WO2021005764A1 - 端末及び無線通信方法 - Google Patents

端末及び無線通信方法 Download PDF

Info

Publication number
WO2021005764A1
WO2021005764A1 PCT/JP2019/027410 JP2019027410W WO2021005764A1 WO 2021005764 A1 WO2021005764 A1 WO 2021005764A1 JP 2019027410 W JP2019027410 W JP 2019027410W WO 2021005764 A1 WO2021005764 A1 WO 2021005764A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
srs resource
transmission
antenna
resource set
Prior art date
Application number
PCT/JP2019/027410
Other languages
English (en)
French (fr)
Inventor
真哉 岡村
祐輝 松村
聡 永田
浩樹 原田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to EP19936828.3A priority Critical patent/EP3998793A4/en
Priority to PCT/JP2019/027410 priority patent/WO2021005764A1/ja
Publication of WO2021005764A1 publication Critical patent/WO2021005764A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal

Definitions

  • the present disclosure relates to terminals and wireless communication methods in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • 3GPP Rel.10-14 LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • a successor system to LTE for example, 5th generation mobile communication system (5G), 5G + (plus), New Radio (NR), 3GPP Rel.15 or later, etc.) is also being considered.
  • 5G 5th generation mobile communication system
  • 5G + plus
  • NR New Radio
  • 3GPP Rel.15 or later, etc. is also being considered.
  • Future wireless communication systems eg, NR
  • NR New Radio Service
  • UE User Equipment
  • mode 2 For UEs with power amplifiers that cannot output maximum rated power, one or more SRS resources whose usage is included in one measurement reference signal (SRS) resource set in the "codebook".
  • SRS measurement reference signal
  • mode 2 a mode (for example, may be referred to as mode 2) that is set to have a different number of SRS ports is being considered.
  • the UE operating in mode 2 may perform full power transmission using some antenna ports instead of all antenna ports.
  • antenna switching (which may be called antenna port switching) can be set as a reference signal for measurement (Sounding Reference Signal (SRS)).
  • SRS antenna switching may be used, for example, when performing downlink CSI acquisition (acquisition) using uplink SRS in the Time Division Duplex (TDD) band.
  • TDD Time Division Duplex
  • the SRS switching operation of Rel-15NR does not consider the UE capability of full power transmission.
  • the correspondence between the antenna port number of the UE and the antenna port that performs SRS antenna switching is not clear, so that SRS switching according to the capability of the power amplifier of the UE cannot be appropriately performed. In this case, the increase in communication throughput may be suppressed.
  • one of the purposes of the present disclosure is to provide a terminal capable of appropriately transmitting SRS and a wireless communication method.
  • the terminal fully includes a receiving unit that receives setting information of one or more measurement reference signals (Sounding Reference Signal (SRS)) resource sets whose use is antenna switching, and an uplink shared channel. It is characterized by having a control unit that controls transmission of SRS resources included in the one or more SRS resource sets based on an antenna port that can transmit by power.
  • SRS Sounding Reference Signal
  • SRS can be appropriately transmitted.
  • FIG. 1 is a diagram showing an example of the association between the precoder type and the TPMI index.
  • FIG. 2 is a diagram showing an example of a UE configuration assumed by UE capabilities 1-3 related to full power transmission.
  • 3A and 3B are diagrams showing an example of an SRS resource set for 1T2R.
  • 4A and 4B are diagrams showing an example of an SRS resource set for 1T1R.
  • 5A and 5B are diagrams showing an example of an SRS resource set for 2T2R.
  • 6A and 6B are diagrams showing an example of an SRS resource set for 1T4R.
  • 7A and 7B are diagrams showing another example of the SRS resource set for 1T4R.
  • FIGS. 8A and 8B are diagrams showing an example of an SRS resource set for 2T4R.
  • 9A and 9B are diagrams showing an example of an SRS resource set for 4T4R.
  • 10A and 10B are diagrams showing an example of the configuration of the antenna port assumed in one embodiment.
  • FIG. 11 is a diagram showing an example of TPMI assumed for PUSCH transmission in the first embodiment.
  • FIG. 12 is a diagram showing an example of TPMI assumed for PUSCH transmission in the second embodiment.
  • 13A and 13B are diagrams showing an example of SRS antenna switching for the SRS resource set for 1T4R in the second embodiment.
  • 14A and 14B are diagrams showing another example of SRS antenna switching for the SRS resource set for 1T4R in the second embodiment.
  • 15A and 15B are diagrams showing yet another example of SRS antenna switching for the SRS resource set for 1T4R in the second embodiment.
  • 16A and 16B are diagrams showing an example of SRS antenna switching for the SRS resource set for 2T4R in the second embodiment.
  • 17A and 17B are diagrams showing an example of SRS antenna switching for the SRS resource set for 4T4R in the second embodiment.
  • 18A and 18B are diagrams showing an example of SRS antenna switching for the SRS resource set for 1T4R in the third embodiment.
  • 19A and 19B are diagrams showing another example of SRS antenna switching for an SRS resource set for 1T4R in a third embodiment.
  • FIG. 20A and 20B are diagrams showing still another example of SRS antenna switching for the SRS resource set for 1T4R in the third embodiment.
  • 21A and 21B are diagrams showing an example of SRS antenna switching for the SRS resource set for 2T4R in the third embodiment.
  • 22A and 22B are diagrams showing an example of SRS antenna switching for the SRS resource set for 4T4R in the third embodiment.
  • FIG. 23 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 24 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • FIG. 25 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • FIG. 26 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • the reference signal for measurement (Sounding Reference Signal (SRS)
  • SRS Sounding Reference Signal
  • the SRS of NR is used not only for the CSI measurement of the uplink (Uplink (UL)) used in the existing LTE (LTE Rel.8-14), but also for the CSI measurement of the downlink (Downlink (DL)) and the beam. It is also used for management (beam management).
  • the UE may be configured with one or more SRS resources.
  • the SRS resource may be specified by the SRS resource index (SRS Resource Index (SRI)).
  • SRS Resource Index SRI
  • Each SRS resource may have one or more SRS ports (may correspond to one or more SRS ports).
  • the number of ports for each SRS may be 1, 2, 4, or the like.
  • the UE may be set with one or more SRS resource sets (SRS resource sets).
  • SRS resource sets may be associated with a predetermined number of SRS resources.
  • the UE may commonly use higher layer parameters for SRS resources included in one SRS resource set.
  • the resource set in the present disclosure may be read as a set, a resource group, a group, or the like.
  • Information about the SRS resource or resource set may be set in the UE using higher layer signaling, physical layer signaling (eg, Downlink Control Information (DCI)) or a combination thereof.
  • DCI Downlink Control Information
  • the upper layer signaling may be, for example, any one of Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC CE MAC Control Element
  • PDU MAC Protocol Data Unit
  • the broadcast information includes, for example, a master information block (Master Information Block (MIB)), a system information block (System Information Block (SIB)), a minimum system information (Remaining Minimum System Information (RMSI)), and other system information ( Other System Information (OSI)) may be used.
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Minimum System Information
  • OSI Other System Information
  • the SRS setting information (for example, "SRS-Config" of the RRC information element) may include SRS resource set setting information, SRS resource setting information, and the like.
  • the SRS resource set setting information (for example, the RRC parameter "SRS-ResourceSet”) includes an SRS resource set ID (Identifier) (SRS-ResourceSetId), a list of SRS resource IDs (SRS-ResourceId) used in the resource set, and SRS. Information such as resource type and SRS usage may be included.
  • SRS resource ID may be referred to as an SRS Resource ID (SRI).
  • the SRS resource types are periodic SRS (Periodic SRS (P-SRS)), semi-persistent SRS (Semi-Persistent SRS (SP-SRS)), and aperiodic SRS (Aperiodic SRS (A-SRS)). May indicate any of.
  • the UE may transmit P-SRS and SP-SRS periodically (or periodically after activation).
  • the UE may transmit the A-SRS based on the DCI SRS request.
  • SRS RRC parameter "usage", L1 (Layer-1) parameter "SRS-SetUse"
  • L1 (Layer-1) parameter "SRS-SetUse” L1 (Layer-1) parameter "SRS-SetUse”
  • SRS-SetUse L1 (Layer-1) parameter "SRS-SetUse”
  • PUSCH uplink shared channel
  • SRS For beam management SRS, it may be assumed that only one SRS resource for each SRS resource set can be transmitted in an instant at a predetermined time. When a plurality of SRS resources belong to different SRS resource sets, these SRS resources may be transmitted at the same time.
  • the SRS resource setting information (for example, the RRC parameter "SRS-Resource”) includes the SRS resource ID (SRS-ResourceId), the number of SRS ports, the SRS port number, the transmission comb (comb), and the SRS resource mapping (for example,). It may include information about time and / or frequency resource location, resource offset, resource period, number of iterations, number of SRS symbols, SRS bandwidth, etc.), hopping, SRS resource type, sequence ID, spatial relationships, and so on.
  • the UE may transmit SRS in the adjacent symbols corresponding to the number of SRS symbols among the last 6 symbols in one slot.
  • the number of SRS symbols may be 1, 2, 4, or the like.
  • the UE may switch the BWP (Bandwidth Part) that transmits SRS for each slot, or may switch the antenna.
  • the UE may apply at least one of in-slot hopping and inter-slot hopping to SRS transmission.
  • the NR is considering that the UE supports at least one of codebook (Codebook (CB)) -based transmission and non-codebook (Non-Codebook (NCB)) -based transmission.
  • codebook Codebook
  • NCB Non-Codebook
  • the UE uses at least the measurement reference signal (Sounding Reference Signal (SRS)) resource index (SRS Resource Index (SRI)) to use at least one of the CB-based and NCB-based uplink shared channels (PUSCH). )) It is being considered to determine the precoder (precoding matrix) for transmission.
  • SRS Sounding Reference Signal
  • SRI SRS Resource Index
  • the UE determines the precoder for PUSCH transmission based on SRI, transmission rank index (Transmitted Rank Indicator (TRI)), transmission precoding matrix index (Transmitted Precoding Matrix Indicator (TPMI)), and the like. You may.
  • the UE may determine a precoder for PUSCH transmission based on SRI.
  • SRI, TRI, TPMI, etc. may be notified to the UE using downlink control information (DCI).
  • DCI downlink control information
  • SRI may be specified by the SRS Resource Indicator field (SRI field) of DCI, or by the parameter "srs-ResourceIndicator” included in the RRC information element "Configured GrantConfig" of the configured grant PUSCH (configured grant PUSCH). You may.
  • the TRI and TPMI may be specified by the DCI precoding information and the number of layers field ("Precoding information and number of layers" field).
  • the UE may report UE capability information regarding the precoder type, and the precoder type based on the UE capability information may be set by higher layer signaling from the base station.
  • the UE capability information may be precoder type information (may be represented by the RRC parameter "pusch-Trans Coherence") used by the UE in PUSCH transmission.
  • the UE is based on the precoder type information (which may be represented by the RRC parameter "codebookSubset") included in the PUSCH setting information (the "PUSCH-Config" information element of RRC signaling) notified by the upper layer signaling.
  • the precoder used for PUSCH transmission may be determined.
  • the UE may be configured by the codebookSubset with a subset of the PMI specified by the TPMI.
  • the precoder type is either full coherent (full coherent, fully coherent, coherent), partial coherent (non-coherent) or non-coherent (non-coherent), or at least two combinations thereof (for example, "complete” And may be represented by parameters such as "fullyAndPartialAndNonCoherent", “partialAndNonCoherent”).
  • Completely coherent may mean that all antenna ports used for transmission are synchronized (may be expressed as being able to match phase, applying the same precoder, etc.). Partial coherent may mean that some of the antenna ports used for transmission are synchronized, but some of the ports are out of sync with the other ports. Non-coherent may mean that each antenna port used for transmission cannot be synchronized.
  • UEs that support fully coherent precoder types may be assumed to support partially coherent and non-coherent precoder types.
  • UEs that support partially coherent precoder types may be expected to support non-coherent precoder types.
  • the precoder type may be read as coherent ability, coherence, PUSCH transmission coherence, coherent type, coherence type, codebook type, codebook subset, codebook subset type, and the like.
  • the UE determines from multiple precoders for CB-based transmission (which may also be called precoding matrices, codebooks, etc.) the precoding matrix corresponding to the TPMI index obtained from the DCI that schedules UL transmissions. May be good.
  • FIG. 1 is a diagram showing an example of the association between the precoder type and the TPMI index.
  • FIG. 1 shows a table of precoding matrix W for single layer transmission using 4 antenna ports in Discrete Fourier Transform spread OFDM (DFT-s-OFDM) (in other words, transform precoding is effective). Corresponds to.
  • DFT-s-OFDM Discrete Fourier Transform spread OFDM
  • the UE when the precoder type (codebookSubset) is fullyandpartialAndNonCoherent, the UE is notified of any TPMI from 0 to 27 for single layer transmission. Further, when the precoder type is partialAndNonCoherent, the UE is set to any TPMI from 0 to 11 for single layer transmission. If the precoder type is nonCoherent, the UE is configured with any TPMI from 0 to 3 for single layer transmission.
  • FIG. 1 is a table specified in the current Rel-15 NR.
  • the transmission power is smaller than that in the case of a single port. (Full power transmission is not possible).
  • a precoding matrix in which only one component in each column is not 0 may be called a non-coherent codebook.
  • a precoding matrix in which the components of each column are not zero by a predetermined number (but not all) may be referred to as a partial coherent codebook.
  • a precoding matrix in which the components of each column are all non-zero may be referred to as a fully coherent codebook.
  • RRC parameter "codebookSubset” "partialAndNonCoherent”
  • NR is studying UE capabilities related to codebook-based full-power UL transmission using multiple power amplifiers (PAs).
  • PAs power amplifiers
  • -UE capability 1 Supports (or has) a PA (full rated PA) that can output the maximum rated power in each transmission chain (Tx chain).
  • -UE capability 2 None of the transmit chains support fully rated PA
  • -UE capability 3 A subset (part) of the transmit chain supports fully rated PA.
  • a UE having at least one of the UE capabilities 1-3 may mean that it supports the full power of UL transmission.
  • the UE may report capability information indicating that it supports the UL full power transmission capability to the network (for example, a base station).
  • the UE may be configured from the network to support full power transmission.
  • the UE capacity 1/2/3 may be read as a UE capacity 1/2/3, a full power transmission type 1/2/3, a power allocation type 1/2/3, etc. for full power transmission, respectively.
  • types, modes, abilities, etc. may be read interchangeably.
  • 1/2/3 may be read as an arbitrary number or character set such as A / B / C.
  • FIG. 2 is a diagram showing an example of a UE configuration assumed by UE capabilities 1-3 related to full power transmission.
  • FIG. 2 simply shows only the PA and the transmitting antenna port (which may be read as the transmitting antenna, the port, etc.) as the configuration of the UE.
  • P indicates the UE maximum output power [dBm]
  • P PA indicates the PA maximum output power [dBm].
  • P may be, for example, 23 dBm for a UE of power class 3 and 26 dBm for a UE of power class 2.
  • P PA ⁇ P is assumed in the present disclosure, the embodiment of the present disclosure may be applied when P PA > P.
  • the configuration of UE capability 1 is expected to be expensive to implement, but full power transmission is possible using one or more arbitrary antenna ports.
  • the configuration of UE capability 2 includes only non-full rated PA and is expected to be implemented at low cost. However, since full power transmission cannot be performed even if only one antenna port is used, the phase of the signal input to each PA, It is required to control the amplitude and the like.
  • the configuration of UE capability 3 is intermediate between the configuration of UE capability 1 and the configuration of UE capability 2.
  • Antenna ports capable of full-power transmission (transmitting antennas # 0 and # 2 in this example) and antenna ports not capable of full-power transmission (transmitting antennas # 1 and # 3 in this example) are mixed.
  • a UE supporting UE capability 2 or 3 is set to at least one of two modes (modes 1 and 2) for the operation of full power transmission.
  • Modes 1 and 2 may be referred to as operation modes 1 and 2, respectively.
  • mode 1 is a mode in which the UE is set so that one or more SRS resources included in one SRS resource set whose usage is "codebook" have the same number of SRS ports. For example, it may be called the first full power transmission mode).
  • the UE operating in mode 1 may transmit at full power using all antenna ports.
  • the UE operating in mode 1 may be configured from the network to use a subset of TPMIs that combine ports within one layer to achieve full power transmission.
  • a new codebook subset may be introduced only for rank values that include the TPMI precoder corresponding to "fullyAndPartialAndNonCoherent" defined in Rel-15NR and cannot be used for full power transmission.
  • mode 2 is a mode in which the UE is set so that one or more SRS resources included in one SRS resource set whose usage is "codebook" have different numbers of SRS ports (eg,). , It may be called a second full power transmission mode).
  • the UE operating in mode 2 may perform full power transmission using some antenna ports instead of all antenna ports.
  • the UE operating in mode 2 may transmit PUSCH and SRS in the same way regardless of whether antenna virtualization is used or not.
  • Mode 2 UEs may be notified of a set of TPMIs to achieve full power transmission to support more than one port of SRS resources.
  • two or more SRS resources may be set for one SRS resource set (the maximum number was two in Rel-15 NR).
  • Mode 1 has the advantage that the required SRI field size can be smaller than that of mode 2 (full power transmission is possible with 1 SRS resource).
  • mode 2 Compared to mode 1, mode 2 has the advantage that single-port transmission and multi-port transmission can be dynamically switched by DCI. Further, since full power transmission can be performed with some antenna ports, for example, full power transmission can be performed using only an antenna having a fully rated PA, or full power transmission can be performed using only a coherent antenna.
  • SRS antenna switching By the way, in Rel-15 NR, as described above, antenna switching (which may be called antenna port switching) can be set as an application of SRS. SRS antenna switching may be used, for example, when performing downlink CSI acquisition (acquisition) using uplink SRS in the Time Division Duplex (TDD) band.
  • TDD Time Division Duplex
  • UL SRS measurement may be used to determine the DL precoder.
  • the UE may report UE capability information (for example, the RRC parameter "supportedSRS-TxPortSwitch") indicating the transmission port switching pattern of the supported SRS to the network.
  • UE capability information for example, the RRC parameter "supportedSRS-TxPortSwitch"
  • This pattern is expressed in the form of "txry” such as “t1r2” and "t2r4", which means that SRS transmission can be performed using x antenna ports out of a total of y antennas (denoted as xTyR). May also mean).
  • y may correspond to all or a subset of the receiving antennas of the UE.
  • FIG. 3A and 3B are diagrams showing an example of an SRS resource set for 1T2R.
  • FIG. 3A shows one SRS resource set (SRS resource set # 0) whose use is antenna switching (“antennaSwitching”), which is set for the UE by higher layer signaling (eg, RRC signaling).
  • SRS resource set # 0 SRS resource set # 0
  • antenna switching antenna switching
  • RRC signaling higher layer signaling
  • the SRS resource indexes (# 3, # 7) in FIG. 3A are examples, and are not limited to these values (the same applies to the subsequent drawings).
  • FIG. 3B is a diagram showing an example of mapping of SRS resources corresponding to FIG. 3A.
  • the UE describes a case where the number of symbols (nrofSymbols) of SRS resources # 0 and # 3 is set to 1 in the SRS resource set of FIG. 3A.
  • the number of symbols of the SRS resource is assumed to be 1, but the number of symbols is not limited to this.
  • the UE may assume that the start symbols of each SRS resource in the SRS resource set for antenna switching are different from each other. Further, the UE may assume that there is a guard period between SRS resources of the same SRS resource set.
  • the guard period may be referred to as a non-transmission period, an SRS switching period, a port switching period, or the like. It may be assumed that the UE does not transmit any signal (eg, any other signal) during the guard period in the slot in which the PUSCH is transmitted.
  • the UE may use the guard period to turn on the antenna port to be used in the next SRS transmission (may be called activation, activation, etc.).
  • the UE transmits two SRS resources using a total of two symbols.
  • the UE has the frequency resources of the plurality of SRS resources overlapped (for example, transmitted using the same comb, the same frequency resource, etc.). You may assume that. The same may apply to the subsequent drawings.
  • the UE may transmit the SRS resource # 0 on the port # 0 in one symbol of FIG. 3B, and may transmit the SRS resource # 3 on the port # 1 in another symbol.
  • the pair of each SRS resource and the corresponding port may be called an SRS pattern, or simply a pattern. Which pattern (in other words, the correspondence between the resource and the port) is used may depend on the implementation of the UE (the UE may determine an arbitrary pattern), and the upper layer signaling or physical layer. It may be set in the UE by signaling or a combination thereof.
  • FIG. 4A and 4B are diagrams showing an example of an SRS resource set for 1T1R.
  • FIG. 4B is a diagram showing an example of mapping of SRS resources corresponding to FIG. 4A.
  • the UE transmits one SRS resource using one symbol.
  • the UE may transmit SRS resource # 0 on port # 0 in one symbol of FIG. 4B.
  • FIG. 5A and 5B are diagrams showing an example of an SRS resource set for 2T2R.
  • FIG. 5B is a diagram showing an example of mapping of SRS resources corresponding to FIG. 5A.
  • the UE transmits one SRS resource using one symbol.
  • the UE may transmit SRS resource # 0 on ports # 0 and # 1 in one symbol of FIG. 5B.
  • the UE When the UE transmits SRS from a plurality of antenna ports for one SRS resource (SRS resource # 0 in this example) (nrofSRS-Ports> 1), the UE performs orthogonalization processing (orthogonalization processing) to the signals of the plurality of antenna ports. For example, cyclic shift, orthogonal code (orthogonal cover code, etc.) may be applied.
  • FIG. 6A and 6B are diagrams showing an example of an SRS resource set for 1T4R.
  • FIG. 6A shows an example of an SRS resource set whose use is antenna switching, where the resource type (RRC parameter “resourceType”) is periodic or semi-persistent.
  • RRC parameter “resourceType” is periodic or semi-persistent.
  • one SRS resource set whose resource type is periodic or semi-persistent may be set.
