WO2013015023A1 - 燃料噴射制御装置 - Google Patents

燃料噴射制御装置 Download PDF

Info

Publication number
WO2013015023A1
WO2013015023A1 PCT/JP2012/064386 JP2012064386W WO2013015023A1 WO 2013015023 A1 WO2013015023 A1 WO 2013015023A1 JP 2012064386 W JP2012064386 W JP 2012064386W WO 2013015023 A1 WO2013015023 A1 WO 2013015023A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel injection
fuel
injection timing
timing
control device
Prior art date
Application number
PCT/JP2012/064386
Other languages
English (en)
French (fr)
Inventor
佳宏 今岡
尊雄 井上
鈴木 琢磨
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to CN201280030552.6A priority Critical patent/CN103764982B/zh
Priority to US14/129,146 priority patent/US20140123935A1/en
Publication of WO2013015023A1 publication Critical patent/WO2013015023A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/04Fuel pressure pulsation in common rails
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a fuel injection control device for an internal combustion engine.
  • JP 2008-31932A does not mention the relationship between fuel injection timing and pressure oscillation. Therefore, in the fuel injection control device of JP2008-31932A, there is a possibility that fuel will be injected at a timing when the charging efficiency becomes relatively low.
  • an object of the present invention is to provide a fuel injection control device capable of improving the charging efficiency of an in-cylinder direct injection spark ignition internal combustion engine that performs multi-stage injection.
  • the present invention is a fuel injection control device for a direct injection spark ignition type internal combustion engine that performs one or more fuel injections from the intake stroke to the compression stroke during homogeneous combustion. Based on the frequency determined based on the in-cylinder volume of the pressure vibration generated in the cylinder due to fuel injection, the fuel injection timing at which the filling efficiency is improved by the pressure vibration is calculated, and any one of the fuel injections is calculated. It is performed at timing.
  • FIG. 1 is a configuration diagram of a direct injection spark ignition type internal combustion engine according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing the relationship between the charging efficiency and the fuel injection timing.
  • FIG. 3 is a diagram showing the relationship between the in-cylinder average pressure and the fuel injection timing.
  • FIG. 4 is a diagram showing the relationship between the intake air flow rate at the cylinder inlet and the fuel injection timing.
  • FIG. 5 is a diagram showing the relationship between the charging efficiency and the fuel injection timing.
  • FIG. 6 is a flowchart showing a fuel injection control routine of the first embodiment executed by the controller.
  • FIG. 7 is a map in which the number of injections is set based on the engine speed and the load.
  • FIG. 8 is a diagram showing the fuel injection timing for each load region.
  • FIG. 1 is a configuration diagram of a direct injection spark ignition type internal combustion engine according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing the relationship between the charging efficiency and the fuel
  • FIG. 9 is a flowchart showing a fuel injection control routine of the second embodiment executed by the controller.
  • FIG. 10 is a map showing the fuel injection timing of the first stage of the three-stage injection or the second-stage injection.
  • FIG. 11 is a map showing the fuel injection timing of the second stage of the third stage injection or the second stage injection.
  • FIG. 12 is a map showing the third stage fuel injection timing of the third stage injection.
  • FIG. 1 is a configuration diagram showing one cylinder of an in-cylinder direct injection spark ignition internal combustion engine (hereinafter simply referred to as “internal combustion engine 1”) 1 according to a first embodiment of the present invention.
  • the internal combustion engine 1 includes a cylinder head 1A and a cylinder block 1B.
  • a piston 10 is housed in a cylinder 11 provided in the cylinder block 1B so as to be able to reciprocate.
  • a combustion chamber 14 is defined by the wall surface of the cylinder 11, the crown surface of the piston 10, and the lower surface of the cylinder head 1A.
  • An intake passage 2 and an exhaust passage 3 are formed in the cylinder head 1A. Both the intake passage 2 and the exhaust passage 3 are open to the combustion chamber 14, and the respective openings are opened and closed by the intake valve 6 and the exhaust valve 7. The intake valve 6 and the exhaust valve 7 are driven by the intake camshaft 4 and the exhaust camshaft 5, respectively.
  • the intake camshaft 4 includes a variable valve mechanism that can change the valve timing.
  • an ignition plug 8 and a fuel injection valve 9 are arranged so as to face the combustion chamber 14.
  • a collector tank 13 is interposed in the intake passage 2, and a throttle valve 12 is disposed on the upstream side of the intake flow of the collector tank 13.
  • the controller 20 executes the opening control of the throttle valve 12, the fuel injection control of the fuel injection valve 9, the fuel injection control such as the injection amount, and the ignition timing control of the spark plug 8.
  • the controller 20 executes each control described above based on detection signals from the accelerator opening sensor 21 and the crank angle sensor 22.
  • the controller 20 includes a microcomputer that includes a central processing unit (CPU), a read-only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface). It is also possible to configure the controller 20 with a plurality of microcomputers.
  • the controller 20 sets a target fuel injection amount according to an operating state such as the engine speed and the required load, and further, the number of injections for injecting the target fuel injection amount, Set the injection timing.
  • multistage injection in which the target fuel injection amount per cycle is divided into a plurality of times for the purpose of improving the uniformity of the air-fuel mixture in the cylinder.
  • the target fuel injection amount per cycle is divided into a plurality of times for the purpose of improving the uniformity of the air-fuel mixture in the cylinder.
  • the time until spark ignition becomes longer, and the cooling effect due to the endothermic reaction when the fuel vaporizes decreases. That is, in the case of single-stage injection, the uniformity improvement effect and the cooling effect are in a trade-off relationship.
  • the multi-stage injection by setting two of the plurality of fuel injection timings to a timing close to the intake top dead center and a timing close to the ignition timing, it is possible to achieve both improved uniformity and a cooling effect. It becomes possible.
  • the fuel injection timing has a correlation with the charging efficiency.
  • the charging efficiency changes depending on the remaining fuel injection timing.
