場合、UEは、低PAPR系列のCSI-RSをモニタ又は測定してもよい。DFT-s-OFDM波形のPAPRは、CP-OFDM波形のPAPRより低くてもよい。
 この実施形態によれば、適切なCSI-RS系列を用いることができる。
<実施形態7>
 Rel.15のCSI-RSよりも多いシンボルがサポートされてもよい。
 SCSが大きくなり、シンボル長が短くなる場合、CSI-RSがマップされるシンボル数が多くなってもよい。
 1つのCSI-RSリソースが複数の期間にわたってもよい。UEは、1つのCSI-RSを複数の期間にわたって受信してもよい。期間は、スロット、サブスロット、サブフレーム、の1つであってもよい。例えば、1つのCSI-RSリソースが複数スロットにわたってもよい。
 TD-OCCは、複数の期間にわたるCSI-RSに適用されてもよい。例えば、TD-OCCが複数スロットにわたって適用されてもよい。
 図35Aに示すように、UEは、低PAPR系列を用いる1つのCSI-RSを、2スロットにわたって受信してもよい。各スロットにおける時間ドメイン位置及び周波数ドメイン位置は、同じであってもよい。
 図35Bに示すように、UEは、高PAPR系列(Rel.15のCSI-RS系列)を用いる1つのCSI-RSを、2スロットにわたって受信してもよい。各スロットにおける時間ドメイン位置及び周波数ドメイン位置は、Rel.15のCSI-RSと同じであってもよい。
 1つのスロット内のCSI-RS(CSI-RSリソース、CSI-RS系列、CSI-RS位置、の少なくとも1つ)が、複数スロットにわたって繰り返されてもよい。TD-OCCは、1つのスロット(各スロット)内で適用されてもよい。この場合、1スロットにわたるCSI-RSと、複数スロットにわたるCSI-RSとが、1スロットにわたる異なるTD-OCCを乗算されることによって、CDMされてもよい。
 CSI-RS系列が、複数スロットにわたって生成されてもよい。CSI-RS系列は、スロット及びシンボルの少なくとも1つよって異なってもよい。TD-OCCは、複数のスロットにわたって適用されてもよい。この場合、複数スロットにわたるCSI-RSと、同じ複数スロットにわたるCSI-RSとが、同じ複数スロットにわたる異なるTD-OCCを乗算されることによって、CDMされてもよい。
 複数シンボル又は複数スロットにわたってCSI-RSをマップすることによって、CSI-RS系列長を長くすることができ、多重されるCSI-RSの数を増やすことができる。複数シンボル又は複数スロットにわたるTD-OCCを、CSI-RSに乗ずることによって、TD-OCC長を長くすることができ、多重されるCSI-RSの数を増やすことができる。
 この実施形態によれば、1つのCSI-RSをより多いシンボルへマップすることによって、測定精度を向上できる。
<他の実施形態>
 所定周波数(例えば、7.125GHz、24.25GHz、52.6GHzなど)よりも高い周波数(例えば、FR2、FR3、FR4の少なくとも1つ)において、低PAPR系列及びRel.15のCSI-RS系列(疑似ランダム系列、高PAPR系列)の両方が、CSI-RS用にサポートされてもよい。UEは、低PAPR系列及び高PAPR系列のいずれをCSI-RSに用いるかを、上位レイヤシグナリングによって設定されてもよい。
 特定の機能を有する基地局は、Rel.15のCSI-RS系列に基づくCSI-RSを送信してもよい。
 所定周波数よりも高い周波数において、低PAPR系列のみが、CSI-RS用にサポートされてもよい。UEは、所定周波数よりも高い周波数において、Rel.15のCSI-RS系列のCSI-RSを受信すると期待しなくてもよい。
 UEは、UE能力の一部として、低PAPR系列のCSI-RSのサポートに関する次の情報の少なくとも1つを報告してもよい。
・低PAPR系列のCSI-RSをサポートするか否か
・アンテナポートの最大数
・複数アンテナポートの多重方法(TDM、FDM、CDM(OCC、CSなど)、TRPの少なくとも1つに関するパラメータ)
・CSI-RS密度(時間、周波数、CSの少なくとも1つの密度)
 CSI-RSは、non-zero power(NZP)-CSI-RSであってもよいし、zero power(ZP)-CSI-RSであってもよい。前述の各実施形態がNZP-CSI-RSのみに適用されてもよい。
 所定周波数より高い周波数におけるZP-CSI-RSに対し、Rel.15のZP-CSI-RSが適用されてもよい。ZP-CSI-RSにおいては、PAPRの問題が生じない。
 所定周波数より高い周波数におけるZP-CSI-RSに対し、低PAPR系列のCSI-RSが適用されてもよい。CSI-RSマッピングなどにおいて、NZP-CSI-RSとZP-CSI-RSが同じ方法を用いることによって、UEの処理が簡単になる。
 NZP-CSI-RSに対し、低PAPR系列のCSI-RSが設定又は適用される場合、ZP-CSI-RSに対し、低PAPR系列のCSI-RSのためのリソースが適用されてもよい。CSI-RSマッピングなどにおいて、NZP-CSI-RSとZP-CSI-RSが同じ方法を用いることによって、UEの処理が簡単になる。NZP-CSI-RSに対し、低PAPR系列のCSI-RSが設定又は適用されない場合、Rel.15のZP-CSI-RSが適用されてもよい。
 本開示において、所定周波数よりも高い周波数(例えば、FR4)の場合と、特定のサブキャリア間隔の場合と、所定セルに特定のサブキャリア間隔が設定された場合と、は互いに読み替えられてもよい。なお、特定のサブキャリア間隔は、所定の値(例えば、120kHz)より大きいサブキャリア間隔、又はニューメロロジーに対応するパラメータμが所定の値(例えば、3)より大きい場合のサブキャリア間隔であってもよい。
