WO2013015029A1 - 無段変速機の変速制御装置 - Google Patents

無段変速機の変速制御装置 Download PDF

Info

Publication number
WO2013015029A1
WO2013015029A1 PCT/JP2012/064919 JP2012064919W WO2013015029A1 WO 2013015029 A1 WO2013015029 A1 WO 2013015029A1 JP 2012064919 W JP2012064919 W JP 2012064919W WO 2013015029 A1 WO2013015029 A1 WO 2013015029A1
Authority
WO
WIPO (PCT)
Prior art keywords
continuously variable
variable transmission
linear mode
control device
acceleration request
Prior art date
Application number
PCT/JP2012/064919
Other languages
English (en)
French (fr)
Inventor
智行 鈴木
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to JP2013525617A priority Critical patent/JP5626471B2/ja
Priority to RU2014107426/11A priority patent/RU2572926C2/ru
Priority to MX2014001039A priority patent/MX343254B/es
Priority to EP12817810.0A priority patent/EP2738428B1/en
Priority to CN201280034500.6A priority patent/CN103649601B/zh
Priority to US14/233,481 priority patent/US9090249B2/en
Priority to BR112014001700-0A priority patent/BR112014001700B1/pt
Publication of WO2013015029A1 publication Critical patent/WO2013015029A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/18Inputs being a function of torque or torque demand dependent on the position of the accelerator pedal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/48Inputs being a function of acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66254Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling
    • F16H61/66259Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling of shifting being influenced by a signal derived from the engine and the main coupling using electrical or electronical sensing or control means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • B60W2540/106Rate of change
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/18Inputs being a function of torque or torque demand dependent on the position of the accelerator pedal
    • F16H2059/183Rate of change of accelerator position, i.e. pedal or throttle change gradient
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H2061/6604Special control features generally applicable to continuously variable gearings
    • F16H2061/6611Control to achieve a particular driver perception, e.g. for generating a shift shock sensation