  • the relationship between the charging efficiency and the fuel injection timing will be described.
  • FIG. 2 is a diagram showing the relationship between the charging efficiency and the fuel injection timing.
  • the vertical axis represents the charging efficiency (%)
  • the horizontal axis represents the fuel injection timing (deg. CA)
  • TDC represents the intake top dead center
  • IVC represents the intake valve closing timing.
  • Such a period of increase / decrease in the charging efficiency is considered to be caused by pressure vibration caused by fuel injection.
  • FIG. 3 is a graph showing the relationship between in-cylinder average pressure and fuel injection timing.
  • the vertical axis indicates the difference in in-cylinder average pressure (Pa) between when the fuel is injected and when the fuel is not injected, and the horizontal axis indicates the crank angle (deg. CA).
  • TDC indicates the intake top dead center.
  • IT1-IT5 shows the case where fuel is injected at the fuel injection timing of IT1-IT5 in FIG.
  • FIG. 4 is a diagram showing the relationship between the intake air flow rate at the cylinder inlet and the fuel injection timing.
  • the vertical axis indicates the difference in intake air flow rate (m 3 / s) at the cylinder inlet when the fuel is injected and when the fuel is not injected, and the horizontal axis indicates the crank angle (deg. CA).
  • TDC indicates the intake top dead center.
  • IT1-IT5 shows the case where fuel is injected at the fuel injection timing of IT1-IT5 in FIG.
  • the in-cylinder average pressure is lower with the fuel injection than when the fuel is not injected. This is presumably because the inside of the cylinder was cooled by the latent heat of vaporization of the injected fuel.
  • the intake air flow rate at the cylinder inlet increases as the cylinder average pressure decreases. Thereafter, an increase in the in-cylinder pressure accompanying an increase in the intake air flow rate and a decrease in the intake air flow rate accompanying an increase in the in-cylinder pressure are repeated. As described above, pressure vibration is generated in the cylinder due to the fuel injection, and the intake air flow rate at the cylinder inlet is also vibrated. In the case of IT5, since the time until the intake valve closing timing is short, the in-cylinder pressure and the intake flow rate hardly oscillate.
  • FIG. 5 is a diagram showing the relationship between the charging efficiency and the fuel injection timing in the same manner as in FIG. 2, and shows the measurement results for more fuel injection timings than in FIG.
  • solid lines A and B indicate cases where the valve timings are different, that is, the intake valve closing timings are different.
  • IT1-IT5 of the solid line B corresponds to IT1-IT5 of FIG.
  • the increase / decrease in filling efficiency has periodicity, and IT3 corresponds to the valley of the increase / decrease curve.
  • IT3 corresponds to the valley of the increase / decrease curve.
  • an increase in the intake air flow rate at the cylinder inlet means that the flow velocity of the intake air flowing into the cylinder is high, so that the in-cylinder flow can be enhanced.
  • it is desirable that the peak of the intake flow rate is closer to the intake valve closing timing. This is because if it is close to the intake valve closing timing, the time until the ignition timing is shortened, so that ignition can be performed while the in-cylinder flow is maintained.
  • FIG. 6 is a flowchart showing a routine of fuel injection control executed by the controller 20. This control routine is repeatedly executed in a short cycle of about 10 milliseconds, for example. Hereinafter, it demonstrates according to a step.
  • step S100 the controller 20 reads the engine speed and the required load.
  • the engine speed is calculated based on the value detected by the crank angle sensor 22.
  • the required load is read based on the value detected by the accelerator opening sensor 21. All may be calculated by a known method.
  • step S110 the controller 20 sets the target fuel injection amount and the number of injections.
  • the target fuel injection amount is set by a map search or the like based on the engine speed and load as in the known fuel injection control.
  • the number of injections is set by, for example, creating a map in which the number of injections is set based on the engine speed and load as shown in FIG.
  • step S120 the controller 20 reads the valve timing. Specifically, the intake valve closing timing is read. Since the controller 20 also controls the variable valve mechanism, the current valve timing may be read.
  • step S130 the controller 20 calculates the optimal injection timing.
  • the period T_CA from the peak to the peak of the above-described filling efficiency is calculated by the equation (1).
  • B is a constant
  • l is the port length from the collector tank 13 outlet to the cylinder inlet
  • d is the average diameter of the port
  • V is the cylinder volume during fuel injection.
  • This equation is obtained by converting the frequency calculated by the equation (2) for calculating the resonance frequency of the Helmholtz resonator into a period (deg. CA).
  • C is the speed of sound and S is the cross-sectional area of the port.
  • the fuel injection timing IT_ ⁇ c corresponding to the peak of the vibration cycle of the charging efficiency is calculated by the equation (3) using the cycle T_CA.
  • step S140 the controller 20 sets the timing of each fuel injection according to the number of injections set in step S110.
  • the injection amount of each fuel injection is, for example, an amount obtained by dividing the target injection amount into three equal parts in the case of three-stage injection, and the ratio of the first injection quantity and the second injection quantity in the case of two-stage injection. To 7: 3.
  • the fuel injection timing is set as shown in FIG. That is, the first fuel injection timing is set to the advance side as much as possible, for example, 40 to 90 (degATDC) in order to improve uniformity. In order to improve the uniformity within the cylinder, it is desirable that the fuel injection timing be as advanced as possible.
  • a knock determination window is set in the vicinity of the top dead center, and if fuel injection is performed within this window, there is a risk of erroneous determination due to sound or vibration associated with the operation of the fuel injection valve 9. There are also constraints such as combustion limits and smoke limits. Therefore, under these restrictions, the fuel injection timing as described above is set so as to be as advanced as possible.
  • the second fuel injection timing is set to a timing that is a minimum injection interval from the first fuel injection.
  • the minimum injection interval is a restriction on the mechanism of the fuel injection valve 9, for example, the time from the end of the previous fuel injection until the next fuel injection can be started, the time from when the applied voltage peaks until the start of injection, It depends on the minimum injection pulse width and the like. In the low-medium load region, the amount of intake air is relatively small, and the atomized fuel and air are difficult to mix. Thus, the second fuel injection is also set to the timing of the advance side as much as possible, so that the mixing is performed. It can be promoted to improve the uniformity.
  • the third fuel injection timing is set to the fuel injection timing determined by equation (3) to enhance the in-cylinder flow.
  • a knock determination window is also set near the bottom dead center, it is necessary to avoid this.
  • the fuel injection timing as shown in FIG. 8B is set. That is, the first fuel injection timing is set in the same manner as in the low / medium load region.
  • the second fuel injection timing is set to the fuel injection timing determined by the equation (3) to increase the intake flow rate.
  • the third fuel injection timing is set to a fuel injection timing as close as possible to the intake valve closing timing, for example, 140 to 240 degATDC, as long as the fuel injection end timing does not reach the knock determination window near the bottom dead center.
  • the specific fuel injection timing is obtained in advance by experiments or the like.
  • the fuel injection timing is set in the order of priority of fuel injection timing for improving uniformity, fuel injection timing for improving cooling effect, and fuel injection timing for improving fluidity. This is because in a region where knocking may occur, it is necessary to suppress knocking in addition to improving combustion efficiency and isovolume.
  • the fuel injection timing as shown in FIG. 8C is set. That is, the first fuel injection timing is set in the same manner as in the low / medium load region.
  • the second fuel injection timing is set to the fuel injection timing determined by Equation (3), thereby improving the charging efficiency.
  • the third fuel injection timing is set to the fuel injection timing for the cooling effect as in the high load region.
  • the fuel injection timing is set in the order of priority of the fuel injection timing for improving the charging efficiency, the fuel injection timing for the cooling effect, and the fuel injection timing for improving the uniformity. This is because in the fully open region, the highest priority is given to improving the filling efficiency in order to generate a larger torque.
  • step S140 fuel injection is executed in step S150.
  • the fuel injection timing at which the charging efficiency is improved is calculated based on the frequency of the in-cylinder pressure vibration, and any one of the multi-stage injections is injected at the fuel injection timing.
  • the fuel injection timing is calculated based on the intake passage diameter, the distance from the collector tank to the combustion chamber inlet, the combustion chamber volume, the intake valve closing timing, and the engine speed. The injection timing can be set.
  • the fuel injection timing that can increase the charging efficiency or enhance the in-cylinder flow also changes, but these fuel injection timings are calculated according to the operating state, so in the transient time when the operating state changes Can also set an appropriate fuel injection timing.
  • the effect that should be prioritized varies depending on the operating state, but the combination of the fuel injection timing for improving the uniformity, the fuel injection timing for improving the cooling effect, and the fuel injection timing for improving the charging efficiency depends on the operating state. Therefore, an appropriate effect can be obtained.
  • the fuel injection timing is set to at least one of the fuel injection timing for improving the uniformity and the fuel injection timing for enhancing the in-cylinder flow. If injection is performed at both fuel injection timings, it is possible to achieve both improvement in uniformity and in-cylinder flow enhancement. Either of them can be improved even when the number of injections is small.
  • the fuel injection timing is set in the priority order of the fuel injection timing for improving the uniformity, the fuel injection timing for improving the cooling effect, and the fuel injection timing for enhancing the in-cylinder flow.
  • the uniformity can be increased, but also knocking can be reliably suppressed in a region where knocking may occur.
  • the fuel injection timing is set in the priority order of the fuel injection timing for improving the charging efficiency or in-cylinder flow, the fuel injection timing for improving the cooling effect, and the fuel injection timing for improving the uniformity.
  • the configuration of the internal combustion engine 1 to which the second embodiment is applied is the same as that of the first embodiment. However, it differs from the first embodiment in that each fuel injection timing of multi-stage injection is mapped in advance and searched and set. Therefore, a fuel injection timing setting routine will be described.
  • FIG. 9 is a flowchart showing a fuel injection control routine executed by the controller 20 in the second embodiment. This control routine is repeatedly executed in a short cycle of about 10 milliseconds, for example. Hereinafter, it demonstrates according to a step.
  • Steps S200 and S210 are the same as steps S100 and S120 in FIG.
  • step S220 the controller 20 sets a target fuel injection amount and the number of injections, and further sets each fuel injection timing.
  • the setting of the target fuel injection amount and the number of injections is the same as step S110 in FIG.
  • Each fuel injection timing is set using a map prepared in advance.
  • 10, 11 and 12 are maps for setting the first, second and third fuel injection timings, respectively.
  • the vertical axis represents the load
  • the horizontal axis represents the engine speed.
  • the map in FIG. 10 is obtained by assigning the fuel injection timing for improving the uniformity as the first fuel injection to the map for setting the number of injections in FIG. Assuming that the first fuel injection timing is, for example, 60 degATDC within the range described in the first embodiment, the first fuel injection timing is set to 60 degATDC in both cases of three-stage injection and two-stage injection.
  • the fuel injection timing for improving the charging efficiency or enhancing the in-cylinder flow as the second fuel injection.
  • the fuel injection timing shifts to the advance side as the speed decreases.
  • the fuel injection timing shifts to the advance side as the speed increases.
  • the timing is set at a minimum injection interval from the first injection described above.
  • the 12 shows the fuel injection timing for improving the cooling effect as the third fuel injection.
  • the fuel injection timing shifts to the advance side as the speed increases.
  • step S220 fuel injection is executed in step S230.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