 周波数範囲(例えば、FR4)は、複数の部分(例えば、サブ周波数レンジ、又はsub-FRs)に区分されてもよい。1つの周波数範囲の全部又は一部の周波数に対して上記の複数の実施形態の少なくとも1つを適用してもよい。その周波数以外の周波数に対して上記の複数の実施形態の少なくとも1つを適用しなくもよい(例えば、Rel.15に従ってもよい)。
 UEは、前述の少なくとも1つの実施形態を適用された、複数アンテナポートの少なくとも1つのCSI-RSリソースの測定によってCSIを取得してもよい。
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図36は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
 図37は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
 なお、制御部110は、ユーザ端末20から、上りリンク制御チャネル(PUCCH)のための位相追従参照信号(Phase Tracking Reference Signal(PTRS))を受信してもよい。制御部110は、当該PTRSに基づいて、当該PUCCHの位相ノイズを低減(補正)してもよい。
(ユーザ端末)
 図38は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
 送受信部220は、疑似ランダム系列のピーク平均電力比(PAPR)よりも低いPAPRを有する系列に基づく第1チャネル状態情報(CSI)-参照信号(RS)を受信してもよい。制御部210は、前記第1CSI-RSを用いて測定を行ってもよい。
 前記第1CSI-RSは、周波数ドメインの巡回シフト、時間ドメインの巡回シフト、周波数ドメインの直交カバーコード(FD-OCC)、時間ドメインの直交カバーコード(TD-OCC)、周波数リソース(例えば、他のアンテナポートのCSI-RSとFDMされる周波数リソース)、時間リソース(例えば、他のアンテナポートのCSI-RSとTDMされる時間リソース)、comb、及び拡散符号、の少なくとも1つを示すパラメータ(例えば、CSI-RSリソース内のパラメータ)の第1値と、第1アンテナポート(例えば、アンテナポート、アンテナポートグループの少なくとも1つ)と、に関連付けられてもよい。第2CSI-RSは、前記パラメータの第2値と、第2アンテナポートと、に関連付けられる、してもよい。
 前記第1CSI-RSは第1送信機(例えば、TRP#1)から送信されてもよく、前記第2CSI-RSは第2送信機(例えば、TRP#2)から送信されてもよく、前記第1CSI-RS及び前記第2CSI-RSは周波数分割多重されてもよい(実施形態2/CSI-RS送信方法1)。
 前記第1CSI-RSのサブキャリア間隔は、特定種類のチャネル又は信号のサブキャリア間隔よりも大きくてもよい(実施形態1/SCS)。
 前記第1CSI-RSは、Rel.15の周波数範囲よりも高い周波数において送信されてもよい。
 送受信部220は、チャネル状態情報(CSI)-参照信号(RS)を受信してもよい。制御部210は、前記CSI-RSが送信される第1帯域(例えば、CSI-RS送信帯域)と、前記CSI-RSに対して設定される第2帯域(例えば、CSI-RSリソース帯域)と、のいずれかを用いて測定を行ってもよい(実施形態2/CSI-RS送信方法2、実施形態3)。
 前記第1帯域及び前記第2帯域の少なくとも1つに対して、周波数ホッピングが適用されてもよい。
 前記第1帯域が前記第2帯域を含む場合、前記制御部は、前記第2帯域を用いて測定を行ってもよい。
 前記第1帯域及び前記第2帯域の少なくとも一部が重複する場合、前記第1帯域又は前記第2帯域を用いて測定を行う、又は前記測定を行わなくてもよい。
 前記第1帯域及び前記第2帯域が重複しない場合、前記第1帯域を用いて測定を行う、又は前記測定を行わなくてもよい。
 送受信部220は、時間分割多重と周波数分割多重とトランスフォームプリコーディングとサウンディング参照信号(SRS)構成との少なくとも1つが適用された、チャネル状態情報(CSI)-参照信号(RS)及び物理下り共有チャネル(PDSCH)を受信してもよい。制御部210は、前記CSI-RSを用いて測定を行い、前記PDSCHを復調してもよい(実施形態4~7)。
 前記CSI-RS及び前記PDSCHは時間分割多重されてもよく、前記CSI-RSは、或るシンボル数の長さを有し、前記PDSCHが送信される期間の最初又は最後に送信されてもよい(実施形態4/多重方法1)。
 前記CSI-RS及び前記PDSCHに対して、トランスフォームプリコーディングが適用されてもよい(実施形態4/多重方法2)。
 前記CSI-RSは、複数スロットにわたってもよい(実施形態4/多重方法1、実施形態7)。
 前記PDSCHに対してトランスフォームプリコーディング(例えば、DFT-s-OFDM)が適用されない場合、前記CSI-RSは疑似ランダム系列に基づいてもよく、前記PDSCHに対してトランスフォームプリコーディングが適用される場合、前記CSI-RSは、前記疑似ランダム系列のピーク平均電力比(PAPR)よりも低いPAPRを有する系列に基づいてもよい(実施形態6)。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図39は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (6)