  • the SRS resource set may include four SRS resources transmitted with different symbols.
  • FIG. 6B is a diagram showing an example of mapping of SRS resources corresponding to FIG. 6A.
  • the UE transmits four SRS resources using a total of four symbols.
  • the UE has SRS resource # 0 on port # 0, SRS resource # 3 on port # 1, SRS resource # 7 on port # 2, and SRS resource # 8 on port # 3 in different symbols in FIG. 6B. You may send it with.
  • the guard period is set between each SRS resource, but the SRS resource set whose resource type is periodic or semi-persistent can be ported in advance. Therefore, a setting without a guard period (for example, a plurality of SRS resources adjacent in time) may be applied.
  • FIG. 7A and 7B are diagrams showing another example of the SRS resource set for 1T4R.
  • FIG. 7A shows an example of an SRS resource set whose use is antenna switching and whose resource type (RRC parameter “resourceType”) is aperiodic.
  • Two SRS resource sets with aperiodic resource types may be set for 1T4R.
  • the two SRS resource sets may include a total of four SRS resources transmitted with different symbols in different slots.
  • the SRS port of each SRS resource given to the two SRS resource sets may be associated with a different UE antenna port.
  • Each of the two SRS resource sets may be set with two SRS resources, one may be set with one SRS resource, and the other may be set with three SRS resources.
  • FIG. 7B is a diagram showing an example of mapping of SRS resources corresponding to FIG. 7A.
  • the UE transmits four SRS resources using a total of four symbols in two slots.
  • the UE transmits the SRS resource # 0 of the SRS resource set # 0 on the port # 0 and the SRS resource # 3 of the SRS resource set # 0 on the port # 1 in different symbols in the first slot of FIG. 7B. May be good.
  • the UE transmits the SRS resource # 2 of the SRS resource set # 4 on the port # 2 and the SRS resource # 3 of the SRS resource set # 4 on the port # 3 at different symbols in the second slot of FIG. 7B. May be good.
  • the UE may transmit an SRS of an SRS resource set whose SRS resource type is aperiodic, based on the instructions contained in the DCI (eg, SRS request, SRS trigger).
  • FIG. 8A and 8B are diagrams showing an example of an SRS resource set for 2T4R.
  • FIG. 8B is a diagram showing an example of mapping of SRS resources corresponding to FIG. 8A.
  • the UE transmits two SRS resources using two symbols.
  • the UE may transmit SRS resource # 0 on ports # 0 and # 1 in one symbol of FIG. 8B and SRS resource # 3 on ports # 2 and # 3 in another symbol.
  • FIGS. 9A and 9B are diagrams showing an example of an SRS resource set for 4T4R.
  • FIG. 9B is a diagram showing an example of mapping of SRS resources corresponding to FIG. 9A.
  • the UE transmits one SRS resource using one symbol.
  • the UE may transmit SRS resource # 0 on ports # 0, # 1, # 2 and # 3 in one symbol of FIG. 9B.
  • the SRS switching operation of Rel-15 NR as shown in FIGS. 3 to 9 does not consider the UE capability of full power transmission.
  • the UE supporting mode 2 reports TPMI (which may be read by the combination of antenna ports) for performing PUSCH transmission at full power to the network. ing.
  • the correspondence between the antenna port number of the UE and the antenna port that performs SRS antenna switching is not clear, so that SRS switching according to the capability of the power amplifier of the UE cannot be appropriately performed.
  • the transmission power of the SRS may be insufficient (transmission cannot be performed with sufficient power), and as a result, an increase in communication throughput may be suppressed.
  • the present inventors have conceived a method for appropriately transmitting SRS.
  • the UE can perform appropriate SRS switching in consideration of the capability of the power amplifier (full power transmission).
  • full power may be read as “power boosting”, “maximum power”, “extended power”, “higher power than Rel-15 UE”, and the like.
  • having coherent abilities may be read interchangeably with reporting the ability, setting the coherent, and so on.
  • non-coherent UE the partial coherent UE, and the fully coherent UE may be read as a UE having a non-coherent ability, a UE having a partial coherent ability, and a UE having a complete coherent ability, respectively.
  • the non-coherent UE, the partial coherent UE, and the fully coherent UE refer to the codebook subsets of "non-coherent”, “partialAndNonCoherent”, and “fullyAndPartialAndNonCoherent”, respectively. It may mean a UE set in a higher layer. In this disclosure, the codebook subset and the codebook may be read interchangeably.
  • the non-coherent UE, the partial coherent UE, and the fully coherent UE may mean a UE that can transmit using the non-coherent codebook, the partial coherent codebook, and the fully coherent codebook, respectively.
  • the UE of each of the following embodiments assumes a UE that reports information indicating that it supports full power UL transmission, but may be applied to a UE that does not report this.
  • reporting the UE capability information indicating that the mode 2 is supported means that the UE supports the mode 2, the UE is set to the mode 2, and the UE performs PUSCH transmission in the mode 2 ( It may be read as each other, such as being set to perform full power transmission).
  • FIGS. 10A and 10B are diagrams showing an example of the configuration of the antenna port assumed in one embodiment.
  • FIG. 10A is a diagram showing an example of a subset of TPMI (which may be read in a codebook, precoding matrix, etc.) for performing full power transmission.
  • This example shows an example of TPMI for 4-port transmission of ranks 1 and 2.
  • the UE may transmit one or more TPMIs shown in FIG. 10A to the network as capability information of the antenna port capable of full power transmission.
  • W [1 0 0 0] T , [0 1 0 0] T , [0 0 1 0] T , [0 0 0 1] T (T is the transposed matrix).
  • T is the transposed matrix.
  • One or more of the TPMIs (shown below) may be reported.
  • the non-zero PUSCH port may mean an antenna port (an antenna port whose value is not zero) whose transmission is indicated by a precoding matrix (codebook subset).
  • antenna port # 0 can transmit at full power by itself (in the case of a UE of power class 3, it can output 23 dBm), and antenna port # 2 can transmit at half the power of full power (for example, 20 dBm).
  • Antenna ports # 1 and # 3 may be assumed to be capable of transmitting with less power (eg, 17 dBm).
  • the UE reporting the TPMI capability may assume that antenna ports # 0 and # 2 are coherent (synchronized) with each other.
  • the UE may also assume that antenna ports # 1 and # 3 are coherent (synchronized) with each other.
  • the UE reporting the UE capability information indicating that it supports mode 2 is a TPMI corresponding to the coherent capability (RRC parameter "pusch-Trans Coherence") regardless of the support capability of full power transmission.
  • RRC parameter "codebookSubset” the UE reporting the UE capability information indicating that it supports mode 2
  • RRC parameter "pusch-Trans Coherence” the UE reporting the UE capability information indicating that it supports mode 2
  • RRC parameter "pusch-Trans Coherence” regardless of the support capability of full power transmission.
  • the TPMI corresponding to the coherent ability may mean, for example: ⁇
  • the TPMI corresponding to non-coherent is the TPMI of the non-coherent codebook.
  • -TPMI corresponding to partial coherent is TPMI of non-coherent codebook and partial coherent codebook
  • -TPMIs that support full coherent are non-coherent codebooks, partial coherent codebooks, and full coherent codebook TPMIs.
  • the TPMI of the present disclosure may be read as an antenna port (or a combination of antenna ports) used for codebook-based PUSCH transmission, a codebook, a precoding matrix, a precoding matrix corresponding to the TPMI, and the like.
  • FIG. 11 is a diagram showing an example of TPMI assumed for PUSCH transmission in the first embodiment.
  • FIG. 11 shows a precoding matrix similar to that of FIG.
  • the partial coherent UE shown in FIG. 10B may assume that in the first embodiment all of the TPMIs from 0 to 11 corresponding to the partial and non-coherent can be specified.
  • the UE that reports the UE capability information indicating that it supports mode 2 may assume the same SRS switching operation as the Rel-15 NR as shown in FIGS. 3 to 9.
  • the UE reporting the UE capability information indicating that it supports mode 2 is the TPMI corresponding to the coherent capability (RRC parameter "pusch-Trans Coherence") or the set codebook subset (RRC parameter). Of the TPMIs that fall under "codebook Subset"), it may be assumed that only TPMIs that support full power PUSCH transmission can be instructed.
  • the UE may assume that the size of the field related to the TPMI included in the DCI (for example, the size of the precoding information and the number of layers field) is determined based on the number of TPMIs that can be indicated.
  • FIG. 12 is a diagram showing an example of TPMI assumed for PUSCH transmission in the second embodiment.
  • FIG. 12 shows a precoding matrix similar to that of FIG.
  • the UE that reports the UE capability information indicating that it supports mode 2 does not have to assume that the antenna port (SRS port) that transmits SRS and the antenna port of the UE correspond to each other. In other words, the UE does not have to assume that the port number of the SRS port is fixed in advance based on a predetermined correspondence.
  • the UE may autonomously determine the port number of the SRS port (the SRS may be transmitted from the port of the autonomously determined port number).
  • the UE reporting the UE capability information indicating that it supports mode 2 supports the full power of the TPMI corresponding to the coherent capability or the TPMI corresponding to the set codebook subset.
  • SRS switching operation different from Rel-15 NR may be assumed.
  • the supportedSRS-TxPortSwitch may be read as UE capability information indicating a supported transmission port switching pattern for any channel or signal.
  • F (in other words, the value of startPosition) is larger from the earliest (older or earlier) OFDM symbol start position in the slot. It may be assumed that F) SRS resources are not transmitted from one side.
  • the UE may assume that the SRS resource set transmits SRS resources other than the SRS resources that are not expected to be transmitted.
  • F may be the number of antenna ports that are not used in full power transmission.
  • F 2 (antenna ports # 1 and # 3) may be set.
  • the OFDM symbol start position in the slot is earlier means “the OFDM symbol start position in the slot is later (newer or later)" and “the value of the SRS resource ID is higher”. It may be read as “large”, “the value of the SRS resource ID is smaller”, or “the parameter related to the SRS resource is larger or smaller”.
  • FIG. 13A and 13B are diagrams showing an example of SRS antenna switching for the SRS resource set for 1T4R in the second embodiment.
  • FIG. 13A shows an example of an SRS resource set whose resource type is periodic or semi-persistent and whose application is antenna switching.
  • FIG. 13A describes a case where the start positions of SRS resources # 0, # 3, # 7 and # 8 are set to 5, 4, 2 and 0, respectively, in the SRS resource set of FIG. 6A.
  • FIG. 13B is a diagram showing an example of mapping of SRS resources corresponding to FIG. 13A.
  • the UE does not transmit F SRS resources from the SRS resource included in the SRS resource set with the earliest OFDM symbol start position in the slot.
  • the UE does not transmit the SRS of SRS resources # 0 and # 3.
  • the UE transmits the SRS of the SRS resource # 7 using one of the antenna ports # 0 and # 2 (antenna port # 0 in the figure) capable of full power transmission, and the SRS of the SRS resource # 8 is full. Transmission may be performed using the other of antenna ports # 0 and # 2 capable of power transmission (antenna port # 2 in the figure).
  • the UE has a larger SRS resource ID value among the sets having a larger or smaller SRS resource set ID.
  • F SRS resources are not transmitted from the smaller one.
  • the value of A may be predetermined by specifications, given by higher layer signaling, or determined by the capabilities of the UE.
  • the value of A may be derived based on the value of F.
  • A may be the number of SRS resources included in the SRS resource set having the smaller number of SRS resources.
  • the number of symbols required for SRS antenna switching can be reduced, so resources allocated to other channels / signals such as PUSCH increase, and throughput improvement can be expected. It is also expected that more UE SRS can be scheduled. Then, the time required for SRS antenna switching can be reduced.
  • the UE may be assumed to transmit SRS resources other than the SRS resources that are not expected to be transmitted in the two SRS resource sets.
  • FIG. 14A and 14B are diagrams showing another example of SRS antenna switching for the SRS resource set for 1T4R in the second embodiment.
  • FIG. 14A shows an example of an SRS resource set whose resource type is aperiodic and whose application is antenna switching.
  • the start positions of SRS resource # 0 and # 3 of SRS resource set # 0 are set to 4 and 2, respectively, and the SRS resource # of SRS resource set # 4 is shown.
  • the start positions of 2 and # 3 are set to 2 and 0, respectively, will be described.
  • FIG. 14B is a diagram showing an example of mapping of SRS resources corresponding to FIG. 14A.
  • the UE does not send F SRS resources from the set with the smaller SRS resource set ID, whichever has the larger SRS resource ID value.
  • the UE does not transmit the SRS of the two SRS resources (SRS resources # 0 and # 3) of the SRS resource set # 0.
  • the UE transmits the SRS of the SRS resource # 2 of the SRS resource set # 4 using one of the antenna ports # 0 and # 2 capable of full power transmission, and the SRS of the SRS resource # 3 of the SRS resource set # 4. May be transmitted using the other of antenna ports # 0 and # 2 capable of full power transmission.
  • FIG. 15A and 15B are diagrams showing still another example of SRS antenna switching for the SRS resource set for 1T4R in the second embodiment.
  • FIG. 15A shows an example of an SRS resource set whose resource type is aperiodic and whose application is antenna switching.
  • the two SRS resource sets in FIG. 15A contain different numbers of SRS resources.
  • start positions (startPosition) of SRS resources # 0, # 3 and # 8 of SRS resource set # 0 are set to 4, 2 and 0, respectively, and the start position (startPosition) of SRS resource # 2 of SRS resource set # 4 is set. The case where is set to 2 will be described.
  • FIG. 15B is a diagram showing an example of mapping of SRS resources corresponding to FIG. 15A.
  • the UE does not transmit the SRS of the SRS resource # 2 of the SRS resource set # 4 having a small number of SRS resources. Further, the UE does not transmit the SRS of the SRS resource # 8 having a slow symbol start position in the SRS resource set # 0 having a large number of SRS resources. Then, the UE transmits the SRS of the SRS resource # 0 of the SRS resource set # 0 using one of the antenna ports # 0 and # 2 capable of full power transmission, and the SRS resource # 3 of the SRS resource set # 0. SRS may be transmitted using the other of antenna ports # 0 and # 2 capable of full power transmission.
  • [2T4R] UEs that have reported to the network the ability to support mode 2 and the ability to support supportedSRS-TxPortSwitch t2r4 do not support full power when the application is configured with one SRS resource set for antenna switching. It is not necessary to expect SRS antenna switching with the combination of antenna ports indicated by.
  • the UE is included in the SRS resource set, and among the SRS resources having F SRS ports, the SRS having the earlier OFDM symbol start position in the slot (in other words, the one having the larger startPosition value). You may assume that you will not send the resource.
  • the UE may assume that the SRS resource set transmits SRS resources other than the SRS resources that are not expected to be transmitted.
  • the UE may assume that when F is larger or smaller than a predetermined value (for example, 2), it transmits all the SRS resources of the SRS resource set.
  • FIG. 16A and 16B are diagrams showing an example of SRS antenna switching for the SRS resource set for 2T4R in the second embodiment.
  • FIG. 16A shows an example of an SRS resource set whose application is antenna switching.
  • FIG. 16A describes a case where the start positions of SRS resources # 0 and # 3 are set to 4 and 0, respectively, in the SRS resource set of FIG. 8A.
  • FIG. 16B is a diagram showing an example of mapping of SRS resources corresponding to FIG. 16A.
  • the UE does not transmit the SRS of the SRS resource # 0.
  • the UE may transmit the SRS of the SRS resource # 3 using the antenna ports # 0 and # 2 capable of full power transmission.
  • [4T4R] UEs that have reported to the network the ability to support mode 2 and the ability to support supportedSRS-TxPortSwitch t4r4 do not support full power when the application is configured with one SRS resource set for antenna switching. It is not necessary to expect SRS antenna switching with the combination of antenna ports indicated by.
  • the UE may transmit the SRS resource by reducing the number of SRS ports (nrofSRS-Ports) set in the SRS resource included in the SRS resource set. For example, the UE may assume that nrofSRS-Ports-F is an orthogonal multiplex (eg, cyclic shift multiple).
  • the SRS of more UEs can be scheduled because the number of multiplexes per UE due to cyclic shift when performing SRS antenna switching can be reduced.
  • the UE may transmit SRS using only the antenna port that supports full power transmission in the SRS resource of the SRS resource set.
  • FIG. 17A and 17B are diagrams showing an example of SRS antenna switching for the SRS resource set for 4T4R in the second embodiment.
  • FIG. 17A shows an example of an SRS resource set whose application is antenna switching.
  • FIG. 17A describes a case where the start position (startPosition) of SRS resource # 0 is set to 3 in the SRS resource set of FIG. 9A.
  • FIG. 17B is a diagram showing an example of mapping of SRS resources corresponding to FIG. 17A.
  • the UE that reports the UE capability information indicating that it supports mode 2 is the TPMI corresponding to the coherent capability (RRC parameter "pusch-Trans Coherence") or the set codebook subset (RRC parameter). Of the TPMIs that fall under "codebook Subset”), it may be assumed that only TPMIs that support full power can be indicated.
  • the UE may assume that the size of the field related to the TPMI included in the DCI (for example, the size of the precoding information and the number of layers field) is determined based on the number of TPMIs that can be indicated. The UE may assume that only TPMIs that support full power as shown in FIG. 12 can be indicated.
  • the UE that reports the UE capability information indicating that it supports mode 2 may assume that the antenna port (SRS port) that transmits SRS and the antenna port of the UE correspond to each other. In other words, the UE may assume that the port number of the SRS port is fixed in advance based on a predetermined correspondence.
  • the UE that reports the UE capability information indicating that it supports mode 2 transmits the full power PUSCH out of the TPMI corresponding to the coherent capability or the TPMI corresponding to the set codebook subset.
  • an SRS switching operation different from the Rel-15 NR may be assumed.
  • the UE may assume that each SRS resource in one or more SRS resource sets for antenna switching corresponds to the antenna port of the UE (one-to-one correspondence).
  • the UE does not transmit the (associated) SRS resource corresponding to the antenna port that cannot transmit PUSCH at full power when performing SRS antenna switching.
  • the UE can transmit the PUSCH at the antenna port and the full power when the number of SRS ports of a certain SRS resource is 2 or more and the SRS resource cannot transmit the PUSCH at full power (in other words, it is used for full power transmission). If both antenna ports are included, it may be assumed that the SRS resource transmits SRS using an antenna port that can transmit at full power and does not transmit SRS at an antenna port that cannot transmit at full power. ..
  • each SRS resource of one or more SRS resource sets for antenna switching and the antenna port of the UE may be determined in advance by specifications, or may be set in the UE by upper layer signaling or the like. May be good.
  • the UE may determine the correspondence between each SRS resource of the one or more SRS resource sets and the antenna port of the UE based on the correspondence relationship.
  • the UE may assume that when two or more SRS resource sets for antenna switching are set, the antenna port index corresponds in order from the resource set having the smallest SRS resource set ID. In other words, the UE has an antenna port index corresponding to each SRS resource included in the SRS resource set whose SRS resource set ID corresponds to the first value, and the SRS resource set ID has the second value (the second value is). , Larger than the first value) may be assumed to be smaller than the antenna port index corresponding to each SRS resource included in the SRS resource set.
  • the UE may assume that when the SRS resources are arranged in ascending order of the SRS resource set ID, the SRS resource of the larger SRS resource set ID corresponds to the larger antenna port index.
  • the UE may assume that the antenna port index corresponds in order from the SRS resource having the smallest SRS resource ID in one SRS resource set whose use is antenna switching.
  • the antenna port index corresponding to the SRS resource whose SRS resource ID corresponds to the third value in a certain SRS resource set has the SRS resource ID of the fourth value (the fourth value is the third value). It may be assumed that it is smaller than the antenna port index corresponding to the SRS resource corresponding to (greater than the value of).
  • the UE may assume that when the SRS resources contained in a certain SRS resource set are arranged in ascending order of the SRS resource ID, the SRS resource with the larger SRS resource ID corresponds to the larger antenna port index. Good.
  • the UE has the SRS port # 0 of the first SRS resource corresponding to the antenna port # 0 of the UE.
  • the SRS port # 0 of the second SRS resource corresponds to the antenna port # 1 of the UE
  • the SRS port # 0 of the third SRS resource corresponds to the antenna port # 2 of the UE
  • the SRS port # of the fourth SRS resource It may be assumed that 0 corresponds to antenna port # 3 of the UE.
  • SRS ports # 0 and # 1 of the SRS resource are the UE's antenna ports # i and # i + 1, respectively. It may be assumed that it corresponds to.
  • FIG. 18A and 18B are diagrams showing an example of SRS antenna switching for the SRS resource set for 1T4R in the third embodiment.
  • FIG. 18A shows an example of an SRS resource set whose resource type is periodic or semi-persistent and whose application is antenna switching.
  • FIG. 18A describes a case where the start positions of SRS resources # 0, # 3, # 7 and # 8 are set to 4, 5, 2 and 0, respectively, in the SRS resource set of FIG. 6A.
  • the UE may assume that SRS resources # 0, # 3, # 7 and # 8 correspond to antenna ports # 0, # 1, # 2 and # 3, respectively.
  • FIG. 18B is a diagram showing an example of mapping of SRS resources corresponding to FIG. 18A.
  • the UE does not transmit the SRS resource corresponding to the antenna ports # 1 and # 3 which cannot transmit at full power.
  • the UE does not transmit the SRS of SRS resources # 3 and # 8.
  • the UE transmits the SRS of the SRS resource # 0 using the antenna port # 0 capable of full power transmission, and transmits the SRS of the SRS resource # 7 using the antenna port # 2 capable of full power transmission. You may.
  • FIG. 19A and 19B are diagrams showing another example of SRS antenna switching for the SRS resource set for 1T4R in the third embodiment.
  • FIG. 19A shows an example of an SRS resource set whose resource type is aperiodic and whose application is antenna switching.
  • FIG. 19A shows the same SRS resource set as FIG. 14A.
  • the UE has SRS resources # 0 and # 3 of SRS resource set # 0 corresponding to antenna ports # 0 and # 1, respectively, and SRS resources # 2 and # 3 of SRS resource set # 4, respectively. It may be assumed that it corresponds to antenna ports # 2 and # 3.
