WO2018096590A1 - 圧縮自己着火式エンジンの制御装置 - Google Patents

圧縮自己着火式エンジンの制御装置 Download PDF

Info

Publication number
WO2018096590A1
WO2018096590A1 PCT/JP2016/084622 JP2016084622W WO2018096590A1 WO 2018096590 A1 WO2018096590 A1 WO 2018096590A1 JP 2016084622 W JP2016084622 W JP 2016084622W WO 2018096590 A1 WO2018096590 A1 WO 2018096590A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
combustion
combustion chamber
ignition
fuel
Prior art date
Application number
PCT/JP2016/084622
Other languages
English (en)
French (fr)
Inventor
井上 淳
賢也 末岡
浩太 松本
漆原 友則
Original Assignee
マツダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マツダ株式会社 filed Critical マツダ株式会社
Priority to PCT/JP2016/084622 priority Critical patent/WO2018096590A1/ja
Priority to US16/088,013 priority patent/US10907550B2/en
Priority to PCT/JP2017/030488 priority patent/WO2018096748A1/ja
Priority to JP2018552415A priority patent/JP6562165B2/ja
Priority to CN201780019313.3A priority patent/CN109072806B/zh
Priority to EP17874115.3A priority patent/EP3421769B1/en
Publication of WO2018096590A1 publication Critical patent/WO2018096590A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0257Independent control of two or more intake or exhaust valves respectively, i.e. one of two intake valves remains closed or is opened partially while the other is fully opened
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0057Specific combustion modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/006Controlling exhaust gas recirculation [EGR] using internal EGR
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • F02D41/3041Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode with means for triggering compression ignition, e.g. spark plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • F02D41/3041Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode with means for triggering compression ignition, e.g. spark plug
    • F02D41/3047Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode with means for triggering compression ignition, e.g. spark plug said means being a secondary injection of fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1516Digital data processing using one central computing unit with means relating to exhaust gas recirculation, e.g. turbo
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/0017Controlling intake air by simultaneous control of throttle and exhaust gas recirculation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/002Controlling intake air by simultaneous control of throttle and variable valve actuation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the technology disclosed herein relates to a control device for a compression self-ignition engine.
  • Patent Document 1 describes an engine in which an air-fuel mixture in a combustion chamber burns by self-ignition in a partial load region. This engine promotes the self-ignition of the air-fuel mixture by leaving hot burned gas in the combustion chamber in the low load side operation region in the partial load region. In addition, in the high-load operation region in the partial load region, this engine makes it difficult for self-ignition to occur by introducing the cooled burned gas into the combustion chamber, and the ignition is performed immediately before the compression top dead center. The plug ignites.
  • combustion by compression ignition has a problem that, when the amount of fuel supplied into the combustion chamber increases, the pressure fluctuation at the time of ignition increases, so that the combustion noise increases. Therefore, combustion by compression ignition can be performed only when the operating state of the engine is in a part of a narrow operating region in the entire operating region of the engine. If combustion by compression ignition can be performed over a wide operation region, the fuel efficiency of the engine can be significantly improved.
  • the technology disclosed herein has been made in view of the above points, and the purpose thereof is to expand the operating range in which combustion by compression ignition is performed while suppressing the generation of combustion noise in a compression self-ignition engine. There is.
  • the inventors of the present application considered a combustion mode combining SI (Spark Ignition) combustion and CI (Compression Ignition) combustion. That is, the air-fuel mixture in the combustion chamber is forcibly ignited and burned by flame propagation, and the unburned air-fuel mixture in the combustion chamber is combusted by self-ignition due to the heat generated by SI combustion. Combustion by flame propagation can suppress the generation of combustion noise because the pressure fluctuation is relatively small. Also, by performing CI combustion, the combustion period is shortened and combustion efficiency is improved compared to combustion by flame propagation. Therefore, the combustion mode combining SI combustion and CI combustion can improve fuel efficiency while suppressing the generation of combustion noise. This combustion mode is hereinafter referred to as SICI combustion because SI combustion controls CI combustion.
  • the inventors of the present application paid attention to the fact that if the temperature in the combustion chamber is lowered, the period from the start of SI combustion by spark ignition until the unburned mixture starts self-ignition becomes longer. As a result, combustion by flame propagation is sufficiently ensured in the combustion chamber, and as a result, generation of combustion noise can be suppressed.
  • the inventors of the present application have found a configuration that suppresses the generation of combustion noise without causing a decrease in torque in SICI combustion, and have completed the technique disclosed herein.
  • the technology disclosed herein relates to a control device for a compression self-ignition engine.
  • the control device for the compression self-ignition engine includes an engine configured to self-ignite an air-fuel mixture in a combustion chamber, and a fresh air and burned gas that is attached to the engine and is introduced into the combustion chamber.
  • a state quantity setting device configured to set the interior of the combustion chamber to a desired state by adjusting the introduction, and configured to inject fuel into the combustion chamber attached to the engine
  • a controller configured to operate the down, connected to the controller and, together with the detecting parameters relating to the operating state of the engine, and a sensor configured to output a detection signal to the controller.
  • the controller burns the ignited mixture by flame propagation, and then the unburned fuel in the combustion chamber A control signal is output to the spark plug at a predetermined ignition timing so that the air-fuel mixture burns by self-ignition, and the controller also outputs a control signal to the state quantity setting device within the predetermined operation range.
  • combustion chamber here is not limited to the meaning of the space formed when the piston reaches compression top dead center.
  • combustion chamber is used in a broad sense.
  • control amount includes, for example, the amount of burned gas in the combustion chamber, the effective compression ratio of the engine, and the like.
  • the spark plug forcibly ignites the air-fuel mixture in the combustion chamber in response to a control signal from the controller.
  • the air-fuel mixture is combusted by flame propagation, and then the unburned air-fuel mixture in the combustion chamber is combusted by self-ignition to complete combustion.
  • the controller changes the control amount via the state quantity setting device to lower the temperature before the start of compression in the combustion chamber when the engine load is high.
  • the controller accelerates the timing of igniting the mixture by the amount of time until the unburned mixture starts self-ignition.
  • the timing at which the CI combustion starts can be maintained, for example, immediately after the compression top dead center, and thus the torque can be secured. Therefore, in SICI combustion, it is possible to suppress the generation of combustion noise without causing a reduction in torque when the engine load is high.
  • the controller may lower the temperature by changing an amount of the burned gas in the combustion chamber as the control amount.
  • the controller changes the amount of burnt gas in the combustion chamber, for example, by adjusting the amount of external EGR gas and internal EGR gas or by scavenging the combustion chamber. This makes it possible to reduce the temperature in the combustion chamber before the start of compression. This is effective in suppressing the generation of combustion noise.
  • the state quantity setting device has an external EGR system provided in the engine and configured to introduce a burnt burned gas into the combustion chamber in response to a control signal from the controller. May output a control signal to the external EGR system so as to change the amount of the burned gas introduced into the combustion chamber according to the load of the engine.
  • changing the amount of burned gas includes starting the introduction of burned gas and changing the amount of burned gas.
  • the air-fuel mixture in the combustion chamber is cooled at the same time as it is diluted. As a result, the temperature before the start of compression in the combustion chamber decreases. This is advantageous in suppressing the generation of combustion noise as described above.
  • the state quantity setting device includes a variable valve mechanism that is provided in the engine and configured to change a valve opening timing of at least one of an intake valve and an exhaust valve in response to a control signal of the controller.
  • the controller may output a control signal to the variable valve mechanism so as to change an overlap period in which both the intake valve and the exhaust valve are opened according to the engine load.
  • the change of the overlap period includes providing an overlap period in which both the intake valve and the exhaust valve are opened, and changing the length of the overlap period.
  • the state quantity setting device has a supercharging system attached to the engine and configured to supercharge a gas introduced into the combustion chamber, and the supercharging system receives a control signal from the controller.
  • the controller does not perform supercharging in a region below a predetermined load when the operating state of the engine is in the predetermined operating region, and performs supercharging in a region of a load higher than the predetermined load.
  • the ignition timing may be advanced as the engine load increases when the operating state of the engine is in a region where supercharging is not performed or in a region where supercharging is performed.
  • the supercharging system may include a mechanical supercharger driven by an engine, for example.
  • the amount of gas introduced into the combustion chamber can be increased in response to an increase in the amount of fuel.
  • the heat capacity increases, so even if the amount of fuel increases, it is possible to suppress the temperature rise in the combustion chamber due to SI combustion. Therefore, by performing supercharging, it is possible to prevent the timing of self-ignition of the unburned mixture from being accelerated in SICI combustion.
  • both the heat generation amount due to SI combustion and the heat generation amount due to CI combustion can be increased.
  • the controller controls the injector to inject fuel within a period from the latter half of the compression stroke to the early stage of the expansion stroke when the operation state of the engine is in a high load region on a higher load side than the predetermined operation region.
  • a signal is output and a control signal is output to the spark plug so that the ignited air-fuel mixture is combusted by the flame propagation without causing combustion due to self-ignition, and the controller also outputs the high load region.
  • the ignition timing may be retarded from the fuel injection timing.
  • SI combustion is used as the combustion mode of the air-fuel mixture instead of SICI combustion.
  • ⁇ SI combustion tends to cause abnormal combustion when the engine load is high. Therefore, in the high load region, the fuel is injected within the period from the late stage of the compression stroke to the early stage of the expansion stroke, and the ignition timing corresponding to the injection timing is set. By doing so, the time for which the air-fuel mixture reacts is shortened, and abnormal combustion can be avoided.
  • the controller is configured such that when the engine operating state is in a low load region on a lower load side than the predetermined operation region, the ignited air-fuel mixture is burned by the flame propagation without causing combustion due to self-ignition.
  • the controller may output a control signal to the spark plug, and the controller may also retard the ignition timing as the engine load increases in the low load region.
  • SI combustion is used as the combustion mode of the air-fuel mixture instead of SICI combustion.
  • ⁇ SI combustion is more unstable when the engine load is low than when the load is high because the temperature in the combustion chamber decreases. Therefore, the ignition timing is advanced on the low load side in the low load region than on the high load side. By doing so, SI combustion can be stabilized.
  • the ignition timing is retarded on the high load side in the low load region by the amount of such a period. Thereby, the timing at which SI combustion is started can be adjusted to a desired timing after the compression top dead center, for example.
  • the injector receives a control signal from the controller so as to form a substantially homogeneous air-fuel mixture in the combustion chamber within the predetermined operating region, and receives a timing before the ignition timing and close to the ignition timing.
  • the post-stage injection for injecting the fuel and the pre-stage injection for injecting the fuel at a timing before the post-stage injection and away from the ignition timing may be executed.
  • the fuel injected by the pre-stage injection is mainly burned by CI combustion, and the fuel injected by the post-stage injection is mainly burned by SI combustion.
  • SICI combustion stabilization of ignition by a spark plug, stabilization of combustion by flame propagation, and stabilization of ignition by self-ignition are achieved.
  • the air-fuel mixture formed in the combustion chamber is substantially homogeneous, it is possible to improve fuel efficiency by reducing unburned loss and to improve exhaust gas performance by avoiding the generation of smoke.
  • the controller outputs a control signal to the state quantity setting device and the injector, whereby the state in the combustion chamber is used as an index related to the mass ratio of the total gas and fuel in the combustion chamber.
  • G / F may be set to 18.5 or more and 30 or less, and the excess air ratio ⁇ may be set to 1.0 ⁇ 0.2.
  • ⁇ SICI combustion combining SI combustion and CI combustion can control the timing of self-ignition with high accuracy. That is, even if the temperature in the combustion chamber before the start of compression varies, the temperature variation before the start of compression can be absorbed by adjusting the calorific value of SI combustion. If the start timing of SI combustion is adjusted by adjusting the ignition timing, for example, according to the temperature in the combustion chamber before the start of compression, the unburned mixture can be self-ignited at a desired timing.
  • the timing of self-ignition in order to accurately control the timing of self-ignition, the timing of self-ignition must change in response to changing the ignition timing. It is preferable that the sensitivity at which the self-ignition timing changes is high with respect to the change in the ignition timing.
  • the exhaust gas can be purified by the three-way catalyst attached to the exhaust passage of the engine.
  • the timing of self-ignition can be accurately controlled in SICI combustion in which SI combustion and CI combustion are combined while improving fuel efficiency and exhaust gas performance.
  • the SICI combustion is performed while suppressing the generation of the combustion noise by lowering the temperature in the combustion chamber and simultaneously advancing the ignition timing. It becomes possible to expand the operation area for performing.
  • FIG. 1 is a diagram illustrating a configuration of a compression self-ignition engine.
  • FIG. 2 is a cross-sectional view illustrating the configuration of the combustion chamber.
  • FIG. 3 is a block diagram illustrating the configuration of the control device for the compression self-ignition engine.
  • FIG. 4 is a diagram illustrating an engine operating region.
  • FIG. 5 is a diagram conceptually showing a change in the heat generation rate of SICI combustion in which SI combustion and CI combustion are combined.
  • FIG. 6 is a diagram for explaining the definition of the SI rate in SICI combustion.
  • FIG. 7 is a diagram for explaining the definition of the SI rate in SICI combustion.
  • FIG. 1 is a diagram illustrating a configuration of a compression self-ignition engine.
  • FIG. 2 is a cross-sectional view illustrating the configuration of the combustion chamber.
  • FIG. 3 is a block diagram illustrating the configuration of the control device for the compression self-ignition engine.
  • FIG. 4 is a diagram illustrating an engine operating region
  • FIG. 8 shows changes in the SI rate, changes in the state quantity in the combustion chamber, changes in the overlap period of the intake valve and the exhaust valve, and changes in the fuel injection timing and ignition timing with respect to the engine load. It is a figure explaining.
  • the upper diagram of FIG. 9 is a diagram illustrating a change in the combustion waveform with respect to an increase in engine load in non-supercharged SICI combustion, and the lower diagram in FIG. 9 is an increase in engine load in supercharged SICI combustion. It is a figure which illustrates the change of the combustion waveform with respect to doing.
  • FIG. 10 is a flowchart showing a procedure of engine control executed by the ECU.
  • FIG. 11 is a diagram illustrating a control concept related to adjustment of the SI rate.
  • FIG. 12 shows the G / F of the air-fuel mixture and the desired turbulent flow when the engine is operating at a predetermined load with a low load and only the internal EGR gas is introduced into the combustion chamber. It is a figure which shows the relationship with turbulent energy required in order to implement
  • FIG. 13 is a diagram showing the relationship between the temperature in the combustion chamber that realizes the necessary turbulent energy shown in FIG. 12 and the air-fuel mixture G / F.
  • FIG. 14 is a diagram showing the relationship between the pressure in the combustion chamber realizing the necessary turbulent energy shown in FIG. 12 and the air-fuel mixture G / F.
  • FIG. 13 is a diagram showing the relationship between the temperature in the combustion chamber that realizes the necessary turbulent energy shown in FIG. 12 and the air-fuel mixture G / F.
  • FIG. 14 is a diagram showing the relationship between the pressure in the combustion chamber realizing the necessary turbulent energy shown in FIG. 12 and the air-fuel mixture G / F.
  • FIG. 15 is a contour diagram on a plane in which the vertical axis represents the EGR rate of the air-fuel mixture and the horizontal axis represents the A / F of the air-fuel mixture, illustrating the ratio of change in the self-ignition timing with respect to the change in ignition timing in SICI combustion. is there.
  • FIG. 16 is a diagram illustrating the change in the overlap period with respect to the engine load.
  • FIG. 17 is a diagram exemplifying a change in the EGR rate of the air-fuel mixture with respect to the engine load.
  • FIG. 18 is a diagram illustrating the change in the ignition timing with respect to the level of the engine load.
  • FIG. 1 is a diagram illustrating a configuration of a compression self-ignition engine.
  • FIG. 2 is a cross-sectional view illustrating the configuration of the combustion chamber.
  • the intake side is the left side of the drawing, and the exhaust side is the right side of the drawing.
  • the intake side in FIG. 2 is the right side of the drawing, and the exhaust side is the left side of the drawing.
  • FIG. 3 is a block diagram illustrating the configuration of the control device for the compression self-ignition engine.
  • Engine 1 is mounted on a four-wheeled vehicle. The vehicle travels when the engine 1 is driven.
  • the fuel of the engine 1 is gasoline in this configuration example.
  • the fuel may be gasoline containing bioethanol or the like.
  • the fuel of the engine 1 may be any fuel as long as it is a liquid fuel containing at least gasoline.
  • the engine 1 includes a cylinder block 12 and a cylinder head 13 placed on the cylinder block 12. A plurality of cylinders 11 are formed inside the cylinder block 12. 1 and 2, only one cylinder 11 is shown.
  • the engine 1 is a multi-cylinder engine.
  • the piston 3 is slidably inserted in each cylinder 11.
  • the piston 3 is connected to the crankshaft 15 via a connecting rod 14.
  • the piston 3 defines a combustion chamber 17 together with the cylinder 11 and the cylinder head 13.
  • the “combustion chamber” is not limited to the meaning of the space formed when the piston 3 reaches compression top dead center.
  • the term “combustion chamber” may be used in a broad sense. That is, the “combustion chamber” may mean a space formed by the piston 3, the cylinder 11, and the cylinder head 13 regardless of the position of the piston 3.
  • the upper surface of the piston 3 is a flat surface.
  • a cavity 31 is formed on the upper surface of the piston 3.
  • the cavity 31 is recessed from the upper surface of the piston 3.
  • the cavity 31 has a shallow dish shape.
  • the cavity 31 faces an injector 6 described later when the piston 3 is positioned near the compression top dead center.
  • the cavity 31 has a convex portion 311.
  • the convex portion 311 is provided on the central axis X of the cylinder 11.
  • the convex part 311 is substantially conical.
  • the convex portion 311 extends upward from the bottom of the cavity 31 along the central axis X of the cylinder 11.
  • the upper end of the convex portion 311 is almost the same height as the upper surface of the cavity 31.
  • the cavity 31 also has a concave portion 312 provided around the convex portion 311.
  • the recessed portion 312 is provided so as to surround the entire circumference of the protruding portion 311.
  • the cavity 31 has a symmetrical shape with respect to the central axis X.
  • the peripheral side surface of the recessed portion 312 is inclined with respect to the central axis X from the bottom surface of the cavity 31 toward the opening of the cavity 31.
  • the inner diameter of the cavity 31 in the recessed portion 312 gradually increases from the bottom of the cavity 31 toward the opening of the cavity 31.
  • the lower surface of the cylinder head 13, that is, the ceiling surface of the combustion chamber 17, is constituted by an inclined surface 1311 and an inclined surface 1312 as shown in FIG.
  • the inclined surface 1311 has an upward slope from the intake side toward the central axis X.
  • the inclined surface 1312 has an upward slope from the exhaust side toward the central axis X.
  • the ceiling surface of the combustion chamber 17 has a so-called pent roof shape.
  • the shape of the combustion chamber 17 is not limited to the shape illustrated in FIG.
  • the shape of the cavity 31, the shape of the upper surface of the piston 3, the shape of the ceiling surface of the combustion chamber 17, and the like can be changed as appropriate.
  • the geometric compression ratio of the engine 1 is set high for the purpose of improving the theoretical thermal efficiency and stabilizing the CI (Compression Ignition) combustion described later.
  • the geometric compression ratio of the engine 1 is 17 or more.
  • the geometric compression ratio may be 18, for example. What is necessary is just to set a geometric compression ratio suitably in the range of 17-20.
  • the cylinder head 13 has two intake ports 18 for each cylinder 11.
  • the intake port 18 communicates with the combustion chamber 17.
  • An intake valve 21 is disposed in the intake port 18.
  • the intake valve 21 opens and closes between the combustion chamber 17 and the intake port 18.
  • the intake valve 21 is opened and closed at a predetermined timing by an intake valve mechanism.
  • the intake valve mechanism has an intake electric VVT (Variable Valve Timing) 23 that is a variable valve mechanism as shown in FIG.
  • the intake electric VVT 23 is configured to continuously change the rotation phase of the intake camshaft within a predetermined angle range. Thereby, the valve opening timing and the valve closing timing of the intake valve 21 are continuously changed.
  • the intake valve mechanism may have a hydraulic VVT instead of the electric VVT.
  • the cylinder head 13 is also formed with two exhaust ports 19 for each cylinder 11.
  • the exhaust port 19 communicates with the combustion chamber 17.
  • An exhaust valve 22 is disposed in the exhaust port 19.
  • the exhaust valve 22 opens and closes between the combustion chamber 17 and the exhaust port 19.
  • the exhaust valve 22 is opened and closed at a predetermined timing by an exhaust valve mechanism.
  • the exhaust valve mechanism has an exhaust electric VVT 24 that is a variable valve mechanism as shown in FIG.
  • the exhaust electric VVT 24 is configured to continuously change the rotation phase of the exhaust camshaft within a predetermined angle range. Thereby, the valve opening timing and the valve closing timing of the exhaust valve 22 continuously change.
  • the exhaust valve mechanism may have a hydraulic VVT instead of the electric VVT.
  • the engine 1 adjusts the length of the overlap period related to the opening timing of the intake valve 21 and the closing timing of the exhaust valve 22 by the intake electric VVT 23 and the exhaust electric VVT 24.
  • residual gas in the combustion chamber 17 is scavenged, hot burned gas is confined in the combustion chamber 17 (that is, internal EGR (Exhaust Gas Recirculation) gas is introduced into the combustion chamber 17).
  • internal EGR Extra Gas Recirculation
  • the intake electric VVT 23 and the exhaust electric VVT 24 constitute an internal EGR system as one of the state quantity setting devices. Note that the internal EGR system is not necessarily configured by VVT.
  • An injector 6 is attached to the cylinder head 13 for each cylinder 11.
  • the injector 6 is configured to inject fuel directly into the combustion chamber 17.
  • the injector 6 is disposed in a valley portion of the pent roof where the intake-side inclined surface 1311 and the exhaust-side inclined surface 1312 intersect. As shown in FIG. 2, the injector 6 is disposed such that its injection axis is along the central axis X.
  • the injection axis of the injector 6 coincides with the position of the convex portion 311 of the cavity 31.
  • the injector 6 faces the cavity 31.
  • the injection axis of the injector 6 may be shifted from the central axis X of the cylinder 11. Even in this case, it is desirable that the injection axis of the injector 6 and the position of the convex portion 311 of the cavity 31 coincide with each other.
  • the injector 6 is constituted by a multi-injection type fuel injection valve having a plurality of injection holes.
  • the injector 6 injects fuel so that the fuel spray spreads radially from the center of the combustion chamber 17 as indicated by arrows in FIG.
  • the injector 6 may inject fuel at the timing when the piston 3 is positioned near the compression top dead center.
  • the fuel spray flows downward along the convex portion 311 of the cavity 31 while mixing with fresh air, and along the bottom surface and the peripheral side surface of the concave portion 312, the combustion chamber. From the center of 17, it spreads radially outward in the radial direction. Thereafter, the air-fuel mixture reaches the opening of the cavity 31 and flows from the radially outer side toward the center of the combustion chamber 17 along the inclined surface 1311 on the intake side and the inclined surface 1312 on the exhaust side.
  • the injector 6 is not limited to a multi-hole injector.
  • the injector 6 may employ an external valve opening type injector.
  • the fuel supply system 61 is connected to the injector 6.
  • the fuel supply system 61 includes a fuel tank 63 configured to store fuel, and a fuel supply path 62 that connects the fuel tank 63 and the injector 6 to each other.
  • a fuel pump 65 and a common rail 64 are interposed in the fuel supply path 62.
  • the fuel pump 65 pumps fuel to the common rail 64.
  • the fuel pump 65 is a plunger-type pump driven by the crankshaft 15.
  • the common rail 64 is configured to store the fuel pumped from the fuel pump 65 at a high fuel pressure. When the injector 6 is opened, the fuel stored in the common rail 64 is injected into the combustion chamber 17 from the injection port of the injector 6.
  • the fuel supply system 61 is configured to be able to supply high pressure fuel of 30 MPa or more to the injector 6.
  • the maximum fuel pressure of the fuel supply system 61 may be about 120 MPa, for example.
  • the pressure of the fuel supplied to the injector 6 may be changed according to the operating state of the engine 1.
  • the configuration of the fuel supply system 61 is not limited to the above configuration.
  • a spark plug 25 is attached to the cylinder head 13 for each cylinder 11.
  • the spark plug 25 forcibly ignites the air-fuel mixture in the combustion chamber 17.
  • the spark plug 25 is disposed on the intake side across the center axis X of the cylinder 11.
  • the spark plug 25 is located between the two intake ports 18.
  • the spark plug 25 is attached to the cylinder head 13 so as to be inclined from the top to the bottom toward the center of the combustion chamber 17. As shown in FIG. 2, the electrode of the spark plug 25 faces the combustion chamber 17 and is located near the ceiling surface of the combustion chamber 17.
  • An intake passage 40 is connected to one side of the engine 1.
  • the intake passage 40 communicates with the intake port 18 of each cylinder 11.
  • the intake passage 40 is a passage through which gas introduced into the combustion chamber 17 flows.
  • An air cleaner 41 that filters fresh air is disposed at the upstream end of the intake passage 40.
  • a surge tank 42 is disposed near the downstream end of the intake passage 40.
  • a throttle valve 43 is disposed between the air cleaner 41 and the surge tank 42 in the intake passage 40.
  • the throttle valve 43 is configured to adjust the amount of fresh air introduced into the combustion chamber 17 by adjusting the opening of the valve.
  • the throttle valve 43 constitutes one of state quantity setting devices.
