WO2013017707A1 - Procedimiento de obtención de una composición que contiene factores de crecimiento a partir de plaquetas - Google Patents

Procedimiento de obtención de una composición que contiene factores de crecimiento a partir de plaquetas Download PDF

Info

Publication number
WO2013017707A1
WO2013017707A1 PCT/ES2012/000196 ES2012000196W WO2013017707A1 WO 2013017707 A1 WO2013017707 A1 WO 2013017707A1 ES 2012000196 W ES2012000196 W ES 2012000196W WO 2013017707 A1 WO2013017707 A1 WO 2013017707A1
Authority
WO
WIPO (PCT)
Prior art keywords
supernatant
platelet
rich plasma
plasma
temperature
Prior art date
Application number
PCT/ES2012/000196
Other languages
English (en)
French (fr)
Inventor
Eduardo Anitua Aldecoa
Original Assignee
Eduardo Anitua Aldecoa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eduardo Anitua Aldecoa filed Critical Eduardo Anitua Aldecoa
Priority to BR112014001539A priority Critical patent/BR112014001539A2/pt
Priority to CA2839973A priority patent/CA2839973A1/en
Priority to CN201280036577.7A priority patent/CN103702679B/zh
Priority to RU2014102729/15A priority patent/RU2014102729A/ru
Priority to EP12762017.7A priority patent/EP2740486A1/en
Priority to JP2014522123A priority patent/JP2014521629A/ja
Priority to MX2014000936A priority patent/MX2014000936A/es
Priority to KR1020147001440A priority patent/KR20140057244A/ko
Publication of WO2013017707A1 publication Critical patent/WO2013017707A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/16Blood plasma; Blood serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators

Definitions

  • the invention relates to a method of obtaining a composition containing growth factors, with the presence or absence of blood cell components (platelets, erythrocytes and white blood cells), from a blood compound, and to the composition which contains growth factors obtainable by means of said procedure.
  • blood cell components platelets, erythrocytes and white blood cells
  • the preparation of blood compounds containing growth factors, obtained from the blood of a patient, is widely known in the state of the art.
  • Said blood compounds with or growth factors have been shown to offer very important biological properties, especially related to the triggering and favoring of tissue regeneration, the reduction of pain in certain types of ailments and diseases, and other multiple utilities.
  • patent application WO0044314A1 in favor of the applicant himself, refers to a method of preparing an autologous blood plasma gel, rich in growth factors, from the patient's own blood, a procedure that has been updated in the most recent patent application WO2010130851 A2, also in favor of the applicant himself. Both procedures share common steps such as centrifugation of the patient's blood, separation of platelet rich plasma and the addition of calcium chloride to platelet rich plasma to produce plasma activation (the release of growth factors by platelets contained in the plasma) and to produce coagulation thereof until the plasma acquires a gel-like consistency.
  • the blood compounds are not prepared to endure at room temperature for long periods of time and its immediate application is recommended (in the case of a supernatant, in no more than eight hours from its preparation) to avoid degradation and denaturation of proteins and growth factors or possible bacterial contamination of the product.
  • systemic lupus erythematosus which is a chronic autoimmune disease that affects the connective tissue and is characterized by inflammation and tissue damage mediated by the immune system , specifically due to the binding of antibodies to body cells and the deposition of antigen-antibody complexes
  • Sjogren syndrome which is a systemic autoimmune disease characterized by mainly affecting the exocrine glands and leading to the onset of dryness
  • dermatomyositis which is a disease of the connective tissue characterized by inflammation of the muscles and skin
  • rheumatoid arthritis which is an autoimmune systemic disease characterized by chronic inflammation, mainly of the joints, and produces progressive destruction with varying degrees of deformity and functional disability.
  • the present invention aims to design a method of obtaining a composition containing growth factors from a platelet rich plasma or a platelet rich plasma supernatant, which allows obtaining a composition capable of being preserved for long periods. of time and transported in a simple way, so that the composition is suitable to be applied not immediately but at the time that is desired or deemed necessary.
  • the procedure according to the invention it will be possible to obtain a composition that can be used in chronic therapeutic approaches, periodically, all without requiring constant blood draws from the patient and therefore improving the quality of life thereof.
  • composition obtained by the process of the invention keep its biological properties intact. It is also the object of the present invention that the composition obtained by the process of the invention retain improved biological properties, especially indicated for the treatment of autoimmune diseases.
  • the object of the invention is a process for obtaining a composition containing growth factors, which comprises several phases.
  • the process comprises the phase of having a platelet rich plasma or a platelet rich plasma supernatant containing released growth factors.
  • Platelet-rich plasma or a platelet-rich plasma supernatant can be of many different types: a plasma gel rich in growth factors obtained according to the technique of WO0044314A1, WO2010130851 A2 or other applicable technique; a supernatant obtained as the liquid component that appears after producing coagulation and subsequent retraction of a platelet-rich blood plasma, said supernatant may have been obtained for example according to the technique detailed in the patent ES2221770B2; or, in general, any platelet rich plasma.
  • the process according to the invention comprises the step of applying a heat treatment to the platelet rich plasma or to the platelet rich plasma supernatant, during which the temperature thereof is increased.
  • the heat treatment eliminates the complement and reduces the presence of some of the most frequent immunoglobulins in plasma or supernatant that play a critical role in cross-reactions from a point of view.
  • immunological Said elimination or considerable reduction of the complement present in the plasma or the supernatant constitutes a very important advantage for its applicability to diseases of the immune system.
  • the process according to the invention comprises a phase in which the plasma or the supernatant is lyophilized to achieve a final composition practically devoid of moisture.
  • the steps of applying a heat treatment and lyophilizing are performed in the same order, that is, they can be performed in any order.
  • the process according to the invention may comprise the step of filtering platelet rich plasma or platelet rich plasma supernatant. Said step is performed before lyophilization (not necessarily immediately before, since in case of applying the heat treatment before lyophilization, filtering is done before the heat treatment).
  • the process of obtaining a composition from a platelet-rich plasma or an autologous platelet-rich plasma supernatant allows to achieve a dry final composition that has multiple advantages over conventional wet plasma or supernatant.
  • An important advantage is that a dry composition is obviously easier to handle and transport than a wet compound (liquid, with more or less viscous gel consistency or with another consistency).
  • the dry composition can be kept at room temperature and even be stored unlimitedly, constituting a product of long stability (thanks to which its use can be postponed and does not necessarily have to be used immediately, once prepared). Additionally, since it does not contain water, the dry composition has no risk of contamination.
  • Another advantage of the dry composition is that it can quickly recover its original state; For this, it is enough to re-suspend it in any isotonic solvent that is routinely used (for example water), a process that can be carried out in situ.
  • An additional advantage of the dry composition according to the invention is that, as has been proven, once said composition has been re-suspended for recovering a wet state and being able to be administered, the resuspended composition retains the biological properties that characterized the plasma or wet supernatant before performing the process according to the invention.
  • the re-suspended composition still retains an analogous concentration of growth factors with biological activity;
  • the effects induced by the dry composition once re-suspended in cell proliferation, cell migration and chemotaxis and in the auto and paracrine synthesis of growth factors are identical to those of plasma or wet supernatant.
  • This conservation of biological properties is achieved thanks, among other reasons, to the proper temperature at which the product is subjected during the execution of the process according to the invention.
  • the loss of volatile constituents comprised in the plasma or supernatant that could occur during the execution of the process is minimal.
  • the low temperatures also allow maintaining a very low risk of microbial contamination and that the preparation does not suffer from an enzymatic point of view (it is advantageous that the preparations containing enzymes, such as the plasma or supernatant of the present invention, are keep treated at low temperatures so that they are not damaged).
  • Another extremely beneficial effect of the invention is that the dry composition and, therefore, the final re-suspended composition are free compositions or with a reduced presence of complement, which converts the final re-suspended composition into a particularly optimal composition for Treat some autoimmune diseases.
  • the dry composition obtained according to the invention is stored for example in doses, the chronic treatment with it becomes a very simple process: the chronic patient can take his dose (for example in a container) to any place without complications. no fears; When the dose is to be administered, it is sufficient that it moisten (re-suspend) the same and, once the original wet consistency (liquid or other) has been recovered, apply as applicable.
  • composition obtained by the process according to the invention can be summarized in: optimum stability, a special indication for some pathologies of an autoimmune nature; easy, fast and complete solubility; unlimited conservation; good protection against harmful external influences and rapid availability of use.
  • composition containing growth factors obtainable by means of the process according to the invention.
  • Said composition has all the advantages described above.
  • Figure 1 shows a graph of the number of keratocytes (HCK) per square centimeter in three corneas treated with conventional liquid plasma supernatant, not subjected to heat treatment, and with heat treated supernatant according to the invention.
  • Figure 2 shows a graph of PDGF-AB levels in the supernatants of three donors, before and after being heat treated according to the invention.
  • FIG. 3 shows the levels of complement factor D in the supernatants of three donors, before and after performing on said supernatants a heat treatment according to the invention.
  • Figure 4 shows a graph of the number of fibroblasts (HConF) per square centimeter in three corneas treated with conventional liquid plasma supernatant, not subjected to heat treatment, and with heat treated supernatant according to the invention.
  • Figure 5 shows a graph of the average concentration of PDGF-AB and TGF- ⁇ growth factors in the supernatants of three non-lyophilized and lyophilized donors according to the invention.
  • Figure 6 shows a graph of the average factor concentration of VEGF and EGF growth in the supernatants of three non-lyophilized and lyophilized donors according to the invention.
  • Figure 7 shows a graph of the amount of conjunctival fibroblasts (HConF) contained per square centimeter in three liquid supernatants, before and after filtering the supernatants.
  • Figure 8 shows a graph of the average concentration of the growth factor TGF- ⁇ ⁇ in filtered and unfiltered supernatants.
  • Figure 9 shows a graph of the average concentration of the IGF-I growth factor in filtered and unfiltered supernatants.
  • Figure 10 shows a graph of the number of primary cells from human corneal keratocytes (HCK) after 72 hours of treatment with a conventional plasma supernatant rich in growth factors (PRGF) and a plasma supernatant rich in growth factors ( PRGF) filtered, heat treated and lyophilized according to the invention.
  • HCK human corneal keratocytes
  • Figure 1 1 shows a graph of the number of primary cells from human conjunctival fibroblasts (HConF) after 72 hours of treatment with a conventional supernatant of growth factor-rich plasma (PRGF) and with a supernatant of plasma rich in growth factors (PRGF) filtered, heat treated and lyophilized according to the invention, which has subsequently been resuspended.
  • HonF human conjunctival fibroblasts
  • PRGF growth factor-rich plasma
  • PRGF supernatant of plasma rich in growth factors
  • Figure 12 shows a graph of the number of migrated cells in a culture of primary human corneal keratocyte (HCK) cells after treatment with a conventional supernatant of growth-rich plasma (PRGF) and with a supernatant of factor-rich plasma of growth (PRGF) filtered, heat treated and lyophilized according to the invention, which has subsequently been re-suspended.
  • HK corneal keratocyte
  • Figure 13 shows a graph of the number of migrated cells in a culture of primary cells of human conjunctival fibroblasts (HConF) after treatment with a conventional supernatant of plasma rich in growth factors (PRGF) and with a supernatant of plasma rich in factors of growth (PRGF) filtered, heat treated and lyophilized according to the invention, which subsequently It has been re-suspended.
  • HonF human conjunctival fibroblasts
  • Figure 14 shows a graph of the concentration of cells in a culture of conjunctival fibroblasts (HConF), using three different culture media: a platelet rich plasma activated and not heat treated, a platelet rich plasma heat treated according to the invention but without being initially activated and a platelet-rich plasma previously activated and then heat treated, according to the invention.
  • HonF conjunctival fibroblasts
  • Figure 15 shows a graph of the concentration of cells in a culture of corneal keratocytes (HCK), using the same culture media as in the case of the previous figure.
  • Figure 16 shows graphs of concentration of different growth factors in the three compositions that served as a culture medium in the cases of the two previous figures.
  • the object of the invention is a process for obtaining a composition containing growth factors, with the presence or absence of hematic cell components (platelets, erythrocytes and white blood cells), which comprises the following phases: a) Having a plasma rich in platelets or a platelet-rich plasma supernatant and containing growth factors released, prepared according to any applicable preparation procedure.
  • a platelet-rich plasma or supernatant with growth factors released is one in which, using whatever agent (calcium chloride, thrombin, calcium salts, other agents containing divalent ions or combinations thereof, or any other system that activate coagulation), the content of platelet growth factors has been released and the coagulation cascade has been activated, achieving a product rich in proteins and both plasma and platelet growth factors.
  • the plasma or supernatant can be of many different types: a plasma gel rich in growth factors obtained according to the technique of WO0044314A1,
  • WO2010130851 A2 or other applicable technique; a supernatant obtained as the liquid component that appears after coagulation and subsequent retraction of a blood plasma, said supernatant may have been obtained for example according to the technique detailed in the patent ES2221770B2; or, in general, any plasma or supernatant rich in platelets and that has been obtained by any procedure.
  • Apply a heat treatment to the plasma or supernatant so that it is possible to eliminate the complement and reduce the presence of some of the most frequent immunoglobulins in the plasma or supernatant that play a critical role in cross-reactions from an immunological point of view.
  • immunoglobulins (Ig) and more specifically IgG is the most present in the blood compound and its main biological functions include complement fixation, binding to receptors for Fe in phagocytic cells when opsonizing particles during fogocytosis and receptor binding in NK cells during antibody-mediated cytotoxicity. Therefore, the elimination or considerable reduction of the complement present in the plasma or supernatant constitutes a very important advantage for its applicability to diseases of the immune system. Thanks to the heat treatment, then, a Final composition adapted to the needs of patients with immune system problems.
  • the total or partial reduction of immuglobulins is important in patients with autoimmune diseases since different IgGs participate in some of the acute rejection processes and therefore reduce their presence in the formulation helps to treat different tissues in these patients without risks of rejection or any acute immune reaction.
  • Figure 14 shows a graph of the proliferation of conjunctival fibroblasts (HConF) in a cell culture of said HConF cells, using three different culture media: a platelet rich plasma activated and not heat treated (indicated as "PRGF").
  • HConF conjunctival fibroblasts
  • a platelet-rich plasma heat treated in accordance with the invention but not initially activated but activated after heat treatment (“PostAct") and a platelet-rich plasma previously activated and then heat treated in accordance with the invention ( “PriorAct”).
  • PostAct a platelet-rich plasma heat treated in accordance with the invention but not initially activated but activated after heat treatment
  • PrimaryAct a platelet-rich plasma previously activated and then heat treated in accordance with the invention
  • the proliferation of cells in the culture is practically the same in the case of the present invention (“PriorAct") as in the case of the culture with the activated and non-heat treated plasma (“PRGF”) .
  • PRGF activated and non-heat treated plasma