  • FIG. 19B is a diagram showing an example of mapping of SRS resources corresponding to FIG. 19A.
  • the UE does not transmit the SRS resource corresponding to the antenna ports # 1 and # 3 which cannot transmit at full power.
  • the UE does not transmit the SRS of the SRS resource # 3 of the SRS resource set # 0 and the SRS resource # 3 of the SRS resource set # 4.
  • the UE transmits the SRS of the SRS resource # 0 of the SRS resource set # 0 using the antenna port # 0 capable of full power transmission, and transmits the SRS of the SRS resource # 2 of the SRS resource set # 4 at full power. May be transmitted using antenna port # 2 capable of.
  • FIG. 20A and 20B are diagrams showing still another example of SRS antenna switching for the SRS resource set for 1T4R in the third embodiment.
  • FIG. 20A shows an example of an SRS resource set whose resource type is aperiodic and whose application is antenna switching.
  • FIG. 20A shows the same SRS resource set as FIG. 15A.
  • the UE has SRS resource # 0, # 3 and # 8 of SRS resource set # 0 corresponding to antenna ports # 0, # 1 and # 2, respectively, and SRS resource # of SRS resource set # 4. It may be assumed that 2 corresponds to antenna port # 3.
  • FIG. 20B is a diagram showing an example of mapping of SRS resources corresponding to FIG. 20A.
  • the UE does not transmit the SRS resource corresponding to the antenna ports # 1 and # 3 which cannot transmit at full power.
  • the UE does not transmit the SRS of the SRS resource # 3 of the SRS resource set # 0 and the SRS of the SRS resource # 2 of the SRS resource set # 4.
  • the UE transmits the SRS of the SRS resource # 0 of the SRS resource set # 0 using the antenna port # 0 capable of full power transmission, and the SRS of the SRS resource # 8 of the SRS resource set # 0 is full. It may be transmitted using the antenna port # 2 capable of power transmission.
  • FIG. 21A and 21B are diagrams showing an example of SRS antenna switching for the SRS resource set for 2T4R in the third embodiment.
  • FIG. 21A shows an example of an SRS resource set whose application is antenna switching.
  • FIG. 21A shows the same SRS resource set as FIG. 16A.
  • the UE may assume that SRS resource # 0 corresponds to antenna ports # 0 and # 1 and SRS resource # 3 corresponds to antenna ports # 2 and # 3.
  • FIG. 21B is a diagram showing an example of mapping of SRS resources corresponding to FIG. 21A.
  • the UE may not transmit the SRS at the antenna port # 1 that cannot transmit at full power, but may transmit the SRS at the antenna port # 0 that can transmit at full power.
  • the UE may not transmit the SRS at the antenna port # 3 which cannot transmit at full power, and may transmit the SRS at the antenna port # 2 which can transmit at full power. In this case, the UE does not have to transmit the SRS to which the cyclic shift corresponding to the antenna ports # 1 and # 3 is applied.
  • FIG. 22A and 22B are diagrams showing an example of SRS antenna switching for the SRS resource set for 4T4R in the third embodiment.
  • FIG. 22A shows an example of an SRS resource set whose application is antenna switching.
  • FIG. 22A shows the same SRS resource set as FIG. 17A.
  • the UE may assume that SRS resource # 0 corresponds to antenna ports # 0, # 1, # 2 and # 3.
  • FIG. 22B is a diagram showing an example of mapping of SRS resources corresponding to FIG. 22A.
  • the UE does not have to transmit the SRS to which the cyclic shift corresponding to the antenna ports # 1 and # 3 cannot transmit the full power in the SRS resource # 0. Further, the UE may transmit SRS at antenna ports # 0 and # 2 capable of transmitting at full power in SRS resource # 0.
  • the embodiment in which 4 antennas are read as 2 antennas in the above description regarding the UE of t2r4 may be applied.
  • the embodiment in which 4 antennas are replaced with 2 antennas in the above description regarding the UE of t4r4 may be applied.
  • the antenna ports in each of the above-described embodiments are PUSCH, phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), uplink control channel (Physical Uplink Control Channel (PUCCH)), and random access channel (Physical Random Access Channel (PRACH)). ), Demodulation Reference Signal (DMRS), SRS, etc. may be at least one antenna port, and full power transmission may be applied to at least one of these signals and channels.
  • PTRS Phase Tracking Reference Signal
  • PUCCH Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • DMRS Demodulation Reference Signal
  • SRS etc.
  • wireless communication system Wireless communication system
  • communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 23 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
  • the wireless communication system 1 may support dual connectivity between a plurality of Radio Access Technology (RAT) (Multi-RAT Dual Connectivity (MR-DC)).
  • MR-DC is dual connectivity (E-UTRA-NR Dual Connectivity (EN-DC)) between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR, and dual connectivity between NR and LTE (NR-E).
  • -UTRA Dual Connectivity (NE-DC) may be included.
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the NR base station (gNB) is MN
  • the LTE (E-UTRA) base station (eNB) is SN.
  • the wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
  • a plurality of base stations in the same RAT for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )
  • NR-NR Dual Connectivity NR-DC
  • gNB NR base stations
  • the wireless communication system 1 includes a base station 11 that forms a macro cell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. You may prepare.
  • the user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure.
  • the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
  • the user terminal 20 may be connected to at least one of the plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
  • CA Carrier Aggregation
  • DC dual connectivity
  • CC Component Carrier
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • the macro cell C1 may be included in FR1 and the small cell C2 may be included in FR2.
  • FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR2 may be in a frequency band higher than 24 GHz (above-24 GHz).
  • the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
  • the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the plurality of base stations 10 may be connected by wire (for example, an optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, an optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the upper station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to a relay station (relay) is IAB. It may be called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal that supports at least one of communication methods such as LTE, LTE-A, and 5G.
  • a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DL Downlink
  • UL Uplink
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple. Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the wireless access method may be called a waveform.
  • another wireless access system for example, another single carrier transmission system, another multi-carrier transmission system
  • the UL and DL wireless access systems may be used as the UL and DL wireless access systems.
  • downlink shared channels Physical Downlink Shared Channel (PDSCH)
  • broadcast channels Physical Broadcast Channel (PBCH)
  • downlink control channels Physical Downlink Control
  • Channel PDCCH
  • the uplink shared channel Physical Uplink Shared Channel (PUSCH)
  • the uplink control channel Physical Uplink Control Channel (PUCCH)
  • the random access channel shared by each user terminal 20 are used.
  • Physical Random Access Channel (PRACH) Physical Random Access Channel or the like may be used.
  • PDSCH User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH.
  • User data, upper layer control information, and the like may be transmitted by the PUSCH.
  • MIB Master Information Block
  • PBCH Master Information Block
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
  • DCI Downlink Control Information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • the DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • the PDSCH may be read as DL data
  • the PUSCH may be read as UL data.
  • a control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used for detecting PDCCH.
  • CORESET corresponds to a resource that searches for DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates).
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set.
  • the "search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. of the present disclosure may be read as each other.
  • channel state information (Channel State Information (CSI)
  • delivery confirmation information for example, may be called Hybrid Automatic Repeat reQuest ACK knowledgement (HARQ-ACK), ACK / NACK, etc.
  • scheduling request (Scheduling Request () Uplink Control Information (UCI) including at least one of SR)
  • the PRACH may transmit a random access preamble for establishing a connection with the cell.
  • downlinks, uplinks, etc. may be expressed without “links”. Further, it may be expressed without adding "Physical" at the beginning of various channels.
  • a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation).
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • DeModulation Demodulation reference signal
  • Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like.
  • SS, SSB and the like may also be called a reference signal.
  • a measurement reference signal Sounding Reference Signal (SRS)
  • a demodulation reference signal DMRS
  • UL-RS Uplink Reference Signal
  • UE-specific Reference Signal UE-specific Reference Signal
  • FIG. 24 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • the base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140.
  • the control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
  • the functional blocks of the feature portion in the present embodiment are mainly shown, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like.
  • the control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120.
  • the control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
  • the transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123.
  • the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
  • the transmitter / receiver 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure. be able to.
  • the transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
  • the receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
  • the transmitting / receiving antenna 130 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 120 processes, for example, Packet Data Convergence Protocol (PDCP) layer processing and Radio Link Control (RLC) layer processing (for example, RLC) for data, control information, etc. acquired from control unit 110.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 120 performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted.
  • the base band signal may be output by performing processing (if necessary), inverse fast Fourier transform (IFFT) processing, precoding, digital-analog transform, and other transmission processing.
  • IFFT inverse fast Fourier transform
  • the transmission / reception unit 120 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
  • the transmission / reception unit 120 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
  • the transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) Processing (if necessary), filtering, demapping, demodulating, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmission / reception unit 120 may perform measurement on the received signal.
  • the measuring unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal.
  • the measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)).
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • Signal strength for example, Received Signal Strength Indicator (RSSI)
  • propagation path information for example, CSI
  • the measurement result may be output to the control unit 110.
  • the transmission line interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, and the like, and provides user data (user plane data) and control plane for the user terminal 20. Data or the like may be acquired or transmitted.
  • the transmitting unit and the receiving unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the control unit 110 refers to the user terminal 20 with setting information (for example, the RRC parameter "SRS-") of one or more measurement reference signal (Sounding Reference Signal (SRS)) resource sets whose use is antenna switching. You may control to send "ResourceSet”).
  • setting information for example, the RRC parameter "SRS-" of one or more measurement reference signal (Sounding Reference Signal (SRS)) resource sets whose use is antenna switching. You may control to send "ResourceSet").
  • FIG. 25 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • the user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230.
  • the control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
  • this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230.
  • the control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
  • the transmission / reception unit 220 may include a baseband unit 221 and an RF unit 222, and a measurement unit 223.
  • the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
  • the transmitter / receiver 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure.
  • the transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
  • the receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
  • the transmitting / receiving antenna 230 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing for example, RLC retransmission control
  • MAC layer processing for example, for data, control information, etc. acquired from the control unit 210.
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output the baseband signal.
  • Whether or not to apply the DFT process may be based on the transform precoding setting.
  • the transmission / reception unit 220 transmission processing unit 2211 described above for transmitting a channel (for example, PUSCH) using the DFT-s-OFDM waveform when the transform precoding is enabled.
  • the DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
  • the transmission / reception unit 220 may perform modulation, filtering, amplification, etc. to the radio frequency band on the baseband signal, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
  • the transmission / reception unit 220 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
  • the transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmission / reception unit 220 may perform measurement on the received signal.
  • the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal.
  • the measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 210.
  • the transmitter and receiver of the user terminal 20 in the present disclosure may be composed of at least one of the transmitter / receiver 220 and the transmitter / receiver antenna 230.
  • the transmission / reception unit 220 receives the setting information (for example, the RRC parameter "SRS-ResourceSet") of one or more measurement reference signals (Sounding Reference Signal (SRS)) resource sets whose purpose is antenna switching. May be good.
  • the setting information for example, the RRC parameter "SRS-ResourceSet”
  • SRS Sounding Reference Signal
  • the use is antenna switching in the present disclosure may be read as the use is a specific use (for example, the use is a codebook).
  • the control unit 210 may control the transmission of SRS resources included in the one or more SRS resource sets based on the antenna port capable of transmitting the uplink shared channel (PUSCH) at full power (for example, transmission). You may control the availability of).
  • PUSCH uplink shared channel
  • the control unit 210 may assume that each SRS resource of the one or more SRS resource sets has a one-to-one correspondence with the antenna port of the user terminal 20.
  • each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by using two or more physically or logically separated devices). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (constituent unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
  • the method of realizing each of them is not particularly limited.
  • the base station, user terminal, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
  • FIG. 26 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • the base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors.
  • the processor 1001 may be mounted by one or more chips.
  • the processor 1001 For each function of the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • predetermined software program
  • the processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission / reception unit 120 220
  • the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
  • the memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EEPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disc (Compact Disc ROM (CD-ROM)), a digital versatile disk, etc.). At least one of Blu-ray® disks, removable disks, hard disk drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers, and other suitable storage media. It may be composed of.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). It may be configured to include.
  • the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmission / reception unit 120 (220) may be physically or logically separated from the transmission unit 120a (220a) and the reception unit 120b (220b).
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the wireless frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the wireless frame may be referred to as a subframe.
  • the subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
  • Numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration.
  • SCS subcarrier Spacing
  • TTI Transmission Time Interval
  • a specific filtering process performed by the transmitter / receiver in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols in the time domain (Orthogonal Frequency Division Multiple Access (OFDMA) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.). Further, the slot may be a time unit based on numerology.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be called a sub slot. A minislot may consist of a smaller number of symbols than the slot.
  • a PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as a PDSCH (PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
  • the wireless frame, subframe, slot, mini slot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • the time units such as frames, subframes, slots, mini slots, and symbols in the present disclosure may be read as each other.
  • one subframe may be called TTI
  • a plurality of consecutive subframes may be called TTI
  • one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • one or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
  • PRB Physical RB
  • SCG sub-carrier Group
  • REG resource element group
  • PRB pair an RB. It may be called a pair or the like.
  • the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)).
  • RE Resource Element
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth) represents a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. May be good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots, and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, radio resources may be indicated by a given index.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • the input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
  • the notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using another method.
  • the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (master information block (MIB), system information block (SIB), etc.), medium access control (MAC) signaling), other signals or combinations thereof May be carried out by.
  • DCI downlink control information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB master information block
  • SIB system information block
  • MAC medium access control
  • the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like.
  • the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
  • CE MAC Control Element
  • the notification of predetermined information is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
  • the determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
  • Software is an instruction, instruction set, code, code segment, program code, program, subprogram, software module, whether called software, firmware, middleware, microcode, hardware description language, or another name.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted to mean.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website where software uses at least one of wired technology (coaxial cable, fiber optic cable, twist pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twist pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • Network may mean a device (eg, a base station) included in the network.
  • precoding "precoding weight”
  • QCL Quality of Co-Co-Location
  • TCI state Transmission Configuration Indication state
  • space "Spatial relation”, “spatial domain filter”, “transmission power”, “phase rotation”, "antenna port”, “antenna port group”, “layer”, “number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, "antenna”, “antenna element", “panel” are compatible.
  • Base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission point (Transmission Point (TP))
  • RP Reception point
  • TRP Transmission / Reception Point
  • Panel , "Cell”, “sector”, “cell group”, “carrier”, “component carrier” and the like
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)).
  • Communication services can also be provided by Head (RRH))).
  • RRH Head
  • the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read by the user terminal.
  • communication between a base station and a user terminal is replaced with communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the user terminal 20 may have the function of the base station 10 described above.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the uplink, downlink, and the like may be read as side channels.
  • the user terminal in the present disclosure may be read as a base station.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • the operation performed by the base station may be performed by its upper node (upper node) in some cases.
  • various operations performed for communication with a terminal are performed by the base station and one or more network nodes other than the base station (for example,).
  • Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
  • each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution.
  • the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction.
  • the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • Future Radio Access FAA
  • New-Radio Access Technology RAT
  • NR New Radio
  • NX New radio access
  • Future generation radio access FX
  • GSM Global System for Mobile communications
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • a plurality of systems may be applied in combination (for example, a combination of LTE or LTE-A and 5G).
  • references to elements using designations such as “first”, “second”, etc. as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
  • determining used in this disclosure may include a wide variety of actions.
  • judgment (decision) means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment”.
  • judgment (decision) means receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access (for example). It may be regarded as “judgment (decision)" of "accessing” (for example, accessing data in memory).
  • judgment (decision) is regarded as “judgment (decision)” of solving, selecting, choosing, establishing, comparing, and the like. May be good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of some action.
  • the "maximum transmission power" described in the present disclosure may mean the maximum value of the transmission power, may mean the nominal UE maximum transmit power, or may mean the rated maximum transmission power (the). It may mean rated UE maximum transmit power).
  • connection are any direct or indirect connection or connection between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are “connected” or “joined” to each other.
  • the connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • the radio frequency domain microwaves. It can be considered to be “connected” or “coupled” to each other using frequency, electromagnetic energy having wavelengths in the light (both visible and invisible) regions, and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本開示の一態様に係る端末は、用途がアンテナスイッチングである1つ以上の測定用参照信号(Sounding Reference Signal(SRS))リソースセットの設定情報を受信する受信部と、上りリンク共有チャネルをフルパワーで送信可能なアンテナポートに基づいて、前記1つ以上のSRSリソースセットに含まれるSRSリソースの送信を制御する制御部と、を有することを特徴とする。本開示の一態様によれば、適切にUL送信を制御できる。