  • a supercharger 44 is disposed downstream of the throttle valve 43.
  • the supercharger 44 is configured to supercharge the gas introduced into the combustion chamber 17.
  • the supercharger 44 is a mechanical supercharger driven by the engine 1.
  • the mechanical supercharger 44 may be, for example, a roots type.
  • the configuration of the mechanical supercharger 44 may be any configuration.
  • the mechanical supercharger 44 may be a Rishorum type or a centrifugal type.
  • An electromagnetic clutch 45 is interposed between the supercharger 44 and the engine 1.
  • the electromagnetic clutch 45 transmits a driving force from the engine 1 to the supercharger 44 between the supercharger 44 and the engine 1 or interrupts the transmission of the driving force.
  • the supercharger 44 is switched on and off. That is, in the engine 1, the supercharger 44 can switch between supercharging the gas introduced into the combustion chamber 17 and the supercharger 44 not supercharging the gas introduced into the combustion chamber 17. It is configured to be able to.
  • An intercooler 46 is disposed downstream of the supercharger 44 in the intake passage 40.
  • the intercooler 46 is configured to cool the gas compressed in the supercharger 44.
  • the intercooler 46 may be configured to be, for example, a water cooling type.
  • a bypass passage 47 is connected to the intake passage 40.
  • the bypass passage 47 connects the upstream portion of the supercharger 44 and the downstream portion of the intercooler 46 in the intake passage 40 so as to bypass the supercharger 44 and the intercooler 46.
  • An air bypass valve 48 is disposed in the bypass passage 47. The air bypass valve 48 adjusts the flow rate of the gas flowing through the bypass passage 47.
  • the air bypass valve 48 is fully opened. As a result, the gas flowing through the intake passage 40 bypasses the supercharger 44 and is introduced into the combustion chamber 17 of the engine 1.
  • the engine 1 is operated in a non-supercharged state, that is, in a natural intake state.
  • the supercharger 44 When the supercharger 44 is turned on (that is, when the electromagnetic clutch 45 is connected), part of the gas that has passed through the supercharger 44 flows backward through the bypass passage 47 upstream of the supercharger. . Since the reverse flow rate can be adjusted by adjusting the opening degree of the air bypass valve 48, the supercharging pressure of the gas introduced into the combustion chamber 17 can be adjusted.
  • the supercharger 44, the bypass passage 47, and the air bypass valve 48 constitute a supercharging system 49.
  • the air bypass valve 48 constitutes one of state quantity setting devices.
  • the exhaust passage 50 is connected to the other side of the engine 1.
  • the exhaust passage 50 communicates with the exhaust port 19 of each cylinder 11.
  • the exhaust passage 50 is a passage through which exhaust gas discharged from the combustion chamber 17 flows.
  • the upstream portion of the exhaust passage 50 constitutes an independent passage branched for each cylinder 11.
  • the upstream end of the independent passage is connected to the exhaust port 19 of each cylinder 11.
  • An exhaust gas purification system having one or more catalytic converters 51 is disposed in the exhaust passage 50.
  • the catalytic converter 51 includes a three-way catalyst. Note that the exhaust gas purification system is not limited to the one containing only the three-way catalyst.
  • the EGR passage 52 constituting the external EGR system is connected between the intake passage 40 and the exhaust passage 50.
  • the EGR passage 52 is a passage for returning a part of burned gas to the intake passage 40.
  • the upstream end of the EGR passage 52 is connected downstream of the catalytic converter 51 in the exhaust passage 50.
  • the downstream end of the EGR passage 52 is connected to the upstream side of the supercharger 44 in the intake passage 40.
  • a water-cooled EGR cooler 53 is disposed in the EGR passage 52.
  • the EGR cooler 53 is configured to cool the burned gas.
  • An EGR valve 54 is also disposed in the EGR passage 52.
  • the EGR valve 54 is configured to adjust the flow rate of burnt gas flowing through the EGR passage 52. By adjusting the opening degree of the EGR valve 54, the recirculation amount of the cooled burned gas, that is, the external EGR gas can be adjusted.
  • the EGR system 55 includes an external EGR system that includes an EGR passage 52 and an EGR valve 54, and an internal EGR system that includes the above-described intake electric VVT 23 and exhaust electric VVT 24. It is configured.
  • the EGR valve 54 also constitutes one of the state quantity setting devices.
  • the control device for the compression self-ignition engine includes an ECU (Engine Control Unit) 10 for operating the engine 1.
  • the ECU 10 is a controller based on a well-known microcomputer and includes a central processing unit (CPU) that executes a program and, for example, a RAM (Random Access Memory) or a ROM (Read Only Memory). A memory for storing programs and data, and an input / output bus for inputting and outputting electrical signals.
  • the ECU 10 is an example of a controller.
  • the ECU 10 is connected to various sensors SW1 to SW16 as shown in FIGS.
  • the sensors SW1 to SW16 output detection signals to the ECU 10.
  • the sensors include the following sensors.
  • the air flow sensor SW1 that is disposed downstream of the air cleaner 41 in the intake passage 40 and detects the flow rate of fresh air flowing through the intake passage 40
  • the first intake temperature sensor SW2 that detects the temperature of fresh air
  • the intake passage 40 the first pressure sensor SW3 that is disposed downstream of the connection position of the EGR passage 52 and upstream of the supercharger 44 and detects the pressure of the gas flowing into the supercharger 44, and supercharging in the intake passage 40
  • the second intake air temperature sensor SW4 which is disposed downstream of the machine 44 and upstream of the connection position of the bypass passage 47 and detects the temperature of the gas flowing out from the supercharger 44, is attached to the surge tank 42, and A second pressure sensor SW5 for detecting the pressure of the gas downstream of the feeder 44, attached to the cylinder head 13 corresponding to each cylinder 11, and each A finger pressure sensor SW6 that detects the pressure in the firing chamber 17 and the exhaust passage 50 and is disposed upstream of the catalytic converter 51 in the exhaust passage 50 and an exhaust temperature sensor SW7 that
  • Accelerator position sensor SW12 for detecting the corresponding accelerator position
  • engine And an intake cam angle sensor SW13 that detects the rotation angle of the intake camshaft, an exhaust cam angle sensor SW14 that is attached to the engine 1 and detects the rotation angle of the exhaust camshaft, and an EGR passage 52.
  • an EGR differential pressure sensor SW15 that detects a differential pressure upstream and downstream of the EGR valve 54
  • a fuel pressure sensor SW16 that is attached to the common rail 64 of the fuel supply system 61 and detects the pressure of the fuel supplied to the injector 6 is there.
  • the ECU10 judges the driving
  • the ECU 10 sends the control signal related to the calculated control amount to the electromagnetic clutch 45 of the injector 6, spark plug 25, intake electric VVT 23, exhaust electric VVT 24, fuel supply system 61, throttle valve 43, EGR valve 54, and supercharger 44. And output to the air bypass valve 48.
  • the ECU 10 adjusts the boost pressure by adjusting the opening of the air bypass valve 48 based on the differential pressure across the turbocharger 44 obtained from the detection signals of the first pressure sensor SW3 and the second pressure sensor SW5. adjust.
  • the ECU 10 adjusts the opening degree of the EGR valve 54 based on the differential pressure across the EGR valve 54 obtained from the detection signal of the EGR differential pressure sensor SW15, whereby the amount of external EGR gas introduced into the combustion chamber 17 is adjusted. Adjust. Details of control of the engine 1 by the ECU 10 will be described later.
  • FIG. 4 illustrates an operation region of the engine 1.
  • the operating region of the engine 1 is roughly divided into three regions with respect to the load level. Specifically, the three regions include a low load region (A) including idle operation, a high load region (C) including a fully open load, and a low load region (A) and a high load region (C). It is a medium load region (B).
  • the engine 1 performs combustion by compression self-ignition in an intermediate load region with the main purpose of improving fuel consumption and exhaust gas performance.
  • combustion modes in each of the low load region, the medium load region, and the high load region will be described in order.
  • the combustion mode when the operating state of the engine 1 is in the low load region is SI (Spark Ignition) combustion in which the air-fuel mixture is combusted by flame propagation when the spark plug 25 ignites the air-fuel mixture in the combustion chamber 17. is there.
  • SI Spark Ignition
  • the A / F of the air-fuel mixture may be set within the purification window of the three-way catalyst. Therefore, the excess air ratio ⁇ of the air-fuel mixture may be set to 1.0 ⁇ 0.2.
  • the EGR system 55 introduces EGR gas into the combustion chamber 17 when the operating state of the engine 1 is in a low load region.
  • the G / F of the air-fuel mixture that is, the mass ratio of the total gas and fuel in the combustion chamber 17 is set to 18.5 or more and 30 or less.
  • the mixture is EGR lean.
  • the dilution ratio of the mixture is high. If the G / F of the air-fuel mixture is set to 25, for example, SI combustion can be performed stably in the low load region without causing the air-fuel mixture to self-ignite. In the low load region, the G / F of the air-fuel mixture is kept constant regardless of the load level of the engine 1. By doing so, SI combustion is stabilized throughout the low load region. Further, the fuel efficiency of the engine 1 is improved and the exhaust gas performance is improved.
  • the engine 1 executes throttling for adjusting the opening degree of the throttle valve 43 and / or a mirror cycle for delaying the closing timing of the intake valve 21 after the intake bottom dead center.
  • combustion temperature of the air-fuel mixture and the temperature of the exhaust gas may be increased by further reducing the gas filling amount in the low load and low rotation range within the low load range. This is advantageous in maintaining the catalytic converter 51 in an active state.
  • the engine 1 performs SICI combustion combining SI combustion and CI combustion in the medium load region.
  • SICI combustion when the spark plug 25 forcibly ignites the air-fuel mixture in the combustion chamber 17, the air-fuel mixture is combusted by flame propagation, and the temperature in the combustion chamber 17 is increased by the heat generated by SI combustion. By becoming high, the unburned air-fuel mixture burns by self-ignition.
  • the calorific value of the SI combustion By adjusting the calorific value of the SI combustion, the temperature variation in the combustion chamber 17 before the start of compression can be absorbed. Even if the temperature in the combustion chamber 17 before the start of compression varies, the self-ignition timing can be controlled by adjusting the SI combustion start timing by adjusting the ignition timing, for example.
  • the timing of self-ignition In SICI combustion, in order to accurately control the timing of self-ignition, the timing of self-ignition must change in response to changing the ignition timing. It is preferable that the sensitivity at which the self-ignition timing changes is high with respect to the change in the ignition timing.
  • the ⁇ of the air-fuel mixture is 1.0 ⁇ 0.2 and the G / F of the air-fuel mixture is 18.5 or more and 30 or less, self- It turns out that the timing of ignition changes. Therefore, when the operating state of the engine 1 is in the medium load region, the engine 1 is in a state in the combustion chamber 17 where the ⁇ of the mixture is 1.0 ⁇ 0.2 and the G / F of the mixture is Set to 18.5 or more and 30 or less.
  • By controlling the timing of self-ignition with high accuracy, an increase in combustion noise can be avoided when the operating state of the engine 1 is in the middle load region. Further, by performing the CI combustion with the dilution ratio of the air-fuel mixture as high as possible, the fuel efficiency performance of the engine 1 can be enhanced. Furthermore, by setting ⁇ of the air-fuel mixture to 1.0 ⁇ 0.2, it becomes possible to purify the exhaust gas by the three-way catalyst, so that the exhaust gas performance of the engine 1 becomes good.
  • the G / F of the mixture is set to 18.5 or more and 30 or less (for example, 25), and ⁇ of the mixture is set to 1.0 ⁇ 0.2.
  • the state quantity in the combustion chamber 17 does not fluctuate greatly between when the operating state of the engine 1 is in the low load region and when it is in the medium load region. Therefore, the robustness of the control of the engine 1 against the change in the load of the engine 1 is enhanced.
  • the medium load region (B) is a region that is higher than the predetermined load, and is a first medium load region (B1) that performs supercharging, and a region that is below the predetermined load and that does not perform supercharging. It is divided into a medium load region (B2).
  • the predetermined load is, for example, a 1 ⁇ 2 load.
  • the second medium load region is a region having a lower load than the first medium load region.
  • the combustion mode in the first medium load region may be referred to as supercharging SICI combustion
  • the combustion mode in the second medium load region may be referred to as non-supercharging SICI combustion.
  • the engine 1 adjusts the amount of fresh air introduced into the combustion chamber 17 by adjusting the amount of EGR gas introduced into the combustion chamber 17. .
  • the state quantity in the combustion chamber 17 is substantially constant, for example, ⁇ of the air-fuel mixture is 1.0, while the G / F of the air-fuel mixture is changed in the range of 25 to 28.
  • the engine 1 increases both fresh air and EGR gas introduced into the combustion chamber 17 as the fuel amount increases.
  • the G / F of the air-fuel mixture is constant even when the load on the engine 1 increases.
  • the state quantity in the combustion chamber 17 is, for example, ⁇ of the air-fuel mixture becomes substantially constant at 1.0, and G / F of the air-fuel mixture is constant at 25.
  • the combustion mode when the operating state of the engine 1 is in the high load region is SI combustion.
  • the combustion mode in the high load region may be referred to as high load SI combustion.
  • the ⁇ of the air-fuel mixture is 1.0 ⁇ 0.2.
  • the G / F of the air-fuel mixture is basically set to 18.5 or more and 30 or less.
  • the opening degree of the throttle valve 43 is fully open, and the supercharger 44 performs supercharging.
  • the engine 1 reduces the amount of EGR gas as the load increases.
  • the G / F of the air-fuel mixture decreases as the load on the engine 1 increases. Since the amount of fresh air introduced into the combustion chamber 17 is increased by the amount of EGR gas reduced, the amount of fuel can be increased. This is advantageous in increasing the maximum output of the engine 1.
  • the G / F of the air-fuel mixture may be about 17 near the fully open load.
  • the G / F of the air-fuel mixture may be changed, for example, in the range of 17 to 25 in the high load region. Therefore, the G / F of the air-fuel mixture may be changed in the range of 17 to 30 in the entire operation region of the engine 1 including the low load region, the medium load region, and the high load region.
  • the state quantity in the combustion chamber 17 does not fluctuate greatly between when the operating state of the engine 1 is in the high load region and when it is in the medium load region. The robustness of the control of the engine 1 against the change of the load of the engine 1 is increased.
  • the engine 1 performs SI combustion in a high load region, but there is a problem that abnormal combustion such as pre-ignition and knocking is likely to occur due to a high geometric compression ratio and the like. .
  • the engine 1 is configured to avoid abnormal combustion by devising the form of fuel injection in a high load region.
  • the ECU 10 injects fuel into the combustion chamber 17 at a high fuel pressure of 30 MPa or more and at a timing within a period from the latter stage of the compression stroke to the early stage of the expansion stroke (hereinafter, this period is referred to as a retard period).
  • a control signal is output to the fuel supply system 61 and the injector 6.
  • the ECU 10 also outputs a control signal to the spark plug 25 so that the air-fuel mixture is ignited at a timing near the compression top dead center after fuel injection.
  • injecting fuel into the combustion chamber 17 at a high fuel pressure and at a timing within the retard period is referred to as high-pressure retarded injection.
  • the reaction time of the air-fuel mixture includes (1) a period during which the injector 6 injects fuel (that is, an injection period), and (2) after the fuel injection is completed, This is a time obtained by adding the period until formation (that is, the mixture formation period) and (3) the period until SI combustion started by ignition ends ((3) combustion period).
  • the injection period and the mixture formation period are shortened.
  • the timing for starting fuel injection can be made closer to the ignition timing.
  • the fuel is injected at the timing within the retard period from the latter stage of the compression stroke to the early stage of the expansion stroke.
  • High-pressure retarded injection can shorten the injection period, the mixture formation period, and the combustion period. Compared with the case where fuel is injected into the combustion chamber 17 during the intake stroke, the high-pressure retarded injection can greatly shorten the time for the air-fuel mixture to react. In the high pressure retarded injection, the time for which the air-fuel mixture reacts is shortened, so that abnormal combustion can be avoided.
  • the fuel pressure is set to 30 MPa or more, for example, the injection period, the mixture formation period, and the combustion period can be effectively shortened.
  • the fuel pressure is preferably set as appropriate according to the properties of the fuel.
  • the upper limit value of the fuel pressure may be 120 MPa.
  • the high-pressure retarded injection also injects fuel into the combustion chamber 17 only after the compression top dead center is reached. Therefore, in the compression stroke, in the combustion chamber 17, a gas that does not contain fuel, in other words, a specific heat ratio. High gas is compressed. If high-pressure retarded injection is performed when the rotational speed of the engine 1 is high, the temperature in the combustion chamber 17 at the compression top dead center, that is, the compression end temperature becomes high. An increase in the compression end temperature may cause abnormal combustion such as knocking.
  • the high load region (C) is divided into the first high load region (C1) on the low rotation side and the second high load region (C2) having a higher rotational speed than the first high load region (C1). ).
  • the first high load region may include a low rotation region and a medium rotation region when the high load region is divided into three regions of low rotation, medium rotation, and high rotation.
  • the second high load region may include a high rotation region obtained by dividing the inside of the high load region into three regions of low rotation, medium rotation, and high rotation.
  • the injector 6 receives the control signal of the ECU 10 and performs the above-described high-pressure retarded injection.
  • the injector 6 receives a control signal from the ECU 10 and injects fuel at a predetermined timing during the intake stroke.
  • the fuel injection performed during the intake stroke does not require high fuel pressure.
  • the ECU 10 outputs a control signal to the fuel supply system 61 so that the fuel pressure is lower than the fuel pressure of the high pressure retarded injection (for example, the fuel pressure is less than 40 MPa). By reducing the fuel pressure, the mechanical resistance loss of the engine 1 is reduced, which is advantageous for improving fuel consumption.
  • the specific heat ratio of the gas in the combustion chamber 17 is lowered, so that the compression end temperature is lowered. Since the compression end temperature becomes low, the engine 1 can avoid abnormal combustion. Since it is not necessary to retard the ignition timing in order to avoid abnormal combustion, in the second high load region, the spark plug 25 is mixed at the timing near the compression top dead center, as in the first high load region. I ignite my mind.
  • the air-fuel mixture does not reach self-ignition due to the high-pressure retarded injection, so the engine 1 can perform stable SI combustion.
  • the air-fuel mixture does not reach self-ignition due to fuel injection during the intake stroke, and therefore the engine 1 can perform stable SI combustion.
  • the turbulent combustion speed includes the air-fuel ratio (or excess air ratio ⁇ ) of the mixture, the EGR (ExhaustExGashausRecirculation) rate (that is, the dilution rate) of the mixture, the temperature and pressure in the combustion chamber 17, and the combustion chamber. 17 is affected by turbulent energy and the like.
  • the inventors of the present application have an excess air ratio ⁇ of the air-fuel mixture, a dilution ratio of the air-fuel mixture (here, the total gas in the combustion chamber 17). (G / F which is the mass ratio of the fuel and the fuel), the temperature and pressure in the combustion chamber 17, and the turbulent energy in the combustion chamber 17 were studied by simulation.
  • the conditions for this simulation are conditions in which the engine 1 is operating at a low load and the temperature in the combustion chamber 17 is made as high as possible by introducing only the internal EGR gas into the combustion chamber 17. .
  • the lower limit of the G / F of the air-fuel mixture is 18.5. Further, if such a lean air-fuel ratio is used and a three-way catalyst is used to prevent NOx emission, the excess air ratio ⁇ of the air-fuel mixture is 1.0 ⁇ 0.2.
  • the G / F of the air-fuel mixture is large.
  • the inventors of the present application examined the relationship between the G / F of the air-fuel mixture and the turbulent energy necessary to realize a desired turbulent combustion speed.
  • the engine 1 has a rotational speed of 2000 rpm and is operating at a low load. Further, an internal EGR gas is introduced into the combustion chamber 17.
  • the closing timing of the intake valve 21 is 91 ° ABDC.
  • the geometric compression ratio of the engine 1 is 18.
  • the characteristic line of G / F when ⁇ of the air-fuel mixture is 1.2 becomes a saturation curve that saturates around 30.
  • the turbulent energy can be 40 m 2 / s 2 . It was newly found that even when turbulent energy exceeding 40 m 2 / s 2 is realized, the G / F of the air-fuel mixture hardly becomes larger than 30.
  • the upper limit of the G / F of the air-fuel mixture is 30.
  • the range of turbulent energy required for stabilizing SI combustion when ⁇ of the air-fuel mixture is 1.0 or 1.2 and the range of G / F is 18.5 or more and 30 or less. Is 17 to 40 m 2 / s 2 .
  • FIG. 13 shows the relationship between the temperature at the ignition timing and the G / F of the air-fuel mixture in the combustion chamber 17 necessary to achieve a desired turbulent combustion speed under the same conditions as FIG. Yes.
  • the required temperature TIg (K) in the combustion chamber 17 at the ignition timing is 570 to 800K.
  • FIG. 14 shows the relationship between the pressure at the ignition timing and the G / F of the air-fuel mixture in the combustion chamber 17 necessary for realizing the desired turbulent combustion speed under the same conditions as FIG. Yes.
  • the required pressure PIg (kPa) in the combustion chamber 17 at the ignition timing is 400 to 920 kPa.
  • the change ratio indicates the magnitude of the change in the crank angle at the self-ignition timing when the ignition timing is changed by 1 ° in the crank angle. The larger the change ratio value, the higher the self-ignition timing change sensitivity with respect to the ignition timing change, and the smaller the change ratio value, the lower the self-ignition timing change sensitivity with respect to the ignition timing change.
  • the vertical axis represents the EGR rate of the air-fuel mixture
  • the horizontal axis represents the A / F of the air-fuel mixture.
  • the change sensitivity of the self-ignition timing with respect to the change in the ignition timing is lower in the upper right part of the figure, and the change sensitivity of the self-ignition timing is higher in the lower left part of the figure. From FIG. 15, the range surrounded by a broken line in which the ⁇ of the air-fuel mixture is 1.0 ⁇ 0.2 and the G / F range is 18.5 or more and 30 or less is self-ignition with respect to the change of the ignition timing. It can be seen that the timing changes.
  • the upper limit of the EGR rate is preferably 40% from the viewpoint of combustion stability.
  • FIG. 5 shows a waveform illustrating the change in the heat generation rate with respect to the crank angle in SICI combustion.
  • the unburned mixture self-ignites.
  • the slope of the heat generation rate waveform changes from small to large near the compression top dead center. That is, the heat generation rate waveform has an inflection point at the timing when CI combustion starts.
  • dp / d ⁇ can be used as an index representing combustion noise. As described above, since SICI combustion can reduce dp / d ⁇ , it is possible to avoid excessive combustion noise. . Combustion noise can be suppressed below an acceptable level.
  • SICI combustion can achieve both prevention of combustion noise and improvement of fuel efficiency.
  • SI rate is defined as a parameter indicating the characteristics of SICI combustion.
  • the SI rate is a ratio between SI combustion and CI combustion in SICI combustion combining SI combustion and CI combustion. When the SI rate is high, the SI combustion rate is high, and when the SI rate is low, the CI combustion rate is high.
  • the SI rate is not limited to the above definition. Various definitions can be considered for the SI rate.
  • the waveform of the heat generation rate has an inflection point at the timing when CI combustion starts. Therefore, as shown in FIG. 6, the inflection point in the waveform of the heat generation rate may be used as a boundary, the range on the advance side of the boundary may be SI combustion, and the range on the retard side may be CI combustion.
  • the SI rate may be defined on the basis of a part of the area rather than the entire area on the advance side from the boundary and a part of the area on the retard side from the boundary.
  • SI rate ⁇ P SI / ( ⁇ P SI + ⁇ P CI ) may be calculated from the peak ⁇ P SI of the heat generation rate in the range on the advance side from the boundary and the peak ⁇ P CI of the heat generation rate in the range on the retard side.
  • SI rate ⁇ P SI / ⁇ P CI .
  • the SI rate ⁇ SI / ( ⁇ SI + ⁇ CI ) may be calculated from the slope ⁇ SI of the heat generation rate in the advance angle range from the boundary and the slope ⁇ CI of the heat generation rate in the retard angle range.
  • the SI rate may be ⁇ SI / ⁇ CI .
  • the SI rate is defined from the magnitude of the generation rate) or the slope (that is, the rate of change of the heat generation rate).
  • the SI rate is similarly defined from the area, the length of the horizontal axis, the length of the vertical axis, or the slope. Also good.
  • the inflection point of the combustion waveform related to the heat generation rate or pressure does not always appear clearly.
  • the following definition may be used as the definition of the SI rate that is not based on the inflection point. That is, as shown in FIG. 7, in the combustion waveform, the range on the advance side from the compression top dead center (TDC) may be SI combustion, and the range on the retard side from the compression top dead center may be CI combustion.
  • the area (Q SI , Q CI ), the length of the horizontal axis ( ⁇ SI , ⁇ CI ), the length of the vertical axis ( ⁇ P SI , ⁇ P CI ), or the slope ( ⁇ SI , ⁇ CI ), the SI rate may be defined.
  • the SI rate may be defined not based on the combustion waveform actually performed in the combustion chamber 17 but based on the fuel amount.
  • split injection including front-stage injection and rear-stage injection is performed in the middle load region where SICI combustion is performed.
  • the fuel injected into the combustion chamber 17 by the post-injection is not diffused in the combustion chamber 17 and is positioned in the vicinity of the spark plug 25 because the time from injection to ignition is short. Therefore, the fuel injected into the combustion chamber 17 by the post-stage injection mainly burns by SI combustion.
  • the fuel injected into the combustion chamber 17 by the pre-stage injection mainly burns by CI combustion.
  • the engine 1 switches between SI combustion and SICI combustion according to the operating state.
  • the engine 1 also changes the SI rate according to the operating state of the engine 1. Since the operating range in which combustion is performed by self-ignition is expanded, the engine 1 is compatible with both suppressing the generation of combustion noise and improving fuel consumption.
  • FIG. 8 shows changes in the SI rate, changes in the state quantity in the combustion chamber 17, changes in the intake valve opening period and the exhaust valve opening period, and fuel injection timing with respect to the load of the engine 1 And changes in ignition timing are illustrated.
  • the operation control of the engine 1 will be described on the assumption that the load of the engine 1 gradually increases at a predetermined rotational speed.
  • Low load area low load SI combustion
  • the SI rate is constant at 100%.
  • the G / F of the air-fuel mixture is kept constant between 18.5 and 30 as described above.
  • the engine 1 introduces fresh air and burned gas in an amount corresponding to the amount of fuel into the combustion chamber 17. As described above, the amount of fresh air introduced is adjusted by throttling and / or mirror cycles. Since the dilution rate is high, the temperature in the combustion chamber 17 is increased in order to stabilize the SI combustion.
  • the engine 1 introduces internal EGR gas into the combustion chamber 17 in a low load region.
  • the internal EGR gas is introduced into the combustion chamber 17 by providing a negative overlap period in which both the intake valve 21 and the exhaust valve 22 are closed across the exhaust top dead center (that is, the burned gas is introduced into the combustion chamber). 17).