 均質燃焼時に吸気行程から圧縮行程にかけて1回または複数回の燃料噴射を行う筒内直接噴射火花点火式内燃機関(1)の燃料噴射制御装置において、燃料噴射に伴い筒内に生じる圧力振動の、筒内容積に基づいて定まる周波数に基づいて、圧力振動に応じて充填効率が向上する燃料噴射タイミングを算出し、いずれかの燃料噴射を当該燃料噴射タイミングで行う。

Description

燃料噴射制御装置
 本発明は、内燃機関の燃料噴射制御装置に関する。
 筒内に燃料を直接噴射する火花点火式内燃機関の燃料噴射制御として、要求燃料噴射量を複数回に分けて噴射する多段噴射が知られている。例えば、JP2008-31932Aでは、多段噴射を行うにあたって、ピストンスピードが速い期間中の噴射を禁止している。これにより、タンブル流動が壊されることを防止し、筒内流動を利用して筒内混合気の均一性の向上を図っている。
 ところで、筒内直接噴射火花点火式内燃機関の場合、燃料噴射に起因して筒内に圧力振動が生じる。そして、この圧力振動に応じて充填効率が周期的に変動する。
 しかし、JP2008-31932Aでは燃料噴射タイミングと圧力振動の関係については言及されていない。したがって、JP2008-31932Aの燃料噴射制御装置では、充填効率が相対的に低くなるタイミングで燃料を噴射することになるおそれがある。
 本発明の目的は、したがって、多段噴射を行う筒内直接噴射火花点火式内燃機関について、充填効率の向上を図ることができる燃料噴射制御装置を提供することである。
 上記目的を達成するため、本発明は、均質燃焼時に吸気行程から圧縮行程にかけて1回または複数回の燃料噴射を行う筒内直接噴射火花点火式内燃機関の燃料噴射制御装置である。そして、燃料噴射に伴い筒内に生じる圧力振動の、筒内容積に基づいて定まる周波数に基づいて、圧力振動により充填効率が向上する燃料噴射タイミングを算出し、いずれかの燃料噴射を当該燃料噴射タイミングで行うことを特徴とする。
 この発明の詳細並びに他の特徴や利点は、明細書の以降の記載の中で説明されるとともに、添付された図面に示される。
図1は、本発明の第1実施形態にかかる筒内直接噴射火花点火式内燃機関の構成図である。 図2は、充填効率と燃料噴射タイミングの関係を示す図である。 図3は、筒内平均圧力と燃料噴射タイミングとの関係を示す図である。 図4は、筒内入口における吸気流量と燃料噴射タイミングとの関係を示す図である。 図5は、充填効率と燃料噴射タイミングの関係を示す図である。 図6は、コントローラが実行する第1実施形態の燃料噴射制御のルーチンを示すフローチャートである。 図7は、機関回転数と負荷に基づいて噴射回数を設定したマップである。 図8は、負荷領域毎の燃料噴射タイミングを示す図である。 図9は、コントローラが実行する第2実施形態の燃料噴射制御のルーチンを示すフローチャートである。 図10は、3段噴射または2段噴射の1段目の燃料噴射タイミングを示すマップである。 図11は、3段噴射または2段噴射の2段目の燃料噴射タイミングを示すマップである。 図12は、3段噴射の3段目の燃料噴射タイミングを示すマップである。
 (第1実施形態)
 図1は、本発明の第1実施形態にかかる筒内直接噴射火花点火式内燃機関(以下、単に「内燃機関1」という)1の一つの気筒について示す構成図である。
 内燃機関1は、シリンダヘッド1Aとシリンダブロック1Bとを含んで構成されている。シリンダブロック1Bに設けたシリンダ11にはピストン10が往復動可能に収められている。シリンダ11の壁面とピストン10の冠面とシリンダヘッド1Aの下面とで燃焼室14が画成されている。
 シリンダヘッド1Aには、吸気通路2及び排気通路3が形成されている。吸気通路2及び排気通路3はいずれも燃焼室14に開口しており、それぞれの開口部は吸気弁6、排気弁7により開閉される。吸気弁6と排気弁7はそれぞれ吸気カムシャフト4、排気カムシャフト5により駆動される。なお、吸気カムシャフト4はバルブタイミングを変更し得る可変動弁機構を備える。
 また、シリンダヘッド1Aには、点火栓8と燃料噴射弁9が燃焼室14に臨むように配置されている。
 吸気通路2にはコレクタタンク13が介装され、コレクタタンク13の吸気流れ上流側にはスロットルバルブ12が配置されている。
 スロットルバルブ12の開度制御、燃料噴射弁9の噴射タイミング、噴射量等の燃料噴射制御、及び点火栓8の点火時期制御は、コントローラ20が実行する。
 コントローラ20は、アクセル開度センサ21やクランクアングルセンサ22等の検出信号に基づいて上記各制御を実行する。コントローラ20は、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。コントローラ20を複数のマイクロコンピュータで構成することも可能である。
 上記のような構成の内燃機関1において、コントローラ20は例えば機関回転数と要求負荷といった運転状態に応じた目標燃料噴射量を設定し、さらに、目標燃料噴射量を噴射するための噴射回数、各噴射のタイミングを設定する。
 均質燃焼を行う場合に、筒内の混合気の均一度を向上させる等の目的で、1サイクルあたりの目標燃料噴射量を複数回に分けて噴射する多段噴射が知られている。単段噴射の場合、均一度を高めるには、燃料が霧化して空気と混合する時間を長くすること、つまり、吸気上死点に近いクランクアングルで燃料を噴射することが望ましい。しかし、吸気上死点に近いクランクアングルで燃料噴射すると火花点火までの時間が長くなり、燃料が気化する際の吸熱反応による冷却効果が低下する。つまり、単段噴射の場合には、均一度向上効果と冷却効果とはトレードオフの関係にある。この点、多段噴射によれば、複数の燃料噴射タイミングのうち2つを吸気上死点に近いタイミングと点火時期に近いタイミングに設定することで、均一度向上と冷却効果とを両立することが可能となる。
 ところで、燃料噴射タイミングは充填効率とも相関がある。例えば3段噴射の場合に、3回の燃料噴射のうち2回を均一度向上と冷却効果を両立させるために上述したタイミングを設定すると、残りの燃料噴射タイミングによって充填効率が変化する。ここで、充填効率と燃料噴射タイミングの関係について説明する。
 図2は、充填効率と燃料噴射タイミングの関係を示す図である。縦軸は充填効率(%)、横軸は燃料噴射タイミング(deg.CA)であり、TDCは吸気上死点を、IVCは吸気弁閉タイミングを示している。
 IT1-IT5の5パターンの燃料噴射タイミングでの充填効率を測定したところ、図2に示すように、充填効率はIT1からIT3にかけて徐々に低下し、IT4で上昇している。そして、吸気弁閉時期に近いIT5で再び低下している。
 このような充填効率の増減の周期は、燃料噴射により生じる圧力振動に起因すると考えられる。
 図3は筒内平均圧力と燃料噴射タイミングとの関係を示す図である。縦軸は燃料噴射をした場合としない場合との筒内平均圧力(Pa)の差分を示し、横軸はクランクアングル(deg.CA)を示している。TDCは吸気上死点を示している。IT1-IT5はそれぞれ図2のIT1-IT5の燃料噴射タイミングで燃料噴射した場合について示している。