Description

端末及び無線通信方法
 本開示は、次世代移動通信システムにおける端末及び無線通信方法に関する。
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
 将来の無線通信システム(例えば、NR)では、プリコーディング行列を用いたコードブックベース送信をサポートすることが検討されている。また、ユーザ端末(user terminal、User Equipment(UE))がフルパワーで上りリンク送信するための方法が検討されている。
 最大定格電力を出力できないパワーアンプを有するUEについて、用途(usage)が「コードブック」の1つの測定用参照信号(Sounding Reference Signal(SRS))リソースセット内に含まれる1つ又は複数のSRSリソースが、異なるSRSポート数を有するように設定されるモード(例えば、モード2と呼ばれてもよい)が検討されている。モード2で動作するUEは、全アンテナポートではなく一部のアンテナポートを用いてフルパワー送信してもよい。
 一方、Rel-15 NRでは、測定用参照信号(Sounding Reference Signal(SRS))の用途としてアンテナスイッチング(アンテナポートスイッチングと呼ばれてもよい)が設定可能である。SRSアンテナスイッチングは、例えば、時分割複信(Time Division Duplex(TDD))バンドにおいて、下りリンクのCSI取得(acquisition)を上りリンクのSRSを用いて行う際に利用されてもよい。
 しかしながら、Rel-15 NRのSRSスイッチング動作は、フルパワー送信のUE能力を考慮していない。Rel-15 NRのSRSスイッチング動作では、UEのアンテナポート番号とSRSアンテナスイッチングを行うアンテナポートとの対応が明確でないため、UEのパワーアンプの能力に応じたSRSスイッチングを適切に行うことができない。この場合、通信スループットの増大が抑制されるおそれがある。
 そこで、本開示は、適切にSRSを送信できる端末及び無線通信方法を提供することを目的の1つとする。
 本開示の一態様に係る端末は、用途がアンテナスイッチングである1つ以上の測定用参照信号(Sounding Reference Signal(SRS))リソースセットの設定情報を受信する受信部と、上りリンク共有チャネルをフルパワーで送信可能なアンテナポートに基づいて、前記1つ以上のSRSリソースセットに含まれるSRSリソースの送信を制御する制御部と、を有することを特徴とする。
 本開示の一態様によれば、適切にSRSを送信できる。
図1は、プリコーダタイプとTPMIインデックスとの関連付けの一例を示す図である。 図2は、フルパワー送信に関連するUE能力1-3が想定するUEの構成の一例を示す図である。 図3A及び3Bは、1T2R向けのSRSリソースセットの一例を示す図である。 図4A及び4Bは、1T1R向けのSRSリソースセットの一例を示す図である。 図5A及び5Bは、2T2R向けのSRSリソースセットの一例を示す図である。 図6A及び6Bは、1T4R向けのSRSリソースセットの一例を示す図である。 図7A及び7Bは、1T4R向けのSRSリソースセットの別の一例を示す図である。 図8A及び8Bは、2T4R向けのSRSリソースセットの一例を示す図である。 図9A及び9Bは、4T4R向けのSRSリソースセットの一例を示す図である。 図10A及び10Bは、一実施形態において想定するアンテナポートの構成の一例を示す図である。 図11は、第1の実施形態におけるPUSCH送信のために想定するTPMIの一例を示す図である。 図12は、第2の実施形態におけるPUSCH送信のために想定するTPMIの一例を示す図である。 図13A及び13Bは、第2の実施形態における1T4R向けのSRSリソースセットのためのSRSアンテナスイッチングの一例を示す図である。 図14A及び14Bは、第2の実施形態における1T4R向けのSRSリソースセットのためのSRSアンテナスイッチングの別の一例を示す図である。 図15A及び15Bは、第2の実施形態における1T4R向けのSRSリソースセットのためのSRSアンテナスイッチングのさらに別の一例を示す図である。 図16A及び16Bは、第2の実施形態における2T4R向けのSRSリソースセットのためのSRSアンテナスイッチングの一例を示す図である。 図17A及び17Bは、第2の実施形態における4T4R向けのSRSリソースセットのためのSRSアンテナスイッチングの一例を示す図である。 図18A及び18Bは、第3の実施形態における1T4R向けのSRSリソースセットのためのSRSアンテナスイッチングの一例を示す図である。 図19A及び19Bは、第3の実施形態における1T4R向けのSRSリソースセットのためのSRSアンテナスイッチングの別の一例を示す図である。 図20A及び20Bは、第3の実施形態における1T4R向けのSRSリソースセットのためのSRSアンテナスイッチングのさらに別の一例を示す図である。 図21A及び21Bは、第3の実施形態における2T4R向けのSRSリソースセットのためのSRSアンテナスイッチングの一例を示す図である。 図22A及び22Bは、第3の実施形態における4T4R向けのSRSリソースセットのためのSRSアンテナスイッチングの一例を示す図である。 図23は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図24は、一実施形態に係る基地局の構成の一例を示す図である。 図25は、一実施形態に係るユーザ端末の構成の一例を示す図である。 図26は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。
(SRS)
 NRにおいては、測定用参照信号(Sounding Reference Signal(SRS))の用途が多岐にわたっている。NRのSRSは、既存のLTE(LTE Rel.8-14)でも利用された上りリンク(Uplink(UL))のCSI測定のためだけでなく、下りリンク(Downlink(DL))のCSI測定、ビーム管理(beam management)などにも利用される。
 UEは、1つ又は複数のSRSリソースを設定(configure)されてもよい。SRSリソースは、SRSリソースインデックス(SRS Resource Index(SRI))によって特定されてもよい。
 各SRSリソースは、1つ又は複数のSRSポートを有してもよい(1つ又は複数のSRSポートに対応してもよい)。例えば、SRSごとのポート数は、1、2、4などであってもよい。
 UEは、1つ又は複数のSRSリソースセット(SRS resource set)を設定されてもよい。1つのSRSリソースセットは、所定数のSRSリソースに関連してもよい。UEは、1つのSRSリソースセットに含まれるSRSリソースに関して、上位レイヤパラメータを共通で用いてもよい。なお、本開示におけるリソースセットは、セット、リソースグループ、グループなどで読み替えられてもよい。
 SRSリソース又はリソースセットに関する情報は、上位レイヤシグナリング、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI)))又はこれらの組み合わせを用いてUEに設定されてもよい。
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。
 MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。
 SRS設定情報(例えば、RRC情報要素の「SRS-Config」)は、SRSリソースセット設定情報、SRSリソース設定情報などを含んでもよい。
 SRSリソースセット設定情報(例えば、RRCパラメータの「SRS-ResourceSet」)は、SRSリソースセットID(Identifier)(SRS-ResourceSetId)、当該リソースセットにおいて用いられるSRSリソースID(SRS-ResourceId)のリスト、SRSリソースタイプ、SRSの用途(usage)の情報などを含んでもよい。なお、SRSリソースIDは、SRS Resource ID(SRI)と呼ばれてもよい。
 ここで、SRSリソースタイプは、周期的SRS(Periodic SRS(P-SRS))、セミパーシステントSRS(Semi-Persistent SRS(SP-SRS))、非周期的SRS(Aperiodic SRS(A-SRS))のいずれかを示してもよい。なお、UEは、P-SRS及びSP-SRSを周期的(又はアクティベート後、周期的)に送信してもよい。UEは、A-SRSをDCIのSRSリクエストに基づいて送信してもよい。
 また、SRSの用途(RRCパラメータの「usage」、L1(Layer-1)パラメータの「SRS-SetUse」)は、例えば、ビーム管理(beamManagement)、コードブック(codebook)、ノンコードブック(nonCodebook)、アンテナスイッチング(antennaSwitching)などであってもよい。例えば、コードブック又はノンコードブック用途のSRSは、SRIに基づくコードブックベース又はノンコードブックベースの上り共有チャネル(Physical Uplink Shared Channel(PUSCH))送信のプリコーダの決定に用いられてもよい。
 ビーム管理用途のSRSは、各SRSリソースセットについて1つのSRSリソースだけが、所定の時間インスタントにおいて送信可能であると想定されてもよい。なお、複数のSRSリソースがそれぞれ異なるSRSリソースセットに属する場合、これらのSRSリソースは同時に送信されてもよい。
 SRSリソース設定情報(例えば、RRCパラメータの「SRS-Resource」)は、SRSリソースID(SRS-ResourceId)、SRSポート数、SRSポート番号、送信櫛(コム(comb))、SRSリソースマッピング(例えば、時間及び/又は周波数リソース位置、リソースオフセット、リソースの周期、繰り返し数、SRSシンボル数、SRS帯域幅など)、ホッピング、SRSリソースタイプ、系列ID、空間関係などに関する情報を含んでもよい。
 UEは、1スロット内の最後の6シンボルのうち、SRSシンボル数分の隣接するシンボルにおいてSRSを送信してもよい。なお、SRSシンボル数は、1、2、4などであってもよい。
 UEは、スロットごとにSRSを送信するBWP(Bandwidth Part)をスイッチングしてもよいし、アンテナをスイッチングしてもよい。また、UEは、スロット内ホッピング及びスロット間ホッピングの少なくとも一方をSRS送信に適用してもよい。
(PUSCHプリコーダ)
 NRでは、UEがコードブック(Codebook(CB))ベース送信及びノンコードブック(Non-Codebook(NCB))ベース送信の少なくとも一方をサポートすることが検討されている。
 例えば、UEは少なくとも測定用参照信号(Sounding Reference Signal(SRS))リソースインデックス(SRS Resource Index(SRI))を用いて、CBベース及びNCBベースの少なくとも一方の上り共有チャネル(Physical Uplink Shared Channel(PUSCH))送信のためのプリコーダ(プリコーディング行列)を判断することが検討されている。
 UEは、CBベース送信の場合、SRI、送信ランク指標(Transmitted Rank Indicator(TRI))及び送信プリコーディング行列指標(Transmitted Precoding Matrix Indicator(TPMI))などに基づいて、PUSCH送信のためのプリコーダを決定してもよい。UEは、NCBベース送信の場合、SRIに基づいてPUSCH送信のためのプリコーダを決定してもよい。
 SRI、TRI、TPMIなどは、下り制御情報(Downlink Control Information(DCI))を用いてUEに通知されてもよい。SRIは、DCIのSRS Resource Indicatorフィールド(SRIフィールド)によって指定されてもよいし、コンフィギュアドグラントPUSCH(configured grant PUSCH)のRRC情報要素「ConfiguredGrantConfig」に含まれるパラメータ「srs-ResourceIndicator」によって指定されてもよい。TRI及びTPMIは、DCIのプリコーディング情報及びレイヤ数フィールド(”Precoding information and number of layers” field)によって指定されてもよい。
 UEは、プリコーダタイプに関するUE能力情報(UE capability information)を報告し、基地局から上位レイヤシグナリングによって当該UE能力情報に基づくプリコーダタイプを設定されてもよい。当該UE能力情報は、UEがPUSCH送信において用いるプリコーダタイプの情報(RRCパラメータ「pusch-TransCoherence」で表されてもよい)であってもよい。
 UEは、上位レイヤシグナリングで通知されるPUSCH設定情報(RRCシグナリングの「PUSCH-Config」情報要素)に含まれるプリコーダタイプの情報(RRCパラメータ「codebookSubset」で表されてもよい)に基づいて、PUSCH送信に用いるプリコーダを決定してもよい。UEは、codebookSubsetによって、TPMIによって指定されるPMIのサブセットを設定されてもよい。
 なお、プリコーダタイプは、完全コヒーレント(full coherent、fully coherent、coherent)、部分コヒーレント(partial coherent)及びノンコヒーレント(non coherent、非コヒーレント)のいずれか又はこれらの少なくとも2つの組み合わせ(例えば、「完全及び部分及びノンコヒーレント(fullyAndPartialAndNonCoherent)」、「部分及びノンコヒーレント(partialAndNonCoherent)」などのパラメータで表されてもよい)によって指定されてもよい。
 完全コヒーレントは、送信に用いる全アンテナポートの同期がとれている(位相を合わせることができる、適用するプリコーダが同じである、などと表現されてもよい)ことを意味してもよい。部分コヒーレントは、送信に用いるアンテナポートの一部のポート間は同期がとれているが、当該一部のポートと他のポートとは同期がとれないことを意味してもよい。ノンコヒーレントは、送信に用いる各アンテナポートの同期がとれないことを意味してもよい。
 なお、完全コヒーレントのプリコーダタイプをサポートするUEは、部分コヒーレント及びノンコヒーレントのプリコーダタイプをサポートすると想定されてもよい。部分コヒーレントのプリコーダタイプをサポートするUEは、ノンコヒーレントのプリコーダタイプをサポートすると想定されてもよい。
 プリコーダタイプは、コヒーレント能力、コヒーレンシー、PUSCH送信コヒーレンス、コヒーレントタイプ、コヒーレンスタイプ、コードブックタイプ、コードブックサブセット、コードブックサブセットタイプなどと互いに読み替えられてもよい。
 UEは、CBベース送信のための複数のプリコーダ(プリコーディング行列、コードブックなどと呼ばれてもよい)から、UL送信をスケジュールするDCIから得られるTPMIインデックスに対応するプリコーディング行列を決定してもよい。
 図1は、プリコーダタイプとTPMIインデックスとの関連付けの一例を示す図である。図1は、Discrete Fourier Transform spread OFDM(DFT-s-OFDM)(言い換えると、変換プリコーディング(transform precoding)が有効である)で4アンテナポートを用いたシングルレイヤ送信用のプリコーディング行列Wのテーブルに該当する。
 図1において、プリコーダタイプ(codebookSubset)が、完全及び部分及びノンコヒーレント(fullyAndPartialAndNonCoherent)である場合、UEは、シングルレイヤ送信に対して、0から27までのいずれかのTPMIを通知される。また、プリコーダタイプが、部分及びノンコヒーレント(partialAndNonCoherent)である場合、UEは、シングルレイヤ送信に対して、0から11までのいずれかのTPMIを設定される。プリコーダタイプが、ノンコヒーレント(nonCoherent)である場合、UEは、シングルレイヤ送信に対して、0から3までのいずれかのTPMIを設定される。
 図1は、現状のRel-15 NRにおいて規定されているテーブルである。このテーブルでは、インデックス12から27に該当する完全コヒーレントの送信電力を1(=(1/2)*4)とおくと、インデックス4から11に該当する部分コヒーレントの送信電力は1/2(=(1/2)*2)であり、インデックス0から3に該当するノンコヒーレントの送信電力は1/4(=(1/2)*1)である。
 つまり、現状のRel-15 NRの仕様によれば、UEが複数のポートを用いてコードブックベース送信する場合に、一部のコードブックを利用すると、シングルポートの場合と比べて送信電力が小さくなる(フルパワー送信ができない)場合がある。
 なお、図1に示すように、各列の成分がそれぞれ1つだけ0でないプリコーディング行列は、ノンコヒーレントコードブックと呼ばれてもよい。各列の成分がそれぞれ所定の数(全てではない)だけ0でないプリコーディング行列は、部分コヒーレントコードブックと呼ばれてもよい。各列の成分が全て0でないプリコーディング行列は、完全コヒーレントコードブックと呼ばれてもよい。
 なお、本開示において、部分コヒーレントコードブックは、部分コヒーレントのコードブックサブセット(例えば、RRCパラメータ「codebookSubset」=「partialAndNonCoherent」)を設定されたUEが、コードブックベース送信のためにDCIによって指定されるTPMIに対応するコードブック(プリコーディング行列)のうち、ノンコヒーレントのコードブックサブセット(例えば、RRCパラメータ「codebookSubset」=「nonCoherent」)を設定されたUEが指定されるTPMIに対応するコードブックを除いたもの(つまり、4アンテナポートのシングルレイヤ送信であれば、TPMI=4から11のコードブック)に該当してもよい。
 なお、本開示において、完全コヒーレントコードブックは、完全コヒーレントのコードブックサブセット(例えば、RRCパラメータ「codebookSubset」=「fullyAndPartialAndNonCoherent」)を設定されたUEが、コードブックベース送信のためにDCIによって指定されるTPMIに対応するコードブック(プリコーディング行列)のうち、部分コヒーレントのコードブックサブセット(例えば、RRCパラメータ「codebookSubset」=「partialAndNonCoherent」)を設定されたUEが指定されるTPMIに対応するコードブックを除いたもの(つまり、4アンテナポートのシングルレイヤ送信であれば、TPMI=12から27のコードブック)に該当してもよい。
(フルパワー送信のUE能力)
 コードブックを用いる場合でも、フルパワーUL送信を適切に行うことが好ましい。このため、NRでは、複数のパワーアンプ(Power Amplifier(PA))を用いたコードブックベースのフルパワーUL送信に関連するUE能力が検討されている。これまでのNRの議論では、以下のUE能力1-3が提案されている:
・UE能力1:各送信チェイン(Tx chain)において最大定格電力を出力可能なPA(フルレイテッドPA(full rated PA))をサポートする(又は有する)、
・UE能力2:送信チェインのいずれもフルレイテッドPAをサポートしない、
・UE能力3:送信チェインのサブセット(一部)がフルレイテッドPAをサポートする。
 なお、当該UE能力1-3の少なくとも1つを有するUEは、UL送信のフルパワーをサポートしていることを意味してもよい。UEは、UE能力1-3とは別に、ULフルパワー送信能力をサポートしていることを示す能力情報を、ネットワーク(例えば、基地局)に報告してもよい。UEは、フルパワー送信をサポートすることをネットワークから設定されてもよい。
 当該UE能力1/2/3は、それぞれ、フルパワー送信に関するUE能力1/2/3、フルパワー送信タイプ1/2/3、電力割り当てタイプ1/2/3などで読み替えられてもよい。本開示において、タイプ、モード、能力などは互いに読み替えられてもよい。また、本開示において、1/2/3は、A/B/Cなど任意の数字又は文字のセットで読み替えられてもよい。
 図2は、フルパワー送信に関連するUE能力1-3が想定するUEの構成の一例を示す図である。図2は、UEの構成としてPA及び送信アンテナポート(送信アンテナ、ポートなどで読み替えられてもよい)のみを簡略的に示している。なお、PA及び送信アンテナポートの数がそれぞれ4である例を示すが、これに限られない。
 なお、PはUE最大出力電力[dBm]を示し、PPAはPA最大出力電力[dBm]を示す。なお、Pは、例えばパワークラス3のUEでは23dBm、パワークラス2のUEでは26dBmであってもよい。本開示ではPPA≦Pを想定するが、PPA>Pの場合に本開示の実施形態が適用されてもよい。
 UE能力1の構成は、実装が高コストになると想定されるが、1つ以上の任意のアンテナポートを用いてフルパワー送信が可能である。UE能力2の構成は、ノンフルレイテッドPAのみを含み、安価に実装できると期待されるが、アンテナポートを1つだけ用いてもフルパワー送信できないため、各PAに入力される信号の位相、振幅などを制御することが求められる。
 UE能力3の構成は、UE能力1の構成及びUE能力2の構成の中間である。フルパワー送信可能なアンテナポート(本例では送信アンテナ#0及び#2)と可能でないアンテナポート(本例では送信アンテナ#1及び#3)が混在している。
 なお、UE能力3のフルパワー送信可能なアンテナポートのインデックス、数などは、これに限定されない。また、本例では、ノンフルレイテッドPAのPPA=P/2と想定するが、PPAの値はこれに限られない。
 ところで、UE能力2又は3をサポートするUEが、フルパワー送信の動作について2つのモード(モード1、2)の少なくとも一方を設定されることが検討されている。モード1、2はそれぞれ動作モード1、2などと呼ばれてもよい。
 ここで、モード1は、用途(usage)が「コードブック」の1つのSRSリソースセット内に含まれる1つ又は複数のSRSリソースが、同じSRSポート数を有するようにUEが設定されるモード(例えば、第1のフルパワー送信モードと呼ばれてもよい)であってもよい。モード1で動作するUEは、全アンテナポートを用いてフルパワー送信してもよい。
 モード1で動作するUEは、フルパワー送信を実現するための1レイヤ内のポートを結合するTPMIのサブセットを用いるように、ネットワークから設定されてもよい。Rel-15 NRで定義される「fullyAndPartialAndNonCoherent」に対応するTPMIプリコーダを含み、フルパワー送信に利用できないランク値にのみ、新たなコードブックサブセットが導入されてもよい。
 一方、モード2は、用途(usage)が「コードブック」の1つのSRSリソースセット内に含まれる1つ又は複数のSRSリソースが、異なるSRSポート数を有するようにUEが設定されるモード(例えば、第2のフルパワー送信モードと呼ばれてもよい)であってもよい。モード2で動作するUEは、全アンテナポートではなく一部のアンテナポートを用いてフルパワー送信してもよい。
 モード2で動作するUEは、アンテナ仮想化が用いられるか否かに関わらず、PUSCH及びSRSを同じ方法で送信してもよい。モード2のUEに対しては、1ポートより多いSRSリソースをサポートするために、フルパワー送信を実現するためのTPMIのセットが通知されてもよい。モード2の場合、1つのSRSリソースセットにつき、2つ以上のSRSリソースが設定されてもよい(Rel-15 NRでは、最大2個であった)。
 モード1はモード2に比べて、必要なSRIフィールドのサイズが小さくて良いという利点がある(1SRSリソースでフルパワー送信が可能である)。
 モード2はモード1に比べて、シングルポート送信とマルチポート送信をDCIによって動的に切り替えできるという利点がある。また、一部のアンテナポートでフルパワー送信できるため、例えばフルレイテッドPAを有するアンテナのみを用いてフルパワー送信したり、コヒーレントなアンテナのみを用いてフルパワー送信したりできる。
(SRSアンテナスイッチング)
 ところで、Rel-15 NRでは、上述したようにSRSの用途としてアンテナスイッチング(アンテナポートスイッチングと呼ばれてもよい)が設定可能である。SRSアンテナスイッチングは、例えば、時分割複信(Time Division Duplex(TDD))バンドにおいて、下りリンクのCSI取得(acquisition)を上りリンクのSRSを用いて行う際に利用されてもよい。
