WO2013017087A1 - 阵列基板、液晶显示面板及其修复断线的方法 - Google Patents

阵列基板、液晶显示面板及其修复断线的方法 Download PDF

Info

Publication number
WO2013017087A1
WO2013017087A1 PCT/CN2012/079529 CN2012079529W WO2013017087A1 WO 2013017087 A1 WO2013017087 A1 WO 2013017087A1 CN 2012079529 W CN2012079529 W CN 2012079529W WO 2013017087 A1 WO2013017087 A1 WO 2013017087A1
Authority
WO
WIPO (PCT)
Prior art keywords
line
data line
data
repair
array substrate
Prior art date
Application number
PCT/CN2012/079529
Other languages
English (en)
French (fr)
Inventor
吴松
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to KR1020127029772A priority Critical patent/KR101456353B1/ko
Priority to US13/698,871 priority patent/US10068813B2/en
Priority to JP2014523187A priority patent/JP2014527195A/ja
Priority to EP12778191.2A priority patent/EP2741133B1/en
Publication of WO2013017087A1 publication Critical patent/WO2013017087A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136259Repairing; Defects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136259Repairing; Defects
    • G02F1/136263Line defects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/122Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode having a particular pattern
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the disclosed technical solution relates to an array substrate, a liquid crystal display panel including the array substrate, and a method of repairing the broken wire.
  • the structure of the data repair line is generally disposed around the liquid crystal display panel to facilitate data line breakage repair.
  • a pixel structure on a conventional liquid crystal display panel array substrate is as shown in FIG. 1, and includes: a gate line 11 and a data line 12, and a pixel unit 20 defined by the gate line 11 and the data line 12; at the pixel unit 20 A thin film transistor 13, a common electrode 14, and a pixel electrode 15 are formed therein. If one of the data lines in the liquid crystal display panel is broken, the data line may be repaired by referring to FIG. 2.
  • the repairing process is specifically as follows: The first and second ends of the disconnection of the data line are respectively connected to the data repairing line 41 by laser welding, thereby achieving the purpose of repairing the disconnection of the data line.
  • An embodiment of the disclosed technical solution provides an array substrate, including: a signal line including a plurality of gate lines and a plurality of data lines crossing each other; and a plurality of pixel units defined by the gate lines and the data lines a thin film transistor, a common electrode, and a pixel electrode connected to a drain of the thin film transistor are formed in each pixel unit, and each pixel unit is respectively formed with a first position at two corners adjacent to one data line a repairing area and a second repairing area; in the first repairing area and the second repairing area, the pixel electrode and the pattern of the data line overlap, and there is no common electrode pattern.
  • the pixel unit adjacent to a thin film transistor of the pixel unit a pixel line and a position of a corner of the non-thin film transistor, the pixel unit is further formed with a third repair area; in the third repair area, the pixel electrode and the pattern of the gate line overlap, and No common electrode pattern.
  • a data repair line is formed around a pixel region including all pixel cells; the pixel unit is further formed with a fourth repair at positions of two corners adjacent to another data line a region and a fifth repair region; in the fourth repair region and the fifth repair region, the pattern of the pixel electrode and the another data line overlap, and there is no common electrode pattern.
  • Another embodiment of the disclosed technical solution provides a method for repairing a broken signal line, including: a, detecting and determining a position of a signal line break point; a2, when detecting a data line break point, using a laser welding method Connecting the pixel electrode of the first repairing area on the side of the data line breakpoint to the data line, and connecting the pixel electrode of the second repairing area on the other side of the data line breakpoint to the data line;
  • the laser is used; t is connected early, the pixel electrode of the third repair area on the side of the break line of the gate line is connected to the gate line, and the gate line is broken and the other is The drain of the thin film transistor of the side is connected to the gate line.
  • a further embodiment of the disclosed technical solution further provides a method for repairing a broken signal line, comprising: cl, detecting and determining a position of a signal line break point; c2, when detecting a data line break point, using a laser; 1: the early connection method, connecting the pixel electrode of the first repair area on the side of the data line breakpoint and the data line, and breaking the pixel electrode of the second repair area on the other side of the data line and the data Connecting the wires; or, using a laser welding method, connecting the pixel electrode of the fourth repairing area on the breakpoint side of the data line to the data line, and breaking the data line to the fifth repairing area on the other side of the data line
  • the pixel electrode is connected to the data line; when the gate line break point is detected, the laser is used; t is connected early, and the drain of the thin film transistor on the side of the break line of the gate line is connected to the gate line; Using a laser cutting method, the data line on the other side of the grid line break
  • FIG. 1 is a schematic diagram of a pixel structure on an array substrate of a liquid crystal display panel in the prior art
  • FIG. 2 is a schematic diagram of a method for repairing a data line disconnection in the prior art
  • 3 is a schematic diagram of a pixel structure on an array substrate of a liquid crystal display panel according to Embodiment 1;
  • FIG. 4 is a schematic view showing a pixel structure on an array substrate of another liquid crystal display panel according to Embodiment 1;
