WO2013014789A1 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
WO2013014789A1
WO2013014789A1 PCT/JP2011/067302 JP2011067302W WO2013014789A1 WO 2013014789 A1 WO2013014789 A1 WO 2013014789A1 JP 2011067302 W JP2011067302 W JP 2011067302W WO 2013014789 A1 WO2013014789 A1 WO 2013014789A1
Authority
WO
WIPO (PCT)
Prior art keywords
index value
engine
internal combustion
combustion engine
white smoke
Prior art date
Application number
PCT/JP2011/067302
Other languages
English (en)
French (fr)
Inventor
勇一 島崎
幸俊 青山
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to RU2014102419/07A priority Critical patent/RU2014102419A/ru
Priority to PCT/JP2011/067302 priority patent/WO2013014789A1/ja
Priority to US14/233,913 priority patent/US20140149021A1/en
Priority to CN201180072649.9A priority patent/CN103717865A/zh
Priority to BR112014001832A priority patent/BR112014001832A2/pt
Priority to EP11870134.1A priority patent/EP2738376A4/en
Priority to AU2011373834A priority patent/AU2011373834A1/en
Publication of WO2013014789A1 publication Critical patent/WO2013014789A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1466Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a soot concentration or content
    • F02D41/1467Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a soot concentration or content with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/49Detecting, diagnosing or indicating an abnormal function of the EGR system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P19/00Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
    • F02P19/02Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
    • F02P19/025Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs with means for determining glow plug temperature or glow plug resistance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P19/00Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition
    • F02P19/02Incandescent ignition, e.g. during starting of internal combustion engines; Combination of incandescent and spark ignition electric, e.g. layout of circuits of apparatus having glowing plugs
    • F02P19/026Glow plug actuation during engine operation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/11Testing internal-combustion engines by detecting misfire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1015Engines misfires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/38Control for minimising smoke emissions, e.g. by applying smoke limitations on the fuel injection amount
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0097Electrical control of supply of combustible mixture or its constituents using means for generating speed signals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a technical field of a control device for an internal combustion engine capable of detecting white smoke of the internal combustion engine, for example.
  • a smoke sensor gas sensor
  • a permeability opacity
  • white smoke is generated according to this permeability.
  • a technique for determining whether or not black smoke is generated is disclosed.
  • Patent Document 2 discloses a technique for reducing white smoke by energizing a glow plug.
  • Patent Literature 3 discloses a technique for reducing white smoke by energizing a heater installed in a filter in an exhaust passage.
  • Patent Document 4 discloses a technique for reducing white smoke by dividing fuel injection.
  • Patent Document 5 discloses a technique for stabilizing combustion by increasing valve overlap.
  • Patent Document 6 discloses a technique for stabilizing combustion by performing early closing of an intake valve.
  • Patent Document 7 discloses a technique for stabilizing combustion by energizing an intake heater when cold.
  • Patent Document 8 discloses a technique for stabilizing combustion by reducing the amount of EGR (Exhaust Gas Recirculation) during startup.
  • EGR exhaust Gas Recirculation
  • Patent Document 9 discloses a technique for calculating the amount of white smoke by cutting fuel and calculating the amount of HC (hydrocarbon) in the exhaust gas.
  • Patent Document 10 describes that during cold start, combustion becomes unstable and white smoke is generated.
  • Patent Document 11 discloses a technique for determining misfire using a value obtained by performing digital filter processing on a detection value of a crank angle sensor.
  • the present invention has been made in view of, for example, the conventional problems described above, and can appropriately detect that white smoke is generated from, for example, an internal combustion engine such as a diesel engine without increasing the manufacturing cost.
  • An object of the present invention is to provide a control device for an internal combustion engine.
  • a control device for an internal combustion engine detects a crank angular speed of the internal combustion engine and a combustion state of the internal combustion engine based on the crank angular speed detected by the detection means. By comparing a combustion state index value calculated by the calculation unit and a combustion state index value calculated by the calculation unit with a predetermined first threshold value and a predetermined second threshold value greater than the first threshold value, First determination means for determining whether white smoke is generated from the internal combustion engine and whether the misfire of the internal combustion engine is occurring.
  • the crank angular speed that is, the rotational speed of the crankshaft
  • the internal combustion engine such as a diesel engine mounted on the vehicle
  • a combustion state index value is calculated by the calculation means based on the crank angular speed thus obtained.
  • the calculation means generates a combustion state index value by performing digital filter processing such as moving average processing and comb filter processing on the detected crank angular velocity, for example.
  • the “combustion state index value” according to the present invention is a value indicating the combustion state of the internal combustion engine.
  • a predetermined value that is likely to be generated when a misfire of the internal combustion engine occurs. It is generated so as to indicate the magnitude of a frequency component (for example, a 0.5th-order frequency component having a period of one-half rotation of the crankshaft).
  • the first determination means compares the calculated combustion state index value with a predetermined first threshold value and a predetermined second threshold value that is larger than the first threshold value, so that white smoke is emitted from the internal combustion engine. It is determined whether or not a misfire has occurred and whether or not a misfire has occurred in the internal combustion engine. Specifically, the first determination means determines that white smoke is generated from the internal combustion engine when the calculated combustion state index value is greater than the first threshold value and less than or equal to the second threshold value. When the calculated combustion state index value is greater than the second threshold value, it is determined that misfire has occurred in the internal combustion engine.
  • the first determination means determines that white smoke is not generated from the internal combustion engine when the calculated combustion state index value is equal to or less than the first threshold value.
  • the combustion state index value calculated by the calculation means based on the crank angular velocity is determined based on whether or not misfire of the internal combustion engine has occurred, It has been found that there is a correlation with whether or not this occurs.
  • a lower limit value of the combustion state index value that can be calculated when white smoke is generated from the internal combustion engine is obtained in advance by experiments, simulations, etc., and the obtained lower limit value is set as the first threshold value, and the internal combustion engine
  • the lower limit value of the combustion state index value that can be calculated when the misfire has occurred is obtained in advance by experiments, simulations, etc., and the obtained lower limit value is set as the second threshold value, so that white smoke is emitted from the internal combustion engine It can be appropriately determined by the first determination means whether or not it has occurred and whether or not a misfire has occurred in the internal combustion engine.
  • the internal combustion engine includes a glow plug that increases the temperature in the combustion chamber in response to energization, and an exhaust gas recirculation device that recirculates part of the exhaust gas in the exhaust passage to the intake passage And when the combustion state index value calculated by the calculation means is larger than the second threshold value, the energization state of the glow plug or the operating state of the exhaust gas recirculation device is changed, and after the change, the calculation means And a second determination means for determining whether or not a failure has occurred in the internal combustion engine based on the combustion state index value calculated by.
  • the second determination unit changes the energization state of the glow plug or the operation state of the exhaust gas recirculation device, and changes the state. After that, based on the combustion state index value calculated by the calculating means, it is determined whether or not a failure has occurred in the internal combustion engine. Specifically, the second determination means changes the energized state of the glow plug to the on state when the combustion state index value calculated when the energized state of the glow plug is in the off state is larger than the second threshold value. When the combustion state index value calculated after the change is larger than the second threshold value, it is determined that a failure has occurred in the internal combustion engine.
  • the combustion state index value calculated when part of the exhaust gas is recirculated to the intake passage by the exhaust gas recirculation device is larger than the second threshold value
  • the recirculated exhaust gas hereinafter referred to as “EGR gas” as appropriate.
  • the combustion state is improved even when the energization state of the glow plug is changed from the off state to the on state or the amount of EGR gas is reduced. Instead, the combustion state index is maintained larger than the second threshold value. Therefore, as in this aspect, it is determined whether or not a failure has occurred in the internal combustion engine based on the combustion state index value after changing the energized state of the glow plug or the operating state of the exhaust gas recirculation device. It is possible to appropriately detect that a failure has occurred in the internal combustion engine.
  • FIG. 1 is a schematic configuration diagram schematically showing a configuration of an engine system according to the present embodiment.
  • an engine system 10 is mounted on a vehicle (not shown) and includes an ECU (Engine Control Unit) 100 and an engine 200.
  • ECU Engine Control Unit
  • engine 200 an engine 200.
  • the ECU 100 is an electronic control unit that controls the entire operation of the engine 200 and includes a CPU (Central Processing Unit), ROM (Read Only Memory), RAM (Random Access Memory), and the like.
  • the ECU 100 is configured to be able to execute various controls according to a control program stored in, for example, a ROM. A specific configuration of the ECU 100 will be described in detail later.
  • the engine 200 is a four-cycle diesel engine (compression ignition internal combustion engine) as an example of the “internal combustion engine” according to the present invention, and functions as a power source of the vehicle.
  • the engine 200 converts the reciprocating motion of the piston according to the explosive force generated when the air-fuel mixture containing fuel is compressed and ignited in the cylinder 211 into the rotational motion of the crankshaft (crankshaft) via the connection rod. Is configured to be possible.
  • the engine 200 is an in-line four-cylinder type, but in the present invention, the number of cylinders and the cylinder arrangement are not particularly limited.
  • the engine 200 includes an engine main body 210 having four cylinders 211, an intake system 220 that sucks air into the combustion chamber of each cylinder 211, an exhaust system 230 that exhausts exhaust gas from each cylinder 211, and each cylinder 211.
  • the EGR system 240 that recirculates and recirculates a part of the exhaust gas to the intake side, and compresses the air in the intake system 220 using the exhaust energy in the exhaust system 230, so that the air is injected into the combustion chamber of each cylinder 211.
  • a turbocharger 280 for supercharging.
  • Each cylinder 211 of the engine 200 is provided with a fuel injector 212 that directly injects fuel into the combustion chamber.
  • the fuel injector 212 of each cylinder 211 is connected to a common rail 213.
  • the common rail 213 stores high-pressure fuel pressurized by a fuel pump (not shown). Fuel is supplied from the common rail 213 to each fuel injector 212.
  • the fuel injector 212 is configured to be able to inject fuel into the cylinder a plurality of times during one cycle. That is, the fuel injector 212 can perform main injection and one or more micro injections (that is, pilot injection) performed prior to the main injection in one cycle.
  • Each cylinder 211 is provided with a glow plug 214 that can increase the temperature in the combustion chamber.
  • the glow plug 214 is switched between an on state and an off state by a control signal supplied from the ECU 100.
  • the glow plug 214 When the glow plug 214 is turned on (that is, energized), the temperature in the combustion chamber can be increased. For example, when the engine 200 is started, the glow plug 214 is turned on, and the temperature in the combustion chamber is raised. Thereby, ignition of fuel is assisted and good startability can be obtained.
  • the glow plug 214 is kept on (that is, the glow plug 214 is continuously energized), the life of the glow plug 214 is shortened and power consumption is increased.
  • ECU 100 basically turns off glow plug 214 at a predetermined timing after engine 200 is started in order to ensure the life of glow plug 214 and to reduce power consumption.
  • crank angle sensor 216 outputs a detection signal indicating the crank angle, which is the rotational position of the crankshaft of engine 200, to ECU 100. More specifically, the crank angle sensor 216 outputs one pulse as a detection signal every time the crankshaft of the engine 200 rotates 10 degrees. That is, the crank angle sensor 216 outputs a pulse generated every 10 ° CA (Crank Angle) as a detection signal.
  • the intake system 220 includes an intake manifold 221 that communicates with the combustion chamber of each cylinder 211, an intake pipe 22 that communicates with the upstream side of the intake manifold 221, and air that is sucked on the upstream side of the intake pipe 222 (that is, intake manifold).
  • An air cleaner 223 that cleans the air
  • an intercooler 224 that cools the intake air downstream of the turbocharger 280 in the intake pipe 222
  • a throttle 225 that can adjust the amount of intake air into the cylinder 211 of the engine body 210. It is comprised including.
  • the opening degree of the throttle 255 is controlled by the ECU 100.
  • an intake heater 228 capable of warming air (that is, intake air) sucked into the combustion chamber of each cylinder 211 is provided.
  • the ECU 100 warms the intake air by turning on (ie, operating) the intake heater 228 when the engine 200 is not warm, for example, when the engine 200 is started. Thereby, ignition of fuel is assisted and good startability can be obtained.
  • the exhaust system 230 includes an exhaust manifold 231 communicating with the combustion chamber of each cylinder 211, an exhaust pipe 232 communicating with the downstream side of the exhaust manifold 231, and each cylinder 211 at a downstream side of the turbocharger 280 in the exhaust pipe 232. And an EHC (Electric-Heating-Catalyst) 235 for purifying exhaust gas.
  • EHC Electro-Heating-Catalyst
  • the EHC 235 is an electrically heated catalyst provided in the exhaust pipe 232 on the downstream side of the turbocharger 280 and having a catalyst for purifying exhaust gas discharged from the cylinder 211 and a heating means for electrically heating the catalyst.
  • the EGR system 240 bypasses the combustion chamber of each cylinder 211 to allow the exhaust manifold 231 and the intake manifold 221 to communicate with each other, and recirculates exhaust from each cylinder 211 and recirculates through the EGR passage 241.
  • an EGR valve 243 capable of adjusting an exhaust gas recirculation amount to the intake manifold 221 (that is, an amount of exhaust gas to be recirculated, hereinafter referred to as “EGR amount” as appropriate).
  • the opening degree (or open / close state) of the EGR valve 243 is controlled by the ECU 100.
  • the EGR system 240 is an example of the “exhaust gas recirculation device” according to the present invention.
  • the turbocharger 280 is an exhaust turbine supercharger, and is configured to pressurize the air in the intake pipe 222 by rotating the turbine with the energy of the exhaust gas flowing in the exhaust pipe 232.
  • the turbocharger 280 includes a turbine wheel provided in the exhaust pipe 232, a compressor wheel provided in the intake pipe 222, and a turbine shaft that connects the turbine wheel and the compressor wheel. ing. When the exhaust gas discharged from the engine 200 passes through the exhaust pipe 232, the turbine wheel is rotated, whereby the compressor wheel is rotated through the turbine shaft, and the air in the intake pipe 222 is pressurized.
  • the ECU 100 is an electronic control unit configured to be able to control the entire operation of the engine 200 as described above.
  • the ECU 100 is electrically connected to each part of the engine 200 in a manner capable of inputting / outputting some signal, and controls driving of each part and inputs / outputs information.
  • the ECU 100 is configured to function as an example of the “control device for an internal combustion engine” according to the present invention, and includes a crank angular velocity calculation unit 110, an index value calculation unit 120, a white smoke / misfire determination unit 130, and a failure determination. Part 140.
  • the crank angular speed calculation unit 110 calculates a crank angular speed that is a rotational speed of the crankshaft of the engine 200 based on the detection signal of the crank angle sensor 216.
  • the crank angular velocity calculation unit 110 together with the crank angle sensor 216, constitutes an example of the “detection unit” according to the present invention.
  • the crank angular velocity calculation unit 110 calculates the time required for the crankshaft to rotate 30 ° CA based on the detection signal of the crank angle sensor 216 that is a pulse generated every 10 ° CA. By dividing 30 ° (that is, ⁇ / 6 [rad]) by the calculated time, the crank angular velocity for every 30 ° CA is calculated.
  • the index value calculation unit 120 calculates an index value MI indicating the combustion state of the engine 200 based on the crank angular speed calculated by the crank angular speed calculation unit 110.
  • the index value MI is an example of the “combustion state index value” according to the present invention.
  • the index value calculation unit 120 calculates the index value MI by performing digital filter processing such as moving average processing and comb filter processing on the crank angular velocity calculated by the crank angular velocity calculation unit 110, for example. A method for calculating the index value MI will be described in detail later with reference to FIG.
  • the white smoke / misfire determination unit 130 is an example of the “first determination unit” according to the present invention.
  • the index value MI calculated by the index value calculation unit 120 is set to a predetermined threshold A and a predetermined value larger than the threshold A.
  • the threshold value B By comparing with the threshold value B, whether or not white smoke is generated from the engine 200 and whether or not misfire of the engine 200 (that is, a phenomenon in which the air-fuel mixture in the combustion chamber of the engine 200 is not ignited) occurs. judge.
  • the white smoke / misfire determination unit 130 determines that white smoke is generated from the engine 200 when the calculated index value MI is greater than the threshold A and equal to or less than the threshold B, When the calculated index value MI is larger than the threshold value B, it is determined that the misfire of the engine 200 has occurred.
  • the white smoke / misfire determination unit 130 determines that white smoke is not generated from the internal combustion engine when the calculated index value MI is equal to or less than the threshold value A.
  • the determination of whether white smoke is generated from the engine 200 by the white smoke / misfire determination unit 130 and whether the engine 200 is misfiring will be described later with reference to FIGS. This will be described in detail.
  • the threshold A is an example of the “first threshold” according to the present invention
  • the threshold B is an example of the “second threshold” according to the present invention.
  • the failure determination unit 140 is an example of the “second determination unit” according to the present invention, and determines whether or not a failure has occurred in the engine 200.
  • the failure determination unit 140 decreases the EGR amount.
  • the operating state of the EGR system 240 is changed (that is, the opening degree of the EGR valve 243 is reduced), and the engine 200 has a failure based on the index value MI calculated by the index value calculation unit 210 after the change. Determine whether it has occurred.
  • the detection of a failure by the failure determination unit 140 will be described in detail later with reference to FIG.
  • FIG. 2 is a flowchart showing a flow of white smoke reduction control, misfire suppression control, and failure detection according to the first embodiment.
  • the ECU 100 determines whether or not the detection condition is permitted (step S10). That is, the ECU 100 determines whether or not a predetermined detection condition is satisfied.
  • the detection condition is satisfied when, for example, the engine coolant temperature, the intake air temperature, the engine speed, etc. of the engine 200 are within a predetermined range.
  • step S10 When the detection condition is not permitted (step S10: No), the crank angular velocity is not detected (step S20), and the ECU 100 determines whether the detection condition is permitted again after a predetermined time (step S10). .
  • step S10 If the detection condition is permitted (step S10: Yes), the crank angular velocity is detected (step S20). That is, the crank angular speed calculation unit 110 calculates the crank angular speed based on the detection signal of the crank angle sensor 216. As described above, the crank angular velocity calculation unit 110 calculates the crank angular velocity for every 30 ° CA.
  • step S30 the index value calculation process is performed by the index value calculation unit 120 (step S30).
  • FIG. 3 is a flowchart showing the flow of index value calculation processing.
  • a moving average process is performed for the crank angular speed calculated by the crank angular speed calculation unit 120 (step S310). That is, the index value calculation unit 120 performs a moving average process for the 12 crank angular velocities every 30 ° CA. That is, the average value Sn is calculated according to the following equation (1).
  • ⁇ n is the crank angular velocity calculated n-th by the crank angular velocity calculator 120. Since the crank angular velocity is calculated every 30 ° CA, the average value Sn is an average value corresponding to one rotation of the crankshaft.
  • the comb filter process is performed on the average value Sn by the index value calculation unit 120 (step S320). That is, the index value calculation unit 120 calculates the deviation amount Cn according to the following equation (2).
  • the average value Sn is the latest average value
  • the average value Sn-6 is an average value calculated before 180 ° CA. Since the engine 200 is a four-cylinder four-cycle engine, the air-fuel mixture is compressed in one of the cylinders 211 each time the crankshaft rotates 180 ° CA.
  • step S330 cylinder average processing is performed for the deviation amount Cn (step S330). That is, the index value calculation unit 120 calculates an average value of six consecutive deviation amounts Cn. That is, the index value calculation unit 120 calculates the average value Mn according to the following formula (3).
  • the average value Mn is an average value of the deviation amounts Cn corresponding to 180 ° CA (that is, one half rotation of the crankshaft).
  • a deviation between the cylinders is calculated for the average value Mn (step S340). That is, the index value calculation unit 120 calculates the difference between the average value Mn and the average value Mn ⁇ 1. That is, the index value calculation unit 120 calculates the deviation ⁇ Mn according to the following equation (4).
  • an index value MI is calculated based on the deviation ⁇ Mn (step S350). That is, the index value calculation unit 120 calculates the index value MI according to the following equation (5).
  • the index value MI calculated in this way varies according to the magnitude of the 0.5th-order frequency component of the crank angular velocity that appears prominently when the engine 200 misfires.
  • the white smoke / misfire determination unit 130 determines whether or not the index value MI is larger than a predetermined threshold A (step S40). That is, the white smoke / misfire determination unit 130 compares the index value MI calculated by the index value calculation unit 120 with the threshold A to determine whether the index value MI is greater than the threshold A.
  • step S40: No If it is determined that the index value MI is not greater than the threshold value A (that is, the index value MI is equal to or less than the threshold value A) (step S40: No), the process according to step S10 is performed again.
  • step S40 If it is determined that the index value MI is greater than the threshold A (step S40: Yes), the white smoke / misfire determination unit 130 determines that white smoke is generated from the engine 200 (step S50).
  • the index value MI calculated as described above based on the crank angular velocity is determined based on whether the engine 200 misfires or not, and the white smoke from the engine 200. It has been found that there is a correlation with whether or not this occurs. Therefore, it is possible to appropriately determine whether or not white smoke is generated from the engine 200 by comparing the index value MI and the threshold A as in the present embodiment.
  • FIG. 4 is a graph showing the correlation between the index value MI calculated by the index value calculation unit 120 and the generation of white smoke.
  • FIG. 4 shows an example of a change over time in the index value MI for a predetermined time (1000 seconds) from the start of the engine 200.
  • FIG. 4 also shows an example of the change over time of the engine coolant temperature thw.
  • the graph shown in FIG. 4 is obtained by an experiment by the present inventors.
  • the index value MI is slightly larger in the first period T1 after the engine 200 is started, but is smaller than the value in the period T1 in the subsequent period T2. This is because the glow plug 214 is in the on state during the periods T1 and T2, and the combustion state is relatively good. In the periods T1 and T2, it was confirmed that no white smoke was generated from the engine 200.
  • the index value MI is larger than the values in the periods T1 and T2. In the period T3, since the glow plug 214 was turned off, it was confirmed that the combustion state deteriorated and white smoke was generated.
  • the combustion state was stabilized, and it was confirmed that no white smoke was generated in period T4.
  • the index value MI is smaller than the value in the period T3.
  • the index value MI is a relatively large value
  • the index value MI is a relatively small value
  • the index value MI is equal to or smaller than the predetermined threshold A.
  • the predetermined threshold A may be obtained in advance by experiments, simulations, or the like as a lower limit value of the index value MI that can be calculated when white smoke is generated from the engine 200.
  • white smoke reduction control is performed by the ECU 100 (step S60). That is, the ECU 100 performs various controls for reducing the generation of white smoke. Specifically, the ECU 100 controls the EGR valve 243 so as to reduce the EGR amount, turns on the glow plug 214, controls the fuel injector 212 so as to perform micro injection, and electrically heats the catalyst. The EHC 235 is controlled so that the intake heater 228 is operated. Therefore, generation of white smoke from engine 200 can be reliably reduced. As white smoke reduction control, white smoke can be reliably reduced by controlling any one or more of the EGR valve 243, the glow plug 214, the fuel injector 212, the EHC 235, and the intake heater 228. In addition, according to the present embodiment, when it is determined that white smoke is generated from the engine 200, white smoke reduction control is performed. For example, white smoke is reduced in a state where white smoke is not generated from the engine 200. It is possible to avoid wasteful control.
  • step S70 it is determined by the white smoke / misfire determination unit 130 whether or not the index value MI is larger than a predetermined threshold B (step S70). That is, the white smoke / misfire determination unit 130 compares the index value MI calculated by the index value calculation unit 120 with the threshold B, and determines whether or not the index value MI is larger than the threshold B. As described above, the threshold value B is larger than the threshold value A.
  • step S70: No the process according to step S10 is performed again.
  • step S70 When it is determined that the index value MI is greater than the threshold value B (step S70: Yes), it is determined by the white smoke / misfire determination unit 130 that the engine 200 has misfired (step S80).
  • the index value MI varies according to the magnitude of the 0.5th-order frequency component of the crank angular velocity that appears prominently when the engine 200 misfires. Therefore, as in the present embodiment, by comparing the index value MI with the threshold value B, it is possible to appropriately determine whether or not the engine 200 has misfired.
  • the threshold value B can be set in advance by experiments, simulations, or the like as a lower limit value of the index value MI that can be calculated when misfire of the engine 200 occurs.
  • misfire suppression control is performed by the ECU 100 (step S90). That is, the ECU 100 performs various controls for suppressing the occurrence of misfire. Specifically, the ECU 100 controls the EGR valve 243 so as to reduce (or zero) the EGR amount, turn on the glow plug 214, and set the fuel injector 212 so as to perform micro injection. The EHC 235 is controlled to control, the catalyst is electrically heated, or the intake heater 228 is operated. Therefore, misfire of the engine 200 can be reliably suppressed.
  • misfire can be reliably suppressed by controlling any one or more of the EGR valve 243, the glow plug 214, the fuel injector 212, the EHC 235, and the intake heater 228.
  • the ECU 100 may light a warning lamp (MIL: Malfunction Indication Lump) for notifying the driver that a misfire has occurred.
  • MIL Malfunction Indication Lump
  • the EGR amount is reduced by the failure determination unit 140 (step S100). That is, the failure determination unit 140 controls the EGR valve 243 so as to reduce the EGR amount.
  • step S110 whether or not the index value MI is larger than the predetermined threshold B is determined by the failure determination unit 140.
  • step S110: No When it is determined that the index value MI is not greater than the threshold value B (that is, the index value MI is equal to or less than the threshold value B) (step S110: No), the process according to step S10 is performed again.
  • the failure determination unit 140 determines that a failure of the engine 200 has occurred (step S120).
  • the index value MI is larger than the threshold value B and it is determined that the misfire of the engine 200 has occurred (step S80), if the EGR amount is reduced (step S100), the engine 200 malfunctions.
  • the index value MI is reduced (that is, calculated after the ERG amount is reduced from the index value MI calculated before the EGR amount is reduced). Index value MI is smaller).
  • the index value MI is maintained larger than the threshold value B because the failure has occurred even if the EGR amount is reduced (step S100). (That is, any index value MI before and after the reduction of the EGR amount is greater than the threshold value B). Therefore, as in the present embodiment, after reducing the EGR amount (step S100), the index value MI is compared with the threshold value B (step S110) to determine whether or not a failure of the engine 200 has occurred. It can be judged appropriately.
  • the occurrence of white smoke, misfire and failure of the engine 20 can be appropriately detected, and white smoke can be reduced and the occurrence of misfire can be suppressed.
  • FIG. 5 is a flowchart showing the flow of white smoke reduction control, misfire suppression control, and failure detection according to the second embodiment, and is a diagram having the same concept as in FIG.
  • the same reference numerals are given to the same steps as the steps according to the first embodiment shown in FIG. 2, and description thereof will be omitted as appropriate.
  • step S200 the engine system 10 according to the first embodiment described above is different from the engine system 10 according to the first embodiment described above, and the engine system according to the first embodiment described above is generally configured in other respects.
  • the failure determination unit 140 changes the glow plug 214 from the off state to the on state (step S200). That is, when the glow plug 214 is energized under the control of the failure determination unit 140, the temperature of the combustion chamber is raised.
  • step S110 whether or not the index value MI is larger than the predetermined threshold B is determined by the failure determination unit 140.
  • the failure determination unit 140 determines that a failure of the engine 200 has occurred (step S120).
  • the glow plug 214 is changed from the off state to the on state (step S200).
  • the index value MI decreases (that is, the index value calculated when the glow plug 214 is off).
  • the index value MI calculated when the glow plug 214 is on is smaller than the MI).
  • the failure has occurred.
  • step S200 After the glow plug 214 is changed from the off state to the on state (step S200), a failure of the engine 200 occurs by comparing the index value MI with the threshold value B (step S110). It can be appropriately determined whether or not.

Abstract

 内燃機関の制御装置は、内燃機関(200)のクランク角速度を検出する検出手段(216、110)と、この検出手段によって検出されたクランク角速度に基づいて、内燃機関の燃焼状態を示す燃焼状態指標値(MI)を算出する算出手段(120)と、算出手段によって算出された燃焼状態指標値を、所定の第1閾値(A)及び該第1閾値よりも大きい所定の第2閾値(B)と比較することにより、内燃機関から白煙が発生しているか否か及び内燃機関の失火が発生しているか否かを判定する第1判定手段(130)とを備える。

Description

内燃機関の制御装置
 本発明は、例えば内燃機関の白煙を検出可能な内燃機関の制御装置の技術分野に関する。
 近年、車両に搭載された例えばディーゼルエンジン等の内燃機関では、環境保護などの理由により、特に低温時や高地で発生する白煙を低減させることが要求されている(例えば特許文献1から10参照)。
 例えば特許文献1には、車両に搭載された内燃機関の排気通路中に煙センサ(ガスセンサ)を配置して排ガスの透過度(不透明度)を求め、この透過度に応じて白煙が発生しているか、黒煙が発生しているかを判定する技術が開示されている。
 なお、例えば特許文献2には、グロープラグを通電することにより白煙を低減する技術が開示されている。例えば特許文献3には、排気通路のフィルタに設置されたヒータに通電することにより白煙を低減する技術が開示されている。例えば特許文献4には、燃料噴射を分割することにより白煙の低減を行う技術が開示されている。例えば特許文献5には、バルブオーバーラップを増加させることにより燃焼の安定を図る技術が開示されている。例えば特許文献6には、吸気弁早閉じを行うことにより燃焼の安定を図る技術が開示されている。例えば特許文献7には、冷間時に吸気ヒータに通電することにより燃焼を安定させる技術が開示されている。例えば特許文献8には、始動時にEGR(Exhaust Gas Recirculation)量を減量することにより燃焼を安定させる技術が開示されている。例えば特許文献9には、燃料カットを行い排気ガス中のHC(炭化水素)量を算出することにより白煙量を算出する技術が開示されている。例えば特許文献10には、冷間始動時には燃焼が不安定となり白煙が発生することが記載されている。その他、本発明に関連する先行技術文献として特許文献11が存在する。特許文献11には、クランク角センサの検出値にデジタルフィルタ処理を行った値を用いて失火を判定する技術が開示されている。
特開2009-243369号公報 特開2009-2234号公報 特開2004-360648号公報 特開2000-234551号公報 特開2007-32415号公報 特開2010-265814号公報 特開2004-293391号公報 特開2009-62835号公報 特開平10-184441号公報 特開2008-267256号公報 特開平8-74652号公報
 しかしながら、例えば前述した特許文献1に開示された技術によれば、白煙を検出するために排気通路に煙センサを設ける必要があり、製造コストが増大してしまうおそれがあるという技術的問題点がある。
 本発明は、例えば前述した従来の問題点に鑑みなされたものであり、例えば製造コストの増大を招くことなく、例えばディーゼルエンジン等の内燃機関から白煙が発生していることを適切に検出可能な内燃機関の制御装置を提供することを課題とする。
 本発明に係る内燃機関の制御装置は、上記課題を解決するために、内燃機関のクランク角速度を検出する検出手段と、該検出手段によって検出されたクランク角速度に基づいて、前記内燃機関の燃焼状態を示す燃焼状態指標値を算出する算出手段と、該算出手段によって算出された燃焼状態指標値を、所定の第1閾値及び該第1閾値よりも大きい所定の第2閾値と比較することにより、前記内燃機関から白煙が発生しているか否か及び前記内燃機関の失火が発生しているか否かを判定する第1判定手段とを備える。
 本発明に係る内燃機関の制御装置によれば、その動作時には、例えば車両に搭載されたディーゼルエンジン等の内燃機関のクランク角速度(即ち、クランク軸の回転速度)が検出手段によって検出され、該検出されたクランク角速度に基づいて燃焼状態指標値が算出手段によって算出される。この際、算出手段は、検出されたクランク角速度に、例えば、移動平均処理、コムフィルタ処理等のデジタルフィルタ処理などを行うことにより、燃焼状態指標値を生成する。ここで、本発明に係る「燃焼状態指標値」は、内燃機関の燃焼状態を示す値であり、例えば、検出されたクランク角速度のうち、内燃機関の失火が発生した場合に発生しやすい所定の周波数成分(例えば、クランク軸の2分の1回転を周期とする0.5次の周波数成分)の大きさを示すように生成される。
 本発明では特に、第1判定手段は、算出された燃焼状態指標値を、所定の第1閾値及び該第1閾値よりも大きい所定の第2閾値と比較することにより、内燃機関から白煙が発生しているか否か及び内燃機関の失火が発生しているか否かを判定する。具体的には、第1判定手段は、算出された燃焼状態指標値が第1閾値よりも大きく且つ第2閾値以下である場合には、内燃機関から白煙が発生していると判定し、算出された燃焼状態指標値が第2閾値よりも大きい場合には、内燃機関の失火が発生していると判定する。なお、第1判定手段は、算出された燃焼状態指標値が第1閾値以下である場合には、内燃機関から白煙が発生していないと判定する。ここで、本願発明者らの研究によれば、クランク角速度に基づいて算出手段によって算出される燃焼状態指標値は、内燃機関の失火が発生しているか否かに加えて、内燃機関から白煙が発生しているか否かと相関があることが判明している。よって、内燃機関から白煙が発生しているときに算出され得る燃焼状態指標値の下限値を、実験、シミュレーション等によって予め求め、該求めた下限値を第1閾値に設定するとともに、内燃機関の失火が発生しているときに算出され得る燃焼状態指標値の下限値を、実験、シミュレーション等によって予め求め、該求めた下限値を第2閾値に設定することで、内燃機関から白煙が発生しているか否か及び内燃機関の失火が発生しているか否かを第1判定手段によって適切に判定することができる。
 したがって、内燃機関から白煙が発生していること及び内燃機関の失火が発生していることを適切に検出することができる。ここで、本発明によれば、例えば白煙を検出するために排気通路に煙センサを別途設ける必要がないので、製造コストの増大を招くことなく、白煙が発生していることを適切に検出することができる。
 以上説明したように、本発明によれば、例えば製造コストの増大を招くことなく、例えばディーゼルエンジン等の内燃機関から白煙が発生していることを適切に検出することができる。
 本発明に係る内燃機関の制御装置の一態様では、前記内燃機関は、通電に応じて燃焼室内の温度を高めるグロープラグと、排気通路の排気の一部を吸気通路に還流する排気還流装置とを備え、前記算出手段によって算出された燃焼状態指標値が前記第2閾値よりも大きい場合、前記グロープラグの通電状態又は前記排気還流装置の動作状態を変化させ、該変化させた後に前記算出手段によって算出された前記燃焼状態指標値に基づいて、前記内燃機関に故障が発生しているか否かを判定する第2判定手段を更に備える。
 この態様によれば、第2判定手段は、算出手段によって算出された燃焼状態指標値が第2閾値よりも大きい場合、グロープラグの通電状態又は排気還流装置の動作状態を変化させ、該変化させた後に算出手段によって算出された燃焼状態指標値に基づいて、内燃機関に故障が発生しているか否かを判定する。具体的には、第2判定手段は、グロープラグの通電状態がオフ状態であるときに算出された燃焼状態指標値が第2閾値よりも大きい場合、グロープラグの通電状態をオン状態に変更し、該変更した後に算出された燃焼状態指標値が第2閾値よりも大きい場合には、内燃機関に故障が発生していると判定する。或いは、排気還流装置によって排気の一部が吸気通路に還流されているときに算出された燃焼状態指標値が第2閾値よりも大きい場合、還流される排気(以下「EGRガス」と適宜称する)の量を減少させるように排気還流装置の動作状態を変更し、該変更した後に算出された燃焼状態指標値が第2閾値よりも大きい場合には、内燃機関に故障が発生していると判定する。ここで、グロープラグの通電状態がオフ状態からオン状態に変更された場合やEGRガスの量が少なくなった場合、通常、燃焼状態が改善することにより燃焼状態指標値は低下する。しかし、内燃機関に故障が発生している場合には、グロープラグの通電状態がオフ状態からオン状態に変更された場合やEGRガスの量が少なくなった場合であっても、燃焼状態は改善せず、燃焼状態指標は第2閾値よりも大きいままで維持されることになる。よって、この態様にように、グロープラグの通電状態又は排気還流装置の動作状態を変化させた後の燃焼状態指標値に基づいて、内燃機関に故障が発生しているか否かを判定することで、内燃機関に故障が発生していることを適切に検出することができる。
 本発明の作用及び他の利得は次に説明する実施形態から明らかにされる。
第1実施形態に係るエンジンシステムの構成を概略的に示す概略構成図である。 第1実施形態に係る白煙低減制御、失火抑制制御及び故障検出の流れを示すフローチャートである。 第1実施形態に係る指標値算出処理の流れを示すフローチャートである。 第1実施形態に係る指標値算出部によって算出される指標値と、白煙の発生との相関関係を示すグラフである。 第2実施形態に係る白煙低減制御、失火抑制制御及び故障検出の流れを示すフローチャートである。
 以下、本発明の実施形態について図を参照しつつ説明する。
 <第1実施形態>
 第1実施形態に係るエンジンシステムについて、図1から図4を参照して説明する。
 図1は、本実施形態に係るエンジンシステムの構成を概略的に示す概略構成図である。
 図1において、エンジンシステム10は、図示しない車両に搭載され、ECU(Engine Control Unit)100及びエンジン200を備えている。
 ECU100は、CPU(Central Processing Unit)、ROM(Read Only Memory)及びRAM(Random Access Memory)等を備えた、エンジン200の動作全体を制御する電子制御ユニットである。ECU100は、例えばROM等に格納された制御プログラムに従って各種制御を実行可能に構成されている。ECU100の具体的な構成については、後に詳述する。
 エンジン200は、本発明に係る「内燃機関」の一例としての4サイクルのディーゼルエンジン(圧縮着火内燃機関)であり、車両の動力源として機能する。エンジン200は、気筒211内において燃料を含む混合気が圧縮自着火した際に生じる爆発力に応じたピストンの往復運動を、コネクションロッドを介してクランクシャフト(クランク軸)の回転運動に変換することが可能に構成されている。エンジン200は、直列4気筒型であるが、本発明では、気筒数及び気筒配置は、特に限定されるものではない。
 エンジン200は、4つの気筒211を有するエンジン本体210と、各気筒211の燃焼室に空気を吸入させる吸気系220と、各気筒211からの排気ガスを排気させる排気系230と、各気筒211からの排気ガスの一部を吸気側に還流させ再循環させるEGR系240と、排気系230内の排気エネルギーを利用して吸気系220内の空気を圧縮し、各気筒211の燃焼室に空気を過給するターボチャージャ280とを備えている。
 エンジン200の各気筒211には、燃料を燃焼室内に直接噴射する燃料インジェクタ212が設けられている。各気筒211の燃料インジェクタ212は、共通のコモンレール213に接続されている。コモンレール213には、図示しない燃料ポンプによって加圧された高圧の燃料が貯留されている。コモンレール213内から各燃料インジェクタ212へ燃料が供給される。
 燃料インジェクタ212は、1サイクル中に複数回、燃料を気筒内に噴射することが可能に構成されている。即ち、燃料インジェクタ212は、メイン噴射と、このメイン噴射に先立って行われる1回又は複数回の微小噴射(即ち、パイロット噴射)とを、1サイクル中に実施することができる。
 各気筒211には、燃焼室内の温度を高めることが可能なグロープラグ214が設けられている。グロープラグ214は、ECU100から供給される制御信号により、通電状態がオン(ON)状態とオフ(OFF)状態との間で切り替えられる。グロープラグ214は、オン状態となることにより(即ち、通電されることにより)、燃焼室内の温度を高めることができる。例えば、エンジン200の始動時には、グロープラグ214がオン状態にされ、燃焼室内の温度が高められる。これにより、燃料の着火を補助し、良好な始動性が得られる。グロープラグ214をオン状態にし続ける(即ち、グロープラグ214に通電し続ける)と、グロープラグ214の寿命が短縮したり、電力消費が多くなったりする。ECU100は、グロープラグ214の寿命確保や電力消費量節減のため、基本的には、エンジン200の始動後、所定のタイミングで、グロープラグ214をオフ状態にする。
 エンジン200には、クランク角センサ216が設けられている。クランク角センサ216は、エンジン200のクランクシャフトの回転位置であるクランク角を示す検出信号をECU100に出力する。より具体的には、クランク角センサ216は、エンジン200のクランクシャフトが10度回転するごとに1パルスを検出信号として出力する。即ち、クランク角センサ216は、10°CA(Crank Angle)毎に発生するパルスを検出信号として出力する。
 吸気系220は、各気筒211の燃焼室に連通する吸気マニホールド221と、この吸気マニホールド221の上流側に連通する吸気管22と、吸気管222における上流側で、吸入される空気(即ち、吸入空気)を清浄化するエアクリーナ223と、吸気管222におけるターボチャージャ280よりも下流側で吸入空気を冷却するインタークーラ224と、エンジン本体210の気筒211への吸入空気量を調整可能なスロットル225とを含んで構成されている。スロットル255の開度は、ECU100によって制御される。吸気マニホールド221内には、各気筒211の燃焼室内に吸入される空気(即ち、吸気)を暖めることが可能な吸気ヒータ228が設けられている。ECU100は、例えば、エンジン200の始動時などエンジン200が暖まっていない場合に吸気ヒータ228をオン状態とする(即ち、作動させる)ことにより、吸気を暖める。これにより、燃料の着火を補助し、良好な始動性が得られる。
 排気系230は、各気筒211の燃焼室に連通する排気マニホールド231と、この排気マニホールド231の下流側に連通する排気管232と、排気管232におけるターボチャージャ280よりも下流側で、各気筒211からの排気ガスを清浄化するEHC(Electric Heating Catalyst:電気加熱式触媒)235とを含んで構成されている。
 EHC235は、排気管232におけるターボチャージャ280の下流側に設けられ、気筒211から排出される排気ガスを浄化する触媒と、この触媒を電気加熱する加熱手段とを備えた電気加熱式触媒である。
 EGR系240は、各気筒211の燃焼室をバイパスして排気マニホールド231と吸気マニホールド221とを連通させ、各気筒211からの排気を再循環させるEGR通路241と、このEGR通路241を通って還流する排気を冷却するEGRクーラ242と、吸気マニホールド221への排気還流量(即ち、還流する排気の量、以下「EGR量」と適宜称する)を調整可能なEGRバルブ243とを含んで構成されている。EGRバルブ243の開度(或いは開閉状態)は、ECU100によって制御される。なお、EGR系240は、本発明に係る「排気還流装置」の一例である。
 ターボチャージャ280は、排気タービン式の過給機であり、排気管232内を流れる排気ガスのエネルギーによってタービンを回転させることにより、吸気管222内の空気を加圧することが可能に構成されている。詳細には、ターボチャージャ280は、排気管232内に設けられたタービンホイールと、吸気管222内に設けられたコンプレッサホイールと、タービンホイールとコンプレッサホイールとを連結するタービンシャフトとを含んで構成されている。エンジン200から排出される排気ガスが、排気管232を通過する際にタービンホイールを回転させることにより、タービンシャフトを介してコンプレッサホイールが回転し、吸気管222内の空気が加圧される。
 ECU100は、前述したように、エンジン200の動作全体を制御することが可能に構成された電子制御ユニットである。ECU100は、エンジン200の各部に電気的、或いは何らかの信号の入出力可能な態様で接続され、各部の駆動の制御及び情報の入出力を行う。
 ECU100は、本発明に係る「内燃機関の制御装置」の一例として機能可能に構成されており、クランク角速度算出部110と、指標値算出部120と、白煙・失火判定部130と、故障判定部140とを備えている。
 クランク角速度算出部110は、クランク角センサ216の検出信号に基づいて、エンジン200のクランクシャフトの回転速度であるクランク角速度を算出する。なお、クランク角速度算出部110は、クランク角センサ216とともに、本発明に係る「検出手段」の一例を構成する。具体的には、クランク角速度算出部110は、10°CA毎に発生するパルスであるクランク角センサ216の検出信号に基づいて、クランクシャフトが30°CA回転するのに要する時間を算出し、この算出した時間で30°(即ち、π/6[rad])を除することにより、30°CA毎のクランク角速度を算出する。
 指標値算出部120は、クランク角速度算出部110によって算出されたクランク角速度に基づいて、エンジン200の燃焼状態を示す指標値MIを算出する。なお、指標値MIは、本発明に係る「燃焼状態指標値」の一例である。指標値算出部120は、クランク角速度算出部110によって算出されたクランク角速度に、例えば、移動平均処理、コムフィルタ処理等のデジタルフィルタ処理などを行うことにより、指標値MIを算出する。指標値MIの算出方法については、図3を参照して後に詳細に説明する。
 白煙・失火判定部130は、本発明に係る「第1判定手段」の一例であり、指標値算出部120によって算出された指標値MIを、所定の閾値A及び該閾値Aよりも大きい所定の閾値Bと比較することにより、エンジン200から白煙が発生しているか否か及びエンジン200の失火(即ち、エンジン200の燃焼室内の混合気が着火されない現象)が発生しているか否かを判定する。具体的には、白煙・失火判定部130は、算出された指標値MIが閾値Aよりも大きく且つ閾値B以下である場合には、エンジン200から白煙が発生していると判定し、算出された指標値MIが閾値Bよりも大きい場合には、エンジン200の失火が発生していると判定する。また、白煙・失火判定部130は、算出された指標値MIが閾値A以下である場合には、内燃機関から白煙が発生していないと判定する。白煙・失火判定部130によるエンジン200から白煙が発生しているか否かの判定、及びエンジン200の失火が発生しているか否かの判定については、図2及び図4を参照して後に詳細に説明する。なお、閾値Aは本発明に係る「第1閾値」の一例であり、閾値Bは本発明に係る「第2閾値」の一例である。
 故障判定部140は、本発明に係る「第2判定手段」の一例であり、エンジン200に故障が発生しているか否かを判定する。故障判定部140は、白煙・失火判定部130によってエンジン200の失火が発生していると判定された場合(即ち、指標値MIが閾値Bよりも大きい場合)、EGR量が減少するように、EGR系240の動作状態を変化させ(即ち、EGRバルブ243の開度を小さくし)、該変化させた後に指標値算出部210によって算出された指標値MIに基づいて、エンジン200に故障が発生しているか否かを判定する。故障判定部140による故障の検出については、図2を参照して後に詳細に説明する。
 次に、ECU100によって行われる白煙低減制御、失火抑制制御及び故障検出について、図2を参照して説明する。
 図2は、第1実施形態に係る白煙低減制御、失火抑制制御及び故障検出の流れを示すフローチャートである。
 図2において、まず、検出条件が許可されるか否かがECU100によって判定される(ステップS10)。即ち、ECU100は、所定の検出条件が成立しているか否かを判定する。検出条件は、例えばエンジン200のエンジン冷却水温、吸気温、エンジン回転数等が所定の範囲内にあるときに成立する。
 検出条件が許可されない場合には(ステップS10:No)、クランク角速度の検出(ステップS20)は行われず、所定時間後に再び検出条件が許可されるか否かがECU100によって判定される(ステップS10)。
 検出条件が許可された場合には(ステップS10:Yes)、クランク角速度が検出される(ステップS20)。即ち、クランク角センサ216の検出信号に基づいてクランク角速度がクランク角速度算出部110によって算出される。クランク角速度算出部110は、前述したように、30°CA毎のクランク角速度を算出する。
 次に、指標値算出処理が指標値算出部120によって行われる(ステップS30)。
 図3は、指標値算出処理の流れを示すフローチャートである。
 図3において、指標値算出処理では、まず、クランク角速度算出部120によって算出されたクランク角速度について移動平均処理が行われる(ステップS310)。即ち、指標値算出部120は、連続した12個の30°CA毎のクランク角速度について移動平均処理を行う。つまり、以下の式(1)に従って、平均値Snを算出する。
Figure JPOXMLDOC01-appb-M000001

 ただし、ωnは、クランク角速度算出部120によってn番目に算出されたクランク角速度である。クランク角速度は、30°CA毎に算出されるので、平均値Snは、クランクシャフト1回転に対応する平均値である。
 次に、平均値Snについてコムフィルタ処理が指標値算出部120によって行われる(ステップS320)。即ち、指標値算出部120は、以下の式(2)に従って、偏差量Cnを算出する。
Figure JPOXMLDOC01-appb-M000002

 式(2)において、平均値Snは最新の平均値であり、平均値Sn-6は、180°CA前に算出された平均値である。エンジン200は、4気筒4サイクルのエンジンであるので、クランクシャフトが180°CA回転する毎にいずれかの気筒211で混合気の圧縮が行われる。このように算出された偏差量Cnの平均値Snに対するゲイン(即ち、Cn/Sn)は、エンジン回転の2k次成分(但し、k=0、1、2、…、3)が低下する周波数特性を有する。
 次に、偏差量Cnについて気筒平均処理が行われる(ステップS330)。即ち、指標値算出部120は、連続した6個の偏差量Cnの平均値を算出する。つまり、指標値算出部120は、以下の式(3)に従って、平均値Mnを算出する。平均値Mnは、180°CA(即ち、クランクシャフト2分の1回転)に対応する偏差量Cnの平均値である。
Figure JPOXMLDOC01-appb-M000003

 次に、平均値Mnについて気筒間の偏差が算出される(ステップS340)。即ち、指標値算出部120は、平均値Mnと平均値Mn-1との差を算出する。つまり、指標値算出部120は、以下の式(4)に従って、偏差ΔMnを算出する。
Figure JPOXMLDOC01-appb-M000004


 次に、偏差ΔMnに基づいて指標値MIが算出される(ステップS350)。即ち、指標値算出部120は、以下の式(5)に従って、指標値MIを算出する。
Figure JPOXMLDOC01-appb-M000005

 ただし、
Figure JPOXMLDOC01-appb-M000006

 このように算出される指標値MIは、エンジン200の失火が発生した際に顕著に表れるクランク角速度の0.5次の周波数成分の大きさに応じて変動する。
 再び図2において、指標値算出処理(ステップS30)の後に、指標値MIが所定の閾値Aよりも大きいか否かが白煙・失火判定部130によって判定される(ステップS40)。即ち、白煙・失火判定部130は、指標値算出部120によって算出された指標値MIと閾値Aとを比較して、指標値MIが閾値Aよりも大きいか否かを判定する。
 指標値MIが閾値Aよりも大きくない(即ち、指標値MIが閾値A以下である)と判定された場合には(ステップS40:No)、再びステップS10に係る処理が行われる。
 指標値MIが閾値Aよりも大きいと判定された場合には(ステップS40:Yes)、エンジン200から白煙が発生していると白煙・失火判定部130によって判定される(ステップS50)。
 ここで、本願発明者らの研究によれば、クランク角速度に基づいて前述したように算出される指標値MIは、エンジン200の失火が発生しているか否かに加えて、エンジン200から白煙が発生しているか否かと相関があることが判明している。よって、本実施形態のように、指標値MIと閾値Aとを比較することによりエンジン200から白煙が発生しているか否かを適切に判定することができる。
 図4は、指標値算出部120によって算出される指標値MIと、白煙の発生との相関関係を示すグラフである。なお、図4には、エンジン200の始動から所定時間(1000秒間)の指標値MIの経時的な変化の一例が示されている。また、図4には、エンジン冷却水温thwの経時的な変化の一例も示されている。図4に示すグラフは、本願発明者らによる実験によって得られたものである。
 図4において、指標値MIは、エンジン200の始動後の最初の期間T1ではやや大きくなるが、その後の期間T2において期間T1における値よりも小さくなっている。これは期間T1及びT2ではグロープラグ214がオン状態であり、燃焼状態が比較的良いからである。期間T1及びT2では、エンジン200から白煙が発生していないことが確認された。
 期間T2後にグロープラグ214がオフ状態(glow off)にされた後の期間T3では、指標値MIは、期間T1及びT2における値よりも大きな値になる。期間T3では、グロープラグ214がオフ状態になったため、燃焼状態が悪化し、白煙が発生していることが確認された。
 期間T3の後、燃焼状態が安定化し、期間T4では、白煙が発生していないことが確認された。期間T4では、指標値MIは、期間T3における値よりも小さな値となる。
 このように、エンジン200から白煙が発生しているときには、指標値MIは比較的大きな値となり、エンジン200から白煙が発生していないときには、指標値MIは比較的小さな値となる。よって、本実施形態のように、指標値MIが所定の閾値Aよりも大きい場合には、エンジン200から白煙が発生していると判定し、指標値MIが所定の閾値A以下である場合には、エンジン200から白煙が発生してないと判定することで、エンジン200から白煙が発生しているか否かを適切に判定することができる。ここで、所定の閾値Aは、エンジン200から白煙が発生しているときに算出され得る指標値MIの下限値として、実験、シミュレーション等によって予め求めればよい。
 図2において、白煙が発生していると判定された(ステップS50)後には、白煙低減制御がECU100によって行われる(ステップS60)。即ち、ECU100は、白煙の発生を低減するための各種制御を行う。具体的には、ECU100は、EGR量を低減するようにEGRバルブ243を制御したり、グロープラグ214をオン状態にしたり、微小噴射を行うように燃料インジェクタ212を制御したり、触媒を電気加熱するようにEHC235を制御したり、吸気ヒータ228を作動させたりする。よって、エンジン200から白煙が発生することを確実に低減できる。なお、白煙低減制御として、EGRバルブ243、グロープラグ214、燃料インジェクタ212、EHC235及び吸気ヒータ228のいずれか1つ或いは2つ以上を制御することにより、白煙を確実に低減できる。また、本実施形態によれば、エンジン200から白煙が発生していると判定された場合に、白煙低減制御を行うので、例えばエンジン200から白煙が発生していない状態で白煙低減制御を無駄に行ってしまうことを回避できる。
 次に、指標値MIが所定の閾値Bよりも大きいか否かが白煙・失火判定部130によって判定される(ステップS70)。即ち、白煙・失火判定部130は、指標値算出部120によって算出された指標値MIと閾値Bとを比較して、指標値MIが閾値Bよりも大きいか否かを判定する。なお、前述したように、閾値Bは閾値Aよりも大きい。
 指標値MIが閾値Bよりも大きくない(即ち、指標値MIが閾値B以下である)と判定された場合には(ステップS70:No)、再びステップS10に係る処理が行われる。
 指標値MIが閾値Bよりも大きいと判定された場合には(ステップS70:Yes)、エンジン200の失火が発生していると白煙・失火判定部130によって判定される(ステップS80)。
 ここで、前述したように、指標値MIは、エンジン200の失火が発生した際に顕著に表れるクランク角速度の0.5次の周波数成分の大きさに応じて変動する。よって、本実施形態のように、指標値MIと閾値Bとを比較することによりエンジン200の失火が発生しているか否かを適切に判定することができる。なお、閾値Bは、エンジン200の失火が発生しているときに算出され得る指標値MIの下限値として、実験、シミュレーション等によって予め設定することができる。
 図2において、失火が発生していると判定された(ステップS80)後には、失火抑制制御がECU100によって行われる(ステップS90)。即ち、ECU100は、失火の発生を抑制するための各種制御を行う。具体的には、ECU100は、EGR量を低減するように(或いはゼロにするように)EGRバルブ243を制御したり、グロープラグ214をオン状態にしたり、微小噴射を行うように燃料インジェクタ212を制御したり、触媒を電気加熱するようにEHC235を制御したり、吸気ヒータ228を作動させたりする。よって、エンジン200の失火を確実に抑制できる。なお、失火抑制制御として、EGRバルブ243、グロープラグ214、燃料インジェクタ212、EHC235及び吸気ヒータ228のいずれか1つ或いは2つ以上を制御することにより、失火を確実に抑制できる。また、この際、ECU100は、失火が発生している旨を運転者に知らせるための警告ランプ(MIL:Malfunction Indication Lump)を点灯させてもよい。
 次に、EGR量の減量が故障判定部140によって行われる(ステップS100)。即ち、故障判定部140は、EGR量を低減するようにEGRバルブ243を制御する。
 次に、指標値MIが所定の閾値Bよりも大きいか否かが故障判定部140によって判定される(ステップS110)。
 指標値MIが閾値Bよりも大きくない(即ち、指標値MIが閾値B以下である)と判定された場合には(ステップS110:No)、再びステップS10に係る処理が行われる。
 指標値MIが閾値Bよりも大きいと判定された場合には(ステップS110:Yes)、エンジン200の故障が発生していると故障判定部140によって判定される(ステップS120)。
 ここで、指標値MIが閾値Bよりも大きく、エンジン200の失火が発生していると判定された場合(ステップS80)において、EGR量の減量(ステップS100)が行われると、エンジン200の故障が発生していないときには、燃焼室内の混合気の燃焼状態が改善されるので、指標値MIは低下する(即ち、EGR量の減量前に算出される指標値MIよりもERG量の減量後に算出される指標値MIのほうが小さい)。これに対して、エンジン200の故障が発生しているときには、EGR量の減量(ステップS100)が行われても、故障が発生しているため、指標値MIは閾値Bよりも大きいまま維持される(即ち、EGR量の減量前後のいずれの指標値MIも閾値Bよりも大きい)。よって、本実施形態のように、EGR量の減量(ステップS100)を行った後に、指標値MIと閾値Bとを比較する(ステップS110)ことによりエンジン200の故障が発生しているか否かを適切に判定することができる。
 以上説明したように、本実施形態によれば、エンジン20の白煙、失火及び故障の発生を適切に検出することができ、白煙を低減できるとともに失火の発生を抑制できる。ここで特に、本実施形態によれば、例えば白煙を検出するために排気通路に煙センサを別途設ける必要がないので、製造コストの増大を招くことなく、白煙が発生していることを適切に検出することができる。
 <第2実施形態>
 第2実施形態に係るエンジンシステムについて、図5を参照して説明する。
 図5は、第2実施形態に係る白煙低減制御、失火抑制制御及び故障検出の流れを示すフローチャートであり、図2と同趣旨の図である。なお、図5において、図2に示した第1実施形態に係るステップと同様のステップに同一の参照符合を付し、それらの説明は適宜省略する。
 第2実施形態に係るエンジンシステムは、前述した故障判定部140がEGR量の減量を行う(図2のステップS100)のに代えて、グロープラグ214をオフ状態からオン状態に変更する(図5のステップS200)点で、前述した第1実施形態に係るエンジンシステム10と異なり、その他の点については、前述した第1実施形態に係るエンジンシステムを概ね同様に構成されている。
 図5において、失火抑制制御(ステップS90)の後に、故障判定部140によって、グロープラグ214がオフ状態からオン状態に変更される(ステップS200)。即ち、故障判定部140の制御下でグロープラグ214が通電されることにより、燃焼室の温度が高められる。
 次に、指標値MIが所定の閾値Bよりも大きいか否かが故障判定部140によって判定される(ステップS110)。
 指標値MIが閾値Bよりも大きいと判定された場合には(ステップS110:Yes)、エンジン200の故障が発生していると故障判定部140によって判定される(ステップS120)。
 ここで、指標値MIが閾値Bよりも大きく、エンジン200の失火が発生していると判定された場合(ステップS80)において、グロープラグ214がオフ状態からオン状態に変更される(ステップS200)と、エンジン200の故障が発生していないときには、燃焼室内の混合気の燃焼状態が改善されるので、指標値MIは低下する(即ち、グロープラグ214がオフ状態のときに算出される指標値MIよりもグロープラグ214がオン状態のときに算出される指標値MIのほうが小さい)。これに対して、エンジン200の故障が発生しているときには、グロープラグ214がオフ状態からオン状態に変更(ステップS200)されても、故障が発生しているため、指標値MIは閾値Bよりも大きいまま維持される(即ちグロープラグ214がオン状態及びオフ状態のいずれであっても指標値算出部120によって算出される指標値MIは閾値Bよりも大きい)。よって、本実施形態のように、グロープラグ214をオフ状態からオン状態に変更した(ステップS200)後に、指標値MIと閾値Bとを比較する(ステップS110)ことによりエンジン200の故障が発生しているか否かを適切に判定することができる。
 本発明は、前述した実施形態に限られるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う内燃機関の制御装置もまた本発明の技術的範囲に含まれるものである。
 100 ECU
 110 クランク角速度算出部
 120 指標値算出部
 130 白煙・失火判定部
 140 故障判定部
 200 エンジン
 212 燃料インジェクタ
 213 コモンレール
 214 グロープラグ
 216 クランク角センサ
 228 吸気ヒータ
 235 EHC
 220 吸気系
 230 排気系
 240 EGR系
 243 EGRバルブ

Claims (2)

  1.  内燃機関のクランク角速度を検出する検出手段と、
     該検出手段によって検出されたクランク角速度に基づいて、前記内燃機関の燃焼状態を示す燃焼状態指標値を算出する算出手段と、
     該算出手段によって算出された燃焼状態指標値を、所定の第1閾値及び該第1閾値よりも大きい所定の第2閾値と比較することにより、前記内燃機関から白煙が発生しているか否か及び前記内燃機関の失火が発生しているか否かを判定する第1判定手段と
     を備えることを特徴とする内燃機関の制御装置。
  2.  前記内燃機関は、通電に応じて燃焼室内の温度を高めるグロープラグと、排気通路の排気の一部を吸気通路に還流する排気還流装置とを備え、
     前記算出手段によって算出された燃焼状態指標値が前記第2閾値よりも大きい場合、前記グロープラグの通電状態又は前記排気還流装置の動作状態を変化させ、該変化させた後に前記算出手段によって算出された前記燃焼状態指標値に基づいて、前記内燃機関に故障が発生しているか否かを判定する第2判定手段を更に備える
     請求項1に記載の内燃機関の制御装置。
PCT/JP2011/067302 2011-07-28 2011-07-28 内燃機関の制御装置 WO2013014789A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
RU2014102419/07A RU2014102419A (ru) 2011-07-28 2011-07-28 Устройство управления двигателем внутреннего сгорания
PCT/JP2011/067302 WO2013014789A1 (ja) 2011-07-28 2011-07-28 内燃機関の制御装置
US14/233,913 US20140149021A1 (en) 2011-07-28 2011-07-28 Internal combustion engine control device
CN201180072649.9A CN103717865A (zh) 2011-07-28 2011-07-28 内燃机的控制装置
BR112014001832A BR112014001832A2 (pt) 2011-07-28 2011-07-28 dispositivo de controle de motor de combustão interna
EP11870134.1A EP2738376A4 (en) 2011-07-28 2011-07-28 CONTROL DEVICE FOR A COMBUSTION ENGINE
AU2011373834A AU2011373834A1 (en) 2011-07-28 2011-07-28 Internal combustion engine control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/067302 WO2013014789A1 (ja) 2011-07-28 2011-07-28 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
WO2013014789A1 true WO2013014789A1 (ja) 2013-01-31

Family

ID=47600676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/067302 WO2013014789A1 (ja) 2011-07-28 2011-07-28 内燃機関の制御装置

Country Status (7)

Country Link
US (1) US20140149021A1 (ja)
EP (1) EP2738376A4 (ja)
CN (1) CN103717865A (ja)
AU (1) AU2011373834A1 (ja)
BR (1) BR112014001832A2 (ja)
RU (1) RU2014102419A (ja)
WO (1) WO2013014789A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015117642A (ja) * 2013-12-19 2015-06-25 日立オートモティブシステムズ株式会社 エンジンの制御装置
JP2017172433A (ja) * 2016-03-23 2017-09-28 マツダ株式会社 エンジンの失火判定装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130073139A1 (en) * 2011-09-21 2013-03-21 Luke Henry Methods and systems for controlling engine operation through data-sharing among vehicles
CN104169550B (zh) * 2012-03-14 2017-12-01 日产自动车株式会社 柴油发动机的控制装置及控制方法
JP6350591B2 (ja) * 2016-05-17 2018-07-04 トヨタ自動車株式会社 内燃機関の制御装置
JP6843255B2 (ja) * 2017-09-22 2021-03-17 株式会社トランストロン インジェクタ噴射量制御装置、インジェクタ噴射量制御方法、及びプログラム
US11391229B2 (en) * 2020-07-07 2022-07-19 Ford Global Technologies, Llc System and method for starting an engine
CN115506906A (zh) * 2022-09-29 2022-12-23 东风商用车有限公司 一种多级发动机失火诊断及控制方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0874652A (ja) 1994-09-08 1996-03-19 Honda Motor Co Ltd 内燃エンジンの燃焼状態検出装置
JPH10184441A (ja) 1996-12-26 1998-07-14 Nippon Soken Inc 筒内残留燃料量計測システム
JP2000234551A (ja) 1999-02-16 2000-08-29 Mitsubishi Motors Corp 蓄圧式燃料噴射制御装置
JP2002349370A (ja) * 2001-05-28 2002-12-04 Toyota Motor Corp 内燃機関の白煙発生防止装置
JP2003239748A (ja) * 2002-02-18 2003-08-27 Yanmar Co Ltd 圧縮自着火式内燃機関
JP2004293391A (ja) 2003-03-26 2004-10-21 Fuji Heavy Ind Ltd エンジンの排気制御装置
JP2004360648A (ja) 2003-06-06 2004-12-24 Komotetsuku:Kk 排気フィルタの再生装置及び再生補助器具
JP2005325694A (ja) * 2004-05-12 2005-11-24 Toyota Motor Corp 予混合圧縮着火内燃機関の制御装置
JP2007032415A (ja) 2005-07-27 2007-02-08 Nissan Motor Co Ltd エンジンのバルブタイミング制御装置
JP2008190391A (ja) * 2007-02-02 2008-08-21 Nissan Diesel Motor Co Ltd ディーゼルエンジンの始動改善システム及び始動改善方法
JP2008267256A (ja) 2007-04-19 2008-11-06 Toyota Motor Corp 可変ノズル機構ターボチャージャ付き内燃機関の制御装置
JP2009002234A (ja) 2007-06-21 2009-01-08 Toyota Motor Corp 内燃機関の制御システム
JP2009062835A (ja) 2007-09-04 2009-03-26 Toyota Motor Corp 内燃機関の制御装置
JP2009243369A (ja) 2008-03-31 2009-10-22 Denso Corp 排気ガス監視装置
JP2010265814A (ja) 2009-05-14 2010-11-25 Toyota Motor Corp 内燃機関の制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09264183A (ja) * 1996-03-29 1997-10-07 Mazda Motor Corp エンジンの燃焼状態判別方法、エンジンの制御方法及び同装置
US6152105A (en) * 1998-03-31 2000-11-28 Mazda Motor Corporation Idle speed control device for engine
US6021765A (en) * 1998-08-31 2000-02-08 Chrysler Corporation Linear-EGR flow rate adaption
DE102007014677B4 (de) * 2006-03-29 2017-06-01 Ngk Spark Plug Co., Ltd. Einrichtung und Verfahren zum Steuern der Stromversorgung einer Glühkerze
DE102006048982B4 (de) * 2006-10-17 2008-09-18 Continental Automotive Gmbh Verfahren zur Verbesserung der Laufruhe einer Brennkraftmaschine, Steuervorrichtung und Brennkraftmaschine
JP2008202520A (ja) * 2007-02-21 2008-09-04 Toyota Industries Corp 予混合圧縮着火機関及びその吸排気装置
JP4826596B2 (ja) * 2008-03-18 2011-11-30 株式会社デンソー 内燃機関異常診断装置およびそれを用いた異常診断方法
JP4883105B2 (ja) * 2009-02-10 2012-02-22 株式会社デンソー ディーゼルエンジンの制御装置

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0874652A (ja) 1994-09-08 1996-03-19 Honda Motor Co Ltd 内燃エンジンの燃焼状態検出装置
JPH10184441A (ja) 1996-12-26 1998-07-14 Nippon Soken Inc 筒内残留燃料量計測システム
JP2000234551A (ja) 1999-02-16 2000-08-29 Mitsubishi Motors Corp 蓄圧式燃料噴射制御装置
JP2002349370A (ja) * 2001-05-28 2002-12-04 Toyota Motor Corp 内燃機関の白煙発生防止装置
JP2003239748A (ja) * 2002-02-18 2003-08-27 Yanmar Co Ltd 圧縮自着火式内燃機関
JP2004293391A (ja) 2003-03-26 2004-10-21 Fuji Heavy Ind Ltd エンジンの排気制御装置
JP2004360648A (ja) 2003-06-06 2004-12-24 Komotetsuku:Kk 排気フィルタの再生装置及び再生補助器具
JP2005325694A (ja) * 2004-05-12 2005-11-24 Toyota Motor Corp 予混合圧縮着火内燃機関の制御装置
JP2007032415A (ja) 2005-07-27 2007-02-08 Nissan Motor Co Ltd エンジンのバルブタイミング制御装置
JP2008190391A (ja) * 2007-02-02 2008-08-21 Nissan Diesel Motor Co Ltd ディーゼルエンジンの始動改善システム及び始動改善方法
JP2008267256A (ja) 2007-04-19 2008-11-06 Toyota Motor Corp 可変ノズル機構ターボチャージャ付き内燃機関の制御装置
JP2009002234A (ja) 2007-06-21 2009-01-08 Toyota Motor Corp 内燃機関の制御システム
JP2009062835A (ja) 2007-09-04 2009-03-26 Toyota Motor Corp 内燃機関の制御装置
JP2009243369A (ja) 2008-03-31 2009-10-22 Denso Corp 排気ガス監視装置
JP2010265814A (ja) 2009-05-14 2010-11-25 Toyota Motor Corp 内燃機関の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2738376A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015117642A (ja) * 2013-12-19 2015-06-25 日立オートモティブシステムズ株式会社 エンジンの制御装置
JP2017172433A (ja) * 2016-03-23 2017-09-28 マツダ株式会社 エンジンの失火判定装置

Also Published As

Publication number Publication date
CN103717865A (zh) 2014-04-09
EP2738376A1 (en) 2014-06-04
AU2011373834A1 (en) 2014-02-20
EP2738376A4 (en) 2015-01-07
BR112014001832A2 (pt) 2017-03-21
US20140149021A1 (en) 2014-05-29
RU2014102419A (ru) 2015-09-10

Similar Documents

Publication Publication Date Title
WO2013014789A1 (ja) 内燃機関の制御装置
JP4770742B2 (ja) エンジンの燃料噴射制御装置及び燃焼装置
JP5029501B2 (ja) 内燃機関の制御装置
JP2011185159A (ja) 過給機付き内燃機関の異常診断装置
JP4853381B2 (ja) セタン価推定装置及び方法
US8459006B2 (en) Temperature control device for catalyst
JP5211997B2 (ja) ターボ過給機付直噴エンジンの制御方法及びその装置
JP2015132204A (ja) 内燃機関のバルブの基準位置学習装置
JP2013224613A (ja) 内燃機関のNOx生成量推定装置およびNOxセンサ故障診断装置
US8402748B2 (en) Diesel fuel alternative detection and correction systems and methods
JP5109752B2 (ja) ディーゼルエンジンの自動停止装置
WO2007023890A1 (ja) ディーゼル内燃機関の制御装置
JP6107378B2 (ja) 空燃比インバランス判定装置
JP2010138834A (ja) 内燃機関の吸気温センサ異常診断装置
JP4615503B2 (ja) 内燃機関の制御装置
JP2007309309A (ja) 内燃機関の制御装置
US10669966B2 (en) Control device and method for diesel engine
JP2012132423A (ja) 内燃機関の制御装置
JPWO2013014789A1 (ja) 内燃機関の制御装置
JP5637098B2 (ja) 内燃機関の制御装置
JP2013238147A (ja) 排気ガス温度推定装置及び故障診断装置
JP5229429B1 (ja) 内燃機関の燃料性状判定装置
JP2009002172A (ja) 内燃機関の排気浄化制御装置
JP6573464B2 (ja) 制御装置
JP2014227929A (ja) インジェクタ通電遮断機能の故障検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870134

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013525519

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011870134

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14233913

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2011373834

Country of ref document: AU

Date of ref document: 20110728

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014102419

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014001832

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014001832

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140124