 例えば、送信に利用できるアンテナポート数が受信に利用できるアンテナポート数より少ないという能力を有するUEについては、DLのプリコーダの決定のために、ULのSRS測定が利用されてもよい。
 なお、UEは、サポートするSRSの送信ポートスイッチングパターンを示すUE能力情報(例えば、RRCパラメータ「supportedSRS-TxPortSwitch」)をネットワークに報告してもよい。このパターンは、例えば、”t1r2”、“t2r4”などの”txry”の形式で表現され、これは合計y個のアンテナのうちx個のアンテナポートを用いてSRS送信できること(xTyRと表記されてもよい)を意味してもよい。ここで、yは、UEの受信アンテナの全て又はサブセットに対応してもよい。
 図3A及び3Bは、1T2R向けのSRSリソースセットの一例を示す図である。図3Aは、上位レイヤシグナリング(例えば、RRCシグナリング)によってUEに対して設定される、用途がアンテナスイッチング(”antennaSwitching”)の1つのSRSリソースセット(SRSリソースセット#0)を示している。
 SRSリソースセット#0は、SRSポート数1(nrofSRS-Ports=1(port1))のSRSリソース#0及びSRSポート数1(nrofSRS-Ports=1(port1))のSRSリソース#3を含んでいる。なお、図3AのSRSリソースインデックス(#3、#7)は一例であって、これらの値に限られない(以降の図面でも、同様)。
 図3Bは、図3Aに対応するSRSリソースのマッピングの一例を示す図である。本例では、UEが、図3AのSRSリソースセットにおいて、SRSリソース#0及び#3のそれぞれのシンボル数(nrofSymbols)が1と設定されるケースを説明する。なお、本開示の以降の例でも、SRSリソースのシンボル数が1と想定して例示するが、シンボル数はこれに限られない。
 UEは、用途がアンテナスイッチングのSRSリソースセット内の各SRSリソースの開始シンボルは互いに異なると想定してもよい。また、UEは、同じSRSリソースセットのSRSリソース間にガード期間(guard period)があると想定してもよい。
 ガード期間は、無送信期間、SRS切替期間、ポートスイッチング期間などと呼ばれてもよい。UEは、PUSCHが送信されるスロットにおけるガード期間において、任意の信号(例えば、任意の他の信号)を送信しないと想定してもよい。
 UEは、ガード期間を利用して、次のSRS送信で利用するアンテナポートをオン(有効化、起動などと呼ばれてもよい)にしてもよい。
 SRSリソース間のガード期間の長さは、3GPP TS 38.214 Table 6.2.1.2-1に示されるSRSリソース間の最小ガード期間Y(Y=1又は2シンボル)以上であってもよい。例えば、Y=1(サブキャリア間隔(SubCarrier Spacing(SCS))=15、30、60kHzの場合)、Y=2(SCS=120kHzの場合)などであってもよい。
 図3Bでは、UEは、計2シンボルを用いて2つのSRSリソースを送信する。図3Bのように重複しないシンボルにおいて複数のSRSリソースが送信される場合、UEは、当該複数のSRSリソースの周波数リソースが重複する(例えば、同じコム、同じ周波数リソースなどを用いて送信される)と想定してもよい。以降の図面でも同様であってもよい。
 UEは、図3Bの1シンボルにおいて、SRSリソース#0をポート#0で送信し、別の1シンボルにおいて、SRSリソース#3をポート#1で送信してもよい。
 各SRSリソースと対応するポートとの組は、SRSパターン、単にパターンなどと呼ばれてもよい。どのパターン(言い換えると、リソースとポートとの対応関係)が用いられるかは、UEの実装次第であってもよい(UEが任意のパターンを決定してもよい)し、上位レイヤシグナリング又は物理レイヤシグナリング又はこれらの組み合わせによってUEに設定されてもよい。
 図4A及び4Bは、1T1R向けのSRSリソースセットの一例を示す図である。図4Aに示す、用途がアンテナスイッチングの1つのSRSリソースセット(SRSリソースセット#0)は、SRSポート数1(nrofSRS-Ports=1(port1))のSRSリソース#0を含んでいる。
 図4Bは、図4Aに対応するSRSリソースのマッピングの一例を示す図である。図4Bでは、UEは、1シンボルを用いて1つのSRSリソースを送信する。UEは、図4Bの1シンボルにおいて、SRSリソース#0をポート#0で送信してもよい。
 図5A及び5Bは、2T2R向けのSRSリソースセットの一例を示す図である。図5Aに示す、用途がアンテナスイッチングの1つのSRSリソースセット(SRSリソースセット#0)は、SRSポート数2(nrofSRS-Ports=2(ports2))のSRSリソース#0を含んでいる。
 図5Bは、図5Aに対応するSRSリソースのマッピングの一例を示す図である。図5Bでは、UEは、1シンボルを用いて1つのSRSリソースを送信する。UEは、図5Bの1シンボルにおいて、SRSリソース#0をポート#0及び#1で送信してもよい。
 なお、UEは、1つのSRSリソース(本例では、SRSリソース#0)について複数のアンテナポートからSRSを送信する(nrofSRS-Ports>1)場合、当該複数のアンテナポートの信号に直交化処理(例えば、巡回シフト(cyclic shift)、直交符号(orthogonal cover codeなど))を適用してもよい。
 図6A及び6Bは、1T4R向けのSRSリソースセットの一例を示す図である。図6Aは、リソースタイプ(RRCパラメータ「resourceType」)が周期的(periodic)又はセミパーシステント(semi-persistent)である、用途がアンテナスイッチングのSRSリソースセットの一例を示す。
 1T4R向けに、リソースタイプが周期的又はセミパーシステントであるSRSリソースセットが1つ設定されてもよい。当該SRSリソースセットは、異なるシンボルで送信される4つのSRSリソースを含んでもよい。図6Aの1つのSRSリソースセット(SRSリソースセット#0)は、SRSポート数1(nrofSRS-Ports=1(port1))の4つのSRSリソース#0、#3、#7及び#8を含んでいる。
 図6Bは、図6Aに対応するSRSリソースのマッピングの一例を示す図である。図6Bでは、UEは、計4シンボルを用いて4つのSRSリソースを送信する。UEは、図6Bのそれぞれ異なるシンボルにおいて、SRSリソース#0をポート#0で、SRSリソース#3をポート#1で、SRSリソース#7をポート#2で、そしてSRSリソース#8をポート#3で送信してもよい。
 なお、図6Bにおいては各SRSリソース間にガード期間があるような設定となっているが、リソースタイプが周期的又はセミパーシステントのSRSリソースセットについては、事前にポートを起こしておくことができるため、ガード期間がない(例えば、複数のSRSリソースが時間的に隣接する)設定が適用されてもよい。
 図7A及び7Bは、1T4R向けのSRSリソースセットの別の一例を示す図である。図7Aは、リソースタイプ(RRCパラメータ「resourceType」)が非周期的(aperiodic)である、用途がアンテナスイッチングのSRSリソースセットの一例を示す。
 1T4R向けに、リソースタイプが非周期的であるSRSリソースセットが2つ設定されてもよい。当該2つのSRSリソースセットは、異なるスロットの異なるシンボルで送信される合計4つのSRSリソースを含んでもよい。当該2つのSRSリソースセットに与えられる各SRSリソースのSRSポートは、それぞれ異なるUEのアンテナポートに関連してもよい。当該2つのSRSリソースセットはそれぞれ2つのSRSリソースを設定されてもよいし、一方が1つのSRSリソースを設定され他方が3つのSRSリソースを設定されてもよい。
 図7Aの1つのSRSリソースセット(SRSリソースセット#0)は、SRSポート数1(nrofSRS-Ports=1(port1))の2つのSRSリソース#0及び#3を含んでいる。図7Aの別の1つのSRSリソースセット(SRSリソースセット#4)は、SRSポート数1(nrofSRS-Ports=1(port1))の2つのSRSリソース#2及び#3を含んでいる。
 図7Bは、図7Aに対応するSRSリソースのマッピングの一例を示す図である。図7Bでは、UEは、2スロットの計4シンボルを用いて4つのSRSリソースを送信する。UEは、図7Bの1番目のスロットのそれぞれ異なるシンボルにおいて、SRSリソースセット#0のSRSリソース#0をポート#0で、SRSリソースセット#0のSRSリソース#3をポート#1で送信してもよい。UEは、図7Bの2番目のスロットのそれぞれ異なるシンボルにおいて、SRSリソースセット#4のSRSリソース#2をポート#2で、SRSリソースセット#4のSRSリソース#3をポート#3で送信してもよい。
 UEは、DCIに含まれる指示(例えば、SRSリクエスト、SRSトリガ)に基づいて、SRSリソースタイプが非周期的なSRSリソースセットのSRSを送信してもよい。
 図8A及び8Bは、2T4R向けのSRSリソースセットの一例を示す図である。図8Aに示す、用途がアンテナスイッチングの1つのSRSリソースセット(SRSリソースセット#0)は、SRSポート数2(nrofSRS-Ports=2(ports2))のSRSリソース#0及び#3を含んでいる。
 図8Bは、図8Aに対応するSRSリソースのマッピングの一例を示す図である。図8Bでは、UEは、2シンボルを用いて2つのSRSリソースを送信する。UEは、図8Bの1シンボルにおいて、SRSリソース#0をポート#0及び#1で送信し、別の1シンボルにおいて、SRSリソース#3をポート#2及び#3で送信してもよい。
 図9A及び9Bは、4T4R向けのSRSリソースセットの一例を示す図である。図9Aに示す、用途がアンテナスイッチングの1つのSRSリソースセット(SRSリソースセット#0)は、SRSポート数4(nrofSRS-Ports=4(ports4))のSRSリソース#0を含んでいる。
 図9Bは、図9Aに対応するSRSリソースのマッピングの一例を示す図である。図9Bでは、UEは、1シンボルを用いて1つのSRSリソースを送信する。UEは、図9Bの1シンボルにおいて、SRSリソース#0をポート#0、#1、#2及び#3で送信してもよい。
 以上図3から図9で示したようなRel-15 NRのSRSスイッチング動作は、フルパワー送信のUE能力を考慮していない。一方で、Rel-16以降のNRでは、モード2をサポートするUEが、フルパワーでPUSCH送信を行うためのTPMI(アンテナポートの組み合わせで読み替えられてもよい)をネットワークに報告することが検討されている。
 Rel-15 NRのSRSスイッチング動作では、UEのアンテナポート番号とSRSアンテナスイッチングを行うアンテナポートとの対応が明確でないため、UEのパワーアンプの能力に応じたSRSスイッチングを適切に行うことができない。この場合、SRSの送信電力が不足する(十分な電力で送信できない)おそれがあり、結果として通信スループットの増大が抑制されるおそれがある。
 そこで、本発明者らは、適切にSRSを送信するための方法を着想した。本開示の一態様によれば、UEは、パワーアンプ(フルパワー送信)の能力を考慮した適切なSRSスイッチングを行うことができる。
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。
 なお、以下の実施形態の「アンテナ」及び「アンテナポート」は、互いに読み替えられてもよい。
 本開示では、「フルパワー」は、「パワーブースティング」、「最大電力」、「拡張電力」、「Rel-15 UEに比べて高い電力」などで読み替えられてもよい。
 また、本開示では、UE能力X(X=1、2、3)を有することは、UE能力Xを報告すること、UE能力Xの構成を用いてフルパワー送信を行えること、などと互いに読み替えられてもよい。
 本開示では、コヒーレントに関する能力(例えば、完全コヒーレント、部分コヒーレント、ノンコヒーレント)を有することは、当該能力を報告すること、当該コヒーレントを設定されたこと、などと互いに読み替えられてもよい。
 また、ノンコヒーレントUE、部分コヒーレントUE、完全コヒーレントUEは、それぞれノンコヒーレントに関する能力を有するUE、部分コヒーレントに関する能力を有するUE、完全コヒーレントに関する能力を有するUEと互いに読み替えられてもよい。
 また、ノンコヒーレントUE、部分コヒーレントUE、完全コヒーレントUEは、それぞれ「ノンコヒーレント(nonCoherent)」、「部分及びノンコヒーレント(partialAndNonCoherent)」、「完全及び部分及びノンコヒーレント(fullyAndPartialAndNonCoherent)」のコードブックサブセットを上位レイヤで設定されたUEを意味してもよい。なお、本開示において、コードブックサブセット及びコードブックは、互いに読み替えられてもよい。
 ノンコヒーレントUE、部分コヒーレントUE、完全コヒーレントUEは、それぞれノンコヒーレントコードブック、部分コヒーレントコードブック及び完全コヒーレントコードブックを用いて送信できるUEを意味してもよい。
 以下の各実施形態のUEは、フルパワーUL送信をサポートすることを示す情報を報告したUEを想定するが、これを報告しないUEに適用されてもよい。
 なお、本開示において、モード2をサポートすることを示すUE能力情報を報告することは、UEがモード2をサポートすること、UEがモード2を設定されること、UEがモード2でPUSCH送信(フルパワー送信)を行うことを設定されること、などと、互いに読み替えられてもよい。
 また、以下の実施形態では、モード2をサポートすることを示すUE能力情報を報告したUEがモード2でPUSCH送信(フルパワー送信)を行うことを設定されるケースを前提に説明するが、これらの一方のみを前提とする場合、両方を前提としない場合などにおいても、本開示の実施形態を適用できることは当業者に明らかである。
 なお、以下の各実施形態では、図10A及び10Bのアンテナポートの構成を想定して説明するが、本開示の実施形態は他のアンテナポートの構成にも適用できることは当業者に明らかである。図10A及び10Bは、一実施形態において想定するアンテナポートの構成の一例を示す図である。
 図10Aは、フルパワー送信を行うためのTPMI(コードブック、プリコーディング行列などで読み替えられてもよい)のサブセットの一例を示す図である。本例は、ランク1及び2の4ポート送信についてのTPMIの例を示す。UEは、図10Aに示す1つ又は複数のTPMIを、フルパワー送信可能なアンテナポートの能力情報としてネットワークに送信してもよい。
 ノンコヒーレントUEの場合、例えばランク1に関して、W=[1 0 0 0]、[0 1 0 0]、[0 0 1 0]、[0 0 0 1](Tは転置行列を示す。以下同様)のうち1つ又は複数のTPMIを報告してもよい。
 部分又は完全コヒーレントUEの場合、例えばランク1に関して、ノンゼロPUSCHポート数=1のTPMIとして、W=[1 0 0 0]、[0 1 0 0]、[0 0 1 0]、[0 0 0 1]のうち1つ又は複数を報告してもよい。また、部分又は完全コヒーレントUEの場合、例えばランク1に関して、ノンゼロPUSCHポート数=2のTPMIとして、W=1/√2[1 0 1 0]、1/√2[0 1 0 1]のうち1つ又は複数を報告してもよい。
 ここで、ノンゼロPUSCHポートとは、プリコーディング行列(コードブックサブセット)によって送信が示されるアンテナポート(値がゼロでないアンテナポート)を意味してもよい。
 部分コヒーレントUEが、図10Aに示す3つのTPMI(ランク1については、W=[1 0 0 0]及びW=1/√2[1 0 1 0])の能力を報告したと仮定すると、このUEは、図10Bに示すようなアンテナポート構成を有すると考えられる。つまり、アンテナポート#0は単体でフルパワー送信可能(パワークラス3のUEの場合、23dBmを出力可能)であり、アンテナポート#2はフルパワーの半分の電力で送信可能(例えば、20dBm)であり、アンテナポート#1及び#3はそれ以下の電力で送信可能(例えば、17dBm)であると想定されてもよい。
 上記TPMIの能力を報告したUEは、アンテナポート#0及び#2が互いにコヒーレントである(同期がとれている)と想定してもよい。また、当該UEは、アンテナポート#1及び#3が互いにコヒーレントである(同期がとれている)と想定してもよい。
(無線通信方法)
<第1の実施形態>
 第1の実施形態においては、モード2をサポートすることを示すUE能力情報を報告したUEは、フルパワー送信のサポート能力に関わらず、コヒーレント能力(RRCパラメータ「pusch-TransCoherence」)に該当するTPMI又は設定されたコードブックサブセット(RRCパラメータ「codebookSubset」)に該当するTPMIのうち、全てのTPMIが指定され得ると想定してもよい。
 ここで、コヒーレント能力に該当するTPMIは、例えば、以下を意味してもよい:
 ・ノンコヒーレントに対応するTPMIは、ノンコヒーレントコードブックのTPMI、
 ・部分コヒーレントに対応するTPMIは、ノンコヒーレントコードブック及び部分コヒーレントコードブックのTPMI、
 ・完全コヒーレントに対応するTPMIは、ノンコヒーレントコードブック、部分コヒーレントコードブック及び完全コヒーレントコードブックのTPMI。
 なお、本開示のTPMIは、コードブックベースPUSCH送信に用いるアンテナポート(又はアンテナポートの組み合わせ)、コードブック、プリコーディング行列、TPMIに対応するプリコーディング行列などで読み替えられてもよい。
 図11は、第1の実施形態におけるPUSCH送信のために想定するTPMIの一例を示す図である。図11は、図1と同様のプリコーディング行列を示している。図10Bに示した部分コヒーレントUEは、第1の実施形態においては部分及びノンコヒーレント(partialAndNonCoherent)に対応する0から11までのTPMIの全てが指定され得ると想定してもよい。
 図10A及び10Bのアンテナポートの構成によれば、このUEは、TPMI=1、2、3、8、9、10又は11がDCIによって指定された場合、PUSCHをノンフルパワーで送信してもよい(指定されたアンテナポートがフルパワー送信に対応していないため)。一方、このUEは、TPMI=0、4、5、6又は7がDCIによって指定された場合、PUSCHをフルパワーで送信してもよい。
 モード2をサポートすることを示すUE能力情報を報告したUEは、図3から図9で示したような、Rel-15 NRと同じSRSスイッチング動作を想定してもよい。
 以上説明した第1の実施形態によれば、モード2のUEであっても、PUSCHのフルパワー送信を適切に判断したり、SRSスイッチングを適切にしたりできる。
<第2の実施形態>
 第2の実施形態においては、モード2をサポートすることを示すUE能力情報を報告したUEは、コヒーレント能力(RRCパラメータ「pusch-TransCoherence」)に該当するTPMI又は設定されたコードブックサブセット(RRCパラメータ「codebookSubset」)に該当するTPMIのうち、フルパワーPUSCH送信をサポートするTPMIのみが指示され得ると想定してもよい。
 UEは、この場合、指示され得るTPMIの数に基づいて、DCIに含まれるTPMIに関するフィールドのサイズ(例えば、プリコーディング情報及びレイヤ数フィールドのサイズ)が決定されると想定してもよい。
 図12は、第2の実施形態におけるPUSCH送信のために想定するTPMIの一例を示す図である。図12は、図1と同様のプリコーディング行列を示している。図10Bに示した部分コヒーレントUEは、第2の実施形態においては部分及びノンコヒーレント(partialAndNonCoherent)に対応する0から11までのTPMIのうち、フルパワーをサポートする(フルパワー送信可能なアンテナポートに対応する)TPMI=0、4、5、6及び7のみが指示され得ると想定してもよい。
 モード2をサポートすることを示すUE能力情報を報告したUEは、SRSを送信するアンテナポート(SRSポート)と、UEのアンテナポートと、が対応していると想定しなくてもよい。言い換えると、UEは、SRSポートのポート番号が事前に所定の対応関係に基づいて固定されていると想定しなくてもよい。UEは、SRSポートのポート番号を自律的に決定してもよい(SRSを、自律的に決定したポート番号のポートから送信してもよい)。
 なお、UEのアンテナポートは、例えばアンテナポート番号p=1000、1001、1002、1003、…などの番号を用いて表現されてもよい。
 第2の実施形態においては、モード2をサポートすることを示すUE能力情報を報告したUEは、コヒーレント能力に該当するTPMI又は設定されたコードブックサブセットに該当するTPMIのうち、フルパワーをサポートするTPMIが指示される場合に、Rel-15 NRと異なるSRSスイッチング動作を想定してもよい。
 以下、第2の実施形態のSRSスイッチング動作について、詳しく説明する。
[1T4Rかつリソースタイプ=周期的又はセミパーシステント]
 モード2をサポートする能力と、supportedSRS-TxPortSwitch=t1r4をサポートする能力と、をネットワークに報告したUEは、リソースタイプが周期的又はセミパーシステントである、用途がアンテナスイッチングの1つのSRSリソースセットを設定された場合に、フルパワーをサポートしないTPMIが示すアンテナポートの組み合わせでSRSアンテナスイッチングを行うことを予期しなくてもよい。
 なお、本開示において、supportedSRS-TxPortSwitchは、任意のチャネル又は信号についての、サポートする送信ポートスイッチングパターンを示すUE能力情報で読み替えられてもよい。
 また、当該UEは、当該SRSリソースセットに含まれるSRSリソースのうち、スロット内のOFDMシンボル開始位置がより早い(より古い、又はより前の)方からF個(言い換えると、startPositionの値が大きい方からF個)のSRSリソースを送信しないと想定してもよい。
 この場合、SRSアンテナスイッチングに必要なシンボル数を削減できるため、PUSCHなどの他のチャネル/信号に割り当てられるリソースが増加し、スループット向上が期待できる。また、より多くのUEのSRSをスケジュールできると期待される。そして、SRSアンテナスイッチングにかかる時間を削減できる。
 UEは、当該SRSリソースセットにおいて、送信しないと想定されるSRSリソース以外のSRSリソースを送信すると想定してもよい。
 本開示において、Fは、フルパワー送信で利用されないアンテナポート数であってもよい。例えば、図10A及び10Bの部分コヒーレントUEのアンテナポート構成では、F=2(アンテナポート#1及び#3)であってもよい。
 なお、本開示において、「スロット内のOFDMシンボル開始位置がより早い」は、「スロット内のOFDMシンボル開始位置がより遅い(より新しい、又はより後ろの)」、「SRSリソースIDの値がより大きい」、「SRSリソースIDの値がより小さい」などで読み替えられてもよく、「SRSリソースに関するパラメータがより大きい又はより小さい」で読み替えられてもよい。
 本開示においては、「より早い」及び「より遅い」を互いに読み替えた内容も実施形態としてサポートされる。また、本開示においては、「より大きい」及び「より小さい」を互いに読み替えた内容も実施形態としてサポートされる。また、本開示においては、「より多い」及び「より少ない」を互いに読み替えた内容も実施形態としてサポートされる。
 図13A及び13Bは、第2の実施形態における1T4R向けのSRSリソースセットのためのSRSアンテナスイッチングの一例を示す図である。図13Aは、リソースタイプが周期的又はセミパーシステントである、用途がアンテナスイッチングのSRSリソースセットの一例を示す。図13Aは、図6AのSRSリソースセットにおいて、SRSリソース#0、#3、#7及び#8の開始位置(startPosition)がそれぞれ5、4、2及び0と設定されるケースを説明する。
 図13Bは、図13Aに対応するSRSリソースのマッピングの一例を示す図である。本例では、UEは、SRSリソースセットに含まれるSRSリソースのうち、スロット内のOFDMシンボル開始位置がより早い方からF個のSRSリソースを送信しないと想定する。この場合、UEは、SRSリソース#0及び#3のSRSを送信しない。UEは、SRSリソース#7のSRSを、フルパワー送信が可能なアンテナポート#0及び#2の一方(図では、アンテナポート#0)を用いて送信し、SRSリソース#8のSRSを、フルパワー送信が可能なアンテナポート#0及び#2の他方(図では、アンテナポート#2)を用いて送信してもよい。
[1T4Rかつリソースタイプ=非周期的]