  • the cell proliferation of the culture is practically null in case a heat-treated and subsequently activated platelet-rich plasma (“PostAct”) is used as the culture medium.
  • Figure 15 shows a similar graph, with corneal keratocyte (HCK) cultures having been performed in this case.
  • Figure 16 shows, in turn, the concentration of different growth factors present in the different compounds mentioned above, obtained after an analysis by ELISAs.
  • the concentration of the growth factors is practically the same in the platelet-rich plasma previously activated and then heat treated according to the invention ("PriorAct") than in the plasma rich in conventional, activated and non-growth factors. heat treated ("PRGF").
  • PRGF heat treated
  • PostAct platelet-rich plasma heat treated in accordance with the invention and subsequently activated
  • Lyophilization is preferably performed without the addition of adjuvants (sugars such as trehalose, chemical components, etc.).
  • adjuvants are necessary to lyophilize many substances, but it has been proven that the plasma and the supernatant are able to lyophilize correctly without them and that by performing the lyophilization without adding any adjuvant a final dry composition is achieved (and therefore a re-suspended composition for apply to the patient) more biocompatible.
  • some studies have shown that some adjuvants such as trehalose act negatively on cell proliferation.
  • the procedure also has the particularity that in principle the steps of applying a heat treatment and lyophilization can be performed in an indistinct order.
  • the order according to which the step of applying a heat treatment is performed before the step of lyophilizing the plasma or supernatant is considered preferred.
  • This preferred order is due to the fact that the product, being heat treated previously, will contain all the properties and potential that are intended with this process (complement reduction and IgG) before being lyophilized.
  • lyophilization is carried out with the aim of improving the preservation and maintenance of the preparation, therefore it is preferred that it constitutes the final stage and not the initial stage. Therefore, in summary, it is first intended to optimize the product and subsequently develop its conservation and maintenance process.
  • the heat treatment can be any treatment that allows the temperature of the plasma or supernatant to be conveniently raised, it being preferred that it is subjected to the plasma or supernatant at a temperature greater than 37 ° C during a time equal to or greater than 1 minute (for example by introducing the plasma or supernatant into a water bath at this temperature and during this time). Since the temperature of 37 ° C is the body temperature and the temperature at which the complement and the immunoglobulins exert their maximum biological activity, it is preferred according to the invention to heat the plasma or supernatant to a temperature higher than said 37 ° C in order to eliminate any of the mentioned components.
  • the plasma or supernatant is subjected to a temperature between 50 and 60 ° C (preferably at 56 ° C), since at that temperature it is possible to optimize the degradation of complement components and maximize the protection of proteins and growth factors that make up the product.
  • temperatures below this range do not guarantee that during the incubation the complement is removed from the plasma or supernatant.
  • incubating at temperatures above 60-65 ° C would cause denaturation of growth factors and proteins contained in the plasma or supernatant.
  • the plasma or supernatant is preferably subjected to said temperature for between 20 and 70 minutes (preferably between 30 and 60 minutes) since at that time it is again possible to optimize the degradation of complement components and maximize the protection of proteins and factors of growth that make up the product.
  • the lyophilization phase preferably comprises the steps of: freezing the plasma or supernatant at a temperature less than 0 ° C; carry out a primary drying of the plasma or supernatant at a temperature less than or equal to 0 ° C and at high vacuum, for a time equal to or greater than 1 minute, so that most of the free water contained in the plasma or supernatant passes to steam ; optionally, carry out a secondary drying of the plasma or supernatant at a temperature greater than or equal to 0 ° C and at high vacuum, under vacuum or without vacuum, for a time equal to or greater than 1 minute, so as to finally eliminate the last traces of steam of water, evaporating the non-frozen water contained in the plasma or supernatant until a final humidity of less than 1% is achieved; optionally, perform a tertiary drying of the plasma or supernatant at a temperature greater than or equal to 0 ° C and at high vacuum, under vacuum or without vacuum, for a time equal to or greater than 1
  • the plasma or supernatant is frozen at a temperature between -60 and -40 ° C (preferably at -50 ° C) for a time longer than 1 hour (preferably longer than 2 hours) since it is In this range, especially if the freezing temperatures are lower, the risk of the plasma or supernatant losing its biological properties as a result of freezing increases.
  • primary drying is particularly advantageous at between -60 and -40 ° C and between 0.05 and 0.15 mBar (preferably at -50 ° C and 0.1 mBar).
  • the use of low temperature ranges is made to ensure that the product is completely frozen during the sublimation process, as well as to preserve the physical, chemical, and biological properties of the initial product, avoiding the possible denaturation of freeze-dried product proteins.
  • the specific duration of the process depends on the amount of product to be freeze dried and has been established to ensure the total sublimation of the ice necessary for proper drying.
  • this is especially advantageous at between + 15 and + 25 ° C and between 0.05 and 0.15 mBar (preferably at + 20 ° C and 0.1 mBar) since these conditions allow remove residual moisture left in the product by evaporation and reduce its moisture content below 1% in order to improve product stability final.
  • tertiary drying is particularly advantageous at between + 15 and + 25 ° C and total vacuum (preferably at + 20 ° C and total vacuum), finally eliminating all moisture, which will provide optimum stability characteristics and uniformity of the final product.
  • the method according to the invention may further comprise the additional step of filtering the plasma or supernatant to eliminate or prevent the appearance of high molecular weight components, platelet aggregates or fibrin residues that could alter the uniformity of the freeze and the freeze-drying stability. , which would also have a negative impact on the re-suspension of the dry composition (keep in mind that the dissolution rate of a lyophilisate is inversely proportional to the size of the particles that constitute it and that thick particles comprised in the dry composition could cause the dissolution of the dry composition was slower or simply null).
  • said additional step of filtering the plasma or supernatant is performed before lyophilization, although not necessarily immediately before.
  • the step of filtering the plasma or supernatant may not be necessary, for example, when an already filtered plasma or supernatant is available at the beginning of the process.
  • a plasma rich in growth factors is prepared from blood drawn from a patient, first centrifuging it to separate the blood into different fractions, as is known in the state of the art. Then, the plasma fraction is extracted by means of a PTD device ("Plasma Transfer Device") to a 9 ml fractionation tube and the plasma is activated; activation is carried out by estimating the volume of plasma contained in the fractionation tube and subsequently adding 50 ⁇ of PRGF ⁇ Activator (an activator based on chloride of calcium) per milliliter of plasma. The activation of the plasma is equivalent to the release of growth factors by the platelets contained in the plasma. Second, the supernatant is obtained from the plasma rich in growth factors.
  • PTD device Pulsma Transfer Device
  • the plasma rich in growth factors, already activated is incubated in a heat block at 37 ° C for 1 hour and a half until the complete retraction of the fibrin clot.
  • the fractionation tube is centrifuged at OOO g for 10 minutes for two main purposes: precipitate the fibrin clot formed, and extract as much as possible the volume of supernatant that could be retained inside the clot.
  • the centrifuged tubes are introduced into a laminar flow cabinet, where they can be opened to maintain complete sterility of the sample. With a 10 ml syringe to which a blunt intramuscular needle has been attached, all the released supernatant is collected.
  • the blunt needle is removed from the syringe and a 0.22 ⁇ PVDF filter is coupled, and the supernatant is filtered.
  • the syringe with the filter is connected to the multidose dispensers. administering 1 ml of filtered supernatant per device. Finally, the devices close tightly.
  • the process according to the invention is then executed, to obtain a dry final composition from the filtered liquid supernatant.
  • multidose devices with the supernatant filtered inside, are heat treated, being introduced in a preheated water bath at 56 ° C and for 30 to 60 minutes. After this period, they are immediately placed in a lyophilizer previously cooled to -50 ° C to freeze where they will be kept in a time range of 2 to 8 hours depending on the volume of supernatant until the samples are frozen so homogeneous Subsequently, a primary drying is carried out at -50 ° C and 0.1 mBar for a maximum of 24 hours.
  • a secondary drying is carried out at + 20 ° C and 0.1 mBar for a maximum of 6 hours and finally a tertiary drying is performed at + 20 ° C and a total vacuum for a maximum of 12 hours.
  • the resulting product is a uniform and homogeneous powder that appears slightly compacted and can be re-suspended (that is, dissolved back to its supernatant consistency) after contact with an aqueous solution quickly and easily.
  • the final dry composition must be re-suspended in order to be applied.
  • the doctor or the patient takes a dose of dry final composition and immerses it in a certain volume of sterile distilled water inside a container, then stirring the container until the dry composition is completely dissolved and a final composition is obtained. again wet or liquid that preserves the biological properties of the initial wet supernatant, prior to heat treatment and lyophilization. Said final composition can then be directly applied to the patient, for example as eye drops.
  • the heat treatment carried out by the present invention at suitable temperatures allows the biological properties of the supernatant to be preserved, that is, that the final dry composition has substantially the same properties as the initial liquid supernatant.
  • Figure 1 which shows the number of keratocytes (HCK) per square centimeter in three corneas treated with conventional liquid plasma supernatant, not subjected to heat treatment, and with treated supernatant thermally according to the invention
  • the levels of growth factors present in conventional liquid supernatants and in heat treated supernatants according to the invention have also been analyzed. It has been found that, in the case of platelet factors such as PDGF-AB or TGF- ⁇ ⁇ , heat treatment does not affect its levels measured in the final supernatant. On the other hand, it has been proven that plasma growth factors analyzed such as IGF-I do not vary their concentration due to temperature effect while other agents such as G and M immunoglobulins (IgG and IgM) have 9% and 13% of decrease respectively in their values. It has also been found that complement factor D disappears completely when the supernatant is subjected to heat treatment. Examples of these results can be seen in the following figures.
  • Figure 2 shows the levels of PDGF-AB in the supernatants of three donors, before and after performing on said supernatants a heat treatment according to the invention. As can be seen, these levels remain practically constant (in the first supernatant they decrease slightly, in the second they remain constant and in the third they increase slightly).
  • Figure 3 shows the levels of complement factor D in the supernatants of three donors, before and after performing on said supernatants a heat treatment according to the invention. As can be seen, in the initial liquid supernatants there is a presence of factor D while in the heat treated supernatants no presence of it is detected.
  • the lyophilization process performed by the present invention allows the biological properties of the supernatant to be preserved, that is, that the final dry composition substantially presents the same properties as the initial liquid supernatant.
  • the levels of growth factors present in conventional liquid supernatants and in lyophilized supernatants according to the invention have also been analyzed. It has been shown that the levels of growth factors analyzed do not vary after the lyophilization process, both in the case of platelet factors such as TGF- ⁇ PD, PDGF-AB, VEGF and EGF and in the case of plasma factors such as IGF-1 or complement factor D.
  • Figure 5 shows the average concentration of PDGF-AB and TGF- ⁇ growth factors in the supernatants of three non-lyophilized and heat-treated donors and lyophilized and heat treated according to the invention; it shows how the concentration of the former increases slightly, while the concentration of the latter decreases slightly, the concentration of both being in the final product (lyophilized supernatant) in any case high.
  • concentration of VEGF and EGF growth factors in the supernatants of three non-lyophilized and heat-treated donors and lyophilized and heat-treated according to the invention are shown analogously; it shows how the concentration of both decreases slightly, although it remains high.
  • Figure 7 shows the amount of conjunctival fibroblasts (HConF) contained per square centimeter in three liquid supernatants, before and after filtering the supernatants.
  • HCV conjunctival fibroblasts
  • the proliferation of conjunctival fibroblasts in the filtered supernatant is similar to the proliferation in the unfiltered supernatant.
  • the levels of growth factors measured in the filtered and unfiltered supernatants are very similar for the three supernatants analyzed (coming, as in all cases, from three different donors).
  • Figure 8 shows the average concentrations of the growth factor TGF- ⁇ ⁇ in the filtered and unfiltered supernatants, it being possible to verify that said concentrations do not vary significantly due to the filtration of the supernatants.
  • FIG. 9 shows, in this sense, the average concentration of IGF-I growth factor in the supernatant of three donors, before and after filtering. As can be seen, the level of IGF-I remains practically constant in all three cases.
  • FIG. 10 shows a graph of the proliferation of primary cells from human corneal keratocytes (HCK) after 72 hours of treatment with a conventional plasma supernatant rich in growth factors (PRGF) and a plasma supernatant rich in growth factors (PRGF) filtered, heat treated and lyophilized according to the invention, which has subsequently been re-suspended.
  • PRGF plasma supernatant rich in growth factors
  • PRGF plasma supernatant rich in growth factors
  • Figure 1 1 shows a graph of the proliferation of primary cells from human conjunctival fibroblasts (HConF) after 72 hours of treatment with a conventional supernatant of growth-rich plasma (PRGF) and with a supernatant of plasma rich in factors of Growth (PRGF) filtered, heat treated and lyophilized according to the invention, which has subsequently been re-suspended.
  • PRGF growth-rich plasma
  • PRGF supernatant of plasma rich in factors of Growth
  • Figure 12 shows the effect of the application of a conventional supernatant of plasma rich in growth factors (PRGF) and of a supernatant of plasma rich in growth factors (PRGF) filtered, heat treated and lyophilized according to the invention, which subsequently It has been suspended, on the migration of the culture of primary cells of human corneal keratocytes (HCK). As can be seen, the number of primary cells is only slightly higher if a conventional supernatant is used as the culture medium.
  • PRGF plasma rich in growth factors
  • PRGF supernatant of plasma rich in growth factors
  • Figure 13 shows the effect of the application of a conventional supernatant of plasma rich in growth factors (PRGF) and of a supernatant of plasma rich in growth factors (PRGF) filtered, heat treated and lyophilized according to the invention, which subsequently it has been resuspended, on the migration of the culture of primary cells of human conjunctival fibroblasts (HConF) after incubating cells for 24 hours.
  • PRGF plasma rich in growth factors
  • PRGF supernatant of plasma rich in growth factors

