WO2013015077A1 - 化合物、ヘイズ低下剤、液晶組成物、高分子材料およびフィルム - Google Patents

化合物、ヘイズ低下剤、液晶組成物、高分子材料およびフィルム Download PDF

Info

Publication number
WO2013015077A1
WO2013015077A1 PCT/JP2012/066957 JP2012066957W WO2013015077A1 WO 2013015077 A1 WO2013015077 A1 WO 2013015077A1 JP 2012066957 W JP2012066957 W JP 2012066957W WO 2013015077 A1 WO2013015077 A1 WO 2013015077A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
liquid crystal
carbon atoms
independently
Prior art date
Application number
PCT/JP2012/066957
Other languages
English (en)
French (fr)
Inventor
理俊 水村
峻也 加藤
稔 上村
石綿 靖宏
吉川 将
拓史 松山
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201280036066.5A priority Critical patent/CN103702971B/zh
Priority to KR1020147004785A priority patent/KR101629587B1/ko
Priority to EP12818188.0A priority patent/EP2738155B1/en
Publication of WO2013015077A1 publication Critical patent/WO2013015077A1/ja
Priority to US14/163,901 priority patent/US9481829B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • C07C69/84Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring of monocyclic hydroxy carboxylic acids, the hydroxy groups and the carboxyl groups of which are bound to carbon atoms of a six-membered aromatic ring
    • C07C69/92Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring of monocyclic hydroxy carboxylic acids, the hydroxy groups and the carboxyl groups of which are bound to carbon atoms of a six-membered aromatic ring with etherified hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • C09K19/2007Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/32Non-steroidal liquid crystal compounds containing condensed ring systems, i.e. fused, bridged or spiro ring systems
    • C09K19/322Compounds containing a naphthalene ring or a completely or partially hydrogenated naphthalene ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/34Non-steroidal liquid crystal compounds containing at least one heterocyclic ring
    • C09K19/3441Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom
    • C09K19/3475Non-steroidal liquid crystal compounds containing at least one heterocyclic ring having nitrogen as hetero atom the heterocyclic ring being a six-membered aromatic ring containing at least three nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/58Dopants or charge transfer agents
    • C09K19/586Optically active dopants; chiral dopants
    • C09K19/588Heterocyclic compounds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0425Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a specific unit that results in a functional effect
    • C09K2019/0429Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a specific unit that results in a functional effect the specific unit being a carbocyclic or heterocyclic discotic unit
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0425Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a specific unit that results in a functional effect
    • C09K2019/044Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a specific unit that results in a functional effect the specific unit being a perfluoro chain used as an end group
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • C09K19/2007Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups
    • C09K2019/2078Ph-COO-Ph-COO-Ph
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n