 モード2をサポートする能力と、supportedSRS-TxPortSwitch=t1r4をサポートする能力と、をネットワークに報告したUEは、リソースタイプが非周期的である、用途がアンテナスイッチングの2つのSRSリソースセットを設定された場合に、フルパワーをサポートしないTPMIが示すアンテナポートの組み合わせでSRSアンテナスイッチングを行うことを予期しなくてもよい。
 また、当該UEは、当該2つのSRSリソースセットが同じ数のSRSリソース(例えば、2つのSRSリソース)を含む場合、SRSリソースセットIDが大きい又は小さいセットのうち、SRSリソースIDの値がより大きい又はより小さい方からF個のSRSリソースを送信しないと想定してもよい。
 また、当該UEは、当該2つのSRSリソースセットが異なる数のSRSリソース(例えば、一方のSRSリソースセットが1つのSRSリソース、他方のSRSリソースセットが3つのSRSリソース)を含む場合、SRSリソース数が少ない方のSRSリソースセットに含まれるA個(例えば、1個)のSRSリソースと、SRSリソース数が多い方のSRSリソースセットに含まれるSRSリソースのうち、スロット内のOFDMシンボル開始位置がより早い又はより遅い方からF-A個(例えば、2-1=1個)のSRSリソースと、の計F個のSRSリソースを送信しないと想定してもよい。
 ここで、当該Aの値は、予め仕様によって定められてもよいし、上位レイヤシグナリングによって与えられてもよいし、UEの能力によって決定されてもよい。例えば、当該Aの値は、Fの値に基づいて導出されてもよい。Aは、SRSリソース数が少ない方のSRSリソースセットに含まれるSRSリソース数であってもよい。
 これらの構成によれば、SRSアンテナスイッチングに必要なシンボル数を削減できるため、PUSCHなどの他のチャネル/信号に割り当てられるリソースが増加し、スループット向上が期待できる。また、より多くのUEのSRSをスケジュールできると期待される。そして、SRSアンテナスイッチングにかかる時間を削減できる。
 UEは、当該2つのSRSリソースセットにおいて、送信しないと想定されるSRSリソース以外のSRSリソースを送信すると想定してもよい。
 図14A及び14Bは、第2の実施形態における1T4R向けのSRSリソースセットのためのSRSアンテナスイッチングの別の一例を示す図である。図14Aは、リソースタイプが非周期的である、用途がアンテナスイッチングのSRSリソースセットの一例を示す。図14Aは、図7AのSRSリソースセットにおいて、SRSリソースセット#0のSRSリソース#0及び#3の開始位置(startPosition)がそれぞれ4及び2と設定され、かつSRSリソースセット#4のSRSリソース#2及び#3の開始位置(startPosition)がそれぞれ2及び0と設定されるケースを説明する。
 図14Bは、図14Aに対応するSRSリソースのマッピングの一例を示す図である。本例では、UEは、2つのSRSリソースセットが同じ数のSRSリソースを含む場合、SRSリソースセットIDが小さいセットのうち、SRSリソースIDの値がより大きい方からF個のSRSリソースを送信しないと想定する。この場合、UEは、SRSリソースセット#0の2つのSRSリソース(SRSリソース#0及び#3)のSRSを送信しない。UEは、SRSリソースセット#4のSRSリソース#2のSRSを、フルパワー送信が可能なアンテナポート#0及び#2の一方を用いて送信し、SRSリソースセット#4のSRSリソース#3のSRSを、フルパワー送信が可能なアンテナポート#0及び#2の他方を用いて送信してもよい。
 図15A及び15Bは、第2の実施形態における1T4R向けのSRSリソースセットのためのSRSアンテナスイッチングのさらに別の一例を示す図である。図15Aは、リソースタイプが非周期的である、用途がアンテナスイッチングのSRSリソースセットの一例を示す。図15Aの2つのSRSリソースセットは、異なる数のSRSリソースを含む。
 SRSリソースセット#0は、SRSポート数1(nrofSRS-Ports=1(port1))の3つのSRSリソース#0、#3及び#8を含む。SRSリソースセット#4は、SRSポート数1(nrofSRS-Ports=1(port1))の1つのSRSリソース#2を含む。
 SRSリソースセット#0のSRSリソース#0、#3及び#8の開始位置(startPosition)がそれぞれ4、2及び0と設定され、かつSRSリソースセット#4のSRSリソース#2の開始位置(startPosition)が2と設定されるケースを説明する。
 図15Bは、図15Aに対応するSRSリソースのマッピングの一例を示す図である。本例では、UEは、2つのSRSリソースセットが異なる数のSRSリソースを含む場合、SRSリソース数が少ない方のSRSリソースセットに含まれるA(=1)個のSRSリソースと、SRSリソース数が多い方のSRSリソースセットに含まれるSRSリソースのうち、スロット内のOFDMシンボル開始位置がより遅い方からF-A(=1)個のSRSリソースと、の計F(=2)個のSRSリソースを送信しないと想定する。
 この場合、UEは、SRSリソース数が少ないSRSリソースセット#4のSRSリソース#2のSRSを送信しない。また、UEは、SRSリソース数が多いSRSリソースセット#0において、シンボル開始位置が遅いSRSリソース#8のSRSを送信しない。そして、UEは、SRSリソースセット#0のSRSリソース#0のSRSを、フルパワー送信が可能なアンテナポート#0及び#2の一方を用いて送信し、SRSリソースセット#0のSRSリソース#3のSRSを、フルパワー送信が可能なアンテナポート#0及び#2の他方を用いて送信してもよい。
[2T4R]
 モード2をサポートする能力と、supportedSRS-TxPortSwitch=t2r4をサポートする能力と、をネットワークに報告したUEは、用途がアンテナスイッチングの1つのSRSリソースセットを設定された場合に、フルパワーをサポートしないTPMIが示すアンテナポートの組み合わせでSRSアンテナスイッチングを行うことを予期しなくてもよい。
 また、当該UEは、当該SRSリソースセットに含まれ、SRSポート数がF個のSRSリソースのうち、スロット内のOFDMシンボル開始位置がより早い方(言い換えると、startPositionの値が大きい方)のSRSリソースを送信しないと想定してもよい。
 この場合、SRSアンテナスイッチングに必要なシンボル数を削減できるため、PUSCHなどの他のチャネル/信号に割り当てられるリソースが増加し、スループット向上が期待できる。また、より多くのUEのSRSをスケジュールできると期待される。そして、SRSアンテナスイッチングにかかる時間を削減できる。
 UEは、当該SRSリソースセットにおいて、送信しないと想定されるSRSリソース以外のSRSリソースを送信すると想定してもよい。なお、UEは、Fが所定の値(例えば、2)より大きい又は小さい場合には、当該SRSリソースセットの全てのSRSリソースを送信すると想定してもよい。
 図16A及び16Bは、第2の実施形態における2T4R向けのSRSリソースセットのためのSRSアンテナスイッチングの一例を示す図である。図16Aは、用途がアンテナスイッチングのSRSリソースセットの一例を示す。図16Aは、図8AのSRSリソースセットにおいて、SRSリソース#0及び#3の開始位置(startPosition)がそれぞれ4及び0と設定されるケースを説明する。
 図16Bは、図16Aに対応するSRSリソースのマッピングの一例を示す図である。本例では、UEは、当該SRSリソースセットに含まれ、SRSポート数がF(=2)個のSRSリソースのうち、スロット内のOFDMシンボル開始位置がより早い方のSRSリソースを送信しないと想定する。この場合、UEは、SRSリソース#0のSRSを送信しない。UEは、SRSリソース#3のSRSを、フルパワー送信が可能なアンテナポート#0及び#2を用いて送信してもよい。
[4T4R]
 モード2をサポートする能力と、supportedSRS-TxPortSwitch=t4r4をサポートする能力と、をネットワークに報告したUEは、用途がアンテナスイッチングの1つのSRSリソースセットを設定された場合に、フルパワーをサポートしないTPMIが示すアンテナポートの組み合わせでSRSアンテナスイッチングを行うことを予期しなくてもよい。
 また、当該UEは、当該SRSリソースセットに含まれるSRSリソースに設定されたSRSポート数(nrofSRS-Ports)を低減して当該SRSリソースを送信してもよい。例えば、UEは、nrofSRS-Ports-Fを直交多重数(例えばサイクリックシフトによる多重数)と想定してもよい。
 この場合、SRSアンテナスイッチングを行う際のサイクリックシフトによるUEあたりの多重数を削減できるため、より多くのUEのSRSをスケジュールできると期待される。
 UEは、当該SRSリソースセットのSRSリソースにおいて、フルパワー送信をサポートするアンテナポートのみを用いてSRSを送信してもよい。
 図17A及び17Bは、第2の実施形態における4T4R向けのSRSリソースセットのためのSRSアンテナスイッチングの一例を示す図である。図17Aは、用途がアンテナスイッチングのSRSリソースセットの一例を示す。図17Aは、図9AのSRSリソースセットにおいて、SRSリソース#0の開始位置(startPosition)が3と設定されるケースを説明する。
 図17Bは、図17Aに対応するSRSリソースのマッピングの一例を示す図である。本例では、UEは、当該SRSリソースセットに含まれるSRSリソースに設定されたSRSポート数(nrofSRS-Ports)=4を低減して当該SRSリソースを送信する。この場合、UEは、SRSリソース#0のSRSを、設定された4ポート送信からF(=2)ポート送信に低減し、フルパワー送信が可能なアンテナポート#0及び#2を用いて送信してもよい。
 以上説明した第2の実施形態によれば、モード2のUEであっても、PUSCHのフルパワー送信を適切に判断したり、SRSスイッチングを適切にしたりできる。
<第3の実施形態>
 第3の実施形態においては、モード2をサポートすることを示すUE能力情報を報告したUEは、コヒーレント能力(RRCパラメータ「pusch-TransCoherence」)に該当するTPMI又は設定されたコードブックサブセット(RRCパラメータ「codebookSubset」)に該当するTPMIのうち、フルパワーをサポートするTPMIのみが指示され得ると想定してもよい。
 UEは、この場合、指示され得るTPMIの数に基づいて、DCIに含まれるTPMIに関するフィールドのサイズ(例えば、プリコーディング情報及びレイヤ数フィールドのサイズ)が決定されると想定してもよい。UEは、図12で示したようなフルパワーをサポートするTPMIのみが指示され得ると想定してもよい。
 モード2をサポートすることを示すUE能力情報を報告したUEは、SRSを送信するアンテナポート(SRSポート)と、UEのアンテナポートと、が対応していると想定してもよい。言い換えると、UEは、SRSポートのポート番号が事前に所定の対応関係に基づいて固定されていると想定してもよい。
 第3の実施形態においては、モード2をサポートすることを示すUE能力情報を報告したUEは、コヒーレント能力に該当するTPMI又は設定されたコードブックサブセットに該当するTPMIのうち、フルパワーPUSCH送信をサポートするTPMIが指示される場合に、Rel-15 NRと異なるSRSスイッチング動作を想定してもよい。
 以下、第3の実施形態のSRSスイッチング動作について、詳しく説明する。
 UEは、用途がアンテナスイッチングの1つ又は複数のSRSリソースセットの各SRSリソースが、UEのアンテナポートと対応している(1対1に対応している)と想定してもよい。
 第3の実施形態においては、UEは、SRSアンテナスイッチングを行う場合には、PUSCHをフルパワーで送信できないアンテナポートに対応する(関連付けられた)SRSリソースを送信しないと想定してもよい。
 なお、UEは、あるSRSリソースのSRSポート数が2以上である場合であって、当該SRSリソースがPUSCHをフルパワーで送信できないアンテナポート及びフルパワーで送信できる(言い換えると、フルパワー送信に利用できる)アンテナポートの両方を含む場合には、当該SRSリソースにおいて、フルパワーで送信できるアンテナポートを用いてSRSを送信し、フルパワーで送信できないアンテナポートではSRSを送信しないと想定してもよい。
 用途がアンテナスイッチングの1つ又は複数のSRSリソースセットの各SRSリソースと、UEのアンテナポートと、の対応関係は、予め仕様によって定められてもよいし、上位レイヤシグナリングなどによってUEに設定されてもよい。UEは、当該対応関係に基づいて、当該1つ又は複数のSRSリソースセットの各SRSリソースと、UEのアンテナポートとの対応を判断してもよい。
 UEは、用途がアンテナスイッチングのSRSリソースセットが2つ以上設定された場合、SRSリソースセットIDが小さいリソースセットから順にアンテナポートインデックスが対応していると想定してもよい。言い換えると、UEは、SRSリソースセットIDが第1の値に該当するSRSリソースセットに含まれる各SRSリソースに対応するアンテナポートインデックスは、SRSリソースセットIDが第2の値(第2の値は、第1の値より大きい)に該当するSRSリソースセットに含まれる各SRSリソースに対応するアンテナポートインデックスより小さいと想定してもよい。
 さらに言い換えると、UEは、SRSリソースセットIDの昇順にSRSリソースを並べた場合に、より大きいSRSリソースセットIDのSRSリソースはより大きいアンテナポートインデックスに対応すると想定してもよい。
 UEは、用途がアンテナスイッチングの1つのSRSリソースセットにおいて、SRSリソースIDが小さいSRSリソースから順にアンテナポートインデックスが対応していると想定してもよい。言い換えると、UEは、あるSRSリソースセット内のSRSリソースIDが第3の値に該当するSRSリソースに対応するアンテナポートインデックスは、SRSリソースIDが第4の値(第4の値は、第3の値より大きい)に該当するSRSリソースに対応するアンテナポートインデックスより小さいと想定してもよい。
 さらに言い換えると、UEは、あるSRSリソースセットに含まれるSRSリソースを、SRSリソースIDの昇順に並べた場合に、より大きいSRSリソースIDのSRSリソースはより大きいアンテナポートインデックスに対応すると想定してもよい。
 例えば、第1のSRSリソースから第4のSRSリソースのSRSリソースIDが昇順に並ぶ場合には、UEは、第1のSRSリソースのSRSポート#0がUEのアンテナポート#0に対応し、第2のSRSリソースのSRSポート#0がUEのアンテナポート#1に対応し、第3のSRSリソースのSRSポート#0がUEのアンテナポート#2に対応し、第4のSRSリソースのSRSポート#0がUEのアンテナポート#3に対応すると想定してもよい。
 UEは、複数のアンテナポートを同時に送信できる場合であって、SRSポート数が2以上のSRSリソースについては、当該SRSリソースのSRSポート#0及び#1がそれぞれUEのアンテナポート#i及び#i+1に対応すると想定してもよい。
 図18A及び18Bは、第3の実施形態における1T4R向けのSRSリソースセットのためのSRSアンテナスイッチングの一例を示す図である。図18Aは、リソースタイプが周期的又はセミパーシステントである、用途がアンテナスイッチングのSRSリソースセットの一例を示す。図18Aは、図6AのSRSリソースセットにおいて、SRSリソース#0、#3、#7及び#8の開始位置(startPosition)がそれぞれ4、5、2及び0と設定されるケースを説明する。
 上述のルールに従うと、UEは、SRSリソース#0、#3、#7及び#8が、それぞれアンテナポート#0、#1、#2及び#3に対応すると想定してもよい。
 図18Bは、図18Aに対応するSRSリソースのマッピングの一例を示す図である。本例では、UEは、フルパワー送信できないアンテナポート#1及び#3に対応するSRSリソースを送信しないと想定する。この場合、UEは、SRSリソース#3及び#8のSRSを送信しない。UEは、SRSリソース#0のSRSを、フルパワー送信が可能なアンテナポート#0を用いて送信し、SRSリソース#7のSRSを、フルパワー送信が可能なアンテナポート#2を用いて送信してもよい。
 図19A及び19Bは、第3の実施形態における1T4R向けのSRSリソースセットのためのSRSアンテナスイッチングの別の一例を示す図である。図19Aは、リソースタイプが非周期的である、用途がアンテナスイッチングのSRSリソースセットの一例を示す。図19Aは、図14Aと同じSRSリソースセットを示す。
 上述のルールに従うと、UEは、SRSリソースセット#0のSRSリソース#0及び#3がそれぞれアンテナポート#0及び#1に対応し、SRSリソースセット#4のSRSリソース#2及び#3がそれぞれアンテナポート#2及び#3に対応すると想定してもよい。
 図19Bは、図19Aに対応するSRSリソースのマッピングの一例を示す図である。本例では、UEは、フルパワー送信できないアンテナポート#1及び#3に対応するSRSリソースを送信しないと想定する。この場合、UEは、SRSリソースセット#0のSRSリソース#3と、SRSリソースセット#4のSRSリソース#3と、のSRSを送信しない。UEは、SRSリソースセット#0のSRSリソース#0のSRSを、フルパワー送信が可能なアンテナポート#0を用いて送信し、SRSリソースセット#4のSRSリソース#2のSRSを、フルパワー送信が可能なアンテナポート#2を用いて送信してもよい。
 図20A及び20Bは、第3の実施形態における1T4R向けのSRSリソースセットのためのSRSアンテナスイッチングのさらに別の一例を示す図である。図20Aは、リソースタイプが非周期的である、用途がアンテナスイッチングのSRSリソースセットの一例を示す。図20Aは、図15Aと同じSRSリソースセットを示す。
 上述のルールに従うと、UEは、SRSリソースセット#0のSRSリソース#0、#3及び#8がそれぞれアンテナポート#0、#1及び#2に対応し、SRSリソースセット#4のSRSリソース#2がアンテナポート#3に対応すると想定してもよい。
 図20Bは、図20Aに対応するSRSリソースのマッピングの一例を示す図である。本例では、UEは、フルパワー送信できないアンテナポート#1及び#3に対応するSRSリソースを送信しないと想定する。この場合、UEは、SRSリソースセット#0のSRSリソース#3のSRSと、SRSリソースセット#4のSRSリソース#2のSRSと、を送信しない。そして、UEは、SRSリソースセット#0のSRSリソース#0のSRSを、フルパワー送信が可能なアンテナポート#0を用いて送信し、SRSリソースセット#0のSRSリソース#8のSRSを、フルパワー送信が可能なアンテナポート#2を用いて送信してもよい。
 図21A及び21Bは、第3の実施形態における2T4R向けのSRSリソースセットのためのSRSアンテナスイッチングの一例を示す図である。図21Aは、用途がアンテナスイッチングのSRSリソースセットの一例を示す。図21Aは、図16Aと同じSRSリソースセットを示す。
 上述のルールに従うと、UEは、SRSリソース#0がアンテナポート#0及び#1に対応し、SRSリソース#3がアンテナポート#2及び#3に対応すると想定してもよい。
 図21Bは、図21Aに対応するSRSリソースのマッピングの一例を示す図である。本例では、UEは、SRSリソース#0において、フルパワー送信できないアンテナポート#1ではSRSを送信せず、フルパワーで送信できるアンテナポート#0ではSRSを送信してもよい。また、UEは、SRSリソース#3において、フルパワー送信できないアンテナポート#3ではSRSを送信せず、フルパワーで送信できるアンテナポート#2ではSRSを送信してもよい。この場合、UEは、アンテナポート#1及び#3に対応するサイクリックシフトを適用したSRSは送信しなくてもよい。
 図22A及び22Bは、第3の実施形態における4T4R向けのSRSリソースセットのためのSRSアンテナスイッチングの一例を示す図である。図22Aは、用途がアンテナスイッチングのSRSリソースセットの一例を示す。図22Aは、図17Aと同じSRSリソースセットを示す。
 上述のルールに従うと、UEは、SRSリソース#0がアンテナポート#0、#1、#2及び#3に対応すると想定してもよい。
 図22Bは、図22Aに対応するSRSリソースのマッピングの一例を示す図である。本例では、UEは、SRSリソース#0において、フルパワー送信できないアンテナポート#1及び#3では、これらに対応するサイクリックシフトを適用したSRSは送信しなくてもよい。また、UEは、SRSリソース#0において、フルパワーで送信できるアンテナポート#0及び#2ではSRSを送信してもよい。
 以上説明した第3の実施形態によれば、モード2のUEであっても、PUSCHのフルパワー送信を適切に判断したり、SRSスイッチングを適切にしたりできる。
<その他>
 上述の各実施形態では、4アンテナで受信が可能なUE(supportedSRS-TxPortSwitch=txr4のUE)について主に説明したが、他のsupportedSRS-TxPortSwitchのUEについても同様にSRSの送信が制御されてもよい。
 例えば、supportedSRS-TxPortSwitch=t1r2のUEは、上述のt2r4のUEに関する記載において4アンテナを2アンテナに読み替えた実施形態が適用されてもよい。また、supportedSRS-TxPortSwitch=t2r2のUEは、上述のt4r4のUEに関する記載において4アンテナを2アンテナに読み替えた実施形態が適用されてもよい。
 上述の各実施形態におけるアンテナポートは、PUSCH、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))、復調用参照信号(DeModulation Reference Signal(DMRS))、SRSなどの少なくとも1つのアンテナポートであってもよく、フルパワー送信はこれらの信号及びチャネルの少なくとも1つに適用されてもよい。
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
 図23は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
 図24は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
 なお、制御部110は、ユーザ端末20に対して、用途がアンテナスイッチングである1つ以上の測定用参照信号(Sounding Reference Signal(SRS))リソースセットの設定情報(例えば、RRCパラメータの「SRS-ResourceSet」)を送信する制御を行ってもよい。
(ユーザ端末)
 図25は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
 なお、送受信部220は、用途がアンテナスイッチングである1つ以上の測定用参照信号(Sounding Reference Signal(SRS))リソースセットの設定情報(例えば、RRCパラメータの「SRS-ResourceSet」)を受信してもよい。
 なお、本開示における「用途がアンテナスイッチングである」ことは、用途が特定の用途である(例えば、用途がコードブックである)ことで読み替えられてもよい。
 制御部210は、上りリンク共有チャネル(PUSCH)をフルパワーで送信可能なアンテナポートに基づいて、前記1つ以上のSRSリソースセットに含まれるSRSリソースの送信を制御してもよい(例えば、送信の可否を制御してもよい)。
 制御部210は、特定のSRSの送信ポートスイッチングパターンを示す能力情報を報告した(例えば、supportedSRS-TxPortSwitch=t1r4、t2r4、t4r4、t1r4-t2r4などを報告した)場合に、前記1つ以上のSRSリソースセットに含まれるSRSリソースについて、フルパワーをサポートしないアンテナポートを用いたSRSアンテナスイッチングを行うことを予期しなくてもよい。
 制御部210は、前記1つ以上のSRSリソースセットに含まれるSRSリソースのうち、フルパワー送信で利用されないアンテナポート数(=F)分のSRSリソースを送信しない制御を行ってもよい。
 制御部210は、前記1つ以上のSRSリソースセットの各SRSリソースが、当該ユーザ端末20のアンテナポートと1対1に対応していると想定してもよい。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図26は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (5)

  1.  用途がアンテナスイッチングである1つ以上の測定用参照信号(Sounding Reference Signal(SRS))リソースセットの設定情報を受信する受信部と、
     上りリンク共有チャネルをフルパワーで送信可能なアンテナポートに基づいて、前記1つ以上のSRSリソースセットに含まれるSRSリソースの送信を制御する制御部と、を有することを特徴とする端末。
  2.  前記制御部は、特定のSRSの送信ポートスイッチングパターンを示す能力情報を報告した場合に、前記1つ以上のSRSリソースセットに含まれるSRSリソースについて、フルパワーをサポートしないアンテナポートを用いたSRSアンテナスイッチングを行うことを予期しないことを特徴とする請求項1に記載の端末。
  3.  前記制御部は、前記1つ以上のSRSリソースセットに含まれるSRSリソースのうち、フルパワー送信で利用されないアンテナポート数分のSRSリソースを送信しない制御を行うことを特徴とする請求項1又は請求項2に記載の端末。
  4.  前記制御部は、前記1つ以上のSRSリソースセットの各SRSリソースが、当該端末のアンテナポートと1対1に対応していると想定することを特徴とする請求項1に記載の端末。
  5.  用途がアンテナスイッチングである1つ以上の測定用参照信号(Sounding Reference Signal(SRS))リソースセットの設定情報を受信するステップと、
     上りリンク共有チャネルをフルパワーで送信可能なアンテナポートに基づいて、前記1つ以上のSRSリソースセットに含まれるSRSリソースの送信を制御するステップと、を有することを特徴とする端末の無線通信方法。
PCT/JP2019/027410 2019-07-10 2019-07-10 端末及び無線通信方法 WO2021005764A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19936828.3A EP3998793A4 (en) 2019-07-10 2019-07-10 WIRELESS COMMUNICATION TERMINAL AND METHOD
PCT/JP2019/027410 WO2021005764A1 (ja) 2019-07-10 2019-07-10 端末及び無線通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/027410 WO2021005764A1 (ja) 2019-07-10 2019-07-10 端末及び無線通信方法

Publications (1)

Publication Number Publication Date
WO2021005764A1 true WO2021005764A1 (ja) 2021-01-14

Family

ID=74114473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027410 WO2021005764A1 (ja) 2019-07-10 2019-07-10 端末及び無線通信方法

Country Status (2)

Country Link
EP (1) EP3998793A4 (ja)
WO (1) WO2021005764A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022110217A1 (zh) * 2020-11-30 2022-06-02 华为技术有限公司 一种通信方法、通信装置及网络设备
WO2023039770A1 (zh) * 2021-09-15 2023-03-23 北京小米移动软件有限公司 一种用于天线切换的探测参考信号srs触发方法及其装置
WO2023152791A1 (ja) * 2022-02-08 2023-08-17 株式会社Nttドコモ 端末、無線通信方法及び基地局
WO2023175777A1 (ja) * 2022-03-16 2023-09-21 株式会社Nttドコモ 端末、無線通信方法及び基地局
WO2023190165A1 (ja) * 2022-04-01 2023-10-05 シャープ株式会社 端末装置、基地局装置、および、通信方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220271815A1 (en) * 2019-11-28 2022-08-25 Apple Inc. Reduction of Overhead Associated with Configuration of Transmission Functions Relating to Sounding Reference Signals
WO2024082776A1 (en) * 2023-08-04 2024-04-25 Lenovo (Beijing) Ltd. Full power uplink transmission mode 2 for 8tx ue

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 8", 3GPP TS 36.300, April 2010 (2010-04-01)
"Full Tx power for UL transmissions", 3GPP TSGRANWG1 #95 RL-1813897, 16 November 2018 (2018-11-16), pages 1 - 10, XP051555797 *
3GPP TS 38.214
ERICSSON: "Enabling full TX power UL transmission for SRS", 3GPP TSG RAN WG1 #94B RL-1811547, 18 October 2018 (2018-10-18), pages 1 - 7, XP051518947 *
See also references of EP3998793A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022110217A1 (zh) * 2020-11-30 2022-06-02 华为技术有限公司 一种通信方法、通信装置及网络设备
WO2023039770A1 (zh) * 2021-09-15 2023-03-23 北京小米移动软件有限公司 一种用于天线切换的探测参考信号srs触发方法及其装置
WO2023152791A1 (ja) * 2022-02-08 2023-08-17 株式会社Nttドコモ 端末、無線通信方法及び基地局
WO2023175777A1 (ja) * 2022-03-16 2023-09-21 株式会社Nttドコモ 端末、無線通信方法及び基地局
WO2023190165A1 (ja) * 2022-04-01 2023-10-05 シャープ株式会社 端末装置、基地局装置、および、通信方法

Also Published As

Publication number Publication date
EP3998793A4 (en) 2023-03-29
EP3998793A1 (en) 2022-05-18

Similar Documents

Publication Publication Date Title
WO2021024494A1 (ja) 端末及び無線通信方法
WO2021005764A1 (ja) 端末及び無線通信方法
WO2020166081A1 (ja) ユーザ端末及び無線通信方法
WO2021090403A1 (ja) 端末及び無線通信方法
WO2021002018A1 (ja) 端末及び無線通信方法
WO2021064962A1 (ja) 端末及び無線通信方法
WO2020261510A1 (ja) 端末及び無線通信方法
WO2020144774A1 (ja) ユーザ端末及び無線通信方法
WO2022153395A1 (ja) 端末、無線通信方法及び基地局
WO2020209281A1 (ja) ユーザ端末及び無線通信方法
WO2020222274A1 (ja) ユーザ端末及び無線通信方法
WO2020261389A1 (ja) 端末及び無線通信方法
WO2021033223A1 (ja) 端末及び無線通信方法
WO2020144773A1 (ja) ユーザ端末及び無線通信方法
WO2020250450A1 (ja) 端末及び無線通信方法
WO2021124585A1 (ja) 端末及び無線通信方法
WO2020144869A1 (ja) ユーザ端末及び無線通信方法
WO2021117193A1 (ja) 端末及び無線通信方法
JP7230059B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2020250447A1 (ja) 端末及び無線通信方法
WO2021220411A1 (ja) 端末、無線通信方法及び基地局
WO2021070392A1 (ja) 端末及び無線通信方法
WO2021124586A1 (ja) 端末及び無線通信方法
WO2020261521A1 (ja) 端末及び無線通信方法
WO2020255395A1 (ja) 端末及び無線通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19936828

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019936828

Country of ref document: EP

Effective date: 20220210

NENP Non-entry into the national phase

Ref country code: JP