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Hematology (AREA)
  • Cell Biology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Toxicology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Rheumatology (AREA)
  • Pain & Pain Management (AREA)
  • Developmental Biology & Embryology (AREA)
  • Biotechnology (AREA)
  • Virology (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Procedimiento de obtención de una composición que contiene factores de crecimiento, que comprende las fases de tratar térmicamente un plasma rico en plaquetas o un sobrenadante de plasma rico en plaquetas que contiene factores de crecimiento liberados para aumentar su temperatura de manera que se elimine el complemento y se reduzcan las inmunoglobulinas presentes en el mismo, de liofilizar el plasma o el sobrenadante para conseguir una composición final seca de fácil transporte, manipulación y conservación que facilita los tratamientos periódicos o crónicos con compuestos sanguíneos. Se ha comprobado que, una vez re-suspendida la composición final seca, se obtiene una composición nuevamente húmeda que conserva intactas sus propiedades biológicas.

Description

PROCEDIMIENTO DE OBTENCIÓN DE UNA COMPOSICIÓN QUE
CONTIENE FACTORES DE CRECIMIENTO A PARTIR DE UN COMPUESTO SANGUÍNEO, Y COMPOSICIÓN OBTENIBLE POR
DICHO PROCEDIMIENTO
DESCRIPCIÓN
Sector de la técnica La invención se refiere a un procedimiento de obtención de una composición que contiene factores de crecimiento, con la presencia o no de componentes celulares hemáticos (plaquetas, eritrocitos y glóbulos blancos), a partir de un compuesto sanguíneo, y a la composición que contiene factores de crecimiento obtenible por medio de dicho procedimiento.
Estado de la técnica
En el estado de la técnica es conocida de forma muy extensa la preparación de compuestos sanguíneos que contienen factores de crecimiento, obtenidos a partir de la sangre de un paciente. Dichos compuestos sanguíneos con o factores de crecimiento han demostrado ofrecer propiedades biológicas muy importantes, especialmente relacionadas con el desencadenamiento y favorecimiento de la regeneración de tejidos, la disminución del dolor en cierto tipo de dolencias y enfermedades, y otras múltiples utilidades.
A modo de ejemplo, la solicitud de patente WO0044314A1 , a favor del propio solicitante, se refiere a un método de preparación de un gel de plasma sanguíneo autólogo, rico en factores de crecimiento, a partir de la propia sangre del paciente, procedimiento que ha sido actualizado en la más reciente solicitud de patente WO2010130851 A2, también a favor del propio solicitante. Ambos procedimientos comparten pasos comunes como son el centrifugado de la sangre del paciente, la separación de plasma rico en plaquetas y la adición de cloruro de calcio al plasma rico en plaquetas para producir la activación del plasma (la liberación de factores de crecimiento por parte de las plaquetas contenidas en el plasma) y para producir la coagulación del mismo hasta que el plasma adquiere una consistencia similar a un gel. También se conoce, por medio de la patente ES2221770B2 un procedimiento de preparación de otro compuesto sanguíneo rico en factores de crecimiento y con propiedades biológicas muy beneficiosas, en este caso en forma líquida. Concretamente, se trata de un sobrenadante de un plasma sanguíneo rico en factores de crecimiento, obtenido a partir de la fase líquida sobrenadante que aparece tras provocar la coagulación y una posterior retracción de dicho plasma rico en factores de crecimiento. En esta patente se describen además diversos usos del sobrenadante, entre los cuales destaca su uso (favorecido por su consistencia líquida) como colirio para el tratamiento de enfermedades o dolencias oculares.
Un gel de plasma que contenga en factores de crecimiento, un sobrenadante o, en general, cualquier compuesto sanguíneo autólogo preparado según métodos conocidos en el estado del arte, independientemente de la aplicación para la cual vaya a utilizarse, presenta el inconveniente de que necesita ser aplicado de forma inmediata para no perder sus propiedades biológicas. Esta necesidad es especialmente crítica si el compuesto sanguíneo contiene factores de crecimiento liberados. Así, los compuestos sanguíneos no están preparados para aguantar a temperatura ambiente largos periodos de tiempo y se recomienda su aplicación inmediata (en el caso de un sobrenadante, en no más de ocho horas desde su preparación) para evitar la degradación y desnaturalización de las proteínas y factores de crecimiento o la posible contaminación bacteriana del producto. La inmediatez de uso de los compuestos sanguíneos autólogos no ha sido limitante hasta la fecha ya que las aplicaciones para las cuales han sido utilizados (regeneración de tejidos, cultivo de células, aplicaciones agudas o incluso semanales o quincenales, etc.) han sido compatibles con dicha inmediatez. Sin embargo, en la actualidad están surgiendo posibles nuevas aplicaciones de los compuestos sanguíneos autólogos que contienen factores de crecimiento, que exigen infiltraciones o aplicaciones continuas del compuesto, con un intervalo entre dosificaciones relativamente breve. Los compuestos sanguíneos autólogos (gel, sobrenadante, etc.) tal como son conocidos en la actualidad, exigirían que para estas nuevas aplicaciones se estuviera extrayendo sangre continuamente al paciente, repercutiendo muy negativamente en la calidad de vida del mismo y en la factibilidad de tratamientos a largo plazo para patologías crónicas o degenerativas.
Ejemplos de patologías crónicas o degenerativas que podrían ser tratadas con un compuesto sanguíneo que contiene factores de crecimiento, pero que actualmente no lo son debido a la inmediatez de uso de los compuestos sanguíneos y a la imposibilidad de su conservación, son múltiples: patologías oculares, patologías del sistema nervioso central, patologías articulares degenerativas y en conjunto todas aquellas enfermedades o patologías que requieran la administración crónica o repetida del compuesto sanguíneo que contiene factores de crecimiento.
Entre las patologías enumeradas se encuentran, particularmente pero no solamente, las siguientes: el lupus eritematoso sistémico, que es una enfermedad autoinmune crónica que afecta al tejido conjuntivo y que se caracteriza por que produce una inflamación y un daño de tejidos mediados por el sistema inmunitario, específicamente debidos a la unión de anticuerpos a las células del organismo y al depósito de complejos antígeno-anticuerpo; el síndrome Sjogren, que es una enfermedad autoinmune sistémica que se caracteriza por afectar principalmente a las glándulas exocrinas y que conduce a la aparición de sequedad; la dermatomiositis, que es una enfermedad del tejido conectivo caracterizada por la inflamación de los músculos y de la piel; la artritis reumatoide, la cual se trata de una enfermedad sistémica autoinmune caracterizada por provocar inflamación crónica, principalmente de las articulaciones, y que produce destrucción progresiva con distintos grados de deformidad e incapacidad funcional. Actualmente existen estudios que apuntan a que una composición sanguínea autóloga que contenga factores de crecimiento podría intervenir de forma muy satisfactoria en frenar todas estas patologías si pudiera ser aplicado de forma regular en el paciente. La presente invención tiene como objetivo diseñar un procedimiento de obtención de una composición que contenga factores de crecimiento a partir de un plasma rico en plaquetas o de un sobrenadante de un plasma rico en plaquetas, que permita obtener una composición capaz de ser conservada durante largos periodos de tiempo y transportada de manera sencilla, de forma que la composición resulte apta para ser aplicada no de forma inmediata sino en el momento que se desee o estime necesario. De esta manera, el procedimiento según la invención permitirá obtener una composición que podrá ser utilizada en planteamientos terapéuticos crónicos, de forma periódica, todo ello sin requerir constantes extracciones de sangre del paciente y por lo tanto mejorando la calidad de vida del mismo.
Es también objetivo de la presente invención que la composición obtenida mediante el procedimiento de la invención conserve intactas sus propiedades biológicas. Es también objetivo de la presente invención que la composición obtenida mediante el procedimiento de la invención conserve unas propiedades biológicas mejoradas, especialmente indicadas para el tratamiento de enfermedades autoinmunes. Descripción breve de la invención
Es objeto de la invención un procedimiento de obtención de una composición que contiene factores de crecimiento, que comprende varias fases. En primer lugar, el procedimiento comprende la fase de disponer de un plasma rico en plaquetas o de un sobrenadante de plasma rico en plaquetas que contiene factores de crecimiento liberados. El plasma rico en plaquetas o de un sobrenadante de plasma rico en plaquetas puede ser de muy diversos tipos: un gel de plasma rico en factores de crecimiento obtenido según la técnica de WO0044314A1 , WO2010130851 A2 u otra técnica aplicable; un sobrenadante obtenido como el componente líquido que aparece tras producir la coagulación y posterior retracción de un plasma sanguíneo rico en plaquetas, pudiendo dicho sobrenadante haber sido obtenido por ejemplo según la técnica detallada en la patente ES2221770B2; o, en general, cualquier plasma rico en plaquetas.
Posteriormente, el procedimiento según la invención comprende el paso de aplicar un tratamiento térmico al plasma rico en plaquetas o al sobrenadante de plasma rico en plaquetas, durante el cual se aumenta la temperatura del mismo. El tratamiento térmico permite eliminar el complemento y reducir la presencia de algunas de las inmunoglobulinas más frecuentes en el plasma o el sobrenadante que juegan un papel crítico en reacciones cruzadas desde un punto de vista inmunológico. Dicha eliminación o reducción considerable del complemento presente en el plasma o el sobrenadante constituye una importantísima ventaja para la aplicabilidad del mismo a enfermedades del sistema inmune. Adicionalmente, el procedimiento según la invención comprende una fase en la que se liofiliza el plasma o el sobrenadante para conseguir una composición final prácticamente carente de humedad.
De acuerdo con la invención, los pasos de aplicar un tratamiento térmico y de liofilizar se realizan en orden indistinto, es decir, pueden realizarse en cualquier orden.
Adicionalmente, el procedimiento según la invención puede comprender el paso de filtrar el plasma rico en plaquetas o al sobrenadante de plasma rico en plaquetas. Dicho paso se realiza antes de la liofílización (no necesariamente inmediatamente antes, ya que en caso de aplicarse el tratamiento térmico antes de efectuar la liofílización, el filtrado se realiza antes del tratamiento térmico).
El procedimiento de obtención de una composición a partir de un plasma rico en plaquetas o de un sobrenadante de plasma rico en plaquetas autólogo permite conseguir una composición final seca que presenta múltiples ventajas sobre el plasma o sobrenadante húmedo convencional. Una ventaja importante es que una composición seca es evidentemente más fácil de manejar y transportar que un compuesto húmedo (líquido, con consistencia de gel más o menos viscoso o con otra consistencia). Asimismo, al no contener agua, la composición seca puede mantenerse a temperatura ambiente e incluso conservarse de forma ilimitada, constituyendo un producto de larga estabilidad (gracias a lo cual puede aplazarse su uso y no ha de ser utilizado necesariamente de forma inmediata, una vez preparado). Adicionalmente, al no contener agua, la composición seca no tiene riesgo de sufrir contaminaciones. Otra ventaja de la composición seca es que puede recuperar rápidamente su estado original; para ello basta con re-suspender la misma en cualquier solvente isotónico que se emplee rutinariamente (por ejemplo agua), proceso que puede efectuarse in situ. Una ventaja adicional de la composición seca según la invención es que, tal como se ha comprobado, una vez re-suspendida dicha composición para recuperar un estado húmedo y poder ser administrada, la composición re- suspendida conserva las propiedades biológicas que caracterizaban al plasma so sobrenadante húmedo antes de realizar el procedimiento según la invención. Es decir, la composición re-suspendida sigue conservando una concentración análoga de factores de crecimiento con actividad biológica; además, los efectos inducidos por la composición seca una vez re-suspendida en la proliferación celular, la migración y quimiotaxis celular y en la síntesis auto y paracrina de factores de crecimiento son idénticos a los del plasma o el sobrenadante húmedo. Esta conservación de propiedades biológicas se consigue gracias, entre otros motivos, a la adecuada temperatura a que es sometido el producto durante la ejecución del procedimiento según la invención. Por otra parte, debido a la baja temperatura utilizada en las diferentes fases del procedimiento, la pérdida de constituyentes volátiles comprendidos en el plasma o sobrenadante que pudiera producirse durante la ejecución del procedimiento es mínima. Las bajas temperaturas también permiten mantener un riesgo muy bajo de contaminación microbiana y que la preparación no sufra alteraciones desde un punto de vista enzimático (es ventajoso que las preparaciones que contienen enzimas, como es el caso del plasma o sobrenadante de la presente invención, se mantengan tratadas a bajas temperaturas para que no se vean dañadas).
Otro efecto extremadamente beneficioso de la invención es que la composición seca y, por lo tanto, la composición final re-suspendida son composiciones libres o con una presencia reducida de complemento, lo cual convierte la composición final re-suspendida en una composición particularmente óptima para tratar algunas enfermedades de naturaleza autoinmune.
Todo lo anterior permite que la composición seca pueda ser utilizada para tratamientos no inmediatos, por ejemplo para tratar de forma regular patologías crónicas y, particularmente, patologías crónicas de naturaleza autoinmune. Así, si la composición seca obtenida según la invención se almacena por ejemplo en dosis, el tratamiento crónico con la misma se convierte en un proceso muy sencillo: el paciente crónico puede llevar su dosis (por ejemplo en un envase) a cualquier lugar sin complicaciones ni temores; cuando desea administrarse la dosis, basta con que humedezca (re-suspenda) la misma y, una vez recuperada la consistencia húmeda original (líquida u otra), efectúe la aplicación de la forma aplicable. Todas estas particularidades y ventajas asociadas a la composición obtenida mediante el procedimiento según la invención pueden resumirse en: una estabilidad óptima, una especial indicación para algunas patologías de naturaleza autoinmune; una solubilidad fácil, rápida y completa; una conservación ilimitada; una buena protección contra las influencias externas nocivas y una rápida disponibilidad de uso.
Es asimismo objeto de la invención una composición que contiene factores de crecimiento, obtenible por medio del procedimiento según la invención. Dicha composición presenta todas las ventajas descritas con anterioridad.
Descripción breve de las figuras Los detalles de la invención se aprecian en las figuras que se acompañan, no pretendiendo éstas ser limitativas del alcance de la invención:
La Figura 1 muestra una gráfica del número de keratocitos (HCK) por centímetro cuadrado en tres córneas tratadas con sobrenadante de plasma líquido convencional, no sometido a tratamiento térmico, y con sobrenadante tratado térmicamente según la invención.
La Figura 2 muestra una gráfica de los niveles de PDGF-AB en los sobrenadantes de tres donantes, antes y después de ser tratados térmicamente según la invención.
- La Figura 3 muestra los niveles del factor D del complemento en los sobrenadantes de tres donantes, antes y después de realizar sobre dichos sobrenadantes un tratamiento térmico de acuerdo con la invención.
La Figura 4 muestra una gráfica del número de fibroblastos (HConF) por centímetro cuadrado en tres córneas tratadas con sobrenadante de plasma líquido convencional, no sometido a tratamiento térmico, y con sobrenadante tratado térmicamente según la invención.
