WO2013005680A1 - フラットパネルディスプレイ用ガラス基板及びその製造方法 - Google Patents

フラットパネルディスプレイ用ガラス基板及びその製造方法 Download PDF

Info

Publication number
WO2013005680A1
WO2013005680A1 PCT/JP2012/066738 JP2012066738W WO2013005680A1 WO 2013005680 A1 WO2013005680 A1 WO 2013005680A1 JP 2012066738 W JP2012066738 W JP 2012066738W WO 2013005680 A1 WO2013005680 A1 WO 2013005680A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
glass
glass substrate
sio
cao
Prior art date
Application number
PCT/JP2012/066738
Other languages
English (en)
French (fr)
Inventor
小山 昭浩
諭 阿美
学 市川
Original Assignee
AvanStrate株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47437032&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2013005680(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by AvanStrate株式会社 filed Critical AvanStrate株式会社
Priority to CN201280002220.7A priority Critical patent/CN103052604B/zh
Priority to KR1020127031520A priority patent/KR101523832B1/ko
Priority to JP2012530015A priority patent/JP5172045B2/ja
Priority to KR1020127031263A priority patent/KR101273847B1/ko
Publication of WO2013005680A1 publication Critical patent/WO2013005680A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B25/00Annealing glass products
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells

Definitions

  • the present invention relates to a glass substrate for a flat panel display, and more particularly to a glass substrate for a polysilicon thin film (hereinafter referred to as p-Si) flat panel display and a method for manufacturing the same. More specifically, the present invention relates to a glass substrate used in a flat display manufactured by forming p-Si on the substrate surface and a manufacturing method thereof. More specifically, the present invention relates to a glass substrate for a polysilicon thin film transistor (hereinafter referred to as p-Si ⁇ TFT) flat panel display and a method for manufacturing the same.
  • p-Si ⁇ TFT polysilicon thin film transistor
  • the present invention relates to a glass substrate used in a flat display manufactured by forming p-Si • TFT on a substrate surface and a manufacturing method thereof. More specifically, the present invention relates to a glass substrate for a p-Si • TFT flat panel display in which the p-Si • TFT flat panel display is a liquid crystal display, and a method for manufacturing the same. Or this invention relates to the glass substrate for organic electroluminescent displays, and its manufacturing method. Alternatively, the present invention relates to a glass substrate for an oxide semiconductor thin film transistor flat panel display. More specifically, the present invention relates to a glass substrate used for a flat display manufactured by forming an oxide semiconductor thin film transistor on a substrate surface and a manufacturing method thereof.
  • p-Si polysilicon
  • TFTs thin film transistors
  • heat treatment at a relatively high temperature of 400 to 600 ° C. is required for the manufacture of p-Si TFT flat panel displays.
  • glass substrate for manufacturing a p-Si • TFT flat panel display glass having high heat resistance is used.
  • the glass substrate used in the conventional a-Si (amorphous silicon) TFT flat panel display does not have a sufficiently high strain point, and a large thermal shrinkage is caused by the heat treatment in manufacturing the p-Si TFT flat panel display. It is known that this causes a problem of pixel pitch deviation.
  • thermal shrinkage of a glass substrate is suppressed by increasing the characteristic temperature (hereinafter referred to as the low temperature viscosity characteristic temperature) in the low temperature viscosity region represented by the strain point and Tg (glass transition point) of the glass substrate.
  • the characteristic temperature hereinafter referred to as the low temperature viscosity characteristic temperature
  • Tg glass transition point
  • Patent Document 1 discloses an alkali-free glass having a strain point of 680 ° C. or higher.
  • strain point In order to improve the low-temperature viscosity characteristic temperature represented by the strain point and Tg (glass transition point) of the glass substrate, it is generally necessary to increase the content of SiO 2 and Al 2 O 3 in the glass.
  • strain point will be representatively described as “low temperature viscosity characteristic temperature” in this specification.
  • the glass described in Patent Document 1 contains 58 to 75% by mass of SiO 2 and 15 to 19% by mass of Al 2 O 3 (see claim 1). As a result, the specific resistance of the molten glass tends to increase. In recent years, direct current heating is often used to efficiently melt glass.
  • the present invention has a high strain point, can suppress thermal contraction of the glass substrate during display manufacturing, and can be manufactured while avoiding the problem of melting tank melting in melting by direct current heating.
  • An object of the present invention is to provide a glass substrate for flat panel display, particularly a glass substrate for p-Si.TFT flat panel display, and a method for producing the same.
  • the present invention is as follows. [1] SiO 2 52-78% by mass, Al 2 O 3 3-25% by mass, B 2 O 3 3-15% by mass, RO (where RO is the total amount of MgO, CaO, SrO and BaO) 3-20% by mass, R 2 O (where R 2 O is the total amount of Li 2 O, Na 2 O and K 2 O) 0.01 to 0.8% by mass, Sb 2 O 3 0-0.3% by mass, Containing substantially no As 2 O 3
  • the mass ratio CaO / RO is 0.65 or more
  • the mass ratio (SiO 2 + Al 2 O 3 ) / B 2 O 3 is in the range of 7 to 30, and the mass ratio (SiO 2 + Al 2 O 3 ) / RO Is a glass substrate for p-Si.TFT flat panel display composed of glass of 5 or more (the glass substrate of the first aspect of the present invention.
  • the glass substrate of the embodiment of [2] The glass substrate according to [1], wherein the glass does not substantially contain Sb 2 O 3 .
  • the mass ratio CaO / RO is 0.65 or more
  • the mass ratio (SiO 2 + Al 2 O 3 ) / B 2 O 3 is in the range of 8.1 to 20
  • the mass ratio (SiO 2 + Al 2 O 3 ) / RO Is a glass substrate for p-Si ⁇ TFT flat panel display, which is made of glass of 5 or more
  • the glass has a SiO 2 content of 58 to 72% by mass, an Al 2 O 3 content of 10 to 23% by mass, and a B 2 O 3 content of 3 to less than 11% by mass.
  • the glass has a total content of SiO 2 and Al 2 O 3 of 75% by mass or more, The RO content is 4-16% by mass, and
  • Thermal shrinkage (ppm) ⁇ Shrinkage of glass before and after heat treatment / Glass length before heat treatment ⁇ ⁇ 10 6
  • the glass substrate according to [10] wherein the glass does not substantially contain Sb 2 O 3 .
  • the thermal shrinkage is a value obtained by holding the glass substrate at Tg for 30 minutes, cooling to Tg-100 ° C.
  • the glass substrate according to any one of [10] to [12]. [14] SiO 2 57-75% by mass, Al 2 O 3 8-25% by mass, B 2 O 3 3-15% by mass, RO (where RO is the total amount of MgO, CaO, SrO and BaO) 3-25% by mass, MgO 0-15% by mass, CaO 1-20% by mass, SrO + BaO 0 to less than 3.4% by mass, Sb 2 O 3 0-0.3% by mass, R 2 O (provided that R 2 O is the total amount of Li 2 O, Na 2 O and K 2 O) 0.01 to 0.8% by mass, The mass ratio CaO / RO is 0.65 or more, And a glass substrate for p-Si • TFT flat panel display (glass substrate according to the third aspect of the present invention) made of glass which does not substantially contain As 2 O 3 .
  • Thermal shrinkage (ppm) ⁇ Shrinkage of glass before and after heat treatment / Glass length before heat treatment ⁇ ⁇ 10 6 [27] SiO 2 57-75% by mass, Al 2 O 3 8-25% by mass, B 2 O 3 3-15% by mass, RO (where RO is the total amount of MgO, CaO, SrO and BaO) 3-25% by mass, MgO 0-15% by mass, CaO 1-20% by mass, SrO + BaO 0 to less than 3.4% by mass, Sb 2 O 3 0-0.3% by mass, R 2 O (provided that R 2 O is the total amount of Li 2 O, Na 2 O and K 2 O) 0.01 to 0.8% by mass, The mass ratio CaO / RO is 0.65 or more, A glass substrate for flat panel displays made of glass that does not substantially contain As 2 O 3 .
  • a flat panel display made of glass having a high strain point, particularly a glass substrate for p-Si • TFT flat panel display can be provided with high productivity.
  • the composition of the glass constituting the glass substrate is represented by mass%, and the ratio of the components constituting the glass is represented by mass ratio.
  • the composition and physical properties of the glass substrate mean the composition and physical properties of the glass constituting the glass substrate unless otherwise specified, and when simply referred to as glass, it means the glass constituting the glass substrate.
  • the thermal contraction rate of a glass substrate means the value measured on the conditions as described in an Example about the glass substrate formed on the predetermined conditions as described in an Example.
  • the low temperature viscosity characteristic temperature means a temperature at which the glass exhibits a viscosity in the range of 10 7.6 to 10 14.5 dPa ⁇ s
  • the low temperature viscosity characteristic temperature includes a strain point and Tg. Therefore, increasing the low temperature viscosity characteristic temperature also means increasing the strain point and Tg, and conversely, increasing the strain point and / or Tg means increasing the low temperature viscosity characteristic temperature.
  • the melting temperature that is an index of meltability is a temperature at which glass exhibits a viscosity of 10 2.5 dPa ⁇ s, and is a temperature that is an index of meltability.
  • the glass substrate for p-Si • TFT flat panel display of the present invention (the glass substrate of the first aspect of the present invention) is SiO 2 52 to 78 mass%, Al 2 O 3 3 to 25 mass%, B 2 O 3 3 to 15% by mass, RO (where RO is the total amount of MgO, CaO, SrO and BaO) 3 to 20% by mass, R 2 O (where R 2 O is Li 2 O, Na 2 O and K 2 O) (Combined amount) of 0.01 to 0.8% by mass, Sb 2 O 3 0 to 0.3% by mass, and substantially free of As 2 O 3 , and the mass ratio CaO / RO is 0.65 or more.
  • Glass for flat panel display comprising (SiO 2 + Al 2 O 3 ) / B 2 O 3 in a range of 7 to 30 and a mass ratio (SiO 2 + Al 2 O 3 ) / RO of 5 or more It is a substrate.
  • R 2 O (where R 2 O is Li 2 O, Na 2 O And K 2 O) is a glass containing 0.01 to 0.8% by mass, substantially free of Sb 2 O 3 and substantially free of As 2 O 3 , and a mass ratio of CaO / RO is 0.65 or more
  • mass ratio (SiO 2 + Al 2 O 3 ) / B 2 O 3 is in the range of
  • the content of SiO 2 in the glass substrate of the first embodiment of the present invention is in the range of 52 to 78% by mass.
  • SiO 2 is a skeletal component of glass and is therefore an essential component.
  • acid resistance, BHF (buffered hydrofluoric acid) and strain point tend to be lowered.
  • the thermal expansion coefficient tends to increase.
  • the SiO 2 content is too low, it is difficult to reduce the density of the glass substrate.
  • the SiO 2 content is too large, the specific resistance of the glass melt increases, the melting temperature becomes extremely high, and melting tends to be difficult.
  • the devitrification resistance also tends to decrease.
  • the content of SiO 2 is in the range of 52 to 78% by mass.
  • the content of SiO 2 is preferably 57 to 75% by mass, more preferably 58 to 72% by mass, further preferably 59 to 70% by mass, more preferably 59 to 69% by mass, and still more preferably 61 to 69% by mass. %, Even more preferably 61-68% by mass, still more preferably 62-67% by mass.
  • the SiO 2 content is too high, the glass etching rate tends to be slow.
  • the content of SiO 2 is preferably 53 to 75% by mass, more preferably 55 to 70% by mass, The range is preferably 55 to 65% by mass, more preferably 58 to 63% by mass.
  • the SiO 2 content is appropriately determined in consideration of both the above-mentioned characteristics such as acid resistance and the etching rate.
  • the content of Al 2 O 3 in the glass substrate of the first embodiment of the present invention is in the range of 3 to 25% by mass.
  • Al 2 O 3 is an essential component that suppresses phase separation and raises the strain point. When there is too little content, it will become easy to phase-separate glass. The strain point decreases. Furthermore, Young's modulus and etching rate tend to decrease. When the Al 2 O 3 content is too large, the specific resistance increases. Moreover, since the devitrification temperature of glass rises and devitrification resistance falls, there exists a tendency for a moldability to deteriorate. From such a viewpoint, the content of Al 2 O 3 is in the range of 3 to 25% by mass.
  • the content of Al 2 O 3 is preferably 8 to 25% by mass, more preferably 10 to 23% by mass, further preferably 12 to 20% by mass, more preferably 14 to 20% by mass, still more preferably 15 to
  • the content of Al 2 O 3 is preferably 8 to 25% by mass from the viewpoint of obtaining a glass substrate having a sufficiently high etching rate, on the other hand, in the range of 20% by mass, still more preferably 15 to 19% by mass. %, More preferably 10 to 23% by mass, still more preferably 14 to 23% by mass, and still more preferably 17 to 22% by mass.
  • the content of Al 2 O 3 is appropriately determined in consideration of both the phase separation characteristics and the etching rate of the glass.
  • B 2 O 3 in the glass substrate of the first aspect of the present invention is in the range of 3 to 15% by mass.
  • B 2 O 3 is an essential component that lowers the temperature in a high-temperature viscosity region typified by the melting temperature of glass and improves clarity.
  • meltability devitrification resistance and BHF resistance tend to decrease.
  • specific gravity increases and it is difficult to reduce the density.
  • specific resistance increases.
  • the content of B 2 O 3 is too large, the strain point is lowered, the heat resistance is lowered. Further, acid resistance and Young's modulus tend to decrease.
  • the content of B 2 O 3 is in the range of 3 to 15% by mass, preferably 3 to 13% by mass, more preferably 3 to less than 11% by mass, more preferably 3 to 10% by mass. Less than, more preferably 4 to 9% by mass, still more preferably 5 to 9% by mass, and still more preferably 7 to 9% by mass.
  • the B 2 O 3 content is in the range of 3 to 15% by mass, preferably 5 to 15% by mass, more preferably 6 to 13% by mass, More preferably, it is 7 to 11% by mass.
  • the B 2 O 3 content is appropriately determined in consideration of both the meltability and the devitrification temperature.
  • RO which is the total amount of MgO, CaO, SrO and BaO in the glass substrate of the first aspect of the present invention is in the range of 3 to 20% by mass.
  • RO is an essential component that reduces specific resistance and improves meltability. If the RO content is too small, the specific resistance increases and the meltability deteriorates. When there is too much RO content, a strain point and Young's modulus will fall. Furthermore, the density increases. Moreover, when there is too much RO content, there exists a tendency for a thermal expansion coefficient to increase.
  • RO is in the range of 3 to 20% by mass, preferably 4 to 16% by mass, more preferably 4 to 15% by mass, further preferably 6 to 14% by mass, and still more preferably 7 to It is in the range of 14% by weight, more preferably 7-12% by weight, still more preferably 8-11% by weight.
  • the glass substrate of the first embodiment of the present invention contains 0.01 to 0.8% by mass of R 2 O (where R 2 O is the total amount of Li 2 O, Na 2 O and K 2 O).
  • R 2 O is the total amount of Li 2 O, Na 2 O and K 2 O.
  • Li 2 O, R 2 O is Na 2 O and K 2 O increases the basicity of glass, to facilitate the oxidation of the fining agent is a component to exhibit clarity. It is also a component that improves meltability and lowers specific resistance. Therefore, when R 2 O is contained, the specific resistance is lowered, the clarity is improved, and the meltability is improved. However, when R 2 O content is too high, degrading the TFT characteristics eluted from the glass substrate. In addition, the thermal expansion coefficient tends to increase.
  • the total amount of R 2 O, Li 2 O + Na 2 O + K 2 O is in the range of 0.01 to 0.8% by mass, preferably 0.01 to 0.6% by mass, more preferably 0.01 to 0.5% by mass. %, More preferably 0.01 to 0.4% by mass, and still more preferably 0.01 to 0.3% by mass.
  • the lower limit value 0.01 mass% in the above range is preferably 0.05 mass%, more preferably 0.1 mass%.
  • Sb 2 O 3 is preferably 0 to 0.3% by mass, and more preferably 0 to 0.1% by mass, from the viewpoint of reducing environmental burden.
  • the glass substrate according to the first aspect of the present invention further contains substantially no Sb 2 O 3 and substantially no As 2 O 3 from the viewpoint of further reducing the environmental load. preferable.
  • substantially free means that the glass raw material does not use substances that are the raw materials of these components, and excludes the inclusion of components contained as impurities in other glass raw materials. Not what you want.
  • CaO / RO is an index for the index of melting and devitrification resistance.
  • CaO / RO is 0.65 or more, preferably 0.65 to 1, more preferably 0.7 to 1, more preferably 0.85 to 1, even more preferably 0.9 to 1, and still more preferably 0.95 to 1.
  • the density can be reduced.
  • the effect of increasing the strain point is higher when CaO alone is contained than when a plurality of alkaline earth metals are contained as a raw material.
  • the obtained glass has a CaO / RO value of, for example, about 0.98 to 1.
  • the obtained glass may contain other alkaline earth metal oxides as impurities.
  • the mass ratio of a total amount of SiO 2 and Al 2 O 3 with respect to B 2 O 3 in the glass substrate of the first aspect of the present invention is an index of strain point and devitrification resistance.
  • (SiO 2 + Al 2 O 3 ) / B 2 O 3 is preferably 7 to 30, more preferably 8 to 25, and still more preferably 8.1 to 20.
  • (SiO 2 + Al 2 O 3 ) / B 2 O 3 increases, the devitrification resistance gradually decreases, and when it exceeds 30, it extremely decreases, preferably 25 or less, more preferably 23 or less, If it is preferably 20 or less, sufficient devitrification resistance can be obtained. Therefore, (SiO 2 + Al 2 O 3 ) / B 2 O 3 is preferably in the range of 9.5 to 16, more preferably 9.8 to 14, and further preferably 10 to 12.
  • (SiO 2 + Al 2 O 3 ) / B 2 O 3 is preferably 7 to 30 More preferably 8 to 25, still more preferably 8.2 to 20, even more preferably 8.4 to 15, and still more preferably 8.5 to 12.
  • Mass ratio (SiO 2 + Al 2 O 3 ) / RO of a total amount of SiO 2 and Al 2 O 3 with respect to RO in the glass substrate (SiO 2 + Al 2 O 3 ) of the first aspect of the present invention the ratio It becomes an index of resistance.
  • (SiO 2 + Al 2 O 3 ) / RO is 5 or more.
  • (SiO 2 + Al 2 O 3 ) / RO is less than 5, the low-temperature viscosity characteristic temperature (Tg and strain point) cannot be sufficiently increased. It is. (SiO 2 + Al 2 O 3 ) / RO is preferably in the range of 5 to 15, more preferably 6 to 13, more preferably 7.5 to 12, and still more preferably 8.1 to 10. Note, (SiO 2 + Al 2 O 3) / RO and by 15 or less, it is possible to suppress the resistivity becomes too high.
  • (SiO 2 + Al 2 O 3 ) / RO is preferably 6 to 15 More preferably, it is 7 to 15, and more preferably in the range of 7.5 to 9.5.
  • the glass substrate of the present invention (the glass substrate of the first aspect of the present invention) preferably has the following glass composition and / or physical properties.
  • SiO 2 + Al 2 O 3 is the total amount of SiO 2 and Al 2 O 3 in the glass substrate of the first aspect of the present invention is too small, there is a tendency that the strain point is lowered, while when too large, the resistivity Tends to increase and the devitrification resistance tends to deteriorate. Therefore, SiO 2 + Al 2 O 3 is preferably 75% by mass or more, more preferably 75% by mass to 87% by mass, still more preferably 75% by mass to 85% by mass, and still more preferably 78% by mass. % By mass to 83% by mass. From the viewpoint of further increasing the strain point, it is more preferably 78% by mass or more, still more preferably 79 to 87% by mass, and still more preferably 80 to 85% by mass.
  • MgO is a component that lowers the specific resistance and improves the meltability. Moreover, since it is a component which is hard to increase specific gravity in alkaline-earth metal, when the content is increased relatively, it will become easy to aim at density reduction. Although it is not essential, by making it contain, meltability can be improved and generation
  • the MgO content is preferably 0 to 15% by mass, more preferably 0 to 10% by mass, further preferably 0 to 5% by mass, more preferably 0 to 4% by mass, and still more preferably. It is 0 to 3% by mass, still more preferably 0 to less than 2, still more preferably 0 to 1% by mass, and most preferably not substantially contained.
  • CaO is a component that lowers the specific resistance, and is also an effective component for improving the meltability of the glass without rapidly increasing the devitrification temperature of the glass. Moreover, since it is a component which is hard to increase specific gravity in alkaline-earth metal, when the content is increased relatively, it will become easy to aim at density reduction. Although not essential, the inclusion of CaO is preferable because it can improve the meltability and devitrification by reducing the specific resistance and melting temperature (high temperature viscosity) of the glass melt. If the CaO content is too large, the strain point tends to decrease. Further, the thermal expansion coefficient tends to increase, and the density tends to increase.
  • the CaO content is preferably 0 to 20% by mass, more preferably 1 to 20% by mass, further preferably 2 to 15% by mass, more preferably 3.6 to 15% by mass, still more preferably 4 to 14% by mass, Even more preferably 5 to 12% by weight, still more preferably 5 to 11% by weight, still more preferably 5 to 10% by weight, still more preferably more than 6 to 10% by weight, most preferably more than 6 to 9%. It is in the mass% range.
  • SrO is a component that lowers the specific resistance and improves the meltability.
  • SrO is not essential, when it is contained, devitrification resistance and meltability are improved.
  • the SrO content is preferably 0 to 15% by mass, more preferably 0 to 10% by mass, further preferably 0 to 3% by mass, more preferably 0 to 2% by mass, still more preferably 0 to 1% by mass, Still more preferably, it is in the range of 0 to 0.5% by mass.
  • SrO is not substantially contained.
  • BaO is a component that lowers the specific resistance and improves the meltability.
  • BaO is not essential, but when it is contained, devitrification resistance and meltability are improved. Moreover, a thermal expansion coefficient and a density will also increase.
  • the BaO content is preferably 0 to 5% by mass, more preferably 0 to less than 1.5% by mass, further preferably 0 to 1% by mass, more preferably 0 to less than 0.5% by mass, still more preferably 0 to 0.1% by mass. Less than%. It is preferable not to contain BaO substantially from the viewpoint of environmental load.
  • SrO and BaO are components that lower the specific resistance and improve the meltability. Although not essential, when it is contained, devitrification resistance and meltability are improved. However, when there is too much content, a density will rise.
  • SrO + BaO which is the total amount of SrO and BaO, is preferably 0 to 5% by mass, more preferably 0 to less than 3.4% by mass, and still more preferably 0 to 3% by mass from the viewpoint of reducing density and reducing weight. %, More preferably 0 to 2% by mass, even more preferably 0 to 1% by mass, still more preferably 0 to 0.5% by mass, and still more preferably 0 to less than 0.1% by mass. When it is desired to reduce the density of the glass substrate, it is preferable that SrO and BaO are not substantially contained.
  • Li 2 O and Na 2 O are components that lower the specific resistance and improve the meltability, but are eluted from the glass substrate to deteriorate the TFT characteristics
  • the total amount of Li 2 O and Na 2 O is preferably 0 to 0.2% by mass, more preferably 0 to 0.1% by mass because it is a component that may increase the thermal expansion coefficient and damage the substrate during heat treatment.
  • % More preferably 0 to 0.05% by weight, more preferably substantially free
  • K 2 O is a component that increases the basicity of the glass, facilitates the oxidization of the fining agent, and exhibits the fining properties. Moreover, it is a component which reduces specific resistance and improves meltability. Although not essential, when it is contained, the specific resistance is lowered and the meltability is improved. In addition, clarity is improved. . If the K 2 O content is too large, it tends to be eluted from the glass substrate and deteriorate the TFT characteristics. Also, the thermal expansion coefficient tends to increase.
  • the K 2 O content is preferably 0.01 to 0.8% by mass, more preferably 0.05 to 0.7% by mass, further preferably 0.05 to 0.5% by mass, more preferably 0.1 to 0.5% by mass, and even more preferably 0.1 to 0.4% by mass. %, And still more preferably in the range of 0.1 to 0.3% by mass.
  • K 2 O has a higher molecular weight than Li 2 O and Na 2 O, and thus is difficult to elute from the glass substrate. Therefore, when R 2 O is contained, it is preferable to contain K 2 O. That is, K 2 O is preferably contained in a higher ratio than Li 2 O (K 2 O> Li 2 O is satisfied). K 2 O is preferably contained in a higher ratio than Na 2 O (K 2 O> Na 2 O is satisfied). When the ratio of Li 2 O and Na 2 O is large, the tendency to elute from the glass substrate and deteriorate the TFT characteristics becomes strong.
  • the mass ratio K 2 O / R 2 O is preferably 0.5 to 1, more preferably 0.6 to 1, still more preferably 0.7 to 1, still more preferably 0.75 to 1, still more preferably 0.8 to 1, More preferably, it is in the range of 0.9 to 1, still more preferably 0.95 to 1, and still more preferably 0.99 to 1.
  • ZrO 2 and TiO 2 are components that improve the chemical durability and heat resistance of the glass.
  • ZrO 2 and TiO 2 are not essential components, but their inclusion can increase Tg and strain point (low temperature viscosity characteristic temperature) and improve acid resistance.
  • Tg and strain point low temperature viscosity characteristic temperature
  • ZrO 2 and TiO 2 are too large, the devitrification temperature is remarkably increased, so that the devitrification resistance and the moldability may be lowered.
  • ZrO 2 may precipitate ZrO 2 crystals during the cooling process, which may cause deterioration of glass quality as an inclusion.
  • the content of ZrO 2 and TiO 2 is preferably 5% by mass or less, more preferably 3% by mass or less, still more preferably 2% by mass or less, and 1% by mass.
  • the following is more preferable, less than 0.5% by mass is more preferable, and less than 0.2% by mass is even more preferable.
  • the glass substrate of the present invention does not substantially contain ZrO 2 and TiO 2 .
  • the content of ZrO 2 and TiO 2 is preferably 0 to 5% by mass, more preferably 0 to 3% by mass, still more preferably 0 to 2% by mass, and still more preferably 0 to 1% by mass, 0 to less than 0.5% by mass is more preferable, and 0 to less than 0.2% by mass is even more preferable.
  • the glass substrate of the present invention does not substantially contain ZrO 2 and TiO 2 .
  • ZnO is a component that improves BHF resistance and meltability. However, it is not essential. If the ZnO content is too high, the devitrification temperature and density tend to increase. In addition, the strain point tends to decrease. Therefore, the ZnO content is preferably in the range of 0 to 5% by mass, more preferably 0 to 3% by mass, still more preferably 0 to 2% by mass, and still more preferably 0 to 1% by mass. It is preferable that ZnO is not substantially contained.
  • RO + B 2 O 3 is the total amount of RO and B 2 O 3 in the glass substrate of the embodiment of the present invention will become clear of the indicator. If there is too little RO + B 2 O 3 , the high temperature viscosity of the glass will increase and the clarity will decrease. On the other hand, when it is too much, the strain point is lowered.
  • RO + B 2 O 3 is preferably less than 20% by weight, more preferably less than 5-20% by weight, more preferably less than 10-20% by weight, more preferably less than 14-20% by weight, and even more preferably 15%. The range is up to 19% by mass.
  • RO + B 2 O 3 is preferably less than 30% by mass, more preferably less than 10-30% by mass, even more preferably less than 14-30% by mass, and even more. It is preferably in the range of 14 to less than 25% by mass, and more preferably 15 to 23% by mass. RO + B 2 O 3 is appropriately determined in consideration of both clarity and devitrification temperature.
  • P 2 O 5 is a component that lowers the melting temperature (high temperature viscosity) and improves the meltability.
  • it is not essential. If the P 2 O 5 content is too high, the glass will become non-homogeneous due to volatilization of P 2 O 5 during glass melting, and striae are likely to occur. In addition, the acid resistance is remarkably deteriorated. Moreover, milky white is likely to occur.
  • the P 2 O 5 content is preferably in the range of 0 to 3% by mass, more preferably 0 to 1% by mass, still more preferably 0 to 0.5% by mass, and it is particularly preferable that the P 2 O 5 content is not substantially contained.
  • the first B 2 O 3 + P 2 O 5 is the total amount of B 2 O 3 and P 2 O 5 in the glass substrate of the embodiment of the present invention will become meltability index.
  • B 2 O 3 + P 2 O 5 is too small, meltability tends to be lowered. If the amount is too large, the glass becomes inhomogeneous due to volatilization of B 2 O 3 and P 2 O 5 during glass melting, and striae are likely to occur. Also, the strain point tends to decrease.
  • B 2 O 3 + P 2 O 5 is preferably in the range of 3 to 15% by mass, more preferably 4 to 10% by mass, still more preferably 5 to 9% by mass, and even more preferably 7 to 9% by mass.
  • B 2 O 3 + P 2 O 5 is preferably 3 to 15% by mass, preferably 5 to 15% by mass, and more preferably 6 to 13%. % By mass, more preferably 7 to less than 11% by mass. B 2 O 3 + P 2 O 5 is appropriately determined in consideration of both meltability and the devitrification temperature.
  • CaO / B 2 O 3 serves as an index of meltability and devitrification resistance.
  • CaO / B 2 O 3 is preferably 0.6 or more, more preferably 0.7 to 5, further preferably 0.9 to 3, more preferably 1.0 to 2, and still more preferably 1.1 to 1.5. By setting it as these ranges, devitrification resistance and meltability can be made compatible.
  • a first value of SiO 2 -1 / 2Al 2 O 3 is the difference obtained by subtracting the half of the content of Al 2 O 3 from the content of SiO 2 in the glass substrate of the embodiment of the present invention, 60 wt% The following is preferable because a glass substrate having an etching rate sufficient for slimming glass can be obtained. Note that if the value of SiO 2 -1 / 2Al 2 O 3 is too small to increase the etching rate, the devitrification temperature tends to increase. In addition, since the strain point may not be sufficiently high, the value of SiO 2 -1 / 2Al 2 O 3 is preferably 40% by mass or more.
  • the value of SiO 2 -1 / 2Al 2 O 3 is preferably 40 to 60% by mass, more preferably 45 to 60% by mass, and further preferably 45 to 58% by mass. Preferably, it is 45 to 57% by mass, more preferably 45 to 55% by mass, and even more preferably 49 to 54% by mass.
  • the glass constituting the glass substrate of the first aspect of the present invention preferably has an etching rate of 50 ⁇ m / h or more.
  • the etching rate of the glass constituting the glass substrate is preferably 160 ⁇ m / h or less.
  • the etching rate is preferably 60 to 140 ⁇ m / h, more preferably 65 to 130 ⁇ m / h, and more preferably 70 to 120 ⁇ m / h.
  • the etching rate is defined as measured under the following conditions.
  • Etching rate ( ⁇ m / h) per unit time (1 hour) when a glass substrate is immersed in 40 ° C etching solution of mixed acid with HF ratio of 1 mol / kg and HCl ratio of 5 mol / kg for 1 hour The thickness reduction amount ( ⁇ m) of one surface of the glass substrate.
  • the glass constituting the glass substrate of the first aspect of the present invention can contain a fining agent.
  • the fining agent is not particularly limited as long as it has a small environmental burden and excellent glass fining properties.
  • it is selected from the group of Sn, Fe, Ce, Tb, Mo and W metal oxides. At least one selected from the above.
  • SnO 2 is suitable. If the amount of the clarifying agent is too small, the foam quality is deteriorated, and if the content is too large, devitrification or coloring may be caused.
  • the amount of fining agent added depends on the type of fining agent and the composition of the glass, but may be, for example, 0.05 to 1% by mass, preferably 0.05 to 0.5% by mass, more preferably 0.1 to 0.4% by mass. Is appropriate.
  • Glass constituting the glass substrate of the first aspect of the present invention may also contain Fe 2 O 3.
  • the Fe 2 O 3 content is in the range of 0 to 1% by mass.
  • Fe 2 O 3 has the function of reducing the specific resistance of glass in addition to the function as a fining agent.
  • high-viscosity glass which is highly fusible, by containing Fe 2 O 3 , in addition to the action of reducing the specific resistance of the glass by RO, the specific resistance of the glass can be reduced.
  • Fe 2 O 3 has the effect of improving the clarity in addition to the effect of reducing the specific resistance of the glass and improving the meltability.
  • the Fe 2 O 3 content is in the range of 0 to 1% by mass, preferably 0 to 0.5% by mass, more preferably 0.001 to 0.2% by mass, still more preferably 0.01 to 0.1% by mass, and still more preferably 0.02%. It is in the range of ⁇ 0.07% by mass.
  • Fe 2 O 3 is used as a fining agent, it is preferably used in combination with SnO 2 .
  • the glass constituting the glass substrate of the first aspect of the present invention preferably contains substantially no PbO and F. PbO and F are preferably not included for environmental reasons.
  • the glass constituting the glass substrate of the first aspect of the present invention preferably uses a metal oxide as a fining agent.
  • a metal oxide for example, ammonium salt or chloride
  • the clarity of the metal oxide. Will decline.
  • the NH 4 + content is preferably less than 4 ⁇ 10 ⁇ 4 %, preferably 0 to 2 ⁇ 10 ⁇ 4 %. It is more preferable that it is less than, and it is still more preferable not to contain substantially.
  • the glass of the present invention preferably has a Cl content of less than 0.1%, more preferably 0 to less than 0.1%, even more preferably 0 to less than 0.05%, and more preferably 0 to It is still more preferable that it is less than 0.01%, and it is still more preferable not to contain substantially.
  • the NH 4+ and Cl are components that remain in the glass as an ammonium salt and chloride (especially ammonium chloride) in view of the clarification effect. For reasons, the use of these raw materials is not preferable.
  • the strain point [° C.] of the glass constituting the glass substrate of the first aspect of the present invention is 665 ° C. or higher, preferably 675 ° C. or higher. Further, the strain point [° C.] of the glass substrate of the present invention is preferably 680 ° C. or higher, more preferably 685 ° C. or higher, further preferably 688 ° C. or higher, more preferably 690 ° C. or higher, still more preferably 695 ° C. or higher, Even more preferably, it is 700 ° C or higher.
  • the strain point of the glass substrate can be set to a desired value by adjusting the glass composition with reference to the description of the glass composition of the glass substrate of the present invention.
  • the strain point [° C.] of the glass of the present invention there is no upper limit of the strain point [° C.] of the glass of the present invention, but as a practical guideline, for example, 750 ° C. or less, preferably 745 ° C. or less, more preferably 740 ° C. or less. It is. However, it is not intended to be limited to this upper limit.
  • the glass constituting the glass substrate of the first aspect of the present invention has a Tg [° C.] of preferably 720 ° C. or higher, more preferably 730 ° C. or higher, more preferably 740 ° C. or higher, more preferably 745 ° C. or higher, More preferably, it is 750 ° C. or higher.
  • Tg becomes low, the heat resistance tends to decrease.
  • thermal shrinkage is likely to occur in the heat treatment process during display manufacturing.
  • a practical guideline is, for example, 800 ° C. or less, preferably 795 ° C.
  • Tg of the glass substrate is made within the above range, it is appropriate to increase the Tg, for example, to contain more components such as SiO 2 and Al 2 O 3 in the composition range of the glass substrate of the present invention.
  • the glass constituting the glass substrate of the first aspect of the present invention preferably has a density [g / cm 3 ] of 2.5 g / cm 3 or less, more preferably from the viewpoint of reducing the weight of the glass substrate and the display. 2.45 g / cm 3 or less, more preferably 2.42 g / cm 3 or less, and even more preferably 2.4 g / cm 3 or less.
  • the density is high, it is difficult to reduce the weight of the glass substrate, and it is impossible to reduce the weight of the display.
  • the low-viscosity characteristic temperature of the glass constituting the glass substrate of the first aspect of the present invention varies depending on the conditions during glass melting. Even for glasses having the same composition, the moisture content in the glass differs depending on the melting conditions, and the low viscosity characteristic temperature may change in the range of about 1 to 10 ° C. Therefore, in order to obtain a glass substrate having a desired low temperature viscosity characteristic temperature, it is necessary to adjust the glass composition and the water content in the glass at the time of glass melting.
  • the ⁇ -OH value which is an indicator of the water content in the glass constituting the glass substrate of the first aspect of the present invention, can be adjusted by selecting the raw material. For example, increase the ⁇ -OH value by selecting raw materials with high water content (for example, raw materials for hydroxide) or adjusting the content of raw materials that reduce the water content in the glass such as chlorides. be able to. Further, the ⁇ -OH value can be adjusted by adjusting the ratio of gas combustion heating (oxygen combustion heating) and direct current heating used for glass melting. Furthermore, the ⁇ -OH value can be increased by increasing the amount of water in the furnace atmosphere or by bubbling water vapor into the molten glass during melting.
  • the ⁇ -OH value which is an index of the moisture content of glass
  • the strain point is higher and the thermal shrinkage tends to be smaller in the heat treatment process (during display production).
  • the larger the ⁇ -OH value the lower the melting temperature (high temperature viscosity).
  • the ⁇ -OH value of the glass constituting the glass substrate of the first aspect of the present invention is preferably 0.05 to 0.40 mm ⁇ 1 , preferably 0.10 to 0.35 mm ⁇ .
  • 0.10 to 0.30 mm ⁇ 1 is more preferable, 0.10 to 0.25 mm ⁇ 1 is further preferable, 0.10 to 0.20 mm ⁇ 1 is more preferable, and 0.10 to 0.15 mm ⁇ 1 is still more preferable.
  • the glass constituting the glass substrate of the first aspect of the present invention has a devitrification temperature [° C.] of preferably less than 1300 ° C., more preferably 1250 ° C. or less, further preferably 1230 ° C. or less, more preferably 1220 ° C. or less, Even more preferably, it is 1210 ° C. or lower. If the devitrification temperature is less than 1300 ° C., the glass plate can be easily formed by the float method. If the devitrification temperature is 1250 ° C. or lower, the glass plate can be easily formed by the downdraw method. By applying the downdraw method, the surface quality of the glass substrate can be improved. In addition, the production cost can be reduced.
  • the glass substrate has a devitrification temperature of preferably 1050 ° C. to less than 1300 ° C., more preferably 1110 ° C. to 1250 ° C., and even more preferably. It is 1150 ° C to 1230 ° C, more preferably 1160 ° C to 1220 ° C, and still more preferably 1170 ° C to 1210 ° C.
  • the glass substrate of the first aspect of the present invention has a coefficient of thermal expansion (100-300 ° C.) [ ⁇ 10 ⁇ 7 ° C.], preferably less than 38 ⁇ 10 ⁇ 7 ° C., more preferably less than 37 ⁇ 10 ⁇ 7 ° C., More preferably, it is less than 28 to 36 ⁇ 10 ⁇ 7 ° C, more preferably less than 30 to 35 ⁇ 10 ⁇ 7 ° C, still more preferably 31 to 34.5 ⁇ 10 ⁇ 7 ° C, and still more preferably 32 to 34 ⁇ 10 ⁇ 7. It is in the range of ° C.
  • the thermal expansion coefficient is large, there is a tendency that the thermal shock and the amount of thermal shrinkage increase in the heat treatment process during display display fabrication.
  • the thermal expansion coefficient is small, it is difficult to match the thermal expansion coefficient with peripheral materials such as metals and organic adhesives formed on other glass substrates, and the peripheral agent may peel off. is there.
  • the thermal shock applied to the glass substrate increases.
  • a large glass substrate tends to have a temperature difference (temperature distribution) in the heat treatment process, and the probability of destruction of the glass substrate increases.
  • the thermal expansion coefficient (100-300 ° C) is 40 [ ⁇ 10 -7 °C from the standpoint of matching the thermal expansion coefficient with the peripheral materials such as metals and organic adhesives formed on the glass substrate. ], Preferably less than 28 to 40 ⁇ 10 ⁇ 7 ° C., more preferably less than 30 to 39 ⁇ 10 ⁇ 7 ° C., and less than 32 to 38 ⁇ 10 ⁇ 7 ° C. More preferably, it is more preferably 34 to 38 ⁇ 10 ⁇ 7 ° C.
  • the glass substrate of the first aspect of the present invention has a heat shrinkage ratio [ppm] of preferably 75 ppm or less, and preferably 65 ppm or less. Furthermore, it is preferably 60 ppm or less, more preferably 55 ppm or less, still more preferably 50 ppm or less, still more preferably 48 ppm or less, and even more preferably 45 ppm or less. More specifically, the heat shrinkage rate [ppm] is preferably 0 to 75 ppm, more preferably 0 to 65 ppm, still more preferably 0 to 60 ppm, still more preferably 0 to 55 ppm, still more preferably 0 to 50 ppm, Even more preferably, it is 0 to 45 ppm.
  • the strain point of the glass substrate is preferably set to 680 ° C. or higher.
  • the thermal shrinkage rate (amount) is most preferably 0 ppm.
  • the thermal shrinkage rate is set to 0 ppm, the slow cooling process should be made extremely long, or the thermal shrinkage reduction treatment (offline annealing) should be performed after the slow cooling process.
  • the productivity is lowered and the cost is increased.
  • the heat shrinkage rate is preferably, for example, 3 to 75 ppm, more preferably 5 to 75 ppm, still more preferably 5 to 65 ppm, still more preferably 5 to 60 ppm, and still more preferably 8 It is ⁇ 55 ppm, more preferably 8 to 50 ppm, and even more preferably 15 to 45 ppm.
  • the heat shrinkage rate is expressed by the following equation after heat treatment at a temperature rising / falling rate of 10 ° C./min and holding at 550 ° C. for 2 hours.
  • Thermal shrinkage (ppm) ⁇ Shrinkage amount of glass before and after heat treatment / Glass length before heat treatment ⁇ ⁇ 10 6
  • the heat shrinkage rate of the glass substrate according to the first aspect of the present invention is measured after subjecting the glass substrate, which is the object of measurement of the heat shrinkage rate, to the heat treatment.
  • the heat shrinkage rate of the glass substrate of the first aspect of the present invention is the Tg as shown in the preparation of the sample glass substrate for heat shrinkage measurement of the glass substrate which is the measurement target of the heat shrinkage rate in the examples. It can also be a value obtained by performing the heat treatment after performing a slow cooling operation of holding at 30 ° C. for 30 minutes, cooling to Tg-100 ° C. at 100 ° C./min, and allowing to cool to room temperature.
  • the cooling conditions may be different, and by measuring the thermal shrinkage after the cooling treatment after holding the Tg, the heat under the same conditions A shrinkage value can be obtained.
  • the glass substrate according to the first aspect of the present invention is composed of SiO 2 52 to 78% by mass, Al 2 O 3 3 to 25% by mass, B 2 O 3 3 to 15% by mass, RO (where RO is MgO, CaO, SrO And BaO) 3 to 20% by mass, R 2 O (where R 2 O is the total amount of Li 2 O, Na 2 O and K 2 O) 0.01 to 0.8% by mass, Sb 2 O 3 0 to 0.3 % By mass, and As 2 O 3 is substantially free of glass.
  • the temperature rise / fall rate is 10 ° C / min, and the heat treatment is held at 550 ° C for 2 hours.
  • a glass substrate for p-Si • TFT flat panel display (the glass substrate of the second aspect of the present invention) having a thermal shrinkage of 75 ppm or less.
  • the thermal contraction rate of the glass substrate is 75 ppm or less, preferably 65 ppm or less.
  • the heat shrinkage rate is preferably 60 ppm or less, more preferably 55 ppm or less, further preferably 50 ppm or less, more preferably 48 ppm or less, still more preferably 45 ppm or less, and even more preferably 40 ppm or less.
  • the R 2 O content is in the range of 0.01 to 0.8% by mass, preferably 0.01 to 0.5% by mass, and more preferably 0.01 to 0.3% by mass.
  • Sb 2 O 3 contained in the glass is preferably 0 to 0.3% by mass, and 0 to 0.1% by mass from the viewpoint of reducing the environmental load. It is more preferable. More preferably, the glass substrate according to the second aspect of the present invention is made of glass that does not substantially contain Sb 2 O 3 and substantially does not contain As 2 O 3 .
  • the p-Si ⁇ s of the second embodiment of the present invention comprising a glass having a heat shrinkage of 75 ppm or less, preferably 65 ppm or less, more preferably 60 ppm or less, and containing R 2 O of 0.01 to 0.8% by mass.
  • the glass substrate for TFT flat panel display can reduce the specific resistance of the glass without causing the problem of pixel pitch deviation, and can avoid the problem of melting bath melting in melting by direct current heating. Is possible.
  • the glass composition and physical properties of the glass substrate of the second aspect of the present invention other than those described above can be the same as those of the glass substrate of the first aspect of the present invention.
  • the glass constituting the glass substrate of the first and second aspects of the present invention has a melting temperature of preferably 1680 ° C. or lower, more preferably 1650 ° C. or lower, still more preferably 1640 ° C. or lower, more preferably 1620 ° C. It is as follows. When the melting temperature is high, the load on the melting tank increases. Moreover, since energy is used in large quantities, cost also becomes high. In order to bring the melting temperature within the above range, it is appropriate to contain components such as B 2 O 3 and RO that lower the viscosity within the range of the composition of the glass substrate of the present invention.
  • the glass constituting the glass substrate of the first and second embodiments of the present invention has a liquidus viscosity (viscosity at the devitrification temperature) of 10 4.0 dPa ⁇ s or more, preferably 10 4.5 to 10 6.0 dPa. ⁇ s, more preferably 10 4.5 ⁇ 10 5. 9 dPa ⁇ s, more preferably 10 4.6 ⁇ 10 5.8 dPa ⁇ s , more preferably 10 4.8 ⁇ 10 5.7 dPa ⁇ s , even more preferably 10 4.8 to 10 5.6 dPa ⁇ s, even more preferably in the range of 10 4.9 to 10 5.5 .
  • the glass substrate is molded by the overflow downdraw method. It becomes easy. Thereby, while being able to improve the surface quality of a glass substrate, the production cost of a glass substrate can be reduced.
  • the liquid phase viscosity of the glass can be adjusted to the above range by appropriately adjusting the content of each component. .
  • the glass constituting the glass substrate of the first and second aspects of the present invention has a specific resistance (at 1550 ° C.) [ ⁇ ⁇ cm] of the glass melt, preferably 50 to 300 ⁇ ⁇ cm, more preferably The range is 50 to 250 ⁇ ⁇ cm, more preferably 50 to 200 ⁇ ⁇ cm, and still more preferably 100 to 200 ⁇ ⁇ cm. If the specific resistance becomes too small, the current value necessary for melting becomes excessive, and there may be restrictions on the equipment. On the other hand, when the specific resistance is too large, the electrode tends to be consumed. Moreover, an electric current may flow into the heat-resistant brick which forms a melting tank instead of glass, and a melting tank may be damaged.
  • the specific resistance of the glass substrate can be adjusted to the above range mainly by controlling the contents of RO and R 2 O which are essential components of the glass substrate of the present invention. Furthermore, the specific resistance of the glass substrate can be adjusted to the above range by controlling the Fe 2 O 3 content in addition to the RO and R 2 O content.
  • the glass substrates of the first and second aspects of the present invention have a Young's modulus [GPa] of preferably 70 GPa or more, more preferably 73 GPa or more, still more preferably 74 GPa or more, and even more preferably 75 GPa or more. is there.
  • GPa Young's modulus
  • the Young's modulus (GPa) of the glass substrate tends to fluctuate the Young's modulus (GPa) in the composition range of the glass substrate of the present invention, for example, by adjusting the content of components such as Al 2 O 3 Can be bigger.
  • the glass substrates of the first and second embodiments of the present invention have a specific modulus (Young's modulus / density) [GPa cm 3 g ⁇ 1 ] of preferably 28 GPa cm 3 g ⁇ 1 or more, more preferably 29 GPa cm 3 g ⁇ 1 or more, more preferably 30 GPa cm 3 g ⁇ 1 or more, more preferably 31 GPa cm 3 g ⁇ 1 or more.
  • the specific elastic modulus is small, the glass is easily broken due to the bending of the glass due to its own weight. In particular, the problem of breakage due to bending becomes significant in a large glass substrate having a width direction of 2000 mm or more.
  • the size of the glass substrate of the first and second aspects of the present invention is not particularly limited.
  • the width direction is, for example, 500 to 3500 mm, preferably 1000 to 3500 mm, and more preferably 2000 to 3500 mm.
  • the longitudinal direction is, for example, 500 to 3500 mm, preferably 1000 to 3500 mm, and more preferably 2000 to 3500 mm. As the larger glass substrate is used, the productivity of the liquid crystal display and the organic EL display is improved.
  • the glass substrates of the first and second aspects of the present invention may have a thickness [mm] in the range of 0.1 to 1.1 mm, for example. However, it is not intended to limit to this range.
  • the plate thickness [mm] can be, for example, in the range of 0.1 to 0.7 mm, 0.3 to 0.7 mm, and 0.3 to 0.5 mm. If the glass plate is too thin, the strength of the glass substrate itself is reduced. For example, damage during flat panel display manufacturing is likely to occur. If the plate thickness is too thick, it is not preferable for a display that is required to be thin. In addition, since the weight of the glass substrate becomes heavy, it is difficult to reduce the weight of the flat panel display.
  • the present invention SiO 2 57-75% by mass, Al 2 O 3 8-25% by mass, B 2 O 3 3-15% by mass, RO (where RO is the total amount of MgO, CaO, SrO and BaO) 3-25% by mass, MgO 0-15% by mass, CaO 1-20% by mass, SrO + BaO 0 to less than 3.4% by mass, Sb 2 O 3 0-0.3% by mass, R 2 O (provided that R 2 O is the total amount of Li 2 O, Na 2 O and K 2 O) 0.01 to 0.8% by mass,
  • the mass ratio CaO / RO is 0.65 or more
  • As 2 O 3 includes a glass substrate for p-Si • TFT flat panel display (glass substrate of the third aspect of the present invention) made of glass which does not substantially contain.
  • the mass ratio CaO / RO is 0.65 or more, Sb 2 O 3 is not substantially contained, and As 2 O 3 is substantially free of glass.
  • a glass substrate for p-Si • TFT flat panel display can be mentioned.
  • the content of SiO 2 in the glass substrate of the third aspect of the present invention is in the range of 57 to 75% by mass.
  • SiO 2 is a skeletal component of glass and is therefore an essential component.
  • acid resistance, BHF (buffered hydrofluoric acid) and strain point tend to decrease.
  • the thermal expansion coefficient tends to increase.
  • the SiO 2 content is too small, it is difficult to reduce the density of the glass substrate.
  • the SiO 2 content is too large, the specific resistance of the glass melt increases, the melting temperature becomes extremely high, and melting tends to be difficult.
  • the devitrification resistance also tends to decrease.
  • the content of SiO 2 is in the range of 57 to 75% by mass.
  • the content of SiO 2 is preferably 58 to 72% by mass, more preferably 59 to 70% by mass, still more preferably 59 to 69% by mass, still more preferably 61 to 69% by mass, and still more preferably 61 to 68% by mass.
  • the mass is preferably in the range of 62 to 67 mass%.
  • the SiO 2 content is too high, the glass etching rate tends to be slow.
  • the content of SiO 2 is preferably 57 to 75% by mass, more preferably 57 to 70% by mass, and still more preferably 57%. It is in the range of ⁇ 65 mass%, more preferably in the range of 58 ⁇ 63 mass%.
  • the SiO 2 content is appropriately determined in consideration of both the above-mentioned characteristics such as acid resistance and the etching rate.
  • the content of Al 2 O 3 in the glass substrate of the third aspect of the present invention is in the range of 8 to 25% by mass.
  • Al 2 O 3 is an essential component that suppresses phase separation and increases the strain point. When there is too little content, it will become easy to phase-separate glass. In addition, the strain point tends to decrease. Furthermore, Young's modulus and etching rate tend to decrease. When the Al 2 O 3 content is too large, the specific resistance increases. Moreover, since the devitrification temperature of glass rises and devitrification resistance falls, there exists a tendency for a moldability to deteriorate. From such a viewpoint, the content of Al 2 O 3 is in the range of 8 to 25% by mass.
  • the content of Al 2 O 3 is preferably 10 to 23% by mass, more preferably 12 to 20% by mass, further preferably 14 to 20% by mass, still more preferably 15 to 20% by mass, and still more preferably 15%.
  • the range is up to 19% by mass.
  • the content of Al 2 O 3 is preferably 8 to 23% by mass, more preferably 10 to 23% by mass, and still more preferably 14 to 23% by mass. %, More preferably 17 to 22% by mass.
  • the content of Al 2 O 3 is appropriately determined in consideration of both the phase separation characteristics and the etching rate of the glass.
  • B 2 O 3 in the glass substrate of the third aspect of the present invention is in the range of 3 to 15% by mass, preferably 3 to 13% by mass, more preferably 3 to less than 11% by mass.
  • B 2 O 3 is an essential component that lowers the viscosity of the glass in the high temperature viscosity region and improves meltability and clarity.
  • the content of B 2 O 3 is too small, and decreases meltability and resistance to BHF, also decreases devitrification resistance.
  • the specific gravity increases and it is difficult to reduce the density.
  • the content of B 2 O 3 is too large, the resistivity of the glass melt is increased. Further, the content of B 2 O 3 is too large, the strain point is lowered.
  • the content of B 2 O 3 is in the range of 3 to less than 11% by mass, preferably 3 to less than 10% by mass, more preferably 4 to 9% by mass, and further preferably 5 to 9% by mass. %, And more preferably in the range of 7 to 9% by mass.
  • the B 2 O 3 content is preferably 5 to 15% by mass, more preferably 6 to 13% by mass, and even more preferably less than 7 to 11% by mass. It is.
  • the B 2 O 3 content is appropriately determined in consideration of both the meltability and the devitrification temperature.
  • RO which is the total amount of MgO, CaO, SrO and BaO is in the range of 3 to 25% by mass.
  • RO is an essential component that reduces specific resistance and improves meltability. If the RO content is too small, the specific resistance increases and the meltability deteriorates. When there is too much RO content, a strain point and Young's modulus will fall. Also, the density increases. Moreover, when there is too much RO content, there exists a tendency for a thermal expansion coefficient to increase.
  • RO is in the range of 3 to 25% by mass, preferably 3 to 16% by mass, more preferably 3 to 15% by mass, still more preferably 3 to 14% by mass, and still more preferably 3 to It is in the range of 13% by weight, more preferably 6 to 13% by weight, still more preferably 6 to 12% by weight, and still more preferably 8 to 11% by weight.
  • MgO in the glass substrate of the third aspect of the present invention is a component that lowers the specific resistance and improves the meltability. Moreover, since it is a component which is hard to increase specific gravity in alkaline-earth metal, when the content is increased relatively, it will become easy to aim at density reduction. Although it is not essential, by making it contain, meltability can be improved and generation
  • the MgO content is 0 to 15% by mass, preferably 0 to 10% by mass, more preferably 0 to 5% by mass, still more preferably 0 to 4% by mass, and still more preferably 0 to 3% by mass. %, Still more preferably 0 to less than 2, still more preferably 0 to 1% by mass, and most preferably not substantially contained.
  • CaO in the glass substrate of the third aspect of the present invention is an effective component for reducing the specific resistance and improving the meltability of the glass without rapidly increasing the devitrification temperature of the glass. Moreover, since it is a component which is hard to increase specific gravity in alkaline-earth metal, when the content is increased relatively, it will become easy to aim at density reduction. Although not essential, the inclusion of CaO is preferable because it can reduce the specific resistance of the glass melt and improve the meltability and devitrification by reducing the melting temperature (high temperature viscosity). On the other hand, when the CaO content is too large, the strain point tends to decrease. Moreover, there exists a tendency for a thermal expansion coefficient increase and a density rise.
  • the CaO content is 1 to 20% by mass, preferably 1 to 15% by mass, more preferably 3.6 to 15% by mass, further preferably 4 to 14% by mass, more preferably 5 to 12% by mass, and still more preferably It is in the range of 5 to 11% by mass, still more preferably 5 to 10% by mass, still more preferably more than 6 to 10% by mass, and still more preferably more than 6 to 9% by mass.
  • SrO and BaO in the glass substrate of the third aspect of the present invention are components that lower the specific resistance of the glass melt and lower the melting temperature to improve the meltability and lower the devitrification temperature. Although not essential, when it is contained, devitrification resistance and meltability are improved. However, when there is too much content, a density will rise.
  • SrO + BaO which is the total amount of SrO and BaO, is 0 to less than 3.4% by mass, preferably 0 to 2% by mass, more preferably 0 to 1% by mass, from the viewpoint of reducing the density and reducing the weight. The range is preferably 0 to 0.5% by mass, and still more preferably 0 to less than 0.1% by mass. When it is desired to reduce the density of the glass substrate, it is preferable that SrO and BaO are not substantially contained.
  • the glass substrate of the third aspect of the present invention contains 0.01 to 0.8% by mass of R 2 O (where R 2 O is the total amount of Li 2 O, Na 2 O and K 2 O).
  • R 2 O is the total amount of Li 2 O, Na 2 O and K 2 O.
  • Li 2 O, R 2 O is Na 2 O and K 2 O increases the basicity of glass, to facilitate the oxidation of the fining agent is a component to exhibit clarity. It is also a component that improves meltability and lowers specific resistance. Therefore, when R 2 O is contained, the specific resistance is reduced, the meltability is improved, and the clarity is improved.
  • R 2 O content is too high, degrading the TFT characteristics eluted from the glass substrate. In addition, the thermal expansion coefficient tends to increase.
  • the total amount of R 2 O, Li 2 O + Na 2 O + K 2 O is in the range of 0.01 to 0.8% by mass, preferably 0.01 to 0.6% by mass, more preferably 0.01 to 0.5% by mass. %, More preferably 0.01 to 0.4% by mass, and still more preferably 0.01 to 0.3% by mass.
  • the lower limit value 0.01 mass% in the above range is preferably 0.05 mass%, more preferably 0.1 mass%.
  • the CaO / RO in the glass substrate of the third aspect of the present invention is an index of meltability and devitrification resistance.
  • CaO / RO is 0.65 or more, preferably 0.65 to 1, more preferably 0.7 to 1, more preferably 0.85 to 1, even more preferably 0.9 to 1, and still more preferably 0.95 to 1. By setting it as these ranges, devitrification resistance and meltability can be made compatible. Further, the density can be reduced. Moreover, the effect of raising the low viscosity characteristic temperature is higher when CaO alone is contained than when plural alkaline earth metals are contained.
  • Sb 2 O 3 is preferably 0 to 0.3% by mass, more preferably 0 to 0.1% by mass, from the viewpoint of reducing environmental burden.
  • the glass substrate of the third aspect of the present invention further contains substantially no Sb 2 O 3 and substantially no As 2 O 3 from the viewpoint of further reducing the environmental load. preferable.
  • the glass composition, physical properties, size, etc. of the glass substrate of the third aspect of the present invention other than those described above can be the same as those of the glass substrate of the first aspect of the present invention.
  • the glass substrate of the present invention (common to the glass substrates of the first to third embodiments of the present invention) is suitable for a glass substrate for flat panel display, particularly a flat panel display glass substrate on which p-Si • TFT is formed. It is. Specifically, it is suitable for a glass substrate for liquid crystal display and a glass substrate for organic EL display. Particularly, it is suitable for a glass substrate for p-Si • TFT liquid crystal display. Especially, it is suitable for the glass substrate for displays, such as a portable terminal in which high definition is calculated
  • the method for producing a glass substrate for a flat panel display according to the first aspect of the present invention SiO 2 52-78% by mass, Al 2 O 3 3-25% by mass, B 2 O 3 3-15% by mass, RO (where RO is the total amount of MgO, CaO, SrO and BaO) 3-20% by mass, R 2 O (where R 2 O is the total amount of Li 2 O, Na 2 O and K 2 O) 0.01 to 0.8% by mass, Sb 2 O 3 0-0.3% by mass, Containing substantially no As 2 O 3
  • the mass ratio CaO / RO is 0.65 or more
  • the mass ratio (SiO 2 + Al 2 O 3 ) / B 2 O 3 is in the range of 7 to 30, and the mass ratio (SiO 2 + Al 2 O 3 ) / RO Is a melting step of melting a glass raw material prepared so as to become 5 or more glass using at least direct electric heating to obtain a molten glass
  • the method for producing a glass substrate for a liquid crystal display SiO 2 52-78% by mass, Al 2 O 3 3-25% by mass, B 2 O 3 3-15% by mass, RO (where RO is the total amount of MgO, CaO, SrO and BaO) 3-20% by mass, R 2 O (where R 2 O is the total amount of Li 2 O, Na 2 O and K 2 O) 0.01 to 0.8% by mass Contains substantially no Sb 2 O 3 and substantially no As 2 O 3 ,
  • the mass ratio CaO / RO is 0.65 or more
  • the mass ratio (SiO 2 + Al 2 O 3 ) / B 2 O 3 is in the range of 8.1 to 20
  • the mass ratio (SiO 2 + Al 2 O 3 ) / RO Is a melting step of melting a glass raw material prepared so as to become 5 or more glass using at least direct electric heating to obtain a molten glass,
  • the glass substrate of the second and third aspects of the present invention can also be produced through the same steps as the glass substrate of the first aspect of the present invention.
  • the glass raw material used is SiO 2 52 to 78 mass%, Al 2 O 3 3 to 25 mass%, B 2 O 3 3 to 15 mass%, RO in the production of the glass substrate of the second aspect of the present invention.
  • RO is the total amount of MgO, CaO, SrO and BaO
  • R 2 O where R 2 O is the total amount of Li 2 O, Na 2 O and K 2 O
  • the glass substrate to be manufactured is a glass substrate having a temperature increase / decrease rate of 10 ° C./min and a heat shrinkage rate of 75 ppm or less after being subjected to heat treatment held at 550 ° C. for 2 hours, more preferably 60 ppm or less. is there.
  • the glass raw material used is SiO 2 57 to 75% by mass, Al 2 O 3 8 to 25% by mass, B 2 O 3 3 to 15% by mass, RO ( However, RO is the total amount of MgO, CaO, SrO and BaO) 3 to 25% by mass, MgO 0 to 15% by mass, CaO 1 to 20% by mass, SrO + BaO 0 to less than 3.4% by mass, Sb 2 O 3 0 to 0.3 %
  • R 2 O (where R 2 O is the total amount of Li 2 O, Na 2 O and K 2 O) 0.01 to 0.8% by mass, the mass ratio CaO / RO is 0.65 or more
  • As 2 O 3 is a glass raw material that becomes a glass that does not substantially contain O 3 .
  • the glass raw material used is SiO 2 57 to 75% by mass, Al 2 O 3 8 to 25% by mass, B 2 O 3 3 to less than 11% by mass, RO (where RO is the total amount of MgO, CaO, SrO and BaO) 3 to 25% by mass, MgO 0 to 15% by mass, CaO 1 to 20% by mass, SrO and The total amount of BaO is 0 to less than 3.4% by mass, R 2 O (where R 2 O is the total amount of Li 2 O, Na 2 O and K 2 O) 0.01 to 0.8% by mass, and the mass ratio CaO / RO Is 0.65 or more, and is a glass raw material that becomes a glass that does not substantially contain Sb 2 O 3 and substantially does not contain As 2 O 3 .
  • the glass raw material prepared to have a predetermined glass composition is melted using at least direct current heating.
  • the glass raw material can be appropriately selected from known materials. It is preferable to adjust the composition of the glass raw material, particularly the contents of R 2 O and RO, so that the specific resistance of the glass melt at 1550 ° C. is in the range of 50 to 300 ⁇ ⁇ cm. By setting the R 2 O content to 0.01 to 0.8 mass% and the RO content to 3 to 20 mass%, the specific resistance at 1550 ° C. can be within the above range. Further, it is preferable to adjust the melting step so that the ⁇ -OH value of the glass substrate is 0.1 to 0.4 mm.
  • the specific resistance at 1550 ° C. can be adjusted by adjusting the RO content in the range of 3 to 20% by mass.
  • the specific resistance at 1550 ° C. of the glass melt can also be adjusted by adjusting the RO content in the range of 3 to 25% by mass.
  • the molten glass melted in the melting step is formed into flat glass.
  • the down-draw method particularly the overflow down-draw method is suitable as the method for forming the flat glass.
  • a float method, a redraw method, a rollout method, etc. can be applied.
  • the main surface of the obtained glass substrate is a hot-formed surface compared to the case where other forming methods such as the float method are used.
  • the step of polishing the surface of the glass substrate after molding becomes unnecessary, the manufacturing cost can be reduced and the productivity can be improved.
  • both main surfaces of the glass substrate molded using the downdraw method have a uniform composition, the etching can be performed uniformly when the etching process is performed.
  • the glass substrate having a surface state without microcracks can be obtained by molding using the downdraw method, the strength of the glass substrate itself can be improved.
  • the heat shrinkage rate of the glass substrate can be controlled by appropriately adjusting the conditions during slow cooling.
  • the thermal contraction rate of the glass substrate is preferably 75 ppm or less, more preferably 60 ppm or less, and in order to produce a glass substrate of 75 ppm or less, more preferably 60 ppm or less, for example, a downdraw method is used.
  • it is desirable to perform the molding so that the temperature of the flat glass is cooled in a temperature range from Tg to Tg-100 ° C. in 20 to 120 seconds. If it is less than 20 seconds, the amount of heat shrinkage may not be sufficiently reduced.
  • the glass manufacturing apparatus when it exceeds 120 seconds, productivity is lowered and the glass manufacturing apparatus (slow cooling furnace) is enlarged.
  • productivity is lowered and the glass manufacturing apparatus (slow cooling furnace) is enlarged.
  • a preferable range of the cooling rate is 50 to 300 ° C./min, more preferably 50 to 200 ° C./min, and further preferably 60 to 120 ° C./min.
  • the thermal shrinkage rate can be reduced by separately providing a thermal shrinkage reduction treatment (offline annealing) step after the slow cooling step.
  • a thermal shrinkage reduction treatment offline annealing
  • the heat shrinkage rate be within a predetermined range by performing a heat shrinkage reduction process (online annealing) in which the cooling rate of the flat glass is controlled in the slow cooling step.
  • the glass substrate of the present invention has been described by taking the glass substrate for p-Si ⁇ TFT flat panel display as an example.
  • the glass substrate of the present invention is used for flat panel display, particularly for p-Si flat panel display. Can also be used.
  • the glass substrate of the present invention can also be used as glass for oxide semiconductor thin film transistor flat panel displays. That is, the glass substrate of the present invention can also be used for a flat display produced by forming an oxide semiconductor thin film transistor on the substrate surface.
  • Example 1-25 Sample glasses of Examples 1 to 25 and Comparative Examples 1 and 2 were prepared according to the following procedure so as to have the glass compositions shown in Table 1.
  • devitrification temperature, Tg devitrification temperature
  • average thermal expansion coefficient
  • thermal contraction rate
  • density density
  • strain point melting temperature
  • viscosity 10 2.5 dPa ⁇
  • the blended batch was melted and clarified in a platinum crucible.
  • the crucible was held in an electric furnace set at 1575 ° C. for 4 hours to melt the batch.
  • the temperature of the electric furnace was raised to 1640 ° C. and held for 2 hours to clarify the glass melt.
  • the glass melt was poured out on the iron plate outside the furnace and cooled and solidified to obtain a glass body.
  • This glass body was subsequently subjected to a slow cooling operation.
  • the glass body was held in another electric furnace set at 800 ° C. for 2 hours, then cooled to 740 ° C. for 2 hours and further to 660 ° C. for 2 hours, and then the electric furnace was turned off. , By cooling to room temperature.
  • the glass body that had undergone this slow cooling operation was used as a sample glass.
  • the sample glass is unaffected by slow cooling conditions and / or for measuring properties (devitrification temperature, high temperature viscosity (melting temperature), specific resistance, thermal expansion coefficient, Tg and strain point) that cannot be measured in the form of a substrate.
  • the sample glass had a Cl content of less than 0.01% and an NH 4 + content of less than 2 ⁇ 10 ⁇ 4 %.
  • the sample glass was cut, ground and polished to produce a sample glass substrate of 30 mm ⁇ 40 mm ⁇ 0.7 mm whose upper and lower surfaces are mirror surfaces.
  • the sample glass substrate was used for the measurement of ⁇ -OH, which was not affected by the slow cooling conditions.
  • sample glass is cut, ground and polished to form a rectangular parallelepiped having a thickness of 0.7 to 4 mm, a width of 5 mm, and a length of 20 mm. After holding this for 30 minutes at Tg, 100 ° C / min to Tg-100 ° C The sample glass substrate for heat shrinkage measurement was obtained by cooling at room temperature and allowing to cool to room temperature.
  • strain point The sample glass was cut and ground into a 3 mm square and 55 mm long prismatic shape to obtain a test piece.
  • the test piece was measured using a beam bending measuring apparatus (manufactured by Tokyo Kogyo Co., Ltd.), and the strain point was determined by calculation according to the beam bending method (ASTM C-598).
  • Thermal shrinkage The thermal shrinkage rate was determined by the following equation using the shrinkage amount of the glass substrate after the heat-shrinkage measurement sample glass substrate was subjected to heat treatment at 550 ° C. for 2 hours.
  • Thermal shrinkage (ppm) ⁇ Shrinkage amount of glass before and after heat treatment / length of glass before heat treatment ⁇ ⁇ 10 6
  • the amount of shrinkage was measured by the following method.
  • the sample glass substrate for heat shrinkage was heated from room temperature to 550 ° C. using a differential thermal dilatometer (Thermo Plus2 TMA8310), held for 2 hours, cooled to room temperature, and the amount of shrinkage of the sample glass before and after heat treatment was measured.
  • the temperature raising / lowering speed at this time was set to 10 ° C./min.
  • the sample glass was pulverized and passed through a 2380 ⁇ m sieve to obtain glass particles that remained on the 1000 ⁇ m sieve.
  • the glass particles were immersed in ethanol, subjected to ultrasonic cleaning, and then dried in a thermostatic bath.
  • the dried glass particles were placed on a platinum boat having a width of 12 mm, a length of 200 mm, and a depth of 10 mm so that the glass particles had a substantially constant thickness.
  • This platinum boat is kept in an electric furnace with a temperature gradient of 1080 to 1320 ° C (or 1140 ° C to 1380 ° C) for 5 hours, and then removed from the furnace to reduce devitrification generated inside the glass by 50 times. Observed with an optical microscope. The maximum temperature at which devitrification was observed was defined as the devitrification temperature.
  • Tg Mean thermal expansion coefficient ⁇ and Tg in the range of 100 to 300 ° C.
  • the sample glass was processed into a cylindrical shape having a diameter of 5 mm and a length of 20 mm to obtain a test piece.
  • a differential thermal dilatometer (Thermo Plus2 TMA8310) was used to measure the temperature and the amount of expansion / contraction of the test piece. The temperature rising rate at this time was 5 ° C./min.
  • the average thermal expansion coefficient and Tg in the temperature range of 100 to 300 ° C. were measured.
  • Tg means that the glass body is held in another electric furnace set at 800 ° C. for 2 hours, then cooled to 740 ° C. for 2 hours, and further cooled to 660 ° C. for 2 hours. It is the value measured about the sample glass which turned off the power supply and cooled to room temperature.
  • the density of the glass was measured by the Archimedes method.
  • the high temperature viscosity of the sample glass was measured using a platinum ball pulling type automatic viscosity measuring device. From the measurement results, the temperature at a viscosity of 10 2.5 dPa ⁇ s was calculated to obtain the melting temperature.
  • the glass substrate was immersed in a 40 ° C. etching solution of a mixed acid having a HF ratio of 1 mol / kg and an HCl ratio of 5 mol / kg for 1 hour, and the thickness reduction ( ⁇ m) of one surface of the glass substrate was measured.
  • the etching rate ( ⁇ m / h) was determined as the amount of decrease ( ⁇ m) per unit time (1 hour).
  • Example 26 The glass raw material prepared to have the glass composition shown in Example 7 was melted at 1560 to 1640 ° C. using a continuous melting apparatus equipped with a refractory brick melting tank and a platinum alloy adjustment tank (clarification tank). , Clarified at 1620-1670 ° C, stirred at 1440-1530 ° C, then formed into a 0.7mm-thick sheet by the overflow down draw method, and 100 ° C / min within the temperature range of Tg to Tg-100 ° C Slow cooling was performed at an average speed to obtain a glass substrate for liquid crystal display (for organic EL display). In addition, about each characteristic of the said description, it measured using the obtained glass substrate.
  • the glass substrate obtained as described above had a ⁇ -OH value of 0.20 mm ⁇ 1 . Further, it had a Tg of 720 ° C. or higher and a melting temperature of 1680 ° C. or lower, and high Tg (high low viscosity characteristic temperature) and good meltability were realized. Furthermore, the heat shrinkage rate and the devitrification temperature also satisfied the conditions of the glass substrate of the present invention.
  • the glass substrate obtained as described above has a ⁇ -OH value of 0.09 mm ⁇ 1 larger than that of Example 7, so that Tg is 3 ° C. lower than that of Example 7, but a sufficiently high Tg is obtained. It has been realized.
  • Examples 27, 28 A glass substrate was prepared in the same manner as in Example 26 using the glass raw materials prepared so as to have the glass compositions shown in Examples 11 and 13, and each characteristic was measured.
  • the melting temperature of the glass substrate having the composition of Example 27 obtained as described above was 1610 ° C.
  • the ⁇ -OH value was 0.20 mm ⁇ 1
  • Tg was 754 ° C.
  • the strain point was 697 ° C.
  • the heat shrinkage rate was 51 ppm.
  • the other characteristics were the same as in Example 11.
  • the melting temperature of the glass substrate having the composition of Example 28 was 1585 ° C., the ⁇ -OH value was 0.21 mm ⁇ 1 , the Tg was 761 ° C., the strain point was 710 ° C., and the heat shrinkage rate was 31 ppm.
  • the glass substrate had a Tg of 720 ° C. or higher and a melting temperature of 1680 ° C. or lower, and a high low viscosity characteristic temperature and good meltability were realized.
  • the heat shrinkage rate and the devitrification temperature also satisfied the conditions of the glass substrate of the present invention.
  • the glass substrate obtained as described above has a ⁇ -OH value of about 0.1 mm ⁇ 1 larger than that of Examples 11 and 13, and thus Tg is 2 to 3 ° C. lower than that of Examples 7 and 13. However, a sufficiently high Tg can be realized. Therefore, it can be said that the glass substrate obtained in this example is a glass substrate having excellent characteristics that can be used for a display to which p-Si • TFT is applied.
  • the present invention can be used in the field of manufacturing glass substrates for displays.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本発明は、低粘特性温度が高く、かつ直接通電加熱による熔解において熔解槽熔損の問題の発生を回避しつつ製造が可能であるガラスからなる、p-Si・TFTフラットパネルディスプレイ用ガラス基板とその製造方法を提供する。本発明のガラス基板は、SiO2 52~78質量%、Al2O3 3~25質量%、B2O33~15質量%、RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~20質量%、R2O(但し、R2OはLi2O、Na2O及びK2Oの合量)0.01~0.8質量%、Sb2O3 0~0.3質量%、を含有し、As2O3は実質的に含有せず、質量比CaO/ROは0.65以上であり、質量比(SiO2+Al2O3)/B2O3は7~30の範囲であり、かつ質量比(SiO2+Al2O3)/ROは5以上である。本発明のガラス基板の製造方法は、上記ガラス組成となるように調合したガラス原料を少なくとも直接通電加熱を用いて熔解して熔融ガラスを得る熔解工程と、前記熔融ガラスを平板状ガラスに成形する成形工程と、前記平板状ガラスを徐冷する徐冷工程と、を有する。

Description

フラットパネルディスプレイ用ガラス基板及びその製造方法
 本発明は、フラットパネルディスプレイ用ガラス基板に関し、特にポリシリコン薄膜(以下、p-Siと記載する)フラットパネルディスプレイ用ガラス基板及びその製造方法に関する。さらに詳細には、基板表面にp-Siを形成して製造されるフラットディスプレイに用いられるガラス基板及びその製造方法に関する。さらに詳細には、ポリシリコン薄膜トランジスタ(以下、p-Si・TFTと記載する)フラットパネルディスプレイ用ガラス基板及びその製造方法に関する。さらに詳細には、基板表面にp-Si・TFT形成して製造されるフラットディスプレイに用いられるガラス基板及びその製造方法に関する。
 さらに詳細には、本発明は、p-Si・TFTフラットパネルディスプレイが液晶ディスプレイであるp-Si・TFTフラットパネルディスプレイ用ガラス基板、及びその製造方法に関する。あるいは本発明は、有機ELディスプレイ用ガラス基板、及びその製造方法に関する。あるいは、本発明は、酸化物半導体薄膜トランジスタフラットパネルディスプレイ用ガラス基板に関する。さらに詳細には、基板表面に酸化物半導体薄膜トランジスタを形成して製造されるフラットディスプレイに用いられるガラス基板及びその製造方法に関する。
 携帯機器などの小型機器に搭載されたディスプレイは、消費電力を低減できるなどの理由から、薄膜トランジスター(TFT)の製造にp-Si(ポリシリコン)が適用されている。現在、p-Si・TFTフラットパネルディスプレイの製造には、400~600℃という比較的高温での熱処理が必要とされる。p-Si・TFTフラットパネルディスプレイ製造用のガラス基板としては、耐熱性の高いガラスが用いられている。しかし、従来のa-Si(アモルファスシリコン)・TFTフラットパネルディスプレイに用いられているガラス基板は歪点が十分に高くなく、p-Si・TFTフラットパネルディスプレイの製造時の熱処理により大きな熱収縮が発生し、画素のピッチズレの問題を引き起こすことが知られている。
 小型機器のディスプレイには、近年ますます高精細化が求められている。そのため、画素のピッチズレを極力抑制することが望まれており、画素のピッチズレの原因であるディスプレイ製造時のガラス基板の熱収縮の抑制が課題となっている。
 ガラス基板の熱収縮は、一般に、ガラス基板の歪点やTg(ガラス転移点)に代表される低温粘性域での特性温度(以下、低温粘性特性温度と記す)を高くすることで抑制することができる。歪点の高いガラスとしては、例えば、特許文献1に歪点が680℃以上の無アルカリガラスが開示されている。
特開2010-6649号公報
 ガラス基板の歪点やTg(ガラス転移点)に代表される低温粘性特性温度を改善するためには、一般的に、ガラス中のSiO2やAl2O3の含有量を多くする必要がある(以下、本明細書では、「低温粘性特性温度」として、「歪点」を代表して記載する。)。特許文献1に記載のガラスは、SiO2を58~75質量%、Al2O3を15~19質量%含有する(請求項1参照)。その結果、熔融ガラスの比抵抗が上昇する傾向がある。近年、効率的にガラスを熔解させるために直接通電加熱が用いられていることが多い。直接通電加熱の場合、熔融ガラスの比抵抗が上昇すると、熔融ガラスではなく、熔解槽を構成する耐火物に電流が流れてしまう場合がある。その結果、熔解槽が熔損してしまうという問題が生じることがあることが、本発明者らの検討の結果明らかになった。
 しかしながら、上記特許文献1に記載の発明においては、熔融ガラスの比抵抗について考慮されていない。そのため、特許文献1に記載のガラスを直接通電加熱による熔融を経て製造しようとする場合、上記熔解槽熔損の問題が発生することが強く懸念される。
 さらに、ガラスの低温粘性特性温度をより高くすること、即ち、より高い歪点やTgを有するガラス及びガラス基板の提供が望まれており、上記熔解槽熔損の問題の発生に対する懸念は、ますます強まる傾向がある。
 そこで、本発明は、歪点が高く、ディスプレイ製造時のガラス基板の熱収縮の抑制が可能で、かつ直接通電加熱による熔解において熔解槽熔損の問題の発生を回避しつつ製造が可能であるガラスからなる、フラットパネルディスプレイ用ガラス基板、特にp-Si・TFTフラットパネルディスプレイ用ガラス基板とその製造方法を提供することを目的とする。
 本発明は以下の通りである。
[1]
SiO2 52~78質量%、
Al2O3 3~25質量%、
B2O3 3~15質量%、
RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~20質量%、
R2O(但し、R2OはLi2O、Na2O及びK2Oの合量) 0.01~0.8質量%、
Sb2O3 0~0.3質量%、
を含有し、As2O3は実質的に含有せず、
質量比CaO/ROは0.65以上であり、質量比(SiO2+Al2O3)/B2O3は7~30の範囲であり、かつ
質量比(SiO2+Al2O3)/ROは5以上であるガラスからなる
p-Si・TFTフラットパネルディスプレイ用ガラス基板(本発明の第1の態様のガラス基板である。以下、本発明のガラス基板と記載する場合、本発明の第1の態様のガラス基板を意味する)。
[2]
前記ガラスは、Sb2O3を実質的に含有しない[1]に記載のガラス基板。
[3]
SiO2 52~78質量%、
Al2O3 3~25質量%、
B2O3 3~15質量%、
RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~20質量%、
R2O(但し、R2OはLi2O、Na2O及びK2Oの合量) 0.01~0.8質量%、
を含有し、Sb2O3は実質的に含有せず、かつAs2O3は実質的に含有せず、
質量比CaO/ROは0.65以上であり、質量比(SiO2+Al2O3)/B2O3は8.1~20の範囲であり、かつ
質量比(SiO2+Al2O3)/ROは5以上であるガラスからなる
p-Si・TFTフラットパネルディスプレイ用ガラス基板(本発明の第1の態様のガラス基板の一例である。)。
[4]
前記ガラスはSiO2含有量が58~72質量%であり、Al2O3含有量が10~23質量%であり、B2O3含有量が3~11質量%未満である、[1]~[3]のいずれか1項に記載のガラス基板。
[5]
前記ガラスはSiO2及びAl2O3の合計含有量が75質量%以上であり、
ROの含有量が4~16質量%であり、かつ
B2O3の含有量が3~11質量%未満である[1]~[4]のいずれか1項に記載のガラス基板。
[6]
前記ガラスは歪点が688℃以上である[1]~[5]のいずれか1項に記載のガラス基板。
[7]
前記ガラスはβ-OH値が0.05~0.4mmである、[1]~[6]のいずれか1項に記載のガラス基板。
[8]
前記ガラスはClを実質的に含有しない[1]~[7]のいずれか1項に記載のガラス基板。
[9]
前記ガラスはSrO及びBaOの合量が0~3.4質量%未満である、[1]~[8]のいずれか1項に記載のガラス
基板。
[10]
SiO2 52~78質量%、
Al2O3 3~25質量%、
B2O3 3~15質量%、
RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~20質量%、
R2O(但し、R2OはLi2O、Na2O及びK2Oの合量) 0.01~0.8質量%を含有し、
Sb2O3 0~0.3質量%、
かつAs2O3は実質的に含有しないガラスからなり、
昇降温速度が10℃/min、550℃で2時間保持の熱処理が施された後の下記式で示される熱収縮率が75ppm以下である、
p-Si・TFTフラットパネルディスプレイ用ガラス基板(本発明の第2の態様のガラス基板)。
(式)
熱収縮率(ppm)={熱処理前後でのガラスの収縮量/熱処理前のガラスの長さ}×106
[11]
前記ガラスはSb2O3を実質的に含有しない [10]に記載のガラス基板。
[12]
熱収縮率が60ppm以下である[10]又は[11]に記載のガラス基板。
[13]
前記熱収縮率は、ガラス基板をTgで30分保持した後、Tg-100℃まで100℃/分で冷却し、室温まで放冷する徐冷操作を行った後に前記熱処理を施して得た値である、[10]~[12]のいずれか1項に記載のガラス基板。
[14]
SiO2 57~75質量%、
Al2O3  8~25質量%、
B2O3  3~15質量%、
RO(但し、ROはMgO、CaO、SrO及びBaOの合量)  3~25質量%、
MgO  0~15質量%、
CaO  1~20質量%、
SrO+BaO  0~3.4質量%未満、
Sb2O3 0~0.3質量%、
R2O(但し、R2OはLi2O、Na2O及びK2Oの合量) 0.01~0.8質量%を含有し、
質量比CaO/RO  0.65以上であり、
かつAs2O3は実質的に含有しないガラスからなる
p-Si・TFTフラットパネルディスプレイ用ガラス基板(本発明の第3の態様のガラス基板)。
[15]
SiO2 57~75質量%、
Al2O3  8~25質量%、
B2O3  3~11質量%未満、
RO(但し、ROはMgO、CaO、SrO及びBaOの合量)  3~25質量%、
MgO  0~15質量%、
CaO  1~20質量%、
SrO+BaO  0~3.4質量%未満、
R2O(但し、R2OはLi2O、Na2O及びK2Oの合量) 0.01~0.8質量%を含有し、
質量比CaO/RO  0.65以上であり、
Sb2O3は実質的に含有せず、かつAs2O3は実質的に含有しないガラスからなる
p-Si・TFTフラットパネルディスプレイ用ガラス基板(本発明の第3の態様のガラス基板の一例)。
[16]
前記ガラスは失透温度が1250℃以下であり、かつ前記ガラス基板はダウンドロー法にて成形したものである、[1]~[15]のいずれか1項に記載のガラス基板。
[17]
前記ガラスは質量比K2O/R2Oが0.9以上である[1]~[16]のいずれか1項に記載のガラス基板。
[18]
TFT液晶ディスプレイ用である[1]~[17]のいずれか1項に記載のガラス基板。
[19]
SiO2 52~78質量%、
Al2O3 3~25質量%、
B2O3 3~15質量%、
RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~20質量%、
R2O(但し、R2OはLi2O、Na2O及びK2Oの合量) 0.01~0.8質量%、
Sb2O3 0~0.3質量%、
を含有し、As2O3は実質的に含有せず、
質量比CaO/ROは0.65以上であり、質量比(SiO2+Al2O3)/B2O3は7~30の範囲であり、かつ
質量比(SiO2+Al2O3)/ROは5以上のガラスとなるように調合したガラス原料を少なくとも直接通電加熱を用いて熔解して熔融ガラスを得る熔解工程と、
前記熔融ガラスを平板状ガラスに成形する成形工程と、
前記平板状ガラスを徐冷する徐冷工程と、を有する
p-Si・TFTフラットパネルディスプレイ用ガラス基板の製造方法。
[20]
SiO2 52~78質量%、
Al2O3 3~25質量%、
B2O3 3~15質量%、
RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~20質量%、
R2O(但し、R2OはLi2O、Na2O及びK2Oの合量) 0.01~0.8質量%
を含有し、Sb2O3は実質的に含有せず、かつAs2O3は実質的に含有せず、
質量比CaO/ROは0.65以上であり、質量比(SiO2+Al2O3)/B2O3は8.1~20の範囲であり、かつ
質量比(SiO2+Al2O3)/ROは5以上のガラスとなるように調合したガラス原料を少なくとも直接通電加熱を用いて熔解して熔融ガラスを得る熔解工程と、
前記熔融ガラスを平板状ガラスに成形する成形工程と、
前記平板状ガラスを徐冷する徐冷工程と、を有する
p-Si・TFTフラットパネルディスプレイ用ガラス基板の製造方法。
[21]
前記ガラスは1550℃のガラス融液における比抵抗は50~300Ω・cmである[19]又は[20]に記載の製造方法。
[22]
前記徐冷工程において、平板状ガラスの冷却速度を制御して熱収縮率を低減させる熱収縮低減処理を施す、[19]~[21]のいずれかに記載の製造方法。
[23]
前記徐冷工程において、平板状ガラスの中央部の冷却速度を、TgからTg-100℃の温度範囲内において、50~300℃/分とする熱収縮低減処理を施す、[22]に記載の製造方法。
 [24]
SiO2 52~78質量%、
Al2O3 3~25質量%、
B2O3 3~15質量%、
RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~20質量%、
R2O(但し、R2OはLi2O、Na2O及びK2Oの合量) 0.01~0.8質量%、
Sb2O3 0~0.3質量%、
を含有し、As2O3は実質的に含有せず、
質量比CaO/ROは0.65以上であり、質量比(SiO2+Al2O3)/B2O3は7~30の範囲であり、かつ
質量比(SiO2+Al2O3)/ROは5以上であるガラスからなるフラットパネルディスプレイ用ガラス基板。
[25]
SiO2 52~78質量%、
Al2O3 3~25質量%、
B2O3 3~15質量%、
RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~20質量%、
R2O(但し、R2OはLi2O、Na2O及びK2Oの合量) 0.01~0.8質量%、
を含有し、Sb2O3は実質的に含有せず、かつAs2O3は実質的に含有せず、
質量比CaO/ROは0.65以上であり、質量比(SiO2+Al2O3)/B2O3は8.1~20の範囲であり、かつ
質量比(SiO2+Al2O3)/ROは5以上であるガラスからなるフラットパネルディスプレイ用ガラス基板。
[26]
SiO2 52~78質量%、
Al2O3 3~25質量%、
B2O3 3~15質量%、
RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~20質量%、
R2O(但し、R2OはLi2O、Na2O及びK2Oの合量) 0.01~0.8質量%を含有し、
Sb2O3 0~0.3質量%、
かつAs2O3は実質的に含有しないガラスからなり、
昇降温速度が10℃/min、550℃で2時間保持の熱処理が施された後の下記式で示される熱収縮率が75ppm以下である、フラットパネルディスプレイ用ガラス基板。
(式)
熱収縮率(ppm)={熱処理前後でのガラスの収縮量/熱処理前のガラスの長さ}×106
[27]
SiO2 57~75質量%、
Al2O3  8~25質量%、
B2O3  3~15質量%、
RO(但し、ROはMgO、CaO、SrO及びBaOの合量)  3~25質量%、
MgO  0~15質量%、
CaO  1~20質量%、
SrO+BaO  0~3.4質量%未満、
Sb2O3 0~0.3質量%、
R2O(但し、R2OはLi2O、Na2O及びK2Oの合量) 0.01~0.8質量%を含有し、
質量比CaO/RO  0.65以上であり、
かつAs2O3は実質的に含有しないガラスからなるフラットパネルディスプレイ用ガラス基板。
[28]
SiO2 57~75質量%、
Al2O3  8~25質量%、
B2O3  3~11質量%未満、
RO(但し、ROはMgO、CaO、SrO及びBaOの合量)  3~25質量%、
MgO  0~15質量%、
CaO  1~20質量%、
SrO+BaO  0~3.4質量%未満、
R2O(但し、R2OはLi2O、Na2O及びK2Oの合量) 0.01~0.8質量%を含有し、
質量比CaO/RO  0.65以上であり、
Sb2O3は実質的に含有せず、
かつAs2O3は実質的に含有しないガラスからなるフラットパネルディスプレイ用ガラス基板。
 本発明によれば、ガラス熔解炉の熔損を抑制または回避しつつ、高歪点ガラスを製造することが可能となり、その結果、ディスプレイ製造時のガラス基板の熱収縮の抑制が可能である、高い歪点を有するガラスからなるフラットパネルディスプレイ、特にp-Si・TFTフラットパネルディスプレイ用ガラス基板を高い生産性で提供することができる。
 本願明細書において、ガラス基板を構成するガラスの組成は特に断らない限り、質量%で表示し、ガラスを構成する成分の比は質量比で表示する。また、ガラス基板の組成及び物性は、特に断らない限りガラス基板を構成するガラスの組成及び物性を意味し、単にガラスと表記するときは、ガラス基板を構成するガラスを意味する。但し、ガラス基板の熱収縮率は、実施例に記載の所定の条件で形成したガラス基板について、実施例に記載の条件で測定した値を意味する。また、本願明細書において、低温粘性特性温度とは、ガラスが107.6~1014.5dPa・sの範囲の粘度を示す温度を意味し、低温粘性特性温度には、歪点およびTgが含まれる。従って、低温粘性特性温度を高めるということは、歪点およびTgを高めることも意味し、逆に、歪点及び/又はTgを高めるということは低温粘性特性温度を高めることを意味する。また、熔解性の指標となる熔融温度とは、ガラスが102.5dPa・sの粘度を示す温度であり、熔解性の指標となる温度である。
<p-Si・TFTフラットパネルディスプレイ用ガラス基板>
 本発明のp-Si・TFTフラットパネルディスプレイ用ガラス基板(本発明の第1の態様のガラス基板)は、SiO2 52~78質量%、Al2O3 3~25質量%、B2O33~15質量%、RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~20質量%、R2O(但し、R2OはLi2O、Na2O及びK2Oの合量) 0.01~0.8質量%、Sb2O30~0.3質量%、を含有し、かつAs2O3は実質的に含有せず、質量比CaO/ROは0.65以上であり、質量比(SiO2+Al2O3)/B2O3は7~30の範囲であり、かつ質量比(SiO2+Al2O3)/ROは5以上であるガラスからなるフラットパネルディスプレイ用ガラス基板である。また、本発明のp-Si・TFTフラットパネルディスプレイ用ガラス基板(本発明の第1の態様のガラス基板)の一例として、SiO2 52~78質量%、Al2O33~25質量%、B2O3 3~15質量%、RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~20質量%、R2O(但し、R2OはLi2O、Na2O及びK2Oの合量)0.01~0.8質量%を含有し、Sb2O3は実質的に含有せず、かつAs2O3は実質的に含有しないガラスであって、さらに、質量比CaO/ROは0.65以上であり、質量比(SiO2+Al2O3)/B2O3は8.1~20の範囲であり、かつ質量比(SiO2+Al2O3)/ROは 5以上であるガラスからなるガラス基板を挙げることができる。
 以下に、本発明の第1の態様のガラス基板の各ガラス成分を含有する理由及び含有量や組成比の範囲について説明する。
 本発明の第1の態様のガラス基板におけるSiO2の含有量は52~78質量%の範囲である。
 SiO2は、ガラスの骨格成分であり、従って、必須成分である。含有量が少なくなると、耐酸性が、耐BHF(バッファードフッ酸)および歪点が低下する傾向がある。また、熱膨張係数が増加する傾向がある。また、SiO2含有量が少なすぎると、ガラス基板を低密度化をするのが難しくなる。一方、SiO2含有量が多すぎると、ガラス融液の比抵抗が上昇し、熔融温度が著しく高くなり熔解が困難になる傾向がある。SiO2含有量が多すぎると、耐失透性が低下する傾向もある。このような観点から、SiO2の含有量は、52~78質量%の範囲とする。SiO2の含有量は、好ましくは57~75 質量%、より好ましくは58~72質量%、さらに好ましくは59~70質量%、一層好ましくは59~69質量%、より一層好ましくは61~69質量%、さらに一層好ましくは61~68質量%、尚一層好ましくは62~67質量%の範囲である。他方、SiO2含有量が多すぎると、ガラスのエッチングレートが遅くなる傾向がある。ガラス板をスリミングする場合の速度を示すエッチングレートが十分に速いガラス基板を得るという観点からは、SiO2の含有量は、好ましくは53~75 質量%、より好ましくは55~70質量%、さらに好ましくは55~65質量%、一層好ましくは58~63質量%の範囲である。尚、SiO2含有量は、上記耐酸性等の特性とエッチングレートの両方を考慮して適宜決定される。
 本発明の第1の態様のガラス基板におけるAl2O3の含有量は 3~25質量%の範囲である。
 Al2O3は、分相を抑制し、歪点を高くする必須成分である。含有量が少なすぎると、ガラスが分相しやすくなる。歪点が低下する。さらに、ヤング率及びエッチングレートも低下する傾向がある。Al2O3含有量が多すぎると、比抵抗が上昇する。また、ガラスの失透温度が上昇して、耐失透性が低下するので、成形性が悪化する傾向がある。このような観点から、Al2O3の含有量は3~25質量%の範囲である。Al2O3の含有量は、好ましくは8~25質量%、より好ましくは10~23質量%、さらに好ましくは12~20質量%、一層好ましくは14~20質量%、尚一層好ましくは15~20質量%、さらに尚一層好ましくは15~19質量%の範囲である他方、エッチングレートが十分に速いガラス基板を得るという観点からは、Al2O3の含有量は、好ましくは8~25質量%、より好ましくは10~23質量%、さらに好ましくは14~23質量%、一層好ましくは17~22質量%である。尚、Al2O3の含有量は、上記ガラスが分相特性等とエッチングレートの両方を考慮して適宜決定される。
 本発明の第1の態様のガラス基板におけるB2O3は、3~15質量%の範囲である。
 B2O3は、ガラスの熔融温度に代表される高温粘性域における温度を低下させ、清澄性を改善する必須成分である。B2O3含有量が少なすぎると、熔解性、耐失透性及び耐BHFが低下する傾向にある。また、B2O3含有量が少なすぎると、比重が増加して低密度化が図りがたくなる。他方、B2O3含有量が多すぎると、比抵抗が上昇する。また、B2O3含有量が多すぎると、歪点が低下し、耐熱性が低下する。また、耐酸性及びヤング率が低下する傾向にある。また、ガラス熔解時のB2O3の揮発により、ガラスの不均質が顕著となり、脈理が発生しやすくなる。このような観点から、B2O3含有量は、3~15質量%の範囲であり、好ましくは3~13質量%、より好ましくは3~11質量%未満、より好ましくは3~10質量%未満、さらに好ましくは4~9質量%、一層好ましくは5~9質量%、尚一層好ましくは7~9質量%の範囲である。他方、失透温度を十分に低下させるためには、B2O3含有量は、3~15質量%の範囲であり、好ましくは5~15質量%、よりましくは6~13質量%、さらにましくは7~11質量%未満である。尚、B2O3含有量は、上記熔解性等と失透温度の両方を考慮して適宜決定される。
 本発明の第1の態様のガラス基板におけるMgO、CaO、SrO及びBaOの合量であるROは、3~20質量%の範囲である。
 ROは、比抵抗を低下させ、熔解性を向上させる必須成分である。RO含有量が少なすぎると、比抵抗が上昇し、熔解性が悪化する。RO含有量が多すぎると、歪点及びヤング率が低下する。さらに、密度が上昇する。また、RO含有量が多すぎると、熱膨張係数が増大する傾向もある。このような観点から、ROは、3~20質量%の範囲であり、好ましくは4~16質量%、より好ましくは4~15質量%、さらに好ましくは6~14質量%、一層好ましくは7~14質量%、より一層好ましくは7~12質量%、尚一層好ましくは8~11質量%の範囲である。
 本発明の第1の態様のガラス基板におけるR2O(但し、R2OはLi2O、Na2O及びK2Oの合量) 0.01~0.8質量%を含有する。
 Li2O、Na2O及びK2OであるR2Oは、ガラスの塩基性度を高め、清澄剤の酸化を容易にして、清澄性を発揮させる成分である。また、熔解性向上、比抵抗低下させる成分である。従って、R2Oを含有させると、比抵抗が低下し、清澄性が向上し、熔解性が向上する。しかし、R2O含有量が多すぎると、ガラス基板から溶出してTFT特性を劣化させる。また、熱膨張係数が増大する傾向がある。これらの観点から、R2Oの合量であるLi2O+Na2O+K2Oは0.01~0.8質量%の範囲であり、好ましくは0.01~0.6質量%、より好ましくは0.01~0.5質量%、さらに好ましくは0.01~0.4質量%、一層好ましくは0.01~0.3質量%の範囲である。上記範囲における下限値0.01質量%は、好ましくは0.05質量%、より好ましくは0.1質量%である。
 本発明の第1の態様のガラス基板は、環境負荷を低減するという観点から、Sb2O3は0~0.3質量%であることが好ましく、0~0.1質量%であることがより好ましい。また、本発明の第1の態様のガラス基板は、環境負荷をより低減するという観点から、Sb2O3は実質的に含有せず、かつAs2O3も実質的に含有しないことがさらに好ましい。本明細書において、「実質的に含有せず」とは、ガラス原料にこれら成分の原料となる物質を用いないことを意味し、他の成分のガラス原料に不純物として含まれる成分の混入を排除するものではない。
 本発明の第1の態様のガラス基板においてCaO/ROは  熔解性と耐失透性の指標 の指標となる。CaO/ROは0.65以上であり、好ましくは0.65~1、さらに好ましくは0.7~1、一層好ましくは0.85~1、より一層好ましくは0.9~1、尚一層好ましくは0.95~1の範囲である。これらの範囲とすることで、耐失透性と熔解性を両立することができる。さらに、低密度化を図ることができる。また、原料として、複数のアルカリ土類金属を含有させるよりも、CaOのみを含有させた方が歪点を高める効果が高い。アルカリ土類金属酸化物としてCaOのみを原料として含有させた場合、得られるガラスのCaO/ROの値は、例えば0.98~1程度である。なお、アルカリ土類金属酸化物としてCaOのみを原料として含有させた場合でも、得られるガラスには、他のアルカリ土類金属酸化物が不純物として含まれる場合がある。
 本発明の第1の態様のガラス基板においてB2O3に対するSiO2とAl2O3の合量である(SiO2+Al2O3)の質量比(SiO2+Al2O3)/B2O3は歪点と耐失透性の指標となる。(SiO2+Al2O3)/B2O3は好ましくは7~30であり、より好ましくは8~25であり、さらに好ましくは8.1~20の範囲である。(SiO2+Al2O3)/B2O3が小さいほど歪点は低くなり、7未満では歪点は不十分であり、8以上、好ましくは8.1以上になると歪点を十分に高くすることができる。一方、(SiO2+Al2O3)/B2O3が大きいほど耐失透性が徐々に低下し、30を超えると極端に低下し、好ましくは25以下、より好ましくは23以下、さらに好ましくは20以下であれば十分な耐失透性が得られる。そのため、 (SiO2+Al2O3)/B2O3は、好ましくは9.5~16の範囲であり、より好ましくは9.8~14であり、さらに好ましくは10~12の範囲である。他方、失透温度を十分に低下させることに加えて、エッチングレートが十分に速いガラス基板を得ることも考慮すると、(SiO2+Al2O3)/B2O3は好ましくは7~30であり、より好ましくは8~25であり、さらに好ましくは8.2~20であり、一層好ましくは8.4~15であり、尚一層好ましくは8.5~12である。
 本発明の第1の態様のガラス基板においてROに対するSiO2とAl2O3の合量である(SiO2+Al2O3)の質量比(SiO2+Al2O3)/ROは比抵抗の指標となる。(SiO2+Al2O3)/ROは5以上である。この範囲にあることで、低温粘性特性温度(Tgや歪点)の向上と比抵抗の低減を両立することができる。また、低温粘性特性温度の向上と熔解性も両立することができる。(SiO2+Al2O3)/ROが5未満では、低温粘性特性温度(Tgや歪点)を十分に高くすることができない。である。(SiO2+Al2O3)/ROは、好ましくは5~15の範囲であり、より好ましくは6~13より好ましくは7.5~12、さらに好ましくは8.1~10の範囲である。なお、(SiO2+Al2O3)/ROを15以下にすることで、比抵抗が上昇しすぎることを抑制できる。他方、低温粘性特性温度を十分に高くすること等に加えて、エッチングレートが十分に速いガラス基板を得ることも考慮すると、(SiO2+Al2O3)/ROは、好ましくは6~15であり、より好ましくは7~15であり、さらに好ましくは7.5~9.5の範囲である。
 本発明のガラス基板(本発明の第1の態様のガラス基板)は、上記に加えて、以下のガラス組成および/または物性を有することが好ましい。
 本発明の第1の態様のガラス基板においてSiO2とAl2O3の合量であるSiO2+Al2O3は少なすぎると、歪点が低下する傾向があり、多すぎると、比抵抗が上昇し、耐失透性が悪化する傾向がある。そのためSiO2+Al2O3は、75質量%以上であることが好ましく、より好ましくは75質量%~87質量%であり、さらに好ましくは75質量%~85質量%であり、一層好ましくは78質量%~83質量%である。歪点をさらに高くするという観点からは、より好ましくは78質量%以上、さらに好ましくは79~87質量%、一層好ましくは80~85質量%である。
 本発明の第1の態様のガラス基板においてMgOは比抵抗を低下させ、熔解性を向上させる成分である。また、アルカリ土類金属の中では比重を増加させにくい成分であるので、その含有量を相対的に増加させると、低密度化を図りやすくなる。必須ではないが、含有させることで、熔解性を向上し、かつ切粉の発生を抑制できる。但し、MgOの含有量が多すぎると、ガラスの失透温度が急激に上昇するため、成形性が悪化(耐失透性が低下)する。また、MgOの含有量が多すぎると、耐BHF低下、耐酸性低下の傾向がある。特に、失透温度を低下させたい場合には、MgOは実質的に含有させないことが好ましい。このような観点から、MgO含有量は、好ましくは0~15質量%、より好ましくは0~10質量%、さらに好ましくは0~5質量%、一層好ましくは0~4質量%、より一層好ましくは0~3質量%、さらに一層好ましくは0~2未満、尚一層好ましくは0~1質量%であり、最も好ましくは実質的に含有しないことである。
 本発明の第1の態様のガラス基板においてCaOは、比抵抗を低下させる成分であり、ガラスの失透温度を急激に上げることなくガラスの熔解性を向上させるのにも有効な成分である。また、アルカリ土類金属の中では比重を増加させにくい成分であるので、その含有量を相対的に増加させると、低密度化を図りやすくなる。必須ではないが、含有させることで、ガラス融液の比抵抗低下および熔融温度(高温粘性)低下による熔解性向上及び失透性改善をできるので、CaOは含有させることが好ましい。CaO含有量が多すぎると、歪点が低下する傾向にある。また、熱膨張係数が増加する傾向があ、さらに密度が上昇する傾向がある。CaO含有量は、好ましくは0~20質量%、より好ましくは1~20質量%、さらに好ましくは2~15質量%、一層好ましくは3.6~15質量%、より一層好ましくは4~14質量%、さらに一層好ましくは5~12質量%、尚一層好ましくは5~11質量%、さらに尚一層好ましくは5~10質量%、さらに尚一層好ましくは6超~10質量%、最も好ましくは6超~9質量%の範囲である。
 本発明の第1の態様のガラス基板においてSrOは、比抵抗を低下させ、熔解性を向上させる成分である。SrOは、必須ではないが、含有させると、耐失透性及び熔解性が向上する。SrO含有量が多すぎると、密度が上昇してしまう。SrO含有量は、好ましくは0~15質量%、より好ましくは0~10質量%、さらに好ましくは0~3質量%、一層好ましくは0~2質量%、さらに一層好ましくは0~1質量%、尚一層好ましくは0~0.5質量%の範囲である。ガラスの密度を低下させたい場合には、SrOは実質的に含有させないことが好ましい。
 本発明の第1の態様のガラス基板においてBaOは、比抵抗を低下させ、熔解性を向上させる成分である。BaOは、必須ではないが、含有させると、耐失透性及び熔解性が向上する。また、熱膨張係数及び密度も増大してしまう。BaO含有量は、好ましくは0~5質量%、より好ましくは0~1.5 質量%未満、さらに好ましくは0~1質量%、一層好ましくは0~0.5質量%未満、尚一層好ましくは0~0.1質量%未満である。BaOは、環境負荷の問題から、実質的に含有させないことが好ましい。
 本発明の第1の態様のガラス基板においてSrOとBaOは、比抵抗を低下させ、熔解性を向上させる成分である。必須ではないが、含有させると、耐失透性及び熔解性は向上する。しかし、含有量が多すぎると、密度が上昇してしまう。SrOとBaOの合量であるSrO+BaOは、密度を低減し、軽量化するという観点から、好ましくは0~5質量%、より好ましくは0~3.4質量%未満、さらに好ましくは0~3質量%、一層好ましくは0~2質量%、さらに一層好ましくは0~1質量%、尚一層好ましくは0~0.5質量%、さらに尚一層好ましくは0~0.1質量%未満の範囲である。ガラス基板の密度を低下させたい場合には、SrOとBaOは、実質的に含有させないことが好ましい。
 本発明の第1の態様のガラス基板においてLi2O及びNa2Oは、比抵抗低下させ、熔解性を向上させる成分であるが、ガラス基板から溶出してTFT特性を劣化させたり、ガラスの熱膨張係数を大きくして熱処理時に基板を破損したりするおそれのある成分であるため、Li2O及びNa2Oの合量は、好ましくは0~0.2質量%、より好ましくは0~0.1質量%、さらに好ましくは0~0.05質量%、一層好ましくは実質的に含有しない
 本発明の第1の態様のガラス基板においてK2Oは、ガラスの塩基性度を高め、清澄剤の酸化を容易にして、清澄性を発揮させる成分である。また、比抵抗低下させ、熔解性を向上させる成分である。必須ではないが、含有させると、比抵抗は低下し、熔解性は向上する。さらに、清澄性も向上する。。
 K2O含有量が多すぎると、ガラス基板から溶出してTFT特性を劣化させる傾向がある。また、熱膨張係数も増大する傾向がある。K2O含有量は、好ましくは0.01~0.8質量%、より好ましくは0.05~0.7質量%、さらに好ましくは0.05~0.5質量%、一層好ましくは0.1~0.5質量%、より一層好ましくは0.1~0.4質量%、さらに一層好ましくは0.1~0.3質量%の範囲である。
 K2Oは、Li2OやNa2Oと比較して、分子量が大きいため、ガラス基板から溶出しにくい。そのため、R2Oを含有させる場合には、K2Oを含有させることが好ましい。つまり、K2Oは、Li2Oよりも高い比率で含有される(K2O>Li2Oを満たす)ことが好ましい。K2Oは、Na2Oよりも高い比率で含有される(K2O>Na2Oを満たす)ことが好ましい。Li2O及びNa2Oの割合が大きいと、ガラス基板から溶出してTFT特性を劣化させる傾向が強くなる。質量比K2O/R2Oは、好ましくは0.5~1であり、より好ましくは0.6~1であり、さらに好ましくは0.7~1、一層好ましくは0.75~1、さらに一層好ましくは0.8~1、より一層好ましくは0.9~1、より一層好ましくは0.95~1、より一層好ましくは0.99~1の範囲である。
 本発明の第1の態様のガラス基板においてZrO2およびTiO2は、ガラスの化学的耐久性および耐熱性を向上させる成分である。ZrO2およびTiO2は、必須成分ではないが、含有させることでTgや歪点(低温粘性特性温度)の上昇および耐酸性向上を実現できる。しかし、ZrO2量およびTiO2量が多くなりすぎると、失透温度が著しく上昇するため、耐失透性および成形性が低下する場合がある。特に、ZrO2は、冷却過程でZrO2の結晶を析出する場合があり、これがインクルージョンとしてガラスの品質悪化を引き起こすことがある。以上の理由から、本発明のガラス基板では、ZrO2およびTiO2の含有率は、それぞれ、5質量%以下が好ましく、3質量%以下がより好ましく、2質量%以下がさらに好ましく、1質量%以下がさらに好ましく、0.5質量%未満がさらに好ましく、0.2質量%未満がさらに一層好ましい。さらに好ましくは、本発明のガラス基板が、ZrO2およびTiO2を実質的に含有しないことである。言い換えると、ZrO2およびTiO2の含有率は、それぞれ、0~5質量%が好ましく、0~3質量%がより好ましく、0~2質量%がさらに好ましく、0~1質量%がさらに好ましく、0~0.5質量%未満がさらに好ましく、0~0.2質量%未満がさらに一層好ましい。さらに好ましくは、本発明のガラス基板が、ZrO2およびTiO2を実質的に含有しないことである。
 本発明の第1の態様のガラス基板においてZnOは、耐BHF性や熔解性を向上させる成分である。但し、必須ではない。
 ZnO含有量が多くなりすぎると、失透温度及び密度が上昇する傾向がある。また、歪点が低下する傾向がある。そのため、ZnO含有量は、好ましくは0~5質量%、より好ましくは0~3質量%、さらに好ましくは0~2質量%、一層好ましくは0~1質量%の範囲である。ZnOは実質的に含有しないことが好ましい。
 本発明の第1の態様のガラス基板においてROとB2O3の合量であるRO+B2O3は、清澄性の指標となる。RO+B2O3が少なすぎると、ガラスの高温粘性が上昇し、清澄性が低下する。一方、多すぎると、歪点が低下する。RO+B2O3は、好ましくは20質量%未満、より好ましくは5~20質量%未満、さらに好ましくは10~20質量%未満、一層好ましくは14~20質量%未満、より一層好ましくは15~19質量%の範囲である。他方、失透温度を十分に低下させるためには、RO+B2O3は、好ましくは30質量%未満、より好ましくは10~30質量%未満、さらに好ましくは14~30質量%未満、一層好ましくは14~25質量%未満、より一層好ましくは15~23質量%の範囲である。尚、RO+B2O3は、清澄性等と失透温度の両方を考慮して適宜決定される。
 本発明の第1の態様のガラス基板においてP2O5は、熔融温度(高温粘性)を低下させ、熔解性を向上させる成分である。但し、必須ではない。
 P2O5含有量が多すぎると、ガラス熔解時のP2O5の揮発により、ガラスの不均質が顕著となり、脈理が発生しやすくなる。また、耐酸性が著しく悪化する。また、乳白が生じやすくなる。P2O5含有量は、好ましくは0~3質量%、より好ましくは0~1質量%、さらに好ましくは0~0.5質量%の範囲であり、実質的に含有しないことが特に好ましい。
 本発明の第1の態様のガラス基板においてB2O3とP2O5の合量であるB2O3+P2O5は、熔解性の指標となる。B2O3+P2O5が少なすぎると、熔解性が低下する傾向がある。多すぎると、ガラス熔解時のB2O3とP2O5の揮発により、ガラスの不均質が顕著となり、脈理が発生しやすくなる。また、歪点が低下する傾向もある。B2O3+P2O5は、好ましくは3~15質量%、より好ましくは4~10質量%、さらに好ましくは5~9質量%、一層好ましくは7~9質量%の範囲である。他方、失透温度を十分に低下させるためには、B2O3+P2O5は、好ましくは3~15質量%であり、好ましくは5~15質量%、よりましくは6~13質量%、さらにましくは7~11質量%未満である。尚、B2O3+P2O5は、熔解性等と失透温度の両方を考慮して適宜決定される。
 本発明の第1の態様のガラス基板においてCaO/B2O3は熔解性と耐失透性の指標となる。CaO/B2O3は、好ましくは0.6以上であり、より好ましくは0.7~5、さらに好ましくは0.9~3、一層好ましくは1.0~2、より一層好ましくは1.1~1.5の範囲である。これらの範囲とするで、耐失透性と熔解性を両立することができる。

 本発明の第1の態様のガラス基板においてSiO2の含有量からAl2O3の含有量の1/2を引いた差であるSiO2-1/2Al2O3の値を、60質量%以下とすることにより、ガラスのスリミングを行うために十分なエッチングレートを有するガラス基板を得ることができるので好ましい。なお、エッチングレートを高くするために、SiO2-1/2Al2O3の値を小さくしすぎると、失透温度が上昇してしまう傾向がある。また、歪点を十分に高くできない場合もあるため、SiO2-1/2Al2O3の値が40質量%以上であることが好ましい。以上のことから、SiO2-1/2Al2O3の値が40~60質量%であることが好ましく、45~60質量%であることがより好ましく、45~58質量%であることがさらに好ましく、45~57質量%であることが一層好ましく、45~55質量%であることがより一層好ましく、49~54質量%であることがさらに一層好ましい。   
 また、生産性よくエッチング(スリミング)を行うために、本発明の第1の態様のガラス基板を構成するガラスはエッチングレートが50μm/h以上であることが好ましい。一方、過度にエッチングレートが高いと、パネル作製工程での薬液との反応で不都合が生じる虞があるため、ガラス基板を構成するガラスのエッチングレートは160μm/h以下であることが好ましい。エッチングレートは好ましくは60~140μm/h 、より好ましくは65~130μm/h 、より好ましくは70~120μm/hである。本発明においては、上記エッチングレートは以下の条件で測定したものと定義する。
 エッチングレート(μm/h)は、ガラス基板をHFの割合が1mol/kg、HClの割合が5mol/kgの混酸の40℃のエッチング液に1時間浸漬した場合の、単位時間(1時間)当たりのガラス基板の一方の表面の厚み減少量(μm)として表す。 
 本発明の第1の態様のガラス基板を構成するガラスは清澄剤を含むことができる。清澄剤としては、環境への負荷が小さく、ガラスの清澄性に優れたものであれば特に制限されないが、例えば、、Sn、Fe、Ce、Tb、MoおよびWの金属酸化物の群から選ばれる少なくとも1種を挙げることができる。清澄剤としては、SnO2が好適である。清澄剤の添加量は、少なすぎると、泡品質が悪化し、含有量が多くなりすぎると、失透や着色などの原因となる場合がある。清澄剤の添加量は、清澄剤の種類やガラスの組成にもよるが、例えば、0.05~1質量%、好ましくは0.05~0.5質量%、より好ましくは0.1~0.4質量%の範囲とすることが適当である。
 本発明の第1の態様のガラス基板を構成するガラスはFe2O3を含有することもできる。Fe2O3含有量は、0~1質量%の範囲である。Fe2O3は、清澄剤としての働きを有する以外に、ガラスの比抵抗を低下させる作用もある。高温粘性が高く、難融なガラスにおいては、Fe2O 3を含有させることで、ROによるガラスの比抵抗を低下させる作用に加えて、ガラスの比抵抗を低下させることができる。さらに、Fe2O3はガラスの比抵抗を低下させ、熔解性を向上させる効果に加えて、清澄性を向上させる効果がある。しかし、Fe2O3含有量が多くなりすぎると、ガラスが着色し、透過率が低下し、低粘特性温度も低下する。そこで、Fe2O3含有量は、0~1質量%の範囲であり、好ましくは0~0.5質量%、より好ましくは0.001~0.2質量%、さらに好ましくは0.01~0.1質量%、一層好ましくは0.02~0.07質量%の範囲である。Fe2O3を清澄剤として使用する場合はSnO2との併用が好ましい。
 本発明の第1の態様のガラス基板を構成するガラスはPbO及びFは実質的に含有しないことが好ましいPbO及びFは環境上の理由から含まないことが好ましい。
 本発明の第1の態様のガラス基板を構成するガラスは、清澄剤として金属酸化物を使用することが好ましい。前記金属酸化物の清澄性を高めるためには、ガラスを酸化性にすることが好ましくが、還元性の原料(例えば、アンモニウム塩、塩化物)を使用することで、前記金属酸化物の清澄性は低下する。前記還元性の原料を用いるとガラス中にNH4 +やClが残存するという観点からNH4 +の含有量が4×10-4%未満であることが好ましく、0~2×10-4%未満であることがよりに好ましく、実質的に含有しないことがさらに好ましい。また、本発明のガラスは、Clの含有量が0.1%未満であることが好ましく、0~0.1%未満であることがよりに好ましく、0~0.05%未満であることがさらにに好ましく、0~0.01%未満であることが一層に好ましく、実質的に含有しないことが尚一層好ましい。なお、上記NH4+及びClは清澄効果を期待して、アンモニウム塩および塩化物(特に塩化アンモニウム)としてガラス原料に用いられることでガラス中に残存する成分であるが、環境上および設備腐食の理由からも、これらの原料の使用は好ましくない。
 ガラス基板は、歪点やTgで代表される低温粘性特性温度が低いと、熱処理工程(ディスプレイ製造時)において熱収縮が大きくなる。本発明の第1の態様のガラス基板を構成するガラスの歪点[℃]は、665℃以上であり、675℃以上が好ましい。また、本発明のガラス基板の歪点[℃]は、好ましくは680℃以上、より好ましくは685℃以上、さらに好ましくは688℃以上、一層好ましくは690℃以上、より一層好ましくは695℃以上、尚一層好ましくは700℃以上である。ガラス基板の歪点は、上記本発明のガラス基板のガラスの組成の説明を参照して、ガラス組成を調整することで、所望の値にすることができる。低温粘性特性という観点からは、本発明のガラスの歪点[℃]の上限はないが、実用上の目安としては例えば、750℃以下であり、好ましくは745℃以下、より好ましくは740℃以下である。但し、この上限に限定される意図ではない。
 また、本発明の第1の態様のガラス基板を構成するガラスはTg[℃]が、好ましくは720℃以上、より好ましくは730℃以上、さらに好ましくは740℃以上、さらに好ましくは745℃以上、一層好ましくは750℃以上である。Tgが低くなると、耐熱性が低下する傾向がある。また、ディスプレイ製造時の熱処理工程において熱収縮が生じやすくなる傾向もある。耐熱性および熱収縮の観点からは、本発明のガラスのTg[℃]の上限はないが、実用上の目安としては例えば、800℃以下であり、好ましくは795℃以下、より好ましくは790℃以下である。但し、この上限に限定される意図ではない。ガラス基板のTgを上記範囲にするには、本発明のガラス基板の組成の範囲において、Tgを高める、例えば、SiO2及びAl2O3等の成分を多めにすることが適当である。
 本発明の第1の態様のガラス基板を構成するガラスは密度[g/cm3]が、ガラス基板の軽量化及びディスプレイの軽量化という観点から、好ましくは2.5 g/cm3以下、より好ましくは2.45 g/cm3以下、さらに好ましくは2.42g/cm3以下、一層好ましくは2.4 g/cm3以下である。密度が高くなると、ガラス基板の軽量化が困難となり、ディスプレイの軽量化も図れなくなる。
 さらに、本発明の第1の態様のガラス基板を構成するガラスの低粘特性温度は、ガラス熔解時における条件によっても変化する。同一組成のガラスであっても、熔解条件の違いにより、ガラス中の含水量が異なり、約1~10℃の範囲で低粘特性温度が変化することがある。従って、所望の低温粘性特性温度を有するガラス基板を得るには、ガラス組成を調整するとともに、ガラス熔解時におけるガラス中の含水量も調整する必要がある。
 本発明の第1の態様のガラス基板を構成するガラス中の含水量の指標であるβ-OH値は、原料の選択により調整することができる。例えば、含水量の高い原料( 例えば水酸化物原料) を選択したり、塩化物等のガラス中の水分量を減少させる原料の含有量を調整したりすることで、β-OH値を増させることができる。また、ガラス熔解に用いるガス燃焼加熱(酸素燃焼加熱)と直接通電加熱の比率を調整することでβ-OH値を調整することができる。さらに、炉内雰囲気中の水分量を増加させたり、熔解時に熔融ガラスに対して水蒸気をバブリングしたりすることで、β-OH値を増加させることができる。
 なおガラスのβ-OH値[mm-1]はガラスの赤外線吸収スペクトルにおいて次式によって求められる。
β-OH値=(1/X)log 10(T1/T2)
   X : ガラス肉厚(mm)
   T1 : 参照波長2600nm における透過率(%)
   T2 : 水酸基吸収波長2800nm付近における最小透過率(%)
 ガラスの水分量の指標であるβ-OH値は、値が小さいほど歪点が高く、熱処理工程(ディスプレイ製造時)において熱収縮が小さくなる傾向にある。他方、β-OH値が大きいほど、熔融温度(高温粘性)を低下させる傾向にある。
 低収縮率と熔解性を両立するために、本発明の第1の態様のガラス基板を構成するガラスのβ-OH値は、0.05~0.40mm-1とすることが好ましく、0.10~0.35mm-1がより好ましく、0.10~0.30mm-1がさらに好ましく、0.10~0.25mm-1がさらに好ましく、0.10~0.20mm-1が一層好ましく、0.10~0.15mm-1がより一層好ましい。
 本発明の第1の態様のガラス基板を構成するガラスは失透温度[℃]が、好ましくは1300℃未満、より好ましくは1250℃以下、さらに好ましくは1230℃以下、一層好ましくは1220℃以下、より一層好ましくは1210℃以下である。失透温度が1300℃未満であれば、フロート法でガラス板の成形がしやすくなる。失透温度が1250℃以下であれば、ダウンドロー法でガラス板の成形がしやすくなる。ダウンドロー法を適用することで、ガラス基板の表面品質を向上できる。また、生産コストも低減することができる。失透温度が高すぎると、失透が生じやすく、耐失透性が低下する。また、ダウンドロー法に適用できなくなる。他方、熱収縮率や密度のなどのフラットパネルディスプレイ用基板の特性を考慮すると、ガラス基板は失透温度が、好ましくは1050℃~1300℃未満、より好ましくは1110℃~1250℃、さらに好ましくは1150℃~1230℃、一層好ましくは1160℃~1220℃、より一層好ましくは1170℃~1210℃である。
 本発明の第1の態様のガラス基板は熱膨張係数(100-300℃)[×10-7℃]が、好ましくは38×10-7℃未満、より好ましくは37×10-7℃未満、さらに好ましくは28~36×10-7℃未満、一層好ましくは30~35×10-7℃未満、より一層好ましくは31~34.5×10-7℃、さらに一層好ましくは32~34×10-7℃の範囲である。熱膨張係数が大きいと、ディスプレイ誠造時の熱処理工程において、熱衝撃や熱収縮量が増大する傾向がある。他方、熱膨張係数が小さいと、他のガラス基板上に形成される金属、有機系接着剤などの周辺材料と熱膨張係数との整合がとりにくくなり、周辺部剤が剥離してしまう場合がある。また、P-Si・TFT製造工程では、急加熱と急冷が繰り返され、ガラス基板にかかる熱衝撃は大きくなる。さらに、大型のガラス基板は、熱処理工程において、温度差(温度分布)がつきやすく、ガラス基板の破壊確率が高くなる。熱膨張係数を上記範囲とすることで、熱膨張差から生じる熱応力を低減することができ、結果として、熱処理工程において、ガラス基板の破壊確率が低下する。つまり、熱膨張係数を上記範囲とすることは、幅方向2000~3500mmであり、縦方向が2000~3500mmであるガラス基板について、ガラス基板の破壊確率が低下させるという観点から、特に有効である。なお、ガラス基板上に形成される金属、有機系接着剤などの周辺材料と熱膨張係数との整合が重視させる観点からは、熱膨張係数(100-300℃)が40[×10-7℃]未満であることが好ましく、28~40×10-7℃未満であることがより好ましく、30~39×10-7℃未満であることがさらに好ましく、32~38×10-7℃未満であることが一層好ましく、34~38×10-7℃未満であることがより一層好ましい。
 本発明の第1の態様のガラス基板は熱収縮率 [ppm]が、好ましくは75ppm以下であり、65ppm以下であることが好ましい。さらに、好ましくは60ppm以下、より好ましくは55ppm以下、さらに好ましくは50ppm以下、一層好ましくは48ppm以下、より一層好ましくは45ppm以下である。より詳細には、熱収縮率[ppm]は0~75ppmであることが好ましく、より好ましくは0~65ppm、さらに好ましくは0~60ppm、一層好ましくは0~55ppm、より一層好ましくは0~50ppm、さらに一層好ましくは0~45ppmである。熱収縮率(量)が大きくなると、画素の大きなピッチズレの問題を引き起こし、高精細なディスプレイを実現できなくなる。熱収縮率(量)を所定範囲に制御するためには、ガラス基板の歪点を680℃以上にすることが好ましい。熱収縮率(量)は最も好ましくは0ppmであるが、熱収縮率を0ppmにしようとすると、徐冷工程を極めて長くすることや、徐冷工程後に熱収縮低減処理(オフラインアニール)を施すことが求められるが、この場合、生産性が低下し、コストが高騰してしまう。生産性およびコストを鑑みると、熱収縮率は、例えば、3~75ppmであることが好ましく、より好ましくは5~75ppm、さらに好ましくは5~65ppm、一層好ましくは5~60ppm、より一層好ましくは8~55ppm、さらに一層好ましくは8~50ppm、さらに一層好ましくは15~45ppmである。
 尚、熱収縮率は、昇降温速度が10℃/min、550℃で2時間保持の熱処理が施された後の下記式で示される。
熱収縮率(ppm)={熱処理前後のガラスの収縮量/熱処理前のガラスの長さ}×106
 本発明の第1の態様のガラス基板の熱収縮率は、熱収縮率の測定対象であるガラス基板を上記熱処理に供した後に測定されるものである。但し、本発明の第1の態様のガラス基板の熱収縮率は、熱収縮率の測定対象であるガラス基板を、実施例における熱収縮測定用試料ガラス基板の調製で示したように、Tgで30分保持した後、Tg-100℃まで100℃/分で冷却し、室温まで放冷する徐冷操作を行った後に前記熱処理を施して得た値である、こともできる。ダウンドロー法等の連続式の方法で製造されたガラス基板については、冷却条件が異なることがあり、上記Tg保持後の冷却処理を施した後に熱収縮率を測定することで、同じ条件における熱収縮率の値を得ることができる。
 本発明第1の態様のガラス基板は、SiO2 52~78質量%、Al2O33~25質量%、B2O3 3~15質量%、RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~20質量%、R2O(但し、R2OはLi2O、Na2O及びK2Oの合量) 0.01~0.8質量%、 Sb2O30~0.3質量%、を含有し、かつAs2O3は実質的に含有しないガラスからなり、、昇降温速度が10℃/min、550℃で2時間保持の熱処理が施された後の下記式で示される熱収縮率が75ppm以下である、p-Si・TFTフラットパネルディスプレイ用ガラス基板(本発明の第2の態様のガラス基板)も包含する。ガラス基板の熱収縮率は、75ppm以下であり、好ましくは65ppm以下であることが好ましい。さらに、熱収縮率は、好ましくは60ppm以下、より好ましくは55ppm以下、さらに好ましくは50ppm以下、一層好ましくは48ppm以下、より一層好ましくは45ppm以下、さらに一層好ましくは40ppm以下である。R2O含有量は、0.01~0.8質量%の範囲であり、好ましくは0.01~0.5質量%、さらに好ましくは0.01~0.3質量%の範囲である。
 本発明の第2の態様のガラス基板は、環境負荷を低減するという観点から、ガラスに含有されるSb2O3は、0~0.3質量%であることが好ましく、0~0.1質量%であることがよりに好ましい。さらに好ましくは本発明の第2の態様のガラス基板は、Sb2O3は実質的に含有せず、かつAs2O3も実質的に含有しないガラスからなる。
 熱収縮率が75ppm以下であり、好ましくは65ppm以下、より好ましくは60ppm以下であり、かつR2Oを0.01~0.8質量%を含有するガラスからなる本発明の第2の態様のp-Si・TFTフラットパネルディスプレイ用ガラス基板は、画素のピッチズレの問題を引き起こすことなく、かつガラスの比抵抗を低下させることができ、直接通電加熱による熔解において熔解槽熔損の問題の発生を回避することが可能である。本発明の第2の態様のガラス基板の上記以外のガラス組成及び物性等は、本発明の第1の態様のガラス基板と同様であることができる。
 本発明の第1の態様および第2の態様のガラス基板を構成するガラスは、熔融温度が、好ましくは1680℃以下、より好ましくは1650℃以下、さらに好ましくは1640℃以下、一層好ましくは1620℃以下である。熔融温度が高いと、熔解槽への負荷が大きくなる。また、エネルギーを大量に使用するため、コストも高くなる。熔融温度を上記範囲にするには、本発明のガラス基板の組成の範囲において、粘性を低下させる、例えば、B2O3,RO等の成分を含有することが適当である。
 本発明の第1の態様および第2の態様のガラス基板を構成するガラスは液相粘度(失透温度での粘度)が、104.0 dPa・s以上であり、好ましくは104.5~106.0 dPa・s、より好ましくは104.5~105. 9 dPa・s、さらに好ましくは104.6~105.8 dPa・s、一層好ましくは104.8~105.7 dPa・s、より一層好ましくは104.8~105.6 dPa・s、さらに一層好ましくは104.9~105.5の範囲である。これらの範囲内にあることで、p-Si・TFTフラットパネルディスプレイ用ガラス基板として必要な特性を有すると共に、成形時に失透結晶が発生し難くなるため、オーバーフローダウンドロー法でガラス基板を成形しやすくなる。これにより、ガラス基板の表面品位を向上できるとともに、ガラス基板の生産コストを低減することができる。本発明の第1の態様および第2の態様のガラス基板を構成するガラスの組成の範囲において、各成分の含有量を適宜調整することで、ガラスの液相粘度を上記範囲にすることができる。
 本発明の第1の態様および第2の態様のガラス基板を構成するガラスは、ガラス融液の比抵抗(1550℃における)[Ω・cm]が、好ましくは50~300Ω・cm、より好ましくは50~250Ω・cm、さらに好ましくは50~200Ω・cm、一層好ましくは100~200Ω・cmの範囲である。比抵抗が小さくなりすぎると、熔解に必要な電流値が過大になり、設備上の制約がでる場合がある。一方、比抵抗が大きくなりすぎると、電極の消耗が多くなる傾向もある。また、ガラスではなく、熔解槽を形成する耐熱煉瓦に電流が流れてしまい、熔解槽が熔損してしまう場合もある。ガラス基板の比抵抗は、主に、本発明のガラス基板の必須成分であるROとR2O含有量をコントロールすることで、上記範囲に調整できる。さらに、ROとR2O含有量に加えて、Fe2O3含有量をコントロールすることでも、ガラス基板の比抵抗は、上記範囲に調整できる。
 本発明の第1の態様および第2の態様のガラス基板はヤング率[GPa]が、好ましくは70 GPa以上、より好ましくは73 GPa以上、さらに好ましくは74 GPa以上、一層好ましくは75 GPa以上である。ヤング率が小さいと、ガラス自重によるガラスの撓みによって、ガラスが破損しやすくなる。特に幅方向2000mm以上の大型のガラス基板では、撓みによる破損の問題が顕著となる。ガラス基板のヤング率(GPa)は、本発明のガラス基板の組成の範囲において、ヤング率(GPa)を変動させる傾向が強い、例えば、Al2O3等の成分の含有量を調整することで、大きくすることができる。
 本発明の第1の態様および第2の態様のガラス基板は比弾性率(ヤング率/密度)[GPa cm3 g-1]が、好ましくは28 GPa cm3 g-1以上、より好ましくは29 GPa cm3 g-1以上、さらに好ましくは30 GPa cm3 g-1以上、一層好ましくは31 GPa cm3 g-1以上である。比弾性率が小さいと、ガラス自重によるガラスの撓みによって、ガラスが破損しやすくなる。特に幅方向2000mm以上の大型のガラス基板では、撓みによる破損の問題が顕著となる。
 本発明の第1の態様および第2の態様のガラス基板は大きさには特に制限はない。幅方向は、例えば、500~3500mm、好ましくは1000~3500mm、より好ましくは2000~3500mmである。縦方向は、例えば、500~3500mm、好ましくは1000~3500mm、より好ましくは2000~3500mmである。大きいガラス基板を使用するほど、液晶ディスプレイや有機ELディスプレイの生産性が向上する。
 本発明の第1の態様および第2の態様のガラス基板は板厚[mm]が、例えば、0.1~1.1 mmの範囲であることができる。但し、この範囲に限定する意図ではない。板厚[mm]は、例えば、0.1~0.7 mm、0.3~0.7 mm、0.3~0.5 mmの範囲であることもできる。ガラス板の厚さが薄すぎると、ガラス基板自体の強度が低下する。例えば、フラットパネルディスプレイ製造時の破損が生じやすくなる。板厚が厚すぎると、薄型化が求められるディスプレイには好ましくない。また、ガラス基板の重量が重くなるため、フラットパネルディスプレイの軽量化が図りがたくなる。
 本発明は、
SiO2 57~75質量%、
Al2O3  8~25質量%、
B2O3  3~15質量%、
RO(但し、ROはMgO、CaO、SrO及びBaOの合量)  3~25質量%、
MgO  0~15質量%、
CaO  1~20質量%、
SrO+BaO  0~3.4質量%未満、
Sb2O3 0~0.3質量%、
R2O(但し、R2OはLi2O、Na2O及びK2Oの合量) 0.01~0.8質量%を含有し、
質量比CaO/RO  0.65以上であり、
かつAs2O3は実質的に含有しないガラスからなる
p-Si・TFTフラットパネルディスプレイ用ガラス基板(本発明の第3の態様のガラス基板)を包含する。
 本発明の第3の態様のガラス基板の一例として、
SiO2 57~75質量%、
Al2O3  8~25質量%、
B2O3  3~11質量%未満、
RO(但し、ROはMgO、CaO、SrO及びBaOの合量)  3~25質量%、
MgO  0~15質量%、
CaO  1~20質量%、
SrO+BaO  0~3.4質量%未満、
R2O(但し、R2OはLi2O、Na2O及びK2Oの合量)  0.01~0.8質量%を含有し、
質量比CaO/RO  0.65以上であり、
Sb2O3は実質的に含有せず、かつAs2O3は実質的に含有しないガラスからなる、
p-Si・TFTフラットパネルディスプレイ用ガラス基板を挙げることができる。
 本発明の第3の態様のガラス基板における各成分を含有する理由及び含有量や組成比の範囲について説明する。
 本発明の第3の態様のガラス基板におけるSiO2の含有量は57~75質量%の範囲である。
 SiO2は、ガラスの骨格成分であり、従って、必須成分である。含有量が少なくなると、耐酸性、耐BHF(バッファードフッ酸)及び歪点が低下する傾向がある。また、熱膨張係数が増加する傾向がある。また、SiO2含有量が少なすぎると、ガラス基板を低密度化するのが難しくなる。一方、SiO2含有量が多すぎると、ガラス融液の比抵抗が上昇し、熔融温度が著しく高くなり熔解が困難になる傾向がある。SiO2含有量が多すぎると、耐失透性が低下する傾向もある。このような観点から、SiO2の含有量は、57~75質量%の範囲とする。SiO2の含有量は、好ましくは58~72質量%、さらに好ましくは59~70質量%、一層好ましくは59~69質量%、より一層好ましくは61~69質量%、さらに一層好ましくは61~68質量%、尚好ましくは62~67質量%の範囲である。他方、SiO2含有量が多すぎると、ガラスのエッチングレートが遅くなる傾向がある。スリミングする場合の速度を示すエッチングレートが十分に速いガラス基板を得るという観点からは、SiO2の含有量は、好ましくは57~75 質量%、より好ましくは57~70質量%、さらに好ましくは57~65質量%、一層好ましくは58~63質量%の範囲である。尚、SiO2含有量は、上記耐酸性等の特性とエッチングレートの両方を考慮して適宜決定される。
 本発明の第3の態様のガラス基板におけるAl2O3の含有量は 8~25質量%の範囲である。
 Al2O3は、分相を抑制し、かつ歪点を高くする必須成分である。含有量が少なすぎると、ガラスが分相しやすくなる。また歪点が低下する傾向にある。さらに、ヤング率及びエッチングレートも低下する傾向がある。Al2O3含有量が多すぎると、比抵抗が上昇する。また、ガラスの失透温度が上昇して、耐失透性が低下するので、成形性が悪化する傾向がある。このような観点から、Al2O3の含有量は8~25質量%の範囲である。Al2O3の含有量は、好ましくは10~23質量%、より好ましくは12~20質量%、さらに好ましくは14~20質量%、尚一層好ましくは15~20質量%、さらに一層好ましくは15~19質量%の範囲である。他方、エッチングレートが十分に速いガラス基板を得るという観点からは、Al2O3の含有量は、好ましくは8~23質量%、より好ましくは10~23質量%、さらに好ましくは14~23質量%、一層好ましくは17~22質量%である。尚、Al2O3の含有量は、上記ガラスが分相特性等とエッチングレートの両方を考慮して適宜決定される。
 本発明の第3の態様のガラス基板におけるB2O3は、3~15質量%の範囲であり、好ましくは3~13質量%、より好ましくは3~11質量%未満の範囲である。
 B2O3は、ガラスの高温粘性域における粘度を低下させ、熔解性および清澄性を改善する必須成分である。B2O3含有量が少なすぎると、熔解性及び耐BHFが低下し、耐失透性も低下する。また、B2O3含有量が少なすぎると、比重が増加して低密度化が図りがたくなる。B2O3含有量が多すぎると、ガラス融液の比抵抗が上昇する。また、B2O3含有量が多すぎると、歪点が低下する。さらに、耐熱性及び耐酸性が低下し、ヤング率が低下する。また、ガラス熔解時のB2O3の揮発により、ガラスの不均質が顕著となり、脈理が発生しやすくなる。このような観点から、B2O3含有量は、3~11質量%未満の範囲であり、好ましくは3~10質量%未満、より好ましくは4~9質量%、さらに好ましくは5~9質量%、一層好ましくは7~9質量%の範囲である。他方、失透温度を十分に低下させるためには、B2O3含有量は、好ましくは5~15質量%、よりましくは6~13質量%、さらにましくは7~11質量%未満である。尚、B2O3含有量は、上記熔解性等と失透温度の両方を考慮して適宜決定される。
 本発明の第3の態様のガラス基板におけるMgO、CaO、SrO及びBaOの合量であるROは、3~25質量%の範囲である。ROは、比抵抗を低下させ、熔解性を向上させる必須成分である。RO含有量が少なすぎると、比抵抗が上昇し、熔解性が悪化する。RO含有量が多すぎると、歪点及びヤング率が低下する。また、密度が上昇する。また、RO含有量が多すぎると、熱膨張係数が増大する傾向もある。このような観点から、ROは、3~25質量%の範囲であり、好ましくは3~16質量%、より好ましくは3~15質量%、さらに好ましくは3~14質量%、一層好ましくは3~13質量%、より一層好ましくは6~13質量%、さらに一層好ましくは6~12質量%、尚一層好ましくは8~11質量%の範囲である。
 本発明の第3の態様のガラス基板におけるMgOは比抵抗を低下させ、熔解性を向上させる成分である。また、アルカリ土類金属の中では比重を増加させにくい成分であるので、その含有量を相対的に増加させると、低密度化を図りやすくなる。必須ではないが、含有させることで、熔解性を向上し、かつ切粉の発生を抑制できる。但し、MgOの含有量が多すぎると、ガラスの失透温度が急激に上昇するため、成形性が悪化(耐失透性が低下)する。また、MgOの含有量が多すぎると、耐BHF低下、耐酸性低下の傾向がある。特に、失透温度を低下させたい場合には、MgOは実質的に含有させないことが好ましい。このような観点から、MgO含有量は、0~15質量%、好ましくは0~10質量%、より好ましくは0~5質量%、さらに好ましくは0~4質量%、一層好ましくは0~3質量%、より一層好ましくは0~2未満、さらに一層好ましくは0~1質量%であり、最も好ましくは実質的に含有しないことである。
 本発明の第3の態様のガラス基板におけるCaOは、比抵抗を低下させ、ガラスの失透温度を急激に上げることなくガラスの熔解性を向上させるのに有効な成分である。また、アルカリ土類金属の中では比重を増加させにくい成分であるので、その含有量を相対的に増加させると、低密度化を図りやすくなる。必須ではないが、含有させることで、ガラス融液の比抵抗低下、および熔融温度(高温粘性)低下による熔解性向上、及び失透性改善ができるので、CaOは含有させることが好ましい。一方、CaO含有量が多すぎると、歪点が低下する傾向がある。また、熱膨張係数増加及び密度上昇傾向がある。CaO含有量は、1~20質量%、好ましくは1~15質量%、より好ましくは3.6~15質量%、さらに好ましくは4~14質量%、一層好ましくは5~12質量%、より一層好ましくは5~11質量%、さらに一層好ましくは5~10質量%、尚一層好ましくは6超~10質量%、さらに尚一層好ましくは6超~9質量%の範囲である。
 本発明の第3の態様のガラス基板におけるSrOとBaOは、ガラス融液の比抵抗を低下させ、かつ熔融温度を低下させて、熔解性を向上させると共に失透温度の低下させる成分である。必須ではないが、含有させると、耐失透性及び熔解性は向上する。しかし、含有量が多すぎると、密度が上昇してしまう。SrOとBaOの合量であるSrO+BaOは、密度を低減し、軽量化するという観点から、0~3.4質量%未満、好ましくは0~2質量%、より好ましくは0~1質量%、さらに好ましくは0~0.5質量%、尚一層好ましくは0~0.1質量%未満の範囲である。ガラス基板の密度を低下させたい場合には、SrOとBaOは、実質的に含有させないことが好ましい。
 本発明の第3の態様のガラス基板におけるR2O(但し、R2OはLi2O、Na2O及びK2Oの合量) 0.01~0.8質量%を含有する。
 Li2O、Na2O及びK2OであるR2Oは、ガラスの塩基性度を高め、清澄剤の酸化を容易にして、清澄性を発揮させる成分である。また、熔解性向上、比抵抗低下させる成分である。従って、R2Oを含有させると、比抵抗が低下し、熔解性が向上すると共に、清澄性が向上する。しかし、R2O含有量が多すぎると、ガラス基板から溶出してTFT特性を劣化させる。また、熱膨張係数が増大する傾向がある。これらの観点から、R2Oの合量であるLi2O+Na2O+K2Oは0.01~0.8質量%の範囲であり、好ましくは0.01~0.6質量%、より好ましくは0.01~0.5質量%、さらに好ましくは0.01~0.4質量%、一層好ましくは0.01~0.3質量%の範囲である。上記範囲における下限値0.01質量%は、好ましくは0.05質量%、より好ましくは0.1質量%である。
 本発明の第3の態様のガラス基板におけるCaO/ROは熔解性と耐失透性の指標の指標となる。CaO/ROは0.65以上であり、好ましくは0.65~1、さらに好ましくは0.7~1、一層好ましくは0.85~1、より一層好ましくは0.9~1、尚一層好ましくは0.95~1の範囲である。これらの範囲とすることで、耐失透性と熔解性を両立することができる。さらに、低密度化を図ることができる。また、複数のアルカリ土類金属を含有させるよりも、CaOのみを含有させた方が低粘特性温度を高める効果が高い。
 本発明の第3の態様のガラス基板は、環境負荷を低減するという観点から、Sb2O3は0~0.3質量%であることが好ましく、0~0.1質量%であることがより好ましい。また、本発明の第3の態様のガラス基板は、環境負荷をより低減するという観点から、Sb2O3は実質的に含有せず、かつAs2O3も実質的に含有しないことがさらに好ましい。
 本発明の第3の態様のガラス基板の上記以外のガラス組成、物性及び大きさ等は、本発明の第1の態様のガラス基板と同様であることができる。
 本発明のガラス基板(本発明の第1~3の態様のガラス基板に共通)は、フラットパネルディスプレイ用ガラス基板、特にp-Si・TFTが表面に形成されるフラットパネルディスプレイ用ガラス基板に好適である。具体的には、液晶ディスプレイ用ガラス基板、有機ELディスプレイ用ガラス基板に好適である。特に、p-Si・TFT液晶ディスプレイ用ガラス基板に好適である。中でも、高精細が求められる携帯端末などのディスプレイ用ガラス基板に好適である。
<フラットパネルディスプレイ用ガラス基板の製造方法>
 本発明の本発明の第1の態様のフラットパネルディスプレイ用ガラス基板の製造方法は、
SiO2 52~78質量%、
Al2O3 3~25質量%、
B2O3 3~15質量%、
RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~20質量%、
R2O(但し、R2OはLi2O、Na2O及びK2Oの合量) 0.01~0.8質量%、
Sb2O3 0~0.3質量%、
を含有し、As2O3は実質的に含有せず、
質量比CaO/ROは0.65以上であり、質量比(SiO2+Al2O3)/B2O3は7~30の範囲であり、かつ
質量比(SiO2+Al2O3)/ROは5以上のガラスとなるように調合したガラス原料を少なくとも直接通電加熱を用いて熔解して熔融ガラスを得る熔解工程と、
前記熔融ガラスを平板状ガラスに成形する成形工程と、
前記平板状ガラスを冷却する冷却工程と、を有する。
<液晶ディスプレイ用ガラス基板の製造方法>
 さらに本発明の本発明の第1の態様の液晶ディスプレイ用ガラス基板の製造方法は、
SiO2 52~78質量%、
Al2O3 3~25質量%、
B2O3 3~15質量%、
RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~20質量%、
R2O(但し、R2OはLi2O、Na2O及びK2Oの合量) 0.01~0.8質量%
を含有し、Sb2O3は実質的に含有せず、かつAs2O3は実質的に含有せず、
質量比CaO/ROは0.65以上であり、質量比(SiO2+Al2O3)/B2O3は8.1~20の範囲であり、かつ質量比(SiO2+Al2O3)/ROは 5以上のガラスとなるように調合したガラス原料を少なくとも直接通電加熱を用いて熔解して熔融ガラスを得る熔解工程と、
前記熔融ガラスを平板状ガラスに成形する成形工程と、
前記平板状ガラスを冷却する冷却工程と、を有する。
 本発明の第2及び3の態様のガラス基板も上記本発明の第1の態様のガラス基板と同様の工程を経て製造することができる。但し用いるガラス原料は、本発明の第2の態様のガラス基板の製造においては、SiO2 52~78質量%、Al2O33~25質量%、B2O3 3~15質量%、RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~20質量%、R2O(但し、R2OはLi2O、Na2O及びK2Oの合量) 0.01~0.8質量%を含有し、Sb2O30~0.3質量%、より好ましくはSb2O3は実質的に含有せず、かつAs2O3は実質的に含有しないガラスとなるようなガラス原料であり、製造されるガラス基板は昇降温速度が10℃/min、550℃で2時間保持の熱処理が施された後の熱収縮率が75ppm以下であり、より好ましくは60ppm以下であるガラス基板である。
 本発明の第3の態様のガラス基板の製造においては、用いるガラス原料は、SiO2 57~75質量%、Al2O3  8~25質量%、B2O3  3~15質量%、RO(但し、ROはMgO、CaO、SrO及びBaOの合量)  3~25質量%、MgO  0~15質量%、CaO  1~20質量%、SrO+BaO  0~3.4質量%未満、Sb2O3 0~0.3質量%、R2O(但し、R2OはLi2O、Na2O及びK2Oの合量) 0.01~0.8質量%を含有し、質量比CaO/RO  0.65以上であり、かつAs2O3は実質的に含有しないガラスとなるようなガラス原料である。また、本発明の第3の態様のガラス基板の製造方法の一例であるガラス基板の製造方法においては、用いるガラス原料は、SiO2 57~75質量%、Al2O3 8~25質量%、B2O3 3~11質量%未満、RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~25質量%、MgO  0~15質量%、CaO  1~20質量%、SrO及びBaOの合量 0~3.4質量%未満、R2O(但し、R2OはLi2O、Na2O及びK2Oの合量) 0.01~0.8質量%を含有し、質量比CaO/ROは0.65以上であり、Sb2O3は実質的に含有せず、かつAs2O3は実質的に含有しないガラスとなるようなガラス原料である。
[熔解工程]
 熔解工程においては、所定のガラス組成となるように調合したガラス原料を少なくとも直接通電加熱を用いて熔解する。ガラス原料は、公知の材料から適宜選択できる。ガラス融液の1550℃における比抵抗が、50~300Ω・cmの範囲となるように、ガラス原料の組成、特に、R2OとROの含有量を調整することが好ましい。R2Oの含有量を0.01~0.8質量%、ROの含有量を3~20質量%の範囲とすることで、1550℃における比抵抗を上記範囲内とすることができる。また、ガラス基板のβ-OHの値が0.1~0.4mmとなるように、熔解工程を調整することが好ましい。また、本発明の第1及び2の態様のガラス基板の製造においては、ROの含有量を3~20質量%の範囲で調整することでも1550℃における比抵抗を調整でき、本発明の第3の態様のガラス基板の製造においては、ROの含有量を3~25質量%の範囲で調整することでもガラス融液1550℃における比抵抗を調整できる。
[成形工程]
 成形工程では、熔解工程にて熔解した熔融ガラスを平板状ガラスに成形する。平板状ガラスへの成形方法は、例えば、ダウンドロー法、特にオーバーフローダウンドロー法が好適である。その他、フロート法、リドロー法、ロールアウト法などを適用できる。ダウンドロー法を採用することにより、フロート法など他の成形方法を用いた場合に比べ、得られたガラス基板の主表面が熱間成形された表面であるために、極めて高い平滑性を有しており、成形後のガラス基板表面の研磨工程が不要となるために、製造コストを低減することができ、さらに生産性も向上させることができる。さらに、ダウンドロー法を使用して成形したガラス基板の両主表面は均一な組成を有しているために、エッチング処理を行った際に、均一にエッチングを行うことができる。加えて、ダウンドロー法を使用して成形することで、マイクロクラックのない表面状態を有するガラス基板を得ることができるため、ガラス基板自体の強度も向上させることができる
[徐冷工程]
 徐冷時の条件を適宜調整することでガラス基板の熱収縮率をコントロールすることができる。ガラス基板の熱収縮率は上述のように、75ppm以下、より好ましくは60ppm以下であることが好ましく、75ppm以下、より好ましくは60ppm以下のガラス基板を製造するためには、例えば、ダウンドロー法を使用する場合は、平板状ガラスの温度を、TgからTg-100℃の温度範囲を20~120秒で冷却するように、成形を行うことが望ましい。20秒未満であると、熱収縮量を十分低減することができない場合がある。一方、120秒を超えると、生産性が低下すると共に、ガラス製造装置(徐冷炉)が大型化してしまう。あるいは、平板状ガラスの平均の冷却速度を、TgからTg-100℃の温度範囲において、50~300℃/分とするように徐冷(冷却)を行うことが好ましい。冷却速度が、300℃/分を超えると、熱収縮量を十分低減することができない場合がある。一方、50℃/分未満であると、生産性が低下すると共に、ガラス製造装置(徐冷炉)が大型化してしまう。冷却速度の好ましい範囲は、50~300℃/分であり、50~200℃/分がより好ましく、60~120℃/分がさらに好ましい。他方、徐冷工程後に熱収縮低減処理(オフラインアニール)工程を別途設けることで、熱収縮率を小さくすることもできる。しかし、徐冷工程とは別にオフラインアニール工程を設けると、生産性が低下し、コストが高騰してしまうという問題点がある。そのため、上述したように、徐冷工程において平板状ガラスの冷却速度を制御するという熱収縮低減処理(オンラインアニール)を施すことによって、熱収縮率を所定範囲内におさめることがより好ましい。
 以上、本発明のガラス基板をp-Si・TFTフラットパネルディスプレイ用ガラス基板を例に説明したが、本発明の本発明のガラス基板は、フラットパネルディスプレイ用、特にp-Siフラットパネルディスプレイ用としても用いることができる。さらに、本発明のガラス基板は、酸化物半導体薄膜トランジスタフラットパネルディスプレイ用のガラスとしても用いることかできる。即ち、本発明のガラス基板は、基板表面に酸化物半導体薄膜トランジスタを形成して製造されるフラットディスプレイに用いることもできる。
 以下、本発明を実施例に基づいてさらに詳細に説明する。但し、本発明は実施例に限定されるものではない。
実施例1~25
 表1に示すガラス組成になるように、実施例1~25及び比較例1~2の試料ガラスを以下の手順に従って作製した。得られた試料ガラスおよび試料ガラス基板について、失透温度、Tg、100~300℃の範囲における平均熱膨張係数(α)、熱収縮率、密度、歪点、熔解温度(粘度が102.5dPa・sの時のガラス温度、表1中ではT(log(η=2.5)と表示)、液相粘度、1550℃における比抵抗、、エッチング速度を求め、表1に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000004
(試料ガラスの作製)
 まず、表1に示すガラス組成となるように、通常のガラス原料である、シリカ,アルミナ,酸化ホウ素,炭酸カリウム,塩基性炭酸マグネシウム,炭酸カルシウム,炭酸ストロンチウム,二酸化スズおよび三酸化二鉄を用いて、ガラス原料バッチ(以下バッチと呼ぶ)を調合した。なお、ガラスで400gとなる量で調合した。
 前記調合したバッチは、白金ルツボの中で熔融および清澄した。まず、このルツボを1575℃に設定した電気炉で4時間保持してバッチを熔融した。次に、その電気炉を1640℃まで昇温し、2時間保持することでガラス融液の清澄を行なった。その後、ガラス融液を炉外で鉄板上に流し出し、冷却固化してガラス体を得た。このガラス体には引き続いて徐冷操作を施した。徐冷操作は、このガラス体を800℃に設定した別の電気炉の中で2時間保持した後、740℃まで2時間、更に660℃まで2時間で冷却後、その電気炉の電源を切り、室温まで冷却することによって行なった。この徐冷操作を経たガラス体を試料ガラスとした。前記試料ガラスは、徐冷条件に影響されず、かつ/または、基板状では測定できない特性(失透温度、高温粘性(熔融温度)、比抵抗、熱膨張係数、Tgおよび歪点)の測定に用いた。前記試料ガラスは、Cl含有量が0.01%未満であり、かつNH4 +含有量が 2×10-4%未満であった。
 また、上記試料ガラスを切断、研削および研磨加工を施して、上下面が鏡面である30mm×40mm×0.7mmの試料ガラス基板を作製した。前記試料ガラス基板は、徐冷条件に影響されない、β-OHの測定に用いた。
 さらに、上記試料ガラスを切断、研削および研磨加工を施して、厚み0.7~4mm、幅5mm、長さ20mmの直方体とし、これをTgで30分保持した後、Tg-100℃まで100℃/分で冷却し、室温まで放冷することで、熱収縮測定用試料ガラス基板とした。
(歪点)
 前記試料ガラスを、3mm角、長さ55mmの角柱形状に切断・研削加工して、試験片とした。この試験片に対して、ビーム曲げ測定装置(東京工業株式会社製)を用いて測定を行い、ビーム曲げ法(ASTM C-598)に従い、計算により歪点を求めた。
(熱収縮率)
 熱収縮率は、前記熱収縮測定用試料ガラス基板を550℃で2時間の熱処理が施された後のガラス基板の収縮量を用いて、以下の式にて求めた。
熱収縮率(ppm)
 ={熱処理前後のガラスの収縮量/熱処理前のガラスの長さ}×106
 本実施例では、具体的に、以下の方法によって収縮量の測定を行った。
 前記熱収縮用試料ガラス基板について、示差熱膨張計(Thermo Plus2 TMA8310)を用い、室温から550℃まで昇温し、2時間保持した後、室温まで冷却し、熱処理前後での試料ガラスの収縮量を測定した。この時の、昇降温速度は10℃/minに設定した。
(1550℃での比抵抗)
 前記試料ガラスの熔融時の比抵抗は、HP社製 4192A LF インピーダンス・アナライザーを用いて、四端子法にて測定し、前記測定結果より1550℃での比抵抗値を算出した。
(失透温度の測定方法)
 前記試料ガラスを粉砕し、2380μmのふるいを通過し、1000μmのふるい上に留まったガラス粒を得た。このガラス粒をエタノールに浸漬し、超音波洗浄した後、恒温槽で乾燥させた。乾燥させたガラス粒を、幅12mm、長さ200mm、深さ10mmの白金ボート上に、前記ガラス粒25gをほぼ一定の厚さになるように入れた。この白金ボートを、1080~1320℃(あるいは1140℃~1380℃)の温度勾配をもった電気炉内に5時間保持し、その後、炉から取り出して、ガラス内部に発生した失透を50倍の光学顕微鏡にて観察した。失透が観察された最高温度を、失透温度とした。
(100~300℃の範囲における平均熱膨張係数αおよびTgの測定方法)
 前記試料ガラスを、φ5mm、長さ20mmの円柱状に加工して、試験片とした。この試験片に対し、示差熱膨張計(Thermo Plus2 TMA8310)を用いて、昇温過程における温度と試験片の伸縮量を測定した。この時の昇温速度は5℃/minとした。前記温度と試験片の伸縮量との測定結果を元に100~300℃の温度範囲における平均熱膨張係数およびTgを測定した。なお、本願でのTgとは、ガラス体を800℃に設定した別の電気炉の中で2時間保持した後、740℃まで2時間、更に660℃まで2時間で冷却後、その電気炉の電源を切り、室温まで冷却した試料ガラスについて測定した値である。
(密度)
 ガラスの密度は、アルキメデス法によって測定した。
(熔融温度)
 前記試料ガラスの高温粘性は、白金球引き上げ式自動粘度測定装置を用いて測定した。
 前記測定結果より、粘度102.5dPa・sの時の温度を算出し、熔融温度を得た。
 (液相粘度)
 前記高温粘性の測定結果より、前記失透温度での粘性を算出し、液相粘度を得た。表1には、10ndPa・sで示される液相粘度の指数部分nのみを表示する。
(エッチング速度)

 ガラス基板をHFの割合が1mol/kg、HClの割合が5mol/kgの混酸の40℃のエッチング液に1時間浸漬し、ガラス基板の一方の表面の厚み減少量(μm)を測定した。単位時間(1時間)当たりの減少量(μm)としてエッチングレート(μm/h)を求めた。 
実施例26
 実施例7に示すガラス組成となるよう調合したガラス原料を、耐火煉瓦製の熔解槽と白金合金製の調整槽(清澄槽)を備えた連続熔解装置を用いて、1560~1640℃で熔解し、1620~1670℃で清澄し、1440~1530℃で攪拌した後にオーバーフローダウンドロー法により厚さ0.7mmの薄板状に成形し、TgからTg-100℃の温度範囲内において、100℃/分の平均速度で徐冷を行い、液晶ディスプレイ用(有機ELディスプレイ用)ガラス基板を得た。なお、前記記載の各特性については、得られたガラス基板を用いて測定した。
 上記のように得られたガラス基板のβ-OH値は0.20mm-1であった。また、720℃以上のTgと、1680℃以下の熔融温度とを有しており、高Tg(高い低粘特性温度)および良好な熔解性とが実現されていた。さらに、熱収縮率および失透温度も、本発明のガラス基板の条件を満たしていた。なお、上記のように得られたガラス基板は、実施例7よりも、β-OH値が0.09mm-1大きいため、実施例7と比較するとTgは3℃低くなるが、十分に高いTgを実現できている。
実施例27、28
 実施例11、13に示すガラス組成となるよう調合したガラス原料を用いて実施例26と同様にガラス基板を作製し、各特性を測定した。
 上記のように得られた実施例27の組成のガラス基板の熔解温度は1610℃、β-OH値は0.20mm-1で、Tgは754℃、歪点は697℃、熱収縮率は51ppmであり、他の特性は実施例11と同等であった。また、実施例28の組成のガラス基板の熔解温度は1585℃、β-OH値は0.21mm-1で、Tgは761℃、歪点は710℃、熱収縮率は31ppmであり、他の特性は実施例13と同等であった。上記のように、上記ガラス基板は720℃以上のTgと、1680℃以下の熔融温度とを有しており、高い低粘特性温度および良好な熔解性とが実現されていた。さらに、熱収縮率および失透温度も、本発明のガラス基板の条件を満たしていた。なお、上記のように得られたガラス基板は、実施例11、13よりも、β-OH値が0.1mm-1程度大きいため、実施例7、13と比較するとTgは2~3℃低くなるが、十分に高いTgを実現できている。
 したがって、本実施例で得られたガラス基板は、p-Si・TFTが適用されるディスプレイにも用いることが可能な、優れた特性を備えたガラス基板であるといえる。
 本発明は、ディスプレイ用ガラス基板の製造分野に利用可能である。

Claims (24)

  1. SiO2 52~78質量%、
    Al2O33~25質量%、
    B2O33~15質量%、
    RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~20質量%、
    R2O(但し、R2OはLi2O、Na2O及びK2Oの合量) 0.01~0.8質量%、
    Sb2O3 0~0.3質量%、
    を含有し、As2O3は実質的に含有せず、
    質量比CaO/ROは0.65以上であり、質量比(SiO2+Al2O3)/B2O3は7~30の範囲であり、かつ
    質量比(SiO2+Al2O3)/ROは5以上であるガラスからなる
    p-Si・TFTフラットパネルディスプレイ用ガラス基板。
  2. 前記ガラスは、Sb2O3を実質的に含有しない請求項1に記載のガラス基板。
  3. SiO2 52~78質量%、
    Al2O33~25質量%、
    B2O33~15質量%、
    RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~20質量%、
    R2O(但し、R2OはLi2O、Na2O及びK2Oの合量) 0.01~0.8質量%、
    を含有し、Sb2O3は実質的に含有せず、かつAs2O3は実質的に含有せず、
    質量比CaO/ROは0.65以上であり、質量比(SiO2+Al2O3)/B2O3は8.1~20の範囲であり、かつ
    質量比(SiO2+Al2O3)/ROは5以上であるガラスからなる
    p-Si・TFTフラットパネルディスプレイ用ガラス基板。
  4. 前記ガラスはSiO2含有量が58~72質量%であり、Al2O3含有量が10~23質量%であり、B2O3含有量が3~11質量%未満である、請求項1~3のいずれか1項に記載のガラス基板。
  5. 前記ガラスはSiO2及びAl2O3の合計含有量が75質量%以上であり、
    ROの含有量が4~16質量%であり、かつ
    B2O3の含有量が3~11質量%未満である請求項1~4のいずれか1項に記載のガラス基板。
  6. 前記ガラスは歪点が688℃以上である 請求項1~5のいずれか1項に記載のガラス基板。
  7. 前記ガラスはβ-OH値が0.05~0.4mmである、請求項1~6のいずれか1項に記載のガラス基板。
  8. 前記ガラスはClを実質的に含有しない請求項1~7のいずれか1項に記載のガラス基板。
  9. 前記ガラスはSrO及びBaOの合量が0~3.4質量%未満である、請求項1~8のいずれか1項に記載のガラス基板。
  10. SiO2 52~78質量%、
    Al2O33~25質量%、
    B2O33~15質量%、
    RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~20質量%、
    R2O(但し、R2OはLi2O、Na2O及びK2Oの合量) 0.01~0.8質量%を含有し、
    Sb2O3 0~0.3質量%、
    かつAs2O3は実質的に含有しないガラスからなり、
    昇降温速度が10℃/min、550℃で2時間保持の熱処理が施された後の下記式で示される熱収縮率が75ppm以下である、
    p-Si・TFTフラットパネルディスプレイ用ガラス基板。
    (式)
    熱収縮率(ppm)={熱処理前後でのガラスの収縮量/熱処理前のガラスの長さ}×106
  11. 前記ガラスはSb2O3を実質的に含有しない 請求項10に記載のガラス基板。
  12. 熱収縮率が60ppm以下である請求項10又は11に記載のガラス基板。
  13. 前記熱収縮率は、ガラス基板をTgで30分保持した後、Tg-100℃まで100℃/分で冷却し、室温まで放冷する徐冷操作を行った後に前記熱処理を施して得た値である、請求項10~12のいずれか1項に記載のガラス基板。
  14. SiO2 57~75質量%、
    Al2O3  8~25質量%、
    B2O3  3~15質量%、
    RO(但し、ROはMgO、CaO、SrO及びBaOの合量)  3~25質量%、
    MgO  0~15質量%、
    CaO  1~20質量%、
    SrO+BaO  0~3.4質量%未満、
    Sb2O3 0~0.3質量%、
    R2O(但し、R2OはLi2O、Na2O及びK2Oの合量) 0.01~0.8質量%を含有し、
    質量比CaO/RO  0.65以上であり、
    かつAs2O3は実質的に含有しないガラスからなる
    p-Si・TFTフラットパネルディスプレイ用ガラス基板。
  15. SiO2 57~75質量%、
    Al2O3  8~25質量%、
    B2O3  3~11質量%未満、
    RO(但し、ROはMgO、CaO、SrO及びBaOの合量)  3~25質量%、
    MgO  0~15質量%、
    CaO  1~20質量%、
    SrO+BaO  0~3.4質量%未満、
    R2O(但し、R2OはLi2O、Na2O及びK2Oの合量) 0.01~0.8質量%を含有し、
    質量比CaO/RO  0.65以上であり、
    Sb2O3は実質的に含有せず、かつAs2O3は実質的に含有しないガラスからなる
    p-Si・TFTフラットパネルディスプレイ用ガラス基板。
  16. 前記ガラスは失透温度が1250℃以下であり、かつ前記ガラス基板はダウンドロー法にて成形したものである、請求項1~15のいずれか1項に記載のガラス基板。
  17. 前記ガラスは質量比K2O/R2Oが0.9以上である請求項1~16のいずれか1項に記載のガラス基板。
  18. TFT液晶ディスプレイ用である請求項1~17のいずれか1項に記載のガラス基板。
  19. SiO2 52~78質量%、
    Al2O33~25質量%、
    B2O33~15質量%、
    RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~20質量%、
    R2O(但し、R2OはLi2O、Na2O及びK2Oの合量) 0.01~0.8質量%、
    Sb2O3 0~0.3質量%、
    を含有し、As2O3は実質的に含有せず、
    質量比CaO/ROは0.65以上であり、質量比(SiO2+Al2O3)/B2O3は7~30の範囲であり、かつ
    質量比(SiO2+Al2O3)/ROは5以上のガラスとなるように調合したガラス原料を少なくとも直接通電加熱を用いて熔解して熔融ガラスを得る熔解工程と、
    前記熔融ガラスを平板状ガラスに成形する成形工程と、
    前記平板状ガラスを徐冷する徐冷工程と、を有する
    p-Si・TFTフラットパネルディスプレイ用ガラス基板の製造方法。
  20. SiO2 52~78質量%、
    Al2O33~25質量%、
    B2O33~15質量%、
    RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~20質量%、
    R2O(但し、R2OはLi2O、Na2O及びK2Oの合量) 0.01~0.8質量%
    を含有し、Sb2O3は実質的に含有せず、かつAs2O3は実質的に含有せず、
    質量比CaO/ROは0.65以上であり、質量比(SiO2+Al2O3)/B2O3は8.1~20の範囲であり、かつ
    質量比(SiO2+Al2O3)/ROは5以上のガラスとなるように調合したガラス原料を少なくとも直接通電加熱を用いて熔解して熔融ガラスを得る熔解工程と、
    前記熔融ガラスを平板状ガラスに成形する成形工程と、
    前記平板状ガラスを徐冷する徐冷工程と、を有する
    p-Si・TFTフラットパネルディスプレイ用ガラス基板の製造方法。
  21. 前記熔融ガラスは1550℃の融液における比抵抗は 50~300Ω・cmである請求項19又は20に記載の製造方法。
  22.  前記徐冷工程において、平板状ガラスの冷却速度を制御して熱収縮率を低減させる熱収縮低減処理を施す、請求項19~21のいずれか1項に記載の製造方法。
  23. 前記徐冷工程において、平板状ガラスの中央部の冷却速度を、TgからTg-100℃の温度範囲内において、50~300℃/分とする熱収縮低減処理を施す、請求項22に記載の製造方法。
  24. SiO2 52~78質量%、
    Al2O33~25質量%、
    B2O33~15質量%、
    RO(但し、ROはMgO、CaO、SrO及びBaOの合量) 3~20質量%、
    R2O(但し、R2OはLi2O、Na2O及びK2Oの合量) 0.01~0.8質量%、
    Sb2O3 0~0.3質量%、
    を含有し、As2O3は実質的に含有せず、
    質量比CaO/ROは0.65以上であり、質量比(SiO2+Al2O3)/B2O3は7~30の範囲であり、かつ
    質量比(SiO2+Al2O3)/ROは5以上であるガラスからなるフラットパネルディスプレイ用ガラス基板。
PCT/JP2012/066738 2011-07-01 2012-06-29 フラットパネルディスプレイ用ガラス基板及びその製造方法 WO2013005680A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280002220.7A CN103052604B (zh) 2011-07-01 2012-06-29 平面显示器用玻璃基板及其制造方法
KR1020127031520A KR101523832B1 (ko) 2011-07-01 2012-06-29 플랫 패널 디스플레이용 유리 기판
JP2012530015A JP5172045B2 (ja) 2011-07-01 2012-06-29 フラットパネルディスプレイ用ガラス基板及びその製造方法
KR1020127031263A KR101273847B1 (ko) 2011-07-01 2012-06-29 플랫 패널 디스플레이용 유리 기판 및 그 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011147768 2011-07-01
JP2011-147768 2011-07-01
JP2012-059233 2012-03-15
JP2012059233 2012-03-15

Publications (1)

Publication Number Publication Date
WO2013005680A1 true WO2013005680A1 (ja) 2013-01-10

Family

ID=47437032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066738 WO2013005680A1 (ja) 2011-07-01 2012-06-29 フラットパネルディスプレイ用ガラス基板及びその製造方法

Country Status (6)

Country Link
US (2) US9029280B2 (ja)
JP (4) JP5172045B2 (ja)
KR (2) KR101273847B1 (ja)
CN (2) CN103204630B (ja)
TW (2) TWI598315B (ja)
WO (1) WO2013005680A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129368A1 (ja) * 2012-02-27 2013-09-06 旭硝子株式会社 無アルカリガラスの製造方法
JP2014118313A (ja) * 2012-12-14 2014-06-30 Nippon Electric Glass Co Ltd ガラス及びガラス基板
JP2016102059A (ja) * 2015-12-25 2016-06-02 日本電気硝子株式会社 ガラス基板及びその製造方法
JP2016199467A (ja) * 2011-07-01 2016-12-01 AvanStrate株式会社 フラットパネルディスプレイ用ガラス基板及びその製造方法
JP2017007940A (ja) * 2016-08-22 2017-01-12 日本電気硝子株式会社 ガラス及びガラス基板
JPWO2019181707A1 (ja) * 2018-03-20 2021-03-25 Agc株式会社 ガラス基板、液晶アンテナ及び高周波デバイス
CN115180824A (zh) * 2022-07-05 2022-10-14 河北光兴半导体技术有限公司 防火玻璃组合物、防火玻璃及其制备方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8697591B2 (en) * 2006-12-14 2014-04-15 Ppg Industries Ohio, Inc. Low dielectric glass and fiber glass
CN103204630B (zh) 2011-07-01 2020-06-09 安瀚视特控股株式会社 平面显示器用玻璃基板及其制造方法
KR20160006335A (ko) * 2014-07-08 2016-01-19 삼성디스플레이 주식회사 박막트랜지스터 기판, 디스플레이 장치, 박막트랜지스터 기판 제조방법 및 디스플레이 장치 제조방법
CN109133615B (zh) * 2015-06-30 2022-05-10 安瀚视特控股株式会社 显示器用玻璃基板及其制造方法
CN105621881B (zh) * 2015-12-30 2018-02-09 东旭科技集团有限公司 一种铝硅酸盐玻璃用组合物与铝硅酸盐玻璃及它们的用途
CN105621883A (zh) * 2016-02-02 2016-06-01 彩虹(合肥)液晶玻璃有限公司 一种液晶基板玻璃及其制备方法
JP6879308B2 (ja) * 2016-09-16 2021-06-02 Agc株式会社 ガラス基板、および積層基板
CN115572060A (zh) * 2017-06-05 2023-01-06 Agc株式会社 强化玻璃
JP7197835B2 (ja) * 2017-12-20 2022-12-28 日本電気硝子株式会社 ガラス板の製造方法
CN109650723A (zh) * 2019-03-01 2019-04-19 陕西科技大学 一种高硬度的无碱高铝硼硅玻璃及制备方法
KR102141856B1 (ko) * 2019-03-19 2020-08-07 에이지씨 가부시키가이샤 무알칼리 유리 기판
US11718553B2 (en) * 2019-03-19 2023-08-08 AGC Inc. Alkali-free glass substrate
CN111606560B (zh) * 2020-06-05 2022-03-11 中建材蚌埠玻璃工业设计研究院有限公司 一种无碱铝硼硅酸盐玻璃
US11773006B1 (en) 2022-11-10 2023-10-03 Corning Incorporated Glasses for high performance displays
CN116040939A (zh) * 2023-01-19 2023-05-02 华南理工大学 低熔点硼硅酸盐玻璃及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009149512A (ja) * 1996-07-19 2009-07-09 Corning Inc ヒ素を含まないガラス
JP2009203080A (ja) * 2007-02-27 2009-09-10 Avanstrate Inc 表示装置用ガラス基板および表示装置
JP2010275167A (ja) * 2009-06-01 2010-12-09 Nippon Electric Glass Co Ltd ガラス基板の製造方法
JP2011126728A (ja) * 2009-12-16 2011-06-30 Avanstrate Inc ガラス組成物とそれを用いたフラットパネルディスプレイ用ガラス基板

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0825772B2 (ja) * 1987-01-16 1996-03-13 日本板硝子株式会社 電子機器の基板用ガラス
KR100262115B1 (ko) * 1995-09-28 2000-07-15 기시다 기요사쿠 무알칼리유리기판
JPH09278465A (ja) 1996-04-17 1997-10-28 Nippon Electric Glass Co Ltd 熱収縮率の小さいガラス基板の製造方法
US6060168A (en) * 1996-12-17 2000-05-09 Corning Incorporated Glasses for display panels and photovoltaic devices
JP2000086261A (ja) 1998-09-14 2000-03-28 Nippon Electric Glass Co Ltd ガラス基板及びそれを用いた平板ディスプレイ装置並びにガラス基板の熱処理方法
JP4576680B2 (ja) 1999-08-03 2010-11-10 旭硝子株式会社 無アルカリガラス
DE10064977C1 (de) * 2000-12-23 2002-10-02 Schott Glas Vorrichtung zum Herstellen von dünnen Glasscheiben
JP2002308643A (ja) * 2001-02-01 2002-10-23 Nippon Electric Glass Co Ltd 無アルカリガラス及びディスプレイ用ガラス基板
JP5105571B2 (ja) 2003-10-10 2012-12-26 日本電気硝子株式会社 無アルカリガラスの製造方法
JP4715258B2 (ja) 2005-03-22 2011-07-06 旭硝子株式会社 ガラスおよびガラス製造方法
CN102249541B (zh) * 2005-08-15 2013-03-27 安瀚视特股份有限公司 玻璃组成物
WO2007020824A1 (ja) 2005-08-15 2007-02-22 Nippon Sheet Glass Company, Limited ガラス組成物およびガラス組成物の製造方法
KR101037988B1 (ko) 2006-05-25 2011-05-30 니폰 덴키 가라스 가부시키가이샤 무알칼리 유리 및 무알칼리 유리 기판
JP5808069B2 (ja) * 2007-02-16 2015-11-10 日本電気硝子株式会社 太陽電池用ガラス基板
JP5435394B2 (ja) 2007-06-08 2014-03-05 日本電気硝子株式会社 強化ガラス基板及びその製造方法
US7709406B2 (en) 2007-07-31 2010-05-04 Corning Incorporation Glass compositions compatible with downdraw processing and methods of making and using thereof
JP5428287B2 (ja) * 2007-12-25 2014-02-26 日本電気硝子株式会社 ガラス板の製造方法及び製造設備
JP5327702B2 (ja) 2008-01-21 2013-10-30 日本電気硝子株式会社 ガラス基板の製造方法
TWI414502B (zh) * 2008-05-13 2013-11-11 Corning Inc 含稀土元素之玻璃材料及基板及含該基板之裝置
DE102009008292B4 (de) * 2009-02-10 2014-09-25 Schott Ag Kondensator und Verfahren zur Herstellung eines solchen
TWI494286B (zh) * 2009-03-19 2015-08-01 Nippon Electric Glass Co 無鹼玻璃
TWI543948B (zh) * 2009-05-07 2016-08-01 日本電氣硝子股份有限公司 玻璃基板及其製造方法
CN103204630B (zh) 2011-07-01 2020-06-09 安瀚视特控股株式会社 平面显示器用玻璃基板及其制造方法
KR101528396B1 (ko) * 2011-07-01 2015-06-11 아반스트레이트 가부시키가이샤 플랫 패널 디스플레이용 유리 기판

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009149512A (ja) * 1996-07-19 2009-07-09 Corning Inc ヒ素を含まないガラス
JP2009203080A (ja) * 2007-02-27 2009-09-10 Avanstrate Inc 表示装置用ガラス基板および表示装置
JP2010275167A (ja) * 2009-06-01 2010-12-09 Nippon Electric Glass Co Ltd ガラス基板の製造方法
JP2011126728A (ja) * 2009-12-16 2011-06-30 Avanstrate Inc ガラス組成物とそれを用いたフラットパネルディスプレイ用ガラス基板

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016199467A (ja) * 2011-07-01 2016-12-01 AvanStrate株式会社 フラットパネルディスプレイ用ガラス基板及びその製造方法
WO2013129368A1 (ja) * 2012-02-27 2013-09-06 旭硝子株式会社 無アルカリガラスの製造方法
JPWO2013129368A1 (ja) * 2012-02-27 2015-07-30 旭硝子株式会社 無アルカリガラスの製造方法
JP2014118313A (ja) * 2012-12-14 2014-06-30 Nippon Electric Glass Co Ltd ガラス及びガラス基板
JP2016102059A (ja) * 2015-12-25 2016-06-02 日本電気硝子株式会社 ガラス基板及びその製造方法
JP2017007940A (ja) * 2016-08-22 2017-01-12 日本電気硝子株式会社 ガラス及びガラス基板
JPWO2019181707A1 (ja) * 2018-03-20 2021-03-25 Agc株式会社 ガラス基板、液晶アンテナ及び高周波デバイス
CN115180824A (zh) * 2022-07-05 2022-10-14 河北光兴半导体技术有限公司 防火玻璃组合物、防火玻璃及其制备方法
CN115180824B (zh) * 2022-07-05 2024-01-16 河北光兴半导体技术有限公司 防火玻璃组合物、防火玻璃及其制备方法

Also Published As

Publication number Publication date
CN103052604A (zh) 2013-04-17
JP2013216562A (ja) 2013-10-24
JP6539250B2 (ja) 2019-07-03
TW201323371A (zh) 2013-06-16
CN103052604B (zh) 2015-12-23
JP2017071548A (ja) 2017-04-13
TWI598315B (zh) 2017-09-11
CN103204630A (zh) 2013-07-17
US20150218040A1 (en) 2015-08-06
JP5759957B2 (ja) 2015-08-05
TWI490183B (zh) 2015-07-01
JP6375265B2 (ja) 2018-08-15
US20130059718A1 (en) 2013-03-07
KR20130014062A (ko) 2013-02-06
KR101273847B1 (ko) 2013-06-11
TW201305083A (zh) 2013-02-01
CN103204630B (zh) 2020-06-09
US9029280B2 (en) 2015-05-12
JP2015231942A (ja) 2015-12-24
JPWO2013005680A1 (ja) 2015-02-23
US9580352B2 (en) 2017-02-28
KR20140018085A (ko) 2014-02-12
KR101523832B1 (ko) 2015-05-28
JP5172045B2 (ja) 2013-03-27

Similar Documents

Publication Publication Date Title
JP6420282B2 (ja) フラットパネルディスプレイ用ガラス基板及びその製造方法
JP6375265B2 (ja) フラットパネルディスプレイ用ガラス基板及びその製造方法
JP6149094B2 (ja) フラットパネルディスプレイ用ガラス基板およびその製造方法
JP6348100B2 (ja) フラットパネルディスプレイ用ガラス基板およびその製造方法
JP2017178711A (ja) 磁気記録媒体用ガラス基板及びその製造方法
TWI518045B (zh) 平板顯示器用玻璃基板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012530015

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201280002220.7

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20127031263

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12807433

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12807433

Country of ref document: EP

Kind code of ref document: A1