 図4は、筒内入口における吸気流量と燃料噴射タイミングとの関係を示す図である。縦軸は燃料噴射をした場合としない場合との筒内入口における吸気流量(m/s)の差分を示し、横軸はクランクアングル(deg.CA)を示している。TDCは吸気上死点を示している。IT1-IT5はそれぞれ図2のIT1-IT5の燃料噴射タイミングで燃料噴射した場合について示している。
 図3に示すように、いずれの燃料噴射タイミングで噴射した場合でも、燃料噴射に伴って筒内平均圧力が燃料噴射しない場合より低くなっている。これは、噴射した燃料の気化潜熱により筒内が冷却されたためと考えられる。
 そして、図4に示すように、この筒内平均圧力の低下に伴って筒内入口の吸気流量が増加している。その後は、吸気流量の増加に伴う筒内圧力の増大と、筒内圧力の増大に伴う吸気流量の減少を繰り返す。このように燃料噴射に起因して筒内に圧力振動が生じ、筒内入口における吸気流量も振動する。なお、IT5の場合には、吸気弁閉タイミングまでの時間が短いため、筒内圧力及び吸気流量は殆ど振動しない。
 図3と図2とを対比すると、充填効率が低下する燃料噴射タイミングであるIT3の場合、筒内入口における吸気流量の増減周期と燃料噴射開始から吸気弁閉タイミングまでのクランクアングルが一致している。
 図5は、図2と同様に充填効率と燃料噴射タイミングの関係を示す図であり、図2より多くの燃料噴射タイミングについて測定した結果を示している。なお、図中に実線A、Bは、それぞれバルブタイミングが異なる場合、つまり吸気弁閉タイミングが異なる場合について示している。また、実線BのIT1-IT5は、図2のIT1-IT5に相当する。
 図5に示すように、充填効率の増減には周期性があり、IT3が増減曲線の谷にあたる。そして、吸気弁閉タイミングが変わると充填効率の増減曲線の山谷の位置はずれるが、山から次の山までの周期(図5でいうとT1)は変化しない。
 そこで、充填効率の増減周期の谷にあたらず、筒内入口における吸気流量が多くなるタイミングで燃料噴射すれば、充填効率を向上させることができる。
 また、筒内入口における吸気流量が多くなるということは、筒内に流入する吸気流速が高いということなので、筒内流動の強化も図れる。ただし、筒内流動強化を目的とする場合には、吸気流量の振動の山が吸気弁閉タイミングにより近いことが望ましい。吸気弁閉タイミングに近ければ点火タイミングまでの時間が短くなるので、筒内流動が維持された状態で点火することができるからである。
 なお、タンブルコントロールバルブやスワールコントロールバルブといった吸気流動デバイスを備える場合には、吸気流動デバイスの状態によっても充填効率が向上するタイミングが変化する。したがって、吸気流動デバイスの状態毎の、充填効率が向上するタイミングを測定する必要がある。
 次に、燃料噴射制御について説明する。
 図6は、コントローラ20が実行する燃料噴射制御のルーチンを示すフローチャートである。本制御ルーチンは、例えば10ミリ秒程度の短いサイクルで繰り返し実行する。以下、ステップにしたがって説明する。
 ステップS100で、コントローラ20は機関回転数及び要求負荷を読み込む。機関回転数はクランクアングルセンサ22の検出値に基づいて演算したものを読み込む。要求負荷は、アクセル開度センサ21の検出値に基づいて演算したものを読み込む。いずれも公知の手法で演算すればよい。
 ステップS110で、コントローラ20は目標燃料噴射量及び噴射回数を設定する。目標燃料噴射量は、公知の燃料噴射制御と同様に機関回転数と負荷に基づいてマップ検索等により設定する。噴射回数は、例えば図7のように機関回転数と負荷に基づいて噴射回数を設定したマップを予め作成しておき、これを検索することで設定する。
 ステップS120で、コントローラ20はバルブタイミングを読み込む。具体的には吸気弁閉タイミングを読み込む。コントローラ20は可変動弁機構の制御も行っているので、現在のバルブタイミングを読み込めばよい。
 ステップS130で、コントローラ20は最適噴射タイミングを演算する。まず、上述した充填効率の山から山までの周期T_CAを式(1)により算出する。
Figure JPOXMLDOC01-appb-M000001
 なお、Bは定数、lはコレクタタンク13出口から筒内入口までのポート長さ、dは同ポートの平均径、Vは燃料噴射時における筒内容積である。
 この式は、ヘルムホルツレゾネータの共振周波数を算出する式(2)により算出した周波数を、周期(deg.CA)に変換したものである。
Figure JPOXMLDOC01-appb-M000002
 なお、Cは音速、Sは上記ポートの断面積である。
 次に、周期T_CAを用いて式(3)により充填効率の振動周期の山に当たる燃料噴射タイミングIT_ηcを算出する。
Figure JPOXMLDOC01-appb-M000003
 なお、α=0.5、1.5、2.5、・・・、Aは定数とする。
 ステップS140で、コントローラ20はステップS110で設定した噴射回数に応じて、各燃料噴射のタイミングを設定する。以下、燃料噴射タイミングの設定について負荷領域毎に説明する。なお、各燃料噴射の噴射量は、例えば、3段噴射の場合には目標噴射量を3等分した量とし、2段噴射の場合には1回目の噴射量と2回目の噴射量の比が7対3になるようにする。
 (低中負荷領域)
 点火時期を最適点火時期(MBT)とすることが可能な低中負荷領域では、図8の(A)に示すように燃料噴射タイミングを設定する。すなわち、1回目の燃料噴射タイミングは、均一度向上のためにできるだけ進角側、例えば40~90(degATDC)に設定する。筒内の均一度向上のためには、燃料噴射タイミングはできるだけ進角側であることが望ましい。しかし、上死点付近にはノック判定ウィンドウが設定されており、このウィンドウ内で燃料噴射を行うと燃料噴射弁9の作動に伴う音や振動が原因で誤判定するおそれがある。また、燃焼限界やスモーク限界等の制約もある。そこで、これらの制約のもとで、できるだけ進角側ということで、上記のような燃料噴射タイミングを設定する。
 2回目の燃料噴射タイミングは、1回目の燃料噴射から最小噴射間隔をあけたタイミングに設定する。最小噴射間隔とは、燃料噴射弁9の機構上の制約、例えば前回の燃料噴射終了から次回の燃料噴射が開始可能になるまでの時間、印加電圧がピークになってから噴射開始までの時間、最小噴射パルス幅等、により定まる。低中負荷領域では吸入空気量が相対的に少なく、霧化した燃料と空気とが混合しにくいので、このように2回目の燃料噴射もできるだけ進角側のタイミングに設定することで、混合を促進させて均一度を向上させることができる。
 3回目の燃料噴射タイミングは、式(3)により定まる燃料噴射タイミングに設定することで、筒内流動の強化を図る。ただし、下死点付近にもノック判定ウィンドウが設定されているので、これを避ける必要がある。
 2段噴射の場合には、上記の1回目または3回目の噴射タイミングのいずれか一方を選択する。ノッキング発生のおそれが無い領域では、均一度向上と筒内流動強化により燃焼効率、等容度を向上させて、燃費性能を向上させるためである。