La Figura 5 muestra una gráfica de la concentración media de factores de crecimiento PDGF-AB y TGF-βΙ en los sobrenadantes de tres donantes sin liofilizar y liofilizados según la invención.
La Figura 6 muestra una gráfica de la concentración media de factores de crecimiento VEGF y EGF en los sobrenadantes de tres donantes sin liofilizar y liofilizados según la invención.
La Figura 7 muestra una gráfica de la cantidad de fibroblastos conjunti vales (HConF) contenida por centímetro cuadrado en tres sobrenadantes líquidos, antes y después de realizar un filtrado de los sobrenadantes.
La Figura 8 muestra una gráfica de la concentración media del factor de crecimiento TGF-β Ι en sobrenadantes filtrados y sin filtrar.
La Figura 9 muestra una gráfica de la concentración media del factor de crecimiento IGF-I en sobrenadantes filtrados y sin filtrar.
La Figura 10 muestra una gráfica del número de células primarias procedentes de keratocitos corneales humanos (HCK) tras 72 horas de tratamiento con un sobrenadante de plasma rico en factores de crecimiento (PRGF) convencional y con un sobrenadante de plasma rico en factores de crecimiento (PRGF) filtrado, tratado térmicamente y liofilizado según la invención.
La Figura 1 1 muestra una gráfica del número de células primarias procedentes de fibroblastos conjuntivales humanos (HConF) tras 72 horas de tratamiento con un sobrenadante de plasma rico en factores de crecimiento (PRGF) convencional y con un sobrenadante de plasma rico en factores de crecimiento (PRGF) filtrado, tratado térmicamente y liofilizado según la invención, el cual posteriormente ha sido re- suspendido.
La Figura 12 muestra una gráfica del número de células migradas en un cultivo de células primarias de keratocitos corneales humanos (HCK) tras el tratamiento con un sobrenadante de plasma rico en factores de crecimiento (PRGF) convencional y con un sobrenadante de plasma rico en factores de crecimiento (PRGF) filtrado, tratado térmicamente y liofilizado según la invención, el cual posteriormente ha sido re-suspendido.
La Figura 13 muestra una gráfica del número de células migradas en un cultivo de células primarias de fibroblastos conjuntivales humanos (HConF) tras el tratamiento con un sobrenadante de plasma rico en factores de crecimiento (PRGF) convencional y con un sobrenadante de plasma rico en factores de crecimiento (PRGF) filtrado, tratado térmicamente y liofilizado según la invención, el cual posteriormente ha sido re-suspendido.
La Figura 14 muestra una gráfica de la concentración de células en un cultivo de fibroblastos conjunti vales (HConF), utilizándose tres medios de cultivo diferentes: un plasma rico en plaquetas activado y no tratado térmicamente, un plasma rico en plaquetas tratado térmicamente de acuerdo con la invención pero sin encontrarse activado inicial mente y un plasma rico en plaquetas activado previamente y después tratado térmicamente, de acuerdo con la invención.
La Figura 15 muestra una gráfica de la concentración de células en un cultivo de keratocitos corneales (HCK), utilizándose los mismos medios de cultivo que en el caso de la figura anterior.
La Figura 16 muestra gráficas de concentración de diferentes factores de crecimiento en las tres composiciones que servían como medio de cultivo en los casos de las dos figuras anteriores.
Descripción detallada de la invención
Es objeto de la invención un procedimiento de obtención de una composición que contiene factores de crecimiento, con la presencia o no de componentes celulares hemáticos (plaquetas, eritrocitos y glóbulos blancos), que comprende las siguientes fases: a) Disponer de un plasma rico en plaquetas o de un sobrenadante de plasma rico en plaquetas y que contiene factores de crecimiento liberados, preparado según cualquier procedimiento de preparación aplicable. Un plasma o sobrenadante rico en plaquetas con factores de crecimiento liberados es aquel en el que, utilizando el agente que fuere (cloruro cálcico, trombina, sales de calcio, otros agentes que contengan iones divalente o combinaciones de los mismos, o cualquier otro sistema que active la coagulación), se ha liberado el contenido de factores de crecimiento de las plaquetas y se ha activado la cascada de coagulación, logrando un producto rico en proteínas y factores de crecimiento tanto plasmáticos como plaquetarios. El plasma o sobrenadante puede ser de muy diversos tipos: un gel de plasma rico en factores de crecimiento obtenido según la técnica de WO0044314A1 ,
WO2010130851 A2 u otra técnica aplicable; un sobrenadante obtenido como ei componente líquido que aparece tras producir la coagulación y posterior retracción de un plasma sanguíneo, pudiendo dicho sobrenadante haber sido obtenido por ejemplo según la técnica detallada en la patente ES2221770B2; o, en general, cualquier plasma o sobrenadante rico en plaquetas y que haya sido obtenido por cualquier procedimiento. Aplicar un tratamiento térmico al plasma o sobrenadante, de manera que se consigue eliminar el complemento y reducir la presencia de algunas de las inmunoglobulinas más frecuentes del plasma o sobrenadante que juegan un papel crítico en reacciones cruzadas desde un punto de vista inmunológico. Dicha eliminación o reducción considerable del complemento presente en el plasma o sobrenadante constituye una importantísima ventaja para la aplicabilidad del mismo a enfermedades del sistema inmune. Así, se sabe que la presencia del sistema de complemento de un compuesto sanguíneo pudiera ser perjudicial ya que está implicado en la sobre-estimulación del sistema inmune y en muchos casos en la propia sintomatología de la enfermedad que se pretende tratar con el compuesto sanguíneo. El complemento del plasma está relacionado con diversas alteraciones tales como posibles reacciones adversas de enfermedades autoinmunes (Lupus eritematoso, artritis, etc.) mediadas por complemento (vía clásica del complemento) o reacciones adversas derivadas de enfermedades inflamatorias crónicas mediadas por complemento. Además, parte de los factores del complemento potencian la inflamación y la fagocitosis y actúan produciendo la lisis de células y microorganismos. Por su parte, las inmunoglobulinas (Ig) y más concretamente la IgG es la más presente en el compuesto sanguíneo y entre sus principales funciones biológicas destacan la fijación del complemento, la unión a receptores para Fe en células fagocíticas al opsonizar partículas durante la fogocitosis y la unión a receptores en células NK durante la citotoxicidad mediada por anticuerpos. Por lo tanto, la eliminación o reducción considerable del complemento presente en el plasma o sobrenadante constituye una importantísima ventaja para la aplicabilidad del mismo a enfermedades del sistema inmune. Gracias al tratamiento térmico se puede lograr, entonces, una composición final adaptada a las necesidades de pacientes con problemas del sistema inmune. Por su parte, la reducción total o parcial de las inmuglobulinas resulta importante en pacientes con enfermedades auto-inmunes ya que diferentes IgG participan en algunos de los procesos agudos de rechazo y por lo tanto reducir su presencia en la formulación ayuda a tratar distintos tejidos en estos pacientes sin riesgos de rechazo o reacción inmune aguda alguna. c) Liofilizar el plasma o el sobrenadante, para eliminar casi en su totalidad el contenido en agua del mismo y permitir que el plasma o el sobrenadante pase a un estado de no humedad que permite su conservación durante largos periodos de tiempo.
El hecho de que el plasma o sobrenadante inicial esté activado de forma previa al tratamiento térmico, es decir, contenga factores de crecimiento liberados de forma previa al tratamiento térmico, presenta efectos sorprendentes. Por una parte, el plasma o sobrenadante disponible tras la activación y el posterior tratamiento térmico mantiene prácticamente intacta su capacidad de agregarse y de formar el coágulo de fibrina, y su capacidad para liberar factores de su contenido granular. Este mantenimiento de la funcionalidad se puede comprobar en los datos que se presentan en las Figuras 14, 15 y 16. La Figura 14 muestra una gráfica de la proliferación de fibroblastos conjunti vales (HConF) en un cultivo celular de dichas células HConF, utilizándose tres medios de cultivo diferentes: un plasma rico en plaquetas activado y no tratado térmicamente (indicado como "PRGF"). un plasma rico en plaquetas tratado térmicamente de acuerdo con la invención pero sin encontrarse activado inicialmente sino siendo activado de forma posterior al tratamiento térmico ('"PostAct") y un plasma rico en plaquetas activado previamente y después tratado térmicamente de acuerdo con la invención ("PriorAct"). Como puede observarse en la figura, la proliferación de células en el cultivo es prácticamente igual en el caso de la presente invención ("PriorAct") que en el caso de realizarse el cultivo con el plasma activado y no tratado térmicamente ("PRGF"). En cambio, la proliferación celular del cultivo es prácticamente nula en caso de utilizarse como medio de cultivo un plasma rico en plaquetas tratado térmicamente y posteriormente activado ("PostAct"). La Figura 15 muestra una gráfica similar, habiéndose realizado en este caso cultivos de keratocitos corneales (HCK). La Figura 16 muestra, a su vez, la concentración de diferentes factores de crecimiento presentes en los diferentes compuestos citados anteriormente, obtenida tras un análisis mediante ELISAs. Como puede observarse, la concentración de los factores de crecimiento es prácticamente igual en el plasma rico en plaquetas activado previamente y después tratado térmicamente de acuerdo con la invención ("PriorAct") que en el plasma rico en factores de crecimiento convencional, activado y no tratado térmicamente ("PRGF"). En cambio, en el plasma rico en plaquetas tratado térmicamente de acuerdo con la invención y activado con posterioridad ("PostAct"), las concentraciones de factores de crecimiento son, globalmente, peores.
La liofilización preferentemente se realiza sin la adición de coadyuvantes (azúcares tales como la trehalosa, componentes químicos, etc.). Los coadyuvantes son necesarios para liofilizar muchas sustancias, pero se ha comprobado que el plasma y el sobrenadante consiguen liofilizarse correctamente sin ellos y que realizando la liofilización sin añadir ningún coadyuvante se consigue una composición seca final (y por lo tanto una composición re-suspendida para aplicar al paciente) más biocompatible. Por ejemplo, algunos estudios realizados han demostrado que algunos coadyuvantes como la trehalosa actúan negativamente sobre la proliferación celular.
El procedimiento presenta la particularidad, además, de que en principio los pasos de aplicar un tratamiento térmico y de liofilizar se pueden realizar en orden indistinto. Sin embargo, se considera preferente el orden según el cual el paso de aplicar un tratamiento térmico se realiza antes del paso de liofilizar el plasma o sobrenadante. Este orden preferente obedece a que el producto, al ser tratado térmicamente con anterioridad, contendrá todas las propiedades y potencialidad que se pretenden con este proceso (reducción del complemento e IgG) antes de ser liofilizado. Hay que tener en cuenta que la liofilización se realiza con el ánimo de mejorar la conservación y mantenimiento del preparado por lo tanto es preferente que constituya la etapa final y no la inicial. Por lo tanto, en resumen, primero se pretende optimizar el producto y posteriormente desarrollar su proceso de conservación y mantenimiento.
El tratamiento térmico puede ser cualquier tratamiento que permita elevar convenientemente la temperatura del plasma o sobrenadante, siendo preferente que se someta al plasma o sobrenadante a una temperatura superior a 37°C durante un tiempo igual o superior a 1 minuto (por ejemplo introduciendo el plasma o sobrenadante en un baño de agua a esta temperatura y durante este tiempo). Dado que la temperatura de 37°C es la temperatura corporal y la temperatura a la cual el complemento y las inmunoglobulinas ejercen su máxima actividad biológica, es preferente de acuerdo con la invención calentar el plasma o sobrenadante a una temperatura superior a dichos 37°C para conseguir eliminar alguno de los citados componentes.
De forma especialmente ventajosa, el plasma o sobrenadante se somete a una temperatura de entre 50 y 60°C (preferentemente a 56°C), ya que a esa temperatura se consigue optimizar la degradación de componentes del complemento y maximizar la protección de las proteínas y factores de crecimiento que componen el producto. Así, se ha comprobado que temperaturas inferiores a este rango no garantizan que durante la incubación se elimine del plasma o sobrenadante el complemento. Por otro lado, incubar con temperaturas superiores a 60-65°C produciría la desnaturalización de los factores de crecimiento y de las proteínas contenidas en el plasma o sobrenadante. Además, preferentemente se somete el plasma o sobrenadante a dicha temperatura durante entre 20 y 70 minutos (preferentemente entre 30 y 60 minutos) ya que a esos tiempos nuevamente se consigue optimizar la degradación de componentes del complemento y maximizar la protección de las proteínas y factores de crecimiento que componen el producto.
La fase de liofilización comprende preferentemente los pasos de: congelar el plasma o sobrenadante a una temperatura menor de 0°C; realizar un secado primario del plasma o sobrenadante a a una temperatura menor o igual a 0°C y a alto vacío, durante un tiempo igual o superior a 1 minuto, de manera que la mayor parte del agua libre contenida en el plasma o sobrenadante pasa a vapor; opcionalmente, realizar un secado secundario del plasma o sobrenadante a una temperatura mayor o igual a 0°C y a alto vacío, bajo vacío o sin vacío, durante un tiempo igual o superior a 1 minuto, de manera que permite finalmente eliminar las ultimas trazas de vapor de agua, evaporando el agua no congelada contenida en el plasma o sobrenadante hasta conseguir una humedad final de menos del 1 %; opcionalmente, realizar un secado terciario del plasma o sobrenadante a una temperatura mayor o igual a 0°C y a alto vacío, bajo vacío o sin vacío, durante un tiempo igual o superior a 1 minuto, de manera que se elimine la humedad residual que haya quedado en el producto mediante evaporación y reducir su contenido de humedad, lo que mejorará la estabilidad del producto final.
De forma especialmente ventajosa, el plasma o sobrenadante se congela a una temperatura de entre -60 y -40°C (preferentemente a -50°C) durante un tiempo superior a 1 hora (preferentemente un tiempo superior a 2 horas) ya que fuera de este rango, especialmente si las temperaturas de congelación son inferiores, aumenta el riesgo de que el plasma o sobrenadante pierda sus propiedades biológicas como consecuencia de la congelación. Además, es conveniente congelar durante el tiempo mínimo de 1 hora para asegurar que el compuesto sanguíneo se congela de forma homogénea (la homogeneidad garantiza la estabilidad de la liofilización y que no se alteren las propiedades biológicas del producto)
A su vez, el secado primario se realiza de forma especialmente ventajosa a entre -60 y -40°C y entre 0,05 y 0, 15 mBar (preferentemente a -50°C y 0, 1 mBar). La utilización de rangos bajos de temperatura se realiza para asegurar que el producto está totalmente congelado durante el proceso de sublimación, así como para preservar las propiedades físicas, químicas, y biológicas del producto inicial, evitando la posible desnaturalización de proteínas del producto liofilizado. La duración concreta del proceso depende de la cantidad de producto a liofilizar y ha sido establecida para asegurar la total sublimación del hielo necesaria para un adecuado secado.
En cuanto al secado secundario, éste se realiza de manera especialmente ventajosa a entre + 15 y +25°C y entre 0,05 y 0, 15 mBar (preferentemente a +20°C y 0, 1 mBar) ya que estas condiciones permiten eliminar la humedad residual que haya quedado en el producto mediante evaporación y reducir su contenido de humedad por debajo del 1 % con objeto de mejorar la estabilidad del producto final.
Finalmente, el secado terciario se realiza de manera especialmente ventajosa a entre + 15 y +25°C y vacío total (preferentemente a +20°C y vacío total), logrando eliminar finalmente toda humedad, lo que proporcionará las óptimas características de estabilidad y uniformidad del producto final.