  • the internal EGR gas amount is adjusted by adjusting the opening timing of the intake valve 21 by the intake electric VVT 23 and adjusting the opening timing of the exhaust valve 22 by the exhaust electric VVT 24. This is done by appropriately setting the length.
  • the filling amount introduced into the combustion chamber 17 is adjusted to less than 100%. As the amount of fuel increases, the amount of fresh air introduced into the combustion chamber 17 and the amount of internal EGR gas gradually increase.
  • the EGR rate in the low load region (that is, the mass ratio of EGR gas to the total gas in the combustion chamber 17) is, for example, 40%.
  • the injector 6 injects fuel into the combustion chamber 17 during the intake stroke.
  • a homogeneous air-fuel mixture is formed in which the excess air ratio ⁇ is 1.0 ⁇ 0.2 and the G / F is 18.5-30.
  • the excess air ratio ⁇ is preferably 1.0 to 1.2.
  • the engine 1 switches from the low load SI combustion to the non-supercharged SICI combustion.
  • the SI rate is less than 100%.
  • the rate of CI combustion is increased as the fuel amount increases.
  • the SI rate gradually decreases as the load on the engine 1 increases. In the example of FIG. 8, the SI rate decreases to a predetermined value (minimum value) of 50% or less.
  • the hot internal EGR gas is gradually reduced and the cooled external EGR gas is gradually increased.
  • the negative overlap period is changed from the maximum to zero as the load increases in the second medium load region.
  • the internal EGR gas becomes zero when the load becomes highest in the second medium load region.
  • the opening degree of the EGR valve 54 is changed in the second medium load region so that the external EGR gas increases as the load increases.
  • the amount of external EGR gas introduced into the combustion chamber 17 is adjusted, for example, between 0 and 30% when expressed in terms of the EGR rate.
  • the EGR gas is replaced from the internal EGR gas to the external EGR gas as the load on the engine 1 increases.
  • the amount of EGR gas introduced into the combustion chamber 17 is continuous between the low load region and the second medium load region.
  • a large amount of internal EGR gas is introduced into the combustion chamber 17 as in the low load region. Since the temperature in the combustion chamber 17 becomes high, the air-fuel mixture surely self-ignites when the load on the engine 1 is low.
  • the external EGR gas is introduced into the combustion chamber 17 in the high load region in the second medium load region. Since the temperature in the combustion chamber 17 becomes low, the combustion noise accompanying CI combustion can be suppressed when the load of the engine 1 is high.
  • the filling amount introduced into the combustion chamber 17 is made 100%.
  • the opening degree of the throttle valve 43 is fully open.
  • the timing of self-ignition becomes earlier as the proportion of CI combustion increases. If the timing of self-ignition becomes earlier than the compression top dead center, heat generation when CI combustion starts becomes intense. If it becomes so, combustion noise will increase. Therefore, when the load on the engine 1 reaches the predetermined load L1, the engine 1 gradually increases the SI rate as the load on the engine 1 increases.
  • the engine 1 increases the rate of SI combustion as the fuel amount increases.
  • the ignition timing is gradually advanced as the fuel amount increases.
  • the SI rate is increased as the amount of fuel increases. Even if the temperature is increased, the temperature rise at the compression top dead center can be suppressed.
  • the slope of the heat generation rate of SI combustion hardly changes even when the load increases. If the ignition timing is advanced, the amount of heat generated by SI combustion increases as the SI combustion starts earlier.
  • the unburned mixture self-ignites at a timing after the compression top dead center.
  • the heat generation by the CI combustion is almost the same even if the load of the engine 1 is high because the heat generation amount of the SI combustion is increased. Therefore, it is possible to avoid an increase in combustion noise by setting the SI rate gradually higher in accordance with the load on the engine 1 becoming higher.
  • the combustion center of gravity of non-supercharged SICI combustion is retarded as the load increases.
  • the injector 6 injects fuel into the combustion chamber 17 in two steps, a front injection and a rear injection, during the compression stroke.
  • the front-stage injection injects fuel at a timing away from the ignition timing
  • the rear-stage injection injects fuel at a timing close to the ignition timing.
  • a substantially homogeneous air / fuel mixture having an excess air ratio ⁇ of 1.0 ⁇ 0.2 and a G / F of 18.5 to 30 is formed. Since the air-fuel mixture is substantially homogeneous, it is possible to improve fuel efficiency by reducing unburned loss and to improve exhaust gas performance by avoiding the generation of smoke.
  • the excess air ratio ⁇ is preferably 1.0 to 1.2.
  • the spark plug 25 ignites the air-fuel mixture at a predetermined timing before the compression top dead center, the air-fuel mixture burns by flame propagation. Thereafter, the unburned mixture self-ignites and performs CI combustion.
  • the fuel injected by the latter-stage injection mainly undergoes SI combustion.
  • the fuel injected by the pre-stage injection mainly undergoes CI combustion. Since the pre-injection is performed during the compression stroke, it is possible to prevent the fuel injected by the pre-injection from inducing abnormal combustion such as premature ignition. Moreover, the fuel injected by the latter stage injection can be stably burned by flame propagation.
  • the supercharger 44 supercharges fresh air and external EGR gas. Both the amount of fresh air introduced into the combustion chamber 17 and the amount of external EGR gas increase as the load on the engine 1 increases.
  • the amount of external EGR gas introduced into the combustion chamber 17 is, for example, 30% in terms of the EGR rate.
  • the EGR rate is constant regardless of the load level of the engine 1. Accordingly, the G / F of the air-fuel mixture is also constant regardless of the load of the engine 1. Note that the amount of EGR gas introduced into the combustion chamber 17 is continuous between the second medium load region and the first medium load region.
  • the SI rate is a predetermined value less than 100%, and is constant with respect to the load of the engine 1.
  • the SI rate in the first medium load region is The SI rate in the first medium load region with a high load of 1 is higher than the SI rate in the second medium load region.
  • the SI rate is continuous at the boundary between the first medium load region and the second medium load region.
  • the ignition timing is gradually advanced as the fuel amount increases.
  • the amount of fresh air and EGR gas introduced into the combustion chamber 17 is increased by supercharging, the heat capacity is large. Even if the amount of fuel increases, the temperature rise in the combustion chamber due to SI combustion can be suppressed.
  • the waveform of the heat generation rate of supercharged SICI combustion increases in a similar manner as the load increases.
  • the slope of the heat generation rate of SI combustion hardly changes and the amount of heat generation of SI combustion increases.
  • the unburned mixture self-ignites at approximately the same timing after compression top dead center.
  • the amount of heat generated by CI combustion increases as the load on the engine 1 increases.
  • both the heat generation amount of SI combustion and the heat generation amount of CI combustion increase, so the SI rate becomes constant with respect to the load of the engine 1.
  • the combustion noise increases.
  • the load of the engine 1 is relatively high in the first medium load region, a certain level of combustion noise can be tolerated. Note that the combustion center of gravity of supercharged SICI combustion is retarded as the load increases.
  • an overlap period is provided in which both the intake valve 21 and the exhaust valve 22 are opened with the exhaust top dead center interposed therebetween.
  • the burned gas remaining in the combustion chamber 17 is scavenged by the supercharging pressure.
  • the self-ignition timing can be set to an appropriate timing in a region where the load of the engine 1 is relatively high, and the SI rate is maintained at a predetermined SI rate. Is possible.
  • the amount of fresh air in the combustion chamber 17 can be increased by scavenging the burned gas.
  • the injector 6 injects fuel into the combustion chamber 17 in the compression stroke in two steps, the first injection and the second injection, in the same manner as in the second medium load region.
  • the front-stage injection injects fuel at a timing away from the ignition timing
  • the rear-stage injection injects fuel at a timing close to the ignition timing.
  • a substantially homogeneous air / fuel mixture having an excess air ratio ⁇ of 1.0 ⁇ 0.2 and a G / F of 18.5 to 30 is formed. Since the air-fuel mixture is substantially homogeneous, it is possible to improve fuel efficiency by reducing unburned loss and to improve exhaust gas performance by avoiding the generation of smoke.
  • the excess air ratio ⁇ is preferably 1.0 to 1.2.
  • the spark plug 25 ignites the air-fuel mixture at a predetermined timing before the compression top dead center, the air-fuel mixture burns by flame propagation. Thereafter, the unburned mixture self-ignites and performs CI combustion.
  • the fuel injected by the latter-stage injection mainly undergoes SI combustion.
  • the fuel injected by the pre-stage injection mainly undergoes CI combustion. Since the pre-injection is performed during the compression stroke, it is possible to prevent the fuel injected by the pre-injection from inducing abnormal combustion such as premature ignition. Moreover, the fuel injected by the latter stage injection can be stably burned by flame propagation.
  • the throttle valve 43 is fully open.
  • the supercharger 44 supercharges fresh air and external EGR gas even in a high load region.
  • the EGR valve 54 adjusts the opening to gradually reduce the amount of external EGR gas introduced as the load on the engine 1 increases. By doing so, the fresh air introduced into the combustion chamber 17 increases as the load on the engine 1 increases. As the amount of fresh air increases, the amount of fuel can be increased, which is advantageous in increasing the maximum output of the engine 1. Note that the amount of EGR gas introduced into the combustion chamber 17 is continuous between the first medium load region and the high load region.
  • an overlap period is provided in which both the intake valve 21 and the exhaust valve 22 are opened across the exhaust top dead center.
  • the burned gas remaining in the combustion chamber 17 is scavenged by the supercharging pressure. Thereby, generation
  • the amount of fresh air in the combustion chamber 17 can be increased.
  • the injector 6 injects fuel into the combustion chamber 17 within the retard period as described above.
  • the injector 6 injects fuel into the combustion chamber 17 during the intake stroke.
  • a substantially homogeneous air-fuel mixture is formed in the combustion chamber 17 with an excess air ratio ⁇ of 1.0 ⁇ 0.2 and a G / F of 18.5-30.
  • the excess air ratio ⁇ is, for example, 0.8.
  • the G / F of the air-fuel mixture may be 17, for example, at the maximum load.
  • the spark plug 25 ignites the air-fuel mixture at a predetermined timing before the compression top dead center, the air-fuel mixture burns by flame propagation. In the high load region, the air-fuel mixture undergoes SI combustion without leading to self-ignition by high pressure retarded injection or fuel injection during the intake stroke.
  • FIG. 10 shows a flow related to engine operation control executed by the ECU 10.
  • the ECU 10 determines the operating state of the engine 1 based on the detection signals of the sensors SW1 to SW16, and combusts the combustion chamber 17 so that the combustion in the combustion chamber 17 becomes combustion at the SI rate corresponding to the operating state. Adjustment of state quantity, adjustment of injection quantity, adjustment of injection timing, and adjustment of ignition timing are performed.
  • the ECU 10 also adjusts the SI rate when it is determined that the SI rate needs to be adjusted based on the detection signal of each sensor.
  • step S1 the ECU reads the detection signals from the sensors SW1 to SW16.
  • step S2 the ECU 10 determines the operating state of the engine 1 based on the detection signal and sets a target SI rate.
  • the target SI rate is as shown in FIG.
  • the ECU10 sets the target in-cylinder state quantity for implement
  • the ECU 10 requires the opening degree of the EGR valve 54, the opening degree of the throttle valve 43, the opening degree of the air bypass valve 48, the intake motor VVT 23 and the exhaust motor, which are necessary for realizing the target in-cylinder state quantity.
  • the phase angle of the VVT 24 is set.
  • the ECU 10 sets control amounts of these devices based on a map that is set in advance and stored in the ECU 10.
  • the ECU 10 outputs control signals to the EGR valve 54, the throttle valve 43, the air bypass valve 48, the intake electric VVT 23 and the exhaust electric VVT 24 based on the set control amount. As each device operates based on the control signal of the ECU 10, the state quantity in the combustion chamber 17 becomes the target state quantity.
  • the ECU 10 further calculates a predicted value and an estimated value of the state quantity in the combustion chamber 17 based on the set control amount of each device.
  • the state quantity predicted value is a value obtained by predicting the state quantity in the combustion chamber 17 before the intake valve 21 is closed, and is used for setting the fuel injection amount in the intake stroke, as will be described later.
  • the state quantity estimated value is a value obtained by estimating the state quantity in the combustion chamber 17 after the intake valve 21 is closed. As will be described later, the setting of the fuel injection amount in the compression stroke and the ignition timing are set. Used for setting.
  • the state quantity estimated value is also used for calculation of a state quantity error by comparison with an actual combustion state, as will be described later.
  • step S5 the ECU 10 sets the fuel injection amount during the intake stroke based on the predicted state amount. When fuel is not injected during the intake stroke, the fuel injection amount is zero.
  • step S6 the ECU 10 controls the injection of the injector 6. That is, a control signal is output to the injector 6 so that fuel is injected into the combustion chamber 17 at a predetermined injection timing.
  • step S7 the ECU 10 sets the fuel injection amount during the compression stroke based on the state quantity estimated value and the fuel injection result during the intake stroke. When the fuel is not injected during the compression stroke, the fuel injection amount is zero. When performing divided injection during the compression stroke, the injection amount of the front-stage injection and the injection amount of the rear-stage injection are respectively set.
  • step S8 the ECU 10 outputs a control signal to the injector 6 so as to inject fuel into the combustion chamber 17 at an injection timing based on a preset map.
  • step S9 the ECU 10 sets the ignition timing based on the state quantity estimated value and the fuel injection result during the compression stroke.
  • the ECU 10 outputs a control signal to the spark plug 25 so as to ignite the air-fuel mixture in the combustion chamber 17 at the set ignition timing.
  • step S11 the ECU 10 reads the pressure change in the combustion chamber 17 detected by the finger pressure sensor SW6, and determines the combustion state of the air-fuel mixture in the combustion chamber 17 based on the change.
  • step S12 the ECU 10 also compares the detection result of the combustion state with the state quantity estimated value estimated in step S4, and calculates an error between the state quantity estimated value and the actual state quantity. The calculated error is used for estimation in step S4 in the subsequent cycles.
  • the ECU 10 adjusts the opening degree of the throttle valve 43, the EGR valve 54, and / or the air bypass valve 48, and the phase angle of the intake electric VVT 23 and the exhaust electric VVT 24 so that the state quantity error is eliminated. Thereby, the amount of fresh air and EGR gas introduced into the combustion chamber 17 is adjusted.
  • This feedback of the state quantity error corresponds to the adjustment of the SI rate when the ECU 10 determines that the adjustment of the SI rate is necessary based on the error between the target SI rate and the actual SI rate.
  • the ECU 10 also performs injection during the compression stroke so that the ignition timing can be advanced when it is predicted in step S8 that the temperature in the combustion chamber 17 is lower than the target temperature based on the state quantity estimated value.
  • the timing is advanced from the injection timing based on the map.
  • the ECU 10 is in the compression stroke so that the ignition timing can be retarded.
  • the injection timing is retarded from the injection timing based on the map.
  • the low temperature inside the combustion chamber 17, after the SI combustion by spark ignition is started will be the timing theta CI unburned air-fuel mixture is self-ignition delay, SI ratio However, it will deviate from the target SI rate (see P1). In this case, unburned fuel increases and exhaust gas performance decreases.
  • ECU 10 is adapted to advance the injection timing, in step S10 in FIG. 10, it advances the ignition timing theta IG.
  • step S10 the ignition timing theta IG.
  • the start of SI combustion is accelerated, sufficient heat can be generated by SI combustion. Therefore, when the temperature in the combustion chamber 17 is low, the self-ignition of the unburned mixture is performed. It is possible to prevent the timing ⁇ CI from being delayed. As a result, the SI rate approaches the target SI rate. An increase in unburned fuel and a decrease in exhaust gas performance are prevented.
  • ECU 10 is adapted to retard the injection timing, in step S10 in FIG. 10, retarding the ignition timing theta IG.
  • step S10 retarding the ignition timing theta IG.
  • the SI rate approaches the target SI rate. An increase in combustion noise is avoided.
  • the adjustment of the injection timing and the adjustment of the ignition timing correspond to the adjustment of the SI rate when the ECU 10 determines that the adjustment of the SI rate in SICI combustion is necessary.
  • an appropriate air-fuel mixture can be formed in the combustion chamber 17 at the ignition timing advanced or retarded.
  • the spark plug 25 can surely ignite the air-fuel mixture, and the unburned air-fuel mixture can self-ignite at an appropriate timing.
  • the state quantity in the combustion chamber 17 is adjusted through control of the throttle valve 43, the EGR valve 54, the air bypass valve 48, the intake electric VVT 23, and the exhaust electric VVT 24 based on the actual combustion state. Is as described in step S12 and step S4 of FIG.
  • This engine 1 adjusts the SI rate by a state quantity setting device including a throttle valve 43, an EGR valve 54, an air bypass valve 48, an intake electric VVT 23, and an exhaust electric VVT 24.
  • a state quantity setting device including a throttle valve 43, an EGR valve 54, an air bypass valve 48, an intake electric VVT 23, and an exhaust electric VVT 24.
  • the SI rate can be roughly adjusted.
  • the engine 1 adjusts the SI rate by adjusting the fuel injection timing and the ignition timing.
  • the injection timing and the ignition timing for example, the difference between cylinders can be corrected, or the self-ignition timing can be finely adjusted.
  • the engine 1 can accurately realize the target SICI combustion corresponding to the operation state.
  • the temperature in the combustion chamber 17 particularly the temperature before the start of compression. Therefore, the temperature difference from the temperature leading to self-ignition becomes small, the rate of temperature increase in the combustion chamber 17 due to SI combustion becomes high, and the air-fuel mixture easily self-ignites.
  • the unburned mixture may self-ignite immediately after SI combustion is started by spark ignition. As a result, the SI rate becomes small, which may shorten the combustion period due to flame propagation. This is inconvenient in suppressing the generation of combustion noise.
  • the inventors of the present application focused on the fact that if the temperature in the combustion chamber 17 is lowered, the period from the start of SI combustion by spark ignition until the unburned mixture starts self-ignition becomes longer. . As a result, a sufficient SI rate is ensured, and as a result, generation of combustion noise can be suppressed.
  • the inventors of the present application devised to advance the ignition timing as one means for achieving both suppression of combustion noise and securing of torque.
  • FIG. 16 illustrates the change in the overlap period with respect to the load of the engine 1.
  • FIG. 17 illustrates the change in the EGR rate of the air-fuel mixture with respect to the load on the engine 1
  • FIG. 18 illustrates the change in the supercharging pressure with respect to the load on the engine 1.
  • the engine 1 performs low load SI combustion. As already described, the engine 1 raises the temperature in the combustion chamber 17 in order to stabilize SI combustion. As shown in FIGS. 16 to 17, the engine 1 introduces an internal EGR gas (see the broken line in FIG. 17) into the combustion chamber 17 by providing a negative overlap period (NVO) (that is, burned) The gas is confined in the combustion chamber 17).
  • NVO negative overlap period
  • the temperature in the combustion chamber 17, particularly the temperature before ignition increases. Thereby, it becomes possible to stabilize low load SI combustion.
  • the ECU 10 retards the ignition timing as the load of the engine 1 increases in the low load region.
  • the low-load SI combustion is more unstable when the load of the engine 1 is low than when the load is high because the temperature in the combustion chamber 17 decreases. Therefore, the ignition timing is advanced on the lower load side in the low load region than on the high load side. By doing so, it becomes possible to stabilize low load SI combustion.
  • the temperature in the combustion chamber 17 rises to ensure the stability of the low-load SI combustion, and the combustion is actually performed after the spark plug 25 hits a spark.
  • the period until it occurs is shortened. Therefore, the ignition timing is retarded by the amount of such a period. This makes it possible to adjust the timing at which the low load SI combustion is started, for example, to a desired timing after the compression top dead center.
  • ignition is performed at a timing suitable for low load SI combustion.
  • the ECU 10 is configured to gradually decrease the length of the negative overlap period as the load on the engine 1 increases in the low load region. As shown in FIG. 17, the internal EGR gas decreases as the negative overlap period is shortened. Thereby, the temperature in the combustion chamber 17 falls.
  • the engine 1 performs non-supercharging SICI combustion.
  • the internal EGR gas is gradually reduced as the load on the engine 1 increases in order to adjust the temperature in the combustion chamber 17 before the start of compression.
  • the air-fuel mixture in the combustion chamber 17 is cooled at the same time as it is diluted.
  • the temperature of the entire air-fuel mixture before the start of compression decreases.
  • By gradually increasing the amount of external EGR gas it is possible to suppress a temperature rise in the combustion chamber 17.
  • By reducing the internal EGR gas such a temperature rise is further suppressed.
  • an overlap period (PVO) in which both the intake valve 21 and the exhaust valve 22 are opened with the exhaust top dead center sandwiched on the high load side of the second middle load region is increased.
  • gas blow-out occurs in the combustion chamber 17.
  • the gas in the combustion chamber 17 is scavenged.
  • the burned residual gas in the combustion chamber 17 is discharged. If residual gas is discharged from the combustion chamber 17, the temperature of the entire air-fuel mixture before the start of compression in the combustion chamber 17 decreases.
  • the overlap period gradually increases as shown in FIG. As the overlap period becomes longer, the amount of gas blow-through increases. As the blow-through amount increases, scavenging of the residual gas is promoted, and the scavenging amount increases. Thereby, when the load of the engine 1 is high, the temperature in the combustion chamber 17 can be lowered. When the load on the engine 1 is further increased, the overlap period reaches the upper limit.
  • the ECU 10 determines the control amount related to the temperature before the start of compression in the combustion chamber via the state quantity setting device when the load of the engine 1 is high (that is, when the load is low)
  • the temperature is changed so that the temperature in the combustion chamber before compression starts to decrease.
  • the ECU 10 reduces the temperature by changing the amount of burned gas in the combustion chamber 17 as such a control amount. More specifically, the ECU 10 increases the external EGR gas as a cold burned gas as the load of the engine 1 increases, while changing the overlap period and the negative overlap period as a hot burned gas. Reduce the internal EGR gas (residual gas).
  • the temperature in the combustion chamber 17 increases on the high load side, the temperature is lowered by the state quantity setting device. As a result, the temperature difference until self-ignition increases, and the rate of temperature increase due to SI combustion decreases. As a result, the period from when SI combustion is started by spark ignition to when the unburned mixture starts self-ignition becomes longer. As a result, the combustion by the flame propagation is sufficiently ensured in the combustion chamber 17, and as a result, the generation of combustion noise can be suppressed.
  • the ECU 10 advances the timing for igniting the air-fuel mixture by the amount of time until the unburned air-fuel mixture starts self-ignition. Specifically, as shown in FIG. 18, the ECU 10 monotonously advances the ignition timing as the load on the engine 1 increases (see also FIG. 9).
  • First medium load region (supercharged SICI combustion)
  • the engine 1 performs supercharging SICI combustion.
  • an overlap period is set in which both the intake valve 21 and the exhaust valve 22 are opened, and external EGR gas is introduced. . Further, supercharging is performed in this operation region.
  • the supercharger 44 In the first medium load region, the supercharger 44 supercharges fresh air and external EGR gas. When supercharging is performed, the pressure on the intake side increases, and the amount of gas blow-through increases. As the blow-through amount increases, scavenging of the residual gas is promoted, and the scavenging amount increases.
  • the supercharging pressure of the supercharger 44 increases monotonously as the load on the engine 1 increases.
  • the ECU 10 can increase the filling amount and at the same time increase the scavenging amount of the gas compared to when the load is low.
  • the temperature rise in the combustion chamber 17 is suppressed, and the period until the unburned mixture starts self-ignition becomes longer.
  • the ECU 10 further advances the timing for igniting the air-fuel mixture because the period until the unburned air-fuel mixture starts self-ignition becomes longer. Specifically, as shown in FIG. 18, as the load on the engine 1 increases, the ECU 10 monotonously advances the ignition timing as in the second middle load region (see also FIG. 9).
  • the ignition timing is advanced in response to an increase in the load on the engine 1 and, in turn, the amount of fuel, it is possible to increase both the amount of heat generated by SI combustion and the amount of heat generated by CI combustion.
  • increasing the boost pressure and increasing the scavenging amount as the load of the engine 1 increases is advantageous for more reliably suppressing the occurrence of abnormal combustion. Further, it is advantageous to increase the amount of fresh air in the combustion chamber 17 more reliably.
  • the engine 1 performs high load SI combustion.
  • an overlap period is set in which both the intake valve 21 and the exhaust valve 22 are opened, and the external EGR gas is introduced. Is done. In this operating region, supercharging is also performed.
  • the supercharger 44 supercharges fresh air and external EGR gas. Although illustration is omitted, in the high load region, the supercharging pressure of the supercharger 44 increases monotonously as the load on the engine 1 increases. Thereby, the temperature rise in the combustion chamber 17 is suppressed.
  • SI combustion is likely to cause abnormal combustion when the load on the engine 1 is high. Therefore, in the high load region, fuel is injected within a period from the latter stage of the compression stroke to the early stage of the expansion stroke, and the ignition timing is set to a timing corresponding to the injection timing, that is, a timing after the injection timing.
  • the ECU 10 sets the ignition timing after the injection timing within a period from the latter half of the compression stroke to the early stage of the expansion stroke. As a result, the ignition timing is retarded from the first medium load region as shown in FIG.
  • the burned gas remaining in the combustion chamber 17 is scavenged by the supercharging pressure as in the first medium load region.
  • Increasing the supercharging pressure and increasing the scavenging amount as the load on the engine 1 increases is advantageous in suppressing the occurrence of abnormal combustion more reliably. Further, it is advantageous to increase the amount of fresh air in the combustion chamber 17 more reliably.
  • the external EGR gas is increased or the overlap period is lengthened in order to reduce the temperature before the compression start in the combustion chamber 17. It is not limited to.
  • the temperature in the combustion chamber 17 may be lowered by adjusting the effective compression ratio of the engine 1 or utilizing the latent heat of vaporization of the fuel.
  • control of the engine 1 performed by the ECU 10 is not limited to the control based on the combustion model described above.
  • the technology disclosed herein is not limited to being applied to the engine 1 having the above-described configuration.