  • FIG. 5 is a schematic view showing a method of repairing data line breakage in an array substrate on which the pixel structure shown in FIG. 4 is formed;
  • FIG. 6 is a schematic view showing a method of repairing a broken line of a gate line in an array substrate on which the pixel structure shown in FIG. 4 is formed;
  • FIG. 7 is a schematic view showing a pixel structure on an array substrate of a liquid crystal display panel according to Embodiment 2;
  • FIG. 8 is a schematic view showing a method of repairing data line breakage in an array substrate on which the pixel structure shown in FIG. 7 is formed;
  • Fig. 9 is a view showing a method of repairing a broken line of a gate line in an array substrate on which the pixel structure shown in Fig. 7 is formed. detailed description
  • the array substrate includes: a plurality of gate lines 11 and a plurality of data lines 12 (collectively referred to as signal lines) crossing each other, and a plurality of pixels defined by the gate lines 11 and the data lines 12 Unit 20 (only one pixel unit is shown as an example).
  • a thin film transistor 13, a common electrode 14, and a pixel electrode 15 connected to the drain of the thin film transistor 13 are formed in each of the pixel units 20.
  • the pixel unit 20 is formed with a first repairing area 51 and a second repairing area 52 at positions of two corners adjacent to one data line 12, respectively.
  • the pixel electrode 15 and the pattern of the data line 12 overlap, and there is no pattern of the common electrode 14.
  • the pixel electrode 15 and the data line 12 are each formed with a protrusion pattern, and the protrusion patterns of the two overlap. That is, the pixel electrode 15 is formed with a protrusion pattern protruding toward the data line 12, the data line being formed with a protrusion pattern protruding toward the pixel electrode 15, and the protrusion pattern of the pixel electrode 15 and the protrusion pattern of the data line 12 overlapping.
  • the thin film transistor in each pixel unit is located near a corner of the pixel unit.
  • the source of the thin film transistor is connected to the corresponding data line, and the gate of the thin film transistor is connected to the corresponding gate line as shown in FIG.
  • the pixel structure shown in FIG. 3 is an example in which the pixel unit 20 is formed with the first repair area 51 and the second repair area 52 at two corners adjacent to one data line 12 on the right side.
  • the pixel structure shown in Fig. 3 is not unique.
  • the pixel unit 20 may form a first repair area and a second repair area at positions of two corners adjacent to one of the data lines 12 on the left.
  • the pixel unit 20 is further formed at a position adjacent to a gate line 11 connected to the thin film transistor of the pixel unit 20 and at a position other than the position where the thin film transistor 13 is located. Repair area 53. In the third repair region 53, the pattern of the pixel electrode 15 and the gate line 11 overlap, and there is no pattern of the common electrode 14.
  • the pixel electrode 15 is formed with a protrusion pattern protruding toward the gate line, and the protrusion pattern overlaps with the pattern of the gate line 11.
  • the array substrate shown in Fig. 3 can only repair the data line 12 disconnection, and the array substrate shown in Fig. 4 can repair the data line 12 disconnection or repair the grid line 11 disconnection.
  • a method of repairing the disconnection of the data line 12 and disconnection of the gate line 11 will be respectively described for the liquid crystal display panel in which the pixel structure shown in Fig. 4 is formed.
  • the method of repairing the data line 12 disconnected by the array substrate shown in Fig. 3 reference may also be made to the method described below.
  • A2 using the laser welding method, connecting the pixel electrode 15 of the first repairing area 51 on the side of the data line breakpoint 30 to the data line 12, and the second repairing area on the other side of the data line breakpoint 30
  • the pixel electrode 15 of 52 is connected to the data line 12.
  • the position of the laser; t early is represented by black dots or black elliptical dots in all embodiments of the disclosed technical solution.
  • the data line on the upper side of the data line break point 30 is connected to the pixel electrode 15, and the data line on the lower side of the data line break point 30 is also connected to the pixel electrode 15, so that the data line is broken through the pixel electrode. repair.
  • step b2 the gate line on the left side of the gate line break point 30 is connected to the drain of the thin film transistor, the drain of the thin film transistor is connected to the pixel electrode through the via hole, and the gate line on the right side of the gate line break point 30 is also connected to the pixel.
  • the electrodes are connected such that the gate line is broken through the pixel electrode.
  • the solution provided by the disclosed embodiment can repair the data line disconnection by using the first repair area and the second repair area, and further repair the grid line disconnection by using the third repair area.
  • the solution provided by the disclosed technical solution has no limitation on the number of disconnection of the data line and the number of broken lines of the grid line, and even if the number of broken lines of the data line or the number of broken lines of the grid line is relatively large, repair can be performed, thereby improving the liquid crystal display panel. Yield.
  • the array substrate includes: a plurality of gate lines 11 and a plurality of data lines 12, and a plurality of pixel units 20 defined by the gate lines 11 and the data lines 12 (two pixels are shown in the figure) Unit as an example).
  • a thin film transistor 13, a common electrode 14, and a pixel electrode 15 connected to the drain of the thin film transistor 13 are formed in each of the pixel units 20.
  • the pixel unit 20 is formed with a first repair area 51 and a second repair area 52 at positions of two corners adjacent to one data line 12, respectively. In the first repair area 51 and the second repair area 52, the pattern of the pixel electrode 15 and the data line 12 overlap, and there is no pattern of the common electrode 14.