El procedimiento según la invención puede comprender, además, el paso adicional de filtrar el plasma o sobrenadante para eliminar o evitar la aparición de componentes de alto peso molecular, agregados plaquetarios o restos de fibrina que pudieran alterar la uniformidad del congelado y la estabilidad del liofilizado, lo que repercutiría también negativamente en la re-suspensión de la composición seca (téngase en cuenta que la velocidad de disolución de un liofilizado es inversamente proporcional al tamaño de las partículas que lo constituyen y que partículas gruesas comprendidas en la composición seca podrían producir que la disolución de la composición seca fuera más lenta o simplemente nula). En caso de realizarse, dicho paso adicional de filtrar el plasma o sobrenadante se ejecuta antes de la liofilización, aunque no necesariamente inmediatamente antes. El paso de filtrar el plasma o sobrenadante podrá no ser necesario, por ejemplo, cuando se disponga al comienzo del procedimiento de un plasma o sobrenadante ya filtrado.
EJEMPLO DE PROCEDIMIENTO
A continuación se describe un ejemplo de procedimiento de preparación de una composición final re-suspendida a partir de una composición seca obtenida a su vez según el procedimiento de la invención y a partir de un sobrenadante de plasma rico en factores de crecimiento.
En primer lugar, se prepara un plasma rico en factores de crecimiento a partir de sangre extraída de un paciente, centrifugando en primer lugar la misma para separar la sangre en diferentes fracciones, como es conocido en el estado de la técnica. Entonces, se extrae la fracción de plasma mediante un dispositivo PTD (por sus siglas en inglés "Plasma Transfer Device") a un tubo de fraccionamiento de 9 mi y se procede a activar el plasma; la activación se realiza estimando el volumen de plasma contenido en el tubo de fraccionamiento y añadiendo posteriormente 50 μΐ de PRGF© Activator (un activador basado en cloruro de calcio) por cada mililitro de plasma. La activación del plasma equivale a la liberación de factores de crecimiento por parte de las plaquetas contenidas en el plasma. En segundo lugar, se obtiene el sobrenadante a partir del plasma rico en factores de crecimiento. Para ello, el plasma rico en factores de crecimiento, ya activado, se incuba en bloque de calor a 37 °C entre 1 hora y hora y media hasta la completa retracción del coágulo de fibrina. Posteriormente, el tubo de fraccionamiento se centrifuga a l OOO g durante 10 minutos con dos finalidades principales: precipitar el coágulo de fibrina formado, y extraer lo máximo posible el volumen de sobrenadante que podría quedar retenido en el interior del coágulo. Entonces, los tubos centrifugados se introducen en una cabina de flujo laminar, donde pueden ser abiertos para mantener la completa esterilidad de la muestra. Con una jeringuilla de 10 mi a la que se ha acoplado una aguja intramuscular roma, se recoge todo el sobrenadante liberado. Posteriormente, se retira la aguja roma de la jeringuilla y se acopla un filtro de PVDF de 0,22 μιτι, y se procede a la filtración del sobrenadante. Durante el proceso de filtración, la jeringa con el filtro se conecta a los dispensadores multidosis. administrando 1 mi de sobrenadante filtrado por dispositivo. Finalmente, los dispositivos se cierran herméticamente.
A continuación se ejecuta el procedimiento según la invención, para obtener una composición final seca a partir del sobrenadante líquido filtrado. Así, los dispositivos multidosis, con el sobrenadante filtrado en su interior, son tratados térmicamente, introduciéndose en un baño de agua precalentado previamente a 56 °C y durante entre 30 a 60 minutos. Tras este periodo, se introducen inmediatamente en un liofilizador previamente enfriado a -50°C para proceder a su congelación donde se mantendrán en un rango de tiempo de entre 2 y 8 horas según el volumen de sobrenadante hasta que las muestras se encuentren congeladas de forma homogénea. Posteriormente, se realiza un secado primario a -50°C y 0, 1 mBar durante como máximo 24h. Seguidamente, se realiza un secado secundario a +20°C y 0, 1 mBar durante máximo 6h y finalmente se realiza un secado terciario a +20°C y vacío total durante como máximo 12h. El producto resultante es un polvo uniforme y homogéneo que aparece ligeramente compactado y que se puede re-suspender (es decir, disolver volviendo a su consistencia de sobrenadante) tras contacto con una solución acuosa de manera rápida y sencilla. La composición final seca debe ser re-suspendida para poder ser aplicada. Para ello, el médico o el paciente toma una dosis de composición final seca y la sumerge en un volumen determinado de agua destilada estéril dentro de un contenedor, agitando posteriormente el contenedor hasta conseguir la completa disolución la composición seca y la obtención de una composición final nuevamente húmeda o líquida que conserva las propiedades biológicas del sobrenadante húmedo inicial, previo al tratamiento térmico y la liofilización. Dicha composición final puede entonces ser directamente aplicada al paciente, por ejemplo como colirio en los ojos.
RESULTADOS EXPERIMENTALES
A continuación se describen los resultados de tres estudios experimentales realizados sobre el procedimiento y la composición según la invención, efectuado y obtenida respectivamente a partir de un sobrenadante de plasma sanguíneo rico en factores de crecimiento. Se detallan asimismo las conclusiones técnicas alcanzadas a partir de dichos resultados. 1 . Influencia de la temperatura del tratamiento térmico sobre el efecto biológico y los niveles de factores de crecimiento del sobrenadante seco final
Como se ha mencionado, el tratamiento térmico realizado por la presente invención a temperaturas adecuadas permite conservar las propiedades biológicas del sobrenadante, es decir, que la composición seca final presente sustancialmente las mismas propiedades que el sobrenadante líquido inicial.
Pues bien, tras realizarse una experimentación sobre cultivos celulares de la superficie ocular, se ha comprobado que el proceso de tratamiento térmico (baño de agua a 56°C durante 30 minutos) no afecta a su efecto biológico sobre la proliferación de keratocitos corneales (HCK) y fibroblastos conjuntivales (HConF), ni de células epiteliales corneales. La multiplicación de dichas células en cultivo in vitro es similar en el caso del sobrenadante no tratado térmicamente. Así, en la Figura 1 , que muestra el número keratocitos (HCK) por centímetro cuadrado en tres córneas tratadas con sobrenadante de plasma líquido convencional, no sometido a tratamiento térmico, y con sobrenadante tratado térmicamente según la invención, se puede observar que la proliferación de keratocitos coméales es prácticamente la misma en respuesta al sobrenadante de plasma líquido convencional, no sometido a tratamiento térmico que al sobrenadante tratado térmicamente según la invención. Lo mismo ocurre en el caso de los fibroblastos conjuntivales y las células epiteliales corneales estudiadas.
También se han analizado los niveles de factores de crecimiento presentes en los sobrenadantes líquidos convencionales y en sobrenadantes tratados térmicamente según la invención. Se ha comprobado que, en el caso de factores plaquetarios como el PDGF-AB o el TGF-β Ι , el tratamiento térmico no afecta a sus niveles medidos en el sobrenadante final. Por otra parte, se ha comprobado que factores de crecimiento plasmáticos analizados como el IGF-I no varían su concentración por efecto de la temperatura mientras que otros agentes como las inmunoglobulinas G y M (IgG e IgM) presentan un 9% y un 13% de disminución respectivamente en sus valores. También se ha comprobado que el factor D del complemento desaparece totalmente cuando el sobrenadante es sometido a tratamiento térmico. Se pueden observar ejemplos de estos resultados en las siguientes figuras. Así, la Figura 2 muestra los niveles de PDGF-AB en los sobrenadantes de tres donantes, antes y después de realizar sobre dichos sobrenadantes un tratamiento térmico de acuerdo con la invención. Como puede observarse, dichos niveles se mantienen prácticamente constantes (en el primer sobrenadante descienden ligeramente, en el segundo se mantienen constantes y en el tercero aumentan ligeramente). Por otro lado, la Figura 3 muestra los niveles del factor D del complemento en los sobrenadantes de tres donantes, antes y después de realizar sobre dichos sobrenadantes un tratamiento térmico de acuerdo con la invención. Como puede observarse, en los sobrenadantes líquidos iniciales existe una presencia de factor D mientras que en los sobrenadantes tratados térmicamente no se detecta presencia alguna del mismo.
2. Influencia del proceso de liofilización sobre el efecto biológico y los niveles de factores de crecimiento del sobrenadante
Como se ha mencionado en esta descripción, el proceso de liofilización realizado por la presente invención permite conservar las propiedades biológicas del sobrenadante, es decir, que la composición seca final presente sustancialmente las mismas propiedades que el sobrenadante líquido inicial.
Durante la experimentación, se ha analizado el efecto del proceso de liofilización del sobrenadante de plasma sobre la proliferación de fibroblastos conjuntivales y keratocitos. Los resultados del análisis muestran que dicho tratamiento no afecta al crecimiento de dichos tipos celulares en ninguno de los tres sobrenadantes (de respectivos tres donantes) estudiados. Por ejemplo, en la Figura 4, que muestra el número de fibroblastos (HConF) por centímetro cuadrado en tres córneas tratadas con sobrenadante de plasma líquido convencional, no sometido a tratamiento térmico, y con sobrenadante tratado térmicamente según la invención, se observa que la presencia de fibroblastos se mantiene relativamente constante (en el primer sobrenadante descienden ligeramente, en el segundo aumentan ligeramente y en el tercero descienden ligeramente). También se han analizado los niveles de factores de crecimiento presentes en los sobrenadantes líquidos convencionales y en sobrenadantes liofilizados según la invención. Se ha comprobado que los niveles de factores de crecimiento analizados no varían tras el proceso de liofilización, tanto el caso de los factores plaquetarios como TGF-β Ι , PDGF-AB, VEGF y EGF como en caso de factores plasmáticos como IGF-1 o factor D del complemento. A modo de ejemplo, la Figura 5 muestra la concentración media de factores de crecimiento PDGF-AB y TGF-βΙ en los sobrenadantes de tres donantes sin liofilizar y sin tratar térmicamente y liofilizados y tratados térmicamente según la invención; en ella se observa cómo la concentración de los primeros aumenta ligeramente, mientras que la concentración de los segundos disminuye ligeramente, siendo la concentración de ambos en el producto final (sobrenadante liofilizado) en cualquier caso elevada. En la Figura 6 se muestran, análogamente, la concentración de factores de crecimiento VEGF y EGF en los sobrenadantes de tres donantes sin liofilizar y sin tratar térmicamente y liofilizados y tratados térmicamente según la invención; en ella se observa cómo la concentración de ambos disminuye ligeramente, aunque se mantiene en valores elevados.
3. Influencia del proceso de filtración sobre el efecto biológico y los niveles de factores de crecimiento del sobrenadante
Se ha estudiado también si la filtración del sobrenadante pudiera conllevar algún efecto biológico indeseado en el mismo, o si por el contrario no afecta a sus propiedades biológicas.
Pues bien, los resultados obtenidos de los estudios in vitro muestran que el proceso de filtración del sobrenadante no modifica el efecto biológico que ejerce sobre la proliferación de fibroblastos conjuntivales, keratocitos y epiteliales corneales.
Por ejemplo, la Figura 7 muestra la cantidad de fibroblastos conjuntivales (HConF) contenida por centímetro cuadrado en tres sobrenadantes líquidos, antes y después de realizar un filtrado de los sobrenadantes. Como puede observarse, la proliferación de fibroblastos conjuntivales en el sobrenadante filtrado es similar a la proliferación en el sobrenadante no filtrado. Por su parte, los niveles de factores de crecimiento medidos en los sobrenadantes filtrados y no filtrados son muy similares para los tres sobrenadantes analizados (provenientes, como en todos los casos, de tres donantes diferentes). La Figura 8 muestra las concentraciones medias del factor de crecimiento TGF-β Ι en los sobrenadantes filtrados y sin filtrar, pudiendo comprobarse que dichas concentraciones no varían de forma importante por el hecho de filtrarse los sobrenadantes. Este hecho no se produce solamente en el caso de los factores de crecimiento contenidos en los gránulos alfa de las plaquetas (por ejemplo TGF-βΙ , PDGF-AB, VEGF, EGF o TSP- 1 ), sino que también se produce en el caso de factores de crecimiento presentes en el plasma como IGF-I (factor de crecimiento derivado de insulina tipo 1) o la endostatina. La Figura 9 muestra, en este sentido, la concentración media de factor de crecimiento IGF-I en el sobrenadante de tres donantes, antes y después de realizar un filtrado. Como puede observarse, el nivel de IGF-I se mantiene prácticamente constante en los tres casos.
4. Influencia del procedimiento de la invención, comprendiendo los pasos de filtrar, tratar térmicamente y liofilizar el sobrenadante, sobre diversas propiedades del mismo La Figura 10 muestra una gráfica de la proliferación de células primarias procedentes de keratocitos corneales humanos (HCK) tras 72 horas de tratamiento con un sobrenadante de plasma rico en factores de crecimiento (PRGF) convencional y con un sobrenadante de plasma rico en factores de crecimiento (PRGF) filtrado, tratado térmicamente y liofilizado según la invención, el cual posteriormente ha sido re-suspendido. Como puede observarse, el número de células primarias es ligeramente mayor en el caso del sobrenadante obtenido según el procedimiento de la presente invención.
La Figura 1 1 muestra una gráfica de la proliferación de células primarias procedentes de fibroblastos conjuntivales humanos (HConF) tras 72 horas de tratamiento con un sobrenadante de plasma rico en factores de crecimiento (PRGF) convencional y con un sobrenadante de plasma rico en factores de crecimiento (PRGF) filtrado, tratado térmicamente y liofilizado según la invención, el cual posteriormente ha sido re-suspendido. Al igual que en la gráfica anterior, el número de células primarias es ligeramente mayor en el caso del sobrenadante obtenido según el procedimiento de la presente invención.
La Figura 12 muestra el efecto de la aplicación de un sobrenadante de plasma rico en factores de crecimiento (PRGF) convencional y de un sobrenadante de plasma rico en factores de crecimiento (PRGF) filtrado, tratado térmicamente y liofilizado según la invención, el cual posteriormente ha sido re- suspendido, sobre la migración del cultivo de células primarias de keratocitos corneales humanos (HCK). Como puede observarse, el número de células primarias es sólo ligeramente mayor en el caso de utilizarse como medio de cultivo un sobrenadante convencional.
La Figura 13 muestra el efecto de la aplicación de un sobrenadante de plasma rico en factores de crecimiento (PRGF) convencional y de un sobrenadante de plasma rico en factores de crecimiento (PRGF) filtrado, tratado térmicamente y liofilizado según la invención, el cual posteriormente ha sido re- suspendido, sobre la migración del cultivo de células primarias de fibroblastos conjuntivales humanos (HConF) tras realizar una incubación de células durante 24 horas. El comportamiento en ambos casos es, como puede comprobarse, muy similar, aunque es ligeramente mejor en el caso del sobrenadante obtenido según la invención.
En resumen, tras analizarse todas las gráficas con resultados experimentales, puede concluirse que el comportamiento y las propiedades la composición final re-suspendida son muy similares (con ligeras variaciones irrelevantes) a los del sobrenadante de aplicación inmediata convencional. Por lo tanto, se puede concluir que el hecho de filtrar, tratar térmicamente y liofilizar un sobrenadante húmedo para obtener un producto seco re-suspendible no afecta a las propiedades del producto y, por otra parte, proporciona las numerosas ventajas enumeradas en el presente documento.