 (高負荷領域)
 ノッキング発生のおそれがある高負荷領域では、図8の(B)に示すような燃料噴射タイミングを設定する。すなわち、1回目の燃料噴射タイミングは、低中負荷領域と同様に設定する。
 2回目の燃料噴射タイミングは、式(3)により定まる燃料噴射タイミングに設定することで、吸気流量の増大を図る。
 3回目の燃料噴射タイミングは、燃料噴射の終了タイミングが下死点付近のノック判定ウィンドウにかからない範囲でできるだけ吸気弁閉タイミングに近い燃料噴射タイミング、例えば140~240degATDC、を設定する。燃料噴射タイミングを吸気弁閉タイミングに近づけることで、燃料の気化潜熱による冷却効果が大きくなり、ノッキング防止に効果的である。なお、具体的な燃料噴射タイミングは実験等により予め求めておく。
 2段以下の噴射の場合には、均一度向上の燃料噴射タイミング、冷却効果向上の燃料噴射タイミング、流動性向上の燃料噴射タイミング、の優先順位で燃料噴射タイミングを設定する。ノッキング発生のおそれがある領域においては、燃焼効率及び等容度の向上の他に、ノッキングを抑制する必要があるためである。
 (全開領域)
 全開領域では、図8の(C)に示すような燃料噴射タイミングを設定する。すなわち、1回目の燃料噴射タイミングは、低中負荷領域と同様に設定する。
 2回目の燃料噴射タイミングは、式(3)により定まる燃料噴射タイミングに設定することで、充填効率の向上を図る。
 3回目の燃料噴射タイミングは、高負荷領域と同様に冷却効果のための燃料噴射タイミングに設定する。
 2段以下の噴射の場合には、充填効率向上のための燃料噴射タイミング、冷却効果のための燃料噴射タイミング、均一性向上のための燃料噴射タイミング、の優先順位で燃料噴射タイミングを設定する。全開領域では、より大きなトルクを発生させるために充填効率を向上させることが最優先されるからである。
 フローチャートの説明に戻る。
 ステップS140で、各燃料噴射タイミングを設定したら、ステップS150で燃料噴射を実行する。
 内燃機関では運転領域毎に必要とされる効果が変化するが、上述した制御ルーチンによれば、各運転領域で必要とされる効果が得られる燃料噴射タイミングを設定することができる。
 以上のように本実施形態によれば、筒内圧力振動の周波数に基づいて充填効率が向上する燃料噴射タイミングを算出し、多段噴射のいずれかの噴射をその燃料噴射タイミングで燃料噴射する。これにより、充填効率の向上または筒内流動の強化を図ることができる。また、その燃料噴射タイミングを、吸気通路径、コレクタタンクから燃焼室入口までの距離、燃焼室容積、吸気弁閉タイミング、及び機関回転数に基づいて算出するので、簡易的な演算で適切な燃料噴射タイミングを設定できる。
 また、バルブタイミングを変更すると、充填効率を高めたり筒内流動を強化できる燃料噴射タイミングも変化するが、これらの燃料噴射タイミングを運転状態に応じて演算するので、運転状態が変化する過渡時においても適切な燃料噴射タイミングを設定できる。
 運転状態によって優先すべき効果が異なるが、均一度向上のための燃料噴射タイミング、冷却効果向上のための燃料噴射タイミング、及び充填効率向上等のための燃料噴射タイミングの組み合わせを、運転状態に応じて切り替えるので、適切な効果が得られる。
 低中負荷領域では、均一度向上のための燃料噴射タイミングまたは筒内流動強化のための燃料噴射タイミングの少なくとも一方の燃料噴射タイミングに設定する。両方の燃料噴射タイミングで噴射すれば、均一度向上と筒内流動強化を両立させることができる。噴射回数が少ない場合でもいずれかを向上させることができる。
 高負荷領域では、均一度向上のための燃料噴射タイミング、冷却効果向上のための燃料噴射タイミング、筒内流動強化のための燃料噴射タイミングの優先順位で燃料噴射タイミングを設定する。これにより均一度を高めるだけでなく、ノッキング発生のおそれがある領域で確実にノッキングを抑制することができる。
 全開運転では、充填効率向上または筒内流動強化のための燃料噴射タイミング、冷却効果向上のための燃料噴射タイミング、均一度向上のための燃料噴射タイミング、の優先順位で燃料噴射タイミングを設定する。これにより、より高い出力が要求される領域で、充填効率向上または筒内流動強化により出力を向上させることができる。
 (第2実施形態)
 第2実施形態は、適用する内燃機関1の構成は第1実施形態と同様である。しかし、多段噴射の各燃料噴射タイミングを予めマップ化し、これを検索して設定する点が第1実施形態とは異なる。そこで、燃料噴射タイミングの設定ルーチンについて説明する。
 図9は、第2実施形態でコントローラ20が実行する燃料噴射制御のルーチンを示すフローチャートである。本制御ルーチンは、例えば10ミリ秒程度の短いサイクルで繰り返し実行する。以下、ステップにしたがって説明する。
 ステップS200、S210は、それぞれ図6のステップS100、S120と同様なので説明を省略する。
 ステップS220で、コントローラ20は目標燃料噴射量及び噴射回数を設定し、さらに各燃料噴射タイミングを設定する。目標燃料噴射量と噴射回数の設定については図6のステップS110と同様なので説明を省略する。
 各燃料噴射タイミングの設定は、予め作成しておいたマップを用いて行う。図10、図11、図12は、それぞれ1回目、2回目、3回目の燃料噴射タイミングを設定するためのマップである。いずれも縦軸は負荷、横軸は機関回転数である。
 図10のマップは、図7の噴射回数を設定する為のマップに、1回目の燃料噴射としての、均一度向上の為の燃料噴射タイミングを割り付けたものである。1回目の燃料噴射タイミングを、第1実施形態で説明した範囲内の例えば60degATDCとすると、3段噴射、2段噴射のいずれの場合も、第1回目の燃料噴射タイミングを60degATDCに設定する。
 図11のマップは、2回目の燃料噴射としての充填効率向上または筒内流動強化の為の燃料噴射タイミングを示している。3段噴射の場合には、低回転側へ行くほど燃料噴射タイミングは進角側へずれる。一方、2段噴射の場合には、高回転側へ行くほど燃料噴射タイミングは進角側へずれる。なお、3段噴射の場合、低負荷側の気化燃料と空気とが混合し難い領域(図11中のS1)では、上述した1回目の噴射から最小噴射間隔をあけたタイミングとする。
 図12のマップは、3回目の燃料噴射としての冷却効果向上の為の燃料噴射タイミングを示している。燃料噴射タイミングは、高回転側へいくほど進角側へずれる。
 ステップS220で各燃料噴射タイミングを設定したら、ステップS230で燃料噴射を実行する。
 上記のようにマップを用いることで、第1実施形態に比べて低い演算負荷で運転状態に適した各燃料噴射タイミングを設定することができる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 本願は2011年7月28日に日本国特許庁に出願された特願2011-165595に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。

Claims (8)

  1.  均質燃焼時に吸気行程から圧縮行程にかけて1回または複数回の燃料噴射を行う筒内直接噴射火花点火式内燃機関(1)の燃料噴射制御装置において、
     燃料噴射に伴い筒内に生じる圧力振動の、筒内容積に基づいて定まる周波数に基づいて、前記圧力振動に応じて充填効率が向上する燃料噴射タイミングを算出し、いずれかの燃料噴射を当該燃料噴射タイミングで行う燃料噴射制御装置。
  2.  請求項1に記載の燃料噴射制御装置において、
     前記充填効率が向上する燃料噴射タイミングを、吸気通路径、コレクタタンク(13)から燃焼室(14)入口までの距離、燃焼室容積、吸気弁閉タイミング、及び機関回転数に基づいて算出する燃料噴射制御装置。
  3.  請求項2に記載の燃料噴射制御装置において、
     前記充填効率が向上する燃料噴射タイミングを予め算出して作成したマップを有し、運転状態に応じて前記マップを検索することによって燃料噴射タイミングを設定する燃料噴射制御装置。
  4.  請求項2に記載の燃料噴射制御装置において、
     前記充填効率が向上する燃料噴射タイミングを、運転状態に応じて演算することによって燃料噴射タイミングを設定する燃料噴射制御装置。
  5.  請求項1から4のいずれかに記載の燃料噴射制御装置において、
     筒内の混合気の均一度を向上させるための燃料噴射タイミング、燃料の気化潜熱による冷却効果を向上させるための燃料噴射タイミング、及び前記充填効率が向上する燃料噴射タイミングの組み合わせを、運転状態に応じて切り替える燃料噴射制御装置。
  6.  請求項5に記載の燃料噴射制御装置において、
     前記筒内直接噴射火花点火式内燃機関(1)が低中負荷領域の場合は、前記均一度を向上させるための燃料噴射タイミングまたは前記充填効率が向上する燃料噴射タイミングの少なくとも一方の燃料噴射タイミングに設定する燃料噴射制御装置。
  7.  請求項5または6に記載の燃料噴射制御装置において、
     前記筒内直接噴射火花点火式内燃機関(1)が高負荷領域の場合は、前記均一度を向上させるための燃料噴射タイミング、前記燃料の気化潜熱による冷却効果を向上させるための燃料噴射タイミング、前記充填効率が向上する燃料噴射タイミングの優先順位で燃料噴射タイミングを設定する燃料噴射制御装置。
  8.  請求項5から7のいずれかに記載の燃料噴射制御装置において、
     前記筒内直接噴射火花点火式内燃機関(1)が全開運転の場合は、前記充填効率が向上する燃料噴射タイミング、前記燃料の気化潜熱による冷却効果を向上させるための燃料噴射タイミング、前記均一度を向上させるための燃料噴射タイミング、の優先順位で燃料噴射タイミングを設定する燃料噴射制御装置。
PCT/JP2012/064386 2011-07-28 2012-06-04 燃料噴射制御装置 WO2013015023A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280030552.6A CN103764982B (zh) 2011-07-28 2012-06-04 燃料喷射控制装置及燃料喷射控制方法
US14/129,146 US20140123935A1 (en) 2011-07-28 2012-06-04 Fuel injection control device and fuel injection control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-165595 2011-07-28
JP2011165595A JP5821367B2 (ja) 2011-07-28 2011-07-28 燃料噴射制御装置

Publications (1)

Publication Number Publication Date
WO2013015023A1 true WO2013015023A1 (ja) 2013-01-31

Family

ID=47600883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064386 WO2013015023A1 (ja) 2011-07-28 2012-06-04 燃料噴射制御装置

Country Status (5)

Country Link
US (1) US20140123935A1 (ja)
JP (1) JP5821367B2 (ja)
CN (1) CN103764982B (ja)
MY (1) MY170774A (ja)
WO (1) WO2013015023A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016135993A (ja) * 2015-01-23 2016-07-28 マツダ株式会社 直噴エンジンの燃料噴射制御装置
CN113775426A (zh) * 2020-06-09 2021-12-10 丰田自动车株式会社 内燃机的控制装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6135875B2 (ja) * 2015-05-18 2017-05-31 マツダ株式会社 エンジンの燃料噴射制御装置
JP6323684B2 (ja) * 2015-06-03 2018-05-16 マツダ株式会社 エンジンの制御装置
WO2018096590A1 (ja) * 2016-11-22 2018-05-31 マツダ株式会社 圧縮自己着火式エンジンの制御装置
JP2024048280A (ja) * 2022-09-27 2024-04-08 株式会社Subaru エンジン制御装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08334049A (ja) * 1995-06-07 1996-12-17 Nissan Motor Co Ltd ディーゼルエンジンの燃料噴射制御装置
JP2009062940A (ja) * 2007-09-07 2009-03-26 Toyota Motor Corp 内燃機関の燃料噴射制御装置及び内燃機関
JP2009264183A (ja) * 2008-04-23 2009-11-12 Toyota Motor Corp 筒内噴射式火花点火内燃機関

