JP6562162B2 - 圧縮自己着火式エンジンの燃焼制御装置 - Google Patents

圧縮自己着火式エンジンの燃焼制御装置 Download PDF

Info

Publication number
JP6562162B2
JP6562162B2 JP2018552353A JP2018552353A JP6562162B2 JP 6562162 B2 JP6562162 B2 JP 6562162B2 JP 2018552353 A JP2018552353 A JP 2018552353A JP 2018552353 A JP2018552353 A JP 2018552353A JP 6562162 B2 JP6562162 B2 JP 6562162B2
Authority
JP
Japan
Prior art keywords
combustion
fuel
combustion chamber
engine
injector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018552353A
Other languages
English (en)
Other versions
JPWO2018096653A1 (ja
Inventor
浩太 松本
浩太 松本
漆原 友則
友則 漆原
井上 淳
淳 井上
佑介 河合
佑介 河合
亨 宮本
亨 宮本
雄大 神代
雄大 神代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Publication of JPWO2018096653A1 publication Critical patent/JPWO2018096653A1/ja
Application granted granted Critical
Publication of JP6562162B2 publication Critical patent/JP6562162B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/08Engines characterised by fuel-air mixture compression with positive ignition with separate admission of air and fuel into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B11/00Engines characterised by both fuel-air mixture compression and air compression, or characterised by both positive ignition and compression ignition, e.g. in different cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0648Means or methods to improve the spray dispersion, evaporation or ignition
    • F02B23/0651Means or methods to improve the spray dispersion, evaporation or ignition the fuel spray impinging on reflecting surfaces or being specially guided throughout the combustion space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0669Details related to the fuel injector or the fuel spray having multiple fuel spray jets per injector nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0678Unconventional, complex or non-rotationally symmetrical shapes of the combustion space, e.g. flower like, having special shapes related to the orientation of the fuel spray jets
    • F02B23/0687Multiple bowls in the piston, e.g. one bowl per fuel spray jet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/101Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on or close to the cylinder centre axis, e.g. with mixture formation using spray guided concepts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0052Feedback control of engine parameters, e.g. for control of air/fuel ratio or intake air amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • F02D41/3041Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode with means for triggering compression ignition, e.g. spark plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B2023/103Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector having a multi-hole nozzle for generating multiple sprays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Signal Processing (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Description

ここに開示する技術は、圧縮自己着火式エンジンの燃焼制御装置に関する。
特許文献1には、部分負荷領域において、燃焼室内の混合気が自己着火により燃焼するエンジンが記載されている。このエンジンは、部分負荷領域内の低負荷側の運転領域においては、熱い既燃ガスを燃焼室内に残すことによって、混合気の自己着火を促進する。また、このエンジンは、部分負荷領域内の高負荷側の運転領域においては、冷却した既燃ガスを燃焼室内に導入することによって自己着火を起こり難くすると共に、圧縮上死点の直前に、点火プラグが点火を行う。
また、特許文献2には、部分負荷領域において燃焼騒音を低減する目的で、混合気の自己着火を、時間をずらして2回行うようにしたエンジンが記載されている。このエンジンは、圧縮行程中に、ピストンのキャビティの外の領域に向かって燃料を噴射する。このことによりキャビティの外において形成した混合気が、圧縮上死点付近において自己着火する。また、このエンジン1は、当該自己着火の後に二回目の燃料噴射を行う。このことにより、キャビティの内において混合気を形成しかつ、当該キャビティの内の混合気が自己着火により燃焼する。
特許第4082292号公報 特許第5447423号公報
ところで、自己着火による燃焼において、圧縮開始前の燃焼室の中の温度がばらつくと、自己着火のタイミングが大きく変化する。例えば自己着火のタイミングが進角すると、燃焼騒音が大きくなってしまう。自己着火による燃焼を行おうとすれば、燃焼室の温度コントロールを緻密に行わなければならない。
自己着火のタイミングを精度よくコントロールするために、SI(Spark Ignition)燃焼とCI(Compression Ignition)燃焼とを組み合わせる燃焼形態が考えられる。この燃焼形態は、点火プラグが、燃焼室の中の混合気に強制的に点火することによって、混合気が火炎伝播により燃焼すると共に、SI燃焼の発熱によって燃焼室の中の温度が高くなることによって、未燃混合気が自己着火により燃焼する。SI燃焼の発熱量を調整することによって、圧縮開始前の燃焼室の中の温度のばらつきを吸収することができる。圧縮開始前の燃焼室の中の温度に応じて、例えば点火タイミングの調整によってSI燃焼の開始タイミングを調整すれば、自己着火のタイミングをコントロールすることができる。SI燃焼がCI燃焼をコントロールするため、SI燃焼とCI燃焼とを組み合わせた燃焼形態を、以下においては、SICI燃焼と呼ぶ。
SICI燃焼において、自己着火のタイミングを精度よくコントロールするためには、点火タイミングを変更することに対応して、自己着火のタイミングが変化しなければならない。点火タイミングの変更に対して、自己着火のタイミングが変化する感度が高いことが好ましい。
ここに開示する技術はかかる点に鑑みてなされたものであり、その目的とするところは、SI燃焼とCI燃焼とを組み合わせたSICI燃焼において、自己着火のタイミングを精度よくコントロールすることにある。
本願発明者らの検討によると、点火タイミングの変更に対する自己着火のタイミングの変化感度が高くなるためには、SICI燃焼におけるSI燃焼の燃焼速度が高くなければならないことが判明した。そこで、本願発明者らは、SICI燃焼において、インジェクタが燃焼室の中に燃料を噴射するときに発生するガスの流動(つまり、乱流エネルギ)を利用して、SI燃焼の燃焼速度を高めることを検討した。
燃料を噴射するときに発生する乱流エネルギは、圧縮行程が進行するに従って減衰する。点火タイミングにおける燃焼室の中の乱流エネルギを高くするためには、点火タイミングに近いタイミングで燃料を噴射することが有利である。そこで、SICI燃焼におけるCI燃焼用の燃料を、点火タイミングから離れたタイミングで噴射(つまり、前段噴射)し、SI燃焼用の燃料を、点火タイミングに近いタイミングで噴射(つまり、後段噴射)することが考えられる。前段噴射によって均質な混合気が形成されるから、燃費が向上すると共に、排出ガス性能が良好になる。また、後段噴射によって、前述したように、SI燃焼の燃焼速度が高まり、自己着火のタイミングを精度よくコントロールすることが可能になる。その結果、燃焼騒音が増大してしまうことを未然に回避することができる。
ところが、エンジンの負荷が比較的低いときには、燃焼室の中に供給する総燃料量が少なくなる。総燃料量が少ないときに、前段噴射と後段噴射とに分けて燃料を噴射すると、一回当たりに噴射する燃料量が少なくなりすぎて、燃料噴霧のペネトレーションが弱くなってしまうことに本願発明者らは気づいた。燃料噴霧のペネトレーションが弱くなってしまうと、前述した混合気の均質性が低下することによって燃費及び排出ガス性能が不利になると共に、乱流エネルギも低くなって、自己着火のタイミングのコントロール性も低下してしまう。
燃料を分割して噴射するのではなく一括噴射すれば、一回当たりに噴射する燃料量が増えるから、燃料噴霧のペネトレーションは強くなる。しかしながら、一括噴射の噴射タイミングを、圧縮行程中において遅角すれば、点火タイミングにおける乱流エネルギは高くなる一方で、混合気の均質性は低下する。逆に、一括噴射の噴射タイミングを、圧縮行程中において進角すれば、混合気の均質性は向上する一方で、点火タイミングにおける乱流エネルギは低くなる。燃料噴射による乱流エネルギの確保と、混合気の均質性とは、相反する要求である。
本願発明者らは、燃料の噴射タイミングに関して検討を繰り返した結果、燃料噴射による乱流エネルギの確保と、混合気の均質性とが両立する状況を見出したことにより、ここに開示する技術を完成するに至った。
具体的に、ここに開示する技術は、圧縮自己着火式エンジンの燃焼制御装置に係る。この圧縮自己着火式エンジンの燃焼制御装置は、シリンダ及びピストンによって形成される燃焼室の中において混合気を自己着火させるよう構成されたエンジンと、前記エンジンに取り付けられかつ、前記燃焼室の中への新気及び既燃ガスの導入を調整することによって、前記燃焼室の中を所望の状態に設定するよう構成された状態量設定デバイスと、前記燃焼室のルーフに取り付けられかつ、前記燃焼室の中に燃料を噴射するよう構成されたインジェクタと、前記燃焼室の中に臨んで配設されかつ、前記燃焼室の中の混合気に点火をするよう構成された点火プラグと、前記状態量設定デバイス、前記インジェクタ、及び、前記点火プラグのそれぞれに接続されかつ、前記状態量設定デバイス、前記インジェクタ、及び、前記点火プラグのそれぞれに制御信号を出力することによって、前記エンジンを運転するよう構成されたコントローラーと、前記コントローラーに接続されかつ、前記エンジンの運転状態に関するパラメータを検知すると共に、前記コントローラーに検知信号を出力するよう構成されたセンサと、を備える。
そして、前記ピストンは、前記ピストンの上面から凹陥すると共に、前記インジェクタに向かい合うキャビティを有し、前記インジェクタは、前記シリンダの筒軸に対して噴口軸が傾いた複数の噴口を有すると共に、前記ピストンの上面に向かって前記燃料を噴射し、前記点火プラグは、点火された混合気が火炎伝播により燃焼し、その後、前記燃焼室の中の未燃混合気が自己着火により燃焼するように、前記コントローラーの制御信号を受けて、所定の点火タイミングで前記混合気に点火をし、前記コントローラーは、圧縮行程中において、前記インジェクタの前記噴口の軸を延長した線が前記ピストンの上面における前記キャビティの開口縁を含む特定部分と重なる特定タイミングで前記燃料を噴射するよう、前記インジェクタに制御信号を出力する。
尚、ここでいう「燃焼室」は、ピストンが圧縮上死点に至ったときに形成される空間の意味に限定されない。「燃焼室」の語は広義で用いる。
この構成によると、インジェクタは、シリンダの筒軸に対して噴口軸が傾いた複数の噴口を有し、各噴口を通じて、ピストンの上面に向かって燃料を噴射する。インジェクタは、コントローラーの制御信号を受けることによって、圧縮行程中において燃焼室の中に燃料を噴射する。燃料を噴射するタイミングは、インジェクタの噴口の軸を延長した線がピストンの上面におけるキャビティの開口縁を含む特定部分と重なる特定タイミングである。
特定タイミングで噴射された燃料噴霧は、キャビティの開口縁の付近に衝突をし、噴霧の一部は、キャビティの外に向かって流れると共に、噴霧の一部は、キャビティの内に向かって流れる。キャビティの外に流れた燃料噴霧は、ピストンが上死点に向かって移動をする間に、キャビティの外の領域において新気と混合をして、均質な混合気を形成する。また、キャビティの内に流れた燃料噴霧は、ピストンが上死点に向かって移動をする間に、キャビティの外の領域において新気と混合をして、均質な混合気を形成する。また、キャビティの内にガスの流動が発生するため、キャビティの内の乱流エネルギは高くなる。
点火プラグは、コントローラーの制御信号を受けて、燃焼室の中の混合気に強制的に点火する。これにより、キャビティの内の混合気が火炎伝播により燃焼する。前述したように、キャビティの内は、乱流エネルギが高くなっているため、SI燃焼の燃焼速度が高くなる。SI燃焼の燃焼速度が高いと、点火タイミングの変更に対する自己着火のタイミングの変化感度が高くなるから、自己着火のタイミングを精度よくコントロールする上で有利になる。
SI燃焼によって燃焼室の中の温度が高まることで、燃焼室の中の未燃混合気が自己着火により燃焼する。こうして、SICI燃焼が完了する。
特定タイミングで燃料を噴射すると、前述の通り、キャビティの内及び外のそれぞれにおいて混合気の均質性が高くなる。その結果、SICI燃焼において、未燃損失が低減することで燃費が向上すると共に、スモークの発生が回避されることで排出ガス性能が良好になる。
前記インジェクタは、前記燃焼室の中央部において、前記インジェクタの中心軸が前記シリンダの筒軸に平行となるように配設されていると共に、前記燃焼室の中央部から径方向外方に向かって前記燃料を噴射し、前記キャビティは、前記インジェクタの中心軸の延長線上に配設されている。
この構成によると、インジェクタが、特定タイミングで燃料を噴射すると、燃焼室の中央部から径方向外方に向かって噴射された燃料噴霧が、キャビティの開口縁の全周に亘って、開口縁の付近に衝突をする。噴霧の一部は、キャビティの外に向かって流れると共に、噴霧の一部は、キャビティの内に向かって流れる。キャビティの内における乱流エネルギの確保と、キャビティの内と外における混合気の均質性とを、高いレベルで両立することができる。
前記点火プラグは、前記シリンダの筒軸を挟んだ一側において、前記インジェクタに隣接して前記燃焼室の前記ルーフに取り付けられ、前記シリンダの筒軸よりも一側における前記キャビティの径は、前記シリンダの筒軸よりも他側における前記キャビティの径よりも小さく構成されている。
シリンダの筒軸を挟んだ一側及び他側の内、点火プラグが配設されている一側におけるキャビティの径が、相対的に小さいため、キャビティの内で形成された混合気は、速やかに点火プラグの近傍へと流れる。点火プラグは、キャビティ内の混合気に確実に着火することができ、SICI燃焼におけるSI燃焼の燃焼安定性が高まる。
前記燃焼室内において前記シリンダの筒軸よりも一側に向かって前記燃料を噴射する前記噴口の噴口軸の、前記シリンダの筒軸に対する角度は、前記シリンダの筒軸よりも他側に向かって前記燃料を噴射する前記噴口の噴口軸の前記角度よりも小さく設定されている、としてもよい。
前述したように、キャビティの径の大きさは、周方向の位置に応じて異なる。キャビティの径の大きさが変化することに対応して、インジェクタの噴口の噴口軸の角度を変える。このことにより、各噴口から噴射した燃料噴霧は、キャビティの開口縁の周方向の全域に亘って、開口縁の付近に衝突するようになる。その結果、燃焼室内の周方向の全域において、噴霧の一部が、キャビティの外に向かって流れると共に、噴霧の一部が、キャビティの内に向かって流れるようになる。
ここに開示する圧縮自己着火式エンジンの燃焼制御装置は、
シリンダ及びピストンによって形成される燃焼室の中において混合気を自己着火させるよう構成されたエンジンと、
前記エンジンに取り付けられかつ、前記燃焼室の中への新気及び既燃ガスの導入を調整することによって、前記燃焼室の中を所望の状態に設定するよう構成された状態量設定デバイスと、
前記燃焼室のルーフに取り付けられかつ、前記燃焼室の中に燃料を噴射するよう構成されたインジェクタと、
前記燃焼室の中に臨んで配設されかつ、前記燃焼室の中の混合気に点火をするよう構成された点火プラグと、
前記状態量設定デバイス、前記インジェクタ、及び、前記点火プラグのそれぞれに接続されかつ、前記状態量設定デバイス、前記インジェクタ、及び、前記点火プラグのそれぞれに制御信号を出力することによって、前記エンジンを運転するよう構成されたコントローラーと、
前記コントローラーに接続されかつ、前記エンジンの運転状態に関するパラメータを検知すると共に、前記コントローラーに検知信号を出力するよう構成されたセンサと、を備え、
前記ピストンは、前記ピストンの上面から凹陥すると共に、前記インジェクタに向かい合うキャビティを有し、
前記インジェクタは、前記シリンダの筒軸に対して噴口軸が傾いた複数の噴口を有すると共に、前記ピストンの上面に向かって前記燃料を噴射し、
前記点火プラグは、点火された混合気が火炎伝播により燃焼し、その後、前記燃焼室の中の未燃混合気が自己着火により燃焼するように、前記コントローラーの制御信号を受けて、所定の点火タイミングで前記混合気に点火をし、
前記コントローラーは、圧縮行程中において、前記インジェクタの前記噴口の軸を延長した線が前記ピストンの上面における前記キャビティの開口縁を含む特定部分と重なる特定タイミングで前記燃料を噴射するよう、前記インジェクタに制御信号を出力し、
前記コントローラーは、前記センサの検知信号に基づいて前記エンジンの運転状態が所定の運転領域にあるときに、前記点火された混合気が火炎伝播により燃焼し、その後、前記燃焼室の中の未燃混合気が自己着火により燃焼するように、前記状態量設定デバイス、前記インジェクタ、及び、前記点火プラグに制御信号を出力すると共に、前記コントローラーは、前記センサの検知信号に基づいて前記エンジンの運転状態が前記所定の運転領域よりも負荷の低い低負荷領域にあるとき、及び、前記所定の運転領域よりも負荷の高い高負荷領域にあるときに、前記燃焼室の中の混合気が、自己着火による燃焼が発生せずに、火炎伝播により燃焼するよう、前記状態量設定デバイス、前記インジェクタ、及び、前記点火プラグに制御信号を出力する。
ここで、前記の「所定の運転領域」は、エンジンの運転領域を、アイドル運転を含む低負荷領域、全開負荷を含む高負荷領域、及び、低負荷領域と高負荷領域との間の中負荷領域の3つの領域に分けたときの、中負荷領域としてもよい。エンジンが中負荷領域内で運転するときは、エンジンの負荷が相対的に高いため、燃焼室に供給する燃料量が増える。このため、中負荷領域内で、仮に自己着火による燃焼を行うと、燃焼開始時の燃焼室内の圧力変動が大きくなって、燃焼騒音が増大してしまう。
これに対し、SICI燃焼は、点火プラグが混合気に点火をして、火炎伝播による燃焼を行う。火炎伝播による燃焼は、自己着火による燃焼よりも緩慢であるから、燃焼騒音が抑制される。また、CI燃焼を行うことによって、火炎伝播による燃焼よりも、燃焼期間が短縮する。よって、燃費の向上に有利になる。SICI燃焼は、自己着火による燃焼が可能な運転領域を広げる。
エンジンの運転状態が低負荷領域にあるときには、燃焼室に供給する燃料量が少なくなる。燃焼により発生する熱量が少ないため、燃焼室の中の温度が上がらない。また、既燃ガスの温度も低いため、既燃ガスを燃焼室の中に大量に導入しても、燃焼室の中の温度を十分に高めることができない。そのため、エンジンの運転状態が低負荷領域にあるときには、自己着火による燃焼が不安定になる。
そこで、エンジンは、運転状態が低負荷領域にあるときには、SICI燃焼ではなく、燃焼室の中の混合気を火炎伝播により燃焼させる。こうすることで、エンジンの運転状態が低負荷領域にあるときに、燃焼安定性が確保されると共に、燃費が向上しかつ、排出ガス性能が向上する。
また、エンジンの運転状態が高負荷領域にあるときには、燃焼室に供給する燃料量が多くなる。そのため、SI燃焼とCI燃焼とを組み合わせたとしても、燃焼騒音の抑制が困難になる。また、燃焼室内の温度が高くなるため、自己着火による燃焼を行おうとしても、過早着火やノッキングといった異常燃焼が生じやすい。
そこで、エンジンは、運転状態が高負荷領域にあるときには、SICI燃焼ではなく、燃焼室の中の混合気を火炎伝播により燃焼させる。こうすることで、エンジンの運転状態が高負荷領域にあるときに、燃焼騒音が防止されると共に、異常燃焼の発生が回避される。
前記コントローラーは、前記エンジンの運転状態が前記所定の運転領域内において所定負荷よりも負荷が低い一括噴射領域にあるときに、前記燃料を、前記特定タイミングにおいて一括噴射するよう、前記インジェクタに制御信号を出力する。
エンジンの運転状態が一括噴射領域にあるときには、エンジンの負荷が低いため、燃焼室の中に供給する燃料の総噴射量が少なくなる。燃料を複数回に分けて噴射すると、燃料噴霧のペネトレーションが弱くなりすぎてしまう。燃料噴霧のペネトレーションを高くするために、インジェクタは、燃料を一括で噴射することが好ましい。
前述した特定タイミングで燃料を一括噴射すると、燃料噴霧のペネトレーションが高いため、燃料噴霧がキャビティの開口縁の付近に強く衝突する。その結果、キャビティの外及び内のそれぞれにおいて、ガスの流動が強くなり、前述した、キャビティの内における乱流エネルギの確保と、キャビティの内と外とにおける混合気の均質性とを両立することができる。
前記状態量設定デバイスは、前記エンジンに取り付けられかつ、前記燃焼室の中に導入するガスを過給するよう構成された過給システムを有し、前記所定の運転領域は、過給領域と、前記過給領域よりも負荷が低い非過給領域とに分かれており、前記過給システムは、前記コントローラーの制御信号を受けて、前記エンジンの運転状態が前記過給領域にあるときに過給を行いかつ、前記非過給領域にあるときに過給を行わず、前記一括噴射領域は、前記非過給領域に含まれている、としてもよい。例えば、エンジンによって駆動される機械式の過給機を採用してもよい。機械式の過給機は、過給と非過給とを切り替えることが可能である。
エンジンの負荷が低いときには燃料量が少ないため、過給を行わなくても、必要な新気を、燃焼室の中に導入することができる。過給を行わないことによって燃費が向上する。
エンジンの負荷が高くなると燃料量が多くなるため、過給を行うことによって、必要な新気を燃焼室の中に導入することができる。また、過給を行うと、新気の他に、燃焼室内に導入するガスの量を増やすこともできる。ガス量が増えると熱容量が増えるため、燃料量が増えても、SI燃焼による燃焼室の中の温度上昇を抑制することが可能になる。従って、過給を行うことにより、SICI燃焼において、未燃混合気の自己着火のタイミングが進角することを回避することができる。その結果、燃焼騒音が増大してしまうことが回避される。
前記コントローラーは、前記燃焼室の中の混合気が燃焼するときに発生する全熱量に対し、前記火炎伝播により混合気が燃焼するときに発生する熱量の割合に関係する指標としてのSI率を、前記エンジンの運転状態が所定の運転領域にあるときに、100%未満にすると共に、前記エンジンの運転状態が前記過給領域にあるときには、前記非過給領域にあるときよりも、前記SI率を高くする、としてもよい。
混合気が火炎伝播により燃焼し、その後、未燃混合気が自己着火により燃焼して燃焼が完了する燃焼形態、つまり、SICI燃焼は、SI率が100%未満になる。自己着火による燃焼が発生せずに火炎伝播による燃焼のみで燃焼が完了する燃焼形態は、SI率が100%になる。
火炎伝播による燃焼(つまり、SI燃焼)は、圧力変動が相対的に小さいため、燃焼騒音の発生を抑制することが可能になる。また、CI燃焼は、火炎伝播による燃焼よりも、燃焼期間が短縮し、燃費の向上に有利になる。SICI燃焼においてSI率を高くすると、SI燃焼の割合が高くなるから、燃焼騒音の抑制に有利になる。SICI燃焼においてSI率を低くすると、CI燃焼の割合が高くなるから、燃費の向上に有利になる。
エンジンの負荷が高いときは、負荷が低いときよりも、燃焼室の中に供給する燃料量が増える。前記の構成は、エンジンの運転状態が過給領域にあって燃料量が増えると、エンジンの運転状態が非過給領域にあるときよりも、SI率を高くする。これにより、燃焼騒音の発生が抑制されるから、エンジンの負荷が高くなっても、SICI燃焼を行うことができる。広い運転領域に亘って、SICI燃焼を行うことができるため、エンジンの燃費の向上に有利になる。
前記コントローラーは、前記エンジンの運転状態が前記低負荷領域にあるときに、燃料を、吸気行程中に噴射するよう、前記インジェクタに制御信号を出力する、としてもよい。
前述したように、エンジンの運転状態が低負荷領域にあるときには、SICI燃焼ではなく、SI燃焼を行う。インジェクタが吸気行程中に燃料を噴射することによって、混合気の均質性が高まり、燃費が向上すると共に、排出ガス性能が良好になる。
前記特定タイミングは、圧縮上死点前70±5°CAである、としてもよい。
本願発明者らの検討によれば、圧縮上死点前70±5°CAのタイミングで、燃焼室の中に燃料を噴射することによって、前述したように、燃料噴霧がキャビティの開口縁の付近に衝突をして、噴霧の一部が、キャビティの外に向かって流れると共に、噴霧の一部が、キャビティの内に向かって流れるようになる。
前記圧縮自己着火式エンジンの燃焼制御装置は、前記インジェクタに接続されかつ、前記インジェクタに燃料を供給するよう構成された燃料供給システムを備え、前記コントローラーは、前記特定タイミングにおいて燃料を噴射するときに、前記燃料の圧力が所定圧力以上となるよう、前記燃料供給システムに制御信号を出力する、としてもよい。
燃料の圧力を高めると、インジェクタから噴射した燃料噴霧は、圧縮行程中に次第に高まる燃焼室の中の圧力に対抗して飛翔することができるから、燃料噴霧は、キャビティの開口縁の付近に、確実に衝突するようになる。
前記コントローラーは、前記状態量設定デバイス及び前記インジェクタに制御信号を出力することによって、前記燃焼室の中の状態を、前記燃焼室の中の全ガスと燃料との質量比に関係する指標としてのG/Fが18.5以上30以下でかつ、空気過剰率λが1.0±0.2に設定する、としてもよい。
本願発明者らの検討によると、燃焼室の中の状態を、混合気のλが1.0±0.2でかつ、G/Fが18.5以上30以下とすれば、SI燃焼が安定化する結果、点火タイミングの変更に対して、自己着火のタイミングが、感度よく変化することがわかった。つまり、SICI燃焼において、自己着火のタイミングを精度よくコントロールすることができる。
また、燃焼室の中の状態を18.5≦G/Fにすることで、混合気の希釈率が高いため、エンジンの燃費性能が向上する。
さらに、λを1.0±0.2に設定することによって、エンジンの排気通路に取り付けた三元触媒により、排気ガスを浄化することが可能になる。
従って、前記の構成によると、燃費性能を高くすると共に、排出ガス性能を良好にしながら、SI燃焼とCI燃焼とを組み合わせたSICI燃焼において、自己着火のタイミングを精度よくコントロールすることができる。
点火タイミングの調整によって自己着火のタイミングをコントロールすることにより、圧縮開始前の燃焼室の中の温度がばらついても、燃焼騒音を抑制しながら、燃費に最適なタイミングで、未燃混合気を自己着火させることができる。
以上説明したように、前記の圧縮自己着火式エンジンの燃焼制御装置によると、圧縮行程中の特定タイミングで燃料を噴射することにより、キャビティの内における乱流エネルギの確保と、キャビティの内と外とにおける混合気の均質性とが両立し、燃費及び排出ガス性能の向上を図りながら、SICI燃焼における自己着火のタイミングを精度よくコントロールすることができる。
図1は、圧縮自己着火式エンジンの構成を例示する図である。 図2は、燃焼室の構成を例示する断面図である。 図3は、圧縮自己着火式エンジンの制御装置の構成を例示するブロック図である。 図4は、エンジンの運転領域を例示する図である。 図5は、SI燃焼とCI燃焼とを組み合わせたSICI燃焼の熱発生率の変化を概念的に示す図である。 図6は、SICI燃焼におけるSI率の定義を説明するための図である。 図7は、SICI燃焼におけるSI率の定義を説明するための図である。 図8は、燃料の噴射制御に係るマップを例示する図である。 図9は、圧縮行程分割噴射領域において前段噴射のタイミングでの燃焼室の状態を例示する断面図である。 図10は、圧縮行程分割噴射領域において後段噴射のタイミングでの燃焼室の状態を例示する断面図である。 図11は、噴射形態を変更したときの燃焼波形の違いを例示する図である。 図12は、分割噴射の噴射量の割合を変更したときの燃焼波形の違いを例示する図である。 図13は、圧縮行程一括噴射領域において燃料を噴射するタイミングでの燃焼室の状態を例示する断面図である。 図14は、燃料の噴射タイミングを変えたことに対する、SI燃焼の熱発生率の傾きの変化、及び、SI燃焼の未燃割合の変化を例示する図である。 図15は、エンジンの負荷の高低に対する、SI率の変化、燃焼室の中の状態量の変化、吸気弁及び排気弁のオーバーラップ期間の変化、並びに、燃料の噴射タイミング及び点火タイミングの変化を説明する図である。 図16の上図は、非過給SICI燃焼において、エンジンの負荷が増大することに対する燃焼波形の変化を例示する図であり、図16の下図は、過給SICI燃焼において、エンジンの負荷が増大することに対する燃焼波形の変化を例示する図である。 図17は、ECUが実行するエンジンの制御の手順を示すフロー図である。 図18は、SI率の調整に係る制御概念を説明する図である。 図19は、エンジンが低負荷の所定回転数で運転しているときでかつ、内部EGRガスのみを燃焼室の中に導入しているときの、混合気のG/Fと、所望の乱流燃焼速度を実現するために必要な乱流エネルギとの関係を示す図である。 図20は、図19に示す必要乱流エネルギを実現する燃焼室の中の温度と、混合気G/Fとの関係を示す図である。 図21は、図19に示す必要乱流エネルギを実現する燃焼室の中の圧力と、混合気G/Fとの関係を示す図である。 図22は、SICI燃焼において、点火タイミングの変化に対する自己着火タイミングの変化比率を例示する、縦軸を混合気のEGR率とし、横軸を混合気のA/Fとした平面上におけるコンター図である。
以下、圧縮自己着火式エンジンの燃焼制御装置の実施形態を図面に基づいて詳細に説明する。以下の説明は、圧縮自己着火式エンジンの制御装置の一例である。図1は、圧縮自己着火式エンジンの構成を例示する図である。図2は、燃焼室の構成を例示する断面図である。尚、図1における吸気側は紙面左側であり、排気側は紙面右側である。図2における吸気側は紙面右側であり、排気側は紙面左側である。図3は、圧縮自己着火式エンジンの制御装置の構成を例示するブロック図である。
エンジン1は、四輪の自動車に搭載される。エンジン1が運転することによって、自動車は走行する。エンジン1の燃料は、この構成例においてはガソリンである。燃料は、バイオエタノール等を含むガソリンであってもよい。エンジン1の燃料は、少なくともガソリンを含む液体燃料であれば、どのような燃料であってもよい。
(エンジンの構成)
エンジン1は、シリンダブロック12と、その上に載置されるシリンダヘッド13とを備えている。シリンダブロック12の内部に複数のシリンダ11が形成されている。図1及び図2では、1つのシリンダ11のみを示す。エンジン1は、多気筒エンジンである。
各シリンダ11内には、ピストン3が摺動自在に内挿されている。ピストン3は、コネクティングロッド14を介してクランクシャフト15に連結されている。ピストン3は、シリンダ11及びシリンダヘッド13と共に燃焼室17を区画する。尚、「燃焼室」は、ピストン3が圧縮上死点に至ったときに形成される空間の意味に限定されない。「燃焼室」の語は広義で用いる場合がある。つまり、「燃焼室」は、ピストン3の位置に関わらず、ピストン3、シリンダ11及びシリンダヘッド13によって形成される空間を意味する場合がある。
ピストン3の上面は平坦面である。ピストン3の上面には、キャビティ31が形成されている。キャビティ31は、ピストン3の上面から凹陥している。キャビティ31は、浅皿形状を有している。キャビティ31は、ピストン3が圧縮上死点付近に位置するときに、後述するインジェクタ6に向かい合う。
キャビティ31は、凸部311を有している。凸部311は、シリンダ11の中心軸X上に設けられている。凸部311は、略円錐状である。凸部311は、キャビティ31の底部から、シリンダ11の中心軸Xに沿って上向きに伸びている。凸部311の上端は、キャビティ31の上面とほぼ同じ高さである。
キャビティ31はまた、凸部311の周囲に設けられた凹陥部312を有している。凹陥部312は、凸部311の全周を囲むように設けられている。キャビティ31は、中心軸Xに対して対称な形状を有している。
凹陥部312の周側面は、キャビティ31の底面からキャビティ31の開口に向かって中心軸Xに対して傾いている。凹陥部312におけるキャビティ31の内径は、キャビティ31の底部からキャビティ31の開口に向かって次第に拡大する。
シリンダヘッド13の下面、つまり、燃焼室17の天井面は、図2に示すように、傾斜面1311と、傾斜面1312とによって構成されている。傾斜面1311は、吸気側から中心軸Xに向かって上り勾配となっている。傾斜面1312は、排気側から中心軸Xに向かって上り勾配となっている。燃焼室17の天井面は、いわゆるペントルーフ形状である。
尚、燃焼室17の形状は、図2に例示する形状に限定されるものではない。例えばキャビティ31の形状、ピストン3の上面の形状、及び、燃焼室17の天井面の形状等は、適宜変更することが可能である。
エンジン1の幾何学的圧縮比は、理論熱効率の向上や、後述するCI(Compression Ignition)燃焼の安定化を目的として高く設定されている。具体的に、エンジン1の幾何学的圧縮比は、17以上である。幾何学的圧縮比は、例えば18としてもよい。幾何学的圧縮比は、17以上20以下の範囲で、適宜設定すればよい。
シリンダヘッド13には、シリンダ11毎に、2つの吸気ポート18が形成されている。吸気ポート18は、燃焼室17に連通している。吸気ポート18には、吸気弁21が配設されている。吸気弁21は、燃焼室17と吸気ポート18との間を開閉する。吸気弁21は吸気動弁機構によって、所定のタイミングで開閉する。吸気動弁機構は、この構成例では、図3に示すように、可変動弁機構である吸気電動VVT(Variable Valve Timing)23を有している。吸気電動VVT23は、吸気カムシャフトの回転位相を所定の角度範囲内で連続的に変更するよう構成されている。それによって、吸気弁21の開弁時期及び閉弁時期は、連続的に変化する。尚、吸気動弁機構は、電動VVTに代えて、液圧式のVVTを有していてもよい。
シリンダヘッド13にはまた、シリンダ11毎に、2つの排気ポート19が形成されている。排気ポート19は、燃焼室17に連通している。排気ポート19には、排気弁22が配設されている。排気弁22は、燃焼室17と排気ポート19との間を開閉する。排気弁22は排気動弁機構によって、所定のタイミングで開閉する。排気動弁機構は、この構成例では、図3に示すように、可変動弁機構である排気電動VVT24を有している。排気電動VVT24は、排気カムシャフトの回転位相を所定の角度範囲内で連続的に変更するよう構成されている。それによって、排気弁22の開弁時期及び閉弁時期は、連続的に変化する。尚、排気動弁機構は、電動VVTに代えて、液圧式のVVTを有していてもよい。
詳細は後述するが、このエンジン1は、吸気電動VVT23及び排気電動VVT24によって、吸気弁21の開弁時期と排気弁22の閉弁時期とに係るオーバーラップ期間の長さを調整する。このことによって、燃焼室17の中の残留ガスを掃気したり、燃焼室17の中に熱い既燃ガスを閉じ込めたり(つまり、内部EGR(Exhaust Gas Recirculation)ガスを燃焼室17の中に導入したり)する。この構成例においては、吸気電動VVT23及び排気電動VVT24が、状態量設定デバイスの一つとしての、内部EGRシステムを構成している。尚、内部EGRシステムは、VVTによって構成されるとは限らない。
シリンダヘッド13には、シリンダ11毎に、インジェクタ6が取り付けられている。インジェクタ6は、燃焼室17の中に燃料を直接噴射するよう構成されている。インジェクタ6は、吸気側の傾斜面1311と排気側の傾斜面1312とが交差するペントルーフの谷部に配設されている。インジェクタ6は、図2に示すように、その中心軸が、中心軸Xに沿うように配設されている。インジェクタ6の中心軸と、キャビティ31の凸部311の位置とは一致している。インジェクタ6は、キャビティ31に対向している。尚、インジェクタ6の中心軸は、シリンダ11の中心軸Xとずれていてもよい。その場合も、インジェクタ6の中心軸と、キャビティ31の凸部311の位置とは一致していることが望ましい。
インジェクタ6は、詳細な図示は省略するが、複数の噴口を有する多噴口型の燃料噴射弁によって構成されている。インジェクタ6は、図2に矢印で示すように、燃料噴霧が、燃焼室17の中央から放射状に広がるように燃料を噴射する。
後述するように、インジェクタ6は、ピストン3が圧縮上死点付近に位置するタイミングで燃料を噴射する場合がある。その場合、インジェクタ6が燃料を噴射すると、燃料噴霧は、新気と混ざり合いながら、キャビティ31の凸部311に沿って下向きに流れると共に、凹陥部312の底面及び周側面に沿って、燃焼室17の中央から、径方向の外方に放射状に広がって流れる。その後、混合気はキャビティ31の開口に至り、吸気側の傾斜面1311、及び、排気側の傾斜面1312に沿って、径方向の外方から、燃焼室17の中央に向かって流れる。
尚、インジェクタ6は、多噴口型のインジェクタに限らない。インジェクタ6は、外開弁タイプのインジェクタを採用してもよい。
インジェクタ6には、燃料供給システム61が接続されている。燃料供給システム61は、燃料を貯留するよう構成された燃料タンク63と、燃料タンク63とインジェクタ6とを互いに連結する燃料供給路62とを備えている。燃料供給路62には、燃料ポンプ65とコモンレール64とが介設している。燃料ポンプ65は、コモンレール64に燃料を圧送する。燃料ポンプ65は、この構成例においては、クランクシャフト15によって駆動されるプランジャー式のポンプである。コモンレール64は、燃料ポンプ65から圧送された燃料を、高い燃料圧力で蓄えるよう構成されている。インジェクタ6が開弁すると、コモンレール64に蓄えられていた燃料が、インジェクタ6の噴口から燃焼室17の中に噴射される。燃料供給システム61は、30MPa以上の高い圧力の燃料を、インジェクタ6に供給することが可能に構成されている。燃料供給システム61の最高燃料圧力は、例えば120MPa程度にしてもよい。インジェクタ6に供給する燃料の圧力は、エンジン1の運転状態に応じて変更してもよい。尚、燃料供給システム61の構成は、前記の構成に限定されない。
シリンダヘッド13には、シリンダ11毎に、点火プラグ25が取り付けられている。点火プラグ25は、燃焼室17の中の混合気に強制的に点火をする。点火プラグ25は、この構成例では、シリンダ11の中心軸Xを挟んだ吸気側に配設されている。点火プラグ25は、インジェクタ6に隣接している。点火プラグ25は、2つの吸気ポート18の間に位置している。点火プラグ25は、上方から下方に向かって、燃焼室17の中央に近づく方向に傾いて、シリンダヘッド13に取り付けられている。点火プラグ25の電極は、図2に示すように、燃焼室17の中に臨んでかつ、燃焼室17の天井面の付近に位置している。
エンジン1の一側面には吸気通路40が接続されている。吸気通路40は、各シリンダ11の吸気ポート18に連通している。吸気通路40は、燃焼室17に導入するガスが流れる通路である。吸気通路40の上流端部には、新気を濾過するエアクリーナー41が配設されている。吸気通路40の下流端近傍には、サージタンク42が配設されている。サージタンク42よりも下流の吸気通路40は、詳細な図示は省略するが、シリンダ11毎に分岐する独立通路を構成している。独立通路の下流端が、各シリンダ11の吸気ポート18に接続されている。
吸気通路40におけるエアクリーナー41とサージタンク42との間には、スロットル弁43が配設されている。スロットル弁43は、弁の開度を調整することによって、燃焼室17の中への新気の導入量を調整するよう構成されている。スロットル弁43は、状態量設定デバイスの一つを構成している。
吸気通路40にはまた、スロットル弁43の下流に、過給機44が配設されている。過給機44は、燃焼室17に導入するガスを過給するよう構成されている。この構成例において、過給機44は、エンジン1によって駆動される機械式の過給機である。機械式の過給機44は、例えばルーツ式としてもよい。機械式の過給機44の構成はどのような構成であってもよい。機械式の過給機44は、リショルム式や遠心式であってもよい。
過給機44とエンジン1との間には、電磁クラッチ45が介設している。電磁クラッチ45は、過給機44とエンジン1との間で、エンジン1から過給機44へ駆動力を伝達したり、駆動力の伝達を遮断したりする。後述するように、ECU10が電磁クラッチ45の遮断及び接続を切り替えることによって、過給機44はオンとオフとが切り替わる。つまり、このエンジン1は、過給機44が、燃焼室17に導入するガスを過給することと、過給機44が、燃焼室17に導入するガスを過給しないこととを切り替えることができるよう構成されている。
吸気通路40における過給機44の下流には、インタークーラー46が配設されている。インタークーラー46は、過給機44において圧縮されたガスを冷却するよう構成されている。インタークーラー46は、例えば水冷式に構成すればよい。
吸気通路40には、バイパス通路47が接続されている。バイパス通路47は、過給機44及びインタークーラー46をバイパスするよう、吸気通路40における過給機44の上流部とインタークーラー46の下流部とを互いに接続する。バイパス通路47には、エアバイパス弁48が配設されている。エアバイパス弁48は、バイパス通路47を流れるガスの流量を調整する。
過給機44をオフにしたとき(つまり、電磁クラッチ45を遮断したとき)には、エアバイパス弁48を全開にする。これにより、吸気通路40を流れるガスは、過給機44をバイパスして、エンジン1の燃焼室17に導入される。エンジン1は、非過給、つまり自然吸気の状態で運転する。
過給機44をオンにしたとき(つまり、電磁クラッチ45を接続したとき)には、過給機44を通過したガスの一部は、バイパス通路47を通って過給機の上流に逆流する。エアバイパス弁48の開度を調整することによって、逆流量を調整することができるから、燃焼室17に導入するガスの過給圧を調整することができる。この構成例においては、過給機44とバイパス通路47とエアバイパス弁48とによって、過給システム49が構成されている。エアバイパス弁48は、状態量設定デバイスの一つを構成している。
エンジン1の他側面には、排気通路50が接続されている。排気通路50は、各シリンダ11の排気ポート19に連通している。排気通路50は、燃焼室17から排出された排気ガスが流れる通路である。排気通路50の上流部分は、詳細な図示は省略するが、シリンダ11毎に分岐する独立通路を構成している。独立通路の上流端が、各シリンダ11の排気ポート19に接続されている。排気通路50には、1つ以上の触媒コンバーター51を有する排気ガス浄化システムが配設されている。触媒コンバーター51は、三元触媒を含んで構成されている。尚、排気ガス浄化システムは、三元触媒のみを含むものに限らない。
吸気通路40と排気通路50との間には、外部EGRシステムを構成するEGR通路52が接続されている。EGR通路52は、既燃ガスの一部を吸気通路40に還流させるための通路である。EGR通路52の上流端は、排気通路50における触媒コンバーター51の下流に接続されている。EGR通路52の下流端は、吸気通路40における過給機44の上流に接続されている。
EGR通路52には、水冷式のEGRクーラー53が配設されている。EGRクーラー53は、既燃ガスを冷却するよう構成されている。EGR通路52にはまた、EGR弁54が配設されている。EGR弁54は、EGR通路52を流れる既燃ガスの流量を調整するよう構成されている。EGR弁54の開度を調整することによって、冷却した既燃ガス、つまり外部EGRガスの還流量を調整することができる。
この構成例において、EGRシステム55は、EGR通路52及びEGR弁54を含んで構成されている外部EGRシステムと、前述した吸気電動VVT23及び排気電動VVT24を含んで構成されている内部EGRシステムとによって構成されている。EGR弁54はまた、状態量設定デバイスの一つを構成している。
圧縮自己着火式エンジンの制御装置は、エンジン1を運転するためのECU(Engine Control Unit)10を備えている。ECU10は、周知のマイクロコンピュータをベースとするコントローラーであって、プログラムを実行する中央演算処理装置(Central Processing Unit:CPU)と、例えばRAM(Random Access Memory)やROM(Read Only
Memory)により構成されてプログラム及びデータを格納するメモリと、電気信号の入出力をする入出力バスと、を備えている。ECU10は、コントローラーの一例である。
ECU10には、図1及び図3に示すように、各種のセンサSW1〜SW16が接続されている。センサSW1〜SW16は、検知信号をECU10に出力する。センサには、以下のセンサが含まれる。
すなわち、吸気通路40におけるエアクリーナー41の下流に配置されかつ、吸気通路40を流れる新気の流量を検知するエアフローセンサSW1、及び、新気の温度を検知する第1吸気温度センサSW2、吸気通路40におけるEGR通路52の接続位置よりも下流でかつ、過給機44の上流に配置されかつ、過給機44に流入するガスの圧力を検知する第1圧力センサSW3、吸気通路40における過給機44の下流でかつ、バイパス通路47の接続位置よりも上流に配置されかつ、過給機44から流出したガスの温度を検知する第2吸気温度センサSW4、サージタンク42に取り付けられかつ、過給機44の下流のガスの圧力を検知する第2圧力センサSW5、各シリンダ11に対応してシリンダヘッド13に取り付けられかつ、各燃焼室17内の圧力を検知する指圧センサSW6、排気通路50に配置されかつ、燃焼室17から排出した排気ガスの温度を検知する排気温度センサSW7、排気通路50における触媒コンバーター51の上流に配置されかつ、排気ガス中の酸素濃度を検知するリニアOセンサSW8、排気通路50における触媒コンバーター51の下流に配置されかつ、排気ガス中の酸素濃度を検知するラムダOセンサSW9、エンジン1に取り付けられかつ、冷却水の温度を検知する水温センサSW10、エンジン1に取り付けられかつ、クランクシャフト15の回転角を検知するクランク角センサSW11、アクセルペダル機構に取り付けられかつ、アクセルペダルの操作量に対応したアクセル開度を検知するアクセル開度センサSW12、エンジン1に取り付けられかつ、吸気カムシャフトの回転角を検知する吸気カム角センサSW13、エンジン1に取り付けられかつ、排気カムシャフトの回転角を検知する排気カム角センサSW14、EGR通路52に配置されかつ、EGR弁54の上流及び下流の差圧を検知するEGR差圧センサSW15、並びに、燃料供給システム61のコモンレール64に取り付けられかつ、インジェクタ6に供給する燃料の圧力を検知する燃圧センサSW16である。
ECU10は、これらの検知信号に基づいて、エンジン1の運転状態を判断すると共に、各デバイスの制御量を計算する。ECU100は、計算をした制御量に係る制御信号を、インジェクタ6、点火プラグ25、吸気電動VVT23、排気電動VVT24、燃料供給システム61、スロットル弁43、EGR弁54、過給機44の電磁クラッチ45、及び、エアバイパス弁48に出力する。例えば、ECU10は、第1圧力センサSW3及び第2圧力センサSW5の検知信号から得られる過給機44の前後差圧に基づいてエアバイパス弁48の開度を調整することにより、過給圧を調整する。また、ECU10は、EGR差圧センサSW15の検知信号から得られるEGR弁54の前後差圧に基づいてEGR弁54の開度を調整することにより、燃焼室17の中に導入する外部EGRガス量を調整する。ECU10によるエンジン1の制御の詳細は、後述する。
(エンジンの運転領域)
図4は、エンジン1の運転領域を例示している。エンジン1の運転領域は、負荷の高低に対し、大きく3つの領域に分けられている。具体的に、3つの領域は、アイドル運転を含む低負荷領域(A)、全開負荷を含む高負荷領域(C)、及び、低負荷領域(A)と高負荷領域(C)との間の中負荷領域(B)である。エンジン1は、燃費の向上及び排出ガス性能の向上を主目的として、中負荷領域において、圧縮自己着火による燃焼を行う。以下、低負荷領域、中負荷領域、及び、高負荷領域の各領域における燃焼形態について、順に説明をする。
(低負荷領域)
エンジン1の運転状態が低負荷領域にあるときには、燃料の噴射量が少ない。そのため、燃焼室17において混合気が燃焼したときに発生する熱量が少なく、燃焼室17の温度が低くなる。また、排気ガスの温度も低くなるため、後述するように内部EGRガスを燃焼室17の中に導入しても、燃焼室17の温度が、自己着火が安定して可能になる程度まで高まらない。エンジン1の運転状態が低負荷領域にあるときの燃焼形態は、点火プラグ25が燃焼室17の中の混合気に点火を行うことによって混合気を火炎伝播により燃焼させるSI(Spark Ignition)燃焼である。以下、低負荷領域における燃焼形態を、低負荷SI燃焼と呼ぶ場合がある。
エンジン1の運転状態が低負荷領域にあるときには、混合気の空燃比(A/F)は、理論空燃比である(A/F=14.7)。三元触媒が、燃焼室17から排出された排出ガスを浄化することによって、エンジン1の排出ガス性能は良好になる。混合気のA/Fは、三元触媒の浄化ウインドウの中に収まるようにすればよい。従って、混合気の空気過剰率λは、1.0±0.2とすればよい。
エンジン1の燃費性能を向上させるために、エンジン1の運転状態が低負荷領域にあるときに、EGRシステム55は、燃焼室17の中にEGRガスを導入する。混合気のG/F、つまり、燃焼室17の中の全ガスと燃料との質量比は18.5以上30以下に設定される。混合気は、EGRリーンである。混合気の希釈率は高い。混合気のG/Fを、例えば25にすれば、低負荷運転領域において、混合気が自己着火に至ることなく、SI燃焼を安定して行うことができる。低負荷領域において、混合気のG/Fは、エンジン1の負荷の高低に関わらず一定に維持する。こうすることで、低負荷領域の全域において、SI燃焼は、安定化する。また、エンジン1の燃費が向上すると共に、排出ガス性能が良好になる。
エンジン1の運転状態が低負荷領域にあるときには、燃料量が少ないため、混合気のλを1.0±0.2にしかつ、G/Fを18.5以上30以下にするには、燃焼室17の中に導入するガスの充填量を100%よりも少なくしなければならない。具体的に、エンジン1は、スロットル弁43の開度を調整するスロットリング、及び/又は、吸気弁21の閉弁時期を吸気下死点以降に遅らせるミラーサイクルを実行する。
尚、低負荷領域内における、低負荷低回転領域においては、ガスの充填量をさらに少なくすることによって、混合気の燃焼温度及び排気ガスの温度を高くするようにしてもよい。こうすると、触媒コンバーター51を活性状態に維持する上で有利になる。
(中負荷領域)
エンジン1の運転状態が中負荷領域にあるときには、燃料の噴射量が多くなる。燃焼室17の温度が高くなるため、自己着火を安定して行うことが可能にある。燃費の向上及び排出ガス性能の向上を図るため、エンジン1は、中負荷領域において、CI燃焼を行う。
自己着火による燃焼は、圧縮開始前の燃焼室17の中の温度がばらつくと、自己着火のタイミングが大きく変化する。そこで、エンジン1は、中負荷領域において、SI燃焼とCI燃焼とを組み合わせたSICI燃焼を行う。SICI燃焼は、点火プラグ25が、燃焼室17の中の混合気に強制的に点火をすることによって、混合気が火炎伝播により燃焼すると共に、SI燃焼の発熱により燃焼室17の中の温度が高くなることによって、未燃混合気が自己着火により燃焼する。SI燃焼の発熱量を調整することによって、圧縮開始前の燃焼室17の中の温度のばらつきを吸収することができる。圧縮開始前の燃焼室17の中の温度がばらついていても、例えば点火タイミングの調整によってSI燃焼の開始タイミングを調整すれば、自己着火のタイミングをコントロールすることができる。
SICI燃焼において、自己着火のタイミングを精度よくコントロールするためには、点火タイミングを変更することに対応して、自己着火のタイミングが変化しなければならない。点火タイミングの変更に対して、自己着火のタイミングが変化する感度が高いことが好ましい。
本願発明者らの検討によると、混合気のλが1.0±0.2でかつ、混合気のG/Fが18.5以上30以下であれば、点火タイミングの変更に対して、自己着火のタイミングが変化することがわかった。そこで、エンジン1の運転状態が中負荷領域にあるときには、エンジン1は、燃焼室17の中の状態を、混合気のλが1.0±0.2でかつ、混合気のG/Fが18.5以上30以下にする。
自己着火のタイミングを精度よくコントロールすることによって、エンジン1の運転状態が中負荷領域にあるときに、燃焼騒音の増大を回避することができる。また、混合気の希釈率をできるだけ高くしてCI燃焼を行うことにより、エンジン1の燃費性能を高くすることが可能になる。さらに、混合気のλを1.0±0.2に設定することによって、三元触媒により、排気ガスを浄化することが可能になるため、エンジン1の排出ガス性能が良好になる。
前述したように、低負荷領域においては、混合気のG/Fを18.5以上30以下(例えば25)にしかつ、混合気のλを1.0±0.2にしている。エンジン1の運転状態が低負荷領域にあるときと、中負荷領域にあるときとの間において、燃焼室17の中の状態量が大きく変動しない。従って、エンジン1の負荷が変更することに対する、エンジン1の制御のロバスト性が高まる。
エンジン1の運転状態が中負荷領域にあるときには、低負荷領域にあるときとは異なり、燃料量が多くなるため、燃焼室17の中に導入するガスの充填量を調整する必要がない。スロットル弁43の開度は全開である。
エンジン1の負荷が高まり、燃料量がさらに増えたときに、混合気のλを1.0±0.2にしかつ、混合気のG/Fを18.5以上30以下にするには、自然吸気の状態であれば、燃焼室17の中に導入するガス量が不足する。そこで、中負荷領域における所定負荷よりも負荷の高い領域においては、過給機44が、燃焼室17の中に導入するガスの過給を行う。中負荷領域(B)は、所定負荷よりも高負荷の領域であって、過給を行う第1中負荷領域(B1)と、所定負荷以下の領域であって、過給を行わない第2中負荷領域(B2)とに分けられる。所定負荷は、例えば1/2負荷である。第2中負荷領域は、第1中負荷領域よりも負荷の低い領域である。以下、第1中負荷領域における燃焼形態を、過給SICI燃焼と呼び、第2中負荷領域における燃焼形態を、非過給SICI燃焼と呼ぶ場合がある。
過給を行わない第2中負荷領域においては、燃料量が増えるに従い、燃焼室17の中に導入する新気が増える一方、EGRガスは減る。混合気のG/Fは、エンジン1の負荷が高くなると小さくなる。スロットル弁43の開度を全開にしているため、エンジン1は、燃焼室17の中に導入するEGRガスの量を調整することにより、燃焼室17の中に導入する新気の量を調整する。第2中負荷領域において燃焼室17の中の状態量は、例えば混合気のλは1.0で略一定になる一方、混合気のG/Fは25〜28の範囲で変更される。
これに対し、過給を行う第1中負荷領域において、エンジン1は、燃料量が増えるに従い、燃焼室17の中に導入する新気及びEGRガスを共に増やす。混合気のG/Fは、エンジン1の負荷が高くなっても一定である。第1中負荷領域において燃焼室17の中の状態量は、例えば混合気のλは1.0で略一定になると共に、混合気のG/Fは25で一定である。
(高負荷領域)
エンジン1の運転状態が高負荷領域にあるときには、燃料の噴射量が多い。そのため、SICI燃焼を行っても、燃焼騒音を抑制することが困難になる。また、燃焼室17の中の温度が高くなるため、CI燃焼を行おうとしても、過早着火やノッキングといった異常燃焼が生じやすい。そのため、エンジン1の運転状態が高負荷領域にあるときの燃焼形態は、SI燃焼である。以下、高負荷領域における燃焼形態を、高負荷SI燃焼と呼ぶ場合がある。
エンジン1の運転状態が高負荷領域にあるときに、混合気のλは1.0±0.2である。また、混合気のG/Fは、基本的には、18.5以上30以下に設定される。高負荷領域においては、スロットル弁43の開度は全開であり、過給機44は過給を行う。
高負荷領域において、エンジン1は、負荷が高まるに従いEGRガスの量を減らす。混合気のG/Fは、エンジン1の負荷が高くなると、小さくなる。EGRガスの量を減らした分、燃焼室17の中に導入する新気の量が増えるから、燃料量を増やすことができる。エンジン1の最高出力を高くする上で有利になる。全開負荷付近において、混合気のG/Fは、17程度にしてもよい。
混合気のG/Fは、高負荷領域において、例えば17〜25の範囲で変更してもよい。従って、低負荷領域、中負荷領域及び高負荷領域を含むエンジン1の運転領域の全体で、混合気のG/Fは、17〜30の範囲で変更してもよい。
エンジン1の運転状態が高負荷領域にあるときと、中負荷領域にあるときとの間において、燃焼室17の中の状態量が大きく変動しない。エンジン1の負荷が変更することに対する、エンジン1の制御のロバスト性が高まる。
(自己着火のタイミングの変化感度)
ここで、前述したSICI燃焼における、点火タイミングの変更に対する自己着火のタイミングの変化感度について説明をする。本願発明者らの検討によると、SICI燃焼において、点火タイミングの変更に対して自己着火のタイミングが変化するためには、混合気が自己着火するまでの間に、火炎伝播によるSI燃焼が安定的に行われる必要があることがわかった。
SI燃焼の安定性に関係する因子の一つは乱流燃焼速度である。乱流燃焼速度が高いと、SI燃焼は安定化する。乱流燃焼速度は、混合気の空燃比(又は空気過剰率λ)、混合気のEGR(Exhaust Gas Recirculation)率(つまり、希釈率)、燃焼室17の中の温度及び圧力、及び、燃焼室17の中の乱流エネルギ等の影響を受ける。
本願発明者らは、SI燃焼の安定性確保に必要な乱流燃焼速度を実現するための、混合気の空気過剰率λ、混合気の希釈率(ここでは、燃焼室17の中の全ガスと燃料との質量比であるG/F)、燃焼室17の中の温度及び圧力、及び、燃焼室17の中の乱流エネルギについて、シミュレーションによる検討を行った。このシミュレーションの条件は、エンジン1が低負荷で運転しておりかつ、内部EGRガスのみを燃焼室17の中に導入することによって、燃焼室17の中の温度をできるだけ高くしている条件である。
ノッキングの発生に伴う大きな燃焼騒音を確実に回避する観点から、混合気のG/Fの下限は、18.5である。また、このようなリーン空燃比でありかつ、NOxの排出を防止すべく三元触媒を利用するのであれば、混合気の空気過剰率λは1.0±0.2である。
エンジン1の燃費性能を高める観点からは、混合気のG/Fは大きい方が好ましい。そこで、本願発明者らは、図19に示すように、混合気のG/Fと、所望の乱流燃焼速度を実現するために必要な乱流エネルギとの関係を検討した。尚、エンジン1は、回転数が2000rpmでかつ、低負荷運転をしている。また、燃焼室17の中に内部EGRガスを導入している。吸気弁21の閉弁時期は91°ABDCである。エンジン1の幾何学的圧縮比は18である。
図19によると、混合気のλが1.2のときのG/Fの特性線は、30付近で飽和する飽和曲線のようになる。一方、エンジン1の回転数が2000rpmのときに、乱流エネルギは40m/sを実現することが可能である。40m/sを超える乱流エネルギを実現したとしても、混合気のG/Fは、30よりもほとんど大きくならないことが、新たにわかった。図19によると、SI燃焼の安定性を確保する上で、混合気のG/Fは30が上限である。
以上の検討から、混合気のG/Fは18.5以上30以下に設定する必要がある。図19から、混合気のλが1.0又は1.2でかつ、G/Fの範囲が18.5以上30以下のときに、SI燃焼の安定化のために必要な乱流エネルギの範囲は17〜40m/sである。
図20は、図19と同条件において、所望の乱流燃焼速度を実現するために必要な燃焼室17の中の、点火タイミングにおける温度と、混合気のG/Fと、の関係を示している。混合気のλが1.0又は1.2でかつ、G/Fの範囲が18.5以上30以下のときに、点火タイミングにおける燃焼室17の中の必要温度TIg(K)は、570〜800Kである。
図21は、図19と同条件において、所望の乱流燃焼速度を実現するために必要な燃焼室17の中の、点火タイミングにおける圧力と、混合気のG/Fと、の関係を示している。混合気のλが1.0又は1.2でかつ、G/Fの範囲が18.5以上30以下のときに、点火タイミングにおける燃焼室17の中の必要圧力PIg(kPa)は、400〜920kPaである。
尚、図示は省略するが、エンジン1の幾何学的圧縮比を14〜20の範囲において変更しても、混合気のG/Fと、所望の乱流燃焼速度を実現するために必要な乱流エネルギとの関係に対しては、ほとんど影響がなかった。
図22は、実験によって得られた、点火タイミングの変化に対する自己着火タイミングの変化比率(=(自己着火タイミングのクランク角変化)/(点火タイミングのクランク角変化))を示すコンター図である。変化比率は、点火タイミングをクランク角において1°だけ変更したときの、自己着火タイミングのクランク角変化の大きさを示す。変化比率の値が大きいほど、点火タイミングの変更に対する自己着火のタイミングの変化感度が高く、変化比率の値が小さいほど、点火タイミングの変更に対する自己着火のタイミングの変化感度が低いことを示す。
図22の縦軸は、混合気のEGR率、横軸は混合気のA/Fである。図の右上ほど、点火タイミングの変更に対する自己着火のタイミングの変化感度が低く、図の左下ほど、自己着火のタイミングの変化感度が高い。図22から、混合気のλが1.0±0.2でかつ、G/Fの範囲が18.5以上30以下である破線で囲んだ範囲は、点火タイミングの変更に対して、自己着火のタイミングが変化することがわかる。尚、EGR率の上限は、燃焼安定性の観点から、40%であることが好ましい。
すなわち、燃焼室17の中の状態を、混合気のλが1.0±0.2でかつ、G/Fが18.5以上30以下とすれば、SI燃焼が安定化する結果、SICI燃焼において、自己着火のタイミングを精度よくコントロールすることができる。
(SICI燃焼)
次に、前述したSICI燃焼について、さらに詳細に説明をする。図5は、SICI燃焼における、クランク角に対する熱発生率の変化を例示する波形を示している。圧縮上死点付近、正確には、圧縮上死点よりも前の所定タイミングで、点火プラグ25が混合気に点火すると、火炎伝播による燃焼が開始する。SI燃焼時の熱発生は、CI燃焼時の熱発生よりも穏やかである。従って、熱発生率の波形は、傾きが相対的に小さくなる。図示はしないが、SI燃焼時の、燃焼室17の中における圧力変動(dp/dθ)も、CI燃焼時よりも穏やかになる。
SI燃焼によって、燃焼室17の中の温度及び圧力が高まると、未燃混合気が自己着火する。図5の例では、圧縮上死点付近において、熱発生率の波形の傾きが、小から大へと変化している。つまり、熱発生率の波形は、CI燃焼が開始するタイミングで、変曲点を有している。
CI燃焼の開始後は、SI燃焼とCI燃焼とが並行して行われる。CI燃焼は、SI燃焼よりも熱発生が大きいため、熱発生率は相対的に大きくなる。但し、CI燃焼は、圧縮上死点後に行われるため、ピストン3がモータリングによって下降している。CI燃焼による、熱発生率の波形の傾きが大きくなりすぎることが回避される。CI燃焼時のdp/dθも比較的穏やかになる。
dp/dθは、燃焼騒音を表す指標として用いることができるが、前述の通りSICI燃焼は、dp/dθを小さくすることができるため、燃焼騒音が大きくなりすぎることを回避することが可能になる。燃焼騒音は、許容レベル以下に抑えることができる。
CI燃焼が終了することによって、SICI燃焼が終了する。CI燃焼は、SI燃焼に比べて、燃焼期間が短い。SICI燃焼は、SI燃焼よりも、燃焼終了時期が早まる。言い換えると、SICI燃焼は、膨張行程中の燃焼終了時期を、圧縮上死点に近づけることが可能である。SICI燃焼は、SI燃焼よりも、エンジン1の燃費性能の向上に有利である。
従って、SICI燃焼は、燃焼騒音の防止と、燃費性能の向上とを両立することができる。
ここで、SICI燃焼の特性を示すパラメータとして、SI率を定義する。SI率は、SICI燃焼により発生した全熱量に対し、SI燃焼により発生した熱量の比率と定義する。つまり、図5においてSI率は、SI率=(SI燃焼の面積)/(SICI燃焼の面積)である。SI率は、SI燃焼とCI燃焼とを組み合わせたSICI燃焼において、SI燃焼とCI燃焼との比である。SI率が高いと、SI燃焼の割合が高く、SI率が低いと、CI燃焼の割合が高い。
SI率は、前述した定義に限定されるものではない。SI率は、様々な定義が考えられる。例えば、SI率は、CI燃焼により発生した熱量に対する、SI燃焼により発生した熱量の比率としてもよい。つまり、図5においてSI率=(SI燃焼の面積)/(CI燃焼の面積)としてもよい。
また、SICI燃焼において、CI燃焼が開始したタイミングで、熱発生率の波形は変曲点を有している。そこで、図6に示すように、熱発生率の波形における変曲点を境界にし、境界よりも進角側の範囲をSI燃焼、遅角側の範囲をCI燃焼としてもよい。この場合において、SI率は、図6にハッチングを付して示すように、境界よりも進角側の範囲の面積QSI、遅角側の範囲の面積QCIから、SI率=QSI/(QSI+QCI)としてもよいし、SI率=QSI/QCIとしてもよい。また、境界よりも進角側の範囲の全面積ではなく一部の面積と、境界よりも遅角側の範囲の一部の面積とに基づいて、SI率を定義してもよい。
また、熱発生に基づいてSI率を定義するのではなく、境界よりも進角側の範囲のクランク角度ΔθSI、遅角側の範囲のクランク角度ΔθCIから、SI率=ΔθSI/(ΔθSI+ΔθCI)としてもよいし、SI率=ΔθSI/ΔθCIとしてもよい。
さらに、境界よりも進角側の範囲の熱発生率のピークΔPSI、遅角側の範囲の熱発生率のピークΔPCIから、SI率=ΔPSI/(ΔPSI+ΔPCI)としてもよいし、SI率=ΔPSI/ΔPCIとしてもよい。
加えて、境界よりも進角側の範囲における熱発生率の傾きφSI、遅角側の範囲における熱発生率の傾きφCIから、SI率=φSI/(φSI+φCI)としてもよいし、SI率=φSI/φCIとしてもよい。
また、ここでは、熱発生率の波形に基づいて、面積(つまり、熱発生量の大きさ)、横軸の長さ(つまり、クランク角度の大きさ)、縦軸の長さ(つまり、熱発生率の大きさ)、又は、傾き(つまり、熱発生率の変化率)から、SI率を定義している。図示は省略するが、燃焼室17の中の圧力(P)の波形に基づいて、同様に、面積、横軸の長さ、縦軸の長さ、又は、傾きから、SI率を定義してもよい。
また、SICI燃焼において、熱発生率又は圧力に係る燃焼波形の変曲点は、常に明確に現れるとは限らない。変曲点に基づかないSI率の定義として、次のような定義を用いてもよい。つまり、図7に示すように、燃焼波形において、圧縮上死点(TDC)よりも進角側の範囲をSI燃焼とし、圧縮上死点よりも遅角側の範囲をCI燃焼としてもよい。その上で、前記と同様に、面積(QSI、QCI)、横軸の長さ(ΔθSI、ΔθCI)、縦軸の長さ(ΔPSI、ΔPCI)、又は、傾き(φSI、φCI)から、SI率を定義してもよい。
さらに、SI率は、燃焼室17の中で実際に行われた燃焼波形によって定義するのではなく、燃料量に基づいて定義してもよい。後述するように、SICI燃焼を行う中負荷領域においては、前段噴射と後段噴射とを含む分割噴射を行う。後段噴射によって燃焼室17の中に噴射された燃料は、噴射から点火までの時間が短いため、燃焼室17の中で拡散せずに、点火プラグ25の付近に位置するようになる。従って、後段噴射によって燃焼室17の中に噴射された燃料は、主にSI燃焼によって燃焼する。一方、前段噴射によって燃焼室17の中に噴射された燃料は、主にCI燃焼によって燃焼する。従って、前段噴射によって噴射する燃料量(m)と、後段噴射によって噴射する燃料量(m)とに基づいて、SI率を定義することが可能である。つまり、SI率=m/(m+m)としてもよいし、SI率=m/mとしてもよい。
(燃料噴射制御)
図8は、燃料の噴射制御に係るマップを示している。エンジン1の運転領域は、燃料の噴射に関して四つの領域に分かれる。四つの領域は、吸気行程噴射領域、圧縮行程一括噴射領域、圧縮行程分割噴射領域、及び、高圧リタード噴射領域である。以下、各領域の燃料噴射について、順に説明をする。
(高圧リタード噴射領域)
高圧リタード噴射領域は、高負荷領域(C)に含まれる。具体的に、高圧リタード噴射領域は、高負荷領域(C)における回転数の低い側に相当する。
前述の通り、エンジン1は、高負荷領域においてはSI燃焼を行うが、幾何学的圧縮比が高いこと等に起因して、過早着火やノッキングといった異常燃焼が生じやすくなるという問題がある。
そこで、エンジン1は、高圧リタード噴射領域において、燃料噴射の形態を工夫することにより異常燃焼を回避するよう構成されている。具体的に、ECU10は、30MPa以上の高い燃料圧力でかつ、圧縮行程後期から膨張行程初期までの期間(以下、この期間をリタード期間と呼ぶ)内のタイミングで、燃焼室17内に燃料を噴射するよう、燃料供給システム61及びインジェクタ6に制御信号を出力する。ECU10はまた、燃料の噴射後、圧縮上死点付近のタイミングで、混合気に点火を行うよう、点火プラグ25に制御信号を出力する。尚、以下においては、高い燃料圧力でかつ、リタード期間内のタイミングで、燃焼室17の中に燃料を噴射することを、高圧リタード噴射と呼ぶ。
高圧リタード噴射は、混合気が反応する時間を短くすることによって、異常燃焼を回避する。すなわち、混合気が反応する時間は、(1)インジェクタ6が燃料を噴射する期間(つまり、噴射期間)と、(2)燃料の噴射が終了した後、点火プラグ25の周りに可燃混合気が形成されるまでの期間(つまり、混合気形成期間)と、(3)点火によって開始されたSI燃焼が終了するまでの期間((3)燃焼期間)と、を足し合わせた時間である。
高い燃料圧力で、燃焼室17の中に燃料を噴射すると、噴射期間及び混合気形成期間は、それぞれ短くなる。噴射期間及び混合気形成期間が短くなると、燃料の噴射を開始するタイミングを点火タイミングに近づけることが可能になる。高圧リタード噴射は、高い圧力でかつ、燃焼室17の中に燃料を噴射するから、圧縮行程後期から膨張行程初期までのリタード期間内のタイミングで、燃料噴射を行う。
高い燃料圧力で燃焼室17の中に燃料を噴射すると、燃焼室17の中の乱流エネルギが高くなる。燃料噴射のタイミングを圧縮上死点に近づけると、燃焼室17の中の乱流エネルギが高い状態でSI燃焼を開始することができる。その結果、燃焼期間が短くなる。
高圧リタード噴射は、噴射期間、混合気形成期間、及び、燃焼期間をそれぞれ短くすることができる。吸気行程中に燃焼室17の中に燃料を噴射する場合と比較して、高圧リタード噴射は、混合気が反応する時間を大幅に短くすることができる。高圧リタード噴射は、混合気が反応する時間が短くなるから、異常燃焼を回避することが可能になる。
エンジン制御の技術分野においては、異常燃焼を回避するために、点火タイミングを遅角することが、従来から行われている。しかしながら、点火タイミングを遅らせると、燃費性能は低下する。高圧リタード噴射は、点火タイミングを遅角させなくてもよい。高圧リタード噴射を利用することによって、燃費性能は向上する。
燃料圧力を、例えば30MPa以上にすれば、噴射期間、混合気形成期間及び燃焼期間を効果的に短縮することができる。尚、燃料圧力は、燃料の性状に応じて適宜設定するのが好ましい。燃料圧力の上限値は、一例として、120MPaとしてもよい。
(高負荷領域内の吸気行程噴射領域)
エンジン1の回転数が低いときには、クランク角度が同一角度だけ変化するときの時間が長いため、高圧リタード噴射によって混合気の反応可能時間を短縮することは、異常燃焼を回避する上で、特に有効である。一方、エンジン1の回転数が高くなると、クランク角度が同一角度だけ変化するときの時間が短くなる。このため、混合気の反応可能時間を短縮することは、異常燃焼を回避する上で、それほど有効ではない。
高圧リタード噴射はまた、圧縮上死点付近になって初めて、燃焼室17の中に燃料を噴射するため、圧縮行程において、燃焼室17の中では、燃料を含まないガス、言い換えると比熱比の高いガスが圧縮される。エンジン1の回転数が高いときに、高圧リタード噴射を行うと、圧縮上死点における燃焼室17の中の温度、つまり、圧縮端温度が高くなってしまう。圧縮端温度が高くなることによって、ノッキング等の異常燃焼を招く恐れがある。
そこで、このエンジン1は、高負荷領域(C)において、燃料噴射に係る領域を、低回転側の高圧リタード噴射領域と、高圧リタード噴射領域よりも回転数の高い吸気行程噴射領域とに分けている。高圧リタード噴射領域は、高負荷領域内を、低回転、中回転及び高回転の3つの領域に三等分したときの低回転及び中回転領域を含むとしてもよい。吸気行程噴射領域は、高負荷領域内を、低回転、中回転及び高回転の3つの領域に三等分したときの高回転領域を含むとしてもよい。
高圧リタード噴射領域において、インジェクタ6は、ECU10の制御信号を受けて、前述した高圧リタード噴射を行う。吸気行程噴射領域において、インジェクタ6は、ECU10の制御信号を受けて、吸気行程中の所定タイミングで燃料噴射を行う。吸気行程中に行う燃料噴射は、高い燃料圧力が不要である。ECU10は、燃料圧力が、高圧リタード噴射の燃料圧力よりも低くなるよう(例えば燃料圧力が40MPa未満となるよう)、燃料供給システム61に制御信号を出力する。燃料圧力を下げることによって、エンジン1の機械抵抗損失が低下するから、燃費の向上に有利になる。
吸気行程中に燃焼室17の中に燃料を噴射することによって、燃焼室17の中のガスの比熱比が下がるから、圧縮端温度が低くなる。圧縮端温度が低くなるから、エンジン1は、異常燃焼を回避することができる。異常燃焼を回避するために、点火タイミングを遅角する必要がないため、第2高負荷領域において、点火プラグ25は、第1高負荷領域と同様に、圧縮上死点付近のタイミングで、混合気に点火する。
高圧リタード噴射領域においては、高圧リタード噴射によって、混合気が自己着火に至らないため、エンジン1は、安定したSI燃焼を行うことができる。吸気行程噴射領域においては、吸気行程中の燃料噴射によって、混合気が自己着火に至らないため、エンジン1は、安定したSI燃焼を行うことができる。
(圧縮行程分割噴射領域)
圧縮行程分割噴射領域は、中負荷領域(B)に含まれている。具体的に、圧縮行程分割噴射領域は、第1中負荷領域(B1)における回転数の低い側の領域、及び、第2中負荷領域(B2)における回転数の低い側でかつ、高負荷側の領域である。尚、第1中負荷領域(B1)は、燃料噴射に関して、圧縮行程分割噴射領域、及び、吸気行程噴射領域の二つの領域に分かれる。
中負荷領域(B)において、エンジン1はSICI燃焼を行う。SICI燃焼において、燃焼室17の中の温度が高まれば、CI燃焼の開始が進角するようになる。CI燃焼の開始が進角すると、燃焼騒音が高くなってしまう。そのため、詳細は後述するが、中負荷領域(B)において、エンジン1は、冷却した外部EGRガスを、燃焼室17の中に導入する。これにより、圧縮開始前の燃焼室17の中の温度が低下するから、CI燃焼の進角化が抑制される。
一方で、SICI燃焼においては、SI燃焼の燃焼速度は高い方が、SI燃焼によるCI燃焼のコントロール性は高まる。圧縮開始前の燃焼室17の中の温度が低いと、SI燃焼の燃焼安定性が低下する。
そこで、エンジン1は、中負荷領域(B)の一部において、燃焼室17の中に噴射した燃料の気化潜熱を利用し、燃焼室17内におけるCI燃焼用の混合気を形成する領域の温度を局所的に低下することによって、SI燃焼の燃焼速度を高くしながら、CI燃焼の開始が進角してしまうことを防止する。
具体的にECU10は、圧縮行程分割噴射領域においては、圧縮行程中に前段噴射と後段噴射との二回の燃料噴射を行うよう、インジェクタ6に制御信号を出力する。前段噴射及び後段噴射は共に、圧縮行程後半の期間内に行う。圧縮行程後半は、圧縮行程を前半と後半とに二等分したときの後半に相当する。前段噴射は、点火タイミングから離れたタイミングで燃料を噴射し、後段噴射は、点火タイミングに近いタイミングで燃料を噴射する。前段噴射によって噴射した燃料は、点火プラグ25から離れるから、主にCI燃焼にする混合気を形成する。後段噴射によって噴射した燃料は、点火プラグ25に近いため、主にSI燃焼する混合気を形成する。前段噴射を圧縮行程中に行うため、前段噴射により噴射した燃料が過早着火等の異常燃焼を誘発することを防止することができる。また、後段噴射により噴射した燃料を、安定的に火炎伝播により燃焼させることができる。
前段噴射は、例えば上死点前80±5°CA(Crank Angle)のタイミングで開始してもよい。前述したように、インジェクタ6は、シリンダ11の中心軸(つまり、筒軸)Xに対して噴口軸が傾いた複数の噴口を有し、燃焼室17の中央部から径方向外方に向かって、放射状に燃料を噴射する。上死点前80±5°CAのタイミングで、インジェクタ6が、燃焼室17の中央部から径方向外方に向かって燃料を噴射すると、図9に矢印で示すように、ピストン3が上死点から離れているため、噴射した燃料噴霧は、上死点に向かって上昇しているピストン3の上面の、キャビティ31の外に到達する。キャビティ31の外の領域は、図9及び図10に一点鎖線で示すように、スキッシュエリア171を形成する。前段噴射によって噴射された燃料は、ピストン3が上昇する間にスキッシュエリア171に留まり、スキッシュエリア171において混合気を形成する。この混合気は、主にCI燃焼によって燃焼する。スキッシュエリアは、混合気がCI燃焼をする領域ということができ、前段噴射は、混合気がCI燃焼をする領域に燃料を噴射するということができる。スキッシュエリア171はまた、前段噴射によってスキッシュエリア171の中に噴射された燃料の気化潜熱によって局所的に温度が低下する。
後段噴射は、例えば上死点前45±5°CAのタイミングで開始してもよい。このタイミングで、インジェクタ6が燃料を噴射すると、ピストン3が上死点に近いため、図10に矢印で示すように、噴射した燃料噴霧は、キャビティ31の中に入る。前述したように、インジェクタ6が燃料を噴射すると、燃料噴霧は、新気と混ざり合いながら、キャビティ31の凸部311に沿って下向きに流れると共に、凹陥部312の底面及び周側面に沿って、燃焼室17の中央から、径方向の外方に放射状に広がって流れる。その後、混合気はキャビティ31の開口に至り、吸気側の傾斜面1311、及び、排気側の傾斜面1312に沿って、径方向の外方から、燃焼室17の中央に向かって流れる。こうして、後段噴射によって噴射された燃料は、キャビティ31の内の領域において混合気を形成する。ここで、「キャビティ31の内の領域」とは、キャビティ31の開口を燃焼室17のルーフに投影した投影面からキャビティ31の開口までの領域と、キャビティ31の中の領域とを合わせた領域を意味する、としてもよい。キャビティ31の内の領域は、燃焼室17の中においてスキッシュエリア171以外の領域ということもできる。
後段噴射によってキャビティ31の中に燃料を噴射することに伴い、キャビティ31の内の領域において、ガスの流動が発生する。燃焼室17の中の乱流エネルギは、点火タイミングまでの時間が長いと、圧縮行程の進行に従い減衰してしまう。ところが、後段噴射の噴射タイミングは、前段噴射よりも点火タイミングに近いため、キャビティ31の中の乱流エネルギが高い状態のまま、点火プラグ25は、キャビティ31の内の領域の混合気に点火することができる。これにより、SI燃焼の燃焼速度が高まる。SI燃焼の燃焼速度が高まると、前述したように、SI燃焼によるCI燃焼のコントロール性は高まる。
キャビティ31の内の領域は、混合気がSI燃焼をする領域ということができ、後段噴射は、混合気がSI燃焼をする領域に燃料を噴射するということができる。
SI燃焼によって燃焼室17の中の温度が上昇すると、スキッシュエリア171の混合気が自己着火により燃焼する。スキッシュエリア171は、前述したように、燃料の気化潜熱によって局所的に温度が低下しているから、CI燃焼の開始が進角してしまうことが防止される。
圧縮行程分割噴射領域は、エンジン1の負荷が比較的高い領域に相当する。燃焼室17の中に噴射する燃料の総噴射量は多い。そのため、一回の噴射当たりの噴射量が多くなり、燃料噴霧のペネトレーションが強い。前段噴射によって噴射した燃料の噴霧は、スキッシュエリア171に確実に到達する。また、後段噴射によって、キャビティ31の内の領域の乱流エネルギを十分に高めることができる。さらに、前段噴射及び後段噴射のそれぞれにおいて、キャビティ31の内と外との領域において、燃料噴霧が新気と十分に混ざり合って、混合気の均質性が高くなる。
尚、圧縮行程分割噴射領域における燃料の圧力は、比較的高く設定することが好ましい。燃料の圧力を、例えば吸気行程中に燃料を噴射するときよりも高くすればよい。こうすることで、圧縮行程中の燃焼室の中の高い圧力に対抗して、燃料噴霧をスキッシュエリア171に到達させることが可能になる。尚、圧縮行程分割噴射領域では、高圧リタード噴射時に要求されるほど高い燃料圧力は要求されないため、ECU10は、燃料の圧力を、高圧リタード噴射時よりも低く設定してもよい。燃料の圧力を低くすれば、その分、燃費の向上を図ることができる。
ここで、図11は、中負荷領域(B)において、燃料の噴射形態を変更したときの、燃焼波形の違いを比較している。ここでは、圧縮行程中において、上死点前45°CAのタイミングで、一括噴射を開始する第1の噴射形態と、吸気行程中のタイミング(上死点前320°CA)で前段噴射を開始しかつ、圧縮行程中のタイミング(上死点前45°CA)で後段噴射を開始する第2の噴射形態と、圧縮行程中の上死点前80°CAのタイミングで前段噴射を開始すると共に、上死点前45°CAのタイミングで後段噴射を開始する第3の噴射形態とを比較している。尚、第2の噴射形態及び第3の噴射形態のそれぞれにおいて、前段噴射と後段噴射との噴射量の分割割合(前段噴射量:後段噴射量)は、2:8である。また、第1の噴射形態、第2の噴射形態及び第3の噴射形態のそれぞれにおいて、CI燃焼の開始時期がほぼ一致するよう、点火タイミングを調整している。
圧縮行程中に燃料を一括噴射すると、CI燃焼の開始が進角し過ぎてしまう。図11においては点火タイミングを遅らせることによって、SI燃焼の開始を遅らせ、それによって、CI燃焼の開始を遅らせようとしているものの、CI燃焼をコントロールすることができずに、熱発生率の最大値が大きくなっている。第1の噴射形態では、燃焼騒音を抑制することができない。
また、吸気行程中と圧縮行程中とのそれぞれで燃料を噴射すると、前段噴射によって噴射された燃料は、燃焼室17の中に広く拡散すると共に、高温の環境下に長時間、曝される。そのため、SI燃焼は燃焼速度が高まるものの、CI燃焼をコントロールすることはできず、図11に示すように、CI燃焼が開始したときの熱発生率の傾きが大きくなると共に、熱発生率の最大値も大きくなる。第2の噴射形態も、燃焼騒音を抑制することができない。
圧縮行程中に燃料を分割噴射すると、前段噴射によって噴射された燃料は、前述したように、気化潜熱により、スキッシュエリア171の温度を下げる。その結果、CI燃焼の開始が進角してしまうことを防止することができる。
また、後段噴射によって噴射される燃料は、前述したように、キャビティ31の内の領域の乱流エネルギを高める。その結果、SI燃焼の燃焼速度が高くなり、CI燃焼のコントロール性が高くなる。
尚、前段噴射によって噴射した燃料の気化潜熱は、スキッシュエリア171の温度を局所的に低下させるため、キャビティ31の中の温度には、ほとんど影響を及ぼさない。
第3の噴射形態では、CI燃焼が進角してしまうことが防止されるから、図11に示すように、点火タイミングを進角する。こうすることでSICI燃焼のSI率が比較的大きくなり、CI燃焼が開始したときの熱発生率の傾きが大きくならずかつ、熱発生率の最大値も小さくなる。第3の噴射形態は、燃焼騒音が大きくなることを防止することができる。
図12は、圧縮行程中の分割噴射において、前段噴射と後段噴射との噴射量の分割割合を変更したときの、燃焼波形の違いを比較している。ここでは、前段噴射と後段噴射との噴射割合を、2:8にする第1の噴射割合と、3:7にする第2の噴射割合と、4:6にする第3の噴射割合とを比較している。尚、第1の噴射割合、第2の噴射割合及び第3の噴射割合のそれぞれにおいて、前段噴射の開始タイミングは、上死点前80°CAであり、後段噴射の開始タイミングは、上死点前45°CAである。また、第1の噴射割合、第2の噴射割合及び第3の噴射割合のそれぞれにおいて点火タイミングを変えているが、第1の噴射割合及び第2の噴射割合においては、後段噴射の噴射量が多いため、点火タイミングは共に、進角限界である。
図12に示すように、前段噴射の噴射量を増やすほど、燃料の気化潜熱量が増えるから、スキッシュエリアの温度の低下量が大きくなる。従って、前段噴射の噴射量が増えるほど、CI燃焼の開始時期を遅らせることができる。
ここで、エンジン1の負荷が高くなるに従い燃料量が増えるから、発熱量が増えることによって、燃焼室17の中の温度が高くなる。圧縮行程分割噴射領域において、エンジン1の負荷が高くなるに従い前段噴射の噴射割合を大きくすると、スキッシュエリア171の温度が大きく低下するから、エンジン1の負荷が高くなっても、CI燃焼を所望のタイミングで開始することができる。
エンジン1は、詳細は後述するが、燃焼室17の中に導入する状態量を調整することによって、圧縮開始前の燃焼室17の中の温度を調整し、SICI燃焼におけるSI率を調整している。これと共に、エンジン1は、前述した圧縮行程中の分割噴射において、前段噴射と後段噴射との噴射量の分割割合を、エンジン1の負荷の高低に応じて調整することにより、燃焼室17の中の温度を局所的に調整し、SICI燃焼におけるSI率を調整している。
圧縮行程分割噴射領域は、第1中負荷領域(B1)における回転数の低い領域に相当する。エンジン1の回転数が低いときには、燃焼室17の中のガスの流動が弱くなるため、前述したように、圧縮行程中の燃料噴射によって燃焼室17の中のガスの流動を高めることは、混合気の均質性の向上、及び、SI燃焼の燃焼速度の向上に有利になる。
(圧縮行程一括噴射領域)
圧縮行程一括噴射領域は、第2中負荷領域(B2)に含まれている。具体的に、圧縮行程一括噴射領域は、第2中負荷領域(B2)における回転数の低い側でかつ、低負荷側の領域である。第2中負荷領域(B2)は、燃料噴射に関して、圧縮行程分割噴射領域、圧縮行程一括噴射領域、及び、吸気行程噴射領域の三つの領域に分かれる。
第2中負荷領域(B2)において、エンジン1はSICI燃焼を行う。圧縮行程一括噴射領域は、エンジン1の負荷が比較的低いため、圧縮行程分割噴射領域の噴射量よりも、燃焼室17の中に噴射する燃料量が少ない。そのため、前段噴射と後段噴射との二回に分けて燃料を噴射すると、一回当たりに噴射する燃料量が少なくなりすぎて、燃料噴霧のペネトレーションが弱くなってしまう。燃料噴霧のペネトレーションが弱くなってしまうと、混合気の均質性が低下することによって燃費及び排出ガス性能が不利になる。また、前述したように、スキッシュエリア171の中に燃料噴霧を確実に到達させることもできなくなる。さらに、乱流エネルギが低くなることによってSI燃焼の燃焼速度が低下し、CI燃焼のコントロール性も低下してしまう。
そこで、エンジン1は、圧縮行程一括噴射領域においては、燃料を、圧縮行程中における所定のタイミングで一括噴射する。所定のタイミングは、図13に示すように、インジェクタ6の噴口の軸を延長した線がピストン3の上面におけるキャビティ31の開口縁を含む特定部分と重なる特定タイミングである。具体的に、インジェクタ6は、圧縮上死点前70±5°CAのタイミングで、燃料の噴射を開始する。このタイミングで、燃料の噴射を開始すると、インジェクタ6が噴射した燃料噴霧は、ピストン3の上面において、キャビティ31の開口縁の付近に衝突をし、図13に矢印で示すように、噴霧の一部は、キャビティ31の外に向かって流れると共に、噴霧の一部は、キャビティ31の内に向かって流れる。
キャビティ31の外に流れた燃料噴霧は巻き上がるようになり、ピストン3が上死点に向かって移動をする間に、キャビティ31の外の領域(つまり、スキッシュエリア171)において新気と混ざり合い、均質な混合気を形成する。また、キャビティ31の内に流れた燃料噴霧も、ピストン3が上死点に向かって移動をする間に、キャビティ31の内の領域において、均質な混合気を形成する。また、燃料を噴射することに伴い発生するガスの流動によって、キャビティ31の内の領域における乱流エネルギが高まる。
点火プラグ25が点火を行うと、キャビティ31の内の領域の混合気が着火してSI燃焼する。乱流エネルギが高いため、SI燃焼の燃焼速度が高まる。SI燃焼の燃焼速度が高まると、前述したように、SI燃焼によるCI燃焼のコントロール性は高まる。
SI燃焼によって燃焼室17の中の温度が上昇すると、未燃混合気が自己着火により燃焼する。キャビティ31の内と外とのそれぞれにおいて混合気の均質性が高いため、未燃燃料の増大や、排出ガス性能の低下を防止することができる。
図14は、圧縮行程一括噴射領域において、燃料噴射のタイミングを変更したときに、SI燃焼の熱発生率の傾きの変化、及び、未燃割合損の変化を例示している。SI燃焼の熱発生率の傾きは、SI燃焼の燃焼速度に関係し、傾きが大きいほどSI燃焼の燃焼速度が高くなってSICI燃焼の安定化に有利になる。一方、未燃割合損は、混合気の均質性に関係し、未燃割合損は小さいほど、燃費及び排出ガス性能の向上に有利になる。
燃料の噴射タイミングを進角すれば(図14の左側)、SI燃焼の熱発生率の傾きが小さくなるため、SI燃焼の燃焼速度は低下する。一方、燃料の噴射タイミングを進角すれば混合気の均質性は高まるから、未燃割合損は小さくなる。逆に、燃料の噴射タイミングを遅角すれば(図14の右側)、燃料の噴射に伴う、点火タイミングにおける燃焼室の中のガス流動が強くなるから、SI燃焼の熱発生率の傾きが大きくなり、SI燃焼の燃焼速度は高まる。一方、燃料の噴射タイミングを遅角すれば混合気の均質性は低下するから、未燃割合損は大きくなる。SI燃焼の燃焼速度を高めることと、混合気の均質性を高めることとは相反する要求である。
本願発明者らは、図14に矢印で示すように、燃料の噴射開始を上死点前70±5°CAに設定すると、SI燃焼の燃焼速度が高くなる一方で、未燃割合損が低くなることを見出した。燃焼室17の中においては、前述したように、インジェクタ6が噴射した燃料噴霧が、ピストン3のキャビティ31の開口縁の付近に衝突をして、キャビティ31の内と外とのそれぞれで、均質な混合気を形成すると考えられる。キャビティ31の内における高い乱流エネルギによってSI燃焼の燃焼速度が高まると共に、均質な混合気を形成することにより燃費及び排出ガス性能の向上が図られる。
圧縮行程一括噴射領域は、第2中負荷領域(B2)における回転数の低い領域に相当する。エンジン1の回転数が低いときには、燃焼室17の中のガスの流動が弱くなるため、前述したように、圧縮行程中の燃料噴射によって燃焼室17の中のガスの流動を高めることは、混合気の均質性の向上、及び、SI燃焼の燃焼速度の向上に有利になる。
(中負荷領域内の吸気行程噴射領域)
中負荷領域(B)における高回転側は、吸気行程噴射領域である。吸気行程噴射領域は、高負荷領域内を、低回転、中回転及び高回転の3つの領域に三等分したときの高回転領域を含むとしてもよい。また、圧縮行程分割噴射領域及び圧縮行程一括噴射領域はそれぞれ、中負荷領域内を、低回転、中回転及び高回転の3つの領域に三等分したときの低回転及び中回転領域を含むとしてもよい。
エンジン1の回転数が高いときには、燃焼室17の中のガスの流動が強い。また、エンジン1の回転数が高くなれば、クランク角度が同一角度だけ変化するときの時間が短いため、後段噴射によってキャビティ31の中に向かって噴射した燃料が、点火プラグ25の近傍にまで到達する前に、点火タイミングになってしまう。また、エンジン1の回転数が高くなると、SICI燃焼において、CI燃焼の開始が進角することが抑制される。
そこで、中負荷領域(B)において、エンジン1の回転数が高いときには、吸気行程中に、燃料噴射を行う。これによって、混合気の均質性が高まって、燃費の向上及び排出ガス性能の向上に有利になると共に、燃焼騒音も抑制することができる。
(低負荷領域内の吸気行程噴射領域)
前述したように、低負荷領域(A)において、エンジン1はSI燃焼を行う。低負荷領域(A)は、回転数方向及び負荷方向の全体が、吸気行程噴射領域である。インジェクタ6は、燃料を吸気行程中に噴射する。インジェクタ6は、燃料を一括で噴射してもよいし、分割して噴射してもよい。吸気行程中に燃焼室17の中に噴射された燃料は、燃焼室17の中に導入される吸気によって拡散される。混合気の均質性が高まる。その結果、未燃損失が低減することにより、エンジン1の燃費が向上する。また、スモークの発生が回避されることにより、排出ガス性能が向上する。
(エンジンの運転制御)
エンジン1は、前述したように、運転状態に応じてSI燃焼とSICI燃焼とを切り替える。エンジン1はまた、エンジン1の運転状態に応じてSI率を変更する。自己着火による燃焼を行う運転領域が拡大するため、エンジン1は、燃焼騒音の発生を抑制することと、燃費の向上を図ることとが両立する。
図15は、エンジン1の負荷の高低に対する、SI率の変化、燃焼室17の中の状態量の変化、吸気弁の開弁期間及び排気弁の開弁期間の変化、並びに、燃料の噴射タイミング及び点火タイミングの変化を例示している。以下、所定の回転数(図8のN1)で、エンジン1の負荷が次第に高くなる想定において、エンジン1の運転制御を説明する。
(低負荷領域(低負荷SI燃焼))
低負荷領域(A)において、エンジン1は、低負荷SI燃焼を行う。エンジン1の運転状態が低負荷領域にあるときに、SI率は100%で一定である。
低負荷領域においては、前述したように、混合気のG/Fを、18.5〜30の間で一定にする。エンジン1は、燃焼室17の中に、燃料量に応じた量の新気及び既燃ガスを導入する。新気の導入量は、前述したように、スロットリング、及び/又は、ミラーサイクルによって調整する。希釈率が高いため、SI燃焼を安定化させるために、燃焼室17の中の温度を高める。エンジン1は、低負荷領域においては、内部EGRガスを、燃焼室17の中に導入する。
内部EGRガスは、排気上死点を挟んで吸気弁21及び排気弁22が共に閉弁したネガティブオーバーラップ期間を設けることによって、燃焼室17の中に導入する(つまり、既燃ガスを燃焼室17の中に閉じ込める)。内部EGRガス量の調整は、吸気電動VVT23により吸気弁21の開弁時期を調整することと、排気電動VVT24により排気弁22の開弁時期を調整することと、によって、ネガティブオーバーラップ期間の長さを適宜設定することにより行う。
低負荷領域においては、燃焼室17の中に導入する充填量が100%未満に調整される。燃料量が増大するに従い、燃焼室17の中に導入する新気の量、及び、内部EGRガスの量が次第に増える。低負荷領域におけるEGR率(つまり、燃焼室17の中の全ガスに対するEGRガスの質量比)は、例えば40%である。
前述の通り、インジェクタ6は、吸気行程中に、燃焼室17の中に燃料を噴射する。燃焼室17の中には、空気過剰率λが1.0±0.2でかつ、G/Fが18.5〜30になった、均質な混合気が形成される。空気過剰率λは、好ましくは、1.0〜1.2である。圧縮上死点の前の所定のタイミングで、点火プラグ25が混合気に点火をすることによって、混合気は、自己着火に至らずに、火炎伝播により燃焼する。
(第2中負荷領域(非過給SICI燃焼))
エンジン1の負荷が高くなって、運転状態が第2中負荷領域(B2)に入ると、エンジン1は、低負荷SI燃焼から非過給SICI燃焼に切り替える。SI率は、100%未満になる。エンジン1の負荷が高まるに従い燃料量が増える。第2中負荷領域の中において負荷が低いときには、燃料量の増大に従って、CI燃焼の割合を増やす。SI率は、エンジン1の負荷が高くなる従って、次第に小さくなる。SI率は、図8の例では、50%以下の所定値(最小値)にまで減少する。
燃料量が増えるため、第2中負荷領域においては、燃焼温度が高くなる。燃焼室17の中の温度が高くなりすぎると、CI燃焼が開始するときの熱発生が激しくなってしまう。そうなると、燃焼騒音が増大してしまう。
そこで、第2中負荷領域においては、燃焼室17の中の圧縮開始前の温度を調整するために、エンジン1の負荷が変化することに対して、内部EGRガスと、外部EGRガスとの割合を変更する。つまり、エンジン1の負荷が高くなるに従い、熱い内部EGRガスを次第に減らし、冷却した外部EGRガスを次第に増やす。ネガティブオーバーラップ期間は、第2中負荷領域において、負荷が高くなるに従い、最大からゼロになるまで変更される。内部EGRガスは、第2中負荷領域において最も負荷が高くなるとゼロになる。
EGR弁54の開度は、第2中負荷領域において、負荷が高くなるに従い、外部EGRガスが増えるよう変更される。燃焼室17の中に導入される外部EGRガスの量は、EGR率で表すと、例えば0〜30%の間において調整される。第2中負荷領域においては、エンジン1の負荷が高くなるに従い、EGRガスが、内部EGRガスから外部EGRガスへと置換される。
尚、低負荷領域と第2中負荷領域との間で、燃焼室17の中に導入するEGRガス量は連続している。第2中負荷領域における負荷の低い領域においては、低負荷領域と同じように、内部EGRガスが燃焼室17の中に、大量に導入されている。燃焼室17の中の温度が高くなるため、エンジン1の負荷が低いときに、混合気が確実に自己着火する。第2中負荷領域における負荷の高い領域においては、外部EGRガスが燃焼室17の中に導入されている。燃焼室17の中の温度が低くなるため、エンジン1の負荷が高いときに、CI燃焼に伴う燃焼騒音を抑制することができる。
第2中負荷領域においては、燃焼室17の中に導入する充填量が100%にされる。スロットル弁43の開度は、全開である。内部EGRガスと外部EGRガスとを合わせたEGRガス量を調整することによって、燃焼室17の中に導入する新気の量を、燃料量に対応する量に調整する。
非過給SICI燃焼においてCI燃焼の割合が大きくなるに従い、自己着火のタイミングが進角する。自己着火のタイミングが圧縮上死点よりも早くなると、CI燃焼が開始するときの熱発生が激しくなってしまう。そうなると、燃焼騒音が増大してしまう。そこで、エンジン1は、エンジン1の負荷が所定負荷L1に到達すれば、エンジン1の負荷が高まることに従い、SI率を次第に大きくする。
つまり、エンジン1は、燃料量の増大に従ってSI燃焼の割合を増やす。具体的には、図16の上図に示すように、非過給SICI燃焼においては、燃料量が増えるに従い、点火タイミングを次第に進角させる。前述したように、内部EGRガスの導入量を減らしかつ、外部EGRガスの導入量を増やすことによって、燃焼室17の中の温度の調整を行っているから、燃料量が増えるに従って、SI率を高くしたとしても、圧縮上死点での温度上昇を抑制することが可能になる。SI燃焼の熱発生率の傾きは、負荷が高くなっても、ほとんど変わらない。点火タイミングを進角すると、SI燃焼の開始が早まる分、SI燃焼の熱発生量が増える。
SI燃焼による燃焼室17の中の温度上昇が抑制される結果、未燃混合気は、圧縮上死点以降のタイミングで自己着火する。CI燃焼による熱発生は、SI燃焼の熱発生量が増えているから、エンジン1の負荷が高くなっても、ほぼ同じになる。従って、エンジン1の負荷が高くなることに応じて、SI率を次第に高く設定することにより、燃焼騒音が増大してしまうことを回避することができる。尚、非過給SICI燃焼の燃焼重心は、負荷が高くなるほど遅角する。
第2中負荷領域において、インジェクタ6は、前述したように、エンジン1の負荷が低いときには、圧縮行程中に一括噴射を行う。また、エンジン1の負荷が高いときには、インジェクタ6は、圧縮行程中に、前段噴射と後段噴射との二回に分けて、燃焼室17の中に燃料を噴射する。ECU10は、分割噴射を行うときに、エンジン1の負荷に応じて、前段噴射と後段噴射との噴射割合を変更する。
燃焼室17の中には、空気過剰率λが1.0±0.2でかつ、G/Fが18.5〜30になった、略均質な混合気が形成される。混合気が略均質であるため、未燃損失の低減による燃費の向上、及び、スモークの発生回避による排出ガス性能の向上を図ることができる。空気過剰率λは、好ましくは、1.0〜1.2である。
圧縮上死点の前の所定のタイミングで、点火プラグ25が混合気に点火をすることによって、混合気は、火炎伝播により燃焼する。その後、未燃混合気が自己着火して、CI燃焼する。
(第1中負荷領域(過給SICI燃焼))
エンジン1の負荷がさらに高まり、エンジン1の運転状態が第1中負荷領域(B1)に入ると、過給機44が、新気及び外部EGRガスの過給を行う。燃焼室17の中に導入する新気の量、及び、外部EGRガスの量は共に、エンジン1の負荷が高くなるに従い増える。燃焼室17の中に導入される外部EGRガスの量は、EGR率で表すと、例えば30%である。EGR率は、エンジン1の負荷の高低に関わらず一定である。従って、混合気のG/Fも、エンジン1の負荷の高低に関わらず一定である。尚、第2中負荷領域と第1中負荷領域との間で、燃焼室17の中に導入するEGRガス量は連続している。
SI率は、100%未満の所定値で、エンジン1の負荷の高低に対して一定にする。第2中負荷領域のSI率、特に所定負荷L1よりも負荷が高く、エンジン1の負荷が高まることに従い次第に大きくなるSI率と、第1中負荷領域のSI率とを比較したときに、エンジン1の負荷が高い第1中負荷領域のSI率の方が、第2中負荷領域のSI率よりも高い。第1中負荷領域と第2中負荷領域との境界において、SI率は連続している。
図16の下図に示すように、過給SICI燃焼においても、燃料量が増えることに伴い、点火タイミングを次第に進角させる。前述したように、過給によって燃焼室17の中に導入する新気及びEGRガス量を増やしているため、熱容量が大きい。燃料量が増えても、SI燃焼による燃焼室の中の温度上昇を抑制することが可能になる。過給SICI燃焼の熱発生率の波形は、負荷が高くなるに従い、相似形で大きくなる。
つまり、SI燃焼の熱発生率の傾きが、ほとんど変わらずに、SI燃焼の熱発生量が増える。圧縮上死点以降の、ほぼ同じタイミングで、未燃混合気が自己着火をする。CI燃焼による熱発生量は、エンジン1の負荷が高くなると、多くなる。その結果、第1中負荷領域においては、SI燃焼の熱発生量とCI燃焼の熱発生量とが共に増えるから、エンジン1の負荷の高低に対してSI率が一定になる。CI燃焼の熱発生のピークが高くなると、燃焼騒音が大きくなるが、第1中負荷領域は、エンジン1の負荷が比較的高いため、ある程度の大きさの燃焼騒音は許容することができる。尚、過給SICI燃焼の燃焼重心は、負荷が高くなるほど遅角する。
第1中負荷領域においては、排気上死点を挟んで、吸気弁21と排気弁22とが共に開弁するオーバーラップ期間を設ける。燃焼室17の中に残留する既燃ガスを、過給圧によって掃気する。これにより、燃焼室17の中の温度が低くなるため、エンジン1の負荷が比較的高いときに、異常燃焼が発生してしまうことを抑制することができる。また、燃焼室17の中の温度を下げることによって、エンジン1の負荷が比較的高い領域において、自己着火のタイミングを適切なタイミングにすることができ、SI率を所定のSI率に維持することが可能になる。さらに、既燃ガスを掃気することによって、燃焼室17の中の新気の充填量を高めることができる。
第1中負荷領域において、インジェクタ6は、圧縮行程中に、前段噴射と後段噴射との二回に分けて、燃焼室17の中に燃料を噴射する。前段噴射は、点火タイミングから離れたタイミングで燃料を噴射し、後段噴射は、点火タイミングに近いタイミングで燃料を噴射する。ECU10は、エンジン1の負荷に応じて、前段噴射と後段噴射との噴射割合を変更する。
燃焼室17の中には、空気過剰率λが1.0±0.2でかつ、G/Fが18.5〜30になった、略均質な混合気が形成される。混合気が略均質であるため、未燃損失の低減による燃費の向上、及び、スモークの発生回避による排出ガス性能の向上を図ることができる。空気過剰率λは、好ましくは、1.0〜1.2である。
圧縮上死点の前の所定のタイミングで、点火プラグ25が混合気に点火をすることによって、混合気は、火炎伝播により燃焼する。その後、未燃混合気が自己着火して、CI燃焼する。後段噴射によって噴射された燃料は、主にSI燃焼する。前段噴射によって噴射された燃料は、主にCI燃焼する。前段噴射を圧縮行程中に行うため、前段噴射により噴射した燃料が過早着火等の異常燃焼を誘発することを防止することができる。また、後段噴射により噴射した燃料を、安定的に火炎伝播により燃焼させることができる。
(高負荷領域(高負荷SI燃焼))
エンジン1の負荷がさらに高まり、エンジン1の運転状態が高負荷領域(C)に入ると、エンジン1は、高負荷SI燃焼を行う。従って、高負荷領域においてSI率は、100%になる。
スロットル弁43は、全開である。過給機44は、高負荷領域においても、新気及び外部EGRガスの過給を行う。EGR弁54は、開度を調整することによって、エンジン1の負荷が高くなるに従い、外部EGRガスの導入量を次第に減少させる。そうすることによって、燃焼室17の中に導入される新気が、エンジン1の負荷が高くなると増える。新気の量が増えると、燃料量を増やすことができるため、エンジン1の最高出力を高くする上で、有利になる。尚、第1中負荷領域と高負荷領域の間で、燃焼室17の中に導入するEGRガス量は連続している。
高負荷領域においても、第1中負荷領域と同様に、排気上死点を挟んで、吸気弁21と排気弁22とが共に開弁するオーバーラップ期間を設ける。燃焼室17の中に残留する既燃ガスを、過給圧によって掃気する。これにより、異常燃焼の発生が抑制される。また、燃焼室17の中の新気の充填量を高めることができる。
高負荷領域において、インジェクタ6は、前述したように、リタード期間内に、燃焼室17の中に燃料を噴射する。燃焼室17の中には、空気過剰率λが1.0±0.2でかつ、G/Fが18.5〜30になった、略均質な混合気が形成される。最高負荷において、空気過剰率λは、例えば0.8になる。また、混合気のG/Fは、最高負荷において、例えば17としてもよい。圧縮上死点の前の所定のタイミングで、点火プラグ25が混合気に点火をすることによって、混合気は、火炎伝播により燃焼する。高負荷領域においては、高圧リタード噴射によって、混合気は、自己着火に至らずにSI燃焼する。
(SI率の調整)
図17は、ECU10が実行するエンジンの運転制御に係るフローを示している。ECU10は、各センサSW1〜SW16の検知信号に基づいて、エンジン1の運転状態を判断すると共に、燃焼室17の中の燃焼が、運転状態に応じたSI率の燃焼となるよう、燃焼室17の中の状態量の調整、噴射量の調整、噴射タイミングの調整、及び、点火タイミングの調整を行う。ECU10はまた、各センサの検知信号に基づいて、SI率の調整が必要と判断したときに、SI率の調整を行う。
ECUは先ず、ステップS1において、各センサSW1〜SW16の検知信号を読み込む。次いで、ECU10は、ステップS2において、検知信号に基づいてエンジン1の運転状態を判断すると共に、目標SI率を設定する。目標SI率は、図15に示した通りである。
ECU10は、続くステップS3において、予め設定している燃焼モデルに基づいて、設定した目標SI率を実現するための目標筒内状態量を設定する。具体的には、燃焼室17の中の目標温度及び目標圧力、並びに、目標状態量を設定する。ECU10は、ステップS4において、目標筒内状態量を実現するために必要な、EGR弁54の開度、スロットル弁43の開度、エアバイパス弁48の開度、並びに、吸気電動VVT23及び排気電動VVT24の位相角を設定する。ECU10は、これらのデバイスの制御量を、予め設定しかつ、ECU10に記憶しているマップに基づいて設定する。ECU10は、設定した制御量に基づいて、EGR弁54、スロットル弁43、エアバイパス弁48、並びに、吸気電動VVT23及び排気電動VVT24に制御信号を出力する。ECU10の制御信号に基づいて各デバイスが動作をすることによって、燃焼室17の中の状態量が目標状態量になる。
ECU10はさらに、設定した各デバイスの制御量に基づいて、燃焼室17の中の状態量の予測値、及び、推定値をそれぞれ算出する。状態量予測値は、吸気弁21が閉弁する前の燃焼室17の中の状態量を予測した値であり、後述するように、吸気行程における燃料の噴射量の設定に用いる。状態量推定値は、吸気弁21が閉弁した後の燃焼室17の中の状態量を推定した値であり、後述するように、圧縮行程における燃料の噴射量の設定、及び、点火タイミングの設定に用いる。状態量推定値はまた、後述するように、実際の燃焼状態との比較による状態量誤差の計算にも用いる。
ECU10は、ステップS5において、状態量予測値に基づいて、吸気行程中における燃料の噴射量を設定する。尚、吸気行程中に燃料の噴射を行わないときは、燃料の噴射量はゼロである。ステップS6において、ECU10はインジェクタ6の噴射を制御する。つまり、所定の噴射タイミングで、燃焼室17の中に燃料を噴射するよう、インジェクタ6に制御信号を出力する。
ECU10は、ステップS7において、状態量推定値と、吸気行程中の燃料の噴射結果と、に基づいて、圧縮行程中における燃料の噴射量を設定する。尚、圧縮行程中に燃料の噴射を行わないときは、燃料の噴射量はゼロである。圧縮行程中に分割噴射を行うときには、前段噴射の噴射量及び後段噴射の噴射量をそれぞれ設定する。ECU10は、ステップS8において、予め設定されているマップに基づく噴射タイミングで、燃焼室17の中に燃料を噴射するよう、インジェクタ6に制御信号を出力する。
ECU10は、ステップS9において、状態量推定値と、圧縮行程中の燃料の噴射結果と、に基づいて、点火タイミングを設定する。ECU10は、ステップS10において、設定した点火タイミングで、燃焼室17の中の混合気に点火をするよう、点火プラグ25に制御信号を出力する。
点火プラグ25が混合気に点火をすることにより、燃焼室17の中でSI燃焼又はSICI燃焼が行われる。ステップS11において、ECU10は、指圧センサSW6が検知した燃焼室17の中の圧力の変化を読み込み、それに基づいて、燃焼室17の中の混合気の燃焼状態を判断する。ECU10はまた、ステップS12において、燃焼状態の検出結果と、ステップS4において推定をした状態量推定値とを比較し、状態量推定値と、実際の状態量との誤差を計算する。計算した誤差は、今回以降のサイクルにおいて、ステップS4の推定に利用される。ECU10は、状態量誤差が無くなるように、スロットル弁43、EGR弁54、及び/又は、エアバイパス弁48の開度、並びに、吸気電動VVT23及び排気電動VVT24の位相角を調整する。それによって、燃焼室17に導入される新気及びEGRガス量が調整される。この状態量誤差のフィードバックは、ECU10が、目標SI率と実際のSI率との誤差に基づいて、SI率の調整が必要と判断したときに、SI率を調整することに相当する。
ECU10はまた、ステップS8において、状態量推定値に基づき燃焼室17の中の温度が目標温度よりも低くなると予想したときには、点火タイミングを進角することが可能になるよう、圧縮行程中の噴射タイミングを、マップに基づく噴射タイミングよりも進角させる。一方、ECU10は、ステップS7において、状態量推定値に基づき燃焼室17の中の温度が目標温度よりも高くなると予想したときには、点火タイミングを遅角することが可能になるよう、圧縮行程中の噴射タイミングを、マップに基づく噴射タイミングよりも遅角させる。
つまり、図18のP2に示すように、燃焼室17の中の温度が低いと、火花点火によってSI燃焼が開始した後、未燃混合気が自己着火するタイミングθCIが遅れてしまい、SI率が、目標のSI率(P1参照)からずれてしまう。この場合、未燃燃料の増大や、排出ガス性能の低下を招く。
そこで、燃焼室17の中の温度が目標温度よりも低くなると予想したときには、ECU10は、噴射タイミングを進角すると共に、図17のステップS10において、点火タイミングθIGを進角する。図18のP3に示すように、SI燃焼の開始が早まることによってSI燃焼により十分な熱発生が可能になるから、燃焼室17の中の温度が低いときに、未燃混合気の自己着火のタイミングθCIが遅れることを防止することができる。その結果、SI率は、目標のSI率に近づく。未燃燃料の増大や、排出ガス性能の低下が防止される。
また、図18のP4に示すように、燃焼室17の中の温度が高いと、火花点火によってSI燃焼が開始して直ぐに、未燃混合気が自己着火してしまい、SI率が、目標のSI率(P1参照)からずれてしまう。この場合、燃焼騒音が増大してしまう。
そこで、燃焼室17の中の温度が目標温度よりも高くなると予想したときには、ECU10は、噴射タイミングを遅角すると共に、図17のステップS10において、点火タイミングθIGを遅角する。図18のP5に示すように、SI燃焼の開始が遅くなるから、燃焼室17の中の温度が高いときに、未燃混合気の自己着火のタイミングθCIが早くなることを防止することができる。その結果、SI率は、目標のSI率に近づく。燃焼騒音が増大してしまうことが回避される。
これらの噴射タイミングの調整、及び、点火タイミングの調整は、ECU10が、SICI燃焼におけるSI率の調整が必要と判断したときに、SI率を調整することに相当する。噴射タイミングを調整することによって、進角又は遅角される点火タイミングにおいて、燃焼室17の中に適切な混合気を形成することができる。点火プラグ25は、確実に、混合気に点火することが可能になると共に、未燃混合気は、適切なタイミングで、自己着火することができる。
尚、図18において、実際の燃焼状態に基づいて、スロットル弁43、EGR弁54、エアバイパス弁48、吸気電動VVT23、及び排気電動VVT24の制御を通じて燃焼室17の中の状態量を調整する点は、図17のステップS12及びステップS4において説明した通りである。
このエンジン1は、スロットル弁43、EGR弁54、エアバイパス弁48、吸気電動VVT23、及び排気電動VVT24を含む状態量設定デバイスによって、SI率を調整する。燃焼室17の中の状態量を調整することによって、SI率の大まかな調整が可能である。それと共に、エンジン1は、燃料の噴射タイミング及び点火タイミングを調整することによって、SI率を調整する。噴射タイミング及び点火タイミングの調整によって、例えば気筒間差の補正を行ったり、自己着火タイミングの微調整を行ったりすることができる。SI率の調整を二段階に行うことによって、エンジン1は、運転状態に対応する狙いのSICI燃焼を正確に実現することができる。
尚、ECU10が行うエンジン1の制御は、前述した燃焼モデルに基づく制御に限定されない。
また、ここに開示する技術は、前述した構成のエンジン1に適用することに限定されない。エンジン1の構成は、様々な構成を採用することが可能である。
1 エンジン
10 ECU(コントローラー)
11 シリンダ
1311、1312 傾斜面(ルーフ)
17 燃焼室
171 スキッシュエリア
23 吸気電動VVT(状態量設定デバイス、可変動弁機構)
24 排気電動VVT(状態量設定デバイス、可変動弁機構)
25 点火プラグ
3 ピストン
31 キャビティ
43 スロットル弁(状態量設定デバイス)
44 過給機
48 エアバイパス弁(状態量設定デバイス)
49 過給システム(状態量設定デバイス)
54 EGR弁(状態量設定デバイス)
55 EGRシステム(状態量設定デバイス)
6 インジェクタ
61 燃料供給システム
SW1 エアフローセンサ
SW2 第1吸気温度センサ
SW3 第1圧力センサ
SW4 第2吸気温度センサ
SW5 第2圧力センサ
SW6 指圧センサ
SW7 排気温度センサ
SW8 リニアOセンサ
SW9 ラムダOセンサ
SW10 水温センサ
SW11 クランク角センサ
SW12 アクセル開度センサ
SW13 吸気カム角センサ
SW14 排気カム角センサ
SW15 EGR差圧センサ
SW16 燃圧センサ

Claims (9)

  1. シリンダ及びピストンによって形成される燃焼室の中において混合気を自己着火させるよう構成されたエンジンと、
    前記エンジンに取り付けられかつ、前記燃焼室の中への新気及び既燃ガスの導入を調整することによって、前記燃焼室の中を所望の状態に設定するよう構成された状態量設定デバイスと、
    前記燃焼室のルーフに取り付けられかつ、前記燃焼室の中に燃料を噴射するよう構成されたインジェクタと、
    前記燃焼室の中に臨んで配設されかつ、前記燃焼室の中の混合気に点火をするよう構成された点火プラグと、
    前記状態量設定デバイス、前記インジェクタ、及び、前記点火プラグのそれぞれに接続されかつ、前記状態量設定デバイス、前記インジェクタ、及び、前記点火プラグのそれぞれに制御信号を出力することによって、前記エンジンを運転するよう構成されたコントローラーと、
    前記コントローラーに接続されかつ、前記エンジンの運転状態に関するパラメータを検知すると共に、前記コントローラーに検知信号を出力するよう構成されたセンサと、を備え、
    前記ピストンは、前記ピストンの上面から凹陥すると共に、前記インジェクタに向かい合うキャビティを有し、
    前記インジェクタは、前記シリンダの筒軸に対して噴口軸が傾いた複数の噴口を有すると共に、前記ピストンの上面に向かって前記燃料を噴射し、
    前記点火プラグは、点火された混合気が火炎伝播により燃焼し、その後、前記燃焼室の中の未燃混合気が自己着火により燃焼するように、前記コントローラーの制御信号を受けて、所定の点火タイミングで前記混合気に点火をし、
    前記コントローラーは、圧縮行程中において、前記インジェクタの前記噴口の軸を延長した線が前記ピストンの上面における前記キャビティの開口縁を含む特定部分と重なる特定タイミングで前記燃料を噴射するよう、前記インジェクタに制御信号を出力し、
    前記インジェクタは、前記燃焼室の中央部において、前記インジェクタの中心軸が前記シリンダの筒軸に平行となるように配設されていると共に、前記燃焼室の中央部から径方向外方に向かって前記燃料を噴射し、
    前記キャビティは、前記インジェクタの中心軸の延長線上に配設されており、
    前記点火プラグは、前記シリンダの筒軸を挟んだ一側において、前記インジェクタに隣接して前記燃焼室の前記ルーフに取り付けられ、
    前記シリンダの筒軸よりも一側における前記キャビティの径は、前記シリンダの筒軸よりも他側における前記キャビティの径よりも小さく構成されている圧縮自己着火式エンジンの燃焼制御装置。
  2. 請求項1に記載の圧縮自己着火式エンジンの燃焼制御装置において、
    前記燃焼室内において前記シリンダの筒軸よりも一側に向かって前記燃料を噴射する前記噴口の噴口軸の、前記シリンダの筒軸に対する角度は、前記シリンダの筒軸よりも他側に向かって前記燃料を噴射する前記噴口の噴口軸の前記角度よりも小さく設定されている圧縮自己着火式エンジンの燃焼制御装置。
  3. シリンダ及びピストンによって形成される燃焼室の中において混合気を自己着火させるよう構成されたエンジンと、
    前記エンジンに取り付けられかつ、前記燃焼室の中への新気及び既燃ガスの導入を調整することによって、前記燃焼室の中を所望の状態に設定するよう構成された状態量設定デバイスと、
    前記燃焼室のルーフに取り付けられかつ、前記燃焼室の中に燃料を噴射するよう構成されたインジェクタと、
    前記燃焼室の中に臨んで配設されかつ、前記燃焼室の中の混合気に点火をするよう構成された点火プラグと、
    前記状態量設定デバイス、前記インジェクタ、及び、前記点火プラグのそれぞれに接続されかつ、前記状態量設定デバイス、前記インジェクタ、及び、前記点火プラグのそれぞれに制御信号を出力することによって、前記エンジンを運転するよう構成されたコントローラーと、
    前記コントローラーに接続されかつ、前記エンジンの運転状態に関するパラメータを検知すると共に、前記コントローラーに検知信号を出力するよう構成されたセンサと、を備え、
    前記ピストンは、前記ピストンの上面から凹陥すると共に、前記インジェクタに向かい合うキャビティを有し、
    前記インジェクタは、前記シリンダの筒軸に対して噴口軸が傾いた複数の噴口を有すると共に、前記ピストンの上面に向かって前記燃料を噴射し、
    前記点火プラグは、点火された混合気が火炎伝播により燃焼し、その後、前記燃焼室の中の未燃混合気が自己着火により燃焼するように、前記コントローラーの制御信号を受けて、所定の点火タイミングで前記混合気に点火をし、
    前記コントローラーは、圧縮行程中において、前記インジェクタの前記噴口の軸を延長した線が前記ピストンの上面における前記キャビティの開口縁を含む特定部分と重なる特定タイミングで前記燃料を噴射するよう、前記インジェクタに制御信号を出力し、
    前記コントローラーは、前記センサの検知信号に基づいて前記エンジンの運転状態が所定の運転領域にあるときに、前記点火された混合気が火炎伝播により燃焼し、その後、前記燃焼室の中の未燃混合気が自己着火により燃焼するように、前記状態量設定デバイス、前記インジェクタ、及び、前記点火プラグに制御信号を出力すると共に、
    前記コントローラーは、前記センサの検知信号に基づいて前記エンジンの運転状態が前記所定の運転領域よりも負荷の低い低負荷領域にあるとき、及び、前記所定の運転領域よりも負荷の高い高負荷領域にあるときに、前記燃焼室の中の混合気が、自己着火による燃焼が発生せずに、火炎伝播により燃焼するよう、前記状態量設定デバイス、前記インジェクタ、及び、前記点火プラグに制御信号を出力し、
    前記コントローラーは、前記エンジンの運転状態が前記所定の運転領域内において所定負荷よりも負荷が低い一括噴射領域にあるときに、前記燃料を、前記特定タイミングにおいて一括噴射するよう、前記インジェクタに制御信号を出力する圧縮自己着火式エンジンの燃焼制御装置。
  4. 請求項3に記載の圧縮自己着火式エンジンの燃焼制御装置において、
    前記状態量設定デバイスは、前記エンジンに取り付けられかつ、前記燃焼室の中に導入するガスを過給するよう構成された過給システムを有し、
    前記所定の運転領域は、過給領域と、前記過給領域よりも負荷が低い非過給領域とに分かれており、
    前記過給システムは、前記コントローラーの制御信号を受けて、前記エンジンの運転状態が前記過給領域にあるときに過給を行いかつ、前記非過給領域にあるときに過給を行わず、
    前記一括噴射領域は、前記非過給領域に含まれている圧縮自己着火式エンジンの燃焼制御装置。
  5. 請求項4に記載の圧縮自己着火式エンジンの燃焼制御装置において、
    前記コントローラーは、前記燃焼室の中の混合気が燃焼するときに発生する全熱量に対し、前記火炎伝播により混合気が燃焼するときに発生する熱量の割合に関係する指標としてのSI率を、前記エンジンの運転状態が所定の運転領域にあるときに、100%未満にすると共に、前記エンジンの運転状態が前記過給領域にあるときには、前記非過給領域にあるときよりも、前記SI率を高くする圧縮自己着火式エンジンの燃焼制御装置。
  6. 請求項3〜5のいずれか1項に記載の圧縮自己着火式エンジンの燃焼制御装置において、
    前記コントローラーは、前記エンジンの運転状態が前記低負荷領域にあるときに、燃料を、吸気行程中に噴射するよう、前記インジェクタに制御信号を出力する圧縮自己着火式エンジンの燃焼制御装置。
  7. 請求項1〜6のいずれか1項に記載の圧縮自己着火式エンジンの燃焼制御装置において、
    前記特定タイミングは、圧縮上死点前70±5°CAである圧縮自己着火式エンジンの燃焼制御装置。
  8. 請求項1〜7のいずれか1項に記載の圧縮自己着火式エンジンの燃焼制御装置において、
    前記インジェクタに接続されかつ、前記インジェクタに燃料を供給するよう構成された燃料供給システムを備え、
    前記コントローラーは、前記特定タイミングにおいて燃料を噴射するときに、前記燃料の圧力が所定圧力以上となるよう、前記燃料供給システムに制御信号を出力する圧縮自己着火式エンジンの燃焼制御装置。
  9. 請求項1〜8のいずれか1項に記載の圧縮自己着火式エンジンの燃焼制御装置において、
    前記コントローラーは、前記状態量設定デバイス及び前記インジェクタに制御信号を出力することによって、前記燃焼室の中の状態を、前記燃焼室の中の全ガスと燃料との質量比に関係する指標としてのG/Fが18.5以上30以下でかつ、空気過剰率λが1.0±0.2に設定する圧縮自己着火式エンジンの燃焼制御装置。
JP2018552353A 2016-11-25 2016-11-25 圧縮自己着火式エンジンの燃焼制御装置 Active JP6562162B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/084999 WO2018096653A1 (ja) 2016-11-25 2016-11-25 圧縮自己着火式エンジンの燃焼制御装置

Publications (2)

Publication Number Publication Date
JPWO2018096653A1 JPWO2018096653A1 (ja) 2018-12-27
JP6562162B2 true JP6562162B2 (ja) 2019-08-21

Family

ID=62195192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018552353A Active JP6562162B2 (ja) 2016-11-25 2016-11-25 圧縮自己着火式エンジンの燃焼制御装置

Country Status (4)

Country Link
US (1) US10677187B2 (ja)
EP (1) EP3421765B1 (ja)
JP (1) JP6562162B2 (ja)
WO (1) WO2018096653A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018096587A1 (ja) * 2016-11-22 2018-05-31 マツダ株式会社 圧縮自己着火式エンジンの制御装置
WO2018096586A1 (ja) * 2016-11-22 2018-05-31 マツダ株式会社 圧縮自己着火式エンジンの制御装置
JP6558408B2 (ja) * 2016-11-22 2019-08-14 マツダ株式会社 圧縮自己着火式エンジンの制御装置
US10982616B2 (en) * 2017-08-25 2021-04-20 Mazda Motor Corporation Premixed compression ignition type engine with supercharging system
JP7001072B2 (ja) * 2019-01-30 2022-01-19 マツダ株式会社 過給機付圧縮着火式エンジンの制御装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5392745A (en) * 1987-02-20 1995-02-28 Servojet Electric Systems, Ltd. Expanding cloud fuel injecting system
EP0371759A3 (en) * 1988-11-29 1990-08-22 The University Of British Columbia Intensifier-injector for gaseous fuel for positive displacement engines
JP3835142B2 (ja) 1999-09-07 2006-10-18 日産自動車株式会社 自己着火・火花点火式内燃機関の制御装置
US6289868B1 (en) * 2000-02-11 2001-09-18 Michael E. Jayne Plasma ignition for direct injected internal combustion engines
JP4082292B2 (ja) 2003-06-25 2008-04-30 マツダ株式会社 火花点火式エンジンの制御装置
JP4306499B2 (ja) * 2004-03-12 2009-08-05 日産自動車株式会社 筒内直接噴射式エンジン
US7832370B2 (en) * 2006-11-16 2010-11-16 Gm Global Technology Operations, Inc. Low-load operation extension of a homogeneous charge compression ignition engine
US7684925B2 (en) * 2006-12-07 2010-03-23 Gm Global Technology Operations, Inc. Engine warm-up of a homogeneous charge compression ignition engine
US8096108B2 (en) * 2007-05-01 2012-01-17 GM Global Technology Operations LLC Engine warm-up of a homogeneous charge compression ignition engine
US20110010074A1 (en) * 2009-07-09 2011-01-13 Visteon Global Technologies, Inc. Methods Of Controlling An Internal Combustion Engine Including Multiple Fuels And Multiple Injectors
KR101189229B1 (ko) * 2009-11-12 2012-10-09 현대자동차주식회사 압축 착화 가솔린 엔진
US8397500B2 (en) * 2010-02-12 2013-03-19 GM Global Technology Operations LLC System and method for estimating airflow restriction of an engine air filter
US8326511B2 (en) * 2010-03-26 2012-12-04 GM Global Technology Operations LLC System and method for estimating torque output of a homogeneous charge compression ignition engine
JP5447423B2 (ja) 2011-03-31 2014-03-19 マツダ株式会社 ガソリンエンジン
US8915236B2 (en) * 2011-03-31 2014-12-23 GM Global Technology Operations LLC Systems and methods for controlling engine combustion stability
JP5447435B2 (ja) 2011-05-18 2014-03-19 マツダ株式会社 火花点火式ガソリンエンジン
JP5447434B2 (ja) 2011-05-18 2014-03-19 マツダ株式会社 火花点火式ガソリンエンジン
JP5569468B2 (ja) 2011-05-25 2014-08-13 マツダ株式会社 火花点火式エンジンの制御装置
US9140199B2 (en) * 2011-11-17 2015-09-22 Robert Bosch Gmbh Combustion mode switching with a turbocharged/supercharged engine
JP5962584B2 (ja) 2013-05-22 2016-08-03 トヨタ自動車株式会社 内燃機関の熱発生率波形作成装置および燃焼状態診断装置
US9903262B2 (en) * 2014-04-07 2018-02-27 The Board Of Trustees Of The Leland Stanford Junior University Stoichiometric high-temperature direct-injection compression-ignition engine
EP3240949B1 (en) * 2014-12-30 2022-02-09 Robert Bosch GmbH Multi-mode advanced combustion engine with supervisory control
EP3402969A4 (en) * 2016-01-14 2019-10-02 Nautilus Engineering, LLC IMPROVED SYSTEMS AND METHOD FOR AUTO IGNITION ENGINES
US10927750B2 (en) * 2016-01-14 2021-02-23 Nautilus Engineering, Llc Systems and methods of compression ignition engines

Also Published As

Publication number Publication date
EP3421765B1 (en) 2020-09-30
US10677187B2 (en) 2020-06-09
WO2018096653A1 (ja) 2018-05-31
EP3421765A1 (en) 2019-01-02
US20190093592A1 (en) 2019-03-28
EP3421765A4 (en) 2019-07-17
JPWO2018096653A1 (ja) 2018-12-27

Similar Documents

Publication Publication Date Title
JP6558408B2 (ja) 圧縮自己着火式エンジンの制御装置
WO2018096585A1 (ja) 圧縮自己着火式エンジンの制御装置
WO2018096589A1 (ja) 圧縮自己着火式エンジンの制御装置
WO2018097104A1 (ja) 圧縮自己着火式エンジンの制御装置
JP6562165B2 (ja) エンジンの制御装置
JP6562164B2 (ja) エンジンの制御装置
JP6601371B2 (ja) 圧縮自己着火式エンジンの制御装置
WO2018096584A1 (ja) 圧縮自己着火式エンジンの制御装置
JP6562163B2 (ja) 圧縮自己着火式エンジンの燃焼制御装置
JP6562167B2 (ja) エンジンの制御装置
JP6562166B2 (ja) エンジンの制御装置
JP6562162B2 (ja) 圧縮自己着火式エンジンの燃焼制御装置
JP2018084183A (ja) 圧縮自己着火式エンジンの制御装置
JP6558427B2 (ja) 圧縮着火式エンジンの制御装置
JP6583370B2 (ja) 過給システム付きエンジン
JP6601481B2 (ja) 圧縮着火式エンジンの制御装置
JP6493504B2 (ja) 圧縮着火式エンジンの制御装置
JP2018084182A (ja) 圧縮自己着火式エンジンの制御装置
JP6558426B2 (ja) 圧縮着火式エンジンの制御装置
JP6558425B2 (ja) 圧縮着火式エンジンの制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180807

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181203

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20181217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190708

R150 Certificate of patent or registration of utility model

Ref document number: 6562162

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150