Abstract

圧縮自己着火式エンジンの制御装置は、エンジン(1)と、状態量設定デバイス(23、24、43、48、54)と、点火プラグ(25)と、コントローラー(ECU10)と、センサ(SW1~SW16)と、を備える。点火プラグは、点火された混合気が火炎伝播により燃焼し、その後、燃焼室(17)の中の未燃混合気が自己着火により燃焼するように、コントローラーの制御信号を受けて、所定の点火タイミングで混合気に点火をする。コントローラーは、燃焼室の中の温度を低下させると共に、点火タイミングを、エンジンの負荷が高くなるに従い進角させる。

Description

圧縮自己着火式エンジンの制御装置
 ここに開示する技術は、圧縮自己着火式エンジンの制御装置に関する。
 特許文献1には、部分負荷領域において、燃焼室内の混合気が自己着火により燃焼するエンジンが記載されている。このエンジンは、部分負荷領域内の低負荷側の運転領域においては、熱い既燃ガスを燃焼室内に残すことによって、混合気の自己着火を促進する。また、このエンジンは、部分負荷領域内の高負荷側の運転領域においては、冷却した既燃ガスを燃焼室内に導入することによって自己着火を起こり難くすると共に、圧縮上死点の直前に、点火プラグが点火を行う。
特許第4082292号公報
 ところで、圧縮着火による燃焼は、燃焼室の中に供給する燃料量が増えると、着火時の圧力変動が大きくなるため、燃焼騒音が大きくなってしまうという問題がある。そのため、エンジンの運転状態が、エンジンの全運転領域における、一部の狭い運転領域にあるときしか、圧縮着火による燃焼を行うことができない。広い運転領域に亘って圧縮着火による燃焼を行うことができれば、エンジンの燃費性能を大幅に向上することができる。
 ここに開示する技術はかかる点に鑑みてなされたものであり、その目的とするところは、圧縮自己着火式エンジンにおいて燃焼騒音の発生を抑制しながら、圧縮着火による燃焼を行う運転領域を拡大することにある。
 本願発明者らは、SI(Spark Ignition)燃焼とCI(Compression Ignition)燃焼とを組み合わせる燃焼形態を考えた。つまり、燃焼室の中の混合気に強制的に点火を行って、火炎伝播による燃焼を行うと共に、SI燃焼の発熱によって、燃焼室の中の未燃混合気が自己着火により燃焼する。火炎伝播による燃焼は、圧力変動が相対的に小さいため、燃焼騒音の発生を抑制することが可能になる。また、CI燃焼を行うことにより、火炎伝播による燃焼よりも、燃焼期間が短縮し、燃費の向上に有利になる。従って、SI燃焼とCI燃焼とを組み合わせた燃焼形態は、燃焼騒音の発生を抑制しながら、燃費を向上させることができる。この燃焼形態は、SI燃焼がCI燃焼をコントロールするため、以下においては、SICI燃焼と呼ぶ。
 ところが、高負荷側の運転領域においては、燃焼室の中の温度、特に、圧縮開始前の温度が上昇するため、自己着火に至るまでの温度差が小さくなると共に、SI燃焼による燃焼室の中の温度上昇率が高くなる。これにより、混合気が自己着火し易くなる。その結果、この運転領域においてSICI燃焼を実行すると、火花点火によってSI燃焼が開始して直ぐに、未燃混合気が自己着火する虞がある。この場合、燃焼室の中において、火炎伝播による燃焼が十分に行われず、そのことで、燃焼騒音の発生を抑制する上で支障を来す可能性がある。
 本願発明者らは、燃焼室の中の温度を低下させれば、火花点火によってSI燃焼が開始してから、未燃混合気が自己着火を開始するまでの期間が長くなる点に着目した。これにより、燃焼室の中において、火炎伝播による燃焼が十分に確保されて、ひいては、燃焼騒音の発生を抑制することが可能になる。
 しかし、未燃混合気が自己着火を開始するまでの期間が長くなると、例えば圧縮上死点後に、CI燃焼を開始するタイミングが遅れてしまい、トルクの低下を招く、という別の問題がある。
 本願発明者らは、SICI燃焼において、トルクの低下を招くことなく、燃焼騒音の発生を抑制する構成を見出し、ここに開示する技術を完成するに至った。
 具体的に、ここに開示する技術は、圧縮自己着火式エンジンの制御装置に係る。この圧縮自己着火式エンジンの制御装置は、燃焼室の中において混合気を自己着火させるよう構成されたエンジンと、前記エンジンに取り付けられかつ、前記燃焼室の中への新気及び既燃ガスの導入を調整することによって、前記燃焼室の中を所望の状態に設定するよう構成された状態量設定デバイスと、前記エンジンに取り付けられかつ、前記燃焼室の中に燃料を噴射するよう構成されたインジェクタと、前記燃焼室の中に臨んで配設されかつ、前記燃焼室の中の混合気に点火をするよう構成された点火プラグと、前記状態量設定デバイス、前記インジェクタ、及び、前記点火プラグのそれぞれに接続されかつ、前記状態量設定デバイス、前記インジェクタ、及び、前記点火プラグのそれぞれに制御信号を出力することによって、前記エンジンを運転するよう構成されたコントローラーと、前記コントローラーに接続されかつ、前記エンジンの運転状態に関するパラメータを検知すると共に、前記コントローラーに検知信号を出力するよう構成されたセンサと、を備える。
 そして、前記コントローラーは、前記センサの検知信号に基づく前記エンジンの運転状態が所定の運転領域にあるときに、点火された混合気が火炎伝播により燃焼し、その後、前記燃焼室の中の未燃混合気が自己着火により燃焼するよう、所定の点火タイミングで前記点火プラグに制御信号を出力し、前記コントローラーはまた、前記所定の運転領域内において、前記状態量設定デバイスに制御信号を出力することによって、前記燃焼室の中の圧縮開始前の温度に係る制御量を、前記エンジンの負荷が高いときには負荷が低いときよりも前記温度が低下するように変更すると共に、前記エンジンの負荷が高いときに、前記点火タイミングを、負荷が低いときよりも進角させる。
 尚、ここでいう「燃焼室」は、ピストンが圧縮上死点に至ったときに形成される空間の意味に限定されない。「燃焼室」の語は広義で用いる。
 また、前記の「制御量」には、例えば、燃焼室の中における既燃ガスの量、及び、エンジンの有効圧縮比等が含まれる。
 この構成によると、点火プラグは、コントローラーの制御信号を受けて、燃焼室の中の混合気に強制的に点火する。混合気は火炎伝播により燃焼し、その後、燃焼室の中の未燃混合気が自己着火により燃焼することによって燃焼が完了する。
 コントローラーは、状態量設定デバイスを介して制御量を変更することによって、エンジンの負荷が高いときに、燃焼室の中における圧縮開始前の温度を低下させる。
 前述の如く、高負荷側では燃焼室の中の温度が高くなるところ、前記の構成は、その温度を低下させる。これにより、自己着火に至るまでの温度差が拡大すると共に、SI燃焼による温度上昇率が低下する。そのことで、火花点火によってSI燃焼が開始してから、未燃混合気が自己着火を開始するまでの期間が長くなる。その結果、燃焼室の中において、火炎伝播による燃焼が十分に確保されて、ひいては、燃焼騒音の発生を抑制することが可能になる。
 一方で、コントローラーは、未燃混合気が自己着火を開始するまでの期間が長くなった分、混合気に点火をするタイミングを早くする。これにより、CI燃焼が開始するタイミングを、例えば圧縮上死点の直後に保ち、ひいては、トルクを確保することが可能になる。よって、SICI燃焼において、エンジンの負荷が高いときに、トルクの低下を招くことなく、燃焼騒音の発生を抑制することが可能になる。
 このように、前記の構成によると、燃焼騒音の発生を抑制しながら、SICI燃焼を行う運転領域を拡大することが可能になる。
 前記コントローラーは、前記制御量として、前記燃焼室の中における前記既燃ガスの量を変更することにより、前記温度を低下させる、としてもよい。
 この構成によると、コントローラーは、例えば、外部EGRガス及び内部EGRガスの量を調整したり、燃焼室の中を掃気したりすることによって、燃焼室の中における既燃ガスの量を変更する。これにより、燃焼室の中の、圧縮開始前の温度を低下させることが可能になる。このことは、燃焼騒音の発生を抑制する上で有効である。
 前記状態量設定デバイスは、前記エンジンに設けられかつ、前記コントローラーの制御信号を受けて、前記燃焼室の中に冷却した既燃ガスを導入するよう構成された外部EGRシステムを有し、前記コントローラーは、前記燃焼室の中に導入する前記既燃ガスの量を、前記エンジンの負荷に応じて変更するよう、前記外部EGRシステムに制御信号を出力する、としてもよい。
 ここで、既燃ガスの量の変更には、既燃ガスの導入を開始すること、及び、その導入量を変更することが含まれる。
 冷却した既燃ガスを導入すると、燃焼室の中の混合気が、希釈されると同時に冷却される。その結果、燃焼室の中の圧縮開始前の温度が下がる。そうすると、前述のように、燃焼騒音の発生を抑制する上で有利になる。
 前記状態量設定デバイスは、前記エンジンに設けられかつ、前記コントローラーの制御信号を受けて、吸気弁及び排気弁の少なくとも一方の開弁時期を変更するよう構成された可変動弁機構を有し、前記コントローラーは、前記吸気弁と前記排気弁とが共に開弁するオーバーラップ期間を、前記エンジンの負荷に応じて変更するよう、前記可変動弁機構に制御信号を出力する、としてもよい。
 ここで、オーバーラップ期間の変更には、吸気弁及び排気弁が共に開弁するオーバーラップ期間を設けること、及び、そのオーバーラップ期間の長さを変更することが含まれる。
 吸気弁及び排気弁が共に開弁するオーバーラップ期間を設けると、ガスの吹き抜けが発生し、燃焼室の中の残留ガスが掃気される。その結果、燃焼室の中の圧縮開始前の温度が下がる。そうすると、前述のように、燃焼騒音の発生を抑制する上で有利になる。
 前記状態量設定デバイスは、前記エンジンに取り付けられかつ、前記燃焼室の中に導入するガスを過給するよう構成された過給システムを有し、前記過給システムは、前記コントローラーの制御信号を受けて、前記エンジンの運転状態が前記所定の運転領域にあるときの所定負荷以下の領域においては過給を行わずかつ、前記所定負荷よりも高負荷の領域においては過給を行い、前記コントローラーは、前記エンジンの運転状態が過給を行わない領域ないし過給を行う領域にあるとき、前記点火タイミングを、前記エンジンの負荷が高くなるに従い進角させる、としてもよい。
 ここで、過給システムは、例えばエンジンによって駆動される機械式の過給機を含んで構成してもよい。
 前述のように、エンジンの負荷が高いときには、燃焼室の中の温度を低下させることによって、燃焼騒音の発生を抑制することが可能になる。
 ところが、エンジンの負荷がさらに高くなって燃料量が増えると、SICI燃焼においてSI燃焼による発熱も増えるため、未燃混合気の自己着火のタイミングが早まる。この場合、燃焼騒音が増大してしまう。
 過給を行うと、燃料量が増えることに対応して、燃焼室内に導入するガス量を増やすことができる。ガス量が増えると熱容量が増えるため、燃料量が増えても、SI燃焼による燃焼室の中の温度上昇を抑制することが可能になる。従って、過給を行うことにより、SICI燃焼において、未燃混合気の自己着火のタイミングが早まることを回避することができる。
 エンジンの負荷、ひいては燃料量の増大に対応して点火タイミングを進角させれば、SI燃焼による熱発生量と、CI燃焼による熱発生量とを共に増やすことが可能になる。
 前記コントローラーは、前記エンジンの運転状態が前記所定の運転領域よりも高負荷側の高負荷領域にあるとき、圧縮行程後期から膨張行程初期までの期間内に燃料を噴射するよう、前記インジェクタに制御信号を出力すると共に、点火された混合気が、自己着火による燃焼が発生せずに、前記火炎伝播により燃焼するよう、前記点火プラグに制御信号を出力し、前記コントローラーはまた、前記高負荷領域内において、前記点火タイミングを、燃料の噴射タイミングよりも遅角させる、としてもよい。
 エンジンの運転状態が高負荷領域にあるときは、燃焼騒音の発生を抑制しきれないため、混合気の燃焼形態として、SICI燃焼ではなく、SI燃焼を用いる。
 SI燃焼は、エンジンの負荷が高いときには、異常燃焼が生じ易くなる。そこで、高負荷領域内では、圧縮行程後期から膨張行程初期までの期間内に燃料を噴射すると共に、その噴射タイミングに対応した点火タイミングに設定する。そうすることで、混合気が反応する時間が短くなって、異常燃焼を回避することが可能になる。
 前記コントローラーは、前記エンジンの運転状態が前記所定の運転領域よりも低負荷側の低負荷領域にあるとき、点火された混合気が、自己着火による燃焼が発生せずに、前記火炎伝播により燃焼するよう、前記点火プラグに制御信号を出力し、前記コントローラーはまた、前記低負荷領域内において、前記点火タイミングを、前記エンジンの負荷が高くなるに従い遅角させる、としてもよい。
 エンジンの運転状態が低負荷領域にあるときは、CI燃焼が安定しないため、混合気の燃焼形態として、SICI燃焼ではなく、SI燃焼を用いる。
 SI燃焼は、エンジンの負荷が低いときには、燃焼室の中の温度が低下する分、負荷が高いときよりも不安定な燃焼となる。そこで、低負荷領域内の低負荷側では、高負荷側よりも点火のタイミングを進角させる。そうすることで、SI燃焼を安定させることが可能となる。
 その一方で、エンジンの負荷が高くなるに従って、燃焼室の中の温度が上昇し、SI燃焼の安定性が確保されると共に、点火プラグが火花を打ってから実際に燃焼が生じるまでの期間が短くなる。そこで、そうした期間が短くなった分、低負荷領域内の高負荷側では点火タイミングを遅角させる。これにより、SI燃焼が開始されるタイミングを、例えば圧縮上死点の後の所望のタイミングに調整することが可能になる。
 前記インジェクタは、前記所定の運転領域内において、前記燃焼室の中に略均質な混合気を形成するよう、前記コントローラーの制御信号を受けて、前記点火タイミングの前でかつ前記点火タイミングに近いタイミングで燃料を噴射する後段噴射と、前記後段噴射よりも前でかつ前記点火タイミングから離れたタイミングで燃料を噴射する前段噴射とを実行する、としてもよい。
 前段噴射によって噴射された燃料は、主にCI燃焼によって燃焼し、後段噴射によって噴射された燃料は、主にSI燃焼によって燃焼する。SICI燃焼において、点火プラグによる点火の安定化及び火炎伝播による燃焼の安定化と、自己着火による着火の安定化とが図られる。また、燃焼室の中に形成される混合気は、略均質であるため、未燃損失の低減による燃費の向上、及び、スモークの発生回避による排出ガス性能の向上を図ることができる。
 前記コントローラーは、前記状態量設定デバイス及び前記インジェクタに制御信号を出力することによって、前記燃焼室の中の状態を、前記燃焼室の中の全ガスと燃料との質量比に関係する指標としてのG/Fが18.5以上30以下でかつ、空気過剰率λが1.0±0.2に設定する、としてもよい。
 SI燃焼とCI燃焼とを組み合わせるSICI燃焼は、自己着火のタイミングを精度よくコントロールすることができる。つまり、圧縮開始前の燃焼室の中の温度にばらつきが生じても、SI燃焼の発熱量を調整することによって、圧縮開始前の温度のばらつきを吸収することができる。圧縮開始前の燃焼室の中の温度に応じて、例えば点火タイミングの調整によってSI燃焼の開始タイミングを調整すれば、所望のタイミングで、未燃混合気を自己着火させることができる。
 ところが、SICI燃焼において、自己着火のタイミングを精度よくコントロールするためには、点火タイミングを変更することに対応して、自己着火のタイミングが変化しなければならない。点火タイミングの変更に対して、自己着火のタイミングが変化する感度が高いことが好ましい。
 本願発明者らの検討によると、燃焼室の中の状態を、混合気のλが1.0±0.2でかつ、G/Fが18.5以上30以下とすれば、SI燃焼が安定化する結果、点火タイミングの変更に対して、自己着火のタイミングが変化することがわかった。つまり、SICI燃焼において、自己着火のタイミングを精度よくコントロールすることができる。
 また、燃焼室の中の状態を18.5≦G/Fにすることで、混合気の希釈率が高いため、エンジンの燃費性能が向上する。また、ノッキングの発生に伴う燃焼騒音が発生することを確実に回避することができる。
 さらに、λを1.0±0.2に設定することによって、エンジンの排気通路に取り付けた三元触媒により、排気ガスを浄化することが可能になる。
 従って、前記の構成によると、燃費性能を高くすると共に、排出ガス性能を良好にしながら、SI燃焼とCI燃焼とを組み合わせたSICI燃焼において、自己着火のタイミングを精度よくコントロールすることができる。
 SI燃焼によって自己着火のタイミングをコントロールすることにより、圧縮開始前の燃焼室の中の温度がばらついても、燃焼騒音を抑制しながら、燃費に最適なタイミングで、未燃混合気を自己着火させることができる。
 以上説明したように、前記の圧縮自己着火式エンジンの制御装置によると、燃焼室の中の温度を低下させると同時に点火タイミングを進角させることにより、燃焼騒音の発生を抑制しながら、SICI燃焼を行う運転領域を拡大することが可能になる。
図1は、圧縮自己着火式エンジンの構成を例示する図である。 図2は、燃焼室の構成を例示する断面図である。 図3は、圧縮自己着火式エンジンの制御装置の構成を例示するブロック図である。 図4は、エンジンの運転領域を例示する図である。 図5は、SI燃焼とCI燃焼とを組み合わせたSICI燃焼の熱発生率の変化を概念的に示す図である。 図6は、SICI燃焼におけるSI率の定義を説明するための図である。 図7は、SICI燃焼におけるSI率の定義を説明するための図である。 図8は、エンジンの負荷の高低に対する、SI率の変化、燃焼室の中の状態量の変化、吸気弁及び排気弁のオーバーラップ期間の変化、並びに、燃料の噴射タイミング及び点火タイミングの変化を説明する図である。 図9の上図は、非過給SICI燃焼において、エンジンの負荷が増大することに対する燃焼波形の変化を例示する図であり、図9の下図は、過給SICI燃焼において、エンジンの負荷が増大することに対する燃焼波形の変化を例示する図である。 図10は、ECUが実行するエンジンの制御の手順を示すフロー図である。 図11は、SI率の調整に係る制御概念を説明する図である。 図12は、エンジンが低負荷の所定回転数で運転しているときでかつ、内部EGRガスのみを燃焼室の中に導入しているときの、混合気のG/Fと、所望の乱流燃焼速度を実現するために必要な乱流エネルギとの関係を示す図である。 図13は、図12に示す必要乱流エネルギを実現する燃焼室の中の温度と、混合気G/Fとの関係を示す図である。 図14は、図12に示す必要乱流エネルギを実現する燃焼室の中の圧力と、混合気G/Fとの関係を示す図である。 図15は、SICI燃焼において、点火タイミングの変化に対する自己着火タイミングの変化比率を例示する、縦軸を混合気のEGR率とし、横軸を混合気のA/Fとした平面上におけるコンター図である。 図16は、エンジンの負荷の高低に対する、オーバーラップ期間の変化を例示する図である。 図17は、エンジンの負荷の高低に対する、混合気のEGR率の変化を例示する図である。 図18は、エンジンの負荷の高低に対する、点火タイミングの変化を例示する図である。
 以下、圧縮自己着火式エンジンの制御装置の実施形態を図面に基づいて詳細に説明する。以下の説明は、圧縮自己着火式エンジンの制御装置の一例である。図1は、圧縮自己着火式エンジンの構成を例示する図である。図2は、燃焼室の構成を例示する断面図である。尚、図1における吸気側は紙面左側であり、排気側は紙面右側である。図2における吸気側は紙面右側であり、排気側は紙面左側である。図3は、圧縮自己着火式エンジンの制御装置の構成を例示するブロック図である。
 エンジン1は、四輪の自動車に搭載される。エンジン1が運転することによって、自動車は走行する。エンジン1の燃料は、この構成例においてはガソリンである。燃料は、バイオエタノール等を含むガソリンであってもよい。エンジン1の燃料は、少なくともガソリンを含む液体燃料であれば、どのような燃料であってもよい。
 (エンジンの構成)
 エンジン1は、シリンダブロック12と、その上に載置されるシリンダヘッド13とを備えている。シリンダブロック12の内部に複数のシリンダ11が形成されている。図1及び図2では、1つのシリンダ11のみを示す。エンジン1は、多気筒エンジンである。
 各シリンダ11内には、ピストン3が摺動自在に内挿されている。ピストン3は、コネクティングロッド14を介してクランクシャフト15に連結されている。ピストン3は、シリンダ11及びシリンダヘッド13と共に燃焼室17を区画する。尚、「燃焼室」は、ピストン3が圧縮上死点に至ったときに形成される空間の意味に限定されない。「燃焼室」の語は広義で用いる場合がある。つまり、「燃焼室」は、ピストン3の位置に関わらず、ピストン3、シリンダ11及びシリンダヘッド13によって形成される空間を意味する場合がある。
 ピストン3の上面は平坦面である。ピストン3の上面には、キャビティ31が形成されている。キャビティ31は、ピストン3の上面から凹陥している。キャビティ31は、浅皿形状を有している。キャビティ31は、ピストン3が圧縮上死点付近に位置するときに、後述するインジェクタ6に向かい合う。
 キャビティ31は、凸部311を有している。凸部311は、シリンダ11の中心軸X上に設けられている。凸部311は、略円錐状である。凸部311は、キャビティ31の底部から、シリンダ11の中心軸Xに沿って上向きに伸びている。凸部311の上端は、キャビティ31の上面とほぼ同じ高さである。
 キャビティ31はまた、凸部311の周囲に設けられた凹陥部312を有している。凹陥部312は、凸部311の全周を囲むように設けられている。キャビティ31は、中心軸Xに対して対称な形状を有している。
 凹陥部312の周側面は、キャビティ31の底面からキャビティ31の開口に向かって中心軸Xに対して傾いている。凹陥部312におけるキャビティ31の内径は、キャビティ31の底部からキャビティ31の開口に向かって次第に拡大する。
 シリンダヘッド13の下面、つまり、燃焼室17の天井面は、図2に示すように、傾斜面1311と、傾斜面1312とによって構成されている。傾斜面1311は、吸気側から中心軸Xに向かって上り勾配となっている。傾斜面1312は、排気側から中心軸Xに向かって上り勾配となっている。燃焼室17の天井面は、いわゆるペントルーフ形状である。
 尚、燃焼室17の形状は、図2に例示する形状に限定されるものではない。例えばキャビティ31の形状、ピストン3の上面の形状、及び、燃焼室17の天井面の形状等は、適宜変更することが可能である。
 エンジン1の幾何学的圧縮比は、理論熱効率の向上や、後述するCI(Compression Ignition)燃焼の安定化を目的として高く設定されている。具体的に、エンジン1の幾何学的圧縮比は、17以上である。幾何学的圧縮比は、例えば18としてもよい。幾何学的圧縮比は、17以上20以下の範囲で、適宜設定すればよい。
 シリンダヘッド13には、シリンダ11毎に、2つの吸気ポート18が形成されている。吸気ポート18は、燃焼室17に連通している。吸気ポート18には、吸気弁21が配設されている。吸気弁21は、燃焼室17と吸気ポート18との間を開閉する。吸気弁21は吸気動弁機構によって、所定のタイミングで開閉する。吸気動弁機構は、この構成例では、図3に示すように、可変動弁機構である吸気電動VVT(Variable Valve Timing)23を有している。吸気電動VVT23は、吸気カムシャフトの回転位相を所定の角度範囲内で連続的に変更するよう構成されている。それによって、吸気弁21の開弁時期及び閉弁時期は、連続的に変化する。尚、吸気動弁機構は、電動VVTに代えて、液圧式のVVTを有していてもよい。
 シリンダヘッド13にはまた、シリンダ11毎に、2つの排気ポート19が形成されている。排気ポート19は、燃焼室17に連通している。排気ポート19には、排気弁22が配設されている。排気弁22は、燃焼室17と排気ポート19との間を開閉する。排気弁22は排気動弁機構によって、所定のタイミングで開閉する。排気動弁機構は、この構成例では、図3に示すように、可変動弁機構である排気電動VVT24を有している。排気電動VVT24は、排気カムシャフトの回転位相を所定の角度範囲内で連続的に変更するよう構成されている。それによって、排気弁22の開弁時期及び閉弁時期は、連続的に変化する。尚、排気動弁機構は、電動VVTに代えて、液圧式のVVTを有していてもよい。
 詳細は後述するが、このエンジン1は、吸気電動VVT23及び排気電動VVT24によって、吸気弁21の開弁時期と排気弁22の閉弁時期とに係るオーバーラップ期間の長さを調整する。このことによって、燃焼室17の中の残留ガスを掃気したり、燃焼室17の中に熱い既燃ガスを閉じ込めたり(つまり、内部EGR(Exhaust Gas Recirculation)ガスを燃焼室17の中に導入したり)する。この構成例においては、吸気電動VVT23及び排気電動VVT24が、状態量設定デバイスの一つとしての、内部EGRシステムを構成している。尚、内部EGRシステムは、VVTによって構成されるとは限らない。
 シリンダヘッド13には、シリンダ11毎に、インジェクタ6が取り付けられている。インジェクタ6は、燃焼室17の中に燃料を直接噴射するよう構成されている。インジェクタ6は、吸気側の傾斜面1311と排気側の傾斜面1312とが交差するペントルーフの谷部に配設されている。インジェクタ6は、図2に示すように、その噴射軸心が、中心軸Xに沿うように配設されている。インジェクタ6の噴射軸心と、キャビティ31の凸部311の位置とは一致している。インジェクタ6は、キャビティ31に対向している。尚、インジェクタ6の噴射軸心は、シリンダ11の中心軸Xとずれていてもよい。その場合も、インジェクタ6の噴射軸心と、キャビティ31の凸部311の位置とは一致していることが望ましい。
 インジェクタ6は、詳細な図示は省略するが、複数の噴口を有する多噴口型の燃料噴射弁によって構成されている。インジェクタ6は、図2に矢印で示すように、燃料噴霧が、燃焼室17の中央から放射状に広がるように燃料を噴射する。
 後述するように、インジェクタ6は、ピストン3が圧縮上死点付近に位置するタイミングで燃料を噴射する場合がある。その場合、インジェクタ6が燃料を噴射すると、燃料噴霧は、新気と混ざり合いながら、キャビティ31の凸部311に沿って下向きに流れると共に、凹陥部312の底面及び周側面に沿って、燃焼室17の中央から、径方向の外方に放射状に広がって流れる。その後、混合気はキャビティ31の開口に至り、吸気側の傾斜面1311、及び、排気側の傾斜面1312に沿って、径方向の外方から、燃焼室17の中央に向かって流れる。
 尚、インジェクタ6は、多噴口型のインジェクタに限らない。インジェクタ6は、外開弁タイプのインジェクタを採用してもよい。
 インジェクタ6には、燃料供給システム61が接続されている。燃料供給システム61は、燃料を貯留するよう構成された燃料タンク63と、燃料タンク63とインジェクタ6とを互いに連結する燃料供給路62とを備えている。燃料供給路62には、燃料ポンプ65とコモンレール64とが介設している。燃料ポンプ65は、コモンレール64に燃料を圧送する。燃料ポンプ65は、この構成例においては、クランクシャフト15によって駆動されるプランジャー式のポンプである。コモンレール64は、燃料ポンプ65から圧送された燃料を、高い燃料圧力で蓄えるよう構成されている。インジェクタ6が開弁すると、コモンレール64に蓄えられていた燃料が、インジェクタ6の噴口から燃焼室17の中に噴射される。燃料供給システム61は、30MPa以上の高い圧力の燃料を、インジェクタ6に供給することが可能に構成されている。燃料供給システム61の最高燃料圧力は、例えば120MPa程度にしてもよい。インジェクタ6に供給する燃料の圧力は、エンジン1の運転状態に応じて変更してもよい。尚、燃料供給システム61の構成は、前記の構成に限定されない。
 シリンダヘッド13には、シリンダ11毎に、点火プラグ25が取り付けられている。点火プラグ25は、燃焼室17の中の混合気に強制的に点火をする。点火プラグ25は、この構成例では、シリンダ11の中心軸Xを挟んだ吸気側に配設されている。点火プラグ25は、2つの吸気ポート18の間に位置している。点火プラグ25は、上方から下方に向かって、燃焼室17の中央に近づく方向に傾いて、シリンダヘッド13に取り付けられている。点火プラグ25の電極は、図2に示すように、燃焼室17の中に臨んでかつ、燃焼室17の天井面の付近に位置している。
 エンジン1の一側面には吸気通路40が接続されている。吸気通路40は、各シリンダ11の吸気ポート18に連通している。吸気通路40は、燃焼室17に導入するガスが流れる通路である。吸気通路40の上流端部には、新気を濾過するエアクリーナー41が配設されている。吸気通路40の下流端近傍には、サージタンク42が配設されている。サージタンク42よりも下流の吸気通路40は、詳細な図示は省略するが、シリンダ11毎に分岐する独立通路を構成している。独立通路の下流端が、各シリンダ11の吸気ポート18に接続されている。
 吸気通路40におけるエアクリーナー41とサージタンク42との間には、スロットル弁43が配設されている。スロットル弁43は、弁の開度を調整することによって、燃焼室17の中への新気の導入量を調整するよう構成されている。スロットル弁43は、状態量設定デバイスの一つを構成している。
 吸気通路40にはまた、スロットル弁43の下流に、過給機44が配設されている。過給機44は、燃焼室17に導入するガスを過給するよう構成されている。この構成例において、過給機44は、エンジン1によって駆動される機械式の過給機である。機械式の過給機44は、例えばルーツ式としてもよい。機械式の過給機44の構成はどのような構成であってもよい。機械式の過給機44は、リショルム式や遠心式であってもよい。
 過給機44とエンジン1との間には、電磁クラッチ45が介設している。電磁クラッチ45は、過給機44とエンジン1との間で、エンジン1から過給機44へ駆動力を伝達したり、駆動力の伝達を遮断したりする。後述するように、ECU10が電磁クラッチ45の遮断及び接続を切り替えることによって、過給機44はオンとオフとが切り替わる。つまり、このエンジン1は、過給機44が、燃焼室17に導入するガスを過給することと、過給機44が、燃焼室17に導入するガスを過給しないこととを切り替えることができるよう構成されている。
 吸気通路40における過給機44の下流には、インタークーラー46が配設されている。インタークーラー46は、過給機44において圧縮されたガスを冷却するよう構成されている。インタークーラー46は、例えば水冷式に構成すればよい。
 吸気通路40には、バイパス通路47が接続されている。バイパス通路47は、過給機44及びインタークーラー46をバイパスするよう、吸気通路40における過給機44の上流部とインタークーラー46の下流部とを互いに接続する。バイパス通路47には、エアバイパス弁48が配設されている。エアバイパス弁48は、バイパス通路47を流れるガスの流量を調整する。
 過給機44をオフにしたとき(つまり、電磁クラッチ45を遮断したとき)には、エアバイパス弁48を全開にする。これにより、吸気通路40を流れるガスは、過給機44をバイパスして、エンジン1の燃焼室17に導入される。エンジン1は、非過給、つまり自然吸気の状態で運転する。
 過給機44をオンにしたとき(つまり、電磁クラッチ45を接続したとき)には、過給機44を通過したガスの一部は、バイパス通路47を通って過給機の上流に逆流する。エアバイパス弁48の開度を調整することによって、逆流量を調整することができるから、燃焼室17に導入するガスの過給圧を調整することができる。この構成例においては、過給機44とバイパス通路47とエアバイパス弁48とによって、過給システム49が構成されている。エアバイパス弁48は、状態量設定デバイスの一つを構成している。
 エンジン1の他側面には、排気通路50が接続されている。排気通路50は、各シリンダ11の排気ポート19に連通している。排気通路50は、燃焼室17から排出された排気ガスが流れる通路である。排気通路50の上流部分は、詳細な図示は省略するが、シリンダ11毎に分岐する独立通路を構成している。独立通路の上流端が、各シリンダ11の排気ポート19に接続されている。排気通路50には、1つ以上の触媒コンバーター51を有する排気ガス浄化システムが配設されている。触媒コンバーター51は、三元触媒を含んで構成されている。尚、排気ガス浄化システムは、三元触媒のみを含むものに限らない。
 吸気通路40と排気通路50との間には、外部EGRシステムを構成するEGR通路52が接続されている。EGR通路52は、既燃ガスの一部を吸気通路40に還流させるための通路である。EGR通路52の上流端は、排気通路50における触媒コンバーター51の下流に接続されている。EGR通路52の下流端は、吸気通路40における過給機44の上流に接続されている。
 EGR通路52には、水冷式のEGRクーラー53が配設されている。EGRクーラー53は、既燃ガスを冷却するよう構成されている。EGR通路52にはまた、EGR弁54が配設されている。EGR弁54は、EGR通路52を流れる既燃ガスの流量を調整するよう構成されている。EGR弁54の開度を調整することによって、冷却した既燃ガス、つまり外部EGRガスの還流量を調整することができる。
 この構成例において、EGRシステム55は、EGR通路52及びEGR弁54を含んで構成されている外部EGRシステムと、前述した吸気電動VVT23及び排気電動VVT24を含んで構成されている内部EGRシステムとによって構成されている。EGR弁54はまた、状態量設定デバイスの一つを構成している。
 圧縮自己着火式エンジンの制御装置は、エンジン1を運転するためのECU(Engine Control Unit)10を備えている。ECU10は、周知のマイクロコンピュータをベースとするコントローラーであって、プログラムを実行する中央演算処理装置(Central Processing Unit:CPU)と、例えばRAM(Random Access Memory)やROM(Read Only Memory)により構成されてプログラム及びデータを格納するメモリと、電気信号の入出力をする入出力バスと、を備えている。ECU10は、コントローラーの一例である。
 ECU10には、図1及び図3に示すように、各種のセンサSW1~SW16が接続されている。センサSW1~SW16は、検知信号をECU10に出力する。センサには、以下のセンサが含まれる。
 すなわち、吸気通路40におけるエアクリーナー41の下流に配置されかつ、吸気通路40を流れる新気の流量を検知するエアフローセンサSW1、及び、新気の温度を検知する第1吸気温度センサSW2、吸気通路40におけるEGR通路52の接続位置よりも下流でかつ、過給機44の上流に配置されかつ、過給機44に流入するガスの圧力を検知する第1圧力センサSW3、吸気通路40における過給機44の下流でかつ、バイパス通路47の接続位置よりも上流に配置されかつ、過給機44から流出したガスの温度を検知する第2吸気温度センサSW4、サージタンク42に取り付けられかつ、過給機44の下流のガスの圧力を検知する第2圧力センサSW5、各シリンダ11に対応してシリンダヘッド13に取り付けられかつ、各燃焼室17内の圧力を検知する指圧センサSW6、排気通路50に配置されかつ、燃焼室17から排出した排気ガスの温度を検知する排気温度センサSW7、排気通路50における触媒コンバーター51の上流に配置されかつ、排気ガス中の酸素濃度を検知するリニアOセンサSW8、排気通路50における触媒コンバーター51の下流に配置されかつ、排気ガス中の酸素濃度を検知するラムダOセンサSW9、エンジン1に取り付けられかつ、冷却水の温度を検知する水温センサSW10、エンジン1に取り付けられかつ、クランクシャフト15の回転角を検知するクランク角センサSW11、アクセルペダル機構に取り付けられかつ、アクセルペダルの操作量に対応したアクセル開度を検知するアクセル開度センサSW12、エンジン1に取り付けられかつ、吸気カムシャフトの回転角を検知する吸気カム角センサSW13、エンジン1に取り付けられかつ、排気カムシャフトの回転角を検知する排気カム角センサSW14、EGR通路52に配置されかつ、EGR弁54の上流及び下流の差圧を検知するEGR差圧センサSW15、並びに、燃料供給システム61のコモンレール64に取り付けられかつ、インジェクタ6に供給する燃料の圧力を検知する燃圧センサSW16である。
 ECU10は、これらの検知信号に基づいて、エンジン1の運転状態を判断すると共に、各デバイスの制御量を計算する。ECU10は、計算をした制御量に係る制御信号を、インジェクタ6、点火プラグ25、吸気電動VVT23、排気電動VVT24、燃料供給システム61、スロットル弁43、EGR弁54、過給機44の電磁クラッチ45、及び、エアバイパス弁48に出力する。例えば、ECU10は、第1圧力センサSW3及び第2圧力センサSW5の検知信号から得られる過給機44の前後差圧に基づいてエアバイパス弁48の開度を調整することにより、過給圧を調整する。また、ECU10は、EGR差圧センサSW15の検知信号から得られるEGR弁54の前後差圧に基づいてEGR弁54の開度を調整することにより、燃焼室17の中に導入する外部EGRガス量を調整する。ECU10によるエンジン1の制御の詳細は、後述する。
 (エンジンの運転領域)
 図4は、エンジン1の運転領域を例示している。エンジン1の運転領域は、負荷の高低に対し、大きく3つの領域に分けられている。具体的に、3つの領域は、アイドル運転を含む低負荷領域(A)、全開負荷を含む高負荷領域(C)、及び、低負荷領域(A)と高負荷領域(C)との間の中負荷領域(B)である。エンジン1は、燃費の向上及び排出ガス性能の向上を主目的として、中負荷領域において、圧縮自己着火による燃焼を行う。以下、低負荷領域、中負荷領域、及び、高負荷領域の各領域における燃焼形態について、順に説明をする。
 (低負荷領域)
 エンジン1の運転状態が低負荷領域にあるときには、燃料の噴射量が少ない。そのため、燃焼室17において混合気が燃焼したときに発生する熱量が少なく、燃焼室17の温度が低くなる。また、排気ガスの温度も低くなるため、後述するように内部EGRガスを燃焼室17の中に導入しても、燃焼室17の温度が、自己着火が安定して可能になる程度まで高まらない。エンジン1の運転状態が低負荷領域にあるときの燃焼形態は、点火プラグ25が燃焼室17の中の混合気に点火を行うことによって混合気を火炎伝播により燃焼させるSI(Spark Ignition)燃焼である。以下、低負荷領域における燃焼形態を、低負荷SI燃焼と呼ぶ場合がある。
 エンジン1の運転状態が低負荷領域にあるときには、混合気の空燃比(A/F)は、理論空燃比である(A/F=14.7)。三元触媒が、燃焼室17から排出された排出ガスを浄化することによって、エンジン1の排出ガス性能は良好になる。混合気のA/Fは、三元触媒の浄化ウインドウの中に収まるようにすればよい。従って、混合気の空気過剰率λは、1.0±0.2とすればよい。
 エンジン1の燃費性能を向上させるために、エンジン1の運転状態が低負荷領域にあるときに、EGRシステム55は、燃焼室17の中にEGRガスを導入する。混合気のG/F、つまり、燃焼室17の中の全ガスと燃料との質量比は18.5以上30以下に設定される。混合気は、EGRリーンである。混合気の希釈率は高い。混合気のG/Fを、例えば25にすれば、低負荷領域において、混合気が自己着火に至ることなく、SI燃焼を安定して行うことができる。低負荷領域において、混合気のG/Fは、エンジン1の負荷の高低に関わらず一定に維持する。こうすることで、低負荷領域の全域において、SI燃焼は、安定化する。また、エンジン1の燃費が向上すると共に、排出ガス性能が良好になる。
 エンジン1の運転状態が低負荷領域にあるときには、燃料量が少ないため、混合気のλを1.0±0.2にしかつ、G/Fを18.5以上30以下にするには、燃焼室17の中に導入するガスの充填量を100%よりも少なくしなければならない。具体的に、エンジン1は、スロットル弁43の開度を調整するスロットリング、及び/又は、吸気弁21の閉弁時期を吸気下死点以降に遅らせるミラーサイクルを実行する。
 尚、低負荷領域内における、低負荷低回転領域においては、ガスの充填量をさらに少なくすることによって、混合気の燃焼温度及び排気ガスの温度を高くするようにしてもよい。こうすると、触媒コンバーター51を活性状態に維持する上で有利になる。
 (中負荷領域)
 エンジン1の運転状態が中負荷領域にあるときには、燃料の噴射量が多くなる。燃焼室17の温度が高くなるため、自己着火を安定して行うことが可能になる。燃費の向上及び排出ガス性能の向上を図るため、エンジン1は、中負荷領域において、CI燃焼を行う。
 自己着火による燃焼は、圧縮開始前の燃焼室17の中の温度がばらつくと、自己着火のタイミングが大きく変化する。そこで、エンジン1は、中負荷領域において、SI燃焼とCI燃焼とを組み合わせたSICI燃焼を行う。SICI燃焼は、点火プラグ25が、燃焼室17の中の混合気に強制的に点火をすることによって、混合気が火炎伝播により燃焼すると共に、SI燃焼の発熱により燃焼室17の中の温度が高くなることによって、未燃混合気が自己着火により燃焼する。SI燃焼の発熱量を調整することによって、圧縮開始前の燃焼室17の中の温度のばらつきを吸収することができる。圧縮開始前の燃焼室17の中の温度がばらついていても、例えば点火タイミングの調整によってSI燃焼の開始タイミングを調整すれば、自己着火のタイミングをコントロールすることができる。
 SICI燃焼において、自己着火のタイミングを精度よくコントロールするためには、点火タイミングを変更することに対応して、自己着火のタイミングが変化しなければならない。点火タイミングの変更に対して、自己着火のタイミングが変化する感度が高いことが好ましい。
 本願発明者らの検討によると、混合気のλが1.0±0.2でかつ、混合気のG/Fが18.5以上30以下であれば、点火タイミングの変更に対して、自己着火のタイミングが変化することがわかった。そこで、エンジン1の運転状態が中負荷領域にあるときには、エンジン1は、燃焼室17の中の状態を、混合気のλが1.0±0.2でかつ、混合気のG/Fが18.5以上30以下にする。
 自己着火のタイミングを精度よくコントロールすることによって、エンジン1の運転状態が中負荷領域にあるときに、燃焼騒音の増大を回避することができる。また、混合気の希釈率をできるだけ高くしてCI燃焼を行うことにより、エンジン1の燃費性能を高くすることが可能になる。さらに、混合気のλを1.0±0.2に設定することによって、三元触媒により、排気ガスを浄化することが可能になるため、エンジン1の排出ガス性能が良好になる。
 前述したように、低負荷領域においては、混合気のG/Fを18.5以上30以下(例えば25)にしかつ、混合気のλを1.0±0.2にしている。エンジン1の運転状態が低負荷領域にあるときと、中負荷領域にあるときとの間において、燃焼室17の中の状態量が大きく変動しない。従って、エンジン1の負荷が変更することに対する、エンジン1の制御のロバスト性が高まる。
 エンジン1の運転状態が中負荷領域にあるときには、低負荷領域にあるときとは異なり、燃料量が多くなるため、燃焼室17の中に導入するガスの充填量を調整する必要がない。スロットル弁43の開度は全開である。
 エンジン1の負荷が高まり、燃料量がさらに増えたときに、混合気のλを1.0±0.2にしかつ、混合気のG/Fを18.5以上30以下にするには、自然吸気の状態であれば、燃焼室17の中に導入するガス量が不足する。そこで、中負荷領域における所定負荷よりも負荷の高い領域においては、過給機44が、燃焼室17の中に導入するガスの過給を行う。中負荷領域(B)は、所定負荷よりも高負荷の領域であって、過給を行う第1中負荷領域(B1)と、所定負荷以下の領域であって、過給を行わない第2中負荷領域(B2)とに分けられる。所定負荷は、例えば1/2負荷である。第2中負荷領域は、第1中負荷領域よりも負荷の低い領域である。以下、第1中負荷領域における燃焼形態を、過給SICI燃焼と呼び、第2中負荷領域における燃焼形態を、非過給SICI燃焼と呼ぶ場合がある。
 過給を行わない第2中負荷領域においては、燃料量が増えるに従い、燃焼室17の中に導入する新気が増える一方、EGRガスは減る。混合気のG/Fは、エンジン1の負荷が高くなると小さくなる。スロットル弁43の開度を全開にしているため、エンジン1は、燃焼室17の中に導入するEGRガスの量を調整することにより、燃焼室17の中に導入する新気の量を調整する。第2中負荷領域において燃焼室17の中の状態量は、例えば混合気のλは1.0で略一定になる一方、混合気のG/Fは25~28の範囲で変更される。
 これに対し、過給を行う第1中負荷領域において、エンジン1は、燃料量が増えるに従い、燃焼室17の中に導入する新気及びEGRガスを共に増やす。混合気のG/Fは、エンジン1の負荷が高くなっても一定である。第1中負荷領域において燃焼室17の中の状態量は、例えば混合気のλは1.0で略一定になると共に、混合気のG/Fは25で一定である。
 (高負荷領域)
 エンジン1の運転状態が高負荷領域にあるときには、燃料の噴射量が多い。そのため、SICI燃焼を行っても、燃焼騒音を抑制することが困難になる。また、燃焼室17の中の温度が高くなるため、CI燃焼を行おうとしても、過早着火やノッキングといった異常燃焼が生じやすい。そのため、エンジン1の運転状態が高負荷領域にあるときの燃焼形態は、SI燃焼である。以下、高負荷領域における燃焼形態を、高負荷SI燃焼と呼ぶ場合がある。
 エンジン1の運転状態が高負荷領域にあるときに、混合気のλは1.0±0.2である。また、混合気のG/Fは、基本的には、18.5以上30以下に設定される。高負荷領域においては、スロットル弁43の開度は全開であり、過給機44は過給を行う。
 高負荷領域において、エンジン1は、負荷が高まるに従いEGRガスの量を減らす。混合気のG/Fは、エンジン1の負荷が高くなると、小さくなる。EGRガスの量を減らした分、燃焼室17の中に導入する新気の量が増えるから、燃料量を増やすことができる。エンジン1の最高出力を高くする上で有利になる。全開負荷付近において、混合気のG/Fは、17程度にしてもよい。
 混合気のG/Fは、高負荷領域において、例えば17~25の範囲で変更してもよい。従って、低負荷領域、中負荷領域及び高負荷領域を含むエンジン1の運転領域の全体で、混合気のG/Fは、17~30の範囲で変更してもよい。
 エンジン1の運転状態が高負荷領域にあるときと、中負荷領域にあるときとの間において、燃焼室17の中の状態量が大きく変動しない。エンジン1の負荷が変更することに対する、エンジン1の制御のロバスト性が高まる。
 前述の通り、エンジン1は、高負荷領域においては、SI燃焼を行うが、幾何学的圧縮比が高いこと等に起因して、過早着火やノッキングといった異常燃焼が生じやすくなるという問題がある。
 そこで、エンジン1は、高負荷領域において、燃料噴射の形態を工夫することにより異常燃焼を回避するよう構成されている。具体的に、ECU10は、30MPa以上の高い燃料圧力でかつ、圧縮行程後期から膨張行程初期までの期間(以下、この期間をリタード期間と呼ぶ)内のタイミングで、燃焼室17内に燃料を噴射するよう、燃料供給システム61及びインジェクタ6に制御信号を出力する。ECU10はまた、燃料の噴射後、圧縮上死点付近のタイミングで、混合気に点火を行うよう、点火プラグ25に制御信号を出力する。尚、以下においては、高い燃料圧力でかつ、リタード期間内のタイミングで、燃焼室17の中に燃料を噴射することを、高圧リタード噴射と呼ぶ。
 高圧リタード噴射は、混合気が反応する時間を短くすることによって、異常燃焼を回避する。すなわち、混合気が反応する時間は、(1)インジェクタ6が燃料を噴射する期間(つまり、噴射期間)と、(2)燃料の噴射が終了した後、点火プラグ25の周りに可燃混合気が形成されるまでの期間(つまり、混合気形成期間)と、(3)点火によって開始されたSI燃焼が終了するまでの期間((3)燃焼期間)と、を足し合わせた時間である。
 高い燃料圧力で、燃焼室17の中に燃料を噴射すると、噴射期間及び混合気形成期間は、それぞれ短くなる。噴射期間及び混合気形成期間が短くなると、燃料の噴射を開始するタイミングを点火タイミングに近づけることが可能になる。高圧リタード噴射は、高い圧力でかつ、燃焼室17の中に燃料を噴射するから、圧縮行程後期から膨張行程初期までのリタード期間内のタイミングで、燃料噴射を行う。
 高い燃料圧力で燃焼室17の中に燃料を噴射すると、燃焼室17の中の乱流エネルギが高くなる。燃料噴射のタイミングを圧縮上死点に近づけると、燃焼室17の中の乱流エネルギが高い状態でSI燃焼を開始することができる。その結果、燃焼期間が短くなる。
 高圧リタード噴射は、噴射期間、混合気形成期間、及び、燃焼期間をそれぞれ短くすることができる。吸気行程中に燃焼室17の中に燃料を噴射する場合と比較して、高圧リタード噴射は、混合気が反応する時間を大幅に短くすることができる。高圧リタード噴射は、混合気が反応する時間が短くなるから、異常燃焼を回避することが可能になる。
 エンジン制御の技術分野においては、異常燃焼を回避するために、点火タイミングを遅角することが、従来から行われている。しかしながら、点火タイミングを遅らせると、燃費性能は低下する。高圧リタード噴射は、点火タイミングを遅角させなくてもよい。高圧リタード噴射を利用することによって、燃費性能は向上する。
 燃料圧力を、例えば30MPa以上にすれば、噴射期間、混合気形成期間及び燃焼期間を効果的に短縮することができる。尚、燃料圧力は、燃料の性状に応じて適宜設定するのが好ましい。燃料圧力の上限値は、一例として、120MPaとしてもよい。
 ここで、エンジン1の回転数が低いときには、クランク角度が同一角度だけ変化するときの時間が長いため、高圧リタード噴射によって混合気の反応可能時間を短縮することは、異常燃焼を回避する上で、特に有効である。一方、エンジン1の回転数が高くなると、クランク角度が同一角度だけ変化するときの時間が短くなる。このため、混合気の反応可能時間を短縮することは、異常燃焼を回避する上で、それほど有効ではない。
 高圧リタード噴射はまた、圧縮上死点付近になって初めて、燃焼室17の中に燃料を噴射するため、圧縮行程において、燃焼室17の中では、燃料を含まないガス、言い換えると比熱比の高いガスが圧縮される。エンジン1の回転数が高いときに、高圧リタード噴射を行うと、圧縮上死点における燃焼室17の中の温度、つまり、圧縮端温度が高くなってしまう。圧縮端温度が高くなることによって、ノッキング等の異常燃焼を招く恐れがある。
 そこで、このエンジン1は、高負荷領域(C)を、低回転側の第1高負荷領域(C1)と、第1高負荷領域(C1)よりも回転数の高い第2高負荷領域(C2)とに分けている。第1高負荷領域は、高負荷領域内を、低回転、中回転及び高回転の3つの領域に三等分したときの低回転及び中回転領域を含むとしてもよい。第2高負荷領域は、高負荷領域内を、低回転、中回転及び高回転の3つの領域に三等分したときの高回転領域を含むとしてもよい。
 第1高負荷領域において、インジェクタ6は、ECU10の制御信号を受けて、前述した高圧リタード噴射を行う。第2高負荷領域において、インジェクタ6は、ECU10の制御信号を受けて、吸気行程中の所定タイミングで燃料噴射を行う。吸気行程中に行う燃料噴射は、高い燃料圧力が不要である。ECU10は、燃料圧力が、高圧リタード噴射の燃料圧力よりも低くなるよう(例えば燃料圧力が40MPa未満となるよう)、燃料供給システム61に制御信号を出力する。燃料圧力を下げることによって、エンジン1の機械抵抗損失が低下するから、燃費の向上に有利になる。
 吸気行程中に燃焼室17の中に燃料を噴射することによって、燃焼室17の中のガスの比熱比が下がるから、圧縮端温度が低くなる。圧縮端温度が低くなるから、エンジン1は、異常燃焼を回避することができる。異常燃焼を回避するために、点火タイミングを遅角する必要がないため、第2高負荷領域において、点火プラグ25は、第1高負荷領域と同様に、圧縮上死点付近のタイミングで、混合気に点火する。
 第1高負荷領域においては、高圧リタード噴射によって、混合気が自己着火に至らないため、エンジン1は、安定したSI燃焼を行うことができる。第2高負荷領域においては、吸気行程中の燃料噴射によって、混合気が自己着火に至らないため、エンジン1は、安定したSI燃焼を行うことができる。
 (自己着火のタイミングの変化感度)
 ここで、前述したSICI燃焼における、点火タイミングの変更に対する自己着火のタイミングの変化感度について説明をする。本願発明者らの検討によると、SICI燃焼において、点火タイミングの変更に対して自己着火のタイミングが変化するためには、混合気が自己着火するまでの間に、火炎伝播によるSI燃焼が安定的に行われる必要があることがわかった。
 SI燃焼の安定性に関係する因子の一つは乱流燃焼速度である。乱流燃焼速度が高いと、SI燃焼は安定化する。乱流燃焼速度は、混合気の空燃比(又は空気過剰率λ)、混合気のEGR(Exhaust Gas Recirculation)率(つまり、希釈率)、燃焼室17の中の温度及び圧力、及び、燃焼室17の中の乱流エネルギ等の影響を受ける。
 本願発明者らは、SI燃焼の安定性確保に必要な乱流燃焼速度を実現するための、混合気の空気過剰率λ、混合気の希釈率(ここでは、燃焼室17の中の全ガスと燃料との質量比であるG/F)、燃焼室17の中の温度及び圧力、及び、燃焼室17の中の乱流エネルギについて、シミュレーションによる検討を行った。このシミュレーションの条件は、エンジン1が低負荷で運転しておりかつ、内部EGRガスのみを燃焼室17の中に導入することによって、燃焼室17の中の温度をできるだけ高くしている条件である。
 ノッキングの発生に伴う大きな燃焼騒音を確実に回避する観点から、混合気のG/Fの下限は、18.5である。また、このようなリーン空燃比でありかつ、NOxの排出を防止すべく三元触媒を利用するのであれば、混合気の空気過剰率λは1.0±0.2である。
 エンジン1の燃費性能を高める観点からは、混合気のG/Fは大きい方が好ましい。そこで、本願発明者らは、図12に示すように、混合気のG/Fと、所望の乱流燃焼速度を実現するために必要な乱流エネルギとの関係を検討した。尚、エンジン1は、回転数が2000rpmでかつ、低負荷運転をしている。また、燃焼室17の中に内部EGRガスを導入している。吸気弁21の閉弁時期は91°ABDCである。エンジン1の幾何学的圧縮比は18である。
 図12によると、混合気のλが1.2のときのG/Fの特性線は、30付近で飽和する飽和曲線のようになる。一方、エンジン1の回転数が2000rpmのときに、乱流エネルギは40m/sを実現することが可能である。40m/sを超える乱流エネルギを実現したとしても、混合気のG/Fは、30よりもほとんど大きくならないことが、新たにわかった。図12によると、SI燃焼の安定性を確保する上で、混合気のG/Fは30が上限である。
 以上の検討から、混合気のG/Fは18.5以上30以下に設定する必要がある。図12から、混合気のλが1.0又は1.2でかつ、G/Fの範囲が18.5以上30以下のときに、SI燃焼の安定化のために必要な乱流エネルギの範囲は17~40m/sである。
 図13は、図12と同条件において、所望の乱流燃焼速度を実現するために必要な燃焼室17の中の、点火タイミングにおける温度と、混合気のG/Fと、の関係を示している。混合気のλが1.0又は1.2でかつ、G/Fの範囲が18.5以上30以下のときに、点火タイミングにおける燃焼室17の中の必要温度TIg(K)は、570~800Kである。
 図14は、図12と同条件において、所望の乱流燃焼速度を実現するために必要な燃焼室17の中の、点火タイミングにおける圧力と、混合気のG/Fと、の関係を示している。混合気のλが1.0又は1.2でかつ、G/Fの範囲が18.5以上30以下のときに、点火タイミングにおける燃焼室17の中の必要圧力PIg(kPa)は、400~920kPaである。
 尚、図示は省略するが、エンジン1の幾何学的圧縮比を14~20の範囲において変更しても、混合気のG/Fと、所望の乱流燃焼速度を実現するために必要な乱流エネルギとの関係に対しては、ほとんど影響がなかった。
 図15は、実験によって得られた、点火タイミングの変化に対する自己着火タイミングの変化比率(=(自己着火タイミングのクランク角変化)/(点火タイミングのクランク角変化))を示すコンター図である。変化比率は、点火タイミングをクランク角において1°だけ変更したときの、自己着火タイミングのクランク角変化の大きさを示す。変化比率の値が大きいほど、点火タイミングの変更に対する自己着火のタイミングの変化感度が高く、変化比率の値が小さいほど、点火タイミングの変更に対する自己着火のタイミングの変化感度が低いことを示す。
 図15の縦軸は、混合気のEGR率、横軸は混合気のA/Fである。図の右上ほど、点火タイミングの変更に対する自己着火のタイミングの変化感度が低く、図の左下ほど、自己着火のタイミングの変化感度が高い。図15から、混合気のλが1.0±0.2でかつ、G/Fの範囲が18.5以上30以下である破線で囲んだ範囲は、点火タイミングの変更に対して、自己着火のタイミングが変化することがわかる。尚、EGR率の上限は、燃焼安定性の観点から、40%であることが好ましい。
 すなわち、燃焼室17の中の状態を、混合気のλが1.0±0.2でかつ、G/Fが18.5以上30以下とすれば、SI燃焼が安定化する結果、SICI燃焼において、自己着火のタイミングを精度よくコントロールすることができる。
 (SICI燃焼)
 次に、前述したSICI燃焼について、さらに詳細に説明をする。図5は、SICI燃焼における、クランク角に対する熱発生率の変化を例示する波形を示している。圧縮上死点付近、正確には、圧縮上死点よりも前の所定タイミングで、点火プラグ25が混合気に点火すると、火炎伝播による燃焼が開始する。SI燃焼時の熱発生は、CI燃焼時の熱発生よりも穏やかである。従って、熱発生率の波形は、傾きが相対的に小さくなる。図示はしないが、SI燃焼時の、燃焼室17の中における圧力変動(dp/dθ)も、CI燃焼時よりも穏やかになる。
 SI燃焼によって、燃焼室17の中の温度及び圧力が高まると、未燃混合気が自己着火する。図5の例では、圧縮上死点付近において、熱発生率の波形の傾きが、小から大へと変化している。つまり、熱発生率の波形は、CI燃焼が開始するタイミングで、変曲点を有している。
 CI燃焼の開始後は、SI燃焼とCI燃焼とが並行して行われる。CI燃焼は、SI燃焼よりも熱発生が大きいため、熱発生率は相対的に大きくなる。但し、CI燃焼は、圧縮上死点後に行われるため、ピストン3がモータリングによって下降している。CI燃焼による、熱発生率の波形の傾きが大きくなりすぎることが回避される。CI燃焼時のdp/dθも比較的穏やかになる。
 dp/dθは、燃焼騒音を表す指標として用いることができるが、前述の通りSICI燃焼は、dp/dθを小さくすることができるため、燃焼騒音が大きくなりすぎることを回避することが可能になる。燃焼騒音は、許容レベル以下に抑えることができる。
 CI燃焼が終了することによって、SICI燃焼が終了する。CI燃焼は、SI燃焼に比べて、燃焼期間が短い。SICI燃焼は、SI燃焼よりも、燃焼終了時期が早まる。言い換えると、SICI燃焼は、膨張行程中の燃焼終了時期を、圧縮上死点に近づけることが可能である。SICI燃焼は、SI燃焼よりも、エンジン1の燃費性能の向上に有利である。
 従って、SICI燃焼は、燃焼騒音の防止と、燃費性能の向上とを両立することができる。
 ここで、SICI燃焼の特性を示すパラメータとして、SI率を定義する。SI率は、SICI燃焼により発生した全熱量に対し、SI燃焼により発生した熱量の比率と定義する。つまり、図5においてSI率は、SI率=(SI燃焼の面積)/(SICI燃焼の面積)である。SI率は、SI燃焼とCI燃焼とを組み合わせたSICI燃焼において、SI燃焼とCI燃焼との比である。SI率が高いと、SI燃焼の割合が高く、SI率が低いと、CI燃焼の割合が高い。
 SI率は、前述した定義に限定されるものではない。SI率は、様々な定義が考えられる。例えば、SI率は、CI燃焼により発生した熱量に対する、SI燃焼により発生した熱量の比率としてもよい。つまり、図5においてSI率=(SI燃焼の面積)/(CI燃焼の面積)としてもよい。
 また、SICI燃焼において、CI燃焼が開始したタイミングで、熱発生率の波形は変曲点を有している。そこで、図6に示すように、熱発生率の波形における変曲点を境界にし、境界よりも進角側の範囲をSI燃焼、遅角側の範囲をCI燃焼としてもよい。この場合において、SI率は、図6にハッチングを付して示すように、境界よりも進角側の範囲の面積QSI、遅角側の範囲の面積QCIから、SI率=QSI/(QSI+QCI)としてもよいし、SI率=QSI/QCIとしてもよい。また、境界よりも進角側の範囲の全面積ではなく一部の面積と、境界よりも遅角側の範囲の一部の面積とに基づいて、SI率を定義してもよい。
 また、熱発生に基づいてSI率を定義するのではなく、境界よりも進角側の範囲のクランク角度ΔθSI、遅角側の範囲のクランク角度ΔθCIから、SI率=ΔθSI/(ΔθSI+ΔθCI)としてもよいし、SI率=ΔθSI/ΔθCIとしてもよい。
 さらに、境界よりも進角側の範囲の熱発生率のピークΔPSI、遅角側の範囲の熱発生率のピークΔPCIから、SI率=ΔPSI/(ΔPSI+ΔPCI)としてもよいし、SI率=ΔPSI/ΔPCIとしてもよい。
 加えて、境界よりも進角側の範囲における熱発生率の傾きφSI、遅角側の範囲における熱発生率の傾きφCIから、SI率=φSI/(φSI+φCI)としてもよいし、SI率=φSI/φCIとしてもよい。
 また、ここでは、熱発生率の波形に基づいて、面積(つまり、熱発生量の大きさ)、横軸の長さ(つまり、クランク角度の大きさ)、縦軸の長さ(つまり、熱発生率の大きさ)、又は、傾き(つまり、熱発生率の変化率)から、SI率を定義している。図示は省略するが、燃焼室17の中の圧力(P)の波形に基づいて、同様に、面積、横軸の長さ、縦軸の長さ、又は、傾きから、SI率を定義してもよい。
 また、SICI燃焼において、熱発生率又は圧力に係る燃焼波形の変曲点は、常に明確に現れるとは限らない。変曲点に基づかないSI率の定義として、次のような定義を用いてもよい。つまり、図7に示すように、燃焼波形において、圧縮上死点(TDC)よりも進角側の範囲をSI燃焼とし、圧縮上死点よりも遅角側の範囲をCI燃焼としてもよい。その上で、前記と同様に、面積(QSI、QCI)、横軸の長さ(ΔθSI、ΔθCI)、縦軸の長さ(ΔPSI、ΔPCI)、又は、傾き(φSI、φCI)から、SI率を定義してもよい。
 さらに、SI率は、燃焼室17の中で実際に行われた燃焼波形によって定義するのではなく、燃料量に基づいて定義してもよい。後述するように、SICI燃焼を行う中負荷領域においては、前段噴射と後段噴射とを含む分割噴射を行う。後段噴射によって燃焼室17の中に噴射された燃料は、噴射から点火までの時間が短いため、燃焼室17の中で拡散せずに、点火プラグ25の付近に位置するようになる。従って、後段噴射によって燃焼室17の中に噴射された燃料は、主にSI燃焼によって燃焼する。一方、前段噴射によって燃焼室17の中に噴射された燃料は、主にCI燃焼によって燃焼する。従って、前段噴射によって噴射する燃料量(m)と、後段噴射によって噴射する燃料量(m)とに基づいて、SI率を定義することが可能である。つまり、SI率=m/(m+m)としてもよいし、SI率=m/mとしてもよい。
 (エンジンの運転制御)
 エンジン1は、前述したように、運転状態に応じてSI燃焼とSICI燃焼とを切り替える。エンジン1はまた、エンジン1の運転状態に応じてSI率を変更する。自己着火による燃焼を行う運転領域が拡大するため、エンジン1は、燃焼騒音の発生を抑制することと、燃費の向上を図ることとが両立する。
 図8は、エンジン1の負荷の高低に対する、SI率の変化、燃焼室17の中の状態量の変化、吸気弁の開弁期間及び排気弁の開弁期間の変化、並びに、燃料の噴射タイミング及び点火タイミングの変化を例示している。以下、所定の回転数で、エンジン1の負荷が次第に高くなる想定において、エンジン1の運転制御を説明する。
 (低負荷領域(低負荷SI燃焼))
 低負荷領域(A)において、エンジン1は、低負荷SI燃焼を行う。エンジン1の運転状態が低負荷領域にあるときに、SI率は100%で一定である。
 低負荷領域においては、前述したように、混合気のG/Fを、18.5~30の間で一定にする。エンジン1は、燃焼室17の中に、燃料量に応じた量の新気及び既燃ガスを導入する。新気の導入量は、前述したように、スロットリング、及び/又は、ミラーサイクルによって調整する。希釈率が高いため、SI燃焼を安定化させるために、燃焼室17の中の温度を高める。エンジン1は、低負荷領域においては、内部EGRガスを、燃焼室17の中に導入する。
 内部EGRガスは、排気上死点を挟んで吸気弁21及び排気弁22が共に閉弁したネガティブオーバーラップ期間を設けることによって、燃焼室17の中に導入する(つまり、既燃ガスを燃焼室17の中に閉じ込める)。内部EGRガス量の調整は、吸気電動VVT23により吸気弁21の開弁時期を調整することと、排気電動VVT24により排気弁22の開弁時期を調整することと、によって、ネガティブオーバーラップ期間の長さを適宜設定することにより行う。
 低負荷領域においては、燃焼室17の中に導入する充填量が100%未満に調整される。燃料量が増大するに従い、燃焼室17の中に導入する新気の量、及び、内部EGRガスの量が次第に増える。低負荷領域におけるEGR率(つまり、燃焼室17の中の全ガスに対するEGRガスの質量比)は、例えば40%である。
 インジェクタ6は、吸気行程中に、燃焼室17の中に燃料を噴射する。燃焼室17の中には、空気過剰率λが1.0±0.2でかつ、G/Fが18.5~30になった、均質な混合気が形成される。空気過剰率λは、好ましくは、1.0~1.2である。圧縮上死点の前の所定のタイミングで、点火プラグ25が混合気に点火をすることによって、混合気は、自己着火に至らずに、火炎伝播により燃焼する。
 (第2中負荷領域(非過給SICI燃焼))
 エンジン1の負荷が高くなって、運転状態が第2中負荷領域(B2)に入ると、エンジン1は、低負荷SI燃焼から非過給SICI燃焼に切り替える。SI率は、100%未満になる。エンジン1の負荷が高まるに従い燃料量が増える。第2中負荷領域の中において負荷が低いときには、燃料量の増大に従って、CI燃焼の割合を増やす。SI率は、エンジン1の負荷が高くなる従って、次第に小さくなる。SI率は、図8の例では、50%以下の所定値(最小値)にまで減少する。
 燃料量が増えるため、第2中負荷領域においては、燃焼温度が高くなる。燃焼室17の中の温度が高くなりすぎると、CI燃焼が開始するときの熱発生が激しくなってしまう。そうなると、燃焼騒音が増大してしまう。
 そこで、第2中負荷領域においては、燃焼室17の中の圧縮開始前の温度を調整するために、エンジン1の負荷が変化することに対して、内部EGRガスと、外部EGRガスとの割合を変更する。つまり、エンジン1の負荷が高くなるに従い、熱い内部EGRガスを次第に減らし、冷却した外部EGRガスを次第に増やす。ネガティブオーバーラップ期間は、第2中負荷領域において、負荷が高くなるに従い、最大からゼロになるまで変更される。内部EGRガスは、第2中負荷領域において最も負荷が高くなるとゼロになる。
 EGR弁54の開度は、第2中負荷領域において、負荷が高くなるに従い、外部EGRガスが増えるよう変更される。燃焼室17の中に導入される外部EGRガスの量は、EGR率で表すと、例えば0~30%の間において調整される。第2中負荷領域においては、エンジン1の負荷が高くなるに従い、EGRガスが、内部EGRガスから外部EGRガスへと置換される。
 尚、低負荷領域と第2中負荷領域との間で、燃焼室17の中に導入するEGRガス量は連続している。第2中負荷領域における負荷の低い領域においては、低負荷領域と同じように、内部EGRガスが燃焼室17の中に、大量に導入されている。燃焼室17の中の温度が高くなるため、エンジン1の負荷が低いときに、混合気が確実に自己着火する。第2中負荷領域における負荷の高い領域においては、外部EGRガスが燃焼室17の中に導入されている。燃焼室17の中の温度が低くなるため、エンジン1の負荷が高いときに、CI燃焼に伴う燃焼騒音を抑制することができる。
 第2中負荷領域においては、燃焼室17の中に導入する充填量が100%にされる。スロットル弁43の開度は、全開である。内部EGRガスと外部EGRガスとを合わせたEGRガス量を調整することによって、燃焼室17の中に導入する新気の量を、燃料量に対応する量に調整する。
 非過給SICI燃焼においてCI燃焼の割合が大きくなるに従い、自己着火のタイミングが早くなる。自己着火のタイミングが圧縮上死点よりも早くなると、CI燃焼が開始するときの熱発生が激しくなってしまう。そうなると、燃焼騒音が増大してしまう。そこで、エンジン1は、エンジン1の負荷が所定負荷L1に到達すれば、エンジン1の負荷が高まることに従い、SI率を次第に大きくする。
 つまり、エンジン1は、燃料量の増大に従ってSI燃焼の割合を増やす。具体的には、図9の上図に示すように、非過給SICI燃焼においては、燃料量が増えるに従い、点火タイミングを次第に進角させる。前述したように、内部EGRガスの導入量を減らしかつ、外部EGRガスの導入量を増やすことによって、燃焼室17の中の温度の調整を行っているから、燃料量が増えるに従って、SI率を高くしたとしても、圧縮上死点での温度上昇を抑制することが可能になる。SI燃焼の熱発生率の傾きは、負荷が高くなっても、ほとんど変わらない。点火タイミングを進角すると、SI燃焼の開始が早まる分、SI燃焼の熱発生量が増える。
 SI燃焼による燃焼室17の中の温度上昇が抑制される結果、未燃混合気は、圧縮上死点以降のタイミングで自己着火する。CI燃焼による熱発生は、SI燃焼の熱発生量が増えているから、エンジン1の負荷が高くなっても、ほぼ同じになる。従って、エンジン1の負荷が高くなることに応じて、SI率を次第に高く設定することにより、燃焼騒音が増大してしまうことを回避することができる。尚、非過給SICI燃焼の燃焼重心は、負荷が高くなるほど遅角する。
 第2中負荷領域において、インジェクタ6は、圧縮行程中に、前段噴射と後段噴射との2回に分けて、燃焼室17の中に燃料を噴射する。前段噴射は、点火タイミングから離れたタイミングで燃料を噴射し、後段噴射は、点火タイミングに近いタイミングで燃料を噴射する。燃焼室17の中には、空気過剰率λが1.0±0.2でかつ、G/Fが18.5~30になった、略均質な混合気が形成される。混合気が略均質であるため、未燃損失の低減による燃費の向上、及び、スモークの発生回避による排出ガス性能の向上を図ることができる。空気過剰率λは、好ましくは、1.0~1.2である。
 圧縮上死点の前の所定のタイミングで、点火プラグ25が混合気に点火をすることによって、混合気は、火炎伝播により燃焼する。その後、未燃混合気が自己着火して、CI燃焼する。後段噴射によって噴射された燃料は、主にSI燃焼する。前段噴射によって噴射された燃料は、主にCI燃焼する。前段噴射を圧縮行程中に行うため、前段噴射により噴射した燃料が過早着火等の異常燃焼を誘発することを防止することができる。また、後段噴射により噴射した燃料を、安定的に火炎伝播により燃焼させることができる。
 (第1中負荷領域(過給SICI燃焼))
 エンジン1の負荷がさらに高まり、エンジン1の運転状態が第1中負荷領域(B1)に入ると、過給機44が、新気及び外部EGRガスの過給を行う。燃焼室17の中に導入する新気の量、及び、外部EGRガスの量は共に、エンジン1の負荷が高くなるに従い増える。燃焼室17の中に導入される外部EGRガスの量は、EGR率で表すと、例えば30%である。EGR率は、エンジン1の負荷の高低に関わらず一定である。従って、混合気のG/Fも、エンジン1の負荷の高低に関わらず一定である。尚、第2中負荷領域と第1中負荷領域との間で、燃焼室17の中に導入するEGRガス量は連続している。
 SI率は、100%未満の所定値で、エンジン1の負荷の高低に対して一定にする。第2中負荷領域のSI率、特に所定負荷L1よりも負荷が高く、エンジン1の負荷が高まることに従い次第に大きくなるSI率と、第1中負荷領域のSI率とを比較したときに、エンジン1の負荷が高い第1中負荷領域のSI率の方が、第2中負荷領域のSI率よりも高い。第1中負荷領域と第2中負荷領域との境界において、SI率は連続している。
 図9の下図に示すように、過給SICI燃焼においても、燃料量が増えることに伴い、点火タイミングを次第に進角させる。前述したように、過給によって燃焼室17の中に導入する新気及びEGRガス量を増やしているため、熱容量が大きい。燃料量が増えても、SI燃焼による燃焼室の中の温度上昇を抑制することが可能になる。過給SICI燃焼の熱発生率の波形は、負荷が高くなるに従い、相似形で大きくなる。
 つまり、SI燃焼の熱発生率の傾きが、ほとんど変わらずに、SI燃焼の熱発生量が増える。圧縮上死点以降の、ほぼ同じタイミングで、未燃混合気が自己着火をする。CI燃焼による熱発生量は、エンジン1の負荷が高くなると、多くなる。その結果、第1中負荷領域においては、SI燃焼の熱発生量とCI燃焼の熱発生量とが共に増えるから、エンジン1の負荷の高低に対してSI率が一定になる。CI燃焼の熱発生のピークが高くなると、燃焼騒音が大きくなるが、第1中負荷領域は、エンジン1の負荷が比較的高いため、ある程度の大きさの燃焼騒音は許容することができる。尚、過給SICI燃焼の燃焼重心は、負荷が高くなるほど遅角する。
 第1中負荷領域においては、排気上死点を挟んで、吸気弁21と排気弁22とが共に開弁するオーバーラップ期間を設ける。燃焼室17の中に残留する既燃ガスを、過給圧によって掃気する。これにより、燃焼室17の中の温度が低くなるため、エンジン1の負荷が比較的高いときに、異常燃焼が発生してしまうことを抑制することができる。また、燃焼室17の中の温度を下げることによって、エンジン1の負荷が比較的高い領域において、自己着火のタイミングを適切なタイミングにすることができ、SI率を所定のSI率に維持することが可能になる。さらに、既燃ガスを掃気することによって、燃焼室17の中の新気の充填量を高めることができる。
 第1中負荷領域において、インジェクタ6は、第2中負荷領域と同様に、圧縮行程中に、前段噴射と後段噴射との2回に分けて、燃焼室17の中に燃料を噴射する。前段噴射は、点火タイミングから離れたタイミングで燃料を噴射し、後段噴射は、点火タイミングに近いタイミングで燃料を噴射する。燃焼室17の中には、空気過剰率λが1.0±0.2でかつ、G/Fが18.5~30になった、略均質な混合気が形成される。混合気が略均質であるため、未燃損失の低減による燃費の向上、及び、スモークの発生回避による排出ガス性能の向上を図ることができる。空気過剰率λは、好ましくは、1.0~1.2である。
 圧縮上死点の前の所定のタイミングで、点火プラグ25が混合気に点火をすることによって、混合気は、火炎伝播により燃焼する。その後、未燃混合気が自己着火して、CI燃焼する。後段噴射によって噴射された燃料は、主にSI燃焼する。前段噴射によって噴射された燃料は、主にCI燃焼する。前段噴射を圧縮行程中に行うため、前段噴射により噴射した燃料が過早着火等の異常燃焼を誘発することを防止することができる。また、後段噴射により噴射した燃料を、安定的に火炎伝播により燃焼させることができる。
 (高負荷領域(高負荷SI燃焼))
 エンジン1の負荷がさらに高まり、エンジン1の運転状態が高負荷領域(C)に入ると、エンジン1は、高負荷SI燃焼を行う。従って、高負荷領域においてSI率は、100%になる。
 スロットル弁43は、全開である。過給機44は、高負荷領域においても、新気及び外部EGRガスの過給を行う。EGR弁54は、開度を調整することによって、エンジン1の負荷が高くなるに従い、外部EGRガスの導入量を次第に減少させる。そうすることによって、燃焼室17の中に導入される新気が、エンジン1の負荷が高くなると増える。新気の量が増えると、燃料量を増やすことができるため、エンジン1の最高出力を高くする上で、有利になる。尚、第1中負荷領域と高負荷領域の間で、燃焼室17の中に導入するEGRガス量は連続している。
 高負荷領域においても、第1中負荷領域と同様に、排気上死点を挟んで、吸気弁21と排気弁22とが共に開弁するオーバーラップ期間を設ける。燃焼室17の中に残留する既燃ガスを、過給圧によって掃気する。これにより、異常燃焼の発生が抑制される。また、燃焼室17の中の新気の充填量を高めることができる。
 高負荷領域の低回転側の領域(つまり、第1高負荷領域(C1))において、インジェクタ6は、前述したように、リタード期間内に、燃焼室17の中に燃料を噴射する。高負荷領域の高回転側の領域(つまり、第2高負荷領域(C2))においては、インジェクタ6は、吸気行程中に、燃焼室17の中に燃料を噴射する。いずれにおいても、燃焼室17の中には、空気過剰率λが1.0±0.2でかつ、G/Fが18.5~30になった、略均質な混合気が形成される。最高負荷において、空気過剰率λは、例えば0.8になる。また、混合気のG/Fは、最高負荷において、例えば17としてもよい。圧縮上死点の前の所定のタイミングで、点火プラグ25が混合気に点火をすることによって、混合気は、火炎伝播により燃焼する。高負荷領域においては、高圧リタード噴射、又は、吸気行程中の燃料噴射によって、混合気は、自己着火に至らずにSI燃焼する。
 (SI率の調整)
 図10は、ECU10が実行するエンジンの運転制御に係るフローを示している。ECU10は、各センサSW1~SW16の検知信号に基づいて、エンジン1の運転状態を判断すると共に、燃焼室17の中の燃焼が、運転状態に応じたSI率の燃焼となるよう、燃焼室17の中の状態量の調整、噴射量の調整、噴射タイミングの調整、及び、点火タイミングの調整を行う。ECU10はまた、各センサの検知信号に基づいて、SI率の調整が必要と判断したときに、SI率の調整を行う。
 ECUは先ず、ステップS1において、各センサSW1~SW16の検知信号を読み込む。次いで、ECU10は、ステップS2において、検知信号に基づいてエンジン1の運転状態を判断すると共に、目標SI率を設定する。目標SI率は、図8に示した通りである。
 ECU10は、続くステップS3において、予め設定している燃焼モデルに基づいて、設定した目標SI率を実現するための目標筒内状態量を設定する。具体的には、燃焼室17の中の目標温度及び目標圧力、並びに、目標状態量を設定する。ECU10は、ステップS4において、目標筒内状態量を実現するために必要な、EGR弁54の開度、スロットル弁43の開度、エアバイパス弁48の開度、並びに、吸気電動VVT23及び排気電動VVT24の位相角を設定する。ECU10は、これらのデバイスの制御量を、予め設定しかつ、ECU10に記憶しているマップに基づいて設定する。ECU10は、設定した制御量に基づいて、EGR弁54、スロットル弁43、エアバイパス弁48、並びに、吸気電動VVT23及び排気電動VVT24に制御信号を出力する。ECU10の制御信号に基づいて各デバイスが動作をすることによって、燃焼室17の中の状態量が目標状態量になる。
 ECU10はさらに、設定した各デバイスの制御量に基づいて、燃焼室17の中の状態量の予測値、及び、推定値をそれぞれ算出する。状態量予測値は、吸気弁21が閉弁する前の燃焼室17の中の状態量を予測した値であり、後述するように、吸気行程における燃料の噴射量の設定に用いる。状態量推定値は、吸気弁21が閉弁した後の燃焼室17の中の状態量を推定した値であり、後述するように、圧縮行程における燃料の噴射量の設定、及び、点火タイミングの設定に用いる。状態量推定値はまた、後述するように、実際の燃焼状態との比較による状態量誤差の計算にも用いる。
 ECU10は、ステップS5において、状態量予測値に基づいて、吸気行程中における燃料の噴射量を設定する。尚、吸気行程中に燃料の噴射を行わないときは、燃料の噴射量はゼロである。ステップS6において、ECU10はインジェクタ6の噴射を制御する。つまり、所定の噴射タイミングで、燃焼室17の中に燃料を噴射するよう、インジェクタ6に制御信号を出力する。
 ECU10は、ステップS7において、状態量推定値と、吸気行程中の燃料の噴射結果と、に基づいて、圧縮行程中における燃料の噴射量を設定する。尚、圧縮行程中に燃料の噴射を行わないときは、燃料の噴射量はゼロである。圧縮行程中に分割噴射を行うときには、前段噴射の噴射量及び後段噴射の噴射量をそれぞれ設定する。ECU10は、ステップS8において、予め設定されているマップに基づく噴射タイミングで、燃焼室17の中に燃料を噴射するよう、インジェクタ6に制御信号を出力する。
 ECU10は、ステップS9において、状態量推定値と、圧縮行程中の燃料の噴射結果と、に基づいて、点火タイミングを設定する。ECU10は、ステップS10において、設定した点火タイミングで、燃焼室17の中の混合気に点火をするよう、点火プラグ25に制御信号を出力する。
 点火プラグ25が混合気に点火をすることにより、燃焼室17の中でSI燃焼又はSICI燃焼が行われる。ステップS11において、ECU10は、指圧センサSW6が検知した燃焼室17の中の圧力の変化を読み込み、それに基づいて、燃焼室17の中の混合気の燃焼状態を判断する。ECU10はまた、ステップS12において、燃焼状態の検出結果と、ステップS4において推定をした状態量推定値とを比較し、状態量推定値と、実際の状態量との誤差を計算する。計算した誤差は、今回以降のサイクルにおいて、ステップS4の推定に利用される。ECU10は、状態量誤差が無くなるように、スロットル弁43、EGR弁54、及び/又は、エアバイパス弁48の開度、並びに、吸気電動VVT23及び排気電動VVT24の位相角を調整する。それによって、燃焼室17に導入される新気及びEGRガス量が調整される。この状態量誤差のフィードバックは、ECU10が、目標SI率と実際のSI率との誤差に基づいて、SI率の調整が必要と判断したときに、SI率を調整することに相当する。
 ECU10はまた、ステップS8において、状態量推定値に基づき燃焼室17の中の温度が目標温度よりも低くなると予想したときには、点火タイミングを進角することが可能になるよう、圧縮行程中の噴射タイミングを、マップに基づく噴射タイミングよりも進角させる。一方、ECU10は、ステップS7において、状態量推定値に基づき燃焼室17の中の温度が目標温度よりも高くなると予想したときには、点火タイミングを遅角することが可能になるよう、圧縮行程中の噴射タイミングを、マップに基づく噴射タイミングよりも遅角させる。
 つまり、図11のP2に示すように、燃焼室17の中の温度が低いと、火花点火によってSI燃焼が開始した後、未燃混合気が自己着火するタイミングθCIが遅れてしまい、SI率が、目標のSI率(P1参照)からずれてしまう。この場合、未燃燃料の増大や、排出ガス性能の低下を招く。
 そこで、燃焼室17の中の温度が目標温度よりも低くなると予想したときには、ECU10は、噴射タイミングを進角すると共に、図10のステップS10において、点火タイミングθIGを進角する。図11のP3に示すように、SI燃焼の開始が早まることによってSI燃焼により十分な熱発生が可能になるから、燃焼室17の中の温度が低いときに、未燃混合気の自己着火のタイミングθCIが遅れることを防止することができる。その結果、SI率は、目標のSI率に近づく。未燃燃料の増大や、排出ガス性能の低下が防止される。
 また、図11のP4に示すように、燃焼室17の中の温度が高いと、火花点火によってSI燃焼が開始して直ぐに、未燃混合気が自己着火してしまい、SI率が、目標のSI率(P1参照)からずれてしまう。この場合、燃焼騒音が増大してしまう。
 そこで、燃焼室17の中の温度が目標温度よりも高くなると予想したときには、ECU10は、噴射タイミングを遅角すると共に、図10のステップS10において、点火タイミングθIGを遅角する。図11のP5に示すように、SI燃焼の開始が遅くなるから、燃焼室17の中の温度が高いときに、未燃混合気の自己着火のタイミングθCIが早くなることを防止することができる。その結果、SI率は、目標のSI率に近づく。燃焼騒音が増大してしまうことが回避される。
 これらの噴射タイミングの調整、及び、点火タイミングの調整は、ECU10が、SICI燃焼におけるSI率の調整が必要と判断したときに、SI率を調整することに相当する。噴射タイミングを調整することによって、進角又は遅角される点火タイミングにおいて、燃焼室17の中に適切な混合気を形成することができる。点火プラグ25は、確実に、混合気に点火することが可能になると共に、未燃混合気は、適切なタイミングで、自己着火することができる。
 尚、図11において、実際の燃焼状態に基づいて、スロットル弁43、EGR弁54、エアバイパス弁48、吸気電動VVT23、及び排気電動VVT24の制御を通じて燃焼室17の中の状態量を調整する点は、図10のステップS12及びステップS4において説明した通りである。
 このエンジン1は、スロットル弁43、EGR弁54、エアバイパス弁48、吸気電動VVT23、及び排気電動VVT24を含む状態量設定デバイスによって、SI率を調整する。燃焼室17の中の状態量を調整することによって、SI率の大まかな調整が可能である。それと共に、エンジン1は、燃料の噴射タイミング及び点火タイミングを調整することによって、SI率を調整する。噴射タイミング及び点火タイミングの調整によって、例えば気筒間差の補正を行ったり、自己着火タイミングの微調整を行ったりすることができる。SI率の調整を二段階に行うことによって、エンジン1は、運転状態に対応する狙いのSICI燃焼を正確に実現することができる。
 (点火タイミングに関連する制御)
 前述のように、本願発明者らは、SICI燃焼において、燃焼室17の中の混合気が燃焼するときに発生する全熱量に対し、火炎伝播により混合気が燃焼するときに発生する熱量の割合に関係する指標としてのSI率を、エンジン1の運転状態に応じて変更すれば、広い運転領域に亘って、燃焼騒音の発生を抑制することと、燃費を向上させることとを両立することができる点を見出した。
 ところが、高負荷側の運転領域(例えば、第2中負荷領域内の高負荷側、及び、第1中負荷領域の全域)においては、燃焼室17の中の温度、特に、圧縮開始前の温度が高くなるため、自己着火に至る温度との温度差が小さくなると共に、SI燃焼による燃焼室17の中の温度上昇率が高くなり、ひいては混合気が自己着火し易くなる。この運転領域においてSICI燃焼を実行すると、火花点火によってSI燃焼が開始して直ぐに、未燃混合気が自己着火する可能性がある。その結果、SI率が小さくなってしまい、そのことで、火炎伝播による燃焼期間が短くなる虞がある。このことは、燃焼騒音の発生を抑制する上で不都合である。
 本願発明者らは、燃焼室17の中の温度を低下させれば、火花点火によってSI燃焼が開始してから、未燃混合気が自己着火を開始するまでの期間が長くなる点に着目した。これにより、SI率が十分に確保されて、ひいては燃焼騒音の発生を抑制することが可能になる。
 しかし、未燃混合気が自己着火を開始するまでの期間が長くなると、例えば圧縮上死点後に、CI燃焼を開始するタイミングが遅れてしまい、トルクの低下を招く、という別の問題がある。
 そこで、本願発明者らは、燃焼騒音の抑制と、トルクの確保とを両立するための1つの手段として、点火タイミングを進角させることを考案した。
 以下、点火タイミングの進角に関連する制御について詳細に説明する。
 図16は、エンジン1の負荷の高低に対する、オーバーラップ期間の変化を例示している。また、図17は、エンジン1の負荷の高低に対する、混合気のEGR率の変化を例示しており、図18は、エンジン1の負荷の高低に対する、過給圧の変化を例示している。
 (低負荷領域(低負荷SI燃焼))
 低負荷領域(A)においては、エンジン1は、低負荷SI燃焼を行う。既に述べたように、エンジン1は、SI燃焼を安定化させるために、燃焼室17の中の温度を高める。図16~17に示すように、エンジン1は、ネガティブオーバーラップ期間(NVO)を設けることによって、内部EGRガス(図17の破線を参照)を燃焼室17の中に導入する(つまり、既燃ガスを燃焼室17の中に閉じ込める)。
 内部EGRガスを導入することによって、燃焼室17の中の温度、特に着火前の温度が高まる。これにより、低負荷SI燃焼を安定させることが可能になる。
 図18に示すように、ECU10は、低負荷領域内においては、エンジン1の負荷が高くなるにつれて、点火タイミングを遅角させる。
 すなわち、低負荷SI燃焼は、エンジン1の負荷が低いときには、燃焼室17の中の温度が低下する分、負荷が高いときよりも不安定な燃焼となる。そこで、低負荷領域内のさらに低負荷側では、高負荷側よりも点火タイミングを進角させる。そうすることで、低負荷SI燃焼を安定させることが可能となる。
 その一方で、エンジン1の負荷が高くなるに従って、燃焼室17の中の温度が上昇し、低負荷SI燃焼の安定性が確保されると共に、点火プラグ25が火花を打ってから実際に燃焼が生じるまでの期間が短くなる。そこで、そうした期間が短くなった分、点火タイミングを遅角させる。これにより、低負荷SI燃焼が開始されるタイミングを、例えば圧縮上死点の後の所望のタイミングに調整することが可能になる。
 このように、低負荷SI燃焼に相応しいタイミングで点火を行うようになっている。
 また、図16に示すように、ECU10は、低負荷領域内において、エンジン1の負荷が高くなるにつれて、ネガティブオーバーラップ期間の長さを漸減させるよう構成されている。図17に示すように、ネガティブオーバーラップ期間が短くなった分、内部EGRガスが減少する。これにより、燃焼室17の中の温度が低下する。
 (第2中負荷領域(非過給SICI燃焼))
 第2中負荷領域(B2)においては、エンジン1は、非過給SICI燃焼を行う。既に述べたように、第2中負荷領域においては、燃焼室17の中の圧縮開始前の温度を調整するために、エンジン1の負荷が高くなるに従い、内部EGRガスを次第に減らす。
 具体的に、図16に示すように、この第2中負荷領域において、エンジン1の負荷が、第2中負荷領域内の所定負荷まで高まったとき、ネガティブオーバーラップ期間がゼロになる。その結果、内部EGRガスは、第2中負荷領域において実質的にゼロに至る。
 さらに、図17に示すように、熱い内部EGRガスを減らしながら、冷却した外部EGRガス(図17の実線を参照)を次第に増やす。
 外部EGRガスを導入すると、燃焼室17の中の混合気が、希釈されると同時に冷却される。その結果、燃焼室17の中において、圧縮開始前の混合気全体の温度が低下する。外部EGRガスの量を次第に増やすことで、燃焼室17の中の温度上昇を抑制することが可能になる。内部EGRガスを減らすことで、そうした温度上昇は、一層、抑制される。
 また、エンジン1の負荷がさらに高くなると、第2中負荷領域の高負荷側において、排気上死点を挟んで、吸気弁21と排気弁22とが共に開弁したオーバーラップ期間(PVO)が設けられる。
 オーバーラップ期間を設けると、燃焼室17において、ガスの吹き抜けが発生する。その結果、燃焼室17の中のガスが掃気される。ガスが掃気されると、燃焼室17の中の、既燃の残留ガスが排出される。燃焼室17から残留ガスを排出すれば、燃焼室17の中において、圧縮開始前の混合気全体の温度が低下する。
 尚、第2中負荷領域内においては、エンジン1の負荷が高くなるに従い、図16に示すように、オーバーラップ期間は次第に長くなる。オーバーラップ期間が長くなると、ガスの吹き抜け量が増加する。吹き抜け量が増加した分、残留ガスの掃気が促進されて、掃気量が増える。これにより、エンジン1の負荷が高いときに、燃焼室17の中の温度を低下させることが可能になる。エンジン1の負荷がさらに高くなると、オーバーラップ期間は上限に至る。
 このように、ECU10は、状態量設定デバイスを介して、燃焼室の中における圧縮開始前の温度に係る制御量を、エンジン1の負荷が高いときには、その負荷が低いときよりも温度(つまり、燃焼室の中の圧縮開始前の温度)が低下するように変更する。詳しくは、ECU10は、そうした制御量として、燃焼室17の中における既燃ガスの量を変更することにより、前記の温度を低下させる。さらに詳しくは、ECU10は、エンジン1の負荷が高くなるに従って、冷たい既燃ガスとしての外部EGRガスを増やす一方、オーバーラップ期間、及び、ネガティブオーバーラップ期間を変更することにより、熱い既燃ガスとしての内部EGRガス(残留ガス)を減らす。
 前述の如く、高負荷側では燃焼室17の中の温度が高くなるところ、状態量設定デバイスによって、その温度を低下させる。これにより、自己着火に至るまでの温度差が拡大すると共に、SI燃焼による温度上昇率が低下する。そのことで、火花点火によってSI燃焼が開始してから、未燃混合気が自己着火を開始するまでの期間が長くなる。その結果、燃焼室17の中において、火炎伝播による燃焼が十分に確保されて、ひいては、燃焼騒音の発生を抑制することが可能になる。
 一方で、ECU10は、未燃混合気が自己着火を開始するまでの期間が長くなった分、混合気に点火をするタイミングを進角させる。具体的には、図18に示すように、ECU10は、エンジン1の負荷が高まるに従って、点火タイミングを単調に進角させる(図9も参照)。
 これにより、CI燃焼が開始するタイミングを、例えば圧縮上死点の直後に保ち、ひいては、トルクを確保することが可能になる。よって、SICI燃焼において、エンジン1の負荷が高いときに、トルクの低下を招くことなく、燃焼騒音の発生を抑制することが可能になる。
 このように、燃焼騒音の発生を抑制しながら、SICI燃焼を行う運転領域を拡大すること(つまり、第2中負荷領域を高負荷側に広げること)が可能になる。
 (第1中負荷領域(過給SICI燃焼))
 第1中負荷領域(B1)においては、エンジン1は、過給SICI燃焼を行う。既に述べたように、この運転領域においては、第2中負荷領域と同様に、吸気弁21と排気弁22とが共に開弁するオーバーラップ期間が設定されると共に、外部EGRガスが導入される。また、この運転領域では、過給が行われる。
 具体的に、図16~17に示すように、この第1中負荷領域では、エンジン1の負荷が高くなることに対して、オーバーラップ期間は上限で一定になる一方、外部EGRガスは漸増する。
 そして、第1中負荷領域においては、過給機44が、新気及び外部EGRガスの過給を行う。過給を行うと、吸気側の圧力が高くなるから、ガスの吹き抜け量が増加する。吹き抜け量が増加した分、残留ガスの掃気が促進されて、掃気量が増える。
 図示は省略するが、第1中負荷領域において、過給機44の過給圧は、エンジン1の負荷が高くなるに従って単調に増加する。これにより、ECU10は、エンジン1の負荷が高いときに、充填量を増やす同時に、ガスの掃気量を負荷が低いときよりも増加させることが可能になる。これにより、燃焼室17の中の温度上昇が抑制されて、未燃混合気が自己着火を開始するまでの期間は、さらに長くなる。
 そして、ECU10は、未燃混合気が自己着火を開始するまでの期間がさらに長くなった分、混合気に点火をするタイミングをさらに進角させる。具体的には、図18に示すように、ECU10は、エンジン1の負荷が高まるに従って、第2中負荷領域と同様に、点火タイミングを単調に進角させる(図9も参照)。
 従って、SICI燃焼において、過給によって掃気量を増やした分、燃焼騒音の発生を抑制することが可能になると共に、点火タイミングをさらに進角させた分だけCI燃焼の終了時期が早まって、トルクを確保することが可能になる。このことは、SICI燃焼を行う運転領域を、さらに拡大する(つまり、第1中負荷領域を高負荷側に広げる)上で有効である。
 また、エンジン1の負荷、ひいては燃料量の増大に対応して点火タイミングを進角させれば、SI燃焼による熱発生量と、CI燃焼による熱発生量とを共に増やすことが可能になる。
 また、第1中負荷領域では、エンジン1の負荷が高くなるに従って過給圧を高め、掃気量を増やすことで、異常燃焼の発生を、より確実に抑制する上で有利になる。また、燃焼室17の中の新気の充填量を、より確実に高める上でも有利になる。
 (高負荷領域(高負荷SI燃焼))
 高負荷領域(C)においては、エンジン1は、高負荷SI燃焼を行う。この運転領域においては、第1中負荷領域、及び、第2中負荷領域と同様に、吸気弁21と排気弁22とが共に開弁するオーバーラップ期間が設定されると共に、外部EGRガスが導入される。この運転領域では、過給も行われる。
 具体的に、図16~17に示すように、この高負荷領域では、エンジン1の負荷が高くなることに対して、オーバーラップ期間は上限で一定になる一方、外部EGRガスは漸増する。前述の如く、外部EGRガスの導入量を減少させてもよい(図8参照)。
 そして、第1中負荷領域においては、過給機44が、新気及び外部EGRガスの過給を行う。図示は省略するが、高負荷領域において、過給機44の過給圧は、エンジン1の負荷が高くなるに従って単調に増加する。これにより、燃焼室17の中の温度上昇が抑制される。
 前述のように、SI燃焼は、エンジン1の負荷が高いときには、異常燃焼が生じ易くなる。そこで、高負荷領域内では、圧縮行程後期から膨張行程初期までの期間内に燃料を噴射すると共に、点火タイミングを、その噴射タイミングに対応したタイミングつまり、噴射タイミングの後のタイミングに設定する。
 具体的に、ECU10は、点火タイミングを、圧縮行程後期から膨張行程初期までの期間内において、噴射タイミングの後に設定する。その結果、点火タイミングは、図18に示すように、第1中負荷領域よりも遅角することになる。
 このような設定の下、高負荷SI燃焼を行うと、混合気が反応する時間が短くなって、異常燃焼を回避することが可能になる。
 また、高負荷領域では、燃焼室17の中に残留する既燃ガスを、第1中負荷領域と同様に、過給圧によって掃気する。エンジン1の負荷が高くなるに従って過給圧を高め、掃気量を増やすことで、異常燃焼の発生を、より確実に抑制する上で有利になる。また、燃焼室17の中の新気の充填量を、より確実に高める上でも有利になる。
 尚、前記の実施形態では、燃焼室17の中における圧縮開始前の温度を低下させるために、外部EGRガスを増やしたり、オーバーラップ期間を長くしたりすることが開示されていたが、そうした構成には限定されない。例えば、エンジン1の有効圧縮比を調整したり、燃料の気化潜熱を利用したりすることによって、燃焼室17の中の温度を低下させてもよい。
 尚、ECU10が行うエンジン1の制御は、前述した燃焼モデルに基づく制御に限定されない。
 また、ここに開示する技術は、前述した構成のエンジン1に適用することに限定されない。エンジン1の構成は、様々な構成を採用することが可能である。
1 エンジン
10 ECU(コントローラー)
17 燃焼室
23 吸気電動VVT(状態量設定デバイス、可変動弁機構)
24 排気電動VVT(状態量設定デバイス、可変動弁機構)
25 点火プラグ
49 過給システム(状態量設定デバイス)
44 過給機
43 スロットル弁(状態量設定デバイス)
48 エアバイパス弁(状態量設定デバイス)
54 EGR弁(状態量設定デバイス)
55 EGRシステム(状態量設定デバイス)
6 インジェクタ
SW1 エアフローセンサ
SW2 第1吸気温度センサ
SW3 第1圧力センサ
SW4 第2吸気温度センサ
SW5 第2圧力センサ
SW6 指圧センサ
SW7 排気温度センサ
SW8 リニアOセンサ
SW9 ラムダOセンサ
SW10 水温センサ
SW11 クランク角センサ
SW12 アクセル開度センサ
SW13 吸気カム角センサ
SW14 排気カム角センサ
SW15 EGR差圧センサ
SW16 燃圧センサ

Claims (9)

  1.  燃焼室の中において混合気を自己着火させるよう構成されたエンジンと、
     前記エンジンに取り付けられかつ、前記燃焼室の中への新気及び既燃ガスの導入を調整することによって、前記燃焼室の中を所望の状態に設定するよう構成された状態量設定デバイスと、
     前記エンジンに取り付けられかつ、前記燃焼室の中に燃料を噴射するよう構成されたインジェクタと、
     前記燃焼室の中に臨んで配設されかつ、前記燃焼室の中の混合気に点火をするよう構成された点火プラグと、
     前記状態量設定デバイス、前記インジェクタ、及び、前記点火プラグのそれぞれに接続されかつ、前記状態量設定デバイス、前記インジェクタ、及び、前記点火プラグのそれぞれに制御信号を出力することによって、前記エンジンを運転するよう構成されたコントローラーと、
     前記コントローラーに接続されかつ、前記エンジンの運転状態に関するパラメータを検知すると共に、前記コントローラーに検知信号を出力するよう構成されたセンサと、を備え、
     前記コントローラーは、前記センサの検知信号に基づく前記エンジンの運転状態が所定の運転領域にあるときに、点火された混合気が火炎伝播により燃焼し、その後、前記燃焼室の中の未燃混合気が自己着火により燃焼するよう、所定の点火タイミングで前記点火プラグに制御信号を出力し、
     前記コントローラーはまた、前記所定の運転領域内において、前記状態量設定デバイスに制御信号を出力することによって、前記燃焼室の中の圧縮開始前の温度に係る制御量を、前記エンジンの負荷が高いときには負荷が低いときよりも前記温度が低下するように変更すると共に、前記エンジンの負荷が高いときに、前記点火タイミングを、負荷が低いときよりも進角させる圧縮自己着火式エンジンの制御装置。
  2.  請求項1に記載の圧縮自己着火式エンジンの制御装置において、
     前記コントローラーは、前記制御量として、前記燃焼室の中における前記既燃ガスの量を変更することにより、前記温度を低下させる圧縮自己着火式エンジンの制御装置。
  3.  請求項2に記載の圧縮自己着火式エンジンの制御装置において、
     前記状態量設定デバイスは、前記エンジンに設けられかつ、前記コントローラーの制御信号を受けて、前記燃焼室の中に冷却した既燃ガスを導入するよう構成された外部EGRシステムを有し、
     前記コントローラーは、前記燃焼室の中に導入する前記既燃ガスの量を、前記エンジンの負荷に応じて変更するよう、前記外部EGRシステムに制御信号を出力する圧縮自己着火式エンジンの制御装置。
  4.  請求項2又は3に記載の圧縮自己着火式エンジンの制御装置において、
     前記状態量設定デバイスは、前記エンジンに設けられかつ、前記コントローラーの制御信号を受けて、吸気弁及び排気弁の少なくとも一方の開弁時期を変更するよう構成された可変動弁機構を有し、
     前記コントローラーは、前記吸気弁と前記排気弁とが共に開弁するオーバーラップ期間を、前記エンジンの負荷に応じて変更するよう、前記可変動弁機構に制御信号を出力する圧縮自己着火式エンジンの制御装置。
  5.  請求項1~4のいずれか1項に記載の圧縮自己着火式エンジンの制御装置において、
     前記状態量設定デバイスは、前記エンジンに取り付けられかつ、前記燃焼室の中に導入するガスを過給するよう構成された過給システムを有し、
     前記過給システムは、前記コントローラーの制御信号を受けて、前記エンジンの運転状態が前記所定の運転領域にあるときの所定負荷以下の領域においては過給を行わずかつ、前記所定負荷よりも高負荷の領域においては過給を行い、
     前記コントローラーは、前記エンジンの運転状態が過給を行わない領域ないし過給を行う領域にあるとき、前記点火タイミングを、前記エンジンの負荷が高くなるに従い進角させる圧縮自己着火式エンジンの制御装置。
  6.  請求項1~5のいずれか1項に記載の圧縮自己着火式エンジンの制御装置において、
     前記コントローラーは、前記エンジンの運転状態が前記所定の運転領域よりも高負荷側の高負荷領域にあるとき、圧縮行程後期から膨張行程初期までの期間内に燃料を噴射するよう、前記インジェクタに制御信号を出力すると共に、点火された混合気が、自己着火による燃焼が発生せずに、前記火炎伝播により燃焼するよう、前記点火プラグに制御信号を出力し、
     前記コントローラーはまた、前記高負荷領域内において、前記点火タイミングを、燃料の噴射タイミングよりも遅角させる圧縮自己着火式エンジンの制御装置。
  7.  請求項1~6のいずれか1項に記載の圧縮自己着火式エンジンの制御装置において、
     前記コントローラーは、前記エンジンの運転状態が前記所定の運転領域よりも低負荷側の低負荷領域にあるとき、点火された混合気が、自己着火による燃焼が発生せずに、前記火炎伝播により燃焼するよう、前記点火プラグに制御信号を出力し、
     前記コントローラーはまた、前記低負荷領域内において、前記点火タイミングを、前記エンジンの負荷が高くなるに従い遅角させる圧縮自己着火式エンジンの制御装置。
  8.  請求項1~6のいずれか1項に記載の圧縮自己着火式エンジンの制御装置において、
     前記インジェクタは、前記所定の運転領域内において、前記燃焼室の中に略均質な混合気を形成するよう、前記コントローラーの制御信号を受けて、前記点火タイミングの前でかつ、前記点火タイミングに近いタイミングで燃料を噴射する後段噴射と、前記後段噴射よりも前でかつ、前記点火タイミングから離れたタイミングで燃料を噴射する前段噴射とを実行する圧縮自己着火式エンジンの制御装置。
  9.  請求項1~8のいずれか1項に記載の圧縮自己着火式エンジンの制御装置において、
     前記コントローラーは、前記状態量設定デバイス及び前記インジェクタに制御信号を出力することによって、前記燃焼室の中の状態を、前記燃焼室の中の全ガスと燃料との質量比に関係する指標としてのG/Fが18.5以上30以下でかつ、空気過剰率λが1.0±0.2に設定する圧縮自己着火式エンジンの制御装置。
PCT/JP2016/084622 2016-11-22 2016-11-22 圧縮自己着火式エンジンの制御装置 WO2018096590A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2016/084622 WO2018096590A1 (ja) 2016-11-22 2016-11-22 圧縮自己着火式エンジンの制御装置
US16/088,013 US10907550B2 (en) 2016-11-22 2017-08-25 Control apparatus for engine
PCT/JP2017/030488 WO2018096748A1 (ja) 2016-11-22 2017-08-25 エンジンの制御装置
JP2018552415A JP6562165B2 (ja) 2016-11-22 2017-08-25 エンジンの制御装置
CN201780019313.3A CN109072806B (zh) 2016-11-22 2017-08-25 发动机的控制装置
EP17874115.3A EP3421769B1 (en) 2016-11-22 2017-08-25 Control apparatus for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/084622 WO2018096590A1 (ja) 2016-11-22 2016-11-22 圧縮自己着火式エンジンの制御装置

Publications (1)

Publication Number Publication Date
WO2018096590A1 true WO2018096590A1 (ja) 2018-05-31

Family

ID=62194828

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2016/084622 WO2018096590A1 (ja) 2016-11-22 2016-11-22 圧縮自己着火式エンジンの制御装置
PCT/JP2017/030488 WO2018096748A1 (ja) 2016-11-22 2017-08-25 エンジンの制御装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030488 WO2018096748A1 (ja) 2016-11-22 2017-08-25 エンジンの制御装置

Country Status (5)

Country Link
US (1) US10907550B2 (ja)
EP (1) EP3421769B1 (ja)
JP (1) JP6562165B2 (ja)
CN (1) CN109072806B (ja)
WO (2) WO2018096590A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106285985A (zh) * 2016-09-30 2017-01-04 广州汽车集团股份有限公司 汽油发动机过量空气系数燃烧控制方法及燃烧控制系统
WO2018096587A1 (ja) * 2016-11-22 2018-05-31 マツダ株式会社 圧縮自己着火式エンジンの制御装置
WO2018096586A1 (ja) * 2016-11-22 2018-05-31 マツダ株式会社 圧縮自己着火式エンジンの制御装置
JP6733690B2 (ja) * 2018-02-16 2020-08-05 株式会社デンソー 燃焼制御装置
JP7052535B2 (ja) 2018-05-02 2022-04-12 マツダ株式会社 圧縮着火式エンジンの制御装置
JP2020002844A (ja) * 2018-06-27 2020-01-09 トヨタ自動車株式会社 内燃機関の制御システム
JP7225790B2 (ja) 2018-12-26 2023-02-21 マツダ株式会社 過給機付圧縮着火式エンジン
JP7088049B2 (ja) * 2019-01-31 2022-06-21 マツダ株式会社 圧縮着火式エンジンの制御装置
JP2021021339A (ja) * 2019-07-24 2021-02-18 マツダ株式会社 エンジンの燃料噴射制御装置
JP2021021338A (ja) * 2019-07-24 2021-02-18 マツダ株式会社 エンジンの燃料噴射制御装置
JP2021021340A (ja) * 2019-07-24 2021-02-18 マツダ株式会社 エンジンの燃料噴射制御装置
JP2021021337A (ja) * 2019-07-24 2021-02-18 マツダ株式会社 エンジンの燃料噴射制御装置
JP2023020226A (ja) * 2021-07-30 2023-02-09 マツダ株式会社 エンジンシステム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6276334B1 (en) * 1998-02-23 2001-08-21 Cummins Engine Company, Inc. Premixed charge compression ignition engine with optimal combustion control
US20080302319A1 (en) * 2007-06-08 2008-12-11 Gm Global Technology Operations, Inc. Method and apparatus for controlling transitions in an engine having multi-step valve lift
JP2010236497A (ja) * 2009-03-31 2010-10-21 Mazda Motor Corp 内燃機関を制御する方法及び装置
JP2012211542A (ja) * 2011-03-31 2012-11-01 Mazda Motor Corp ガソリンエンジン
JP2014051935A (ja) * 2012-09-07 2014-03-20 Mazda Motor Corp 火花点火式直噴エンジン
JP2015086754A (ja) * 2013-10-29 2015-05-07 マツダ株式会社 圧縮着火式エンジンの制御装置
JP2016130486A (ja) * 2015-01-14 2016-07-21 三菱電機株式会社 内燃機関の制御装置

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950009261B1 (ko) * 1984-07-18 1995-08-18 미쯔비시 지도샤 고교 가부시끼가이샤 흡기 포오트 장치
US5357928A (en) * 1992-03-25 1994-10-25 Suzuki Motor Corporation Fuel injection control system for use in an internal combustion engine
JP3562165B2 (ja) * 1996-09-17 2004-09-08 日産自動車株式会社 ディーゼルエンジンの吸気ポート
JP3362657B2 (ja) * 1998-01-30 2003-01-07 トヨタ自動車株式会社 スパークアシスト式自着火内燃機関
JP3951515B2 (ja) * 1999-09-13 2007-08-01 日産自動車株式会社 圧縮自己着火式内燃機関
JP4253426B2 (ja) * 1999-09-14 2009-04-15 日産自動車株式会社 圧縮自己着火式ガソリン機関
JP3760725B2 (ja) * 2000-05-16 2006-03-29 日産自動車株式会社 圧縮自己着火式ガソリン機関
JP3945152B2 (ja) * 2000-11-21 2007-07-18 日産自動車株式会社 内燃機関の燃焼制御装置
JP3988383B2 (ja) * 2000-12-19 2007-10-10 日産自動車株式会社 自己着火式エンジン及びその制御装置
JP3975702B2 (ja) 2001-08-02 2007-09-12 日産自動車株式会社 自己着火式エンジンの制御装置
CN100363609C (zh) * 2002-01-31 2008-01-23 马自达汽车株式会社 火花点火发动机的控制装置
JP3846393B2 (ja) * 2002-09-30 2006-11-15 マツダ株式会社 火花点火式エンジンの制御装置
US6968825B2 (en) 2003-06-06 2005-11-29 Mazda Motor Corporation Control device for spark-ignition engine
JP4172340B2 (ja) 2003-06-25 2008-10-29 マツダ株式会社 火花点火式エンジンの制御装置
JP4082292B2 (ja) 2003-06-25 2008-04-30 マツダ株式会社 火花点火式エンジンの制御装置
JP2005090468A (ja) * 2003-09-22 2005-04-07 Toyota Industries Corp 予混合圧縮自着火内燃機関のegr装置、および、予混合圧縮自着火内燃機関の着火時期制御方法
JP4643967B2 (ja) * 2004-10-15 2011-03-02 日産自動車株式会社 筒内直接噴射式火花点火内燃機関の制御装置
US7168420B1 (en) * 2005-09-21 2007-01-30 Ford Global Technologies, Llc System and method for engine operation with spark assisted compression ignition
US7213572B2 (en) * 2005-09-21 2007-05-08 Ford Global Technologies, Llc System and method for engine operation with spark assisted compression ignition
US7234438B2 (en) * 2005-09-21 2007-06-26 Ford Global Technologies, Llc System and method for engine operation with spark assisted compression ignition
US7240659B2 (en) * 2005-09-21 2007-07-10 Ford Global Technologies, Llc Transition strategy for engine operation with spark ignition and homogeneous charge compression ignition modes
US7484498B2 (en) * 2006-03-31 2009-02-03 Mazda Motor Corporation Spark-ignition gasoline engine
US7377270B2 (en) * 2006-10-23 2008-05-27 Caterpillar Inc. Exhaust gas recirculation in a homogeneous charge compression ignition engine
EP1953375A1 (en) * 2007-01-30 2008-08-06 Mazda Motor Corporation Method and computer program product of operating an internal combustion engine as well as engine operating system
JP4836088B2 (ja) * 2007-11-08 2011-12-14 日立オートモティブシステムズ株式会社 圧縮自己着火式内燃機関の制御装置および制御方法
WO2010124701A1 (de) * 2009-04-29 2010-11-04 Fev Motorentechnik Gmbh Verdichter mit drallerzeuger bei einem kraftfahrzeug
JP5299586B2 (ja) * 2010-04-30 2013-09-25 マツダ株式会社 火花点火式エンジンの制御方法及び火花点火式エンジン
US8347857B2 (en) * 2010-06-24 2013-01-08 GM Global Technology Operations LLC Method and device for improving charged engines
US9297319B2 (en) * 2010-12-31 2016-03-29 GM Global Technology Operations LLC Control of EGR, fresh mass air flow, and boost pressure for internal combustion engines
JP5533732B2 (ja) * 2011-02-24 2014-06-25 マツダ株式会社 火花点火式ガソリンエンジンの制御装置
JP5500104B2 (ja) * 2011-02-24 2014-05-21 マツダ株式会社 火花点火式ガソリンエンジンの制御装置
JP5500102B2 (ja) * 2011-02-24 2014-05-21 マツダ株式会社 火花点火式ガソリンエンジンの制御装置
JP2012215097A (ja) * 2011-03-31 2012-11-08 Mazda Motor Corp 火花点火式エンジンの高圧燃料ポンプ構造およびエンジンの制御装置
JP5423717B2 (ja) * 2011-03-31 2014-02-19 マツダ株式会社 火花点火式ガソリンエンジン
JP5494568B2 (ja) 2011-05-18 2014-05-14 マツダ株式会社 ガソリンエンジン
JP5821367B2 (ja) * 2011-07-28 2015-11-24 日産自動車株式会社 燃料噴射制御装置
US9140199B2 (en) * 2011-11-17 2015-09-22 Robert Bosch Gmbh Combustion mode switching with a turbocharged/supercharged engine
WO2014034087A1 (ja) * 2012-08-29 2014-03-06 マツダ株式会社 火花点火式直噴エンジン
CN104603425B (zh) * 2012-09-07 2017-06-06 马自达汽车株式会社 火花点火式发动机
JP5904290B2 (ja) 2012-12-11 2016-04-13 マツダ株式会社 ターボ過給機付きエンジン
JP5904144B2 (ja) * 2013-03-11 2016-04-13 マツダ株式会社 圧縮自己着火式エンジン
JP6249668B2 (ja) 2013-08-07 2017-12-20 本田技研工業株式会社 内燃機関の制御装置
JP6315005B2 (ja) * 2016-02-15 2018-04-25 トヨタ自動車株式会社 内燃機関の制御装置
WO2018096589A1 (ja) * 2016-11-22 2018-05-31 マツダ株式会社 圧縮自己着火式エンジンの制御装置
WO2018096652A1 (ja) * 2016-11-25 2018-05-31 マツダ株式会社 圧縮自己着火式エンジンの制御装置
US10697391B2 (en) * 2017-05-19 2020-06-30 Mazda Motor Corporation Control system of compression-ignition engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6276334B1 (en) * 1998-02-23 2001-08-21 Cummins Engine Company, Inc. Premixed charge compression ignition engine with optimal combustion control
US20080302319A1 (en) * 2007-06-08 2008-12-11 Gm Global Technology Operations, Inc. Method and apparatus for controlling transitions in an engine having multi-step valve lift
JP2010236497A (ja) * 2009-03-31 2010-10-21 Mazda Motor Corp 内燃機関を制御する方法及び装置
JP2012211542A (ja) * 2011-03-31 2012-11-01 Mazda Motor Corp ガソリンエンジン
JP2014051935A (ja) * 2012-09-07 2014-03-20 Mazda Motor Corp 火花点火式直噴エンジン
JP2015086754A (ja) * 2013-10-29 2015-05-07 マツダ株式会社 圧縮着火式エンジンの制御装置
JP2016130486A (ja) * 2015-01-14 2016-07-21 三菱電機株式会社 内燃機関の制御装置

Also Published As

Publication number Publication date
EP3421769A1 (en) 2019-01-02
CN109072806B (zh) 2021-11-09
JPWO2018096748A1 (ja) 2018-12-27
US10907550B2 (en) 2021-02-02
CN109072806A (zh) 2018-12-21
US20190112988A1 (en) 2019-04-18
JP6562165B2 (ja) 2019-08-21
EP3421769A4 (en) 2019-07-03
WO2018096748A1 (ja) 2018-05-31
EP3421769B1 (en) 2021-08-11

Similar Documents

Publication Publication Date Title
JP6558408B2 (ja) 圧縮自己着火式エンジンの制御装置
WO2018096585A1 (ja) 圧縮自己着火式エンジンの制御装置
WO2018096589A1 (ja) 圧縮自己着火式エンジンの制御装置
JP6562165B2 (ja) エンジンの制御装置
WO2018097104A1 (ja) 圧縮自己着火式エンジンの制御装置
JP6562164B2 (ja) エンジンの制御装置
WO2018096584A1 (ja) 圧縮自己着火式エンジンの制御装置
JP6601371B2 (ja) 圧縮自己着火式エンジンの制御装置
WO2018096587A1 (ja) 圧縮自己着火式エンジンの制御装置
JP6562163B2 (ja) 圧縮自己着火式エンジンの燃焼制御装置
JP6562166B2 (ja) エンジンの制御装置
JP6562162B2 (ja) 圧縮自己着火式エンジンの燃焼制御装置
JP6558427B2 (ja) 圧縮着火式エンジンの制御装置
JP6601481B2 (ja) 圧縮着火式エンジンの制御装置
JP6493504B2 (ja) 圧縮着火式エンジンの制御装置
JP6558426B2 (ja) 圧縮着火式エンジンの制御装置
JP6558425B2 (ja) 圧縮着火式エンジンの制御装置
JP6528818B2 (ja) 過給機付き圧縮自己着火式エンジン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16922167

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16922167

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP