CN103695984A - 一种由Ag纳米颗粒组装的纳米环阵列SERS衬底的制备方法 - Google Patents

一种由Ag纳米颗粒组装的纳米环阵列SERS衬底的制备方法 Download PDF

Info

Publication number
CN103695984A
CN103695984A CN201310628084.9A CN201310628084A CN103695984A CN 103695984 A CN103695984 A CN 103695984A CN 201310628084 A CN201310628084 A CN 201310628084A CN 103695984 A CN103695984 A CN 103695984A
Authority
CN
China
Prior art keywords
nano
array
rings
titanium dioxide
nano particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310628084.9A
Other languages
English (en)
Other versions
CN103695984B (zh
Inventor
胡小晔
孟国文
朱储红
黄竹林
陈本松
李发帝
王兆明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Institutes of Physical Science of CAS
Original Assignee
Hefei Institutes of Physical Science of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Institutes of Physical Science of CAS filed Critical Hefei Institutes of Physical Science of CAS
Priority to CN201310628084.9A priority Critical patent/CN103695984B/zh
Publication of CN103695984A publication Critical patent/CN103695984A/zh
Application granted granted Critical
Publication of CN103695984B publication Critical patent/CN103695984B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种由Ag纳米颗粒组装的纳米环阵列SERS衬底的制备方法,首先采用阳极氧化方法制备二氧化钛纳米管阵列;然后将该二氧化钛纳米管阵列依次浸泡在一定浓度的氢氧化钾和盐酸溶液中一定时间,结果在每个纳米管中获得了一个较矮的二氧化钛纳米棒;同时,纳米管与纳米管之间形成了小平面;最后采用离子溅射Ag的方法,在上述凸起的纳米管的顶端圆环上组装Ag纳米颗粒,通过控制离子溅射Ag的时间,获得由单层或多层Ag纳米颗粒组装的纳米环阵列。本发明制备工艺简单、成本低廉、设备简易,所获得的由Ag颗粒组成的纳米环阵列在大面积范围内规则有序排列,SERS活性高且信号重复性好。

Description

一种由Ag纳米颗粒组装的纳米环阵列SERS衬底的制备方法
技术领域
    本发明涉及一种由Ag纳米颗粒组装的纳米环阵列的制备方法,属于纳米材料技术领域。
背景技术  
    理论与实验研究表明,SERS效应主要来源于贵金属衬底材料中的电磁场增强“热点”。一般来说,当贵金属衬底中纳米单元之间的间隙小于10nm时,会产生很强的局域耦合,从而形成电磁场增强“热点”,进而提高衬底的SERS活性。同时,为了获得重复性好的SERS信号,要求SERS衬底具有均匀分布的电磁场增强“热点”。基于此,制备SERS衬底关键是获得具有小于10nm间隙的有序纳米结构阵列。至今,人们采用各种不同方法制备有序纳米阵列结构的SERS衬底,并且获得了好的信号重复性。但是,为了进一步提高SERS活性,调节这些有序结构中纳米单元之间的间隙到10nm以下需要复杂且精确的制备工艺,或者需要后续处理等工序。因此,急需发展一种工艺简单、且能获得SERS活性高、信号可重复性的SERS衬底的有效方法
发明内容  
本发明的目的在于提供一种设备简易、操作简单、成本廉价的有效制备方法,用于制备由Ag纳米颗粒组装的纳米环阵列,这种阵列的SERS活性高、信号重复性好。
为实现上述目的,本发明采用的技术方案如下:
    一种由Ag纳米颗粒组装的纳米环阵列SERS衬底的制备方法,包括以下步骤:
    (1)二氧化钛芯/壳结构纳米管阵列的制备:
将纯钛片在0.2-0.3M的氟化铵乙二醇溶液中于45-55 V氧化电压下氧化1-2小时,获得二氧化钛纳米管阵列;然后将该二氧化钛纳米管阵列依次浸泡于3-5M氢氧化钾溶液和0.25-0.5M盐酸溶液中2-4小时和1.5-2小时,得到二氧化钛芯/壳结构纳米管阵列;
(2)由Ag颗粒组成的纳米环阵列的制备:
采用倾斜离子溅射法在二氧化钛芯/壳结构纳米管阵列中凸起的纳米管的顶端圆环上来组装Ag纳米颗粒,即在溅射过程中样品与离子溅射仪的载物台法向呈60度夹角,并且整个溅射过程分八次完成,每次溅射时间相同,且每次溅射完成后,样品垂直于法向方向被旋转90度角,以获得Ag纳米颗粒分布均匀的Ag纳米环阵列。
    本发明中离子溅射电流为15mA,溅射Ag时间为4-20min。
本发明中通过调整溅射Ag的时间长短,可以控制Ag纳米颗粒的尺寸以及Ag纳米颗粒之间的间隙,并且可以形成单层或多层Ag纳米颗粒组装的纳米环阵列。
本发明的有益效果:
本发明制备方法工艺简单、成本低廉、设备简易,所获得的由Ag颗粒组成的纳米环阵列在大面积范围内规则有序排列,相对于其它纳米结构而言,这种由Ag纳米颗粒组装成的纳米环阵列,环中Ag纳米颗粒尺寸、颗粒之间的间隙以及纳米环之间的间隙更容易调节并形成电磁场增强“热点”,因而能有效调节和优化纳米环阵列的SERS活性。同时,由于该纳米环阵列中纳米环的分布均匀有序,因此易获得重复性好的SERS信号。所以,这种Ag颗粒组成的纳米环阵列有望作为SERS基底,用于环境、化学、生物等领域的有机化学分子的快速识别。
附图说明
图1为由Ag颗粒组成的纳米环阵列的制备流程;其中,图a-d依次为制备阳极氧化二氧化钛纳米管阵列,在管中形成较矮的纳米棒,离子溅射较短时间获得单层Ag纳米颗粒组装纳米环阵列,离子溅射较长时间获得多层Ag纳米颗粒组装纳米环阵列。
图2为阳极氧化二氧化钛纳米管阵列及纳米管中形成较矮的二氧化钛纳米棒的表征结果及示意图;其中,图a为阳极氧化二氧化钛纳米管阵列顶端的SEM形貌,图b、c和d分别为线在管中的二氧化钛芯壳结构纳米管阵列顶端、顶端倾斜15度角及侧面SEM形貌、图e,f分别为单根二氧化钛芯壳结构纳米管和阳极氧化二氧化钛纳米管示意图。
图3为离子溅射Ag10min所制备的单层Ag纳米颗粒组装的纳米环阵列SEM图;其中,图a和b分别为单层Ag纳米颗粒组装的纳米环阵列低倍和高倍SEM照片;图c和d为单层Ag纳米环示意图和电磁场模拟分布图。
图4为溅射Ag16min所获得的Ag纳米颗粒组装的多层纳米环阵列SEM图;其中,图a和图b分别为单层Ag颗粒组装的纳米环阵列低倍和高倍SEM照片,插图为侧面高倍图片,图c为Ag颗粒组装的多层纳米环阵列示意图,图d和e为多层Ag纳米环阵列电磁场模拟分布图。
图5a为溅射Ag不同时间获得的纳米环阵列的SERS光谱;图5b为根据图a中614cm-1峰值强度随离子溅射Ag时间变化所绘制的柱状图。
图6a为离子溅射Ag10min所制备的单层Ag纳米颗粒组装的纳米环阵列对不同浓度R6G的SERS敏感性;图6b为该纳米环阵列中任意21个点上10-7 M R6G的SERS谱。
具体实施方式
(1)二氧化钛芯/壳结构纳米管阵列的制备:
将纯钛片在0.26M的氟化铵乙二醇溶液中于50 V氧化电压下氧化1小时,获得二氧化钛纳米管阵列(图2a);然后将该二氧化钛纳米管阵列依次浸泡于4M氢氧化钾溶液和0.4M盐酸溶液中3小时和2小时,得到二氧化钛芯/壳结构纳米管阵列(图2b、c、d 中SEM图片)。(具体制备参数及流程见专利:胡小晔,孟国文、王兆明、刘毛等,一种二氧化钛芯/壳纳米电缆阵列的制备方法,受理号:201210392780.X)
通过该方法在每个纳米管中获得了一根比纳米管矮一些的纳米线,组成了由纳米棒芯/纳米管壳结构的二氧化钛有序阵列。在这种阵列中,纳米管的上端面是“凸起”的,而且纳米管和纳米线之间是相互分离的,存在一定间隙。另外,与阳极氧化纳米管阵列的密排结构不同,芯/壳结构纳米管为非紧密排列,即纳米管与相邻纳米管之间存在一定距离,并且管与管之间的间隙处被密实的二氧化钛填充,形成一个小平面。这个小平面比纳米管低约30nm,(图2c 中SEM图片)。这种有序的特殊结构将有利于后续的Ag纳米颗粒组装在凸起的纳米管端面上,形成由Ag纳米颗粒组成的纳米环阵列
(2)由Ag颗粒组成的纳米环阵列的制备:
    采用倾斜离子溅射法在二氧化钛芯/壳结构纳米管阵列中凸起的纳米管的顶端圆环上来组装Ag纳米颗粒,即在溅射过程中样品与离子溅射仪的载物台法向呈60度夹角,并且整个溅射过程分八次完成,每次溅射时间相同(例如离子溅射Ag 16 min,分八次完成,每次2 min),且每次溅射完成后,样品垂直于法向方向被旋转90度角,以获得Ag纳米颗粒分布均匀的Ag纳米环阵列。
    本实验中采用的离子溅射电流为15mA,溅射时间为4~20min。通过调整溅射时间,可以控制Ag纳米颗粒的尺寸以及Ag纳米颗粒之间的间隙,并且可以形成单层和多层Ag纳米颗粒组装Ag纳米环阵列。图3a和3b显示了离子溅射Ag 10 min后形成Ag纳米环阵列的SEM形貌。从图中可以看出纳米环由单层Ag纳米颗粒组成,Ag纳米颗粒之间相互分离,形成一定尺寸的间隙。这种间隙的存在,会使纳米Ag纳米颗粒相互产生强的电磁场耦合,当这种间隙减小到10nm以下即产生所谓的电磁场增强“热点”(图3d显示了该结构的电磁场增强分布模拟图)。理论和实验证明,电磁场强度与纳米单元之间的间隙大小有直接的关系,所以通过改变离子溅射Ag时间来调节纳米颗粒之间的间隙,进而可以优化该结构的电磁场强度;因此可以优化该结构的SERS性能。当离子溅射时间很长时,组成Ag纳米环的颗粒之间相互连接,纳米颗粒间隙消失并沿轴向方向堆积,形成具有实心环壁的准三维的纳米环阵列。图4a、4b和中插图显示了离子溅射Ag 16 min后形成Ag纳米环阵列的SEM图。此时,组成纳米环的Ag纳米颗粒之间的间隙消失,但纳米环之间形成明显的间隙,所以其电磁场增强主要来源于相邻纳米环之间的耦合;当这种间隙减小到10nm以下时也会产生电磁场增强“热点”,如图4d所示。当继续延长离子溅射Ag时间时,纳米环之间的间隙也会消失,形成多孔的膜结构,同时电磁场强度也将减弱,从而降低其SERS活性。
总之,通过控制溅射Ag的时间长短,可以获得有序排列的单层或多层Ag纳米颗粒组装的纳米环阵列。并且,通过调节单层Ag纳米颗粒环中的颗粒之间的间隙或多层Ag纳米颗粒环中相邻纳米环之间的间隙到10nm以下,可以在相邻纳米环之间形成电磁场增强“热点”,进而改进纳米环阵列的SERS性能。
(3)Ag颗粒组成的纳米环阵列的SERS性能
将离子溅射Ag不同时间所获得的Ag纳米环阵列在10-8M罗丹明(R6G)溶液中浸泡2小时,常温干燥后测量其Raman信号。Raman信号测量中,激光拉曼光谱仪选用Renishaw Invia Reflex拉曼光谱仪,激发波长为532nm、光源功率0.1mW、镜头选用len 20×、积分时间为10s。
图5a为10-8M R6G吸附在离子溅射Ag 4-20 min所制备的纳米环阵列上所测得SERS谱,在测试过程中所有实验条件(激光激发波长、激光强度、积分时间)相同。图5b以柱状图绘出随离子溅射Ag时间变化,Raman谱中614cm-1峰强变化,直观地反映了不同离子溅射Ag时间获得的纳米环的SERS活性变化。其中溅射Ag时间为10min和16min时,614cm-1峰值最强。这是因为在离子溅射Ag时间为10min时,纳米环中的Ag纳米颗粒间隙小于10 nm,形成了较多的电磁场增强“热点”,提高了SERS活性。当溅射时间延长时,环中纳米颗粒间隙渐渐消失,因而SERS活性降低。当继续延长溅射时间时,相邻纳米环之间的间隙形成,并逐渐减小到10 nm,此时在纳米环间形成电磁场增强“热点”,有利于SERS活性的提高;最后随溅射Ag时间延长,相邻纳米环之间的间隙消失,SERS活性降低。在我们的实验中,通过有限元模拟单层Ag纳米颗粒环和多层Ag纳米颗粒环的电磁场分布时发现 (图3d和4d),多层Ag纳米环环间的电磁场强度高于单层Ag纳米颗粒环中纳米颗粒间的电磁场强度,但单层Ag纳米颗粒环阵列的SERS活性却优于多层Ag纳米环阵列。这主要是由于在单层纳米环中,电磁场增强“热点”分布在组成环的纳米颗粒之间,其密度高于多层Ag纳米环相邻环间的电磁场增强“热点”数目。
通过比较,选择离子溅射Ag 10min所制备的单层纳米环阵列作为SERS衬底,测试该衬底对R6G的敏感性,进而研究用其SERS效应检测环境污染物的可行性。图6a显示了以该纳米环为衬底测量10-7 M、10-8 M、10-9 M、10-10 M、10-11 M和10-12M的R6G的Raman信号图谱。结果表明,该衬底对浓度为10-12M的R6G仍然很敏感。进而,以10-8 M的R6G为探测分子,在该衬底上任意测试21个点的SERS谱 (如图6b),发现其峰值强度误差小于10%,说明具有良好的SERS信号重复性。这种好的SERS信号重复性主要归结于Ag纳米环在大面积范围内规则有序排列。

Claims (3)

1.一种由Ag纳米颗粒组装的纳米环阵列SERS衬底的制备方法,其特征在于包括以下步骤:
(1)二氧化钛芯/壳结构纳米管阵列的制备:
将纯钛片在0.2-0.3M的氟化铵乙二醇溶液中于45-55 V氧化电压下氧化1-2小时,获得二氧化钛纳米管阵列;然后将该二氧化钛纳米管阵列依次浸泡于3-5M氢氧化钾溶液和0.25-0.5M盐酸溶液中2-4小时和1.5-2小时,得到二氧化钛芯/壳结构纳米管阵列;
(2)由Ag颗粒组成的纳米环阵列的制备:
    采用倾斜离子溅射法在二氧化钛芯/壳结构纳米管阵列中凸起的纳米管的顶端圆环上来组装Ag纳米颗粒,即在溅射过程中样品与离子溅射仪的载物台法向呈60度夹角,并且整个溅射过程分八次完成,每次溅射时间相同,且每次溅射完成后,样品垂直于法向方向被旋转90度角,以获得Ag纳米颗粒分布均匀的Ag纳米环阵列。
2.根据权利权利要求1所述的一种由Ag纳米颗粒组装的纳米环阵列SERS衬底的制备方法,其特征在于,所述步骤(2)中离子溅射电流为15mA,溅射Ag时间为4-20min。
3.根据权利权利要求1所述的一种由Ag纳米颗粒组装的纳米环阵列SERS衬底的制备方法,其特征在于,所述步骤(2)中通过调整溅射Ag的时间长短,可以控制Ag纳米颗粒的尺寸以及Ag纳米颗粒之间的间隙,并且可以形成单层或多层Ag纳米颗粒组装的纳米环阵列。
CN201310628084.9A 2013-11-28 2013-11-28 一种由Ag纳米颗粒组装的纳米环阵列SERS衬底的制备方法 Expired - Fee Related CN103695984B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310628084.9A CN103695984B (zh) 2013-11-28 2013-11-28 一种由Ag纳米颗粒组装的纳米环阵列SERS衬底的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310628084.9A CN103695984B (zh) 2013-11-28 2013-11-28 一种由Ag纳米颗粒组装的纳米环阵列SERS衬底的制备方法

Publications (2)

Publication Number Publication Date
CN103695984A true CN103695984A (zh) 2014-04-02
CN103695984B CN103695984B (zh) 2016-05-11

Family

ID=50357642

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310628084.9A Expired - Fee Related CN103695984B (zh) 2013-11-28 2013-11-28 一种由Ag纳米颗粒组装的纳米环阵列SERS衬底的制备方法

Country Status (1)

Country Link
CN (1) CN103695984B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104078625A (zh) * 2014-07-04 2014-10-01 宁波工程学院 一种提高金属纳米环结构可控出光效率的方法
CN104911667A (zh) * 2015-06-04 2015-09-16 中国科学院合肥物质科学研究院 一种新型的具有蜂巢状阵列构造的多层复合贵金属纳米孔阵列sers基底的制备方法
CN105442015A (zh) * 2015-11-11 2016-03-30 北京工业大学 一种高稳定性的非偏振依赖表面增强拉曼散射衬底、制备及应用
CN107966429A (zh) * 2017-12-21 2018-04-27 长春理工大学 一种具有表面增强拉曼散射的金纳米环堆叠阵列基底及制备方法
CN108767113A (zh) * 2018-05-07 2018-11-06 苏州大学 一种TiO2纳米柱-Au纳米粒子复合阵列、制备方法及其应用
CN111812076A (zh) * 2020-06-29 2020-10-23 河南科技大学 一种柔性表面增强拉曼效应基底材料及其制备方法
CN111804308A (zh) * 2020-06-29 2020-10-23 河南科技大学 Ag-Co薄膜/纳米颗粒/薄膜催化剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102383164A (zh) * 2011-11-08 2012-03-21 天津大学 二氧化钛纳米蜂窝嵌套纳米线阵列薄膜及制备方法
CN102418133A (zh) * 2011-12-12 2012-04-18 天津大学 表面粗糙的二氧化钛纳米蜂窝结构薄膜及制备方法
CN102944544A (zh) * 2012-11-08 2013-02-27 清华大学 一种循环使用表面增强拉曼散射基底及其制备方法和应用
CN102953110A (zh) * 2012-10-16 2013-03-06 中国科学院合肥物质科学研究院 一种二氧化钛芯/壳纳米电缆阵列的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102383164A (zh) * 2011-11-08 2012-03-21 天津大学 二氧化钛纳米蜂窝嵌套纳米线阵列薄膜及制备方法
CN102418133A (zh) * 2011-12-12 2012-04-18 天津大学 表面粗糙的二氧化钛纳米蜂窝结构薄膜及制备方法
CN102953110A (zh) * 2012-10-16 2013-03-06 中国科学院合肥物质科学研究院 一种二氧化钛芯/壳纳米电缆阵列的制备方法
CN102944544A (zh) * 2012-11-08 2013-02-27 清华大学 一种循环使用表面增强拉曼散射基底及其制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AGATA ROGUSKA ET AL.,: ""Ram investigations of SERS activity of Ag nanoclusters on a TiO2-nanotubes/Ti substrate"", 《VIBRATIONAL SPECTROSCOPY》 *
X HU ET AL.,: ""Large-scale homogeneously distributed Ag-NPs with sub-10 nm gaps assemble on a two –layered honecomb-like TiO2 film as sensitive and reproducible SERS substrates"", 《NANOTECHNOLOGY》 *
XUANHUA LI ET AL.,: ""Multifunctional Au-coated TiO2 Nanotube arrays as Recyclable SERS Substrates for multifold organic pollutants detection"", 《ADVANCED FUNCTIONAL MATERIALS》 *
YONGXIA HUANG ET AL.,: ""SERS study of Ag nanoparticles electrodeposited on patterned TiO2 nanotube films"", 《JOURNAL OF RAMAN SPECTROSCOPY》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104078625A (zh) * 2014-07-04 2014-10-01 宁波工程学院 一种提高金属纳米环结构可控出光效率的方法
CN104911667A (zh) * 2015-06-04 2015-09-16 中国科学院合肥物质科学研究院 一种新型的具有蜂巢状阵列构造的多层复合贵金属纳米孔阵列sers基底的制备方法
CN104911667B (zh) * 2015-06-04 2018-06-08 中国科学院合肥物质科学研究院 一种新型的具有蜂巢状阵列构造的多层复合贵金属纳米孔阵列sers基底的制备方法
CN105442015A (zh) * 2015-11-11 2016-03-30 北京工业大学 一种高稳定性的非偏振依赖表面增强拉曼散射衬底、制备及应用
CN105442015B (zh) * 2015-11-11 2017-10-13 北京工业大学 一种高稳定性的非偏振依赖表面增强拉曼散射衬底、制备及应用
CN107966429A (zh) * 2017-12-21 2018-04-27 长春理工大学 一种具有表面增强拉曼散射的金纳米环堆叠阵列基底及制备方法
CN107966429B (zh) * 2017-12-21 2020-05-15 长春理工大学 一种具有表面增强拉曼散射的金纳米环堆叠阵列基底及制备方法
CN108767113A (zh) * 2018-05-07 2018-11-06 苏州大学 一种TiO2纳米柱-Au纳米粒子复合阵列、制备方法及其应用
CN108767113B (zh) * 2018-05-07 2022-04-12 苏州大学 一种TiO2纳米柱-Au纳米粒子复合阵列、制备方法及其应用
CN111812076A (zh) * 2020-06-29 2020-10-23 河南科技大学 一种柔性表面增强拉曼效应基底材料及其制备方法
CN111804308A (zh) * 2020-06-29 2020-10-23 河南科技大学 Ag-Co薄膜/纳米颗粒/薄膜催化剂及其制备方法
CN111812076B (zh) * 2020-06-29 2023-01-10 河南科技大学 一种柔性表面增强拉曼效应基底材料及其制备方法

Also Published As

Publication number Publication date
CN103695984B (zh) 2016-05-11

Similar Documents

Publication Publication Date Title
CN103695984A (zh) 一种由Ag纳米颗粒组装的纳米环阵列SERS衬底的制备方法
Alexander et al. Tunable SERS in gold nanorod dimers through strain control on an elastomeric substrate
Yuan et al. Solid-state nanopore
Kaniukov et al. Growth mechanisms of spatially separated copper dendrites in pores of a SiO2 template
CN103060878B (zh) 竖于多孔氧化铝模板孔口的银纳米柱阵列及其制备方法和用途
US20170175720A1 (en) Nanomotor Propulsion
CN103451610B (zh) 新型仿生表面增强拉曼光谱基底及其制备方法
CN102565024B (zh) 基于表面等离子体激元局域场耦合效应的表面增强拉曼散射基底
CN104911667B (zh) 一种新型的具有蜂巢状阵列构造的多层复合贵金属纳米孔阵列sers基底的制备方法
Chen et al. Ordered arrays of Au-nanobowls loaded with Ag-nanoparticles as effective SERS substrates for rapid detection of PCBs
Hu et al. Large-scale homogeneously distributed Ag-NPs with sub-10 nm gaps assembled on a two-layered honeycomb-like TiO2 film as sensitive and reproducible SERS substrates
Osminkina et al. Gold nanoflowers grown in a porous Si/SiO2 matrix: The fabrication process and plasmonic properties
WO2014082515A1 (zh) 表面等离子体滤光器及其制备方法
Hu et al. An ordered array of hierarchical spheres for surface-enhanced Raman scattering detection of traces of pesticide
CN106409975A (zh) 一种可定制的高增益ZnO纳米线阵列紫外探测器及其制备方法
CN102944545A (zh) 层状三维结构纳米金表面增强拉曼活性基底及其制备方法
Liu et al. Grooved nanoplate assembly for rapid detection of surface enhanced Raman scattering
Kim et al. Fabrication and measurement of microtip-array-based LSPR sensor using bundle fiber
CN107199403B (zh) 一种利用TiO2粒子阵列辅助飞秒激光超衍射极限加工的方法
Gopalakrishnan et al. Nanoplasmonic structures for biophotonic applications: SERS overview
Longoni et al. Surface enhanced Raman spectroscopy with electrodeposited copper ultramicro-wires with/without silver nanostars decoration
Nesbitt et al. Aluminum nanowire arrays via directed assembly
CN104237202A (zh) 一种硅纳米阵列基底及其制备方法、应用
Schubert et al. STEM-EELS analysis of multipole surface plasmon modes in symmetry-broken AuAg nanowire dimers
Yi et al. Plasmonic coupling effect in silver spongelike networks nanoantenna for large increases of surface enhanced Raman scattering

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160511

Termination date: 20161128

CF01 Termination of patent right due to non-payment of annual fee