  1.  チャネル状態情報(CSI)-参照信号(RS)を受信する受信部と、
     前記CSI-RSが送信される第1帯域と、前記CSI-RSに対して設定される第2帯域と、のいずれかを用いて測定を行う制御部と、を有する端末。
  2.  前記第1帯域及び前記第2帯域の少なくとも1つに対して、周波数ホッピングが適用される、請求項1に記載の端末。
  3.  前記第1帯域が前記第2帯域を含む場合、前記制御部は、前記第2帯域を用いて測定を行う、請求項1又は請求項2に記載の端末。
  4.  前記第1帯域及び前記第2帯域の少なくとも一部が重複する場合、前記第1帯域又は前記第2帯域を用いて前記測定を行う、又は前記測定を行わない、請求項1から請求項3のいずれかに記載の端末。
  5.  前記第1帯域及び前記第2帯域が重複しない場合、前記第1帯域を用いて前記測定を行う、又は前記測定を行わない、請求項1から請求項4のいずれかに記載の端末。
  6.  チャネル状態情報(CSI)-参照信号(RS)を受信するステップと、
     前記CSI-RSが送信される第1帯域と、前記CSI-RSに対して設定される第2帯域と、のいずれかを用いて測定を行うステップと、を有する端末の無線通信方法。
PCT/JP2019/028130 2019-07-17 2019-07-17 端末及び無線通信方法 WO2021009875A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980100444.3A CN114402679A (zh) 2019-07-17 2019-07-17 终端以及无线通信方法
PCT/JP2019/028130 WO2021009875A1 (ja) 2019-07-17 2019-07-17 端末及び無線通信方法
EP19937970.2A EP4002933A1 (en) 2019-07-17 2019-07-17 Terminal and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/028130 WO2021009875A1 (ja) 2019-07-17 2019-07-17 端末及び無線通信方法