  • the pixel electrode 15 and the data line 12 are each formed with a protrusion pattern, and the protrusion patterns of the two overlap. That is, the pixel electrode 15 is formed with a protrusion pattern protruding toward the data line 12, the data line being formed with a protrusion pattern protruding toward the pixel electrode 15, and a protrusion pattern of the pixel electrode 15 and a protrusion of the data line 12. The patterns overlap.
  • a data repair line 41 is formed in the liquid crystal display panel.
  • the data repair line 41 may be formed around a pixel area including all of the pixel units.
  • the pixel unit 20 is further formed with a fourth repair area 54 and a fifth repair area 55 at positions of two corners adjacent to the other data line 12, respectively.
  • the pattern of the pixel electrode 15 and the other data line 12 overlap, and there is no pattern of the common electrode 14.
  • the pixel electrode 15 and the other data line 12 are each formed with a protrusion pattern, and the protrusion patterns of the two overlap. That is, the pixel electrode 15 is formed with a protrusion pattern protruding toward the other data line 12, the other data line is formed with a protrusion pattern protruding toward the pixel electrode 15, and the protrusion pattern of the pixel electrode 15 and the other piece of data The protrusion patterns of the lines 12 overlap.
  • the one data line 12 is a data line on the right side of the pixel unit 20, and the other data line 12 is a data line on the left side of the pixel unit 20.
  • a method for repairing the disconnection of the data line 12 thereof is provided with reference to Fig. 8, which includes:
  • the step c2 may be: using a laser; t early connection method, connecting the pixel electrode 15 of the fourth repairing area 54 on the breakpoint side of the data line 12 and the data line 12, and disconnecting the data line 12
  • the pixel electrode 15 of the fifth repair area 55 on the other side of the dot is connected to the data line 12.
  • the position of the laser welding during the repair process is not identified in the drawings, but the position of the laser welding can be clearly found by those skilled in the art from the above description.
  • step c2 The two methods of step c2 are to connect the data lines on both sides of the data line breakpoint 30 through the pixel electrodes, so that the data line breaks can be repaired.
  • FIG. 9 For the array substrate shown in FIG. 7, a method for repairing the broken line of the gate line 11 thereof is provided with reference to FIG. 9, which includes: Dl, detecting and determining the position of the grid line breakpoint 30;
  • the data line 12 on the other side of the break line of the gate line 11 is cut at both ends of the two repair areas close to the gate line 11.
  • the cut position refer to the position marked with a blank rectangle as shown in Figure 9.
  • the two repair areas adjacent to the gate line 11 are the second repair area 52 and the fourth repair area 55, and this process cuts the data lines 12 at both ends of the two repair areas.
  • step d2 the gate lines on both sides of the gate line break point 30 are connected by the pixel electrodes of the two pixel units and the data line cut by the two pixel units, so that the gate line breakage can be repaired.
  • the data line is cut due to the cutting of the data line, it is necessary to repair the cut data line by step d3.
  • the data line 12 is connected to the data repair line 41 by a laser welding method. Specifically, referring to FIG. 2, the first and second ends of the cut data line 12 are respectively connected to the data repair line 41, thereby repairing the cut data line.
  • step d2 and step d3 have no order; and each step in step d2 has no order.
  • the solution provided by the disclosed embodiments can repair the data line disconnection by using the first repair area and the second repair area (or the fourth repair area and the fifth repair area), and can further repair the grid line breakage in combination with the data repair line.
  • the solution provided by the disclosed technical solution has no limitation on the number of data line disconnections, and even if the number of data lines is broken or the number of broken lines of the grid lines is relatively large, repair can be performed, thereby improving the yield of the liquid crystal display panel.
  • the present invention also provides a liquid crystal display panel comprising a facing color film substrate and an array substrate and a liquid crystal layer interposed therebetween.
  • the array substrate can employ any of the array substrates according to the disclosed embodiments.
  • the overlap of the pixel electrode in the repaired region and the data line or the gate line in the present specification means that there is an overlapping portion in a plan view along the surface of the array substrate, and does not mean a pixel electrode.
  • Direct contact with data lines or gate lines It will be understood by those skilled in the art that the pixel electrode, the data line and the gate line are generally formed in different layers, and an insulating layer (in the gate insulating film or the passivation layer) is interposed between the different layers. Therefore, the pixel electrode in the repaired area is not electrically connected to the data line or the gate line before the repair area is laser welded.
  • the disclosed technical solution is not limited to the above specific form.
  • the disclosed technical solution can be applied to various types of liquid crystal display panels and array substrates thereof, for example, twisted nematic (TN) panels, vertical alignment type (VA) panels, planar switching type (IPS) panels, and fringe field switching. Type (FFS) panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Liquid Crystal (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种阵列基板、液晶显示面板及其修复断线的方法。阵列基板包括:信号线,包括相互交叉的多条栅线(11)和多条数据线(12);由所述栅线(11)和数据线(12)限定的多个像素单元(20),其中每个像素单元(20)中形成有薄膜晶体管(13)、公共电极(14)以及与所述薄膜晶体管(13)的漏极相连的像素电极(15),每个像素单元(20)在与一条数据线(12)相邻的两个角的位置分别形成有第一修复区(51)和第二修复区(52);在所述第一修复区(51)和第二修复区(52)内,所述像素电极(15)和该数据线(12)的图案相重叠,且无公共电极(14)图案。