Claims

REIVINDICACIONES
1. Procedimiento de obtención de una composición que contiene factores de crecimiento, que comprende las fases de: a) disponer de un plasma rico en plaquetas o de un sobrenadante de plasma rico en plaquetas que contiene factores de crecimiento liberados,
b) aplicar un tratamiento térmico al plasma rico en plaquetas o al sobrenadante de plasma rico en plaquetas, durante el cual se aumenta la temperatura del mismo,
c) liofilizar dicho plasma rico en plaquetas o sobrenadante de plasma rico en plaquetas, donde los pasos de aplicar un tratamiento térmico y de liofilizar se realizan en orden indistinto.
2. Procedimiento, según la reivindicación 1 , que se caracteriza por que la liofilización se realiza sin la adición de coadyuvantes.
3. Procedimiento, según la reivindicación 1 , que se caracteriza por que el paso de aplicar un tratamiento térmico se realiza antes del paso de liofilizar.
4. Procedimiento, según la reivindicación 1 , que se caracteriza por que el paso de aplicar un tratamiento térmico comprende el paso de: someter al plasma rico en plaquetas o al sobrenadante de plasma rico en plaquetas a una temperatura superior a 37°C durante un tiempo igual o superior a 1 minuto.
5. Procedimiento, según la reivindicación 4, que se caracteriza por que: el plasma rico en plaquetas o el sobrenadante de plasma rico en plaquetas se somete a una temperatura entre 50 y 60°C durante un tiempo entre 20 y 70 minutos.
6. Procedimiento, según la reivindicación 5, que se caracteriza por que: el plasma rico en plaquetas o el sobrenadante de plasma rico en plaquetas se somete a una temperatura de 56°C durante un tiempo entre 30 y 60 minutos.
7. Procedimiento, según la reivindicación 1 , que se caracteriza por que el paso de liofilizar comprende los pasos de: - congelar el plasma rico en plaquetas o el sobrenadante de plasma rico en plaquetas a una temperatura menor que 0°C.
realizar un secado primario del plasma rico en plaquetas o del sobrenadante de plasma rico en plaquetas a una temperatura menor o igual a 0°C y a alto vacío, durante un tiempo igual o superior a 1 minuto.
8. Procedimiento, según la reivindicación 7, que se caracteriza por que: la congelación se realiza a una temperatura entre -60 y -40°C durante un tiempo superior a 1 hora,
el secado primario se realiza a una temperatura entre -60 y -40°C y a una presión entre 0,05 y 0, 1 mBar.
9. Procedimiento, según la reivindicación 8, que se caracteriza por que: la congelación se realiza a una temperatura de -50°C durante un tiempo superior a 2 horas,
el secado primario se realiza a una temperatura de -50°C y a una presión de 0, 1 mBar.
10. Procedimiento, según la reivindicación 7, que se caracteriza por que el paso de liofilizar comprende el paso adicional de: realizar un secado secundario del plasma rico en plaquetas o del sobrenadante de plasma rico en plaquetas a una temperatura mayor o igual a 0°C y a alto vacío, durante un tiempo igual o superior a 1 minuto.
1 1. Procedimiento, según la reivindicación 10, que se caracteriza por que: - el secado secundario se realiza a una temperatura entre + 15 y +25°C y a una presión entre 0,05 y 0, 15 mBar.
12. Procedimiento, según la reivindicación 1 1 , que se caracteriza por que: - el secado secundario se realiza a una temperatura de +20°C y a una presión de 0, 1 mBar.
13. Procedimiento, según la reivindicación 7, que se caracteriza por que el paso de liofilizar comprende el paso adicional de: realizar un secado secundario del plasma rico en plaquetas o del sobrenadante de plasma rico en plaquetas a una temperatura mayor o igual a 0°C y a bajo vacío o sin vacío, durante un tiempo igual o superior a 1 minuto.
14. Procedimiento, según la reivindicación 10, que se caracteriza por que comprende el paso adicional de: realizar un secado terciario del plasma rico en plaquetas o del sobrenadante de plasma rico en plaquetas a una temperatura mayor o igual a 0°C y a alto vacío, durante un tiempo igual o superior a 1 minuto.
1 . Procedimiento, según la reivindicación 14, que se caracteriza por que: el secado terciario se realiza a una temperatura entre +15 y +25°C y en vacío total.
16. Procedimiento, según la reivindicación 15, que se caracteriza por que: el secado terciario se realiza a una temperatura de +20°C y en vacío total.
17. Procedimiento, según la reivindicación 10, que se caracteriza por que comprende el paso adicional de: realizar un secado terciario del plasma rico en plaquetas o del sobrenadante de plasma rico en plaquetas a una temperatura mayor o igual a 0°C y a bajo vacío o sin vacío, durante un tiempo igual o superior a 1 minuto.
18. Procedimiento, según la reivindicación 1 , que se caracteriza por que comprende el paso adicional de filtrar el plasma rico en plaquetas o el sobrenadante de plasma rico en plaquetas, el cual se realiza antes de la liofílización.
19. Composición que contiene factores de crecimiento, obtenible según el procedimiento de cualquiera de las reivindicaciones 1 a 18.
PCT/ES2012/000196 2011-07-29 2012-07-13 Procedimiento de obtención de una composición que contiene factores de crecimiento a partir de plaquetas WO2013017707A1 (es)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BR112014001539A BR112014001539A2 (pt) 2011-07-29 2012-07-13 processo para obter uma composição contendo fatores de crescimento de um composto do sangue, e composição obtida pelo dito processo
CA2839973A CA2839973A1 (en) 2011-07-29 2012-07-13 Procedure for obtaining a composition containing growth factors from a blood compound, and composition obtained by said procedure
CN201280036577.7A CN103702679B (zh) 2011-07-29 2012-07-13 用于来自血小板的含有生长因子的组合物的方法
RU2014102729/15A RU2014102729A (ru) 2011-07-29 2012-07-13 Способ получения композиции, содержащей факторы роста, из соединения крови, и композиция, получаемая указанным способом
EP12762017.7A EP2740486A1 (en) 2011-07-29 2012-07-13 Process for a growth factor containing composition from platelets
JP2014522123A JP2014521629A (ja) 2011-07-29 2012-07-13 血小板由来の増殖因子含有組成物のためのプロセス
MX2014000936A MX2014000936A (es) 2011-07-29 2012-07-13 Procedimiento de obtencion de una composicion que contiene factores de crecimiento a partir de un compueto sanguineo, composicion obtenible por dicho procedimiento.
KR1020147001440A KR20140057244A (ko) 2011-07-29 2012-07-13 혈소판으로부터 얻어진 조성물을 포함하는 성장 인자를 위한 프로세스

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201100867A ES2369945B1 (es) 2011-07-29 2011-07-29 Procedimiento de obtención de una composición que contiene factores de crecimiento a partir de un compuesto sanguíneo, y composición obtenible por dicho procedimiento.
ESP201100867 2011-07-29

Publications (1)

Publication Number Publication Date
WO2013017707A1 true WO2013017707A1 (es) 2013-02-07

Family

ID=44996381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/000196 WO2013017707A1 (es) 2011-07-29 2012-07-13 Procedimiento de obtención de una composición que contiene factores de crecimiento a partir de plaquetas

Country Status (16)

Country Link
US (1) US8993733B2 (es)
EP (1) EP2740486A1 (es)
JP (1) JP2014521629A (es)
KR (1) KR20140057244A (es)
CN (1) CN103702679B (es)
AR (1) AR087374A1 (es)
BR (1) BR112014001539A2 (es)
CA (1) CA2839973A1 (es)
CL (1) CL2014000163A1 (es)
CO (1) CO6862109A2 (es)
ES (1) ES2369945B1 (es)
MX (1) MX2014000936A (es)
PE (1) PE20141264A1 (es)
RU (1) RU2014102729A (es)
TW (1) TW201309310A (es)
WO (1) WO2013017707A1 (es)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2442242B1 (es) * 2012-08-09 2014-11-25 Biotechnology Institute, I Mas D, S.L. Composición con factores de crecimiento destinada al tratamiento intranasal de una enfermedad neurodegenerativa u otra patología del sistema nervioso central, y su método de fabricación.
ES2527967B1 (es) * 2013-08-01 2015-12-28 Biotechnology Institute, I Mas D, S.L. Formulación de una composición sanguínea rica en plaquetas y/o factores de crecimiento, con proteínas gelificadas y método de preparación de la misma
HK1194912A2 (en) * 2013-09-17 2014-10-24 Bestop Group Holdings Ltd Growth factor concentrate and the use thereof
US10105306B2 (en) * 2013-09-17 2018-10-23 Bestop Group Holdings Limited Method of preparing a growth factor concentrate
CA2950659A1 (en) * 2016-12-06 2018-06-06 Antnor Limited Method for the preparation and prolonged storage of growth factors and cytokines obtained from platelet rich plasma
US10793327B2 (en) 2017-10-09 2020-10-06 Terumo Bct Biotechnologies, Llc Lyophilization container and method of using same
JP6391872B1 (ja) * 2018-03-30 2018-09-19 セルソース株式会社 成長因子混合物およびその調製方法
ES2778798B2 (es) * 2019-02-11 2021-10-13 Biotechnology Inst I Mas D Sl Formulacion o adhesivo tisular obtenida de una composicion sanguinea que contiene plaquetas, y metodo de preparacion de dicha formulacion
ES2782723B2 (es) * 2019-03-13 2021-05-18 Active Bioregeneration Tech Sl Procedimiento para obtencion y conservacion de factores de crecimiento de alta pureza y sus usos
CN114127501B (zh) 2019-03-14 2023-02-17 泰尔茂比司特生物技术有限公司 多部分冻干容器及使用方法
EP3881858A1 (en) * 2020-03-20 2021-09-22 Rok Pangersic Heat-treated platelet-derived growth factor extract for use in a method of preventing or treating a tissue defect

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000044314A1 (es) 1999-01-26 2000-08-03 Eduardo Anitua Aldecoa Regenerador de tejido oseo
ES2221770B2 (es) 2002-04-19 2006-07-16 Eduardo Anitua Aldecoa Metodo de preparacion de un compuesto para la regeneracion de tejidos.
EP2077118A1 (en) * 2008-01-07 2009-07-08 Gwo Rei Biomedical Technology Corp. Clottable concentrate of platelet growth factors and preparation method thereof
WO2010013085A1 (es) 2008-07-31 2010-02-04 Jorge Enrique Celis Marin Arreglo pirorrestrictivo en embarcaciones de plástico reforzado
WO2010130851A2 (es) 2009-05-14 2010-11-18 Biotechnology Institute, I Mas D, S.L. Método para la preparación de al menos un compuesto a partir de sangre, y dispositivo de extracción para ser utilizado en la ejecución de dicho método

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5871997A (en) * 1994-07-21 1999-02-16 Alexion Pharmaceuticals, Inc. Methods and compositions for protecting retroviral vector particles and producer cells from inactivation by complement via reduction of the expression or recognition of galactose alpha (1,3) galactosyl epitopes
AU2002302814A1 (en) * 2001-06-08 2002-12-23 Powderject Vaccines, Inc. Spray freeze-dried compositions
US20030068416A1 (en) * 2001-09-24 2003-04-10 Wilson Burgess Method of lyophylization to reduce solvent content and enhance product recovery
US20060004189A1 (en) * 2004-07-02 2006-01-05 James Gandy Compositions for treating wounds and processes for their preparation
US20060142198A1 (en) * 2004-07-02 2006-06-29 Wound Care Partners Llc Compositions for treating wounds and processes for their preparation
WO2008048228A2 (en) * 2005-08-12 2008-04-24 Department Of The Army Glycine stabilized lyophilized plasma
JP2008109866A (ja) * 2006-10-30 2008-05-15 Jms Co Ltd 培地添加剤、この培地添加剤を含む培地、及びこの培地を用いた細胞の培養方法
EP2114379A2 (en) * 2006-12-20 2009-11-11 Bayer HealthCare LLC Factor vii and viia compositions
US8603821B2 (en) * 2007-03-07 2013-12-10 Jms Co., Ltd. Method for preparing serum and serum preparation apparatus
JP2009050297A (ja) * 2007-08-23 2009-03-12 Tokyo Medical & Dental Univ 脱細胞処理液、脱細胞化組織の調製方法、移植片、及び培養部材
KR20120027031A (ko) * 2009-06-18 2012-03-20 와이어쓰 엘엘씨 소형 모듈 면역제약용 동결건조 제제
JP2013039036A (ja) * 2009-12-16 2013-02-28 Kyowa Hakko Kirin Co Ltd HIF−2αの発現を抑制する核酸

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000044314A1 (es) 1999-01-26 2000-08-03 Eduardo Anitua Aldecoa Regenerador de tejido oseo
EP1066838A1 (en) * 1999-01-26 2001-01-10 Eduardo Anitua Aldecoa Bone tissue regenerating composition
ES2221770B2 (es) 2002-04-19 2006-07-16 Eduardo Anitua Aldecoa Metodo de preparacion de un compuesto para la regeneracion de tejidos.
EP2077118A1 (en) * 2008-01-07 2009-07-08 Gwo Rei Biomedical Technology Corp. Clottable concentrate of platelet growth factors and preparation method thereof
WO2010013085A1 (es) 2008-07-31 2010-02-04 Jorge Enrique Celis Marin Arreglo pirorrestrictivo en embarcaciones de plástico reforzado
WO2010130851A2 (es) 2009-05-14 2010-11-18 Biotechnology Institute, I Mas D, S.L. Método para la preparación de al menos un compuesto a partir de sangre, y dispositivo de extracción para ser utilizado en la ejecución de dicho método

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUANG W ET AL: "Purification and properties of epithelial growth inhibitor (EGI) from human platelets: its separation from type beta transforming growth factor (TGF-beta).", JOURNAL OF BIOCHEMISTRY SEP 1986, vol. 100, no. 3, September 1986 (1986-09-01), pages 687 - 696, XP002687379, ISSN: 0021-924X *
PIETRAMAGGIORI GIORGIO ET AL: "Freeze-dried platelet-rich plasma shows beneficial healing properties in chronic wounds.", WOUND REPAIR AND REGENERATION : OFFICIAL PUBLICATION OF THE WOUND HEALING SOCIETY [AND] THE EUROPEAN TISSUE REPAIR SOCIETY 2006 SEP-OCT, vol. 14, no. 5, September 2006 (2006-09-01), pages 573 - 580, XP002687378, ISSN: 1067-1927 *

Also Published As

Publication number Publication date
CL2014000163A1 (es) 2014-08-01
ES2369945B1 (es) 2012-10-15
CN103702679A (zh) 2014-04-02
CO6862109A2 (es) 2014-02-10
JP2014521629A (ja) 2014-08-28
US20130030161A1 (en) 2013-01-31
KR20140057244A (ko) 2014-05-12
CA2839973A1 (en) 2013-02-07
TW201309310A (zh) 2013-03-01
ES2369945A1 (es) 2011-12-09
EP2740486A1 (en) 2014-06-11
BR112014001539A2 (pt) 2017-02-14
PE20141264A1 (es) 2014-10-09
RU2014102729A (ru) 2015-09-10
MX2014000936A (es) 2014-04-30
AR087374A1 (es) 2014-03-19
CN103702679B (zh) 2016-06-01
US8993733B2 (en) 2015-03-31

Similar Documents

Publication Publication Date Title
WO2013017707A1 (es) Procedimiento de obtención de una composición que contiene factores de crecimiento a partir de plaquetas
US10993965B2 (en) Lyophilized platelet lysates
ES2906849T3 (es) Proceso para aislar y liofilizar vesículas extracelulares
ES2393160T3 (es) Conservación de materiales bioactivos con espuma liofilizada
ES2545193T3 (es) Extracto de plaquetas inactivado viral, uso y preparación del mismo
ES2639561T3 (es) Procedimiento de preparación de un concentrado de factores de crecimiento derivado de plaquetas humanas
US20060004189A1 (en) Compositions for treating wounds and processes for their preparation
BR112019010228A2 (pt) processo para preparar fatores de crescimento que contêm liberado de plaquetas
US20170252372A1 (en) Viral inactivated biological mixture
WO2008082323A1 (fr) Composition de stimulation de croissance et de régénération de cellules et procédé de fabrication correspondant
CN105521483A (zh) 复合生物活性因子的冻干方法及冻干粉
KR20200099201A (ko) 신경 손상을 치료하기 위한 조성물 및 방법
JP2018504395A (ja) 血小板の分離方法
Aitzetmüller et al. Challenges and opportunities in drug delivery and wound healing
ES2633815B1 (es) Formulación de aplicación tópica, rica en plaquetas y/o factores de crecimiento y un método de preparación de la misma
KR20150061806A (ko) 활성화된 혈소판 풍부 혈장을 유효성분으로 포함하는 동물의 창상 치료용 수의학적 조성물
Troha et al. Storage of platelet-rich products
Shane et al. Platelet Rich Fibrin Matrix with Facial Collagen Genesis and Epidermal Regeneration
TWI535446B (zh) 富含生長因子的血小板纖維蛋白及其釋放液的製備方法
Pham SDF-1/IGF-1 conjugated to a PEGylated fibrin matrix as a treatment for an ischemia reperfusion injury in skeletal muscle repair

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12762017

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 002830-2013

Country of ref document: PE

ENP Entry into the national phase

Ref document number: 2839973

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2012762017

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012762017

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147001440

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014000163

Country of ref document: CL

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/000936

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 14013982

Country of ref document: CO

ENP Entry into the national phase

Ref document number: 2014522123

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014102729

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014001539

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014001539

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140122