Publications (1)

Publication Number Publication Date
WO2021009875A1 true WO2021009875A1 (ja) 2021-01-21

Family

ID=74209753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028130 WO2021009875A1 (ja) 2019-07-17 2019-07-17 端末及び無線通信方法

Country Status (3)

Country Link
EP (1) EP4002933A1 (ja)
CN (1) CN114402679A (ja)
WO (1) WO2021009875A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013236330A (ja) * 2012-05-10 2013-11-21 Ntt Docomo Inc 無線通信システム、基地局装置、ユーザ端末、及び無線通信方法
WO2018031727A1 (en) * 2016-08-10 2018-02-15 Interdigital Patent Holdings, Inc. Systems and methods for aperiodic measurement reference signal transmission in multiple antenna systems
WO2019030928A1 (ja) * 2017-08-10 2019-02-14 株式会社Nttドコモ ユーザ端末及び無線通信方法
EP3471287A1 (en) * 2016-08-11 2019-04-17 LG Electronics Inc. -1- Channel state reporting method in wireless communication system and device therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013236330A (ja) * 2012-05-10 2013-11-21 Ntt Docomo Inc 無線通信システム、基地局装置、ユーザ端末、及び無線通信方法
WO2018031727A1 (en) * 2016-08-10 2018-02-15 Interdigital Patent Holdings, Inc. Systems and methods for aperiodic measurement reference signal transmission in multiple antenna systems
EP3471287A1 (en) * 2016-08-11 2019-04-17 LG Electronics Inc. -1- Channel state reporting method in wireless communication system and device therefor
WO2019030928A1 (ja) * 2017-08-10 2019-02-14 株式会社Nttドコモ ユーザ端末及び無線通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 8", 3GPP TS 36.300, April 2010 (2010-04-01)

Also Published As

Publication number Publication date
EP4002933A1 (en) 2022-05-25
CN114402679A (zh) 2022-04-26

Similar Documents

Publication Publication Date Title
JP6795627B2 (ja) 端末、基地局及び無線通信方法
CN110115009B (zh) 发送装置以及无线通信方法
WO2018155619A1 (ja) ユーザ端末及び無線通信方法
WO2020157966A1 (ja) ユーザ端末及び無線通信方法
WO2021005764A1 (ja) 端末及び無線通信方法
WO2020144774A1 (ja) ユーザ端末及び無線通信方法
WO2020261389A1 (ja) 端末及び無線通信方法
WO2021124585A1 (ja) 端末及び無線通信方法
WO2021009876A1 (ja) 端末及び無線通信方法
WO2021161540A1 (ja) 端末、無線通信方法及び基地局
WO2021124586A1 (ja) 端末及び無線通信方法
WO2020261395A1 (ja) 端末及び無線通信方法
WO2020261402A1 (ja) 端末及び無線通信方法
WO2021014509A1 (ja) 端末及び無線通信方法
WO2020144775A1 (ja) ユーザ端末及び無線通信方法
WO2021009874A1 (ja) 端末及び無線通信方法
WO2021186688A1 (ja) 端末、無線通信方法及び基地局
WO2021166198A1 (ja) 端末、無線通信方法及び基地局
EP4114114A1 (en) Terminal, radio communication method, and base station
WO2021070337A1 (ja) 端末及び無線通信方法
WO2021024326A1 (ja) 端末及び無線通信方法
WO2021024325A1 (ja) 端末及び無線通信方法
WO2020170458A1 (ja) ユーザ端末及び無線通信方法
WO2021014508A1 (ja) 端末及び無線通信方法
WO2021014507A1 (ja) 端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019937970

Country of ref document: EP

Effective date: 20220217

NENP Non-entry into the national phase

Ref country code: JP