Description

阵列基板、 液晶显示面板及其修复断线的方法 技术领域
公开的技术方案涉及一种阵列基板、 包括该阵列基板的液晶显示面板及 其修复断线的方法。 背景技术
在液晶显示面板的制造过程中, 修复断线是提高良率的一个重要手段。 现有技术中一般釆用在液晶显示面板的四周布设数据修复线的结构, 以方便 数据线断线修复。
一种常规的液晶显示面板阵列基板上的像素结构如图 1所示, 包括: 栅 线 11和数据线 12, 以及由栅线 11和数据线 12限定的像素单元 20; 在所述 像素单元 20中形成有薄膜晶体管 13、公共电极 14和像素电极 15。若该液晶 显示面板中的一条数据线是断线,则可以参考图 2对该数据线断线进行修复。 修复的过程具体如下: 利用激光焊接将该数据线断线的首尾两端分别与数据 修复线 41连接起来, 从而达到修复该数据线断线的目的。
但是,上述修复断线的方法会受到数据修复线条数的限制。一般情况下, 在液晶显示面板中会布设 1~2条数据修复线, 用以修复 1~2条数据线断线。 如果一液晶显示面板中数据线断线过多, 则该液晶显示面板就只能废弃, 从 而影响产品的良率。 发明内容
公开的技术方案的一个实施例提供一种阵列基板, 包括: 信号线, 包括 相互交叉的多条栅线和多条数据线; 以及由所述栅线和所述数据线限定的多 个像素单元, 其中每个像素单元中形成有薄膜晶体管、 公共电极以及与所述 薄膜晶体管的漏极相连的像素电极, 每个像素单元在与一条数据线相邻的两 个角的位置分别形成有第一修复区和第二修复区; 在所述第一修复区和第二 修复区内, 所述像素电极和该数据线的图案相重叠, 且无公共电极图案。
在根据一个示例的阵列基板中, 在相邻于与该像素单元的薄膜晶体管相 连的一条栅线且非薄膜晶体管所在位置的一个角的位置, 该像素单元还形成 有第三修复区; 在该第三修复区内, 所述像素电极和该栅线的图案相重叠, 且无公共电极图案。
在根据另一个示例的阵列基板中, 在包括所有像素单元的像素区域周围 形成有数据修复线; 所述像素单元还在与另一条数据线相邻的两个角的位置 分别形成有第四修复区和第五修复区; 在所述第四修复区和第五修复区内, 所述像素电极和所述另一条数据线的图案相重叠, 且无公共电极图案。
公开的技术方案的另一个实施例提供一种修复信号线断线的方法,包括: al、 检测并确定信号线断点的位置; a2、 当检测到数据线断点时, 釆用激光 焊接方法, 将该数据线断点一侧的第一修复区的像素电极和该数据线连接起 来, 并且将该数据线断点另一侧的第二修复区的像素电极和该数据线连接起 来; 当检测到栅线断点时, 釆用激光; t早接方法, 将该栅线断点一侧的第三修 复区的像素电极和该栅极线连接起来, 并且将该栅线断点另一侧的薄膜晶体 管的漏极和该栅线连接起来。
公开的技术方案的再一个实施例还提供一种修复信号线断线的方法, 包 括: cl、 检测并确定信号线断点的位置; c2、 当检测到数据线断点时, 釆用 激光; 1:早接方法, 将该数据线断点一侧的第一修复区的像素电极和该数据线连 接起来, 并且将该数据线断点另一侧的第二修复区的像素电极和该数据线连 接起来; 或者, 釆用激光焊接方法, 将该数据线断点一侧的第四修复区的像 素电极和该数据线连接起来, 并且将该数据线断点另一侧的第五修复区的像 素电极和该数据线连接起来; 当检测到栅线断点时, 釆用激光; t早接方法, 将 该栅线断点一侧的薄膜晶体管的漏极和该栅线连接起来;釆用激光切割方法 , 将该栅线断点另一侧的数据线在靠近该栅线的两修复区的两端切断; 釆用激 光; t早接的方法, 分别将所述两修复区的像素电极和数据线连接起来, 并将与 该数据线相连的薄膜晶体管的漏极与该栅线连接起来; 釆用激光焊接方法, 将该数据线与数据修复线连接起来。 附图说明
图 1为现有技术中液晶显示面板的阵列基板上像素结构的示意图; 图 2为现有技术中修复数据线断线的方法示意图; 图 3为实施例一提供的一种液晶显示面板的阵列基板上像素结构的示意 图;
图 4为实施例一提供的另一种液晶显示面板的阵列基板上像素结构的示 意图;
图 5为修复形成有图 4所示像素结构的阵列基板中的数据线断线的方法 示意图;
图 6为修复形成有图 4所示像素结构的阵列基板中的栅线断线的方法示 意图;
图 7为实施例二提供的一种液晶显示面板的阵列基板上像素结构的示意 图;
图 8为修复形成有图 7所示像素结构的阵列基板中的数据线断线的方法 示意图; 以及
图 9为修复形成有图 7所示像素结构的阵列基板中的栅线断线的方法示 意图。 具体实施方式
下面将结合公开的技术方案实施例中的附图, 对公开的技术方案实施例 中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是公开的 技术方案一部分实施例, 而不是全部的实施例。 基于公开的技术方案中的实 施例, 本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他 实施例, 都属于公开的技术方案保护的范围。
实施例一
为提高液晶显示面板的良率, 公开的技术方案实施例提供了一种阵列基 板。 如图 3所示, 该阵列基板包括: 相互交叉的多条栅线 11和多条数据线 12 (统称为信号线) , 以及由所述栅线 11和所述数据线 12限定的多个像素 单元 20 (图中仅示出一个像素单元作为示例) 。 每个像素单元 20中形成有 薄膜晶体管 13、公共电极 14以及与所述薄膜晶体管 13的漏极相连的像素电 极 15。所述像素单元 20在与一条数据线 12相邻的两个角的位置分别形成有 第一修复区 51和第二修复区 52。在所述第一修复区 51和第二修复区 52内, 所述像素电极 15和该数据线 12的图案相重叠, 且无公共电极 14图案。 优选的, 在所述第一修复区 51和第二修复区 52 内, 所述像素电极 15 和该数据线 12均形成有突起图案, 且两者的突起图案相重叠。也就是说,像 素电极 15形成有朝向该数据线 12突起的突起图案, 该数据线形成有朝向该 像素电极 15突起的突起图案,且像素电极 15的突起图案和数据线 12的突起 图案重叠。
例如, 每个像素单元内的薄膜晶体管位于像素单元的一角附近的位置。 薄膜晶体管的源极与相应的数据线相连, 薄膜晶体管的栅极与相应的栅线相 连, 如图 3所示。
需要说明的是, 图 3所示的像素结构,是以像素单元 20在与右边的一条 数据线 12相邻的两个角的位置形成有第一修复区 51和第二修复区 52为例进 行说明的。 但是, 图 3所示的像素结构并非唯一, 例如, 像素单元 20可以在 与左边的一条数据线 12相邻的两个角的位置形成第一修复区和第二修复区。
进一步的, 如图 4所示, 所述像素单元 20还在相邻于与该像素单元 20 的薄膜晶体管相连的一条栅线 11且非薄膜晶体管 13所在位置的一个角的位 置, 形成有第三修复区 53。 在该第三修复区 53内, 所述像素电极 15和该栅 线 11的图案相重叠, 且无公共电极 14图案。
优选的, 在该第三修复区 53内, 所述像素电极 15形成有朝向该栅极线 突起的突起图案, 且该突起图案和栅线 11的图案相重叠。
图 3所示的阵列基板只能修复数据线 12断线,而图 4所示的阵列基板既 可以修复数据线 12断线, 也可以修复栅线 11断线。 下面针对形成有图 4所 示像素结构的液晶显示面板, 分别介绍修复数据线 12断线以及栅线 11断线 的方法。对于图 3所示的阵列基板修复数据线 12断线的方法也可以参考以下 介绍的方法。
首先,参考图 5介绍一种修复液晶显示面板中数据线 12断线的方法, 包 括:
al、 检测并确定数据线断点 30的位置;
a2、 釆用激光焊接方法, 将该数据线断点 30—侧的第一修复区 51的像 素电极 15和数据线 12连接起来,并且将该数据线断点 30另一侧的第二修复 区 52的像素电极 15和数据线 12连接起来。 其中, 激光; t早接的位置在公开的技术方案所有实施例中都是用黑色圓点 或黑色椭圓点表示。
通过步骤 a2, 使得数据线断点 30上侧的数据线和像素电极 15相连, 并 且该数据线断点 30下侧的数据线也和像素电极 15相连, 从而使得数据线断 线通过像素电极得以修复。
另外,参考图 6介绍一种修复液晶显示面板中栅线 11断线的方法,包括: bl、 检测并确定栅线断点 30的位置;
b2、 釆用激光焊接方法, 将该栅线 11断点一侧的第三修复区 53的像素 电极 15和栅线 11连接起来, 并且将该栅线 11断点另一侧的薄膜晶体管 13 的漏极和该栅线 11连接起来。
通过步骤 b2, 使得栅线断点 30左侧的栅线和薄膜晶体管的漏极相连, 薄膜晶体管的漏极通过过孔和像素电极相连,并且栅线断点 30右侧的栅线也 和像素电极相连, 从而使得栅线断线通过像素电极得以修复。
公开的技术方案实施例提供的方案可以利用第一修复区和第二修复区修 复数据线断线, 进一步的可以利用第三修复区修复栅线断线。 公开的技术方 案提供的方案对数据线断线以及栅线断线的条数没有限制, 即使数据线断线 或栅线断线的条数比较多也可以——修复, 从而提高液晶显示面板的良率。
实施例二
公开的技术方案实施例提供了另一种阵列基板。 参考图 7, 所述阵列基 板包括: 多条栅线 11和多条数据线 12 ,以及由所述栅线 11和所述数据线 12 限定的多个像素单元 20 (图中示出两个像素单元作为示例)。 每个像素单元 20中形成有薄膜晶体管 13、公共电极 14以及与所述薄膜晶体管 13的漏极相 连的像素电极 15。所述像素单元 20在与一条数据线 12相邻的两个角的位置 分别形成有第一修复区 51和第二修复区 52。在所述第一修复区 51和第二修 复区 52内, 所述像素电极 15和该数据线 12的图案相重叠, 且无公共电极 14图案。
优选的, 在所述第一修复区 51和第二修复区 52 内, 所述像素电极 15 和该数据线 12均形成有突起图案, 且两者的突起图案相重叠。也就是说,像 素电极 15形成有朝向该数据线 12突起的突起图案, 该数据线形成有朝向该 像素电极 15突起的突起图案,且像素电极 15的突起图案和数据线 12的突起 图案重叠。
进一步的, 所述液晶显示面板中形成有数据修复线 41。 对于数据修复线 41的布线可以参考图 2, 与现有技术中的布线无异。 所述数据修复线可形成 于包括所有像素单元的像素区域周围。