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620765A (en) * 1979-07-31 1981-02-26 Nissan Motor Co Ltd Controller for internal combustion engine
JPS5939966A (ja) * 1982-08-27 1984-03-05 Nissan Motor Co Ltd エンジンの燃料噴射時期測定装置
DE3821455A1 (de) * 1987-06-26 1989-01-05 Mitsubishi Electric Corp Kraftstoff-luft-gemischregler
US4903657A (en) * 1988-02-12 1990-02-27 Mitsubishi Denki Kabushiki Kaisha Apparatus for and method of controlling internal combustion engines
JPH04194341A (ja) * 1990-11-27 1992-07-14 Mazda Motor Corp エンジンの燃料制御装置
JP2855923B2 (ja) * 1991-11-06 1999-02-10 三菱電機株式会社 エンジン制御装置およびエンジン制御方法
JP3075685B2 (ja) * 1995-09-04 2000-08-14 本田技研工業株式会社 気体燃料エンジンの燃料噴射方法
JP2001065397A (ja) * 1999-08-24 2001-03-13 Mazda Motor Corp エンジンの燃料噴射制御装置
CA2354749C (en) * 2000-08-10 2006-09-12 Honda Giken Kogyo Kabushiki Kaisha Control system and method and engine control unit for internal combustion engine
JP2002122038A (ja) * 2000-08-10 2002-04-26 Honda Motor Co Ltd 内燃機関の燃料噴射制御装置
JP3991789B2 (ja) * 2002-07-04 2007-10-17 トヨタ自動車株式会社 混合気を圧縮自着火させる内燃機関
CN1279271C (zh) * 2004-11-19 2006-10-11 清华大学 用两次喷射控制直喷式汽油机压缩着火燃烧的方法
JP4422677B2 (ja) * 2005-12-28 2010-02-24 株式会社日立製作所 筒内噴射式内燃機関および燃料噴射方法
US7255080B1 (en) * 2006-03-17 2007-08-14 Ford Global Technologies, Llc Spark plug heating for a spark ignited engine
US7533651B2 (en) * 2006-03-17 2009-05-19 Ford Global Technologies, Llc System and method for reducing knock and preignition in an internal combustion engine
US7578281B2 (en) * 2006-03-17 2009-08-25 Ford Global Technologies, Llc First and second spark plugs for improved combustion control
JP4353216B2 (ja) * 2006-08-04 2009-10-28 トヨタ自動車株式会社 筒内噴射式火花点火内燃機関
DE102007053403B4 (de) * 2007-11-09 2016-06-09 Continental Automotive Gmbh Verfahren und Vorrichtung zum Bestimmen einer schwingungsoptimierten Einstellung einer Einspritzvorrichtung
JP5508834B2 (ja) * 2009-12-22 2014-06-04 日産自動車株式会社 内燃機関のノック判定装置
US8720416B2 (en) * 2011-01-25 2014-05-13 Southwest Research Institute Methods and apparatus to detect and inhibit low-speed pre-ignition in an engine
JP5949218B2 (ja) * 2012-06-29 2016-07-06 三菱自動車工業株式会社 エンジンの制御装置
CN104755844B (zh) * 2012-10-24 2017-11-07 通用电器技术有限公司 具有稀释气体混合器的顺序燃烧
US9180260B2 (en) * 2013-08-30 2015-11-10 Covidien Lp Systems and methods for monitoring an injection procedure
JP5873059B2 (ja) * 2013-09-30 2016-03-01 株式会社豊田中央研究所 圧縮着火式内燃機関

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08334049A (ja) * 1995-06-07 1996-12-17 Nissan Motor Co Ltd ディーゼルエンジンの燃料噴射制御装置
JP2009062940A (ja) * 2007-09-07 2009-03-26 Toyota Motor Corp 内燃機関の燃料噴射制御装置及び内燃機関
JP2009264183A (ja) * 2008-04-23 2009-11-12 Toyota Motor Corp 筒内噴射式火花点火内燃機関

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016135993A (ja) * 2015-01-23 2016-07-28 マツダ株式会社 直噴エンジンの燃料噴射制御装置
CN113775426A (zh) * 2020-06-09 2021-12-10 丰田自动车株式会社 内燃机的控制装置
CN113775426B (zh) * 2020-06-09 2024-03-08 丰田自动车株式会社 内燃机的控制装置

Also Published As

Publication number Publication date
MY170774A (en) 2019-08-28
CN103764982A (zh) 2014-04-30
JP5821367B2 (ja) 2015-11-24
US20140123935A1 (en) 2014-05-08
CN103764982B (zh) 2016-06-29
JP2013029070A (ja) 2013-02-07

Similar Documents

Publication Publication Date Title
WO2013015023A1 (ja) 燃料噴射制御装置
EP3130785B1 (en) Engine control system
US9014949B2 (en) Apparatus for and method of controlling internal combustion engine
US10309325B2 (en) Control device for internal combustion engine
EP3343019A1 (en) Internal combustion engine control device
JP5562910B2 (ja) 筒内噴射式エンジンの制御装置
JP2014077421A (ja) エンジンの制御装置及びエンジンの制御方法
JP6181012B2 (ja) 筒内燃料噴射式内燃機関の制御装置
JP4643967B2 (ja) 筒内直接噴射式火花点火内燃機関の制御装置
JP2006097593A (ja) 筒内直接噴射式火花点火内燃機関の制御装置
JP4529835B2 (ja) 内燃機関の制御装置
JP4376723B2 (ja) 内燃機関の点火時期制御方法
JP2004232580A (ja) 圧縮比変更期間における内燃機関の制御
JP6888586B2 (ja) エンジンの燃焼制御方法及び燃焼制御装置
JP2006177179A (ja) 筒内直接噴射式火花点火内燃機関の制御装置
US9970382B2 (en) Direct injection internal combustion engine
JP2015151977A (ja) 筒内燃料噴射式内燃機関の制御装置
JP2013224599A (ja) 内燃機関の燃料噴射制御装置
US20230407810A1 (en) Engine controller, engine control method, and storage medium
JP2011236756A (ja) 筒内噴射式内燃機関の燃料噴射制御装置
JP6777119B2 (ja) エンジンの制御装置
JP2022076804A (ja) エンジンシステム
JP2022076802A (ja) エンジンシステム
JP2009085012A (ja) 内燃機関
JP2010138720A (ja) エンジンの点火制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12818020

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14129146

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12818020

Country of ref document: EP

Kind code of ref document: A1