Definitions

  • the present invention includes compounds useful for various applications including materials for various optical members such as an optically anisotropic film and a thermal barrier film, a haze reducing agent, a liquid crystal composition containing the compound, and a polymer material.
  • the present invention relates to a film using them.
  • the liquid crystal aligns regularly when applied on a film (alignment film) that has been subjected to an alignment treatment.
  • the alignment state of the liquid crystal can be controlled by sandwiching the liquid crystal between two alignment films. Therefore, in a liquid crystal display device comprising a liquid crystal cell comprising rod-like liquid crystalline molecules and two substrates for encapsulating them, and an electrode layer for applying a voltage to the rod-like liquid crystalline molecules, the liquid crystal display device comprises two substrates. Since the rod-like liquid crystalline molecules are injected into the gap between the formed alignment films, the alignment state of the rod-like liquid crystalline molecules can be controlled relatively easily.
  • an optical compensation sheet (retardation plate) is disposed between the liquid crystal cell and the polarizing plate for the purpose of expanding the viewing angle of the liquid crystal display device or eliminating the coloring.
  • an optically anisotropic element having an optically anisotropic layer formed from liquid crystalline molecules on a transparent support is used as the optical compensation sheet.
  • the optically anisotropic layer is formed by aligning liquid crystal molecules and fixing the alignment state.
  • the liquid crystalline molecules are aligned by a single alignment film provided between the transparent support and the optically anisotropic layer.
  • Patent Document a technology has been developed to uniformly align the liquid crystal without giving an alignment film on the non-aligned interface (air interface) side.
  • the alignment of liquid crystal molecules is controlled by adding a liquid crystal alignment accelerator.
  • the liquid crystal composition which a liquid crystalline molecule aligns easily and uniformly by using a liquid crystal alignment promoter is provided.
  • the usable concentration range and solubility of the liquid crystal alignment accelerators described in Patent Documents 1 and 2 are not necessarily sufficient, and there is still room for improvement.
  • Another object of the present invention is to provide a new liquid crystal composition capable of lowering the haze of the resulting film by liquid crystal molecules being easily and uniformly aligned.
  • the present invention relates to a compound useful for various applications including a material for various optical members such as an optically anisotropic film and a heat-shielding film, a liquid crystal composition containing the compound, a polymer material, and these.
  • a material for various optical members such as an optically anisotropic film and a heat-shielding film
  • a liquid crystal composition containing the compound a polymer material, and these.
  • the purpose is to provide a used film.
  • L 1 , L 2 , L 3 , L 4 , L 5 , L 6 are each independently a single bond, —O—, —S—, —CO—, —COO—, —OCO—, — COS-, -SCO-, -NRCO-, -CONR-
  • each R independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • Sp 1 , Sp 2 , Sp 3 and Sp 4 each independently represents a single bond or an alkylene group having 1 to 10 carbon atoms (provided that the hydrogen atom of the alkylene group may be substituted with a fluorine atom)
  • a 1 , A 2 represents a trivalent or tetravalent aromatic hydrocarbon
  • T is
  • X represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group, a halogen
  • Hb represents a perfluoroalkyl group or a fluoroalkyl group having 2 to 30 carbon atoms.
  • m and n are each independently 2 or 3, and a plurality of structures in parentheses may be the same or different from each other.
  • o and p are each independently an integer of 0 or more, and when o and p are 2 or more, a plurality of Xs may be the same or different from each other.
  • T in the general formula (I) is [Wherein, o represents an integer of 0 or more, and when o is 2 or more, Xs may be the same or different from each other.
  • L 3 is —COO— and L 4 is —OCO—, and A 1 and A 2 are each independently And L 2 and L 5 are preferably —O—.
  • Hb is preferably a perfluoroalkyl group having 2 to 30 carbon atoms.
  • a liquid crystal composition comprising polymerizable liquid crystal molecules and a compound represented by the following general formula (I).
  • L 1 , L 2 , L 3 , L 4 , L 5 , L 6 are each independently a single bond, —O—, —S—, —CO—, —COO—, —OCO—, — COS-, -SCO-, -NRCO-, -CONR- (in the general formula (I), each R independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms), and Sp 1 , Sp 2 , Sp 3 and Sp 4 each independently represents a single bond or an alkylene group having 1 to 10 carbon atoms (provided that the hydrogen atom of the alkylene group may be substituted with a fluorine atom), and A 1 , A 2 represents a trivalent or tetravalent aromatic hydrocarbon, and T is (X represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group, a halogen atom, a cyano group, or —COOR 0 (R 0 is a hydrogen
  • Hb represents a perfluoroalkyl group or a fluoroalkyl group having 2 to 30 carbon atoms.
  • m and n are each independently 2 or 3, and a plurality of structures in parentheses may be the same or different from each other.
  • o and p are each independently an integer of 0 or more, and when o and p are 2 or more, a plurality of Xs may be the same or different from each other.
  • the polymerizable liquid crystal molecules are preferably rod-like liquid crystal molecules.
  • the liquid crystal composition according to [6] or [7] preferably contains at least one chiral compound.
  • the film according to [10] or [11] preferably exhibits optical anisotropy.
  • the film described in any one of [10] to [12] preferably exhibits selective reflection characteristics.
  • the film according to [13] preferably exhibits selective reflection characteristics in an infrared wavelength region.
  • various compounds such as an optically anisotropic film and a heat-shielding film are used by utilizing the compound represented by the general formula (I) having a wide use concentration range, high solvent solubility and high haze-reducing action.
  • Liquid crystal compositions and polymer materials useful for various applications including materials for optical members, and films using them can be provided.
  • FIG. 1 shows the transmission spectrum of the film produced in Example 25 using the compound (2) which is a haze reducing agent.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the compound of the present invention is represented by the following general formula (I).
  • the compound of the following general formula (I) is characterized by having a divalent group at the center and an alkyl group at the terminal.
  • a compound having a fluorinated alkyl group at the terminal is effective as an alignment accelerator, but conventionally known alignment accelerators have a limited use concentration range and low solubility, limiting their use. It had been.
  • the compound represented by the following general formula (I) can be preferably used as a haze-reducing agent because it exhibits the same or better orientation performance in a wider concentration range and good solubility. Also, it can be preferably used as a liquid crystal alignment accelerator. Therefore, the composition containing the compound represented by the following general formula (I) has an advantage of being easy to use in production. Moreover, since it can be hardened
  • L 1 , L 2 , L 3 , L 4 , L 5 and L 6 are each independently a single bond, —O—, —S—, —CO—, —COO—, —OCO. —, —COS—, —SCO—, —NRCO—, —CONR— (in the general formula (I), R represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms), —NRCO—, — CONR- has the effect of reducing the solubility, and has a tendency to increase the haze value during film formation.
  • the alkyl group that R can take may be linear or branched.
  • the number of carbon atoms is more preferably 1 to 3, and examples thereof include a methyl group, an ethyl group, and an n-propyl group.
  • Sp 1 , Sp 2 , Sp 3 and Sp 4 each independently represents a single bond or an alkylene group having 1 to 10 carbon atoms, more preferably a single bond or an alkylene group having 1 to 7 carbon atoms, and still more preferably A single bond or an alkylene group having 1 to 4 carbon atoms.
  • the hydrogen atom of the alkylene group may be substituted with a fluorine atom.
  • the alkylene group may or may not be branched, but a linear alkylene group having no branch is preferred. From the viewpoint of synthesis, it is preferable that Sp 1 and Sp 4 are the same, and Sp 2 and Sp 3 are the same.
  • a 1 and A 2 are trivalent or tetravalent aromatic hydrocarbons.
  • the carbon number of the trivalent or tetravalent aromatic hydrocarbon group is preferably 6 to 22, more preferably 6 to 14, further preferably 6 to 10, and further preferably 6. More preferred.
  • the trivalent or tetravalent aromatic hydrocarbon group represented by A 1 or A 2 may have a substituent. Examples of such a substituent include an alkyl group having 1 to 8 carbon atoms, an alkoxy group, a halogen atom, a cyano group, or an ester group. For the explanation and preferred ranges of these groups, the corresponding description of T below can be referred to.
  • Examples of the substituent for the trivalent or tetravalent aromatic hydrocarbon group represented by A 1 or A 2 include a methyl group, an ethyl group, a methoxy group, an ethoxy group, a bromine atom, a chlorine atom, and a cyano group. be able to.
  • a molecule having a large number of perfluoroalkyl moieties in the molecule can orient the liquid crystal with a small addition amount, leading to a decrease in haze, so that A 1 and A 2 have a large number of perfluoroalkyl groups in the molecule. It is preferable that it is tetravalent. From the viewpoint of synthesis, A 1 and A 2 are preferably the same.
  • T is (X represents an alkyl group having 1 to 8 carbon atoms, an alkoxy group, a halogen atom, a cyano group, or R′COO— (where R ′ represents a hydrogen atom).
  • Ya, Yb, Yc and Yd each independently represent a hydrogen atom or a carbon number of 1 to 4 Represents an alkyl group of And more preferably And even more preferably It is.
  • the alkyl group which X can take has 1 to 8 carbon atoms, preferably 1 to 5 carbon atoms, and more preferably 1 to 3 carbon atoms.
  • the alkyl group may be linear, branched or cyclic, and is preferably linear or branched.
  • preferable alkyl groups include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group, and among them, a methyl group is preferable.
  • the description and preferred range of the alkyl group that X can take can be referred to.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a chlorine atom and a bromine atom are preferable.
  • R 0 represents a hydrogen atom, an adjacent CH 2 alkyl group or fluorinated alkyl group which may be substituted with O or S, or —Sp 5 —P.
  • R 0 represents an alkyl group or a fluorinated alkyl group in which adjacent CH 2 may be substituted with O or S
  • a group represented by —Sp 6 — (L 7 —Sp 7 ) q —CH 3 or A group represented by —Sp 8 — (L 8 —Sp 9 ) r —Hb 0 is more preferable.
  • Sp 6 , Sp 7 , Sp 8 and Sp 9 each independently represent a single bond or an alkylene group having 1 to 10 carbon atoms, preferably a single bond or an alkylene group having 1 to 7 carbon atoms, more preferably a single bond.
  • the hydrogen atom of the alkylene group represented by Sp 6 , Sp 7 , Sp 8 , Sp 9 may be substituted with a fluorine atom, but is preferably not substituted, and the alkylene group may be branched. A straight-chain alkylene group having no branching is preferable although it may be omitted.
  • L 7 and L 8 are each independently a single bond, —O—, —S—, —CO—, —COO—, —OCO—, —COS—, —SCO—, —NRCO—, —CONR— (L 7 , R in L 8 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms), and —NRCO— and —CONR— have the effect of reducing solubility and increase the haze value during film formation. More preferred is —O—, —S—, —CO—, —COO—, —OCO—, —COS—, —SCO—, and more preferred is —O— from the viewpoint of the stability of the compound.
  • q represents an integer of 1 to 4, preferably an integer of 1 to 3, more preferably 2 or 3, and particularly preferably 3.
  • r represents an integer of 1 to 4, preferably an integer of 1 to 3, more preferably 1 or 2, and particularly preferably 1.
  • the plurality of L 7 , L 8 , Sp 7 and Sp 9 may be independent or different from each other.
  • Hb 0 represents a perfluoroalkyl group or fluoroalkyl group having 2 to 30 carbon atoms, more preferably a perfluoroalkyl group or fluoroalkyl group having 3 to 20 carbon atoms, and further preferably a perfluoroalkyl group having 3 to 10 carbon atoms.
  • the perfluoroalkyl group or fluoroalkyl group may be linear, branched or cyclic, but is preferably linear or branched, more preferably linear. .
  • Hb 0 is preferably a perfluoroalkyl group having 2 to 30 carbon atoms.
  • R 0 represents —Sp 5 —P
  • Sp 5 represents a single bond or an alkylene group having 1 to 10 carbon atoms, preferably a single bond or an alkylene group having 1 to 7 carbon atoms, more preferably a carbon number. 1 to 4 alkylene groups.
  • the hydrogen atom of the alkylene group represented by Sp 5 may be substituted with a fluorine atom, and the alkylene group may or may not be branched, but is preferably a linear alkylene group having no branch. It is.
  • the P represents a polymerizable group, and the polymerizable group is not particularly limited, but is preferably an ethylenically unsaturated double bond group, more preferably a methacryloyl group or an acryloyl group, and an acryloyl group. It is particularly preferred.
  • the alkyl group having 1 to 4 carbon atoms which Ya, Yb, Yc and Yd can take may be linear or branched.
  • the divalent aromatic heterocyclic group preferably has a 5-membered, 6-membered or 7-membered heterocyclic ring.
  • a 5-membered ring or a 6-membered ring is more preferable, and a 6-membered ring is most preferable.
  • the hetero atom constituting the heterocyclic ring a nitrogen atom, an oxygen atom and a sulfur atom are preferable.
  • the heterocycle is preferably an aromatic heterocycle.
  • the aromatic heterocycle is generally an unsaturated heterocycle. An unsaturated heterocyclic ring having the most double bond is more preferable.
  • heterocyclic rings examples include furan ring, thiophene ring, pyrrole ring, pyrroline ring, pyrrolidine ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, imidazole ring, imidazoline ring, imidazolidine ring, pyrazole ring, pyrazoline Ring, pyrazolidine ring, triazole ring, triazane ring, tetrazole ring, pyran ring, thiyne ring, pyridine ring, piperidine ring, oxazine ring, morpholine ring, thiazine ring, pyridazine ring, pyrimidine ring, pyrazine ring, piperazine ring and triazine ring included.
  • the divalent heterocyclic group may have a substituent.
  • substituents for the explanation and preferred range of examples of such substituents, reference can be made to the explanations and descriptions regarding the substituents that the trivalent or tetravalent aromatic hydrocarbons of A 1 and A 2 can take.
  • Hb represents a perfluoroalkyl group or fluoroalkyl group having 2 to 30 carbon atoms, more preferably a perfluoroalkyl group or fluoroalkyl group having 3 to 20 carbon atoms, and still more preferably a perfluoroalkyl group having 3 to 10 carbon atoms. Or it is a fluoroalkyl group.
  • the perfluoroalkyl group or fluoroalkyl group may be linear, branched or cyclic, but is preferably linear or branched, more preferably linear. .
  • the fluoroalkyl group represented by Hb is preferably a fluoroalkyl group having a terminal —CF 2 —H, and more preferably a fluoroalkyl group having —CF 2 —H linked to one end of a perfluoroalkylene group. .
  • Hb is preferably a perfluoroalkyl group having 2 to 30 carbon atoms.
  • m and n are each independently 2 or 3, and a plurality of parenthesized structures may be the same or different from each other, but are preferably the same.
  • M and n in the general formula (I) are determined by the valences of A 1 and A 2 , and a preferable range is also determined by a preferable range of the valences of A 1 and A 2 . It is bound by any theory that the compound in which m and n of the present invention are 2 or 3 of the present invention has a remarkably good haze reduction performance even if the addition amount is small as compared with the conventionally known compound and n is 1. Although it is not a thing, it is estimated that it originates in the fluorine content in a compound.
  • o and p are each independently an integer of 0 or more, and when o and p are 2 or more, a plurality of Xs may be the same or different from each other.
  • o is preferably 1 or 2.
  • p is preferably an integer of 1 to 4, and more preferably 1 or 2.
  • the compound represented by the general formula (I) may have a symmetrical molecular structure or may have no symmetry.
  • the symmetry here means one corresponding to any of point symmetry, line symmetry, or rotational symmetry
  • asymmetry means one not corresponding to any of point symmetry, line symmetry, or rotational symmetry.
  • the compound represented by the general formula (I) includes the perfluoroalkyl group (Hb), the linking group-(-Sp 1 -L 1 -Sp 2 -L 2 ) m -A 1 -L 3- and- L 4 -A 2 - (L 5 -Sp 3 -L 6 -Sp 4 -) n -, and is preferably a compound which is a combination of T is a divalent group having the excluded volume effect.
  • the two perfluoroalkyl groups (Hb) present in the molecule are preferably the same as each other, and the linking group present in the molecule-(-Sp 1 -L 1 -Sp 2 -L 2 ) m -A 1- L 3 - and -L 4 -A 2 - (L 5 -Sp 3 -L 6 -Sp 4 -) n - is preferably also the same.
  • the terminal Hb-Sp 1 -L 1 -Sp 2 -and -Sp 3 -L 6 -Sp 4 -Hb are preferably groups represented by any one of the following general formulas.
  • a is preferably from 2 to 30, more preferably from 3 to 20, and even more preferably from 3 to 10.
  • b is preferably 0 to 20, more preferably 0 to 10, and still more preferably 0 to 5.
  • a + b is 3 to 30.
  • r is preferably from 1 to 10, and more preferably from 1 to 4.
  • Hb-Sp 1 -L 1 -Sp 2 -L 2 -and -L 5 -Sp 3 -L 6 -Sp 4 -Hb at the end of the general formula (I) are represented by any one of the following general formulas.
  • the compound represented by the general formula (I) is synthesized by appropriately selecting and combining the synthesis methods described in JP-A Nos. 2002-129162, 2002-97170, and references cited therein. can do. Moreover, it can synthesize
  • the liquid crystal composition of the present invention contains a polymerizable liquid crystal molecule and a compound represented by the general formula (I).
  • a polymerizable liquid crystal molecule and a compound represented by the general formula (I).
  • one or more types of polymerizable liquid crystal molecules and one or more types of non-polymerizable liquid crystal molecules may be used in combination.
  • Two or more compounds represented by general formula (I) may be used, or a compound represented by general formula (I) and other compounds may be used in combination.
  • the compound represented by the general formula (I) is preferably used in an amount of 0.01 to 20% by mass of the amount of liquid crystal molecules.
  • the amount of the compound represented by the general formula (I) is more preferably 0.1 to 10% by mass of the amount of liquid crystal molecules.
  • the polymerizable liquid crystal molecule it is preferable to use a discotic liquid crystal molecule or a rod-like liquid crystal molecule.
  • Discotic liquid crystalline molecules are known in various literatures (C. Destrade et al., Mol. Crysr. Liq. Cryst., Vol. 71, page 111 (1981); edited by the Chemical Society of Japan, Quarterly Chemical Review, No. 22, B. Kohne et al., Angew. Chem. Soc. Chem. Comm., Page 1794 (1985); J. Zhang et al., J. Liquid Crystal Chemistry, Chapter 5, Chapter 10 Section 2 (1994); Am.Chem.Soc., Vol.116, page 2655 (1994)).
  • the polymerization of discotic liquid crystalline molecules is described in JP-A-8-27284.
  • the discotic liquid crystalline molecule having a polymerizable group is preferably a compound represented by the following formula.
  • D (-LQ) d In the above formula, D is a discotic core; L is a divalent linking group; Q is a polymerizable group; d is an integer of 4 to 12.
  • LQ means a combination of a divalent linking group (L) and a polymerizable group (Q).
  • triphenylene (D4) is particularly preferable.
  • rod-like liquid crystal molecules examples include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano-substituted phenylpyrimidines, alkoxy-substituted phenylpyrimidines.
  • Phenyldioxanes, tolanes and alkenylcyclohexylbenzonitriles are preferably used.
  • the birefringence of the rod-like liquid crystal molecules is preferably 0.001 to 0.7.
  • the rod-like liquid crystal molecules preferably have a molecular structure that is substantially symmetric with respect to the minor axis direction. For that purpose, it is preferable to have a polymerizable group at both ends of the rod-like molecular structure. Below, the specific example of the said rod-shaped liquid crystal molecule is shown.
  • the liquid crystal composition may contain a solvent, a compound containing an asymmetric carbon atom, or a polymerizable initiator (described later) and others, if necessary.
  • a solvent e.g, cellulose esters
  • an organic solvent is preferably used as the solvent for the liquid crystal composition.
  • organic solvents examples include amides (eg N, N-dimethylformamide), sulfoxides (eg dimethyl sulfoxide), heterocyclic compounds (eg pyridine), hydrocarbons (eg benzene, hexane), alkyl halides (eg , Chloroform, dichloromethane), esters (eg, methyl acetate, butyl acetate), ketones (eg, acetone, methyl ethyl ketone), ethers (eg, tetrahydrofuran, 1,2-dimethoxyethane). Alkyl halides and ketones are preferred. Two or more organic solvents may be used in combination.
  • amides eg N, N-dimethylformamide
  • sulfoxides eg dimethyl sulfoxide
  • heterocyclic compounds eg pyridine
  • hydrocarbons eg benzene, hexane
  • alkyl halides eg ,
  • a film can be formed by forming a liquid crystal composition containing the compound represented by formula (I) by a method such as coating.
  • An optically anisotropic element can also be produced by applying a liquid crystal composition on an alignment film to form a liquid crystal layer.
  • the liquid crystal composition can be applied by a known method (eg, extrusion coating method, direct gravure coating method, reverse gravure coating method, die coating method, bar coating method).
  • the liquid crystalline molecules are preferably fixed while maintaining the alignment state.
  • the immobilization is preferably performed by a polymerization reaction of the polymerizable group (Q) introduced into the liquid crystal molecule.
  • the polymerization reaction includes a thermal polymerization reaction using a thermal polymerization initiator and a photopolymerization reaction using a photopolymerization initiator.
  • a photopolymerization reaction is preferred.
  • photopolymerization initiators include ⁇ -carbonyl compounds (described in US Pat. Nos. 2,367,661 and 2,367,670), acyloin ether (described in US Pat. No. 2,448,828), ⁇ -hydrocarbon substituted aromatic acyloin. Compound (described in US Pat. No. 2,722,512), polynuclear quinone compound (described in US Pat. Nos.
  • the amount of the photopolymerization initiator used is preferably 0.01 to 20% by mass, more preferably 0.5 to 5% by mass, based on the solid content of the coating solution.
  • Light irradiation for polymerization of discotic liquid crystalline molecules is preferably performed using ultraviolet rays.
  • the irradiation energy is preferably 20 mJ / cm 2 to 50 J / cm 2 , and more preferably 100 to 800 mJ / cm 2 .
  • light irradiation may be performed under heating conditions.
  • the thickness of the liquid crystal layer is preferably from 0.1 to 50 ⁇ m, more preferably from 1 to 30 ⁇ m, and most preferably from 5 to 20 ⁇ m.
  • the coating amount of the compound represented by the general formula of the liquid crystal layer (I) is preferably 0.005 ⁇ 0.5g / m 2, it is 0.01 ⁇ 0.45g / m 2 More preferably, it is 0.02 to 0.4 g / m 2 , still more preferably 0.03 to 0.35 g / m 2 .
  • the alignment film is an organic compound (eg, ⁇ -tricosanoic acid) formed by rubbing treatment of an organic compound (preferably polymer), oblique deposition of an inorganic compound, formation of a layer having a microgroove, or Langmuir-Blodgett method (LB film). , Dioctadecylmethylammonium chloride, methyl stearylate). Furthermore, an alignment film in which an alignment function is generated by application of an electric field, application of a magnetic field or light irradiation is also known. An alignment film formed by a polymer rubbing treatment is particularly preferable.
  • an organic compound eg, ⁇ -tricosanoic acid
  • the rubbing treatment is carried out by rubbing the surface of the polymer layer several times in a certain direction with paper or cloth.
  • the type of polymer used for the alignment film is determined according to the alignment (particularly the average tilt angle) of the liquid crystal molecules.
  • a polymer that does not decrease the surface energy of the alignment film ordinary alignment film polymer
  • a polymer that lowers the surface energy of the alignment film is used.
  • the thickness of the alignment film is preferably 0.01 to 5 ⁇ m, and more preferably 0.05 to 1 ⁇ m.
  • the liquid crystal layer may be transferred onto the transparent support.
  • the liquid crystalline molecules fixed in the alignment state can maintain the alignment state even without the alignment film. In the case of orientation with an average inclination angle of less than 5 °, rubbing treatment is unnecessary and an orientation film is unnecessary.
  • an alignment film (described in JP-A-9-152509) forming a chemical bond with the liquid crystalline molecules at the interface may be used.
  • an alignment film is used for the purpose of improving adhesion, rubbing treatment need not be performed.
  • the liquid crystal layer formed on the transparent support can also function as an alignment film for the liquid crystal layer provided thereon.
  • the optically anisotropic element having the film of the present invention or the film of the present invention may have a transparent support.
  • a transparent support a glass plate or a polymer film, preferably a polymer film is used. That the support is transparent means that the light transmittance is 80% or more.
  • an optically isotropic polymer film is used as the transparent support.
  • the optical isotropy preferably has an in-plane retardation (Re) of less than 10 nm, more preferably less than 5 nm.
  • the retardation (Rth) in the thickness direction is preferably less than 10 nm, and more preferably less than 5 nm.
  • the in-plane retardation (Re) and the thickness direction retardation (Rth) of the transparent support are respectively defined by the following formulas.
  • Re (nx ⁇ ny) ⁇ d
  • Rth [ ⁇ (nx + ny) / 2 ⁇ -nz] ⁇ d
  • nx and ny are in-plane refractive indexes of the transparent support
  • nz is the refractive index in the thickness direction of the transparent support
  • d is the thickness of the transparent support.
  • an optically anisotropic polymer film may be used as a transparent support.
  • the transparent support preferably has optical uniaxiality or optical biaxiality.
  • optical uniaxial support even if it is optically positive (the refractive index in the optical axis direction is larger than the refractive index in the direction perpendicular to the optical axis), it is negative (the refractive index in the optical axis direction is It may be smaller than the refractive index in the vertical direction.
  • the refractive indices nx, ny and nz in the above formula are all different values (nx ⁇ ny ⁇ nz).
  • the in-plane retardation (Re) of the optically anisotropic transparent support is preferably 10 to 1000 nm, more preferably 15 to 300 nm, and most preferably 20 to 200 nm.
  • the thickness direction retardation (Rth) of the optically anisotropic transparent support is preferably 10 to 1000 nm, more preferably 15 to 300 nm, and still more preferably 20 to 200 nm.
  • the material for forming the transparent support is determined depending on whether it is an optical isotropic support or an optical anisotropic support.
  • an optically isotropic support glass or cellulose ester is generally used.
  • an optically anisotropic support a synthetic polymer (eg, polycarbonate, polysulfone, polyethersulfone, polyacrylate, polymethacrylate, norbornene resin) is generally used.
  • a retardation increasing agent e.g, polycarbonate, polysulfone, polyethersulfone, polyacrylate, polymethacrylate, norbornene resin
  • An isotropic (high retardation) cellulose ester film can also be produced.
  • the transparent support made of a polymer film is preferably formed by a solvent cast method.
  • the polymer film is preferably subjected to a stretching treatment.
  • a normal uniaxial stretching process or biaxial stretching process may be performed.
  • an optical biaxial support it is preferable to perform an unbalanced biaxial stretching process.
  • the polymer film is stretched in a certain direction (for example, 3 to 100%, preferably 5 to 30%) in a certain direction, and further in the direction perpendicular thereto (for example, 6 to 200%, preferably 10 to 90%).
  • the bi-directional stretching process may be performed simultaneously.
  • the stretching direction (the direction in which the stretching ratio is high in unbalanced biaxial stretching) and the in-plane slow axis of the film after stretching are preferably substantially the same direction.
  • the angle between the stretching direction and the slow axis is preferably less than 10 °, more preferably less than 5 °, and most preferably less than 3 °.
  • the thickness of the transparent support is preferably 10 to 500 ⁇ m, more preferably 50 to 200 ⁇ m.
  • surface treatment eg, glow discharge treatment, corona discharge treatment, ultraviolet light ( UV) treatment, flame treatment.
  • An ultraviolet absorber may be added to the transparent support.
  • An adhesive layer undercoat layer
  • the adhesive layer is described in JP-A-7-333433.
  • the thickness of the adhesive layer is preferably from 0.1 to 2 ⁇ m, and more preferably from 0.2 to 1 ⁇ m.
  • a coating solution having the following composition was prepared.
  • the concentration of the compound is 0.01 parts by mass, 0.02% by mass, 0.03 parts by mass, 0.05% by mass, 0.10 parts by mass, and 0.20 parts by mass with respect to the rod-shaped liquid crystal compound.
  • the amount of the solvent solute concentration described in 1 and Table 2 is 25% by mass
  • the prepared coating solution was weighed out by 50 ⁇ l using a micropipette and dropped onto glass with alignment film (SE-130) and spin-coated at a rotational speed of 2000 rpm. After heating at 85 ° C. for 2 minutes and allowing to cool for 1 minute, an optically anisotropic film was formed by irradiation with ultraviolet rays (ultraviolet intensity: 500 mJ / m 2 ) in a nitrogen atmosphere. The film thickness of the optically anisotropic film was about 5 ⁇ m.
  • each optically anisotropic film produced was evaluated visually and with haze.
  • the haze was measured using a Haze meter NDH2000 manufactured by Nippon Denka Co., Ltd.
  • the orientation promotion test the orientation promoting action of the compound was evaluated in the following four stages according to the haze value of the optically anisotropic film having a compound concentration of 0.01% by mass. At a concentration of 0.01% by mass, the compound is completely dissolved in the solvent, and the smaller the measured haze value, the greater the liquid crystal alignment promoting effect.
  • the concentration of the compound was 0.02% by mass and 0.03% by mass. %, 0.05% by mass, 0.10% by mass, and 0.20% by mass, the haze value of the optically anisotropic film was evaluated for dissolution / orientation promoting action in the following four stages.
  • a high evaluation indicates that the solubility is good and the alignment promoting action is large.
  • a low evaluation indicates that the solubility is mainly low. ⁇ Less than 0.15 ⁇ 0.15 or more, less than 0.35 ⁇ 0.35 or more, less than 0.90 ⁇ 0.90 or more
  • the compound of the present invention has a large haze-reducing effect and high solubility in a solvent even when the concentration is increased.
  • a haze reduction is because the liquid crystal alignment action of the compound of the present invention is large, so that the alignment of the liquid crystal is good even on the air interface side, that is, the compound of the present invention.
  • the compound of this invention has a wide application range of a coating solvent, and its usability is high.
  • composition solution was prepared according to the following composition.
  • -Rod-shaped liquid crystal compound 1 100 parts by mass-Chiral agent (A) 5.0 parts by mass-IRGACURE 819 (manufactured by Ciba Japan) 3.0 parts by mass-Compound (2) described in Table 1 0.03 parts by mass-Chloroform
  • the amount of the solute concentration of 25% by mass was weighed out by 50 ⁇ l using a micropipette and dropped onto glass with alignment film (SE-130) and spin-coated at a rotation speed of 2000 rpm. After heating at 85 ° C.
  • an optically anisotropic film was formed by irradiation with ultraviolet rays (ultraviolet intensity: 500 mJ / m 2 ) in a nitrogen atmosphere.
  • the film thickness of the optically anisotropic film was about 5 ⁇ m.
  • the transmission spectrum of the obtained optically anisotropic film was measured using a spectrophotometer UV-3100PC manufactured by SHIMADZU. The results are shown in FIG. As shown in FIG. 1, it was found that the film prepared in Example 35 is a selective reflection film having a central wavelength in the near infrared region near 900 nm and exhibits optical anisotropy.

Abstract

 下記一般式(I)で表される化合物は、十分な溶解性を示し、使用可能な濃度範囲が広くて、優れたヘイズ低下性を示す[式中、L~Lは単結合、-O-、-CO-、-COO-等;Sp~Spは単結合または炭素数1~10のアルキレン基;A、Aは3価または4価の芳香族炭化水素基または複素環基;Tは下記の基等;Hbは炭素数2~30のパーフルオロアルキル基;m、nは2または3;o、pは0以上の整数を表す。]。

Description

化合物、ヘイズ低下剤、液晶組成物、高分子材料およびフィルム
 本発明は、光学異方性フィルム、遮熱フィルム等の種々の光学部材の材料をはじめとする、様々な用途に有用な化合物、ヘイズ低下剤とそれを含む液晶組成物、及び高分子材料、並びにこれらを利用したフィルムに関する。
 液晶は配向処理の施された膜(配向膜)上に塗布すれば、規則正しく配向する。また、液晶を二枚の配向膜に挟み込むことによって液晶の配向状態を制御することができる。従って、棒状液晶性分子とそれを封入するための二枚の基板からなる液晶セルと、棒状液晶性分子に電圧を加えるための電極層とからなる液晶表示装置においては、二枚の基板上に形成された配向膜の間隙に棒状液晶性分子が注入された状態になっているため、棒状液晶性分子の配向状態を比較的容易に制御することができる。
 他方で、液晶表示装置の視野角拡大あるいは着色の解消を目的として、液晶セルと偏光板との間に、光学補償シート(位相差板)を配置することが行われている。この場合、透明支持体上に液晶性分子から形成した光学異方性層を有する光学異方性素子を光学補償シートとして使用する。光学異方性層は、液晶性分子を配向させ、その配向状態を固定することにより形成する。この時、液晶性分子は、透明支持体と光学異方性層との間に設けられる一枚の配向膜によって配向させる。しかし、一枚の配向膜では、液晶性分子を配向膜界面から空気界面まで均一に配向(モノドメイン配向)させることが難しい。これは、配向処理の施されていない界面(空気界面)側では、配向規制力がないため、液晶の配向が乱れてしまうためである。液晶性分子が均一に配向していないと、ディスクリネーションによる光散乱が生じ、不透明な膜が形成される。このような膜は液晶表示装置の視認性向上の観点から好ましくない。
 このような必要性から、配向処理の施されていない界面(空気界面)側において、配向膜を有さずとも液晶に配向規制力を与え、均一に配向させる技術が開発されている(特許文献1および2)。ここでは、液晶配向促進剤を添加することにより、液晶性分子の配向を制御している。そして、液晶配向促進剤を用いることにより、液晶性分子が容易に均一に配向する液晶組成物を提供している。
特開2002-129162号公報 特開2000-345164号公報
 しかし、特許文献1および2に記載される液晶配向促進剤の使用可能濃度範囲や溶解性は必ずしも十分ではなく、なお改善の余地があった。また、特許文献1および2に記載される液晶配向促進剤と同等以上の液晶配向促進作用を示し、その結果として得られるフィルムのヘイズを低下させることができる材料を提供することが望まれる。そこで本発明は、従来技術における当該課題を解決し、十分な溶解性を示し、使用可能な濃度範囲が広くて、優れたヘイズ低下性を示す化合物を提供することを目的とした。また、それによって液晶性分子が容易に均一に配向することなどによって、得られるフィルムのヘイズを低下させることができる新たな液晶組成物を提供することも目的とした。即ち本発明は、光学異方性フィルム、遮熱フィルム等の種々の光学部材の材料をはじめとする、種々の用途に有用な化合物とそれを含む液晶組成物、及び高分子材料、並びにこれらを利用したフィルムを提供することを目的とする。
 上記課題を解決するための手段は以下の通りである。
[1] 下記一般式(I)で表される化合物。
Figure JPOXMLDOC01-appb-C000007
[式中、L、L、L、L、L、Lはおのおの独立して単結合、-O-、-S-、-CO-、-COO-、-OCO-、-COS-、-SCO-、-NRCO-、-CONR-(一般式(I)中におけるRはそれぞれ独立して水素原子または炭素原子数が1~6のアルキル基を表す)を表し、またSp、Sp、Sp、Spはそれぞれ独立して単結合または炭素数1~10のアルキレン基(但し、該アルキレン基の水素原子はフッ素原子で置換されていてもよい)を表し、A、Aは3価または4価の芳香族炭化水素を表し、Tは
Figure JPOXMLDOC01-appb-C000008
で表される二価の基または二価の芳香族複素環基を表す(Xは炭素数1~8のアルキル基、アルコキシ基、ハロゲン原子、シアノ基または-COOR(Rは水素原子、隣接するCHがOまたはSで置換されていてもよいアルキル基もしくはフッ化アルキル基、または-Sp-Pを表し、Spは単結合または炭素数1~10のアルキレン基(但し、該アルキレン基の水素原子はフッ素原子で置換されていてもよい)を表し、Pは重合性基を表す)を表し、Ya、Yb、Yc、Ydはおのおの独立して水素または炭素数1~4のアルキル基を表す)であり、Hbはそれぞれ独立に炭素数2~30のパーフルオロアルキル基またはフルオロアルキル基を表す。m、nはそれぞれ独立に2または3であり、このとき複数存在する括弧内の構造は互いに同じでも異なっていてもよい。o、pはそれぞれ独立に0以上の整数であり、oおよびpが2以上であるとき複数のXは互いに同一であっても異なっていてもよい。]
[2] [1]の化合物は、前記一般式(I)において、Tが
Figure JPOXMLDOC01-appb-C000009
[式中、oは0以上の整数を表し、oが2以上であるときXは互いに同一であっても異なっていてもよい。]
であることが好ましい。
[3] [1]または[2]に記載の化合物は、前記一般式(I)において、Lが-COO-かつ、Lが-OCO-であり、AおよびAがそれぞれ独立に
Figure JPOXMLDOC01-appb-C000010
のいずれかであり、LおよびLが-O-であることが好ましい。
[4] [1]~[3]のいずれか1項に記載の化合物は、前記一般式(I)において、Hbがそれぞれ独立に炭素数2~30のパーフルオロアルキル基であることが好ましい。
[5] [1]~[4]のいずれか1項に記載の化合物を用いたヘイズ低下剤。
[6] 重合性液晶分子と下記一般式(I)で表される化合物を含む液晶組成物。
Figure JPOXMLDOC01-appb-C000011
[式中、L、L、L、L、L、Lはおのおの独立して単結合、-O-、-S-、-CO-、-COO-、-OCO-、-COS-、-SCO-、-NRCO-、-CONR-(一般式(I)中におけるRはそれぞれ独立して水素原子または炭素原子数が1~6のアルキル基を表す)を表し、またSp、Sp、Sp、Spはそれぞれ独立して単結合または炭素数1~10のアルキレン基(但し、該アルキレン基の水素原子はフッ素原子で置換されていてもよい)を表し、A、Aは3価または4価の芳香族炭化水素を表し、Tは
Figure JPOXMLDOC01-appb-C000012
で表される二価の基または二価の芳香族複素環基を表す(Xは炭素数1~8のアルキル基、アルコキシ基、ハロゲン原子、シアノ基または-COOR(Rは水素原子、隣接するCHがOまたはSで置換されていてもよいアルキル基もしくはフッ化アルキル基、または-Sp-Pを表し、Spは単結合または炭素数1~10のアルキレン基(但し、該アルキレン基の水素原子はフッ素原子で置換されていてもよい)を表し、Pは重合性基を表す)を表し、Ya、Yb、Yc、Ydはおのおの独立して水素または炭素数1~4のアルキル基を表す)であり、Hbはそれぞれ独立に炭素数2~30のパーフルオロアルキル基またはフルオロアルキル基を表す。m、nはそれぞれ独立に2または3であり、このとき複数存在する括弧内の構造は互いに同じでも異なっていてもよい。o、pはそれぞれ独立に0以上の整数であり、oおよびpが2以上であるとき複数のXは互いに同一であっても異なっていてもよい。]
[7] [6]に記載の液晶組成物は、前記重合性液晶分子が棒状液晶分子であることが好ましい。
[8] [6]または[7]に記載の液晶組成物は、少なくとも1種のキラル化合物を含有することが好ましい。
[9] [6]~[8]のいずれか1項に記載の液晶組成物を重合させてなる高分子材料。
[10] [9]に記載の高分子材料の少なくとも1種を含有するフィルム。
[11] [6]~[8]のいずれか1項に記載の液晶組成物のコレステリック液晶相を固定してなるフィルム。
[12] [10]または[11]に記載のフィルムは、光学異方性を示すことが好ましい。
[13] [10]~[12]のいずれか1項に記載のフィルムは、選択反射特性を示すことが好ましい。
[14] [13]に記載のフィルムは、赤外線波長域に選択反射特性を示すことが好ましい。
 本発明によれば、使用濃度範囲が広くて溶剤溶解性が高くヘイズ低下作用も高い一般式(I)で表される化合物を利用して、光学異方性フィルム、遮熱フィルム等の種々の光学部材の材料をはじめとする、種々の用途に有用な液晶組成物、及び高分子材料、並びにこれらを利用したフィルムを提供することができる。
図1は、実施例25においてヘイズ低下剤である化合物(2)を用いて製造したフィルムの透過スペクトルを表す。
 以下、本発明について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様や具体例に基づいてなされることがあるが、本発明はそのような実施態様や具体例に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
[一般式(I)で表される化合物、ヘイズ低下剤]
 本発明の化合物は、下記一般式(I)で表されることを特徴とする。下記一般式(I)の化合物は二価の基を中心に有し、末端にアルキル基を有することを特徴とする。末端にフッ化アルキル基を有する化合物は配向促進剤として効果的であるが、従来知られている配向促進剤は、使用濃度範囲が狭いといった点や溶解性が低いといった点があり、用途が制限されていた。下記一般式(I)で表される化合物は同等以上の配向性能をより広い濃度範囲かつ良好な溶解性で示すことから、ヘイズ低下剤として好ましく用いることができる。また、液晶配向促進剤としても好ましく用いることができる。そのため、下記一般式(I)で表される化合物を含む組成物は製造において使用しやすいというメリットがある。また重合で硬化可能であることから、光学部材等の種々の用途に有用である。
Figure JPOXMLDOC01-appb-C000013
 一般式(I)において、L、L、L、L、L、Lはおのおの独立して単結合、-O-、-S-、-CO-、-COO-、-OCO-、-COS-、-SCO-、-NRCO-、-CONR-(一般式(I)中におけるRは水素原子または炭素数が1~6のアルキル基を表す)を表し、-NRCO-、-CONR-は溶解性を減ずる効果があり、膜作成時にヘイズ値が上昇する傾向があることからより好ましくは-O-、-S-、-CO-、-COO-、-OCO-、-COS-、-SCO-であり、化合物の安定性の観点からさらに好ましくは-O-、-CO-、-COO-、-OCO-である。上記のRがとりうるアルキル基は、直鎖状であっても分枝状であってもよい。炭素数は1~3であることがより好ましく、メチル基、エチル基、n-プロピル基を例示することができる。
 Sp、Sp、Sp、Spはそれぞれ独立して単結合または炭素数1~10のアルキレン基を表し、より好ましくは単結合または炭素数1~7のアルキレン基であり、さらに好ましくは単結合または炭素数1~4のアルキレン基である。但し、該アルキレン基の水素原子はフッ素原子で置換されていてもよい。アルキレン基には、分枝があっても無くてもよいが、好ましいのは分枝がない直鎖のアルキレン基である。合成上の観点からは、SpとSpが同一であり、かつ、SpとSpが同一であることが好ましい。
 A、Aは3価または4価の芳香族炭化水素である。3価または4価の芳香族炭化水素基の炭素数は6~22であることが好ましく、6~14であることがより好ましく、6~10であることがさらに好ましく、6であることがさらにより好ましい。A、Aで表される3価または4価の芳香族炭化水素基は置換基を有していてもよい。そのような置換基の例として、炭素数1~8のアルキル基、アルコキシ基、ハロゲン原子、シアノ基またはエステル基を挙げることができる。これらの基の説明と好ましい範囲については、下記のTの対応する記載を参照することができる。A、Aで表される3価または4価の芳香族炭化水素基に対する置換基としては、例えばメチル基、エチル基、メトキシ基、エトキシ基、臭素原子、塩素原子、シアノ基などを挙げることができる。パーフルオロアルキル部分を分子内に多く有する分子は、少ない添加量で液晶を配向させることができ、ヘイズ低下につながることから、分子内にパーフルオロアルキル基を多く有するようにA、Aは4価であることが好ましい。合成上の観点からは、AとAは同一であることが好ましい。
 Tは
Figure JPOXMLDOC01-appb-C000014
で表される二価の基または二価の芳香族複素環基を表す(Xは炭素数1~8のアルキル基、アルコキシ基、ハロゲン原子、シアノ基またはR’COO-(R’は水素原子、隣接するCHがOまたはSで置換されていてもよいアルキル基もしくはフッ化アルキル基、またはSp-Pを表し、Spは単結合または炭素数1~10のアルキレン基(但し、該アルキレン基の水素原子はフッ素原子で置換されていてもよい)を表し、Pは重合性基を表す)を表し、Ya、Yb、Yc、Ydはおのおの独立して水素原子または炭素数1~4のアルキル基を表す)であり、より好ましくは
Figure JPOXMLDOC01-appb-C000015
であり、さらに好ましくは
Figure JPOXMLDOC01-appb-C000016
であり、よりさらに好ましくは、
Figure JPOXMLDOC01-appb-C000017
である。
 Xがとりうるアルキル基の炭素数は1~8であり、1~5であることが好ましく、1~3であることがより好ましい。アルキル基は、直鎖状、分枝状、環状のいずれであってもよく、直鎖状または分枝状であることが好ましい。好ましいアルキル基として、メチル基、エチル基、n-プロピル基、イソプロピル基などを例示することができ、その中でもメチル基が好ましい。Xがとりうるアルコキシ基のアルキル部分については、Xがとりうるアルキル基の説明と好ましい範囲を参照することができる。
 Xがとりうるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子を挙げることができ、塩素原子、臭素原子が好ましい。
 Xがとりうる-COORとしては、Rが水素原子、隣接するCHがOまたはSで置換されていてもよいアルキル基もしくはフッ化アルキル基、または-Sp-Pを表す。
 Rが隣接するCHがOまたはSで置換されていてもよいアルキル基もしくはフッ化アルキル基を表す場合、-Sp-(L-Sp-CHで表される基または-Sp-(L-Sp-Hbで表される基であることがより好ましい。
 Sp、Sp、Sp、Spはそれぞれ独立して単結合または炭素数1~10のアルキレン基を表し、好ましくは単結合または炭素数1~7のアルキレン基であり、より好ましくは単結合または炭素数1~4のアルキレン基である。但し、Sp、Sp、Sp、Spが表すアルキレン基の水素原子はフッ素原子で置換されていてもよいが置換されていないことが好ましく、該アルキレン基には分枝があっても無くてもよいが好ましいのは分枝がない直鎖のアルキレン基である。
 L、Lはそれぞれ独立して単結合、-O-、-S-、-CO-、-COO-、-OCO-、-COS-、-SCO-、-NRCO-、-CONR-(L、L中におけるRは水素原子または炭素数が1~6のアルキル基を表す)を表し、-NRCO-、-CONR-は溶解性を減ずる効果があり、膜作成時にヘイズ値が上昇する傾向があることからより好ましくは-O-、-S-、-CO-、-COO-、-OCO-、-COS-、-SCO-であり、化合物の安定性の観点からさらに好ましくは-O-、-CO-、-COO-、-OCO-であり、よりさらに好ましくは-O-である。
 qは1~4の整数を表し、1~3の整数であることが好ましく、2または3であることがより好ましく、3であることが特に好ましい。rは1~4の整数を表し、1~3の整数であることが好ましく、1または2であることがより好ましく、1であることが特に好ましい。qおよびrが2以上の整数である場合、複数のL、L、Sp、Spはそれぞれ独立であっても異なっていてもよい。
 Hbは炭素数2~30のパーフルオロアルキル基またはフルオロアルキル基を表し、より好ましくは炭素数3~20のパーフルオロアルキル基またはフルオロアルキル基であり、さらに好ましくは3~10のパーフルオロアルキル基またはフルオロアルキル基である。パーフルオロアルキル基またはフルオロアルキル基は、直鎖状、分枝状、環状のいずれであってもよいが、直鎖状または分枝状であるものが好ましく、直鎖状であることがより好ましい。Hbは炭素数2~30のパーフルオロアルキル基と炭素数2~30のフルオロアルキル基の中では、炭素数2~30のパーフルオロアルキル基であることが好ましい。
 Rが-Sp-Pを表す場合、Spは単結合または炭素数1~10のアルキレン基を表し、好ましくは単結合または炭素数1~7のアルキレン基であり、より好ましくは炭素数1~4のアルキレン基である。但し、Spが表すアルキレン基の水素原子はフッ素原子で置換されていてもよく、該アルキレン基には分枝があっても無くてもよいが好ましいのは分枝がない直鎖のアルキレン基である。
 前記Pは重合性基を表し、該重合性基としては特に制限はないが、エチレン性不飽和二重結合基であることが好ましく、メタクリロイル基またはアクリロイル基であることがより好ましく、アクリロイル基であることが特に好ましい。
 Ya、Yb、Yc、Ydがとりうる炭素数1~4のアルキル基は、直鎖状であっても分枝状であってもよい。例えば、メチル基、エチル基、n-プロピル基、イソプロピル基などを例示することができる。
 前記二価の芳香族複素環基は、5員、6員または7員の複素環を有することが好ましい。5員環または6員環がさらに好ましく、6員環が最も好ましい。複素環を構成する複素原子としては、窒素原子、酸素原子および硫黄原子が好ましい。複素環は、芳香族性複素環であることが好ましい。芳香族性複素環は、一般に不飽和複素環である。最多二重結合を有する不飽和複素環がさらに好ましい。複素環の例には、フラン環、チオフェン環、ピロール環、ピロリン環、ピロリジン環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、イミダゾリン環、イミダゾリジン環、ピラゾール環、ピラゾリン環、ピラゾリジン環、トリアゾール環、フラザン環、テトラゾール環、ピラン環、チイン環、ピリジン環、ピペリジン環、オキサジン環、モルホリン環、チアジン環、ピリダジン環、ピリミジン環、ピラジン環、ピペラジン環およびトリアジン環が含まれる。二価の複素環基は置換基を有していてもよい。そのような置換基の例の説明と好ましい範囲については、上記のAとAの3価または4価の芳香族炭化水素が取り得る置換基に関する説明と記載を参照することができる。
 Hbは炭素数2~30のパーフルオロアルキル基またはフルオロアルキル基を表し、より好ましくは炭素数3~20のパーフルオロアルキル基またはフルオロアルキル基であり、さらに好ましくは3~10のパーフルオロアルキル基またはフルオロアルキル基である。パーフルオロアルキル基またはフルオロアルキル基は、直鎖状、分枝状、環状のいずれであってもよいが、直鎖状または分枝状であるものが好ましく、直鎖状であることがより好ましい。
 前記Hbが表すフルオロアルキル基は、末端が-CF-Hであるフルオロアルキル基が好ましく、パーフルオロアルキレン基の一方の末端に-CF-Hが連結したフルオロアルキル基であることがより好ましい。
 Hbは炭素数2~30のパーフルオロアルキル基と炭素数2~30のフルオロアルキル基の中では、炭素数2~30のパーフルオロアルキル基であることが好ましい。
 m、nはそれぞれ独立に2または3であり、このとき複数存在する括弧内の構造は互いに同一であっても異なっていてもよいが、互いに同一であることが好ましい。一般式(I)のm、nは、前記のA、Aの価数によって定まり、好ましい範囲もA、Aの価数の好ましい範囲によって定まる。従来知られていた及びnが1の化合物に比べ、本発明のmおよびnが2または3である化合物が、添加量が少なくても顕著にヘイズ低下性能が良いのは、いかなる理論に拘泥するものでもないが、化合物中のフッ素含有量に起因すると推測される。
 o、pはそれぞれ独立に0以上の整数であり、oおよびpが2以上であるとき複数のXは互いに同一であっても異なっていてもよい。oは1または2であることが好ましい。pは1~4のいずれかの整数であることが好ましく、1または2であることがより好ましい。
 一般式(I)で表される化合物は、分子構造が対称性を有するものであってもよいし、対称性を有しないものであってもよい。なお、ここでいう対称性とは、点対称、線対称、回転対称のいずれかに該当するものを意味し、非対称とは点対称、線対称、回転対称のいずれにも該当しないものを意味する。
 一般式(I)で表される化合物は、以上述べたパーフルオロアルキル基(Hb)、連結基-(-Sp-L-Sp-L-A-L-および-L-A-(L-Sp-L-Sp-)-、ならびに好ましくは排除体積効果を持つ2価の基であるTを組み合わせた化合物である。分子内に2つ存在するパーフルオロアルキル基(Hb)は互いに同一であることが好ましく、分子内に存在する連結基-(-Sp-L-Sp-L-A-L-および-L-A-(L-Sp-L-Sp-)-も互いに同一であることが好ましい。末端のHb-Sp-L-Sp-および-Sp-L-Sp-Hbは、以下のいずれかの一般式で表される基であることが好ましい。
  (C2a+1)-(C2b)-
  (C2a+1)-(C2b)-O-(C2r)-
  (C2a+1)-(C2b)-COO-(C2r)-
  (C2a+1)-(C2b)-OCO-(C2r)-
上式において、aは2~30であることが好ましく、3~20であることがより好ましく、3~10であることがさらに好ましい。bは0~20であることが好ましく、0~10であることがより好ましく、0~5であることがさらに好ましい。a+bは3~30である。rは1~10であることが好ましく、1~4であることがより好ましい。
また、一般式(I)の末端のHb-Sp-L-Sp-L-および-L-Sp-L-Sp-Hbは、以下のいずれかの一般式で表される基であることが好ましい。
  (C2a+1)-(C2b)-O
  (C2a+1)-(C2b)-COO-
  (C2a+1)-(C2b)-O-(C2r)-O-
  (C2a+1)-(C2b)-COO-(C2r)-COO-
  (C2a+1)-(C2b)-OCO-(C2r)-COO-
 上式におけるa、bおよびrの定義は直上の定義と同じである。
 以下に、一般式(I)で表される化合物の具体例を示す。ただし、本発明で採用することができる一般式(I)で表される化合物は、下記の具体例によって限定的に解釈されるべきものではない。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
 一般式(I)で表される化合物は、特開2002-129162号公報や特開2002-97170号や当該公報において引用されている文献に記載される合成法を適宜選択して組み合わせることにより合成することができる。また、その他の公知の合成法も必要に応じて組み合わせることにより合成することができる。
[液晶組成物]
 本発明の液晶組成物は、重合性液晶性分子と前記一般式(I)で表される化合物とを含む。本発明の液晶組成物では、1種類以上の重合性液晶性分子と1種類以上の非重合性液晶性分子を併用してもよい。また、一般式(I)で表される化合物を二種類以上使用してもよく、一般式(I)で表される化合物とそれ以外の化合物を併用してもよい。前記一般式(I)で表される化合物は、液晶性分子の量の0.01~20質量%の量で使用することが好ましい。前記一般式(I)で表される化合物の使用量は、液晶性分子の量の0.1~10質量%の量であることがより好ましい。重合性液晶性分子としては、ディスコティック液晶性分子または棒状液晶性分子を用いることが好ましい。
 ディスコティック液晶性分子は、様々な文献(C. Destrade et al., Mol. Crysr. Liq. Cryst., vol. 71, page 111 (1981) ;日本化学会編、季刊化学総説、No.22、液晶の化学、第5章、第10章第2節(1994);B. Kohne et al., Angew. Chem. Soc. Chem. Comm., page 1794 (1985);J. Zhang et al., J. Am.Chem. Soc., vol. 116, page 2655 (1994))に記載されている。ディスコティック液晶性分子の重合については、特開平8-27284公報に記載されている。ディスコティック液晶性分子を重合により固定するためには、ディスコティック液晶性分子の円盤状コアに、置換基として重合性基を結合させる必要がある。ただし、円盤状コアに重合性基を直結させると、重合反応において配向状態を保つことが困難になる。そこで、円盤状コアと重合性基との間に、連結基を導入する。従って、重合性基を有するディスコティック液晶性分子は、下記式で表わされる化合物であることが好ましい。
 D(-L-Q)
 上式中、Dは円盤状コアであり;Lは二価の連結基であり;Qは重合性基であり;dは4~12の整数である。上記式の円盤状コア(D)の具体例を以下に示す。以下の各具体例において、LQ(またはQL)は、二価の連結基(L)と重合性基(Q)との組み合わせを意味する。以下の具体例の中では、トリフェニレン(D4)が特に好ましい。
Figure JPOXMLDOC01-appb-C000030




Figure JPOXMLDOC01-appb-C000031



Figure JPOXMLDOC01-appb-C000032
 連結基Lや重合性基Qの詳細や好ましい範囲については、特開2002-129162号公報の[0161]~[0171]を参照することができる。
 前記棒状液晶分子としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類およびアルケニルシクロヘキシルベンゾニトリル類が好ましく用いられる。
 前記棒状液晶分子の複屈折率は、0.001~0.7であることが好ましい。重合性基の具体例については、特開2002-129162号公報の[0169]を参照することができる。棒状液晶性分子は、短軸方向に対してほぼ対称となる分子構造を有することが好ましい。そのためには、棒状分子構造の両端に重合性基を有することが好ましい。以下に、前記棒状液晶分子の具体例を示す。
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034

Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
 液晶組成物は、重合性液晶性分子および前記一般式(I)で表される化合物に加えて、必要に応じて溶媒、不斉炭素原子を含む化合物、あるいは重合性開始剤(後述)や他の添加剤(例えば、セルロースエステル)を含むことができる。液晶組成物の溶媒としては、有機溶媒が好ましく用いられる。有機溶媒の例には、アミド(例、N,N-ジメチルホルムアミド)、スルホキシド(例、ジメチルスルホキシド)、ヘテロ環化合物(例、ピリジン)、炭化水素(例、ベンゼン、ヘキサン)、アルキルハライド(例、クロロホルム、ジクロロメタン)、エステル(例、酢酸メチル、酢酸ブチル)、ケトン(例、アセトン、メチルエチルケトン)、エーテル(例、テトラヒドロフラン、1,2-ジメトキシエタン)が含まれる。アルキルハライドおよびケトンが好ましい。二種類以上の有機溶媒を併用してもよい。
[フィルム]
 一般式(I)で表される化合物を含む液晶組成物を塗布等の方法により製膜することによりフィルムを形成することができる。液晶組成物を配向膜の上に塗布し、液晶層を形成することにより光学異方性素子を作製することもできる。
 液晶組成物の塗布は、公知の方法(例、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法、バーコーティング法)により実施できる。液晶性分子は、配向状態を維持して固定することが好ましい。固定化は、液晶性分子に導入した重合性基(Q)の重合反応により実施することが好ましい。重合反応には、熱重合開始剤を用いる熱重合反応と光重合開始剤を用いる光重合反応とが含まれる。光重合反応が好ましい。光重合開始剤の例には、α-カルボニル化合物(米国特許2367661号、同2367670号の各明細書記載)、アシロインエーテル(米国特許2448828号明細書記載)、α-炭化水素置換芳香族アシロイン化合物(米国特許2722512号明細書記載)、多核キノン化合物(米国特許3046127号、同2951758号の各明細書記載)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許3549367号明細書記載)、アクリジンおよびフェナジン化合物(特開昭60-105667号公報、米国特許4239850号明細書記載)、オキサジアゾール化合物(米国特許4212970号明細書記載)、アシルフォスフィンオキシド化合物(特公昭63-40799号公報、特公平5-29234号公報、特開平10-95788号公報、特開平10-29997号公報記載)が含まれる。
 光重合開始剤の使用量は、塗布液の固形分の0.01~20質量%であることが好ましく、0.5~5質量%であることがさらに好ましい。ディスコィック液晶性分子の重合のための光照射は、紫外線を用いることが好ましい。照射エネルギーは、20mJ/cm~50J/cmであることが好ましく、100~800mJ/cmであることがさらに好ましい。光重合反応を促進するため、加熱条件下で光照射を実施してもよい。液晶層の厚さは、0.1~50μmであることが好ましく、1~30μmであることがさらに好ましく、5~20μmであることが最も好ましい。液晶層中の前記一般式(I)で表される化合物の塗布量は、0.005~0.5g/mであることが好ましく、0.01~0.45g/mであることがより好ましく、0.02~0.4g/mであることがさらに好ましく、0.03~0.35g/mであることが最も好ましい。
[配向膜]
 配向膜は、有機化合物(好ましくはポリマー)のラビング処理、無機化合物の斜方蒸着、マイクログルーブを有する層の形成、あるいはラングミュア・ブロジェット法(LB膜)による有機化合物(例、ω-トリコサン酸、ジオクタデシルメチルアンモニウムクロライド、ステアリル酸メチル)の累積のような手段で、設けることができる。さらに、電場の付与、磁場の付与あるいは光照射により、配向機能が生じる配向膜も知られている。ポリマーのラビング処理により形成する配向膜が特に好ましい。ラビング処理は、ポリマー層の表面を、紙や布で一定方向に、数回こすることにより実施する。配向膜に使用するポリマーの種類は、液晶性分子の配向(特に平均傾斜角)に応じて決定する。液晶性分子を水平(平均傾斜角:0~50゜)に配向させるためには、配向膜の表面エネルギーを低下させないポリマー(通常の配向膜用ポリマー)を用いる。液晶性分子を垂直(平均傾斜角:50~90゜)に配向させるためには、配向膜の表面エネルギーを低下させるポリマーを用いる。配向膜の表面エネルギーを低下させるためには、ポリマーの側鎖に炭素数が10~100の炭化水素基を導入することが好ましい。
 具体的なポリマーの種類については、様々な表示モードに対応する液晶性分子を用いた光学補償シートについての文献に記載がある。配向膜の厚さは、0.01~5μmであることが好ましく、0.05~1μmであることがさらに好ましい。なお、配向膜を用いて、光学異方性層の液晶性分子を配向させてから、液晶層を透明支持体上に転写してもよい。配向状態で固定された液晶性分子は、配向膜がなくても配向状態を維持することができる。また、平均傾斜角が5゜未満の配向の場合は、ラビング処理をする必要はなく、配向膜も不要である。ただし、液晶性分子と透明支持体との密着性を改善する目的で、界面で液晶性分子と化学結合を形成する配向膜(特開平9-152509号公報記載)を用いてもよい。密着性改善の目的で配向膜を使用する場合は、ラビング処理を実施しなくてもよい。二種類の液晶層を透明支持体の同じ側に設ける場合、透明支持体上に形成した液晶層を、その上に設ける液晶層の配向膜として機能させることも可能である。
[透明支持体]
 本発明のフィルムや本発明のフィルムを有する光学異方性素子は、透明支持体を有していてもよい。透明支持体として、ガラス板またはポリマーフイルム、好ましくはポリマーフイルムが用いられる。支持体が透明であるとは、光透過率が80%以上であることを意味する。透明支持体として、一般には、光学等方性のポリマーフイルムが用いられている。光学等方性とは、具体的には、面内レターデーション(Re)が10nm未満であることが好ましく、5nm未満であることがさらに好ましい。また、光学等方性透明支持体では、厚み方向のレターデーション(Rth)も、10nm未満であることが好ましく、5nm未満であることがさらに好ましい。透明支持体の面内レターデーション(Re)と厚み方向のレターデーション(Rth)は、それぞれ下記式で定義される。
   Re=(nx-ny) × d
   Rth=[{(nx+ny)/2}-nz] × d
式中、nxおよびnyは、透明支持体の面内屈折率であり、nzは透明支持体の厚み方向の屈折率であり、そしてdは透明支持体の厚さである。
 透明支持体として光学異方性のポリマーフイルムが用いられる場合もある。そのような場合、透明支持体は、光学的一軸性または光学的二軸性を有することが好ましい。光学的一軸性支持体の場合、光学的に正(光軸方向の屈折率が光軸に垂直な方向の屈折率よりも大)であっても負(光軸方向の屈折率が光軸に垂直な方向の屈折率よりも小)であってもよい。光学的二軸性支持体の場合、前記式の屈折率nx、nyおよびnzは、全て異なる値(nx≠ny≠nz)になる。光学異方性透明支持体の面内レターデーション(Re)は、10~1000nmであることが好ましく、15~300nmであることがさらに好ましく、20~200nmであることが最も好ましい。光学異方性透明支持体の厚み方向のレターデーション(Rth)は、10~1000nmであることが好ましく、15~300nmであることがより好ましく、20~200nmであることがさらに好ましい。
 透明支持体を形成する材料は、光学等方性支持体とするか、光学異方性支持体とするかに応じて決定する。光学等方性支持体の場合は、一般にガラスまたはセルロースエステルが用いられる。光学異方性支持体の場合は、一般に合成ポリマー(例、ポリカーボネート、ポリスルホン、ポリエーテルスルホン、ポリアクリレート、ポリメタクリレート、ノルボルネン樹脂)が用いられる。ただし、欧州特許0911656A2号明細書に記載されている(1)レターデーション上昇剤の使用、(2)セルロースアセテートの酢化度の低下、あるいは(3)冷却溶解法によるフイルムの製造により、光学異方性の(レターデーションが高い)セルロースエステルフイルムを製造することもできる。ポリマーフイルムからなる透明支持体は、ソルベントキャスト法により形成することが好ましい。
 光学異方性透明支持体を得るためには、ポリマーフイルムに延伸処理を実施することが好ましい。光学的一軸性支持体を製造する場合は、通常の一軸延伸処理または二軸延伸処理を実施すればよい。光学的二軸性支持体を製造する場合は、アンバランス二軸延伸処理を実施することが好ましい。アンバランス二軸延伸では、ポリマーフイルムをある方向に一定倍率(例えば3~100%、好ましくは5~30%)延伸し、それと垂直な方向にそれ以上の倍率(例えば6~200%、好ましくは10~90%)延伸する。二方向の延伸処理は、同時に実施してもよい。延伸方向(アンバランス二軸延伸では延伸倍率の高い方向)と延伸後のフイルムの面内の遅相軸とは、実質的に同じ方向になることが好ましい。延伸方向と遅相軸との角度は、10゜未満であることが好ましく、5゜未満であることがさらに好ましく、3゜未満であることが最も好ましい。
 透明支持体の厚さは、10~500μmであることが好ましく、50~200μmであることがさらに好ましい。透明支持体とその上に設けられる層(接着層、配向膜あるいは光学異方性層)との接着を改善するため、透明支持体に表面処理(例、グロー放電処理、コロナ放電処理、紫外線(UV)処理、火炎処理)を実施してもよい。透明支持体に紫外線吸収剤を添加してもよい。透明支持体の上に、接着層(下塗り層)を設けてもよい。接着層については、特開平7-333433号公報に記載がある。接着層の厚さは、0.1~2μmであることが好ましく、0.2~1μmであることがさらに好ましい。
 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
<合成例1>
Figure JPOXMLDOC01-appb-C000051
 上記化合物(1)を下記ルートで合成した。
(1-1)エステル(1b)の合成
 塩化メチレン100mlにアルコール(1a)(70.0g,200mmol)を加え、そこへトリエチルアミン(29.2ml,210mmol)を加えた。この溶液を氷水に浸し、トリフルオロメタンスルホン酸無水物(35.3ml,210mmol)を内温が20℃以下になるように滴下し、氷冷下で1時間反応させた。反応液を分液操作に施し、有機層をエバポレーターにより濃縮した。得られた液体を減圧蒸留し、対応するトリフルオロメタンスルホン酸エステル(1b)(85.0g,収率88%)を得た。
H NMR(300MHz、CDCl)δ4.8(t,2H)
(1-2)エステル(1c)の合成
 エステル(1b)(22.4g,46.5mmol)と没食子酸メチルエステル(2.8g,15mmol)を炭酸カリウム(6.4g,46.5mmol)存在下、DMAc15ml中、90℃で2時間反応させた。分液処理の後、カラム精製を行い、エステル(1c)(15.0g, 85%)を得た。
H NMR(300MHz、CDCl)δ3.9(s,3H), 4.4-4.6(m,6H), 7.4(s,2H)
(1-3)カルボン酸(1d)の合成
 エステル(1c)(11.8g, 10mmol)をエタノール30ml、水3ml中に加えた。この溶液に水酸化カリウム(0.84g, 15mmol)を添加し2時間加熱還流した。この反応液を塩酸水溶液に滴下し固体を析出させた。吸引ろ過をし、カルボン酸(1d)(9.8g, 84%)
を得た。
(1-4)化合物(1)の合成
 カルボン酸(1d)(2.3g,2.0mmol)をトルエン10mlと触媒量のDMF中で塩化チオニル(0.22ml,3.0mmol)と反応させて酸クロライドとし、過剰の塩化チオニル及びトルエン除去後、THF5ml、触媒量のDMAPを系中に添加した。そこへ、THF5ml及びジイソプロピルエチルアミン0.37mlに溶かしたメチルハイドロキノン(124mg,1.0mmol)を滴下し、室温で3時間反応させた。分液操作後、エバポレーターにて濃縮し、カラム精製を行い、メタノールで再結晶して化合物(1)(0.79g,収率33%)を得た。
H NMR(400MHz、CDCl)δ2.3(s,3H), 4.5-4.7(m,12H), 7.0-7.2(s×3,3H), 7.6(s×2,4H) 
Figure JPOXMLDOC01-appb-C000052
<合成例2>
化合物(8)の合成
Figure JPOXMLDOC01-appb-C000053
 化合物(1)の合成でメチルハイドロキノンの代わりにハイドロキノンを用いた以外は同様の操作により上記化合物(8)を得た。
H NMR(400MHz、CDCl)δ4.4-4.7(m,12H), 7.3(s,4H), 7.6(s,4H)
<合成例3>
化合物(2)の合成
Figure JPOXMLDOC01-appb-C000054
 上記化合物(2)は以下のルートに従って合成した。
(3-1)トシル誘導体(3b)の合成
 アルコール(3a)(45.7ml,300mmol)とパラトルエンスルホニルクロライド(60.1g,315mmol)を120mlの塩化メチレン中、氷冷下で1時間反応させた。反応液を分液操作に施し、有機層をエバポレーターにより濃縮し、粗体として黄色液体のトシルエーテル体(3b)を得た。このまま精製せずに次工程の原料として使用した。
HNMR(300MHz、CDCl)δ2.4(s,3H), 3.6(d,2H), 4.2(d,2H), 4.4(s,2H), 7.1-7.4(d×3,s×1,7H), 7.8(d,2H)
(3-2)フッ化アルキルエーテル(3c)の合成
 トシル誘導体(3b)(16.2g,50mmol)と2-(パーフルオロヘキシル)エタノール(12.1ml,55ml)をトルエン100mlに加え、ベンジルトリメチルアンモニウムヒドロキサイド水溶液105ml加えた。70℃に昇温して30分攪拌した後、水酸化カリウム水溶液(3.1g/水20ml)を添加した。その後、80℃に昇温し、5時間反応させた。酢酸エチルを100ml、水を50mlを加えて分液した後濃縮し、粗体としてエーテル(3c)を得た。このまま精製せずに次工程の原料として使用した。
HNMR(300MHz、CDCl)δ2.5(m,2H), 3.8(d,2H), 4.0(d,2H), 4.4(s,2H), 7.1-7.4(m,5H)
(3-3)アルコール(3d)の合成
 エーテル(3c)(20.0g,40mmol)を酢酸エチル40ml中で、パラジウム触媒(1.2g,5%パラジウム/活性炭素、デグサタイプE 101 O/W 5%Pd,wako社製)存在下、水素と反応させた。反応終了後、セライトろ過によりパラジウム触媒を除去し、濃縮し、粗体のアルコール(2e)を得た。このまま精製せずに次工程の原料として使用した。
H NMR(400MHz、CDCl)δ2.4(m,2H), 3.6(d,2H), 3.7(d,2H), 3.8(d,2H)
(3-4)メタンスルホン酸エステル(3e)の合成
 アルコール(3d)(18.0g,45mmol)を酢酸エチル30ml中に添加し、氷冷した。反応系内の温度を20℃以下に保って、メタンスルホニルクロライド(3.8ml,49.5mmol)を滴下した。室温で3時間反応させ、酢酸エチルと水によって分液し、濃縮し、粗体のメタンスルホン酸エステル(3e)を得た。このまま精製せずに次工程の原料として使用した。
(3-5)没食子酸エステル(3f)の合成
 エステル(3e)(10.6g,21.6mmol)と没食子酸メチルエステル(1.28g,7.0mmol)を炭酸カリウム(3.0g,21.6mmol)存在下、DMAc40ml中、90℃で反応させた。酢酸エチル/水系で分液操作後、カラム精製により、オイル状の没食子酸エステル(3f)(8.0g, 84%)を得た。
H NMR(400MHz、CDCl)δ2.3-2.6(m,6H), 3.7-4.0(m,15H), 4.2(m,6H), 7.4(s,2H)
(3-6)カルボン酸(3g)の合成
 エステル(3f)(7.8g, 5.8mmol)をエタノール40ml、水4ml中に加えた。この溶液に水酸化カリウム(0.48g, 8.6mmol)を添加し2時間加熱還流した。この反応液を酢酸エチル/水系で分液し、有機層を濃縮固化させ、カルボン酸(3g)(5.6g, 72%)
を得た。
(3-7)化合物(2)の合成
 カルボン酸(3g)(2.0g,1.5mmol)をトルエン10mlと触媒量のDMF中で塩化チオニル(0.16ml,2.2mmol)と反応させて酸クロライドとし、過剰の塩化チオニル及びトルエン除去後、THF5ml、触媒量のDMAPを系中に添加した。そこへ、THF5ml及びジイソプロピルエチルアミン0.28mlに溶かしたメチルハイドロキノン(93mg,0.76mmol)を滴下した。酢酸エチル/水系で分液操作後、エバポレーターにて濃縮し、カラム精製し、酢酸エチル/メタノール系で再結晶して化合物(2)(1.5g,71%)を得た。
H NMR(300MHz、CDCl)δ2.2(s,3H), 2.3-2.5(m,12H), 3.7-3.9(m.24H), 4.2(m,12H), 7.1(m,3H), 7.4-7.5(s×2,4H)
Figure JPOXMLDOC01-appb-C000055
<合成例4>
化合物(11)の合成
Figure JPOXMLDOC01-appb-C000056
 化合物(2)の合成でメチルハイドロキノンの代わりにハイドロキノンを用いた以外は同様の操作により上記化合物(11)を得た。
H NMR(300MHz、CDCl)δ2.2-2.5(m,12H), 3.7-3.9(m,24H), 4.2(m,12H), 7.2(s,4H), 7.5(s,4H)
<合成例5>
化合物(6)の合成
Figure JPOXMLDOC01-appb-C000057
 上記化合物(6)は以下のルートにより合成した。
(5-1)カルボン酸(5a)の合成
 2-(パーフルオロヘキシル)エタノール(33.3g,46mmol)に無水コハク酸(9.7g,49mmol)とテトラヒドロフラン10mlとトリエチルアミン(0.2mL)を加え、攪拌しながら100℃に昇温して60分反応させた。その後、30℃まで冷却し、水100mLを加え、さらに15℃まで冷却して析出した結晶をろ過し、カルボン酸(5a)を得た。(39.7g、94%)。
(5-2)カルボン酸(5b)の合成
 カルボン酸(5a)(15g,32mmol)をトルエン中、塩化チオニル(2.6mL,36mmol)と反応させ、4bの酸クロリドを調整した。次に、没食子酸一水和物(1.5g,8mmol)をトルエン(10mL)中で加熱還流し脱水を行い、室温に冷却後テトラヒドロフラン(12mL)を加えて溶解させ、さらに先ほど調整した4bの酸クロリドを添加した。反応系を氷冷した後、ピリジン(4mL)をゆっくりと滴下し、室温で1時間反応させた。次にピリジン2mLと水20mLを加え、50℃で1時間攪拌した後に、酢酸エチルを加え分液し、有機層を食塩水で洗浄した。有機層を濃縮し、酢酸エチル/メタノール(1/20)で再結晶を行い、カルボン酸(5b)を得た。(9.5g、84%)
H NMR(400MHz、CDCl)δ2.4-2.6(m,6H), 2.7-2.8(m,6H),2.9-3.0(m,6H),4.4-4.5(m,6H),7.8(s,2H)
(5-3)化合物(6)の合成
 化合物(1)の合成においてカルボン酸(1d)の代わりにカルボン酸(5b)を用いた以外は同様にして化合物(6)を得た。
H NMR(300MHz、CDCl)δ2.2(s,3H), 2.4-2.6(m,12H), 2.7-2.8(m.12H), 2.9-3.0(m, 12H), 4.4-4.5(m,12H), 7.0-7.2(m,3H), 7.9(s×2,4H)
Figure JPOXMLDOC01-appb-C000058
<合成例6>
化合物(7)の合成
Figure JPOXMLDOC01-appb-C000059
 上記化合物(7)は化合物(6)で用いたメチルハイドロキノンの代わりにハイドロキノンを用いた以外は同様の操作により、化合物(7)を得た。
H NMR(300MHz、CDCl)δ2.4-2.6(m,12H), 2.7-2.8(m.12H), 2.9-3.0(m, 12H), 4.4-4.5(m,12H), 7.2(s,4H), 7.9(s,4H)
<合成例7>
化合物(9)の合成
Figure JPOXMLDOC01-appb-C000060
 上記化合物(9)は以下のルートにより合成した。
(7-1)エステル(7b)の合成
 2-(パーフルオロヘキシル)エタノール(18.2g, 50mmol)をトルエン中に加え、水酸化カリウム3.5g/水3.5mlを加えた。氷冷下、アクリル酸ターシャリーブチルエステル(10.3ml, 70mmol)、テトラブチルアンモニウムブロマイド(1.61g, 5mmol)を加え、室温下で3時間攪拌した。希塩酸を加えてクエンチし、酢酸エチル/水系で分液しロータリーエバポレーターで濃縮した。カラムにより精製エステル(7b)(19.0g, 収率77%)を得た。
(7-2)アルコール(7c)の合成
 ビス(2-メトキシエトキシ)アルミニウムハイドライドトルエン溶液(アルドリッチ社製)(13.2g, 42.5mmol)をTHF100mlに加え氷冷した。この溶液に、THF30mlに溶解させたエステル(7b)(19.0g, 38.6mmol)を滴下した。滴下後、室温で1時間攪拌させた。酢酸エチルを加えてクエンチし、希塩酸水を加えて分液、濃縮した。カラムにより精製し、アルコール(7c)(9.0g, 収率55%)を得た。
(7-3)化合物(9)の合成
 アルコール(7c)以降については、化合物(2)の合成においてアルコール(3d)を用いる代わりに、アルコール(7c)を用いた以外は同様の合成法により、化合物(9)を合成した。
H NMR(300MHz、CDCl)δ1.9-2.1(m,12H), 2.2(s, 3H), 2.3-2.5(m.12H), 3.6-3.8(m, 24H), 4.1-4.2(t,12H), 7.0-7.2(m,3H), 7.4-7.5(s×2,4H)
Figure JPOXMLDOC01-appb-C000061
<合成例8>
化合物(10)の合成
Figure JPOXMLDOC01-appb-C000062
 化合物(9)の合成においてメチルハイドロキノンの代わりにハイドロキノンを用いた以外は同様にして上記化合物(10)を合成した。
H NMR(300MHz、CDCl)δ1.9-2.2(m,12H), 2.3-2.5(m.12H), 3.6-3.8(m, 24H), 4.1-4.2(t,12H), 7.2(s,4H), 7.4(s,4H)
<合成例9>
化合物(5)の合成
Figure JPOXMLDOC01-appb-C000063
 上記化合物(5)は、以下のルートにより合成した。すなわち、化合物(2)の合成においてアルコール(3d)を用いる代わりに、市販試薬3-(パーフルオロヘキシル)プロパノールを用いる以外は同様にして、化合物(5)を合成した。
H NMR(300MHz、CDCl)δ2.0-2.5(m,27H), 4.0-4.2(m, 12H), 7.0-7.2(m,3H), 7.4(s×2,4H)
Figure JPOXMLDOC01-appb-C000064
<合成例10>
化合物(14)の合成
Figure JPOXMLDOC01-appb-C000065
 上記化合物(14)を、化合物(5)の合成において、市販試薬3-(パーフルオロヘキシル)プロパノールの代わりに市販試薬3-(パーフルオロブチル)プロパノールを用いた以外は同様の方法で合成した。
H NMR(300MHz、CDCl)δ2.0-2.5(m,27H), 4.0-4.2(m, 12H), 7.0-7.2(m,3H), 7.4-7.5(s×2,4H)
<合成例11>
化合物(13)の合成
Figure JPOXMLDOC01-appb-C000066
 上記化合物(13)を、化合物(14)の合成において、メチルハイドロキノンを用いる代わりにハイドロキノンを用いた以外は同様の方法で合成した。
H NMR(300MHz、CDCl)δ2.0-2.5(m,24H), 4.0-4.2(m,12H), 7.2(s,4H), 7.4(s,4H)
<合成例12>
化合物(4)の合成
Figure JPOXMLDOC01-appb-C000067
 上記化合物(4)を、化合物(11)の合成において、2-(パーフルオロヘキシル)エタノールの代わりに2-(パーフルオロブチル)エタノールを用いた以外は同様の方法で合成した。
HNMR(300MHz、CDCl)δ2.2-2.5(m,12H)), 3.7-3.9(m,24H), 4.2(m,12H), 7.2(s,4H), 7.5(s,4H)
<合成例13>
化合物(50)の合成
Figure JPOXMLDOC01-appb-C000068
 上記化合物(50)は以下のルートに従って合成した。
(13-1)アルデヒド(13a)の合成
 3,4-ジヒドロキシベンズアルデヒド(2.1g, 15mmol)と炭酸カリウム(4.3g, 30.8mmol)をDMAc10mlに加え、窒素雰囲気下で90℃まで加熱した。合成例1で記載したエステル(1b)(14.8g, 30.8mmol)を滴下し、90℃で2時間攪拌した。室温まで冷却した後、酢酸エチル/水系で分液し、濃縮した後、カラムで精製しアルデヒド(13a)(10.8g, 収率90%)を得た。
HNMR(300MHz、CDCl)δ4.4-4.7(q,4H), 7.1(d,1H), 7.5(s,1H) , 7.6(d,1H), 9.9(s,1H)
(13-2)カルボン酸(13b)の合成
アルデヒド(13a)(10.8g,13.5mmol)を特開2002-97170号公報の10頁[0085]~[0087]に記載の方法でカルボン酸(13b)に誘導した(6.9g、収率78%)。
HNMR(300MHz、DMSO-d)δ4.8-5.0(q,4H), 7.2(d,1H), 7.6(s,d,2H) , 12.8-13.0 (brs,1H)
(13-3)化合物(50)の合成
 カルボン酸(13b)(2.45g,3.0mmol)をトルエン10mlと触媒量のDMF中で塩化チオニル(0.33ml,4.5mmol)と反応させて酸クロライドとし、過剰の塩化チオニル及びトルエン除去後、THF5ml、触媒量のDMAPを系中に添加した。そこへ、THF5ml及びジイソプロピルエチルアミン0.57mlに溶かしたメチルハイドロキノン(186mg,1.5mmol)を滴下し、室温で3時間反応させた。分液操作後、エバポレーターにて濃縮し、カラム精製を行い、メタノールで再結晶して化合物(50)(1.8g,収率69%)を得た。
H NMR(400MHz、CDCl)δ2.3(s,3H), 4.5-4.7(m,8H), 7.0-7.2(s×3,d×2,5H), 7.8(s×2,2H), 8.0(d×2,2H)
Figure JPOXMLDOC01-appb-C000069
<合成例14>
化合物(51)の合成
Figure JPOXMLDOC01-appb-C000070
 上記化合物(51)は以下のルートに従って合成した。
(14-1)エステル(14a)の合成
 3,5-ジヒドロキシ安息香酸メチルエステル(2.5g, 15mmol)と炭酸カリウム(4.3g, 30.8mmol)をDMAc10mlに加え、窒素雰囲気下で90℃まで加熱した。合成例1で記載したエステル(1b)(14.8g, 30.8mmol)を滴下し、90℃で2時間攪拌した。室温まで冷却した後、酢酸エチル/水系で分液し、濃縮した後、カラムで精製しアルデヒド(14a)(11.6g, 収率93%)を得た。
H NMR(300MHz、CDCl)δ4.0(s, 3H), 4.4-4.7(t,4H), 6.8(s,1H), 7.3(s,2H)
(14-2)カルボン酸(14b)の合成
エステル(14a)(11.6g,13.9mmol)をエタノール30mlと水3mlに加え、さらに水酸化カリウム(1.2g, 20.9mmol)を加えて2時間加熱還流した。室温まで降温し塩酸水溶液へ滴下した。得られた固体を吸引ろ過し、カルボン酸(14b)を得た(8.6g、収率76%)。
(14-3)化合物(51)の合成
 カルボン酸(14b)(2.45g,3.0mmol)をトルエン10mlと触媒量のDMF中で塩化チオニル(0.33ml,4.5mmol)と反応させて酸クロライドとし、過剰の塩化チオニル及びトルエン除去後、THF5ml、触媒量のDMAPを系中に添加した。そこへ、THF5ml及びジイソプロピルエチルアミン0.57mlに溶かしたメチルハイドロキノン(186mg,1.5mmol)を滴下し、室温で3時間反応させた。分液操作後、エバポレーターにて濃縮し、カラム精製を行い、メタノールで再結晶して化合物(51)(1.8g,収率69%)を得た。
H NMR(300MHz、CDCl)δ2.3(s,3H), 4.5-4.7(t,8H), 6.9(m, 2H), 7.0-7.2(s×3, 3H), 7.5(dd×2,4H)
Figure JPOXMLDOC01-appb-C000071
<合成例15>
化合物(53)の合成
Figure JPOXMLDOC01-appb-C000072
 化合物(50)においてメチルハイドロキノンの代わりに4-アミノメタクレゾールを用いた以外は同様にして上記化合物(53)を合成した。
H NMR(300MHz、THF-d)δ2.5(s,3H), 4.8-5.0(m,8H), 7.1 (d,1H), 7.2(s,1H), 7.3-7.4(d×2,2H), 7.6(d,1H), 7.8(d,1H), 7.9(s,1H), 8.0(s,1H), 8.1(d,1H), 9.0(s,1H)
<合成例16>
化合物(35)の合成
Figure JPOXMLDOC01-appb-C000073
 上記化合物(35)は以下のルートに従って合成した。
Figure JPOXMLDOC01-appb-C000074
(16-1)化合物(16a)の合成
 DMAc(8ml)へ2,5-ジヒドロキシ安息香酸(800mg、5.19mmol)とトリエチルアミン(731μl、5.20mmol)、合成例3で記載した(3e)を添加し、外温90℃へ上昇させて5時間攪拌した。室温まで冷却してから酢酸エチルを添加し、1mol/lの塩酸を加えて分液した。水層を除去した後、飽和食塩水を加え再度分液操作を行った後、ロータリーエバポレーターで濃縮した。ヘキサンを添加して加熱還流した後、吸引ろ過により化合物(16a)を得た(1.5g、収率53%)。
(16-2)化合物(35)の合成
 合成例3で記載したカルボン酸(3g)(1.0g、0.75mmol)を触媒量のDMFを添加したTHF中(1ml)に溶解させ、塩化チオニル(97.4μl、1.35mmol)を滴下した。室温で一時間攪拌した後、50℃に加熱して塩化チオニルを除去した後、THF(1ml)を添加し、溶液(*)とした。別途、化合物(16a)(194.3mg、0.36mmol)のTHF(1ml)溶液を氷冷し、内温を10℃以下に保ちながら、上記の溶液(*)、ジイソプロピルエチルアミン(141.5μl、0.821mmol)、触媒量のN-メチルイミダゾールを順番に加えた。室温で1時間反応させ、酢酸エチル、水で分液した。有機層を硫酸ナトリウムで乾燥させた後、ロータリーエバポレーターで濃縮、カラム精製を行い、化合物(35)を得た(0.85g、収率75%)
H NMR(300MHz、CDCl)δ2.3-2.6(m,14H), 3.5(t,2H),
3.6(t,2H), 3.8-4.0(m,24H), 4.2-4.4(m,14H), 7.3(s,1H), 7.4-7.5(m,5H), 7.9(s,1H)
<合成例17>
化合物(39)の合成
Figure JPOXMLDOC01-appb-C000075
 上記化合物(39)は下記に示したルートに従い、化合物(35)の合成法において(3e)の代わりにスルホン酸エステル(17a)を用いる以外は同様にして合成した。スルホン酸エステル(17a)は4-ヒドロキシブチルアクリレートを原料として既知の方法で合成できる。
H NMR(300MHz、CDCl)δ1.6-1.7(brs,4H), 2.3-2.6(m,12H),3.7-3.9(m,24H), 4.1(t,2H), 4.2-4.3(m,14H), 5.8(d,1H), 6.0-6.1(dd,1H), 6.3-6.4(d,1H), 7.3(1H)、 7.4(1H)、7.5(s,2,4H)、 7.9(1H)
Figure JPOXMLDOC01-appb-C000076
<合成例18>
化合物(37)の合成
Figure JPOXMLDOC01-appb-C000077
 上記化合物(37)は化合物(39)の合成法においてカルボン酸(3g)の代わりに、合成例1で記載したカルボン酸(1d)を用いる以外は同様にして合成した。
H NMR(300MHz、CDCl)δ1.7-1.8(brs,4H), 4.1(t,3H)4.3(t,2H), 4.5-4.7(m、12H), 5.8(d,1H), 6.0-6.1(dd,1H), 6.3-6.4(d,1H), 7.3(1H)、 7.4(1H)、7.5(s×2,4H)、 7.9(1H)
<合成例19>
化合物(40)の合成
Figure JPOXMLDOC01-appb-C000078
 上記化合物(40)は下記に示したルートに従い、化合物(35)の合成法において(3e)の代わりにスルホン酸エステル(19a)を用いる以外は同様にして合成した。スルホン酸エステル(19a)はトリエチレングリコールモノメチルエーテルを原料として既知の方法で合成できる。
H NMR(300MHz、CDCl)δ2.3-2.6(m,12H), 3.3(s,3H),
3.5-3.7(m、10H), 3.8-4.0(m,24H), 4.2(m,12H),
4.3(t,2H), 7.3(2H)、 7.5(s×2,4H)、 7.9(1H)
Figure JPOXMLDOC01-appb-C000079
<合成例20>
化合物(48)の合成
Figure JPOXMLDOC01-appb-C000080
 上記化合物(48)は化合物(1)の合成法においてアルコール(1a)の代わりに1H,1H,7H-ドデカフルオロ-1-ヘプタノールを用いる以外は同様にして合成した。
H NMR(300MHz、CDCl)δ4.5-4.7(m,12H), 5.8-6.2(m,6H), 7.3(s,2H), 7.6(s,4H)
<合成例21>
化合物(33)の合成
Figure JPOXMLDOC01-appb-C000081
 上記化合物(33)は以下のルートに従って合成した。
Figure JPOXMLDOC01-appb-C000082
(21-1)化合物(21b)の合成
 化合物(21b)は化合物(35)の合成において(3e)の代わりにベンジルブロミドを用いた以外は同様にして合成した。
(21-2)化合物(33)の合成
 化合物(21b)(457mg,0.158mmol)とパラジウムカーボン(33.5mg,0.0158mmol)を酢酸エチルへ添加し、脱気・水素充填操作を行った。室温で二時間攪拌した後、セライトろ過を行いロータリーエバポレーターで濃縮した。ヘキサンで加熱還流して洗浄し、化合物(33)を得た(260mg、収率59%)。
H NMR(300MHz、CDCl)δ2.3-2.6(m,12H), 3.7-3.9(m,24H), 4.2-4.3(m,12H), 7.3(s,1H), 7.4-7.5(m,5H), 7.9(s,1H)
<実施例1~34および比較例1~6>
 下記表1に記載される化合物を用いて、光学異方性フィルムを形成して評価した。まず、下記組成の塗布液を調製した。化合物の濃度は、棒状液晶化合物に対して0.01質量部、0.02質量%、0.03質量部、0.05質量%、0.10質量部、0.20質量部となるように調製した。
・下記の棒状液晶化合物1                100質量部
・下記のキラル剤(A)                 2.8質量部
・IRGACURE819(チバジャパン社製)        3質量部
・表1および表2に記載される化合物             上記の量
・表1および表2に記載される溶媒    溶質濃度が25質量%となる量
Figure JPOXMLDOC01-appb-C000083
 調製した塗布液をマイクロピペッターを用いて50μl量り取り、配向膜付ガラス上(SE―130)に滴下して2000rpmの回転速度でスピンコートした。85℃で2分間加熱し、1分間放冷したのち、窒素雰囲気下で紫外線照射(紫外線強度:500mJ/m)することで、光学異方性フィルムを形成した。光学異方性フィルムの膜厚は約5μmであった。
 製造した各光学異方性フィルムの配向性を目視及びヘイズで評価した。ヘイズは、日本電飾社製ヘイズメータNDH2000を用いて測定した。
 配向促進試験では、化合物の濃度が0.01質量%である光学異方性フィルムのヘイズ値の大きさにより、化合物の配向促進作用を下記の4段階で評価した。0.01質量%濃度では化合物は溶媒に完全に溶解しており、測定されたヘイズ値が小さいほど液晶配向促進作用が大きいことを示している。
  ◎ 5.5未満
  ○ 5.5以上8.5未満
  △ 8.5以上10.0未満
  × 10.0以上
 溶解・配向促進試験では、化合物の濃度が0.02質量%と、0.03質量%と、0.05質量%と、0.10質量%と、0.20質量%である光学異方性フィルムのヘイズ値により下記の4段階で溶解・配向促進作用を評価した。評価が高いものは、溶解性が良好で配向促進作用も大きいことを示している。評価が低いものは、主として溶解性が低いことを示している。
  ◎ 0.15未満
  ○ 0.15以上、0.35未満
  △ 0.35以上、0.90未満
  × 0.90以上
Figure JPOXMLDOC01-appb-T000084
Figure JPOXMLDOC01-appb-T000085
Figure JPOXMLDOC01-appb-C000086







 上記表1に示すように、本発明の化合物はヘイズ低下作用が大きくて、濃度が高くなっても溶媒に対する溶解性が高いことが確認された。いかなる理論に拘泥するものでもないが、このようなヘイズ低下は本発明の化合物の液晶配向作用が大きいために、液晶の配向が空気界面側でも良好となったためと考えられ、すなわち本発明の化合物は液晶配向促進剤と考えられる。また、溶媒の種類を変えても同じ傾向を示しており、本発明の化合物が塗布溶媒の適用範囲が広くて、使用適性が高いことが確認された。
 また、上記表2に示したように、同じフッ化アルキル側鎖を有する骨格同士で比べた場合、すなわち実施例31、32と比較例4を比べた場合、フッ化アルキル側鎖の数が1本の時(一般式(I)においてm=n=1のとき)より2本または3本の時(一般式(I)においてm=n=2またはm=n=3のとき)の方がより低濃度でヘイズが低下していることが分かる。実施例33と比較例5、実施例34と比較例6を比べた場合も、フッ化アルキル側鎖の数が1本のとき(一般式(I)においてm=n=1のとき)よりも3本の時(一般式(I)においてm=n=3のとき)の方が、低濃度でヘイズが低下していることが分かる。このことから、フッ化アルキル側鎖の本数が多いと液晶配向作用が大きく低濃度領域でもヘイズを低下させられ、使用適性が広いことが分かる。
[実施例35]
「赤外線反射フィルムの作製」
 下記の組成に従って組成液を調整した。
・棒状液晶化合物1                   100質量部
・キラル剤(A)                    5.0質量部
・IRGACURE819(チバジャパン社製)      3.0質量部
・表1に記載される化合物(2)            0.03質量部
・クロロホルム             溶質濃度が25質量%となる量
 得られた組成液をマイクロピペッターを用いて50μl量り取り、配向膜付ガラス上(SE―130)に滴下して2000rpmの回転速度でスピンコートした。85℃で2分間加熱し、1分間放冷したのち、窒素雰囲気下で紫外線照射(紫外線強度:500mJ/m)することで、光学異方性フィルムを形成した。光学異方性フィルムの膜厚は約5μmであった。得られた光学異方性フィルムの透過スペクトルを、SHIMADZU社製分光光度計UV-3100PCを用いて測定した。その結果をそれぞれ図1に示した。
 図1に示すように、実施例35で作成したフィルムは900nm付近の近赤外領域に中心波長を有する選択反射膜であり、光学異方性を示すことがわかった。

Claims (14)

  1.  下記一般式(I)で表される化合物。
    Figure JPOXMLDOC01-appb-C000001
    [式中、L、L、L、L、L、Lはおのおの独立して単結合、-O-、-S-、-CO-、-COO-、-OCO-、-COS-、-SCO-、-NRCO-、-CONR-(一般式(I)中におけるRはそれぞれ独立して水素原子または炭素原子数が1~6のアルキル基を表す)を表し、またSp、Sp、Sp、Spはそれぞれ独立して単結合または炭素数1~10のアルキレン基(但し、該アルキレン基の水素原子はフッ素原子で置換されていてもよい)を表し、A、Aは3価または4価の芳香族炭化水素を表し、Tは
    Figure JPOXMLDOC01-appb-C000002
    で表される二価の基または二価の芳香族複素環基を表す(Xは炭素数1~8のアルキル基、アルコキシ基、ハロゲン原子、シアノ基または-COOR(Rは水素原子、隣接するCHがOまたはSで置換されていてもよいアルキル基もしくはフッ化アルキル基、または-Sp-Pを表し、Spは単結合または炭素数1~10のアルキレン基(但し、該アルキレン基の水素原子はフッ素原子で置換されていてもよい)を表し、Pは重合性基を表す)を表し、Ya、Yb、Yc、Ydはおのおの独立して水素または炭素数1~4のアルキル基を表す)であり、Hbはそれぞれ独立に炭素数2~30のパーフルオロアルキル基またはフルオロアルキル基を表す。m、nはそれぞれ独立に2または3であり、このとき複数存在する括弧内の構造は互いに同じでも異なっていてもよい。o、pはそれぞれ独立に0以上の整数であり、oおよびpが2以上であるとき複数のXは互いに同一であっても異なっていてもよい。]
  2.  前記一般式(I)において、Tが
    Figure JPOXMLDOC01-appb-C000003
    [式中、oは0以上の整数を表し、oが2以上であるときXは互いに同一であっても異なっていてもよい。]
    である請求項1に記載の化合物。
  3.  前記一般式(I)において、Lが-COO-かつ、Lが-OCO-であり、AおよびAがそれぞれ独立に
    Figure JPOXMLDOC01-appb-C000004
    のいずれかであり、LおよびLが-O-である請求項1または2に記載の化合物。
  4.  前記一般式(I)において、Hbがそれぞれ独立に炭素数2~30のパーフルオロアルキル基である請求項1~3のいずれか1項に記載の化合物。
  5.  請求項1~4のいずれか1項に記載の化合物を用いたヘイズ低下剤。
  6.  重合性液晶分子と下記一般式(I)で表される化合物を含む液晶組成物。
    Figure JPOXMLDOC01-appb-C000005
    [式中、L、L、L、L、L、Lはおのおの独立して単結合、-O-、-S-、-CO-、-COO-、-OCO-、-COS-、-SCO-、-NRCO-、-CONR-(一般式(I)中におけるRはそれぞれ独立して水素原子または炭素原子数が1~6のアルキル基を表す)を表し、またSp、Sp、Sp、Spはそれぞれ独立して単結合または炭素数1~10のアルキレン基(但し、該アルキレン基の水素原子はフッ素原子で置換されていてもよい)を表し、A、Aは3価または4価の芳香族炭化水素を表し、Tは
    Figure JPOXMLDOC01-appb-C000006
    で表される二価の基または二価の芳香族複素環基を表す(Xは炭素数1~8のアルキル基、アルコキシ基、ハロゲン原子、シアノ基または-COOR(Rは水素原子、隣接するCHがOまたはSで置換されていてもよいアルキル基もしくはフッ化アルキル基、または-Sp-Pを表し、Spは単結合または炭素数1~10のアルキレン基(但し、該アルキレン基の水素原子はフッ素原子で置換されていてもよい)を表し、Pは重合性基を表す)を表し、Ya、Yb、Yc、Ydはおのおの独立して水素または炭素数1~4のアルキル基を表す)であり、Hbはそれぞれ独立に炭素数2~30のパーフルオロアルキル基またはフルオロアルキル基を表す。m、nはそれぞれ独立に2または3であり、このとき複数存在する括弧内の構造は互いに同じでも異なっていてもよい。o、pはそれぞれ独立に0以上の整数であり、oおよびpが2以上であるとき複数のXは互いに同一であっても異なっていてもよい。]
  7.  前記重合性液晶分子が棒状液晶分子である請求項6に記載の液晶組成物。
  8.  少なくとも1種のキラル化合物を含有する請求項6または7に記載の液晶組成物。
  9.  請求項6~8のいずれか1項に記載の液晶組成物を重合させてなる高分子材料。
  10.  請求項9に記載の高分子材料の少なくとも1種を含有するフィルム。
  11.  請求項6~8のいずれか1項に記載の液晶組成物のコレステリック液晶相を固定してなるフィルム。
  12.  光学異方性を示す請求項10または11に記載のフィルム。
  13.  選択反射特性を示す請求項10~12のいずれか1項に記載のフィルム。
  14.  赤外線波長域に選択反射特性を示す請求項13に記載のフィルム。
PCT/JP2012/066957 2011-07-27 2012-07-03 化合物、ヘイズ低下剤、液晶組成物、高分子材料およびフィルム WO2013015077A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280036066.5A CN103702971B (zh) 2011-07-27 2012-07-03 化合物、雾度降低剂、液晶组合物、聚合物材料和膜
KR1020147004785A KR101629587B1 (ko) 2011-07-27 2012-07-03 화합물, 헤이즈 저하제, 액정 조성물, 고분자 재료 및 필름
EP12818188.0A EP2738155B1 (en) 2011-07-27 2012-07-03 Compound, haze-lowering agent, liquid crystal composition, polymer material, and film
US14/163,901 US9481829B2 (en) 2011-07-27 2014-01-24 Compound, haze-lowering agent, liquid crystal composition, polymer material, and film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011164777 2011-07-27
JP2011-164777 2011-07-27
JP2012-036512 2012-02-22
JP2012036512A JP5774518B2 (ja) 2011-07-27 2012-02-22 化合物、ヘイズ低下剤、液晶組成物、高分子材料およびフィルム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/163,901 Continuation US9481829B2 (en) 2011-07-27 2014-01-24 Compound, haze-lowering agent, liquid crystal composition, polymer material, and film

Publications (1)

Publication Number Publication Date
WO2013015077A1 true WO2013015077A1 (ja) 2013-01-31

Family

ID=47600932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066957 WO2013015077A1 (ja) 2011-07-27 2012-07-03 化合物、ヘイズ低下剤、液晶組成物、高分子材料およびフィルム

Country Status (6)

Country Link
US (1) US9481829B2 (ja)
EP (1) EP2738155B1 (ja)
JP (1) JP5774518B2 (ja)
KR (1) KR101629587B1 (ja)
CN (1) CN103702971B (ja)
WO (1) WO2013015077A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129121A1 (ja) * 2012-02-27 2013-09-06 富士フイルム株式会社 化合物、液晶組成物、高分子材料およびフィルム
WO2013132991A1 (ja) * 2012-03-08 2013-09-12 富士フイルム株式会社 化合物、液晶組成物、高分子材料およびフィルム
WO2014192655A1 (ja) * 2013-05-29 2014-12-04 Dic株式会社 重合性組成物溶液、および、それを用いた光学異方体
WO2023074732A1 (ja) * 2021-10-27 2023-05-04 富士フイルム株式会社 光学フィルム及び光学フィルムの製造方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5812823B2 (ja) 2011-11-25 2015-11-17 富士フイルム株式会社 フィルムおよびその製造方法
CN105916900B (zh) * 2014-06-23 2018-09-21 Dic株式会社 聚合性液晶组合物和使用该组合物制作的光学各向异性体、相位差膜、图案化相位差膜
US9849654B2 (en) 2014-10-29 2017-12-26 Solutia Inc. Polymer interlayers comprising a compatibilizer
US9840617B2 (en) 2014-12-08 2017-12-12 Solutia Inc. Blends of poly(vinyl acetal) resins for compositions, layers, and interlayers having enhanced optical properties
US10005899B2 (en) 2014-12-08 2018-06-26 Solutia Inc. Blends of poly(vinyl acetal) resins for compositions, layers, and interlayers having enhanced optical properties
US9758662B2 (en) 2014-12-08 2017-09-12 Solutia Inc. Poly(vinyl acetal) resin compositions, layers and interlayers having enhanced properties
WO2016094204A1 (en) * 2014-12-08 2016-06-16 Solutia Inc. Poly(vinyl acetal) resin compositions, layers, and interlayers having enhanced properties
US9724899B2 (en) 2014-12-08 2017-08-08 Solutia Inc. Poly(vinyl acetal) resin compositions, layers and interlayers having enhanced properties
US9926431B2 (en) 2014-12-08 2018-03-27 Solutia Inc. Poly(vinyl acetal) resin compositions, layers and interlayers having enhanced properties
CN107001759B (zh) * 2014-12-08 2021-05-18 首诺公司 用于具有增强的光学特性的组合物、层、和夹层的聚(乙烯醇缩醛)树脂的共混物
US9669605B2 (en) 2014-12-08 2017-06-06 Solutia Inc. Poly(vinyl acetal) resin compositions, layers and interlayers having enhanced properties
DE102017010942A1 (de) * 2016-12-08 2018-06-14 Merck Patent Gmbh Additive für Flüssigkristallmischungen
CN111936897B (zh) 2018-03-23 2022-09-06 富士胶片株式会社 胆甾醇型液晶层及其制造方法、层叠体、光学各向异性体、反射膜、防伪介质及判定方法
CN111902749B (zh) 2018-03-23 2022-09-20 富士胶片株式会社 胆甾醇型液晶层的制造方法、胆甾醇型液晶层、液晶组合物、固化物、光学各向异性体、反射层
EP4144820A4 (en) * 2020-04-28 2023-10-18 FUJIFILM Corporation COMPOUND, LIQUID CRYSTAL COMPOSITION, HARDENED OBJECT, AND FILM
EP4163262A4 (en) 2020-06-03 2023-12-13 FUJIFILM Corporation REFLECTIVE FILM, COMPOSITE GLASS PRODUCTION PROCESS AND LAMINATED GLASS

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2367661A (en) 1941-12-31 1945-01-23 Du Pont Process of photopolymerization
US2367670A (en) 1941-12-31 1945-01-23 Du Pont Cementing process
US2448828A (en) 1946-09-04 1948-09-07 Du Pont Photopolymerization
US2722512A (en) 1952-10-23 1955-11-01 Du Pont Photopolymerization process
US2951758A (en) 1957-05-17 1960-09-06 Du Pont Photopolymerizable compositions and elements
US3046127A (en) 1957-10-07 1962-07-24 Du Pont Photopolymerizable compositions, elements and processes
US3549367A (en) 1968-05-24 1970-12-22 Du Pont Photopolymerizable compositions containing triarylimidazolyl dimers and p-aminophenyl ketones
US4212970A (en) 1977-11-28 1980-07-15 Fuji Photo Film Co., Ltd. 2-Halomethyl-5-vinyl-1,3,4-oxadiazole compounds
US4239850A (en) 1977-11-29 1980-12-16 Fuji Photo Film Co., Ltd. Photopolymerizable composition
JPS60105667A (ja) 1983-10-12 1985-06-11 ヘキスト・アクチエンゲゼルシヤフト トリクロルメチル基を有する感光性化合物及びその製法
JPS6340799B2 (ja) 1978-07-14 1988-08-12 Basf Ag
JPH0529234B2 (ja) 1984-11-27 1993-04-28 Esupe Fuaburiiku Fuarumatsuoiteitsusheru Pureparaate Gmbh Unto Co Kg
JPH07333433A (ja) 1994-06-08 1995-12-22 Fuji Photo Film Co Ltd 光学補償シート及びそれを用いた液晶表示素子
JPH0827284A (ja) 1994-05-13 1996-01-30 Fuji Photo Film Co Ltd 薄膜の製造方法、光学的異方性シートおよび液晶表示装置
JPH09152509A (ja) 1995-02-08 1997-06-10 Fuji Photo Film Co Ltd 光学補償シート、ポリマー層を有する要素及び配向膜を有する要素
JPH1029997A (ja) 1996-03-04 1998-02-03 Ciba Specialty Chem Holding Inc アルキルフェニルビスアシルホスフィンオキサイドおよび光開始剤混合物
JPH1095788A (ja) 1996-08-28 1998-04-14 Ciba Specialty Chem Holding Inc 光開始剤としての分子錯化合物
EP0911656A2 (en) 1997-10-20 1999-04-28 Fuji Photo Film Co., Ltd. Optical compensatory sheet and liquid crystal display
JP2001081465A (ja) * 1999-09-10 2001-03-27 Fuji Photo Film Co Ltd ディスコティック液晶組成物、光学補償シートおよび液晶表示装置
JP2002097170A (ja) 2000-07-21 2002-04-02 Fuji Photo Film Co Ltd 芳香族カルボン酸の製造方法および芳香族アルデヒドの製造方法
JP2002129162A (ja) 2000-07-06 2002-05-09 Fuji Photo Film Co Ltd 液晶配向促進剤、液晶組成物、光学異方性素子、光学補償シートおよびstn型液晶表示装置
JP2005539077A (ja) * 2002-09-18 2005-12-22 ザ・トラスティーズ・オブ・ザ・ユニバーシティ・オブ・ペンシルバニア フッ化デンドロンおよび自己組織化超高密度ナノシリンダ組成物
US20100036054A1 (en) * 2005-05-21 2010-02-11 University Of Durham Novel surface active polymeric systems

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2909994A1 (de) 1979-03-14 1980-10-02 Basf Ag Acylphosphinoxidverbindungen, ihre herstellung und verwendung
DE2909992A1 (de) 1979-03-14 1980-10-02 Basf Ag Photopolymerisierbare aufzeichnungsmassen, insbesondere zur herstellung von druckplatten und reliefformen
KR100332717B1 (ko) 1994-05-13 2002-09-26 후지 샤신 필름 가부시기가이샤 액정디스플레이,광학보상시트및그의제조방법
DE69634620T2 (de) 1995-02-08 2006-03-02 Fuji Photo Film Co., Ltd., Minami-Ashigara Optische Kompensationsfolie
US6361925B1 (en) 1996-03-04 2002-03-26 Ciba Specialty Chemicals Corporation Photoinitiator mixtures and compositions with alkylphenylbisacylphosphine oxides
US6485798B1 (en) 1999-03-16 2002-11-26 Fuji Photo Film Co., Ltd. Optical compensatory sheet comprising substrate and optically anisotropic layer
US6338808B1 (en) 1999-03-31 2002-01-15 Fuji Photo Film Co., Ltd. Liquid crystal composition comprising liquid crystal molecules and alignment promoter
JP2000345164A (ja) 1999-03-31 2000-12-12 Fuji Photo Film Co Ltd 液晶配向促進剤、液晶組成物および光学異方性素子
DE60114518T2 (de) 2000-07-06 2006-08-10 Fuji Photo Film Co. Ltd., Minamiashigara Flüssigkristallzusammensetzung, die Flüssigkristallmoleküle und Ausrichtungsmittel enthält
ATE251606T1 (de) 2000-07-21 2003-10-15 Fuji Photo Film Co Ltd Verfahren zur herstellung von aromatischen karbonsäure
JP5852469B2 (ja) * 2012-02-27 2016-02-03 富士フイルム株式会社 化合物、液晶組成物、高分子材料およびフィルム

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2367661A (en) 1941-12-31 1945-01-23 Du Pont Process of photopolymerization
US2367670A (en) 1941-12-31 1945-01-23 Du Pont Cementing process
US2448828A (en) 1946-09-04 1948-09-07 Du Pont Photopolymerization
US2722512A (en) 1952-10-23 1955-11-01 Du Pont Photopolymerization process
US2951758A (en) 1957-05-17 1960-09-06 Du Pont Photopolymerizable compositions and elements
US3046127A (en) 1957-10-07 1962-07-24 Du Pont Photopolymerizable compositions, elements and processes
US3549367A (en) 1968-05-24 1970-12-22 Du Pont Photopolymerizable compositions containing triarylimidazolyl dimers and p-aminophenyl ketones
US4212970A (en) 1977-11-28 1980-07-15 Fuji Photo Film Co., Ltd. 2-Halomethyl-5-vinyl-1,3,4-oxadiazole compounds
US4239850A (en) 1977-11-29 1980-12-16 Fuji Photo Film Co., Ltd. Photopolymerizable composition
JPS6340799B2 (ja) 1978-07-14 1988-08-12 Basf Ag
JPS60105667A (ja) 1983-10-12 1985-06-11 ヘキスト・アクチエンゲゼルシヤフト トリクロルメチル基を有する感光性化合物及びその製法
JPH0529234B2 (ja) 1984-11-27 1993-04-28 Esupe Fuaburiiku Fuarumatsuoiteitsusheru Pureparaate Gmbh Unto Co Kg
JPH0827284A (ja) 1994-05-13 1996-01-30 Fuji Photo Film Co Ltd 薄膜の製造方法、光学的異方性シートおよび液晶表示装置
JPH07333433A (ja) 1994-06-08 1995-12-22 Fuji Photo Film Co Ltd 光学補償シート及びそれを用いた液晶表示素子
JPH09152509A (ja) 1995-02-08 1997-06-10 Fuji Photo Film Co Ltd 光学補償シート、ポリマー層を有する要素及び配向膜を有する要素
JPH1029997A (ja) 1996-03-04 1998-02-03 Ciba Specialty Chem Holding Inc アルキルフェニルビスアシルホスフィンオキサイドおよび光開始剤混合物
JPH1095788A (ja) 1996-08-28 1998-04-14 Ciba Specialty Chem Holding Inc 光開始剤としての分子錯化合物
EP0911656A2 (en) 1997-10-20 1999-04-28 Fuji Photo Film Co., Ltd. Optical compensatory sheet and liquid crystal display
JP2001081465A (ja) * 1999-09-10 2001-03-27 Fuji Photo Film Co Ltd ディスコティック液晶組成物、光学補償シートおよび液晶表示装置
JP2002129162A (ja) 2000-07-06 2002-05-09 Fuji Photo Film Co Ltd 液晶配向促進剤、液晶組成物、光学異方性素子、光学補償シートおよびstn型液晶表示装置
JP2002097170A (ja) 2000-07-21 2002-04-02 Fuji Photo Film Co Ltd 芳香族カルボン酸の製造方法および芳香族アルデヒドの製造方法
JP2005539077A (ja) * 2002-09-18 2005-12-22 ザ・トラスティーズ・オブ・ザ・ユニバーシティ・オブ・ペンシルバニア フッ化デンドロンおよび自己組織化超高密度ナノシリンダ組成物
US20100036054A1 (en) * 2005-05-21 2010-02-11 University Of Durham Novel surface active polymeric systems

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
B. KOHNE ET AL., ANGEW. CHEM. SOC. CHEM. COMM., 1985, pages 1794
C. DESTRADE ET AL., MOL. CRYSR. LIQ. CRYST., vol. 71, 1981, pages 111
CHEMICAL SOCIETY OF JAPAN,: "Liquid Crystal Chemistry", 1994, article "Chapter 5, Chapter 10, Section 2"
J. ZHANG ET AL., J. AM. CHEM. SOC., vol. 116, 1994, pages 2655
LEHMANN, MATTHIAS ET AL.: "Star-shaped oligobenzoates with a naphthalene chromophore as potential semiconducting liquid crystal materials?", JOURNAL OF MATERIALS CHEMISTRY, vol. 18, no. 25, 2008, pages 2995 - 3003, XP055082706 *
LUSCOMBE, CHRISTINE K. ET AL.: "Synthesis of Supercritical Carbon Dioxide Soluble Perfluorinated Dendrons for Surface Modification", JOURNAL OF ORGANIC CHEMISTRY, vol. 72, no. 15, 2007, pages 5505 - 5513, XP055082705 *
See also references of EP2738155A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129121A1 (ja) * 2012-02-27 2013-09-06 富士フイルム株式会社 化合物、液晶組成物、高分子材料およびフィルム
US9464232B2 (en) 2012-02-27 2016-10-11 Fujifilm Corporation Compound, liquid crystal composition, polymer material, and film
WO2013132991A1 (ja) * 2012-03-08 2013-09-12 富士フイルム株式会社 化合物、液晶組成物、高分子材料およびフィルム
WO2014192655A1 (ja) * 2013-05-29 2014-12-04 Dic株式会社 重合性組成物溶液、および、それを用いた光学異方体
GB2529349A (en) * 2013-05-29 2016-02-17 Dainippon Ink & Chemicals Polymerizable composition solution and optically anisotropic body using same
US20160115338A1 (en) * 2013-05-29 2016-04-28 Dic Corporation Polymerizable composition solution and optically anisotropic body including the same
US9676959B2 (en) 2013-05-29 2017-06-13 Dic Corporation Polymerizable composition solution and optically anisotropic body including the same
TWI634105B (zh) * 2013-05-29 2018-09-01 迪愛生股份有限公司 聚合性組成物溶液、及使用其之光學異向體
GB2529349B (en) * 2013-05-29 2020-10-14 Dainippon Ink & Chemicals Polymerizable composition solution and optically anisotropic body including the same
WO2023074732A1 (ja) * 2021-10-27 2023-05-04 富士フイルム株式会社 光学フィルム及び光学フィルムの製造方法

Also Published As

Publication number Publication date
US20140138580A1 (en) 2014-05-22
CN103702971A (zh) 2014-04-02
US9481829B2 (en) 2016-11-01
EP2738155B1 (en) 2016-02-24
CN103702971B (zh) 2015-12-23
JP5774518B2 (ja) 2015-09-09
KR101629587B1 (ko) 2016-06-13
JP2013047204A (ja) 2013-03-07
EP2738155A4 (en) 2015-04-08
EP2738155A1 (en) 2014-06-04
KR20140049022A (ko) 2014-04-24

Similar Documents

Publication Publication Date Title
JP5774518B2 (ja) 化合物、ヘイズ低下剤、液晶組成物、高分子材料およびフィルム
JP5797132B2 (ja) 化合物、液晶組成物、高分子材料およびフィルム
WO2014142026A1 (ja) 重合性液晶化合物、液晶組成物、高分子材料とその製造方法、フィルム、偏光板および液晶表示装置
JP5816232B2 (ja) 液晶組成物およびその製造方法ならびにフィルム
JP2013195630A (ja) 光反射フィルム、自動車用フロントガラス、建材用ガラス
JP5798066B2 (ja) 化合物、液晶組成物、高分子材料およびフィルム
JP5660812B2 (ja) 重合性化合物
JP5852469B2 (ja) 化合物、液晶組成物、高分子材料およびフィルム
JP5750069B2 (ja) 液晶配向促進剤、液晶組成物、高分子材料およびフィルム
JP5411771B2 (ja) 化合物、重合性組成物、高分子、及びフィルム
JP5804814B2 (ja) 化合物、ヘイズ低下剤、液晶組成物、高分子材料およびフィルム
JP6511407B2 (ja) 重合性化合物、重合性組成物、およびフィルム
JP2005241710A (ja) 液晶組成物、位相差板および液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12818188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012818188

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147004785

Country of ref document: KR

Kind code of ref document: A