WO2013011953A1 - ナノインプリント用モールドの製造方法 - Google Patents

ナノインプリント用モールドの製造方法 Download PDF

Info

Publication number
WO2013011953A1
WO2013011953A1 PCT/JP2012/067968 JP2012067968W WO2013011953A1 WO 2013011953 A1 WO2013011953 A1 WO 2013011953A1 JP 2012067968 W JP2012067968 W JP 2012067968W WO 2013011953 A1 WO2013011953 A1 WO 2013011953A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
mold
electrolytic solution
aqueous solution
concentration
Prior art date
Application number
PCT/JP2012/067968
Other languages
English (en)
French (fr)
Inventor
小澤 覚
克宏 小嶋
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to KR1020137017632A priority Critical patent/KR101351670B1/ko
Priority to CN201280004553.3A priority patent/CN103299397B/zh
Priority to US13/994,314 priority patent/US20130264744A1/en
Priority to JP2012535522A priority patent/JP5230846B1/ja
Publication of WO2013011953A1 publication Critical patent/WO2013011953A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3842Manufacturing moulds, e.g. shaping the mould surface by machining
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • B29C33/424Moulding surfaces provided with means for marking or patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/006Nanostructures, e.g. using aluminium anodic oxidation templates [AAO]
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/12Anodising more than once, e.g. in different baths

