CN104975321B - 制备纳米材料的椭球面形氧化铝模板及其制备方法 - Google Patents

制备纳米材料的椭球面形氧化铝模板及其制备方法 Download PDF

Info

Publication number
CN104975321B
CN104975321B CN201410152805.8A CN201410152805A CN104975321B CN 104975321 B CN104975321 B CN 104975321B CN 201410152805 A CN201410152805 A CN 201410152805A CN 104975321 B CN104975321 B CN 104975321B
Authority
CN
China
Prior art keywords
ellipsoid
ellipsoid shape
aluminium flake
preparation
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201410152805.8A
Other languages
English (en)
Other versions
CN104975321A (zh
Inventor
庞岩涛
赵俊卿
张美生
张宝金
李鲁艳
庄世栋
王婕
王惠临
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Jianzhu University
Original Assignee
Shandong Jianzhu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Jianzhu University filed Critical Shandong Jianzhu University
Priority to CN201410152805.8A priority Critical patent/CN104975321B/zh
Publication of CN104975321A publication Critical patent/CN104975321A/zh
Application granted granted Critical
Publication of CN104975321B publication Critical patent/CN104975321B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种制备纳米材料的椭球面形氧化铝模板及其制备方法。其特征是模板的内外两面均为椭球面,圆锥形纳米孔洞阵列以椭球面长轴为中心,沿椭球面短轴方向辐射状有序排列,圆锥形纳米孔孔径大小及变化率沿椭球面经线、纬线的切向和椭球面垂直方向三维渐变。其制备方法是将椭球面形高纯铝片经过抛光、阳极氧化、去除阻碍层后得到。本发明中的椭球面形氧化铝模板对纳米材料的合成提供一种便利的途径,其制备方法简单可行。

Description

制备纳米材料的椭球面形氧化铝模板及其制备方法
技术领域:
本发明涉及用于制备纳米材料的椭球面形氧化铝模板以及该模板的制备方法。
背景技术:
随着科学技术的不断发展,许多新的学科不断兴起。纳米材料学便是其中一例。纳米材料的制备是纳米材料应用的基础。目前制备纳米材料多采用的方法有:模板法、气相沉积法、光刻法、液相法、离子束刻蚀法等等。而其中的模板法是一种最基本的方法。目前较成熟的模板大约有四种:碳纳米管、离子束刻蚀碳膜、生物微胶束和氧化铝模板。氧化铝模板由于具有孔密度大、纳米孔长径比(孔长度/孔直径)可调等特点,使其成为目前应用最为广泛的模板之一。它是将99.99%的纯铝片放在适当的酸性溶液(如草酸、硫酸或磷酸等)中,通过阳极氧化得到的纳米孔洞阵列体系。上世纪90年代初以来,人们已经利用氧化铝模板成功合成了许多纳米结构材料,如:纳米纤维、纳米棒、纳米管和纳米线等。这些纳米材料展现出令人心仪的应用前景,有些甚至已经走出实验室阶段,如碳纳米管用于场发射、半导体纳米线激光器等。
但是,关于氧化铝模板,目前得到应用的是平面形氧化铝模板,即它的上下两个表面都是平面,不利于纳米材料实现功能的器件化。不仅如此,平面形氧化铝模板中的纳米孔洞呈现直筒状并且平行排列,利用这种模板组装的纳米材料的功能单一。依照现有的方法,实现圆锥形纳米孔洞辐射状有序排列的氧化铝模板是不可能的。
发明内容:
本发明为了解决现有技术的不足,提供一种制备纳米材料的椭球面形氧化铝模板及其制备方法。为纳米材料的合成提供一种便利的途径。
本发明解决技术问题所采用的技术方案是:
本发明椭球面形氧化铝模板的特点是模板的内外两面均为椭球面,以椭球面长轴为中心,圆锥形纳米孔洞沿椭球面短轴辐射状有序排列,圆锥形纳米孔孔径大小及变化率沿椭球面经线、纬线的切向和椭球面垂直方向三维渐变,并且还可以通过改变阳极氧化时间以及椭球面长轴、中轴、短轴的大小调节。椭球面形铝片经过抛光、阳极氧化、去除阻碍层后得到椭球面形氧化铝模板。
本发明的具体制备方法包括如下顺序的步骤:
①将平面形高纯铝片覆盖在椭球体模具表面,经过锻压定型后得到椭球面形铝片,或者在椭球体模具表面真空蒸镀铝后再去掉椭球体模具得到椭球面形铝片;
②椭球面形铝片在乙醇与高氯酸的混合液中抛光4-5分钟;
③取出铝片用去离子水冲洗3-5次;
④将椭球面形铝片放入草酸溶液中阳极氧化20小时;
⑤去掉椭球面形铝片上的氧化层;
⑥椭球面形铝片在草酸溶液中进行第二次阳极氧化8小时;
⑦去掉未氧化的铝层以及阻碍层,
⑧用去离子水冲洗3-5次,在室温下晾干。
与已有技术相比,本发明有以下技术效果:
1、几何特性。椭球面形氧化铝模板的内外表面都是椭球面,相对于平面模板在纳米材料的器件化方面具有较大优势,比如由椭球面形模板可以制成椭球面镜、椭球面透镜等。
2、电学性质。平行排列、直径均匀的纳米线(管、棒)和辐射状有序排列、圆锥形纳米线(管、棒)的电学性质有很大的差异。已经发现,不同直径铋纳米线的电子输运性质不同,或为半金属或为半导体,利用椭球面形氧化铝模板可以组装得到辐射状有序排列且直径在三维方向(椭球面经线、纬线切向和椭球面垂直方向)渐变的纳米线(管、棒)阵列,从而可以在一根纳米线上实现半金属到半导体的转变,为纳米材料的器件化奠定了基础。
3、光学性质。理论和实验都已证明,辐射状有序排列、直径渐变的纳米线(管、棒)具有奇异的光学性质。比如,辐射状排列的银纳米线阵列可以实现亚波长超分辨放大成像等。利用椭球面形氧化铝模板可以组装得到辐射状有序排列且直径在三维方向(椭球面经线、纬线切向和椭球面垂直方向)渐变的纳米线(管、棒)阵列,可以实现纳米材料优异的光学性能。
本制备方法的有益效果体现在:
椭球面形氧化铝模板的制备方法操作简单、可靠、锥形孔径大小及孔径变化率可以在三维方向(椭球面经线、纬线切向和椭球面垂直方向)渐变,并且还可以通过改变阳极氧化时间以及椭球面的长轴、中轴、短轴的大小调节。
附图说明:
图1为本发明椭球面形铝片经过阳极氧化后的实物图。
图2为本发明椭球面形氧化铝模板的实物图。
具体实施方式:
本实施例中的椭球面形氧化铝模板的内外两面都是椭球面,以椭球面长轴为中心,圆锥形纳米孔洞沿椭球面短轴辐射状有序排列,圆锥形纳米孔的孔径大小及孔径变化率在三维方向(椭球面经线、纬线的切向和椭球面垂直方向)渐变,并且还可以通过改变阳极氧化时间以及椭球面长轴、中轴、短轴的大小调节。图1中的虚线分别表示椭球面形模板的经线、纬线和椭球面垂直方向。图2中的虚线分别表示椭球面形模板的经线和纬线。
针对本实施例中的氧化铝模板,其制备方法的具体步骤为:
(1)将平面形高纯铝片覆盖在椭球体模具表面,经过锻压定型后得到椭球面形铝片,或者在椭球体模具表面真空蒸镀铝后再去掉椭球体模具得到椭球面形铝片;
(2)椭球面形铝片在乙醇与高氯酸(体积比为5∶1)的混合液中抛光4-5分钟,电压为14-15伏特,温度为10摄氏度;
(3)取出铝片用去离子水冲洗3-5次;
(4)将椭球面形铝片放入0.3M草酸溶液中阳极氧化20小时,氧化电压为40伏特,温度为5摄氏度;
(5)将(4)得到的铝片放入按体积比1∶1混合的磷酸(1.6%wt)和铬酸(6%wt)的溶液中,在60摄氏度下,放置2个小时,去掉椭球面形铝片上的氧化层;
(6)椭球面形铝片在0.3M草酸溶液中进行第二次阳极氧化8小时,电压为40伏特,温度为5摄氏度;
(7)将(6)得到的椭球面形氧化铝片放入饱和氯化汞溶液中2小时,去掉未氧化的铝层;
(8)将(7)得到的椭球面形氧化铝片用去离子水冲洗3-5次;
(9)将(8)得到椭球面形氧化铝片放入0.1M的磷酸溶液中,在30摄氏度下放置20分钟,去掉阻碍层;
(10)将(9)得到的椭球面形氧化铝片用去离子水冲洗3-5次,在室温下晾干。
实验表明:
在相应条件的草酸溶液中阳极氧化得到的椭球面形氧化铝模板完成以上步骤后,锥形孔洞以椭球面长轴为中心,沿椭球面短轴呈现辐射状有序排列。在图2所示的A点附近,其锥形孔沿模板表面垂线方向的最小和最大直径分别为:56nm和78nm,纳米孔径的变化率为0.55nm/μm,在图2所示的B点附近,其锥形孔沿模板表面垂线方向的最小和最大直径分别为:60nm和80nm,纳米孔径的变化率为0.50nm/μm,即沿模板经线切向和模板表面垂线方向,纳米孔的孔径及孔径变化率渐变;在图2所示的C点附近,其锥形孔沿模板表面垂线方向的最小和最大直径分别为68nm和84nm,纳米孔径的变化率为0.40nm/μm,在D点附近,其锥形孔沿模板表面垂线方向的最小和最大直径分别为65nm和73nm,纳米孔径的变化率为0.45nm/μm,即沿模板纬线切向和模板表面垂线方向,纳米孔的孔径及孔径变化率渐变,所以模板上圆锥形纳米孔的孔径大小及孔径变化率在三维方向渐变,也可以通过改变阳极氧化时间以及椭球面长轴、中轴、短轴的大小调节锥形孔孔径的大小和孔径变化率,扫描电子显微镜的直接观察可以证实方法的可行性。

Claims (1)

1.一种纳米材料的椭球面形氧化铝模板的制备方法,其特征在于:通过如下步骤制备得到:
(1)将平面形高纯铝片覆盖在椭球体模具表面,经过锻压定型后得到椭球面形铝片,或者在椭球体模具表面真空蒸镀铝后再去掉椭球体模具得到椭球面形铝片;
(2)椭球面形铝片在乙醇与高氯酸的混合液中抛光4-5分钟,电压为14-15伏特,温度为10摄氏度;其中乙醇和高氯酸的体积比为5∶1;
(3)取出铝片用去离子水冲洗3-5次;
(4)将椭球面形铝片放入0.3M草酸溶液中阳极氧化20小时,氧化电压为40伏特,温度为5摄氏度;
(5)将(4)得到的铝片放入按体积比1∶1混合1.6%wt的磷酸和6%wt的铬酸的溶液中,在60摄氏度下,放置2个小时,去掉椭球面形铝片上的氧化层;
(6)椭球面形铝片在0.3M草酸溶液中进行第二次阳极氧化8小时,电压为40伏特,温度为5摄氏度;
(7)将(6)得到的椭球面形氧化铝片放入饱和氯化汞溶液中2小时,去掉未氧化的铝层;
(8)将(7)得到的椭球面形氧化铝片用去离子水冲洗3-5次;
(9)将(8)得到椭球面形氧化铝片放入0.1M的磷酸溶液中,在30摄氏度下放置20分钟,去掉阻碍层;
(10)将(9)得到的椭球面形氧化铝片用去离子水冲洗3-5次,在室温下晾干;
最终得到的模板的锥形孔径大小及孔径变化率在椭球面经线、纬线切向和椭球面垂直方向的三维方向上渐变。
CN201410152805.8A 2014-04-13 2014-04-13 制备纳米材料的椭球面形氧化铝模板及其制备方法 Expired - Fee Related CN104975321B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410152805.8A CN104975321B (zh) 2014-04-13 2014-04-13 制备纳米材料的椭球面形氧化铝模板及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410152805.8A CN104975321B (zh) 2014-04-13 2014-04-13 制备纳米材料的椭球面形氧化铝模板及其制备方法

Publications (2)

Publication Number Publication Date
CN104975321A CN104975321A (zh) 2015-10-14
CN104975321B true CN104975321B (zh) 2018-01-19

Family

ID=54272273

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410152805.8A Expired - Fee Related CN104975321B (zh) 2014-04-13 2014-04-13 制备纳米材料的椭球面形氧化铝模板及其制备方法

Country Status (1)

Country Link
CN (1) CN104975321B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114990664B (zh) * 2022-05-17 2024-04-16 山东建筑大学 一种用于制备纳米材料的椭圆柱面形氧化铝模板、制备方法及应用
CN114890460A (zh) * 2022-05-17 2022-08-12 山东建筑大学 一种基于椭圆抛物面形氧化铝模板制备钙钛矿纳米材料的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1278024A (zh) * 2000-07-04 2000-12-27 南京大学 大尺寸纳米有序孔洞模板的制备方法
CN102776542A (zh) * 2012-07-25 2012-11-14 华南理工大学 一种通孔阳极氧化铝膜的制备方法
CN102892930A (zh) * 2010-03-25 2013-01-23 三菱丽阳株式会社 阳极氧化处理装置、处理槽、压印用辊状模具的制造方法以及在表面具有多个凸部的物体的制造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101351670B1 (ko) * 2011-07-19 2014-01-14 미쯔비시 레이온 가부시끼가이샤 나노임프린트용 몰드의 제조 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1278024A (zh) * 2000-07-04 2000-12-27 南京大学 大尺寸纳米有序孔洞模板的制备方法
CN102892930A (zh) * 2010-03-25 2013-01-23 三菱丽阳株式会社 阳极氧化处理装置、处理槽、压印用辊状模具的制造方法以及在表面具有多个凸部的物体的制造方法
CN102776542A (zh) * 2012-07-25 2012-11-14 华南理工大学 一种通孔阳极氧化铝膜的制备方法

Also Published As

Publication number Publication date
CN104975321A (zh) 2015-10-14

Similar Documents

Publication Publication Date Title
Granitzer et al. Porous silicon—a versatile host material
CN104975320B (zh) 制备纳米材料的柱面形氧化铝模板及其制备方法
CN100436008C (zh) 一种金属镍纳米线的化学制备方法
CN104975321B (zh) 制备纳米材料的椭球面形氧化铝模板及其制备方法
Esmaeily et al. Diameter-modulated ferromagnetic CoFe nanowires
CN103695984A (zh) 一种由Ag纳米颗粒组装的纳米环阵列SERS衬底的制备方法
CN104975319B (zh) 制备纳米材料的柱面螺旋形氧化铝模板及其制备方法
CN104975323B (zh) 制备纳米材料的正弦曲面形氧化铝模板及其制备方法
Burouni et al. Wafer-scale fabrication of nanoapertures using corner lithography
Smith et al. Highly ordered diamond and hybrid triangle-diamond patterns in porous anodic alumina thin films
Krupinski et al. Fabrication of flexible highly ordered porous alumina templates by combined nanosphere lithography and anodization
CN104975349B (zh) 制备纳米材料的圆锥面形氧化铝模板及其制备方法
CN104975342B (zh) 制备纳米材料的球面形氧化铝模板及其制备方法
CN104975322B (zh) 制备纳米材料的圆锥面螺旋形氧化铝模板及其制备方法
Kasi et al. Bending and branching of anodic aluminum oxide nanochannels and their applications
Lee et al. Nanotip fabrication by anodic aluminum oxide templating
Chen et al. Mechanisms for formation of a one-dimensional horizontal anodic aluminum oxide nanopore array on a Si substrate
TW201209855A (en) Photo-switched anodized aluminum oxide film, method of fabricating the same, and photo-switched device comprising the same
Lim et al. Controlling pore geometries and interpore distances of anodic aluminum oxide templates via three-step anodization
Hekmat et al. Growth of the cobalt nanowires using AC electrochemical deposition on anodized aluminum oxide templates
Mo et al. Template-directed synthesis of Ag nanowire arrays by a simple paired cell method for SERS
Taşaltin et al. simple fabrication of highly ordered AAO nanotubes
Kao et al. Fabrication and wetting characteristics of vertically self-aligned ZnO nanorods formed by anodic aluminum oxide template
CN106319600A (zh) 一种超长细钛管内表面二氧化钛纳米管阵列的制备方法
Hsu et al. Growth of ZnO nano-wire arrays using AAO template and atomic-layer deposition method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180119

Termination date: 20190413