Definitions

  • the present invention relates to a transmission control device for a continuously variable transmission.
  • a control mode that variably controls the transmission ratio according to driving conditions hereinafter referred to as “normal mode”.
  • normal mode a mode that shifts to a control mode
  • linear mode is a mode that suppresses a change in gear ratio with respect to the normal mode.
  • JP2002-372143A when the accelerator opening exceeds a threshold value, it is determined that the acceleration request is large, and the mode is shifted to the linear mode in which the change in the gear ratio is suppressed.
  • the driving force when the engine speed increases due to an increase in the throttle opening, the driving force also increases quickly. That is, the time delay from when the throttle opening increases until acceleration is obtained is shortened, and the uncomfortable feeling given to the driver can be reduced.
  • an object of the present invention is to provide a shift control device for a continuously variable transmission that can reliably detect that the driver no longer intends to accelerate and shifts to a normal mode when shifting to steady running after completion of acceleration. Is to provide.
  • the present invention includes an operation state detection unit that detects a vehicle operation state including a vehicle speed and an accelerator opening, a control unit that controls a speed ratio of the continuously variable transmission based on the operation state, Based on the acceleration request determination means for determining the acceleration request by the driver and the driver's acceleration request, the gear ratio is set so that the input rotation speed of the continuously variable transmission is higher than the normal mode at the same vehicle speed.
  • Linear mode setting means for setting the linear mode.
  • the front / rear G detecting means for detecting the front / rear G of the vehicle, and when it is determined that there is no acceleration request based on the front / rear G during traveling in the linear mode, A linear mode canceling unit for canceling the linear mode is provided.
  • FIG. 1 is a schematic configuration diagram showing an embodiment of a vehicle equipped with a shift control device according to the present invention.
  • FIG. 2 is a flowchart showing a control routine for transition from the normal mode to the linear mode, which is executed by the continuously variable transmission controller.
  • FIG. 3 is a flowchart showing a control routine for the transition from the linear mode to the normal mode executed by the continuously variable transmission controller.
  • FIG. 4 is a control block diagram of acceleration request determination executed by the continuously variable transmission controller during the linear mode.
  • FIG. 5 is a time chart when the control routine of FIG. 3 is executed.
  • FIG. 6 is a diagram showing a region where the linear mode is canceled according to the present embodiment.
  • FIG. 1 shows a schematic configuration of a vehicle equipped with a speed change control device according to the present invention.
  • the driving force of the internal combustion engine 1 is transmitted to the drive wheels 5 via the torque converter and forward / reverse switching mechanism 2, continuously variable transmission 3, final reduction gear and differential mechanism 4.
  • the internal combustion engine 1 is subjected to fuel injection amount control, ignition timing control, and the like by the engine controller 6.
  • the continuously variable transmission 3 is controlled steplessly by the continuously variable transmission controller 7.
  • the control device 8 includes a microcomputer and its peripheral devices together with the controllers 6 and 7, and performs comprehensive vehicle control.
  • the control device 8 includes an accelerator sensor 9 that detects the accelerator opening (accelerator pedal operation amount), a vehicle speed sensor 10 that detects the traveling speed of the vehicle, a wheel speed sensor 11 that detects the wheel speed of the drive wheels 5, An engine rotation sensor 12 for detecting the rotation speed of the internal combustion engine 1 is connected.
  • the continuously variable transmission controller 7 corresponds to the control means of the present invention, and the accelerator sensor 9 and the vehicle speed sensor 10 correspond to the driving state detection means of the present invention.
  • a belt-type CVT with a variable pulley mechanism is assumed as the continuously variable transmission 3, and the gear ratio may be expressed by the term pulley ratio.
  • the pulley ratio or the gear ratio is synonymous with the reduction ratio, that is, the value represents the input pulley rotation speed / output pulley rotation speed.
  • FIG. 2 shows a control routine for determining whether or not to shift from the normal mode to the linear mode in the shift control executed by the continuously variable transmission controller 7.
  • FIG. 3 shows a control routine for determining whether or not to shift from the linear mode to the normal mode in the shift control executed by the continuously variable transmission controller 7. All the control routines are repeatedly executed at a short cycle of about 10 milliseconds, for example.
  • the control routine of FIG. 2 shows an example of a control routine for determining whether or not the transition from the normal mode to the linear mode is necessary.
  • the contents of this control routine are publicly known.
  • step S100 the continuously variable transmission controller 7 determines whether or not the accelerator opening detected by the accelerator sensor 9 is greater than an accelerator opening reference value set in advance as a threshold for acceleration determination. If the accelerator opening is larger than the accelerator opening reference value, the process of step S110 is executed. If the accelerator opening is smaller, the continuation of the normal mode is determined in step S130, and the current process is terminated.
  • step S110 the continuously variable transmission controller 7 determines whether or not the accelerator opening speed calculated based on the detection value of the accelerator sensor 9 is larger than an opening speed reference value set in advance as a threshold for acceleration determination. If the accelerator opening speed is greater than the opening speed reference value, the process of step S120 is executed. If the accelerator opening speed is smaller, the continuation of the normal mode is determined in step S130, and the current process ends.
  • step S120 the continuously variable transmission controller 7 determines the transition to the linear mode.
  • the gear ratio is set according to a shift characteristic map in which the relationship between the input rotation speed of the continuously variable transmission 3 and the vehicle speed is set for each accelerator opening for each mode.
  • the speed change characteristic is such that the change of the speed ratio is suppressed compared to the normal mode. That is, when compared with the same accelerator opening and the same vehicle speed, the input rotation speed of the continuously variable transmission 3 is higher in the linear mode than in the normal mode.
  • control routine of FIG. 3 determines whether or not to cancel the linear mode while controlling the gear ratio in accordance with the speed characteristic map for the linear mode.
  • step S200 the continuously variable transmission controller 7 determines whether or not the accelerator opening is larger than an accelerator opening reference value as a threshold value. If the accelerator opening is larger than the accelerator opening reference, the process of step S210 is executed. If the accelerator opening is smaller, the shift to the normal mode is determined in step S250, and this control routine is terminated.
  • the accelerator opening reference value is set to a relatively small opening, for example, about 1/8, which is the same as the threshold for determining the release of the linear mode in a known shift control device.
  • step S210 the continuously variable transmission controller 7 determines whether or not the accelerator closing speed calculated based on the detection value of the accelerator sensor 9 is smaller than a preset first closing speed reference value.
  • the first closing speed reference value is set to a relatively fast speed, for example, about 100 deg / sec, which is the same as the threshold for determining the release of the linear mode in a known shift control device.
  • the process of step S220 is executed.
  • the shift to the normal mode is determined at step S250, and this control routine is ended.
  • Steps S200 and S210 described above are known as routines for determining the release of the linear mode.
  • step S220 the continuously variable transmission controller 7 executes acceleration request determination described below.
  • FIG. 4 is a block diagram showing the calculation contents of the acceleration request determination executed by the continuously variable transmission controller 7 during the linear mode. This block diagram schematically shows calculation contents and does not mean a physical configuration.
  • the judging device 20 judges whether or not the accelerator closing speed is larger than the second closing speed reference value, and if so, inputs the result to the judging device 24. Since the second closing speed reference value is only for detecting whether or not the driver has intentionally returned the accelerator pedal, the second closing speed reference value is set as small as possible within a range in which erroneous determination can be avoided. For example, it is set to about 20 deg / sec.
  • the judging device 21 judges whether or not the front and rear G is smaller than the G reference value, and if it is smaller, the result is inputted to the judging device 24.
  • the G reference value is set as follows. For example, even if the accelerator opening is constant, the acceleration decreases as the speed increases. However, the decrease in the acceleration is more noticeable from the lower vehicle speed as the output of the internal combustion engine 1 is lower and the vehicle weight is heavier. The same applies when the driving environment changes from a flat road to an uphill road. On the other hand, the higher the output of the internal combustion engine 1 and the lighter the vehicle weight, the smaller the influence of the increase in vehicle speed and road gradient on the acceleration. Therefore, the G reference value is appropriately set according to the specifications of the internal combustion engine 1 and the vehicle body.
  • the front and rear G is calculated from the wheel speed and the output shaft speed of the continuously variable transmission 3.
  • the output shaft speed of the continuously variable transmission 3 is detected by an output shaft speed sensor (not shown).
  • the detection value of the G sensor includes the influence of the road surface gradient. For this reason, for example, when changing from a flat road to an uphill road, the front and rear G may be smaller than the G reference value even if the driver intends to accelerate. Therefore, in order to eliminate the influence of changes in the traveling environment, the calculation is made based on the wheel speed of the drive wheels 5 or the output shaft rotational speed of the continuously variable transmission 3.
  • the subtracter 22 subtracts the current accelerator opening from the maximum accelerator opening from a predetermined time before to the present, and inputs the result to the determiner 23.
  • a value from a predetermined time before is used.
  • the predetermined time is, for example, about 5 seconds.
  • the decision unit 23 determines whether or not the calculation result of the subtracter 22 is larger than a preset threshold value, and if it is larger, the result is input to the decision unit 24.
  • the threshold value is set to a value that can exclude an accelerator operation that the driver unconsciously performs, or a case where the accelerator pedal is slightly returned for speed adjustment although there is an intention to accelerate.
  • the determiner 24 determines that there is no acceleration request when all the determination results of the determiners 20 to 23 are input. Returning to the flowchart of FIG.
  • step S230 the continuously variable transmission controller 7 determines whether there is an acceleration request based on the determination result in step S220. If there is an acceleration request, the continuation of the linear mode is determined in step S240 and the current process is terminated. On the other hand, when there is no acceleration request, the shift to the normal mode is determined in step S250, and this control routine is terminated.
  • FIG. 5 is a time chart when this control routine is executed.
  • the accelerator opening starts to decrease at timing t2.
  • the acceleration closing speed or the second closing speed reference value is greater than the timing, but at any timing, the linear mode continues because the accelerator opening does not satisfy the condition. is doing.
  • the front / rear G becomes smaller than the front / rear G reference value, but the linear mode continues because the accelerator opening does not satisfy the condition.
  • the accelerator opening degree, the accelerator closing speed, and the front and rear G conditions are met and the mode is shifted to the normal mode. And the input rotation speed of the continuously variable transmission 3 has fallen by shifting to normal mode.
  • the front and rear G of the vehicle is used as a determination value for canceling the linear mode and determining the transition to the normal mode, it is possible to make a determination according to the acceleration change of the vehicle. Then, by using the accelerator closing speed together as the determination value, it is possible to avoid an erroneous determination when the front-rear G decreases even when there is an intention to accelerate as when entering an uphill road. Furthermore, the return amount from the maximum accelerator opening during the linear mode is also used as the above judgment value, so that the return amount does not exceed the threshold value, for example, the accelerator operation that the driver unconsciously performs. In this case, it can be avoided that the linear mode is canceled.
  • FIG. 6 is a diagram showing a region where the linear mode is canceled by the control routine of FIG.
  • the vertical axis represents the accelerator opening
  • the horizontal axis represents the accelerator closing speed.
  • Region LR1 and region LR2 are regions where the linear mode is canceled when the accelerator opening reference value is 1/8, the first closing speed reference value is 100 deg / sec, and the second closing speed reference value is 20 deg / sec. It is.
  • Each reference value is only an example.
  • the region LR1 is a region where the linear mode is canceled by the processing of Step S200 and Step S210, that is, a region where the linear mode is canceled even by a known technique. Specifically, this is a region corresponding to a case where the accelerator opening is abruptly reduced, such as when the accelerator opening is extremely low, or when the foot is released from the accelerator pedal.
  • the region LR2 is a region where the linear mode can be canceled by the processing of steps S220 and S230 of this control routine. Specifically, this is a region corresponding to a case where the driver returns the accelerator pedal relatively slowly to a low and middle opening degree in an attempt to shift from acceleration traveling to steady traveling.
  • the accelerator opening upper limit value in the region LR2 is an accelerator opening that is slightly larger than the accelerator opening for steady running determined from the load-load line, and is specifically determined in relation to the longitudinal G reference value.
  • the linear mode can be canceled even in a region where the linear mode cannot be canceled by the determination based only on the accelerator opening and the accelerator closing speed as in the region LR2 of FIG.
  • the front-rear vehicle is driven even though there is an intention to accelerate as if entering an uphill road from a flat road. A misjudgment in a situation where G decreases can be avoided.
  • the presence or absence of intention to accelerate during running in the linear mode is determined based on the return amount from the maximum opening in the linear mode, so the linear mode is canceled when the return amount of the accelerator pedal is small. Can be avoided.
  • the front and rear G are calculated based on the wheel speed and the output shaft speed of the continuously variable transmission, it is possible to accurately detect that the acceleration intention has been lost even when traveling on an uphill road.
  • the maximum accelerator opening in the linear mode is the maximum opening from the present to a predetermined time, it is possible to determine whether or not there is an intention to accelerate based on the latest state.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Control Of Transmission Device (AREA)

Abstract

無段変速機の変速制御装置は、車両の運転状態を検出する運転状態検出手段と、運転状態に基づいて無段変速機の変速比を制御する制御手段と、運転者による加速要求を判定する加速要求判定手段と、加速要求に基づいて同じ車速のときにノーマルモードに対して無段変速機の入力回転数が高くなるような変速比とするリニアモードを設定するリニアモード設定手段と、車両の前後Gを検出する前後G検出手段と、リニアモードでの走行中に前後Gに基づいて加速要求が無いと判定した場合には、リニアモードを実施する条件下であってもリニアモードを解除するリニアモード解除手段を備える。

Description

無段変速機の変速制御装置
 本発明は、無段変速機の変速制御装置に関する。
 無段変速機の変速比制御として、原則は運転状態に応じて変速比を可変制御する制御モード(以下、「ノーマルモード」という。)で、運転者の加速要求が大きい場合には、同じ車速のときにノーマルモードに対して無段変速機の入力回転数が高くなるような変速比とする制御モード(以下、「リニアモード」という。)へ移行するものが知られている。すなわち、リニアモードは、ノーマルモードに対して変速比変化を抑制するモードである。
 例えばJP2002-372143Aでは、アクセル開度が閾値を超えた場合には加速要求が大きいものと判定し、変速比変化を抑制するリニアモードに移行している。これにより、スロットル開度の増大によりエンジン回転数が上昇すると、駆動力も速やかに増大する。つまり、スロットル開度が増大してから加速感が得られるまでの時間遅れが短くなり、運転者に与える違和感を軽減できる。
 そして、リニアモードで走行中にアクセル開度が所定量低減したら、加速要求が小さくなったと判定して、リニアモードを解除してノーマルモードへ移行している。
 しかしながら、JP2002-372143Aの制御では、加速要求の大きさをアクセル開度に基づいて判定しているので、リニアモードでの走行中に運転者の加速要求の減少を検知できない場合が生じるおそれがある。例えば、発進加速後にそのまま定常走行へ移行しようとする場合のように、アクセル開度の変化量が小さく、その変化速度も低くなる場合に、加速要求の減少を検知できない。この場合、定常走行しているにもかかわらずリニアモードが解除されないので、内燃機関が高回転を維持したままとなり、運転者に違和感を与えることとなる。また、エンジン回転数が高いままでは、燃費性能の悪化も招来する。
 本発明の目的は、したがって、加速が終了して定常走行へ移行する際に、運転者に加速意図がなくなったことを確実に検知し、ノーマルモードへ移行し得る無段変速機の変速制御装置を提供することである。
 上記目的を達成するため、本発明は、車速とアクセル開度を含む車両の運転状態を検出する運転状態検出手段と、運転状態に基づいて無段変速機の変速比を制御する制御手段と、運転者による加速要求を判定する加速要求判定手段と、運転者の加速要求に基づいて、同じ車速のときにノーマルモードに対して無段変速機の入力回転数が高くなるような変速比とするリニアモードを設定するリニアモード設定手段とを備える。さらに、車両の前後Gを検出する前後G検出手段と、リニアモードでの走行中に前後Gに基づいて加速要求が無いと判定した場合には、リニアモードを実施する条件下であっても前記リニアモードを解除するリニアモード解除手段を備えることを特徴とする。
 この発明の詳細並びに他の特徴や利点は、明細書の以降の記載の中で説明されるとともに、添付された図面に示される。
図1は本発明による変速制御装置を搭載した車両の実施形態を示す概略構成図である。 図2は無段変速機コントローラが実行するノーマルモードからリニアモードへの移行のための制御ルーチンを示すフローチャートである。 図3は無段変速機コントローラが実行するリニアモードからノーマルモードへの移行のための制御ルーチンを示すフローチャートである。 図4は無段変速機コントローラがリニアモード中に実行する加速要求判定の制御ブロック図である。 図5は図3の制御ルーチンを実行した場合のタイムチャートである。 図6は本実施形態によりリニアモードが解除される領域を示す図である。
 図1は本発明による変速制御装置を備えた車両の概略構成を示したものである。内燃機関1の駆動力は、トルクコンバータおよび正逆切換機構2、無段変速機3、最終減速機および差動機構4を介して駆動輪5に伝達される。
 内燃機関1は、エンジンコントローラ6によって燃料噴射量制御、点火時期制御などが行われる。
 無段変速機3は、無段変速機コントローラ7によって変速比が無段階に制御される。
 制御装置8は、前記各コントローラ6、7と共にマイクロコンピュータおよびその周辺装置から構成され、総合的な車両の制御を行う。この制御装置8には、アクセル開度(アクセルペダル操作量)を検出するアクセルセンサ9、車両の走行速度を検出する車速センサ10、駆動輪5の車輪速度を検出するための車輪速センサ11、内燃機関1の回転速度を検出するエンジン回転センサ12などが接続されている。無段変速機コントローラ7が本発明の制御手段に、アクセルセンサ9と車速センサ10が本発明の運転状態検出手段に、それぞれ対応する。
 なお、以下の説明においては無段変速機3として可変プーリ機構によるベルト式CVTを想定し、変速比をプーリ比という語で表す場合がある。プーリ比または変速比は減速比と同義であり、すなわちその値は入力プーリ回転数/出力プーリ回転数を表している。
 図2は、無段変速機コントローラ7が実行する変速制御のうち、ノーマルモードからリニアモードへの移行をするか否かを決定する制御ルーチンを表している。図3は、無段変速機コントローラ7が実行する変速制御のうち、リニアモードからノーマルモードへ移行するか否かを決定する制御ルーチンを表している。いずれの制御ルーチンも、例えば10ミリ秒程度の短い周期で繰り返し実行される。
 図2の制御ルーチンは、ノーマルモードからリニアモードへの移行の要否を判定する制御ルーチンの一例を示している。なお、本制御ルーチンの内容は公知である。
 ステップS100で、無段変速機コントローラ7はアクセルセンサ9で検出したアクセル開度が、加速判定の閾値として予め設定したアクセル開度基準値より大きいか否かを判定する。アクセル開度がアクセル開度基準値より大きい場合はステップS110の処理を実行し、小さい場合はステップS130でノーマルモードの継続を決定して今回の処理を終了する。
 ステップS110で、無段変速機コントローラ7はアクセルセンサ9の検出値に基づいて算出したアクセル開速度が、加速判定の閾値として予め設定した開速度基準値より大きいか否かを判定する。アクセル開速度が開速度基準値より大きい場合は、ステップS120の処理を実行し、小さい場合はステップS130でノーマルモードの継続を決定して今回の処理を終了する。
 ステップS120で、無段変速機コントローラ7はリニアモードへの移行を決定する。
 ノーマルモード、リニアモードのいずれの場合も、それぞれのモード用に無段変速機3の入力回転数と車速の関係をアクセル開度毎に設定した変速特性マップにしたがって変速比を設定する。ただし、リニアモードの場合はノーマルモードに比べて、変速比の変化が抑制された変速特性となっている。つまり、同アクセル開度かつ同車速で比較すると、リニアモードの方がノーマルモードより無段変速機3の入力回転数が高くなる。
 図2の制御ルーチンでリニアモードに移行したら、リニアモード用の変速特性マップにしたがって変速比を制御しつつ、図3の制御ルーチンによりリニアモードを解除するか否かの判定を行う。
 ステップS200で、無段変速機コントローラ7は、アクセル開度が閾値としてのアクセル開度基準値より大きいか否かを判定する。アクセル開度がアクセル開度基準より大きい場合はステップS210の処理を実行し、小さい場合は、ステップS250でノーマルモードへの移行を決定して本制御ルーチンを終了する。アクセル開度基準値は、公知の変速制御装置においてリニアモードの解除を決定する際の閾値と同様の比較的小さい開度、例えば1/8程度に設定する。
 ステップS210で、無段変速機コントローラ7は、アクセルセンサ9の検出値に基づいて算出したアクセル閉速度が、予め設定した第1閉速度基準値より小さいか否かを判定する。第1閉速度基準値は、公知の変速制御装置においてリニアモードの解除を決定する際の閾値と同様の比較的速い速度、例えば100deg/sec程度に設定する。アクセル閉速度が第1閉速度基準値より小さい場合はステップS220の処理を実行し、大きい場合はステップS250でノーマルモードへの移行を決定して本制御ルーチンを終了する。
 上述したステップS200及びステップS210は、リニアモードの解除を決定するルーチンとしては公知である。
 ステップS220で、無段変速機コントローラ7は、以下に説明する加速要求判定を実行する。
 図4は、無段変速機コントローラ7がリニアモード中に実行する加速要求判定の演算内容を示すブロック図である。本ブロック図は演算内容を模式的に示したもので、物理的な構成を意味するものではない。
 判定器20で、アクセル閉速度が第2閉速度基準値より大きいか否かを判定し、大きい場合は判定器24にその結果を入力する。第2閉速度基準値は、運転者が意図的にアクセルペダルを戻したか否かだけを検知するためのものなので、誤判定を回避し得る範囲でできるだけ小さな値を設定する。例えば20deg/sec程度に設定する。
 判定器21で、前後GがG基準値より小さいか否かを判定し、小さい場合は判定器24にその結果を入力する。G基準値は、以下のように設定する。例えば、アクセル開度が一定でも、速度上昇に伴って加速度は低下するが、この加速度の低下は内燃機関1の出力が低いほど、また車両重量が重いほど低車速から顕著に発生する。走行環境が平坦路から登坂路に変わった場合も同様である。一方、内燃機関1の出力が高くなるほど、また車両重量が軽いほど車速上昇や路面勾配が加速度に与える影響は小さくなる。そこで、G基準値は内燃機関1や車体の仕様等に応じて適宜設定することとする。
 前後Gは、車輪速及び無段変速機3の出力軸回転数から算出する。無段変速機3の出力軸回転数は、図示しない出力軸回転数センサで検出する。
Gセンサを用いれば前後Gを直接検出することもできるが、Gセンサの検出値には路面勾配の影響が含まれてしまう。このため、例えば平坦路から登坂路に変わった場合等には、運転者に加速意図があっても前後GがG基準値より小さくなることも生じ得る。そこで、走行環境の変化の影響を排除するために、駆動輪5の車輪速度又は無段変速機3の出力軸回転数に基づいて算出する。
 減算器22で、所定時間前から現在までの最大アクセル開度から、現在のアクセル開度を減算し、その結果を判定器23に入力する。リニアモードに移行してから現在までの最大アクセル開度を用いてもよいが、より新しい状態に基づく判定を行うために、所定時間前からの値を用いる。所定時間は、例えば5秒程度とする。現在のアクセル開度を直近の値ではなく、所定時間内での最大値と比較することで、加速意図の有無をより正確に検知することができる。
 判定器23で、減算器22の演算結果が予め設定した閾値より大きいか否かを判定し、大きい場合は判定器24にその結果を入力する。閾値は、運転者が無意識のうちに行うアクセル操作や、加速意図はありながらも速度調節のためにわずかにアクセルペダルを戻す場合等を排除し得る値を設定する。
 判定器24は、判定器20~23のすべての判定結果が入力された場合に、加速要求無し、と判定する。図3のフローチャートに戻る。
 ステップS230で、無段変速機コントローラ7は、ステップS220の判定結果に基づいて加速要求が有るか否かを判定する。加速要求が有る場合はステップS240でリニアモードの継続を決定して今回の処理を終了する。一方、加速要求が無い場合はステップS250でノーマルモードへの移行を決定して本制御ルーチンを終了する。
 図5は、本制御ルーチンを実行した場合のタイムチャートである。
 タイミングt1でリニアモードに移行した後、タイミングt2でアクセル開度が減少し始めている。タイミングt2後かつタイミングt3より前にアクセル閉速度か第2閉速度基準値より大きくなるタイミングは何度かあるが、いずれもタイミングにおいても、アクセル開度が条件を満たしていないためリニアモードが継続している。タイミングt3で前後Gが前後G基準値より小さくなるが、ここでもアクセル開度が条件を満たしていないためリニアモードが継続している。タイミングt4でアクセル開度、アクセル閉速度、及び前後Gの3つの条件が揃って、ノーマルモードへ移行している。そして、ノーマルモードへ移行することで無段変速機3の入力回転数が低下している。
 上記のように、車両の前後Gを、リニアモードを解除してノーマルモードへの移行を決定するための判定値として用いるので、車両の加速度変化に応じた判定を行うことができる。そして、上記判定値としてアクセル閉速度も併用することで、登坂路進入時のように加速意図があっても前後Gが低下する場合の誤判定を回避することができる。さらに、リニアモード中の最大アクセル開度からの戻し量も上記判定値として併用することで、例えば運転者が無意識に行うアクセル操作のように、戻し量が閾値を超えないようなわずかな大きさの場合にリニアモードが解除されることを回避できる。
 図6は、図3の制御ルーチンによってリニアモードが解除される領域を示す図である。縦軸はアクセル開度、横軸はアクセル閉速度である。領域LR1及び領域LR2が、アクセル開度基準値を1/8、第1閉速度基準値を100deg/sec、第2閉速度基準値を20deg/secとした場合に、リニアモードが解除される領域である。なお、各基準値はあくまでも一例である。
 領域LR1はステップS200とステップS210の処理でリニアモードが解除される領域、すなわち公知技術でもリニアモードが解除される領域である。具体的には、アクセル開度が極低開度になった場合、またはアクセルペダルから足を離した場合のようにアクセル開度が急激に小さくなった場合に相当する領域である。
 領域LR2は、本制御ルーチンのステップS220、S230の処理によってリニアモードの解除が可能となった領域である。具体的には、運転者が加速走行から定常走行へ移行しようとして、アクセルペダルを低中開度まで比較的緩やかに戻した場合に相当する領域である。なお、領域LR2のアクセル開度上限値は、ロード-ロード線から定まる定常走行のためのアクセル開度よりわずかに大きなアクセル開度であり、具体的には前後G基準値との関係で定まる。
 このような領域では、リニアモードを継続するとエンジン回転数が高い状態に維持されて運転者に違和感を与えるばかりでなく、実用燃費の悪化を招くおそれもある。しかし、本制御ルーチンによれば、領域LR2でもリニアモードを解除できるので、これらの問題を解消することができる。
 以上説明した本実施形態の効果をまとめると、次のようになる。
 リニアモードでの走行中に前後Gに基づいて運転者の加速意図の有無を判定するので、定常走行への移行を確実に検知してリニアモードを解除することができる。その結果、図6の領域LR2のようにアクセル開度とアクセル閉速度だけに基づく判定ではリニアモードを解除できなかった領域でも、リニアモードを解除することが可能となる。
 また、リニアモードでの走行中の加速意図の有無を、前後Gの他にアクセル閉速度にも基づいて判定するので、平坦路から登坂路へ進入した場合のように加速意図がありながらも前後Gが低下する状況での誤判定を回避することができる。
 さらに、リニアモードでの走行中の加速意図の有無を、リニアモード中の最大開度からの戻し量にも基づいて判定するので、アクセルペダルの戻し量がわずかな場合にリニアモードが解除されてしまうことを回避できる。
 前後Gを車輪速度及び無段変速機の出力軸回転数に基づいて算出するので、登坂路走行時であっても加速意図が無くなったことを正確に検知することができる。
 リニアモード中の最大アクセル開度を、現在から所定時間前までの間の最大開度とするので、直近の状態に基づいて加速意図の有無を判定することができる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 本願は2011年7月28日に日本国特許庁に出願された特願2011-165618に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (5)

  1. 車速とアクセル開度を含む車両の運転状態を検出する運転状態検出手段(9,10,11,12)と、
    前記運転状態に基づいて無段変速機(3)の変速比を制御する制御手段(7)と、
     運転者による加速要求を判定する加速要求判定手段(7)と、
     運転者の加速要求に基づいて、同じ車速のときにノーマルモードに対して無段変速機(3)の入力回転数が高くなるような変速比とするリニアモードを設定するリニアモード設定手段(7)と、
     を備える無段変速機の変速制御装置において、
     車両の前後Gを検出する前後G検出手段(11)と、
     前記リニアモードでの走行中に前記前後Gに基づいて加速要求が無いと判定した場合には、前記リニアモードを実施する条件下であっても前記リニアモードを解除するリニアモード解除手段(7)と、
    を備える無段変速機の変速制御装置。
  2.  請求項1に記載の無段変速機の変速制御装置において、
     アクセルペダルの閉速度を検出するアクセルペダル閉速度検出手段(9)を備え、
     前記加速要求判定手段(7)は、前記リニアモードでの走行中に、前記前後Gに加えてさらにアクセルペダルの閉速度に基づいて加速要求の有無を判定する無段変速機の変速制御装置。
  3.  請求項2に記載の無段変速機の変速制御装置において、
     アクセルペダルの開度を検出するアクセル開度検出手段(9)を備え、
     前記加速要求判定手段(7)は、前記リニアモードでの走行中に、前記前後G及びアクセルペダルの閉速度に加えて、さらに前記リニアモードでの最大アクセル開度からのアクセル戻し量に基づいて加速要求の有無を判定する無段変速機の変速制御装置。
  4.  請求項1から3のいずれかに記載の無段変速機の変速制御装置において、
     前記前後G検出手段(11)は、車輪速度又は無段変速機(3)の出力軸回転数に基づいて前後Gを算出する無段変速機の変速制御装置。
  5.  請求項3または4に記載の無段変速機の変速制御装置において、
     前記リニアモードでの最大開度を、現在から所定時間前までの間の最大開度とする無段変速機の変速制御装置。
PCT/JP2012/064919 2011-07-28 2012-06-11 無段変速機の変速制御装置 WO2013015029A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2013525617A JP5626471B2 (ja) 2011-07-28 2012-06-11 無段変速機の変速制御装置及び変速制御方法
RU2014107426/11A RU2572926C2 (ru) 2011-07-28 2012-06-11 Устройство и способ для управления переключением передаточных отношений для бесступенчатой трансмиссии
MX2014001039A MX343254B (es) 2011-07-28 2012-06-11 Dispositivo de control de cambios para transmisión continuamente variable, y método de control de cambios para transmisión continuamente variable.
EP12817810.0A EP2738428B1 (en) 2011-07-28 2012-06-11 Shift control device for continuously-variable transmission and shift control method for continuously-variable transmission
CN201280034500.6A CN103649601B (zh) 2011-07-28 2012-06-11 无级变速器的变速控制装置及变速控制方法
US14/233,481 US9090249B2 (en) 2011-07-28 2012-06-11 Shift control device for continuously-variable transmission and shift control method for continuously-variable transmission
BR112014001700-0A BR112014001700B1 (pt) 2011-07-28 2012-06-11 Dispositivo de controle de marcha para transmissão continuamente variável e método de controle de marcha para transmissão continuamente variável

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-165618 2011-07-28
JP2011165618 2011-07-28

Publications (1)

Publication Number Publication Date
WO2013015029A1 true WO2013015029A1 (ja) 2013-01-31

Family

ID=47600888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064919 WO2013015029A1 (ja) 2011-07-28 2012-06-11 無段変速機の変速制御装置

Country Status (9)

Country Link
US (1) US9090249B2 (ja)
EP (1) EP2738428B1 (ja)
JP (1) JP5626471B2 (ja)
CN (1) CN103649601B (ja)
BR (1) BR112014001700B1 (ja)
MX (1) MX343254B (ja)
MY (1) MY170760A (ja)
RU (1) RU2572926C2 (ja)
WO (1) WO2013015029A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3366950A1 (en) 2017-02-24 2018-08-29 Toyota Jidosha Kabushiki Kaisha Shift control system for vehicle
JP2018155331A (ja) * 2017-03-17 2018-10-04 ダイハツ工業株式会社 無段変速機の制御装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6444394A (en) * 1987-08-11 1989-02-16 Honda Motor Co Ltd Controller for non-stage transmission
JPH07119804A (ja) * 1993-10-21 1995-05-12 Aichi Mach Ind Co Ltd Vベルト式無段変速機搭載車両における変速制御方法
JPH1047461A (ja) * 1996-08-05 1998-02-20 Unisia Jecs Corp 無段変速機の制御装置
JP2002156036A (ja) * 2000-11-20 2002-05-31 Aisin Seiki Co Ltd 車両用自動変速装置
JP2002372143A (ja) 2001-06-18 2002-12-26 Nissan Motor Co Ltd 無段変速機の変速制御装置
JP2007326465A (ja) * 2006-06-07 2007-12-20 Toyota Motor Corp 運転指向推定装置
JP2011036072A (ja) * 2009-08-04 2011-02-17 Nissan Motor Co Ltd 電動車両の制御装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH069718B2 (ja) * 1985-10-16 1994-02-09 株式会社日立製作所 伝熱フインの成形装置
JPH01176846A (ja) * 1987-12-28 1989-07-13 Aisin Aw Co Ltd ベルト式無段変速機の制御装置
US5005442A (en) 1987-12-11 1991-04-09 Aisin Aw Co., Ltd. Control system for stepless belt transmissions
JP2008145152A (ja) * 2006-12-07 2008-06-26 Nissan Motor Co Ltd 加速度検出装置および加速度センサのドリフト誤差補正方法
JP4322926B2 (ja) * 2007-01-23 2009-09-02 本田技研工業株式会社 車両用自動変速機の制御装置
JP4386095B2 (ja) * 2007-04-12 2009-12-16 トヨタ自動車株式会社 無段変速機の制御装置、制御方法およびその方法をコンピュータに実行させるプログラムならびにそのプログラムを記録した記録媒体
JP4941133B2 (ja) * 2007-07-03 2012-05-30 トヨタ自動車株式会社 車両用無段変速機の変速制御装置
JP5163038B2 (ja) * 2007-09-28 2013-03-13 トヨタ自動車株式会社 自動変速機の制御装置、制御方法、その方法を実現させるプログラムおよびそのプログラムを記録した記録媒体
US8055417B2 (en) * 2008-10-06 2011-11-08 GM Global Technology Operations LLC Transmission gear selection and engine torque control method and system
JP5072793B2 (ja) * 2008-10-07 2012-11-14 ジヤトコ株式会社 無段変速機の制御装置及び制御方法
JP2010196881A (ja) * 2009-02-27 2010-09-09 Toyota Motor Corp 車両の制御装置
JP4799647B2 (ja) * 2009-07-17 2011-10-26 日産自動車株式会社 車両用無段変速機の制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6444394A (en) * 1987-08-11 1989-02-16 Honda Motor Co Ltd Controller for non-stage transmission
JPH07119804A (ja) * 1993-10-21 1995-05-12 Aichi Mach Ind Co Ltd Vベルト式無段変速機搭載車両における変速制御方法
JPH1047461A (ja) * 1996-08-05 1998-02-20 Unisia Jecs Corp 無段変速機の制御装置
JP2002156036A (ja) * 2000-11-20 2002-05-31 Aisin Seiki Co Ltd 車両用自動変速装置
JP2002372143A (ja) 2001-06-18 2002-12-26 Nissan Motor Co Ltd 無段変速機の変速制御装置
JP2007326465A (ja) * 2006-06-07 2007-12-20 Toyota Motor Corp 運転指向推定装置
JP2011036072A (ja) * 2009-08-04 2011-02-17 Nissan Motor Co Ltd 電動車両の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2738428A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3366950A1 (en) 2017-02-24 2018-08-29 Toyota Jidosha Kabushiki Kaisha Shift control system for vehicle
US10514093B2 (en) 2017-02-24 2019-12-24 Toyota Jidosha Kabushiki Kaisha Shift control system for vehicle
JP2018155331A (ja) * 2017-03-17 2018-10-04 ダイハツ工業株式会社 無段変速機の制御装置

Also Published As

Publication number Publication date
US20140155223A1 (en) 2014-06-05
EP2738428A4 (en) 2017-03-01
JP5626471B2 (ja) 2014-11-19
BR112014001700A2 (pt) 2017-02-21
CN103649601A (zh) 2014-03-19
MX343254B (es) 2016-10-31
EP2738428B1 (en) 2018-03-28
RU2014107426A (ru) 2015-09-10
CN103649601B (zh) 2016-04-20
RU2572926C2 (ru) 2016-01-20
BR112014001700B1 (pt) 2022-07-26
MY170760A (en) 2019-08-28
US9090249B2 (en) 2015-07-28
JPWO2013015029A1 (ja) 2015-02-23
EP2738428A1 (en) 2014-06-04
MX2014001039A (es) 2014-03-27

Similar Documents

Publication Publication Date Title
EP2053221B1 (en) Output control device for internal combustion engine
CN108725421B (zh) 车辆的驱动力控制装置
CN106143489B (zh) 定速巡航控制方法及系统
JP5779325B2 (ja) 車両用減速制御装置
JP5990947B2 (ja) 車両制御装置
JP2001225672A (ja) 無段変速機を備えた車両の制御装置
JP2008239130A (ja) 車両の制御装置
WO2013035447A1 (ja) 無段変速機の制御装置
JP5999188B2 (ja) 車両制御装置および車両の制御方法
JP5626471B2 (ja) 無段変速機の変速制御装置及び変速制御方法
JP4500332B2 (ja) 車両制御装置
JP2004001761A (ja) 無段変速機を備えた車両の制御装置
JP2009150513A (ja) 動力伝達装置の制御装置
JP3985469B2 (ja) 無段変速機の変速制御装置
JP2010209983A (ja) 駆動力制御装置
JP7491392B2 (ja) 車両制御方法及び車両制御装置
JP5020984B2 (ja) エンジン制御装置
JP2017115935A (ja) 車両の変速制御装置
JP3635961B2 (ja) 車両用駆動力制御装置
JP2022065289A (ja) 車両の制御システム
JP2006125213A (ja) パワートレーンのエンジン制御装置
JP2022065291A (ja) 車両の制御システム
JP2005113830A (ja) 動力システム
JP2012219716A (ja) 車両の制御装置
JP2010121709A (ja) 自動変速機の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280034500.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817810

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14233481

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013525617

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2014/001039

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012817810

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201400761

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2014107426

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014001700

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014001700

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140123