Definitions

  • the present invention relates to a method for producing a mold for nanoimprinting, in which an anodized alumina having a fine concavo-convex structure composed of a plurality of pores is formed on the surface of an aluminum substrate.
  • an article such as a transparent film having a fine concavo-convex structure with a period equal to or shorter than the wavelength of visible light on the surface exhibits an antireflection effect, a lotus effect, and the like.
  • a fine concavo-convex structure called a moth-eye structure is an effective antireflection means by continuously increasing the refractive index from the refractive index of air to the refractive index of the material of the article. .
  • a so-called nanoimprint method having the following steps (i) to (iii) is known.
  • (I) A step of sandwiching an active energy ray-curable composition between a mold having an inverted structure of a fine concavo-convex structure on a surface and a base film that is a main body of a transparent film.
  • the active energy ray-curable composition is irradiated with active energy rays such as ultraviolet rays, and the active energy ray-curable composition is cured to form a cured resin layer having a fine concavo-convex structure, and the base film and the cured resin The process of obtaining the transparent film which consists of a layer.
  • active energy rays such as ultraviolet rays
  • the anodized alumina in the aluminum base anodized later may be thinner than the aluminum base previously anodized. As a result, it may be difficult to make the fine concavo-convex structure of the mold into a predetermined shape (a shape as designed).
  • the present invention provides a method for producing a nanoimprint mold having a fine concavo-convex structure of a predetermined shape.
  • the present inventors have obtained the following knowledge.
  • aluminum is eluted from the aluminum substrate in the electrolytic solution. If the increase in the aluminum concentration in the electrolytic solution is small, the shape of the fine concavo-convex structure of the mold is not affected.
  • the increase in the aluminum concentration in the electrolytic solution increases, the anodized alumina becomes thinner, and as a result, it may be difficult to make the fine uneven structure of the mold into a predetermined shape (as designed).
  • the present inventors specify the upper limit of the increase in the aluminum concentration in the electrolytic solution that affects the shape of the fine concavo-convex structure of the mold, and make the increase in the aluminum concentration in the electrolytic solution equal to or less than the upper limit.
  • the present invention has been completed by finding out that the fine concavo-convex structure of the mold can be formed into a predetermined shape and a method for easily measuring the aluminum concentration in the electrolytic solution.
  • One aspect of the method for producing a nanoimprint mold of the present invention is a method of producing m nanoimprint molds in which anodized alumina having a fine concavo-convex structure consisting of a plurality of pores is formed on the surface of an aluminum substrate (however, m is an integer greater than or equal to 1.)
  • the difference between the aluminum concentration X in the electrolytic solution and the aluminum concentration X 0 in the electrolytic solution immediately before the first anodic oxidation step of the first aluminum substrate in all the anodizing steps (X ⁇ X 0 ) However, it is 1000 ppm or less.
  • m is preferably an integer of 2 or more.
  • the electrolytic solution is preferably an oxalic acid aqueous solution.
  • the aluminum concentration in the electrolytic solution is preferable to determine the aluminum concentration in the electrolytic solution.
  • a nanoimprint mold having a fine concavo-convex structure having a predetermined shape can be produced.
  • FIG. 2 is a scanning electron microscope image of a cross section of the oxide film obtained in step (a) of Example 1.
  • FIG. 3 is a scanning electron microscope image of a cross section of the oxide film obtained in step (a) of Example 2.
  • FIG. 4 is a scanning electron microscope image of a cross section of the oxide film obtained in step (a) of Example 3.
  • FIG. 6 is a scanning electron microscope image of a cross section of the oxide film obtained in step (a) of Example 4.
  • FIG. 2 is a scanning electron microscope image of a cross section of an oxide film obtained in the step (a) of Comparative Example 1.
  • the method for producing a mold for nanoimprinting (hereinafter, also simply referred to as a mold) of the present invention is such that each of m (where m is an integer of 1 or more) aluminum bases in an electrolytic solution. It has one or more anodizing steps for anodizing the material. It is preferable to have two or more anodizing steps from the viewpoint of forming sufficiently deep pores. From the point of forming the pores whose diameter continuously decreases in the depth direction from the opening with high regularity, if necessary, the step of removing the oxide film, which will be described later, the pore diameter of the oxide film You may have the process of enlarging.
  • an oxide film (anodized alumina) having a plurality of pores is formed on the surface of the aluminum substrate.
  • the electrolyte solution is repeatedly used as much as possible, that is, after anodizing the aluminum substrate in the electrolyte solution, the same aluminum substrate is formed using this electrolyte solution. It is preferable to anodize again or to anodize another aluminum substrate.
  • the number m of aluminum substrates may be 1 or 2 or more.
  • the number m of the aluminum base material is preferably 2 or more, more preferably 10 or more, and further preferably 20 or more, from the viewpoint that a mold having a fine concavo-convex structure having a predetermined shape can be produced with high productivity.
  • the larger the number m of aluminum base materials, the better, and the upper limit is not limited.
  • aluminum ions are eluted from the aluminum base material in the electrolytic solution, although slightly, so that the electrolytic solution contains aluminum.
  • aluminum used herein refers to aluminum ions, aluminum hydroxide, aluminum oxide, aluminum complexes, and the like.
  • the shape of the fine concavo-convex structure of the mold is not particularly affected.
  • the increase in the aluminum concentration in the electrolytic solution is increased, oxidation proceeds even in dissolved aluminum when a voltage is applied during anodic oxidation.
  • aluminum and acid in the electrolytic solution form a salt or complex, and the concentration of the acid in the electrolytic solution is reduced. Therefore, even if a predetermined voltage is applied, the oxidation on the surface of the aluminum base material hardly proceeds, and the oxide film formed on the surface of the aluminum base material becomes thin. As a result, it becomes difficult to make the fine concavo-convex structure of the mold into a predetermined shape (a shape as designed).
  • the degree of increase in the aluminum concentration in the electrolytic solution in which such a phenomenon does not occur that is, the aluminum concentration X in the electrolytic solution and the electrolytic solution immediately before the first anodic oxidation step of the first aluminum substrate
  • the difference (X ⁇ X 0 ) from the aluminum concentration X 0 is 1000 ppm or less, preferably 900 ppm or less, and more preferably 800 ppm or less.
  • the lower limit value of XX 0 is not particularly limited.
  • XX 0 is 1000 ppm or less in all the anodizing steps.
  • the thickness of the oxide film formed on the surface of each aluminum substrate can be set to a predetermined thickness (thickness as designed).
  • XX 0 is 1000 ppm or less in each step.
  • XX 0 is 1000 ppm or less, Even during each anodizing step, XX 0 is 1000 ppm or less.
  • the “aluminum concentration X 0 in the electrolytic solution immediately before the first anodic oxidation step of the first aluminum base material” is the same electrolytic solution without replacing or readjusting the electrolytic solution. In the case of anodizing two or more aluminum substrates in succession, it means the aluminum concentration in the electrolyte immediately before the anodizing step is performed on the first (first) aluminum substrate.
  • the concentration of the electrolytic solution after adjustment becomes “first The aluminum concentration X 0 in the electrolytic solution immediately before the first anodic oxidation step of the aluminum base material.
  • the aluminum concentration in the electrolytic solution is usually determined using techniques such as atomic absorption and ICP emission spectroscopic analysis. In the present invention, it is preferable to obtain the aluminum concentration in the electrolytic solution from the change in the titration curve when the electrolytic solution is titrated with an alkaline aqueous solution because the aluminum concentration in the electrolytic solution can be easily obtained.
  • an oxalic acid aqueous solution is used as the electrolytic solution will be described in detail.
  • concentration of oxalic acid is determined by titration with an aqueous alkaline solution (such as an aqueous sodium hydroxide solution).
  • an aqueous alkaline solution such as an aqueous sodium hydroxide solution.
  • FIG. 2 and FIG. 3 show titration curves of an aqueous oxalic acid solution containing 500 ppm and 1005 ppm of aluminum with a 0.1N sodium hydroxide aqueous solution.
  • the length of the flat portion (titer amount of the sodium hydroxide aqueous solution) is proportional to the aluminum concentration in the oxalic acid aqueous solution. Therefore, the aluminum concentration can be obtained from the length of the flat portion.
  • the titration amount of the alkaline aqueous solution in the flat portion is the amount of the alkaline aqueous solution dropped from the first equivalent point to the second equivalent point of the titration curve.
  • FIG. 4 shows the relationship between the titration amount of the sodium hydroxide aqueous solution in the flat portion and the aluminum concentration in the oxalic acid aqueous solution obtained by the ICP emission spectroscopic analyzer.
  • the titration amount of the sodium hydroxide aqueous solution and the aluminum concentration in the oxalic acid aqueous solution are in a proportional relationship. By using this relationship as a calibration curve, the aluminum concentration in the electrolytic solution can be determined more easily.
  • the aluminum concentration in the electrolytic solution is determined as follows. (I) Between a first equivalent point and a second equivalent point of a titration curve obtained by titrating an oxalic acid aqueous solution having an aluminum concentration X′1 with an alkaline aqueous solution having an alkali concentration Z (for example, 0.1 N). The titration amount Y′1 of the alkaline aqueous solution in the appearing flat part is determined.
  • X-X 0 exceeds 1000 ppm, it is preferable to stop the production of the mold. More preferably, after the manufacture of the mold is stopped, an electrolytic solution having XX 0 of 1000 ppm or less is prepared and the manufacture of the mold is resumed.
  • XX 0 it is preferable to control XX 0 to 1000 ppm or less in the anodizing step, more preferably to 900 ppm or less, and even more preferably to 800 ppm or less. .
  • a method for producing the mold a method having the following steps (a) to (f) may be mentioned.
  • B A step of removing the oxide film and forming anodic oxidation pore generation points on the surface of the aluminum substrate.
  • C A step of anodizing the aluminum substrate again in the electrolytic solution to form an oxide film having pores at the pore generation points.
  • D A step of enlarging the diameter of the pores.
  • E A step of anodizing again in the electrolytic solution after the step (d).
  • F A step of repeating steps (d) and (e) to obtain a mold in which anodized alumina having a plurality of pores is formed on the surface of an aluminum substrate.
  • the shape of the aluminum substrate include a roll shape, a circular tube shape, a flat plate shape, and a sheet shape.
  • the aluminum substrate is preferably polished by mechanical polishing, bedding polishing, chemical polishing, electrolytic polishing (etching) or the like in order to smooth the surface state.
  • etching electrolytic polishing
  • the purity of aluminum is preferably 99% by mass or more, more preferably 99.5% by mass or more, and particularly preferably 99.8% by mass or more.
  • the purity of aluminum is low, when anodized, an uneven structure having a size to scatter visible light may be formed due to segregation of impurities, or the regularity of pores obtained by anodization may be lowered.
  • the electrolytic solution include an oxalic acid aqueous solution, a sulfuric acid aqueous solution, and a phosphoric acid aqueous solution.
  • the concentration of oxalic acid is preferably 0.7 M or less. When the concentration of oxalic acid exceeds 0.7M, the current value becomes too high, and the surface of the oxide film may become rough. When the formation voltage is 30 to 60 V, anodized alumina having highly regular pores with an average interval of 100 nm can be obtained. Regardless of whether the formation voltage is higher or lower than this range, the regularity tends to decrease.
  • the temperature of the electrolytic solution is preferably 60 ° C. or lower, and more preferably 45 ° C. or lower. When the temperature of the electrolytic solution exceeds 60 ° C., a so-called “burn” phenomenon occurs, and the pores may be broken, or the surface may melt and the regularity of the pores may be disturbed.
  • the concentration of sulfuric acid is preferably 0.7M or less. If the concentration of sulfuric acid exceeds 0.7M, the current value may become too high to maintain a constant voltage. When the formation voltage is 25 to 30 V, anodized alumina having highly regular pores with an average interval of 63 nm can be obtained. The regularity tends to decrease whether the formation voltage is higher or lower than this range.
  • the temperature of the electrolytic solution is preferably 30 ° C. or less, and more preferably 20 ° C. or less. When the temperature of the electrolytic solution exceeds 30 ° C., a so-called “burn” phenomenon occurs, and the pores may be broken or the surface may melt and the regularity of the pores may be disturbed.
  • Examples of the method for removing the oxide film include a method in which aluminum is not dissolved but is dissolved and removed in a solution that selectively dissolves the oxide film.
  • Examples of such a solution include a chromic acid / phosphoric acid mixed solution.
  • the pore diameter expansion treatment is a treatment for expanding the diameter of the pores obtained by anodic oxidation by immersing in a solution dissolving the oxide film. Examples of such a solution include a phosphoric acid aqueous solution of about 5% by mass. The longer the pore diameter expansion processing time, the larger the pore diameter.
  • the total number of repetitions is preferably 3 times or more, and more preferably 5 times or more.
  • the diameter of the pores decreases discontinuously. Therefore, the reflectance reduction effect of the fine uneven structure (moth eye structure) formed using anodized alumina having such pores is It is insufficient.
  • Examples of the shape of the pore 12 include a substantially conical shape, a pyramid shape, a cylindrical shape, and the like. A shape that continuously decreases in the direction is preferred.
  • the average interval between the pores 12 is not more than the wavelength of visible light, that is, not more than 400 nm.
  • the average interval between the pores 12 is preferably 20 nm or more.
  • the average interval between the pores 12 was measured by measuring the distance between adjacent pores 12 (distance from the center of the pore 12 to the center of the adjacent pore 12) by electron microscope observation, and averaging these values. It is what.
  • the depth of the pores 12 is preferably 80 to 500 nm, more preferably 120 to 400 nm, and particularly preferably 150 to 300 nm.
  • the depth of the pore 12 is a value obtained by measuring the distance between the bottom of the pore 12 and the top of the convex portion existing between the pores 12 by electron microscope observation.
  • the aspect ratio (pore depth / average interval between pores) of the pores 12 is preferably 0.8 to 5.0, more preferably 1.2 to 4.0, and 1.5 to 3.0. Is particularly preferred.
  • the mold body 18 obtained in the step (f) may be used as a mold as it is.
  • the surface of the mold body 18 on which the fine uneven structure is formed is formed with a release agent (external release agent). It may be processed.
  • those having a functional group capable of forming a chemical bond with the anodized alumina of the aluminum substrate are preferable.
  • Specific examples include silicone resins, fluororesins, fluorine compounds, and the like, from the viewpoint of excellent releasability and excellent adhesion to the mold body, a compound having a silanol group or a hydrolyzable silyl group is preferable.
  • a fluorine compound having a hydrolyzable silyl group is particularly preferable.
  • fluorine compounds having hydrolyzable silyl groups include fluoroalkylsilanes, “KBM-7803” manufactured by Shin-Etsu Chemical Co., Ltd .; “OPTOOL” series manufactured by Daikin Industries, Ltd .; “manufactured by Sumitomo 3M Co., Ltd.” Novec EGC-1720 "and the like.
  • Method 1 A method in which a mold body is immersed in a dilute solution of a release agent.
  • Method 2 A method in which a release agent or a diluted solution thereof is applied to the surface of the mold body on the side where the fine relief structure is formed.
  • a method having the following steps (g) to (k) is preferable.
  • (G) A step of washing the mold main body with water.
  • (H) A step of blowing air to the mold body to remove water droplets attached to the surface of the mold body.
  • (I) A step of immersing the mold body in a diluted solution obtained by diluting a fluorine compound having a hydrolyzable silyl group with a solvent.
  • (J) A step of slowly lifting the immersed mold body from the solution.
  • K A step of drying the mold body.
  • a known solvent such as a fluorine-based solvent or an alcohol-based solvent may be used.
  • a fluorine-based solvent is preferable because it has appropriate volatility, wettability, and the like, and can be applied uniformly with an external release agent solution.
  • the fluorine-based solvent include hydrofluoropolyether, perfluorohexane, perfluoromethylcyclohexane, perfluoro-1,3-dimethylcyclohexane, dichloropentafluoropropane, and the like.
  • the concentration of the fluorine compound having a hydrolyzable silyl group is preferably 0.01 to 0.2% by mass in the diluted solution (100% by mass).
  • the immersion time is preferably 1 to 30 minutes.
  • the immersion temperature is preferably 0 to 50 ° C.
  • the pulling speed is preferably 1 to 10 mm / second.
  • the drying temperature is preferably 30 to 150 ° C.
  • the drying time is preferably 5 to 300 minutes.
  • the surface of the mold main body was processed with the mold release agent by measuring the water contact angle of the surface of the mold main body.
  • the water contact angle on the surface of the mold body treated with the release agent is preferably 60 ° or more, and more preferably 90 ° or more.
  • the water contact angle is 60 ° or more, the surface of the mold main body is sufficiently treated with a release agent, and the release property is improved.
  • the mold manufacturing method of the present invention described above since XX 0 is 1000 ppm or less, anodization can be performed stably, and a mold having a predetermined shape (a shape as designed) can be accurately performed. Can be manufactured. Further, the aluminum concentration in the electrolytic solution is obtained from the titration amount of the alkaline aqueous solution at the flat portion appearing between the first equivalent point and the second equivalent point of the titration curve when the electrolytic solution is titrated with the alkaline aqueous solution. Thus, the aluminum concentration in the electrolytic solution can be easily obtained.
  • aqueous oxalic acid solution used for anodization was diluted 25 times, titrated with a 0.1N aqueous sodium hydroxide solution using a titration apparatus (COMITITE-500, manufactured by Hiranuma Sangyo Co., Ltd.), and the pH was measured.
  • a titration apparatus COMPITITE-500, manufactured by Hiranuma Sangyo Co., Ltd.
  • Example 1 A 0.3 M aqueous oxalic acid solution (aluminum concentration X 0 : 0 ppm) was prepared and used as an electrolytic solution. When the oxalic acid aqueous solution was titrated, no flat portion was confirmed as shown in FIG.
  • An aluminum ingot having a purity of 99.9% by mass is subjected to a forging process, and a blanket polishing process is performed on a cylindrical aluminum base material having an average crystal grain size of 40 ⁇ m without rolling marks cut into a diameter of 200 mm and a length of 350 mm. After application, this was electropolished in a perchloric acid / ethanol mixed solution (volume ratio: 1/4) to make a mirror surface.
  • a formed roll-shaped mold body was obtained.
  • the aluminum concentration X in the electrolytic solution was 5 ppm.
  • Example 2 An aluminum piece is immersed in a 0.3 M oxalic acid aqueous solution (aluminum concentration X 0 : 0 ppm), and left for a certain period to elute aluminum, so that the aluminum concentration X is 500 ppm.
  • An oxalic acid aqueous solution corresponding to the fatigue fluid after anodizing the material was prepared.
  • the oxalic acid aqueous solution was titrated, a flat portion was confirmed as shown in FIG.
  • a mold was obtained in the same manner as in Example 1 except that this aqueous oxalic acid solution was used.
  • the thickness of the oxide film when the step (a) was completed was about 190 nm.
  • a scanning electron microscope image of a cross section of the obtained oxide film is shown in FIG.
  • a mold was obtained in which anodized alumina having substantially conical pores with an average interval of 100 nm and a depth of 200 nm was formed on the surface.
  • the aluminum concentration X in the electrolytic solution was 5 ppm.
  • Example 3 A piece of aluminum is immersed in a 0.3 M oxalic acid aqueous solution (aluminum concentration X 0 : 0 ppm), left for a certain period of time to elute aluminum, and an oxalic acid aqueous solution having an aluminum concentration X of 600 ppm, that is, a plurality of aluminum groups An oxalic acid aqueous solution corresponding to the fatigue fluid after anodizing the material was prepared. When the oxalic acid aqueous solution was titrated, a flat portion was confirmed. A mold was obtained in the same manner as in Example 1 except that this aqueous oxalic acid solution was used.
  • the thickness of the oxide film when the step (a) was completed was about 190 nm.
  • FIG. 8 shows a scanning electron microscope image of the cross section of the obtained oxide film.
  • a mold was obtained in which anodized alumina having substantially conical pores with an average interval of 100 nm and a depth of 200 nm was formed on the surface.
  • the aluminum concentration X in the electrolytic solution was 5 ppm.
  • Example 4 An aluminum piece is immersed in a 0.3 M oxalic acid aqueous solution (aluminum concentration X 0 : 0 ppm), left for a certain period of time to elute aluminum, and an oxalic acid aqueous solution having an aluminum concentration X of 800 ppm, that is, a plurality of aluminum groups An oxalic acid aqueous solution corresponding to the fatigue fluid after anodizing the material was prepared. When the oxalic acid aqueous solution was titrated, a flat portion was confirmed. A mold was obtained in the same manner as in Example 1 except that this aqueous oxalic acid solution was used.
  • the thickness of the oxide film when the step (a) was completed was about 190 nm.
  • a scanning electron microscope image of the cross section of the obtained oxide film is shown in FIG.
  • a mold was obtained in which anodized alumina having substantially conical pores with an average interval of 100 nm and a depth of 200 nm was formed on the surface.
  • the aluminum concentration X in the electrolytic solution was 5 ppm.
  • the step (a) shows a scanning electron microscope image of the cross section of the obtained oxide film.
  • the thickness of the oxide film was about 100 nm, which was thinner than that of the example. Therefore, it was judged that a mold having a predetermined shape could not be produced, and the production was stopped.
  • the mold obtained by the production method of the present invention is useful for efficient mass production of antireflection articles, antifogging articles, antifouling articles, and water repellent articles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

 本発明は、アルミニウム基材の表面に複数の細孔からなる微細凹凸構造を有する陽極酸化アルミナが形成されたナノインプリント用モールドをm個(mは1以上の整数)製造する方法に関し、m個のアルミニウム基材のそれぞれについて、電解液中にてアルミニウム基材を陽極酸化する陽極酸化工程を1つ以上有し、前記陽極酸化工程のすべてにおいて、電解液中のアルミニウム濃度Xと、1個目のアルミニウム基材の1回目の陽極酸化工程の直前の電解液中のアルミニウム濃度Xとの差(X-X)が1000ppm以下である。

Description

ナノインプリント用モールドの製造方法
 本発明は、アルミニウム基材の表面に複数の細孔からなる微細凹凸構造を有する陽極酸化アルミナが形成されたナノインプリント用モールドの製造方法に関する。
 本願は、2011年7月19日に、日本に出願された特願2011-157886に基づき優先権を主張し、その内容をここに援用する。
 可視光の波長以下の周期の微細凹凸構造を表面に有する透明フィルム等の物品は、反射防止効果、ロータス効果等を発現することが知られている。特に、モスアイ構造と呼ばれる微細凹凸構造は、空気の屈折率から物品の材料の屈折率へと連続的に屈折率が増大していくことで有効な反射防止の手段となることが知られている。
 微細凹凸構造を表面に有する透明フィルムの製造方法としては、例えば、下記の工程(i)~(iii)を有する、いわゆるナノインプリント法が知られている。
(i)微細凹凸構造の反転構造を表面に有するモールドと、透明フィルムの本体となる基材フィルムとの間に、活性エネルギー線硬化性組成物を挟む工程。
(ii)活性エネルギー線硬化性組成物に紫外線等の活性エネルギー線を照射し、活性エネルギー線硬化性組成物を硬化させて微細凹凸構造を有する硬化樹脂層を形成し、基材フィルムと硬化樹脂層とからなる透明フィルムを得る工程。
(iii)透明フィルムとモールドとを分離する工程。
 このようにモールドの微細凹凸構造(反転構造)を転写して微細凹凸構造を有する透明フィルムを製造するためには、モールドの微細凹凸構造を精密に形成することが重要となる。モールドの製造方法としては、電解液中にてアルミニウム基材を陽極酸化することによって、アルミニウム基材の表面に複数の細孔からなる微細凹凸構造を有する陽極酸化アルミナを形成する方法が報告されている(特許文献1、2)。
特開2009-241351号公報 国際公開第2006/059686号
 しかし、同じ電解液を用い、同じ条件で陽極酸化した場合であっても、先に陽極酸化したアルミニウム基材に比べ、後に陽極酸化したアルミニウム基材における陽極酸化アルミナが薄くなることがある。その結果、モールドの微細凹凸構造を所定の形状(設計どおりの形状)にすることが困難となることがある。
 本発明は、所定の形状の微細凹凸構造を有するナノインプリント用モールドを製造できる方法を提供する。
 本発明者らは鋭意検討した結果、下記の知見を得た。
 電解液中にてアルミニウム基材を陽極酸化する際には、電解液中にアルミニウム基材からアルミニウムが溶出してくる。電解液中のアルミニウム濃度の上昇が小さければ、モールドの微細凹凸構造の形状に影響を及ぼすことはない。しかし、電解液中のアルミニウム濃度の上昇が大きくなると、陽極酸化アルミナが薄くなり、その結果、モールドの微細凹凸構造を所定の形状(設計どおりの形状)にすることが困難となる場合がある。そして、このモールドの微細凹凸構造(反転構造)を転写して得られる微細凹凸構造を有する透明フィルムも、所定の性能の発揮することができなくなる。
 そして、本発明者らは、モールドの微細凹凸構造の形状に影響を及ぼす電解液中のアルミニウム濃度の上昇の上限値を特定し、電解液中のアルミニウム濃度の上昇を、前記上限値以下とすることによって、モールドの微細凹凸構造を所定の形状にできること、また、電解液中のアルミニウム濃度を簡易に測定する方法を見出し、本発明を完成するに至った。
 (1)本発明のナノインプリント用モールドの製造方法の一態様は、アルミニウム基材の表面に複数の細孔からなる微細凹凸構造を有する陽極酸化アルミナが形成されたナノインプリント用モールドをm個(ただし、mは1以上の整数である。)製造する方法であって、m個のアルミニウム基材のそれぞれについて、電解液中にてアルミニウム基材を陽極酸化する陽極酸化工程を1つ以上有し、前記陽極酸化工程のすべてにおいて、電解液中のアルミニウム濃度Xと、1個目のアルミニウム基材の1回目の陽極酸化工程の直前の電解液中のアルミニウム濃度Xとの差(X-X)が、1000ppm以下である。
 (2)前記(1)において前記mは、2以上の整数であることが好ましい。
 (3)前記(1)または(2)において前記電解液は、シュウ酸水溶液であることが好ましい。
 (4)前記(3)においては、前記電解液をアルカリ水溶液にて滴定した際に滴定曲線の第1当量点と第2当量点との間に出現する平坦部におけるアルカリ水溶液の滴定量から、前記電解液中のアルミニウム濃度を求めることが好ましい。
 (5)前記(4)においては、アルミニウム濃度X’のシュウ酸水溶液をアルカリ濃度Zのアルカリ水溶液にて滴定した際に滴定曲線の第1当量点と第2当量点との間に出現する平坦部におけるアルカリ水溶液の滴定量Y’と、アルミニウム濃度X’との検量線をあらかじめ作成し、前記検量線を用いて、前記電解液をアルカリ濃度Zのアルカリ水溶液にて滴定した際に滴定曲線の第1当量点と第2当量点との間に出現する平坦部におけるアルカリ水溶液の滴定量Yから、前記電解液中のアルミニウム濃度Xを求めることがより好ましい。
 (6)前記(1)~(5)においては、前記差(X-X)が1000ppmを超えた場合、ナノインプリント用モールドの製造を中止することが好ましい。
 本発明のナノインプリント用モールドの製造方法によれば、所定の形状の微細凹凸構造を有するナノインプリント用モールドを製造できる。
アルミニウム濃度が0ppmのシュウ酸水溶液の0.1N水酸化ナトリウム水溶液による滴定曲線である。 アルミニウム濃度が500ppmのシュウ酸水溶液の0.1N水酸化ナトリウム水溶液による滴定曲線である。 アルミニウム濃度が1005ppmのシュウ酸水溶液の0.1N水酸化ナトリウム水溶液による滴定曲線である。 平坦部における水酸化ナトリウム水溶液の滴定量と、ICP発光分光分析装置により求めたシュウ酸水溶液中のアルミニウム濃度との関係を示すグラフである。 陽極酸化アルミナを表面に有するナノインプリント用モールドの製造工程を示す断面図である。 実施例1の工程(a)で得られた酸化皮膜の断面の走査型電子顕微鏡像である。 実施例2の工程(a)で得られた酸化皮膜の断面の走査型電子顕微鏡像である。 実施例3の工程(a)で得られた酸化皮膜の断面の走査型電子顕微鏡像である。 実施例4の工程(a)で得られた酸化皮膜の断面の走査型電子顕微鏡像である。 比較例1の工程(a)で得られた酸化皮膜の断面の走査型電子顕微鏡像である。
 本発明のナノインプリント用モールド(以下、単にモールドとも記す。)の製造方法は、m個(ただし、mは1以上の整数である。)のアルミニウム基材のそれぞれについて、電解液中にてアルミニウム基材を陽極酸化する陽極酸化工程を1つ以上有する。十分な深さの細孔を形成する点から、陽極酸化工程を2つ以上有することが好ましい。直径が開口部から深さ方向に連続的に減少する形状の細孔を高い規則性よく形成する点から、必要に応じて、後述する酸化皮膜を除去する工程、酸化皮膜の細孔の径を拡大させる工程等を有していてもよい。
 電解液中にてアルミニウム基材を陽極酸化することによって、アルミニウム基材の表面に複数の細孔を有する酸化皮膜(陽極酸化アルミナ)が形成される。
 モールドを製造する際には、モールドの製造コストの点から、電解液はできるだけ繰り返して用いる、すなわち電解液中にてアルミニウム基材を陽極酸化した後、この電解液を用いて同じアルミニウム基材を再度陽極酸化する、または別のアルミニウム基材を陽極酸化することが好ましい。
 アルミニウム基材の個数mは、1であってもよく、2以上であってもよい。アルミニウム基材の個数mは、所定の形状の微細凹凸構造を有するモールドを生産性よく製造できる点から、2以上が好ましく、10以上がより好ましく、20以上がさらに好ましい。アルミニウム基材の個数mは、多ければ多いほどよく、上限は限定されない。
 電解液中にてアルミニウム基材を陽極酸化する際には、わずかながらではあるが電解液中にアルミニウム基材からアルミニウムイオンが溶出するため、電解液中にアルミニウムが含まれる。ここでいう電解液中のアルミニウムとは、アルミニウムイオン、水酸化アルミニウム、酸化アルミニウム、アルミニウム錯体等である。
 電解液中のアルミニウム濃度の上昇が小さければ、モールドの微細凹凸構造の形状に特段影響を及ぼすことはない。しかし、電解液中のアルミニウム濃度の上昇が大きくなると、陽極酸化時に電圧を印加した際、溶解しているアルミニウムにおいても酸化が進行する。また、電解液中のアルミニウムと酸とが塩や錯体を形成し、電解液中の酸の濃度を低下させる。そのため、所定の電圧を印加しても、アルミニウム基材の表面における酸化が進行しにくくなり、アルミニウム基材の表面に形成される酸化皮膜が薄くなる。その結果、モールドの微細凹凸構造を所定の形状(設計どおりの形状)にすることが困難となる。
 このような現象が起らない、電解液中のアルミニウム濃度の上昇の度合い、すなわち電解液中のアルミニウム濃度Xと、1個目のアルミニウム基材の1回目の陽極酸化工程の直前の電解液中のアルミニウム濃度Xとの差(X-X)は、1000ppm以下であり、900ppm以下が好ましく、800ppm以下がより好ましい。X-Xの下限値は、特に限定されない。
 本発明においては、陽極酸化工程のすべてにおいて、X-Xが1000ppm以下である。X-Xが1000ppm以下であれば、個々のアルミニウム基材の表面に形成される酸化皮膜の厚さを所定の厚さ(設計どおりの厚さ)とすることができる。1個のアルミニウム基材について陽極酸化工程を2つ以上有する場合には、各工程においてX-Xが1000ppm以下である。また、モールドを製造している間、すなわち1個目のアルミニウム基材を最初に陽極酸化する直前から最後のアルミニウム基材の陽極酸化が完了した直後まで、X-Xが1000ppm以下であり、各陽極酸化工程の最中においても、X-Xが1000ppm以下である。
 次に、同じ電解液を用いて2個以上のモールドを製造する場合について説明する。
 連続して2個以上のモールドを製造する場合、電解液中にアルミニウムが含まれてアルミニウム基材の表面における酸化の進行が遅い場合であっても、酸化の進行速度が変化しない場合は、連続して同品質のモールドを製造できる。しかし、X-Xが1000ppmを超えると、酸化の進行速度が大きく変化する。そのため、最初に製造した1個目のモールドと、X-Xが1000ppmを超えた電解液を用いて製造したモールドとでは、同じ電解液を用い、同じ条件で製造した場合であっても、その品質が大きく異なる。
 なお、「1個目のアルミニウム基材の1回目の陽極酸化工程の直前の電解液中のアルミニウム濃度X」とは、電解液を入れ替えたり再調整したりすることなく、同じ電解液を用いて連続して2個以上のアルミニウム基材を陽極酸化する場合においては、最初(1個目)のアルミニウム基材について陽極酸化工程を行う直前の電解液中のアルミニウム濃度を意味している。また、アルミニウム基材の陽極酸化に用いた電解液に、高濃度の電解液を加えてアルミニウム濃度および/または電解液の濃度を再調整した場合、調整後の電解液の濃度が「1個目のアルミニウム基材の1回目の陽極酸化工程の直前の電解液中のアルミニウム濃度X」となる。
 本発明のモールドの製造方法においては、アルミニウム基材の表面に形成される酸化皮膜の厚さを所定の厚さとする点から、アルミニウム基材を最初に陽極酸化する直前において電解液中のアルミニウム濃度を求めることが好ましく、アルミニウム基材を陽極酸化するたびにその直前において電解液中のアルミニウム濃度を求めることがより好ましい。さらに、アルミニウム基材を陽極酸化している途中で電解液中のアルミニウム濃度を求めてもよい。
 電解液中のアルミニウム濃度は、通常、原子吸光、ICP発光分光分析等の手法を用いて求められる。本発明においては、電解液中のアルミニウム濃度を簡易に求められる点から、電解液をアルカリ水溶液にて滴定した際の滴定曲線の変化から電解液中のアルミニウム濃度を求めることが好ましい。
 以下、電解液としてシュウ酸水溶液を用いた場合について詳細に説明する。
 アルカリ水溶液(水酸化ナトリウム水溶液等)による滴定によって、シュウ酸の濃度が求められることはよく知られている。シュウ酸水溶液の0.1N水酸化ナトリウム水溶液による滴定曲線の例を図1に示す。一方、500ppmおよび1005ppmのアルミニウムを含むシュウ酸水溶液の0.1N水酸化ナトリウム水溶液による滴定曲線を図2および図3に示す。滴定曲線の第1当量点と第2当量点との間の約pH7~9の領域に、水酸化ナトリウム溶液を滴下してもpHが上昇しにくい平坦部が生じている。平坦部では下記式(1)の反応が進み、テトラヒドロキソアルミン酸イオンが生成されているものと考えられる。
 Al3++4OH→Al(OH)  ・・・(1) 
 実際、この平坦部における水酸化ナトリウムの滴定量から計算されるOHのモル濃度[OH]と、ICP発光分光分析装置により求めたシュウ酸水溶液中のアルミニウムのモル濃度[Al]とは、下記式(2)の関係となっていた。
 [Al]:[OH]=1:4 ・・・(2)
 このように、平坦部の長さ(水酸化ナトリウム水溶液の滴定量)は、シュウ酸水溶液中のアルミニウム濃度に比例することとなる。したがって、平坦部の長さからアルミニウム濃度を求めることができる。
 なお、本発明における「平坦部におけるアルカリ水溶液の滴定量」とは、滴定曲線の第1当量点から第2当量点までに滴下したアルカリ水溶液の量とする。
 図4に、平坦部における水酸化ナトリウム水溶液の滴定量と、ICP発光分光分析装置により求めたシュウ酸水溶液中のアルミニウム濃度との関係を示す。水酸化ナトリウム水溶液の滴定量とシュウ酸水溶液中のアルミニウム濃度とは、比例関係にあり、この関係を検量線として用いることによって、電解液中のアルミニウム濃度をより簡易に求めることができる。
 具体的には、以下のように電解液中のアルミニウム濃度を求める。
 (i)あるアルミニウム濃度X’1のシュウ酸水溶液をアルカリ濃度Z(例えば0.1N)のアルカリ水溶液にて滴定して得られた滴定曲線の第1当量点と第2当量点との間に出現する平坦部におけるアルカリ水溶液の滴定量Y’1を求める。
 (ii)シュウ酸水溶液中のアルミニウム濃度をX’2~X’nに変更し、(i)と同様と同様の操作を合計n回繰り返して、平坦部におけるアルカリ水溶液の滴定量Y’2~Y’nを求める。
 (iii)アルミニウム濃度X’1~X’nおよび平坦部におけるアルカリ水溶液の滴定量Y’1~Y’nとの関係グラフにし、アルミニウム濃度X’と平坦部におけるアルカリ水溶液の滴定量Y’との検量線を作成する。
 (iv)検量線を用いて、電解液をアルカリ濃度Z(例えば0.1N)のアルカリ水溶液にて滴定した際に滴定曲線の第1当量点と第2当量点との間に出現する平坦部におけるアルカリ水溶液の滴定量Yから、電解液中のアルミニウム濃度XまたはXを求める。
 本発明のモールドの製造方法においては、高価なアルミニウム基材を有効に利用する点から、X-Xが1000ppmを超えた場合、モールドの製造を中止することが好ましい。モールドの製造を中止した後、X-Xが1000ppm以下の電解液を調製し、モールドの製造を再開することがさらに好ましい。
 本発明のモールドの製造方法においては、陽極酸化工程においてX-Xが1000ppm以下となるように制御することが好ましく、900ppm以下に制御することがより好ましく、800ppm以下に制御することがさらに好ましい。
 以下、アルミニウム基材の表面に複数の細孔からなる微細凹凸構造を有する陽極酸化アルミナが形成されたモールドの具体的な製造方法を説明する。
 モールドの製造方法としては、下記の工程(a)~(f)を有する方法が挙げられる。
 (a)アルミニウム基材を電解液中、定電圧下で陽極酸化してアルミニウム基材の表面に酸化皮膜を形成する工程。
 (b)酸化皮膜を除去し、アルミニウム基材の表面に陽極酸化の細孔発生点を形成する工程。
 (c)アルミニウム基材を電解液中、再度陽極酸化し、細孔発生点に細孔を有する酸化皮膜を形成する工程。
 (d)細孔の径を拡大させる工程。
 (e)工程(d)の後、電解液中、再度陽極酸化する工程。
 (f)工程(d)と工程(e)を繰り返し行い、複数の細孔を有する陽極酸化アルミナがアルミニウム基材の表面に形成されたモールドを得る工程。
 工程(a):
 図5に示すように、アルミニウム基材10を陽極酸化すると、細孔12を有する酸化皮膜14が形成される。
 アルミニウム基材の形状としては、ロール状、円管状、平板状、シート状等が挙げられる。
 また、アルミニウム基材は、表面状態を平滑化にするために、機械研磨、羽布研磨、化学的研磨、電解研磨処理(エッチング処理)等で研磨されることが好ましい。また、アルミニウム基材は、所定の形状に加工する際に用いた油が付着していることがあるため、陽極酸化の前にあらかじめ脱脂処理されることが好ましい。
 アルミニウムの純度は、99質量%以上が好ましく、99.5質量%以上がより好ましく、99.8質量%以上が特に好ましい。アルミニウムの純度が低いと、陽極酸化した時に、不純物の偏析により可視光を散乱する大きさの凹凸構造が形成されたり、陽極酸化で得られる細孔の規則性が低下したりすることがある。
 電解液としては、シュウ酸水溶液、硫酸水溶液、リン酸水溶液等が挙げられる。
 シュウ酸水溶液を電解液として用いる場合:
 シュウ酸の濃度は、0.7M以下が好ましい。シュウ酸の濃度が0.7Mを超えると、電流値が高くなりすぎて酸化皮膜の表面が粗くなることがある。
 化成電圧が30~60Vの時、平均間隔が100nmの規則性の高い細孔を有する陽極酸化アルミナを得ることができる。化成電圧がこの範囲より高くても低くても規則性が低下する傾向にある。
 電解液の温度は、60℃以下が好ましく、45℃以下がより好ましい。電解液の温度が60℃を超えると、いわゆる「ヤケ」といわれる現象がおこり、細孔が壊れたり、表面が溶けて細孔の規則性が乱れたりすることがある。
 硫酸水溶液を電解液として用いる場合:
 硫酸の濃度は0.7M以下が好ましい。硫酸の濃度が0.7Mを超えると、電流値が高くなりすぎて定電圧を維持できなくなることがある。
 化成電圧が25~30Vの時、平均間隔が63nmの規則性の高い細孔を有する陽極酸化アルミナを得ることができる。化成電圧がこの範囲より高くても低くても規則性が低下する傾向がある。
 電解液の温度は、30℃以下が好ましく、20℃以下がより好ましい。電解液の温度が30℃を超えると、いわゆる「ヤケ」といわれる現象がおこり、細孔が壊れたり、表面が溶けて細孔の規則性が乱れたりすることがある。
 工程(b):
 図5に示すように、酸化皮膜14を一旦除去し、これを陽極酸化の細孔発生点16にすることで細孔の規則性を向上することができる。なお、それほど高い規則性が必要とされない場合、酸化被膜14の少なくとも一部を除去してもよく、工程(a)の後に、後述する工程(d)を行っても構わない。
 酸化皮膜を除去する方法としては、アルミニウムを溶解せず、酸化皮膜を選択的に溶解する溶液に溶解させて除去する方法が挙げられる。このような溶液としては、例えば、クロム酸/リン酸混合液等が挙げられる。
 工程(c):
 図5に示すように、酸化皮膜を除去したアルミニウム基材10を再度、陽極酸化すると、円柱状の細孔12を有する酸化皮膜14が形成される。
 陽極酸化は、工程(a)と同様な条件で行えばよい。陽極酸化の時間を長くするほど深い細孔を得ることができる。
 工程(d):
 図5に示すように、細孔12の径を拡大させる処理(以下、細孔径拡大処理と記す。)を行う。細孔径拡大処理は、酸化皮膜を溶解する溶液に浸漬して陽極酸化で得られた細孔の径を拡大させる処理である。このような溶液としては、例えば、5質量%程度のリン酸水溶液等が挙げられる。
 細孔径拡大処理の時間を長くするほど、細孔径は大きくなる。
 工程(e):
 図5に示すように、再度、陽極酸化すると、円柱状の細孔12の底部から下に延びる、直径の小さい円柱状の細孔12がさらに形成される。
 陽極酸化は、工程(a)と同様な条件で行ってもよく、条件を適宜変更して行ってもよい。例えば、陽極酸化の時間を長くするほど深い細孔を得ることができる。
 工程(f):
 図5に示すように、工程(d)の細孔径拡大処理と工程(e)の陽極酸化とを繰り返すと、直径が開口部から深さ方向に連続的に減少する形状の細孔12を有する酸化皮膜14が形成され、アルミニウム基材10の表面に陽極酸化アルミナ(アルミニウムの多孔質の酸化皮膜(アルマイト))を有するモールド本体18が得られる。最後は工程(d)で終わることが好ましい。
 繰り返し回数は、合計で3回以上が好ましく、5回以上がより好ましい。繰り返し回数が2回以下では、非連続的に細孔の直径が減少するため、このような細孔を有する陽極酸化アルミナを用いて形成された微細凹凸構造(モスアイ構造)の反射率低減効果は不十分である。
 細孔12の形状としては、略円錐形状、角錐形状、円柱形状等が挙げられ、円錐形状、角錐形状等のように、深さ方向と直交する方向の細孔断面積が最表面から深さ方向に連続的に減少する形状が好ましい。
 細孔12間の平均間隔は、可視光の波長以下、すなわち400nm以下である。細孔12間の平均間隔は、20nm以上が好ましい。
 細孔12間の平均間隔は、電子顕微鏡観察によって隣接する細孔12間の間隔(細孔12の中心から隣接する細孔12の中心までの距離)を50点測定し、これらの値を平均したものである。
 細孔12の深さは、平均間隔が100nmの場合は、80~500nmが好ましく、120~400nmがより好ましく、150~300nmが特に好ましい。
 細孔12の深さは、電子顕微鏡観察によって細孔12の最底部と、細孔12間に存在する凸部の最頂部との間の距離を測定した値である。
 細孔12のアスペクト比(細孔の深さ/細孔間の平均間隔)は、0.8~5.0が好ましく、1.2~4.0がより好ましく、1.5~3.0が特に好ましい。
 その他の工程:
 本発明においては、工程(f)にて得られたモールド本体18をそのままモールドとしてもよいが、モールド本体18の微細凹凸構造が形成された側の表面を離型剤(外部離型剤)で処理してもよい。
 離型剤としては、アルミニウム基材の陽極酸化アルミナと化学結合を形成し得る官能基を有するものが好ましい。具体的には、シリコーン樹脂、フッ素樹脂、フッ素化合物等が挙げられ、離型性に優れる点、モールド本体との密着性に優れる点から、シラノール基または加水分解性シリル基を有する化合物が好ましく、その中でも加水分解性シリル基を有するフッ素化合物が特に好ましい。
 加水分解性シリル基を有するフッ素化合物の市販品としては、フルオロアルキルシラン、信越化学工業株式会社製の「KBM-7803」;ダイキン工業株式会社製の「オプツール」シリーズ;住友スリーエム株式会社製の「ノベックEGC-1720」等が挙げられる。
 離型剤による処理方法としては、下記の方法1、方法2が挙げられ、モールド本体の微細凹凸構造が形成された側の表面をムラなく離型剤で処理できる点から、方法1が特に好ましい。
 方法1:離型剤の希釈溶液にモールド本体を浸漬する方法。
 方法2:離型剤またはその希釈溶液を、モールド本体の微細凹凸構造が形成された側の表面に塗布する方法。
 方法1としては、下記の工程(g)~(k)を有する方法が好ましい。
 (g)モールド本体を水洗する工程。
 (h)モールド本体にエアーを吹き付け、モールド本体の表面に付着した水滴を除去する工程。
 (i)加水分解性シリル基を有するフッ素化合物を溶媒で希釈した希釈溶液に、モールド本体を浸漬する工程。
 (j)浸漬したモールド本体をゆっくりと溶液から引き上げる工程。
 (k)モールド本体を乾燥させる工程。
 工程(g):
 モールド本体には、多孔質構造を形成する際に用いた薬剤(細孔径拡大処理に用いたリン酸水溶液等)、不純物(埃等)等が付着しているため、水洗によってこれを除去する。
 工程(h):
 モールド本体にエアーを吹き付け、目に見える水滴はほぼ除去する。
 工程(i):
 希釈用の溶媒としては、フッ素系溶媒、アルコール系溶媒等の公知の溶媒を用いればよい。中でも、適度な揮発性、濡れ性等を有するため、外部離型剤溶液を均一に塗布できる点で、フッ素系溶媒が好ましい。フッ素系溶媒としては、ハイドロフルオロポリエーテル、パーフルオロヘキサン、パーフルオロメチルシクロヘキサン、パーフルオロ-1,3-ジメチルシクロヘキサン、ジクロロペンタフルオロプロパン等が挙げられる。
 加水分解性シリル基を有するフッ素化合物の濃度は、希釈溶液(100質量%)中、0.01~0.2質量%が好ましい。
 浸漬時間は、1~30分が好ましい。
 浸漬温度は、0~50℃が好ましい。
 工程(j):
 浸漬したモールド本体を溶液から引き上げる際には、電動引き上げ機等を用いて、一定速度で引き上げ、引き上げ時の揺動を抑えることが好ましい。これにより塗布ムラを少なくできる。
 引き上げ速度は、1~10mm/秒が好ましい。
 工程(k):
 モールド本体を乾燥させる工程では、モールド本体を風乾させてもよく、乾燥機等で強制的に加熱乾燥させてもよい。
 乾燥温度は、30~150℃が好ましい。
 乾燥時間は、5~300分が好ましい。
 なお、モールド本体の表面が離型剤で処理されたことは、モールド本体の表面の水接触角を測定することによって確認できる。離型剤で処理されたモールド本体の表面の水接触角は、60°以上が好ましく、90°以上がより好ましい。水接触角が60°以上であれば、モールド本体の表面が離型剤で十分に処理され、離型性が良好となる。
 以上説明した本発明のモールドの製造方法にあっては、X-Xが1000ppm以下であるため、安定して陽極酸化を行うことができ、精度よく所定の形状(設計どおりの形状)のモールドを製造できる。
 また、電解液中のアルミニウム濃度を、電解液をアルカリ水溶液にて滴定した際に滴定曲線の第1当量点と第2当量点との間に出現する平坦部におけるアルカリ水溶液の滴定量から求めることによって、電解液中のアルミニウム濃度を簡易に求めることができる。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。
(電子顕微鏡観察)
 酸化皮膜を有するアルミニウム基材またはモールド本体の一部を削り、断面にプラチナを1分間蒸着し、電界放出形走査電子顕微鏡(日本電子株式会社製、JSM-7400F)を用いて、加速電圧3.00kVの条件にて断面を観察した。また、モールド本体については、細孔の間隔、細孔の深さを測定した。
(電解液の滴定)
 陽極酸化に用いたシュウ酸水溶液を25倍に希釈し、滴定装置(平沼産業株式会社製、COMTITE-500)を用いて0.1Nの水酸化ナトリウム水溶液で滴定し、pHを計測した。
(実施例1)
 0.3Mのシュウ酸水溶液(アルミニウム濃度X:0ppm)を調製し、これを電解液とした。シュウ酸水溶液の滴定を行ったところ、図1に示すように平坦部は確認されなかった。
 純度99.9質量%のアルミニウムインゴットに鍛造処理を施して、直径:200mm、長さ:350mmに切断した圧延痕のない平均結晶粒径:40μmの円筒状アルミニウム基材に、羽布研磨処理を施した後、これを過塩素酸/エタノール混合溶液中(体積比:1/4)で電解研磨し、鏡面化した。
 工程(a):
 鏡面化したアルミニウム基材について、0.3Mシュウ酸水溶液(アルミニウム濃度X:0ppm)中で、直流40V、温度16℃の条件で30分間陽極酸化を行った。工程(a)が終了した時点での酸化皮膜の厚さは約190nmであった。得られた酸化皮膜の断面の走査型電子顕微鏡像を図6に示す。
 工程(b):
 酸化皮膜が形成されたアルミニウム基材を、6質量%リン酸/1.8質量%クロム酸混合水溶液に2時間浸漬して、酸化皮膜を除去した。
 工程(c):
 酸化皮膜を除去したアルミニウム基材について、0.3Mシュウ酸水溶液(工程(a)で用いたもの)中、直流40V、温度16℃の条件で30秒間陽極酸化を行った。
 工程(d):
 酸化皮膜が形成されたアルミニウム基材を、30℃の5質量%リン酸水溶液に8分間浸漬して、細孔径拡大処理を行った。
 工程(e):
 細孔径拡大処理されたアルミニウム基材について、0.3Mシュウ酸水溶液(工程(c)または前回の工程(e)で用いたもの)中で、直流:40V、温度:16℃の条件で30秒間陽極酸化を行った。
 工程(f):
 工程(d)および工程(e)を合計で4回繰り返し、最後に工程(d)を行って、平均間隔:100nm、深さ:200nmの略円錐形状の細孔を有する陽極酸化アルミナが表面に形成されたロール状のモールド本体を得た。電解液中のアルミニウム濃度Xは、5ppmであった。
 工程(g):
 シャワーを用いてモールド本体の表面のリン酸水溶液を軽く洗い流した後、モールド本体を流水中に10分間浸漬した。
 工程(h):
 モールド本体にエアーガンからエアーを吹き付け、モールド本体の表面に付着した水滴を除去した。
 工程(i):
 モールド本体を、オプツールDSX(ダイキン工業株式会社製)を希釈剤HD-ZV(株式会社ハーベス製)で0.1質量%に希釈した溶液に室温で10分間浸漬した。
 工程(j):
 モールド本体を希釈溶液から3mm/秒でゆっくりと引き上げた。
 工程(k):
 モールド本体を一晩風乾して、離型剤で処理されたモールドを得た。
(実施例2)
 0.3Mのシュウ酸水溶液(アルミニウム濃度X:0ppm)にアルミニウム片を浸漬させ、一定期間静置してアルミニウムを溶出させ、アルミニウム濃度Xを500ppmとしたシュウ酸水溶液、すなわち複数個のアルミニウム基材を陽極酸化した後の疲労液に相当するシュウ酸水溶液を調製した。シュウ酸水溶液の滴定を行ったところ、図2に示すように平坦部が確認された。
 このシュウ酸水溶液を用いた以外は、実施例1と同様にしてモールドを得た。
 工程(a)が終了した時点での酸化皮膜の厚さは約190nmであった。得られた酸化皮膜の断面の走査型電子顕微鏡像を図7に示す。
 工程(f)が終了した時点で、平均間隔:100nm、深さ:200nmの略円錐形状の細孔を有する陽極酸化アルミナが表面に形成されたモールドを得た。電解液中のアルミニウム濃度Xは、5ppmであった。
(実施例3)
 0.3Mのシュウ酸水溶液(アルミニウム濃度X:0ppm)にアルミニウム片を浸漬させ、一定期間静置してアルミニウムを溶出させ、アルミニウム濃度Xを600ppmとしたシュウ酸水溶液、すなわち複数個のアルミニウム基材を陽極酸化した後の疲労液に相当するシュウ酸水溶液を調製した。シュウ酸水溶液の滴定を行ったところ、平坦部が確認された。
 このシュウ酸水溶液を用いた以外は、実施例1と同様にしてモールドを得た。
 工程(a)が終了した時点での酸化皮膜の厚さは約190nmであった。得られた酸化皮膜の断面の走査型電子顕微鏡像を図8に示す。
 工程(f)が終了した時点で、平均間隔:100nm、深さ:200nmの略円錐形状の細孔を有する陽極酸化アルミナが表面に形成されたモールドを得た。電解液中のアルミニウム濃度Xは、5ppmであった。
(実施例4)
 0.3Mのシュウ酸水溶液(アルミニウム濃度X:0ppm)にアルミニウム片を浸漬させ、一定期間静置してアルミニウムを溶出させ、アルミニウム濃度Xを800ppmとしたシュウ酸水溶液、すなわち複数個のアルミニウム基材を陽極酸化した後の疲労液に相当するシュウ酸水溶液を調製した。シュウ酸水溶液の滴定を行ったところ、平坦部が確認された。
 このシュウ酸水溶液を用いた以外は、実施例1と同様にしてモールドを得た。
 工程(a)が終了した時点での酸化皮膜の厚さは約190nmであった。得られた酸化皮膜の断面の走査型電子顕微鏡像を図9に示す。
 工程(f)が終了した時点で、平均間隔:100nm、深さ:200nmの略円錐形状の細孔を有する陽極酸化アルミナが表面に形成されたモールドを得た。電解液中のアルミニウム濃度Xは、5ppmであった。
(比較例1)
 0.3Mのシュウ酸水溶液(アルミニウム濃度X:0ppm)にアルミニウム片を浸漬させ、一定期間静置してアルミニウムを溶出させ、アルミニウム濃度Xを1005ppmとしたシュウ酸水溶液、すなわち複数個のアルミニウム基材を陽極酸化した後の疲労液に相当するシュウ酸水溶液を調製した。シュウ酸水溶液の滴定を行ったところ、図3に示すように平坦部が確認された。
 このシュウ酸水溶液を用いた以外は、実施例1と同様にして工程(a)を行った。得られた酸化皮膜の断面の走査型電子顕微鏡像を図10に示す。
 工程(a)が終了した時点での酸化皮膜の厚さは約100nmであり、実施例と比べて薄かったため、所定の形状のモールドが作製できないと判断し、製造を中止した。
 本発明の製造方法で得られたモールドは、反射防止物品、防曇性物品、防汚性物品、撥水性物品の効率的な量産にとって有用である。
 10 アルミニウム基材
 12 細孔
 14 酸化皮膜(陽極酸化アルミナ)
 18 モールド本体(ナノインプリント用モールド)

Claims (6)

  1.  アルミニウム基材の表面に複数の細孔からなる微細凹凸構造を有する陽極酸化アルミナが形成されたナノインプリント用モールドをm個(ただし、mは1以上の整数である。)製造する方法であって、
     m個のアルミニウム基材のそれぞれについて、電解液中にてアルミニウム基材を陽極酸化する陽極酸化工程を1つ以上有し、
     前記陽極酸化工程のすべてにおいて、電解液中のアルミニウム濃度Xと、1個目のアルミニウム基材の1回目の陽極酸化工程の直前の電解液中のアルミニウム濃度Xとの差(X-X)が、1000ppm以下である、ナノインプリント用モールドの製造方法。
  2.  前記mが、2以上の整数である、請求項1に記載のナノインプリント用モールドの製造方法。
  3.  前記電解液が、シュウ酸水溶液である、請求項1に記載のナノインプリント用モールドの製造方法。
  4.  前記電解液をアルカリ水溶液にて滴定した際に滴定曲線の第1当量点と第2当量点との間に出現する平坦部におけるアルカリ水溶液の滴定量から、前記電解液中のアルミニウム濃度を求める、請求項3に記載のナノインプリント用モールドの製造方法。
  5.  アルミニウム濃度X’のシュウ酸水溶液をアルカリ濃度Zのアルカリ水溶液にて滴定した際に滴定曲線の第1当量点と第2当量点との間に出現する平坦部におけるアルカリ水溶液の滴定量Y’と、アルミニウム濃度X’との検量線をあらかじめ作成し、
     前記検量線を用いて、前記電解液をアルカリ濃度Zのアルカリ水溶液にて滴定した際に滴定曲線の第1当量点と第2当量点との間に出現する平坦部におけるアルカリ水溶液の滴定量Yから、前記電解液中のアルミニウム濃度Xを求める、請求項4に記載のナノインプリント用モールドの製造方法。
  6.  前記差(X-X)が1000ppmを超えた場合、ナノインプリント用モールドの製造を中止する、請求項1~5のいずれか一項に記載のナノインプリント用モールドの製造方法。
PCT/JP2012/067968 2011-07-19 2012-07-13 ナノインプリント用モールドの製造方法 WO2013011953A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137017632A KR101351670B1 (ko) 2011-07-19 2012-07-13 나노임프린트용 몰드의 제조 방법
CN201280004553.3A CN103299397B (zh) 2011-07-19 2012-07-13 纳米压印用模具的制造方法
US13/994,314 US20130264744A1 (en) 2011-07-19 2012-07-13 Production method of mold for nanoimprinting
JP2012535522A JP5230846B1 (ja) 2011-07-19 2012-07-13 ナノインプリント用モールドの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-157886 2011-07-19
JP2011157886 2011-07-19

Publications (1)

Publication Number Publication Date
WO2013011953A1 true WO2013011953A1 (ja) 2013-01-24

Family

ID=47558131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067968 WO2013011953A1 (ja) 2011-07-19 2012-07-13 ナノインプリント用モールドの製造方法

Country Status (6)

Country Link
US (1) US20130264744A1 (ja)
JP (1) JP5230846B1 (ja)
KR (1) KR101351670B1 (ja)
CN (1) CN103299397B (ja)
TW (1) TWI527936B (ja)
WO (1) WO2013011953A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015501212A (ja) * 2011-10-28 2015-01-15 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 担持銀触媒を生成するための方法
US12124003B2 (en) 2021-04-27 2024-10-22 Glint Photonics, Inc. Method for producing optical article with anti-reflective surface, and optical article with anti-reflective surface

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101336255B1 (ko) * 2013-10-18 2013-12-03 주식회사 탑나노임프린팅 스퍼터링에 의해 형성된 알루미늄 박막의 평탄화 방법
CN104975319B (zh) * 2014-04-13 2018-02-23 山东建筑大学 制备纳米材料的柱面螺旋形氧化铝模板及其制备方法
CN104975342B (zh) * 2014-04-13 2018-02-23 山东建筑大学 制备纳米材料的球面形氧化铝模板及其制备方法
CN104975322B (zh) * 2014-04-13 2018-02-23 山东建筑大学 制备纳米材料的圆锥面螺旋形氧化铝模板及其制备方法
CN104975323B (zh) * 2014-04-13 2018-02-23 山东建筑大学 制备纳米材料的正弦曲面形氧化铝模板及其制备方法
CN104975349B (zh) * 2014-04-13 2018-02-23 山东建筑大学 制备纳米材料的圆锥面形氧化铝模板及其制备方法
CN104975321B (zh) * 2014-04-13 2018-01-19 山东建筑大学 制备纳米材料的椭球面形氧化铝模板及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007083356A (ja) * 2005-09-22 2007-04-05 Canon Inc 構造体およびインプリント用原盤の製造方法
JP2009119641A (ja) * 2007-11-13 2009-06-04 Kanagawa Acad Of Sci & Technol インプリント用モールドおよびその製造方法並びにそのモールドを用いて形成された構造体
WO2010128662A1 (ja) * 2009-05-08 2010-11-11 シャープ株式会社 陽極酸化層の形成方法、型の製造方法および型
JP2010253820A (ja) * 2009-04-24 2010-11-11 Kanagawa Acad Of Sci & Technol スタンパ製造用アルミニウム基材およびスタンパの製造方法
JP2011026648A (ja) * 2009-07-23 2011-02-10 Mitsubishi Rayon Co Ltd スタンパの製造方法、および成形体の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3280013A (en) * 1964-06-02 1966-10-18 Aluminum Co Of America Anodizing electrolyte and process
NO762506L (ja) * 1975-07-24 1977-01-25 Sumitomo Chemical Co
ATE299099T1 (de) * 1999-04-22 2005-07-15 Fuji Photo Film Co Ltd Verfahren zur herstellung eines aluminiumträgers für lithographische druckplatten
JP2004098386A (ja) * 2002-09-06 2004-04-02 Fuji Photo Film Co Ltd 平版印刷版用支持体の製造方法および平版印刷版用支持体
JP3803353B2 (ja) * 2003-06-17 2006-08-02 中国電化工業株式会社 表面処理アルミニウム材とその製造方法
BRPI0713932B1 (pt) * 2006-06-30 2018-08-07 Kanagawa Institute Of Industrial Science And Technology Molde, processo para produção do molde, e processo para produção de chapa
US20110278770A1 (en) * 2009-01-30 2011-11-17 Akinobu Isurugi Mold, mold manufacturing method and method for manufacturing anti-reflection film using the mold
TWI465498B (zh) * 2009-03-03 2014-12-21 Mitsubishi Rayon Co 薄膜的製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007083356A (ja) * 2005-09-22 2007-04-05 Canon Inc 構造体およびインプリント用原盤の製造方法
JP2009119641A (ja) * 2007-11-13 2009-06-04 Kanagawa Acad Of Sci & Technol インプリント用モールドおよびその製造方法並びにそのモールドを用いて形成された構造体
JP2010253820A (ja) * 2009-04-24 2010-11-11 Kanagawa Acad Of Sci & Technol スタンパ製造用アルミニウム基材およびスタンパの製造方法
WO2010128662A1 (ja) * 2009-05-08 2010-11-11 シャープ株式会社 陽極酸化層の形成方法、型の製造方法および型
JP2011026648A (ja) * 2009-07-23 2011-02-10 Mitsubishi Rayon Co Ltd スタンパの製造方法、および成形体の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015501212A (ja) * 2011-10-28 2015-01-15 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 担持銀触媒を生成するための方法
US12124003B2 (en) 2021-04-27 2024-10-22 Glint Photonics, Inc. Method for producing optical article with anti-reflective surface, and optical article with anti-reflective surface

Also Published As

Publication number Publication date
KR101351670B1 (ko) 2014-01-14
CN103299397B (zh) 2014-07-16
JP5230846B1 (ja) 2013-07-10
CN103299397A (zh) 2013-09-11
TWI527936B (zh) 2016-04-01
TW201305391A (zh) 2013-02-01
US20130264744A1 (en) 2013-10-10
KR20130087055A (ko) 2013-08-05
JPWO2013011953A1 (ja) 2015-02-23

Similar Documents

Publication Publication Date Title
JP5230846B1 (ja) ナノインプリント用モールドの製造方法
US8329069B2 (en) Method of fabricating a mold and producing an antireflection film using the mold
KR102130665B1 (ko) 초발수용 몰드 제조방법, 초발수용 몰드를 이용한 초발수용 재료 및 그 제조방법
WO2011055757A1 (ja) 型の製造方法および型
JP4813925B2 (ja) 微細構造体の製造方法および微細構造体
JP5796491B2 (ja) ナノインプリント用モールドの製造装置、及びナノインプリント用モールドの製造方法
TWI465759B (zh) 模具及模具之製造方法
TWI602954B (zh) 陽極氧化多孔氧化鋁的製造方法、模具以及表面具有微細凹凸結構的成形體
KR20110074269A (ko) 물방울의 표면부착 특성 조절이 가능한 알루미늄의 표면 처리방법
JP5615971B2 (ja) 型の製造方法
JP5506787B2 (ja) 陽極酸化層の形成方法および型の製造方法
JP4768478B2 (ja) 微細構造体の製造方法および微細構造体
JP5824399B2 (ja) ナノインプリント用樹脂モールドおよびその製造方法
JP5833763B2 (ja) 型の製造方法
KR101010336B1 (ko) 동공직경이 규칙적으로 변형된 나노다공성 알루미나의 경제적 제작 공정
Kopp et al. Influence of surface morphology on oxide growth in porous alumina
KR102562887B1 (ko) 프리패터닝 공정을 생략한 알루미늄 1000계열 합금에 균일한 pop 나노구조물 생성을 위한 최적의 양극산화 피막 제조 방법
Athinarayanan et al. Fabrication of hydrophobic and anti-reflective polymeric films using anodic aluminum-oxide imprints
JP2008057018A (ja) 微細構造体の製造方法および微細構造体
JP2008231580A (ja) 多孔性陽極酸化アルミナ膜の作製方法およびその方法により作製された多孔性陽極酸化アルミナ膜
JP2013142802A (ja) 反射防止フィルム、反射防止フィルムの作製に用いられる型、および、型の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012535522

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12814868

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13994314

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137017632

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12814868

Country of ref document: EP

Kind code of ref document: A1