参考图 7, 所述像素单元 20还在与另一条数据线 12相邻的两个角的位 置分别形成有第四修复区 54和第五修复区 55。在所述第四修复区 54和第五 修复区 55内,所述像素电极 15和所述另一条数据线 12的图案相重叠,且无 公共电极 14图案。
优选的, 在所述第四修复区 54和所述第五修复区 55内, 所述像素电极 15和所述另一条数据线 12均形成有突起图案, 且两者的突起图案相重叠。 也就是说, 像素电极 15形成有朝向该另一条数据线 12突起的突起图案, 该 另一条数据线形成有朝向该像素电极 15突起的突起图案, 且像素电极 15的 突起图案和该另一条数据线 12的突起图案重叠。
图 7所示的像素结构中, 所述一条数据线 12为像素单元 20右边的数据 线, 所述另一条数据线 12为该像素单元 20左边的数据线。
针对形成有图 7所示的阵列基板, 下面参考图 8提供一种修复其数据线 12断线的方法, 包括:
cl、 检测并确定数据线断点 30的位置;
c2、 釆用激光焊接方法, 将该数据线断点 30—侧的第一修复区 51的像 素电极 15和数据线 12连接起来,并且将该数据线 12断点另一侧的第二修复 区 52的像素电极 15和数据线 12连接起来。
其中, 步骤 c2或者可以为: 釆用激光; t早接方法, 将该数据线 12断点一 侧的第四修复区 54的像素电极 15和数据线 12连接起来, 并且将该数据线 12断点另一侧的第五修复区 55的像素电极 15和数据线 12连接起来。 对于 这种修复数据线 12断线的方法,在修复过程中的激光焊接的位置虽然没有在 图中标识, 但通过上述描述本领域技术人员可以明确找到激光焊接的位置。
步骤 c2的两种方法都是将数据线断点 30两侧的数据线通过像素电极连 接起来, 从而使得数据线断线得以修复。
针对图 7所示的阵列基板,下面参考图 9提供一种修复其栅线 11断线的 方法, 包括: dl、 检测并确定栅线断点 30的位置;
d2、 釆用激光焊接方法, 将该栅线断点 30—侧的薄膜晶体管 13 (图 9 中为左侧像素单元中的薄膜晶体管 ) 的漏极和该栅线 11连接起来;
釆用激光切割方法, 将该栅线 11断点另一侧的数据线 12在靠近该栅线 11的两修复区的两端切断。切断的位置请参考图 9标识的用空白的矩形标识 的位置。例如,靠近该栅线 11的两修复区为第二修复区 52和第四修复区 55 , 此工序将数据线 12在这两修复区的两端切断。
釆用激光; 1:早接的方法, 分别将所述两修复区 (图 9 中为第二修复区 52 和第五修复区 55 )的像素电极 15和数据线 12连接起来,并将与该数据线 12 相连的薄膜晶体管 13 (图 9中为右侧像素单元中的薄膜晶体管 )的漏极与该 栅线 11连接起来;
通过步骤 d2, 使得栅线断点 30两侧的栅线利用两个像素单元中的像素 电极以及所述两个像素单元中间所切断的一段数据线连接起来, 从而可以修 复栅线断线。 但由于切割数据线, 而造成了数据线上的断点, 故还需要通过 步骤 d3修复该切断的数据线。
d3、釆用激光焊接方法,将该数据线 12与所述数据修复线 41连接起来。 具体的可以参考图 2,将该切断的数据线 12的首尾两端分别和数据修复 线 41相连, 从而修复该切断的数据线。
需要说明的是,步骤 d2和步骤 d3无先后次序; 并且步骤 d2中的各工序 也无先后次序。
公开的技术方案实施例提供的方案可以利用第一修复区和第二修复区 (或者第四修复区和第五修复区)修复数据线断线, 进一步可以结合数据修 复线修复栅线断线。 公开的技术方案提供的方案对数据线断线的条数没有限 制, 即使数据线断线或栅线断线的条数比较多也可以——修复, 从而提高液 晶显示面板的良率。
另外, 本发明还提供一种液晶显示面板, 包括相面对的彩膜基板和阵列 基板以及夹设在它们之间的液晶层。 该阵列基板可以釆用根据公开的技术方 案实施例的任一种阵列基板。
另外, 需要说明的是, 本说明书中所述的修复区内像素电极与数据线或 栅线重叠是指在沿阵列基板面的平面图中有交叠部分, 而并不是指像素电极 与数据线或栅线能够直接接触。 本领域的技术人员可以了解, 像素电极、 数 据线和栅线一般形成在不同的层中, 且在不同的层之间插设有绝缘层(栅极 绝缘膜或钝化层中) 。 因此, 在修复区被激光焊接前, 修复区内的像素电极 不会与数据线或栅线电连接。
在附图中仅给出了像素电极设置有狭缝状开口的形状作为示例, 然而, 公开的技术方案不限于上述具体形式。 公开的技术方案可以应用于各种类型 的液晶显示面板及其阵列基板, 例如, 扭曲向列型(TN )面板、 垂直配向型 ( VA ) 面板、 平面切换型 (IPS )型面板以及边缘场切换型 (FFS ) 面板。
以上所述, 仅为公开的技术方案的具体实施方式, 但公开的技术方案的 保护范围并不局限于此, 任何熟悉本技术领域的技术人员在公开的技术方案 揭露的技术范围内, 可轻易想到的变化或替换, 都应涵盖在公开的技术方案 的保护范围之内。 因此, 公开的技术方案的保护范围应以所述权利要求的保 护范围为准。

Claims

权利要求书
1、 一种阵列基板, 包括:
信号线, 包括相互交叉的多条栅线和多条数据线; 以及
由所述栅线和所述数据线限定的多个像素单元,
其中每个像素单元中形成有薄膜晶体管、 公共电极以及与所述薄膜晶体 管的漏极相连的像素电极,
每个像素单元在与一条数据线相邻的两个角的位置分别形成有第一修复 区和第二修复区; 在所述第一修复区和第二修复区内, 所述像素电极和该数 据线的图案相重叠, 且无公共电极图案。
2、根据权利要求 1所述的阵列基板,其中在所述第一修复区和第二修复 区内, 所述像素电极和该数据线均形成有突起图案, 且两者的突起图案相重 叠。
3、根据权利要求 1或 2所述的阵列基板,其中在相邻于与该像素单元的 薄膜晶体管相连的一条栅线且非薄膜晶体管所在位置的一个角的位置, 该像 素单元形成有第三修复区; 在该第三修复区内, 所述像素电极和该栅线的图 案相重叠, 且无公共电极图案。
4、根据权利要求 3所述的阵列基板, 其中在该第三修复区内, 所述像素 电极形成有突起图案, 且该突起图案和该栅线的图案相重叠。
5、根据权利要求 1或 2所述的阵列基板,其中所述阵列基板中在包括所 有像素单元的像素区域周围形成有数据修复线;
所述像素单元还在与另一条数据线相邻的两个角的位置分别形成有第四 修复区和第五修复区; 在所述第四修复区和第五修复区内, 所述像素电极和 所述另一条数据线的图案相重叠, 且无公共电极图案。
6、根据权利要求 5所述的阵列基板,其中在所述第四修复区和所述第五 修复区内, 所述像素电极和所述另一条数据线均形成有突起图案, 且两者的 突起图案相重叠。
7、根据权利要求 1-6中任一项所述的阵列基板, 其中所述薄膜晶体管的 源极与对应的数据线相连, 所述薄膜晶体管的栅极与对应的栅线相连。
8、根据权利要求 1-7中任一项所述的阵列基板, 其中所述薄膜晶体管位 于所述像素单元的一角附近的位置。
9、 一种液晶显示面板, 包括:
彩膜基板;
根据权利要求 1-8中任一项所述的阵列基板, 与所述彩膜基板相面对; 以及
夹设在所述彩膜基板和所述阵列基板之间的液晶层。
10、 一种修复权利要求 3或 4所述的阵列基板中信号线断线的方法, 包 括:
al、 检测并确定信号线断点的位置;
a2、 当检测到数据线断点时, 釆用激光焊接方法, 将该数据线断点一侧 的第一修复区的像素电极和该数据线连接起来, 并且将该数据线断点另一侧 的第二修复区的像素电极和该数据线连接起来;
当检测到栅线断点时, 釆用激光焊接方法, 将该栅线断点一侧的第三修 复区的像素电极和该栅极线连接起来, 并且将该栅线断点另一侧的薄膜晶体 管的漏极和该栅线连接起来。
1 1、 一种修复权利要求 5或 6所述的阵列基板中信号线断线的方法, 包 括:
cl、 检测并确定信号线断点的位置;
c2、 当检测到数据线断点时, 釆用激光焊接方法, 将该数据线断点一侧 的第一修复区的像素电极和该数据线连接起来, 并且将该数据线断点另一侧 的第二修复区的像素电极和该数据线连接起来; 或者, 釆用激光焊接方法, 将该数据线断点一侧的第四修复区的像素电极和该数据线连接起来, 并且将 该数据线断点另一侧的第五修复区的像素电极和该数据线连接起来;
当检测到栅线断点时, 釆用激光焊接方法, 将该栅线断点一侧的薄膜晶 体管的漏极和该栅线连接起来; 釆用激光切割方法, 将该栅线断点另一侧的 数据线在靠近该栅线的两修复区的两端切断; 釆用激光; 1:早接的方法, 分别将 所述两修复区的像素电极和数据线连接起来, 并将与该数据线相连的薄膜晶 体管的漏极与该栅线连接起来; 釆用激光; t早接方法, 将该数据线与数据修复 线连接起来。
PCT/CN2012/079529 2011-08-02 2012-08-01 阵列基板、液晶显示面板及其修复断线的方法 WO2013017087A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020127029772A KR101456353B1 (ko) 2011-08-02 2012-08-01 어레이 기판, lcd 패널 및 이들의 단선을 리페어하는 방법
US13/698,871 US10068813B2 (en) 2011-08-02 2012-08-01 Array substrate, liquid crystal display panel and broken-line repairing method thereof
JP2014523187A JP2014527195A (ja) 2011-08-02 2012-08-01 アレイ基板、液晶ディスプレイ・パネル及びその断線の修復方法
EP12778191.2A EP2741133B1 (en) 2011-08-02 2012-08-01 Array substrate, liquid crystal display panel and method of repairing broken lines of liquid crystal display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110219983.4A CN102629050B (zh) 2011-08-02 2011-08-02 一种像素结构、液晶显示面板及其修复断线的方法
CN201110219983.4 2011-08-02

Publications (1)

Publication Number Publication Date
WO2013017087A1 true WO2013017087A1 (zh) 2013-02-07

Family

ID=46587332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/079529 WO2013017087A1 (zh) 2011-08-02 2012-08-01 阵列基板、液晶显示面板及其修复断线的方法

Country Status (6)

Country Link
US (1) US10068813B2 (zh)
EP (2) EP3043204B1 (zh)
JP (1) JP2014527195A (zh)
KR (1) KR101456353B1 (zh)
CN (1) CN102629050B (zh)
WO (1) WO2013017087A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102132458B1 (ko) 2013-08-21 2020-08-06 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이를 포함하는 액정 표시 장치
KR102117614B1 (ko) 2013-10-18 2020-06-02 삼성디스플레이 주식회사 박막트랜지스터 기판 및 기판의 신호선 리페어 방법
CN205910472U (zh) * 2016-08-22 2017-01-25 京东方科技集团股份有限公司 一种阵列基板及显示装置
CN107479290A (zh) * 2017-09-21 2017-12-15 京东方科技集团股份有限公司 一种阵列基板及其断线修复方法、显示装置
CN108287442B (zh) * 2018-02-06 2021-11-16 重庆京东方光电科技有限公司 阵列基板的修复方法和阵列基板
CN109164654B (zh) * 2018-09-27 2021-10-22 京东方科技集团股份有限公司 一种阵列基板及其制作方法、显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040125332A1 (en) * 2002-12-30 2004-07-01 Lg. Philips Lcd Co., Ltd. Open gate line repair in an LCD
US20040125259A1 (en) * 2002-12-31 2004-07-01 Ki-Sul Cho Liquid crystal display device having redundancy repair pattern and method of forming and using the same
US20050157220A1 (en) * 2001-05-16 2005-07-21 Dong-Gyu Kim Thin film transistor array substrate for liquid crystal display
CN2769951Y (zh) * 2004-12-17 2006-04-05 群康科技(深圳)有限公司 液晶显示装置
US20060109409A1 (en) * 2004-11-19 2006-05-25 Innolux Display Corp. LCD panel with provision for data line repair
CN1782826A (zh) * 2004-12-02 2006-06-07 群康科技(深圳)有限公司 液晶显示装置
CN101581840A (zh) * 2008-05-16 2009-11-18 北京京东方光电科技有限公司 液晶显示器及其修复断线的方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0980470A (ja) * 1995-09-14 1997-03-28 Hitachi Electron Eng Co Ltd Tft基板の配線欠陥修復方法
US5995178A (en) * 1995-10-16 1999-11-30 Sharp Kabushiki Kaisha Active matrix liquid crystal panel and method for repairing defect therein
JP3287985B2 (ja) * 1995-10-30 2002-06-04 シャープ株式会社 液晶パネル及びその欠陥修正方法
KR100244181B1 (ko) * 1996-07-11 2000-02-01 구본준 액정표시장치의리페어구조및그를이용한리페어방법
JP3680527B2 (ja) * 1997-01-31 2005-08-10 富士通ディスプレイテクノロジーズ株式会社 薄膜トランジスタマトリクス基板及びその製造方法
JPH11138449A (ja) 1997-11-07 1999-05-25 Tomoaki Goto 平面研削盤用砥石・ホルダ組立体及び砥石セグメント
KR100313245B1 (ko) * 1999-08-25 2001-11-07 구본준, 론 위라하디락사 리페어 기능을 갖는 액정표시소자
JP4584387B2 (ja) * 1999-11-19 2010-11-17 シャープ株式会社 表示装置及びその欠陥修復方法
KR20030027203A (ko) 2001-09-14 2003-04-07 비오이 하이디스 테크놀로지 주식회사 프린지 필드 스위칭 액정표시장치
JP2004264726A (ja) * 2003-03-04 2004-09-24 Fujitsu Display Technologies Corp 表示装置用基板及びそれを備えた表示装置、並びにその欠陥修復方法及びそれを含む製造方法
JP4535791B2 (ja) * 2004-06-28 2010-09-01 Nec液晶テクノロジー株式会社 液晶表示装置用基板及び該基板の補修方法
TWI299426B (en) * 2005-10-28 2008-08-01 Innolux Display Corp Method for repairing tft substrate
US7649580B2 (en) * 2007-01-11 2010-01-19 Hannstar Display Corp. Liquid crystal display panel and repairing method thereof
CN101614916B (zh) * 2008-06-25 2012-05-30 北京京东方光电科技有限公司 Tft-lcd像素结构和液晶显示器修复断线的方法
CN101430438B (zh) * 2008-12-08 2010-04-14 上海广电光电子有限公司 液晶显示面板的像素结构及其修复方法
KR101571775B1 (ko) 2009-03-09 2015-12-07 삼성디스플레이 주식회사 어레이 기판, 이의 제조 방법 및 어레이 기판의 리페어 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050157220A1 (en) * 2001-05-16 2005-07-21 Dong-Gyu Kim Thin film transistor array substrate for liquid crystal display
US20040125332A1 (en) * 2002-12-30 2004-07-01 Lg. Philips Lcd Co., Ltd. Open gate line repair in an LCD
US20040125259A1 (en) * 2002-12-31 2004-07-01 Ki-Sul Cho Liquid crystal display device having redundancy repair pattern and method of forming and using the same
US20060109409A1 (en) * 2004-11-19 2006-05-25 Innolux Display Corp. LCD panel with provision for data line repair
CN1782826A (zh) * 2004-12-02 2006-06-07 群康科技(深圳)有限公司 液晶显示装置
CN2769951Y (zh) * 2004-12-17 2006-04-05 群康科技(深圳)有限公司 液晶显示装置
CN101581840A (zh) * 2008-05-16 2009-11-18 北京京东方光电科技有限公司 液晶显示器及其修复断线的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2741133A4 *

Also Published As

Publication number Publication date
CN102629050A (zh) 2012-08-08
EP2741133B1 (en) 2016-06-29
EP2741133A1 (en) 2014-06-11
US10068813B2 (en) 2018-09-04
CN102629050B (zh) 2014-06-11
EP3043204B1 (en) 2017-07-05
EP3043204A3 (en) 2016-08-10
KR101456353B1 (ko) 2014-11-03
EP2741133A4 (en) 2015-06-10
JP2014527195A (ja) 2014-10-09
EP3043204A2 (en) 2016-07-13
KR20130042489A (ko) 2013-04-26
US20130155342A1 (en) 2013-06-20

Similar Documents

Publication Publication Date Title
KR101302622B1 (ko) 액정표시장치 및 액정표시장치의 리페어 방법
WO2013017087A1 (zh) 阵列基板、液晶显示面板及其修复断线的方法
US8416370B2 (en) Liquid crystal display device having patterned alignment fiducial mark and method for manufacturing the same
CN105759522B (zh) Tft基板的断线修复方法
TWI447497B (zh) 顯示器基材,包含其之液晶顯示裝置,以及其之修理方法
KR101303476B1 (ko) 액정표시장치 어레이 기판 및 그 제조방법
US20100134137A1 (en) Liquid crystal display panel and its inspecting method
WO2014187097A1 (zh) 阵列基板、该阵列基板断线修复方法及显示装置
CN105093729B (zh) 阵列基板及其制作方法、显示装置
WO2014205856A1 (zh) 一种线路修补结构及修补方法
WO2020119548A1 (zh) 显示面板的修复方法和显示面板
WO2013107193A1 (zh) 阵列基板、液晶显示器件及其修复方法
WO2018176754A1 (zh) 阵列基板、显示面板及显示装置
US7800727B2 (en) Liquid crystal display device having bus line with opening portions overlapped by conductive films
WO2016106856A1 (zh) 薄膜晶体管阵列基板及液晶显示面板
JP2018508031A (ja) アレイ基板とその断線補修方法
TW201518829A (zh) 薄膜電晶體基板及其修護方法
WO2020192422A1 (zh) 显示面板、显示面板的修复方法以及显示装置
JP5302101B2 (ja) 表示装置
KR100798992B1 (ko) 액정 표시 장치 및 그 제조 방법
JP5552247B2 (ja) 液晶表示装置及びその製造方法
JP6273357B2 (ja) 配列基板及び表示パネル
KR20010003748A (ko) 고개구율 및 고투과율 액정 표시 장치 및 그 제조방법
TWI400521B (zh) 修補結構以及主動元件陣列基板
KR20000074833A (ko) 액정표시장치

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014523187

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012778191

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127029772

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13698871

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12778191

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE