WO2013005353A1 - フォトダイオードアレイ、基準電圧決定方法、及び推奨動作電圧決定方法 - Google Patents

フォトダイオードアレイ、基準電圧決定方法、及び推奨動作電圧決定方法 Download PDF

Info

Publication number
WO2013005353A1
WO2013005353A1 PCT/JP2011/078085 JP2011078085W WO2013005353A1 WO 2013005353 A1 WO2013005353 A1 WO 2013005353A1 JP 2011078085 W JP2011078085 W JP 2011078085W WO 2013005353 A1 WO2013005353 A1 WO 2013005353A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
reverse bias
photodiode array
bias voltage
determined
Prior art date
Application number
PCT/JP2011/078085
Other languages
English (en)
French (fr)
Inventor
健一 里
正吾 鎌倉
中村 重幸
剛 太田
通人 平柳
裕樹 鈴木
俊介 足立
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to KR1020147000525A priority Critical patent/KR101883528B1/ko
Priority to CN201180072092.9A priority patent/CN103650166B/zh
Priority to RU2014103622/28A priority patent/RU2567089C2/ru
Priority to EP11869094.0A priority patent/EP2731148B1/en
Publication of WO2013005353A1 publication Critical patent/WO2013005353A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1446Devices controlled by radiation in a repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes

Definitions

  • the present invention relates to a photodiode array, a recommended operating voltage determination method for determining a recommended operating voltage of a reverse bias voltage applied to the photodiode array, and a reference voltage determination for determining a reference voltage for determining the recommended operating voltage. Regarding the method.
  • a photodiode array including a plurality of avalanche photodiodes operating in a Geiger mode and a quenching resistor connected in series to each avalanche photodiode is known (for example, see Patent Document 1). .
  • Such a photodiode array is used for an optical semiconductor element “MPPC” (registered trademark) for photon counting, as described in Patent Document 1.
  • the recommended operating voltage of the reverse bias voltage applied to the photodiode array is determined so as to obtain a desired gain (multiplier).
  • the recommended operating voltage is determined by the following method.
  • the multiplication factor of the photodiode array described above can be calculated from the output charge amount when the photodiode array detects photons. This multiplication factor varies depending on the reverse bias voltage applied to the photodiode array. Therefore, the reverse bias voltage when the multiplication factor calculated from the output charge amount becomes a desired value is obtained, and this reverse bias voltage is determined as the recommended operating voltage.
  • the multiplication factor is measured as follows.
  • An amplifier for example, a charge amplifier
  • a frequency distribution of the output charge amount is obtained from the output from the amplifier.
  • the frequency distribution of the output charge amount can be obtained by plotting the distribution of the accumulated charge amount per unit time.
  • the multiplication factor can be calculated based on the interval between adjacent peaks.
  • noise is generated due to thermally generated dark current carriers.
  • dark noise is multiplied and randomly generated, so that it is difficult to distinguish between dark noise and a photon detection signal. That is, it is difficult to distinguish between the occurrence frequency of dark noise (dark count) and the frequency of detecting a predetermined number of photons. For this reason, in the frequency distribution of the output charge amount, it is difficult for peaks to appear separately, and it is difficult to calculate the multiplication factor itself. In particular, when the area of the photodiode array is increased, the dark count increases, so that the problem that the multiplication factor is difficult to measure is more remarkable.
  • An amplifier is connected to the photodiode array to amplify the output from the photodiode array. For this reason, the measurement result greatly depends on the characteristic variation of the amplifier, and it is difficult to accurately calculate the multiplication factor.
  • the recommended operating voltage is determined based on the multiplication factor calculated from the output charge amount. Therefore, it is difficult to determine the recommended operating voltage accurately and easily.
  • the present invention relates to a reference voltage determination method and a recommended operation voltage determination capable of easily and accurately determining a recommended operating voltage of a reverse bias voltage applied to a photodiode array and a reference voltage for determining the recommended operating voltage. It is an object of the present invention to provide a photodiode array having a method and a multiplication factor determined based on a recommended operating voltage.
  • the present inventors have newly found the following facts as a result of research.
  • a reverse bias voltage is applied to a photodiode array having a quenching resistor in which a plurality of avalanche photodiodes operating in Geiger mode are arranged and one end of which is electrically connected to each of the plurality of avalanche photodiodes.
  • the current-voltage characteristics change as follows. That is, when the reverse bias voltage becomes equal to or higher than the breakdown voltage and enters the Geiger region and the avalanche photodiode starts to shift to the Geiger mode, the current value rises. An inflection point appears in a change in current with respect to the reverse bias voltage at the reverse bias voltage at which most avalanche photodiodes shift to the Geiger mode.
  • the present invention provides a reverse application applied to a photodiode array comprising a plurality of avalanche photodiodes operating in Geiger mode and a quenching resistor connected in series with each avalanche photodiode.
  • a reference voltage determining method for determining a reference voltage for determining a recommended operating voltage of a bias voltage measuring a current by changing a reverse bias voltage applied to a photodiode array, and changing a change in the measured current.
  • the reverse bias voltage at the inflection point is determined as the reference voltage.
  • the reverse bias voltage at the inflection point in the measured change in current is determined as the reference voltage.
  • the reference voltage it is difficult to be influenced by dark noise, and the reference voltage can be accurately determined.
  • an inflection point of the change is obtained by applying a reverse bias voltage and measuring a change in current with respect to the change in the reverse bias voltage. For this reason, the reference voltage can be easily determined.
  • the reverse bias voltage at which the first derivative of the measured current has a peak may be determined as the reference voltage. Further, a reverse bias voltage at which the twice differential of the measured current becomes zero may be determined as the reference voltage. In any case, the inflection point in the change in current can be obtained reliably.
  • the multiplication factor M of the photodiode array is expressed by the following relational expression.
  • M C ⁇ ⁇ V C is the junction capacitance of each avalanche photodiode.
  • ⁇ V is a reverse bias voltage at which most avalanche photodiodes enter Geiger mode, that is, a potential difference from a reference voltage. Therefore, if the difference between the recommended operating voltage and the reference voltage is determined, the multiplication factor M is uniquely determined.
  • ⁇ V that satisfies the above relational expression may be added to the reference voltage.
  • the present invention recommends a reverse bias voltage to be applied to a photodiode array comprising a plurality of avalanche photodiodes operating in Geiger mode and a quenching resistor connected in series with each avalanche photodiode.
  • a recommended operating voltage determining method for determining an operating voltage wherein a voltage obtained by adding a predetermined value to the reference voltage determined by the reference voltage determining method is determined as a recommended operating voltage.
  • the recommended operating voltage determination method a voltage obtained by adding a predetermined value to the reference voltage determined by the reference voltage determining method is determined as the recommended operating voltage.
  • the recommended operating voltage can be determined with high accuracy without being easily influenced by dark noise, and the recommended operating voltage can be easily determined.
  • the present inventors have newly found the following facts as a result of research.
  • the inflection point appears in the current change at the reverse bias voltage at which most avalanche photodiodes shift to Geiger mode.
  • the reverse bias voltage is further increased, there is a region in which the current dramatically increases due to the influence of an after pulse or the like. At this time, a new inflection point appears.
  • These inflection points are inflection points that change from convex downward to convex upward when the reverse bias voltage is increased. Therefore, by setting the reverse bias voltage in the curve portion between the two inflection points in the current change with respect to the reverse bias voltage as the recommended operating voltage, the recommended operating voltage can be easily and accurately determined. it can.
  • the present invention is applied to a photodiode array including a plurality of avalanche photodiodes operating in Geiger mode and a quenching resistor connected in series to each of the avalanche photodiodes.
  • a recommended operating voltage determination method for determining a recommended operating voltage for a reverse bias voltage wherein the current is measured by changing the reverse bias voltage applied to the photodiode array, and the change in the measured current changes from a convex downward upward
  • a reverse bias voltage at a curve portion between two inflection points that change to a convex shape is determined as a recommended operating voltage.
  • the reverse bias voltage at the curve portion between two inflection points that change from convex downward to convex upward in the measured change in current is determined as the recommended operating voltage.
  • the present invention provides a photodiode array comprising a plurality of avalanche photodiodes operating in Geiger mode, and a quenching resistor connected in series to each avalanche photodiode, wherein the recommended operating voltage is determined.
  • a multiplication factor based on the recommended operating voltage determined by the method is set.
  • the multiplication factor based on the recommended operation voltage determined with high accuracy is set, it is possible to suppress the variation of the multiplication factor.
  • a reference voltage determining method and a recommended operation capable of easily and accurately determining a recommended operating voltage of a reverse bias voltage applied to a photodiode array and a reference voltage for determining the recommended operating voltage.
  • a voltage determination method and a photodiode array in which a multiplication factor based on a recommended operating voltage is set can be provided.
  • FIG. 1 is a perspective view of a photodiode array according to the present embodiment.
  • 2 is a cross-sectional view (a) taken along the line II-II of the photodiode array shown in FIG. 1 and a circuit diagram (b) thereof.
  • FIG. 3 is an overall circuit diagram of the photodiode array according to the present embodiment.
  • FIG. 4 is a diagram showing changes in current with respect to the reverse bias voltage.
  • FIG. 5 is a diagram showing a result of differentiating the current-voltage characteristic shown in FIG. 4 once with respect to the current.
  • FIG. 1 is a perspective view of a photodiode array
  • FIG. 2 is a cross-sectional view (a) taken along the line II-II of the photodiode array shown in FIG.
  • FIG. 3 is an overall circuit diagram of the photodiode array.
  • a plurality of photodiodes D1 are formed on an N-type (first conductivity type) semiconductor substrate 1N.
  • Each photodiode D1 includes a P-type (second conductivity type) first semiconductor region 1PA formed on one surface side of the semiconductor substrate 1N, and a P-type (second type) formed in the first semiconductor region 1PA.
  • Conductivity type) second semiconductor region 1PB The second semiconductor region 1PB has a higher impurity concentration than the first semiconductor region 1PA.
  • the photodiode D1 has a first electrode E1 electrically connected to the semiconductor substrate 1N and a surface electrode E3 formed on the second semiconductor region 1PB.
  • the planar shape of the first semiconductor region 1PA is a quadrangle.
  • the second semiconductor region 1PB is located inside the first semiconductor region and has a quadrangular planar shape. The depth of the first semiconductor region 1PA is deeper than that of the second semiconductor region 1PB.
  • a semiconductor substrate 1 in FIG. 1 shows a substrate including both an N-type semiconductor substrate 1N and P-type semiconductor regions 1PA and 1PB.
  • the photodiode array 10 includes a first reflector E2 made of a metal layer and a resistance layer (quenching resistor) R1 for each photodiode D1.
  • the first reflector E2 is formed on the semiconductor substrate 1N outside the first semiconductor region 1PA via an insulating layer L (see FIG. 2).
  • the resistance layer R1 has one end continuous with the surface electrode E3 and extends along the surface of the insulating layer L on the first semiconductor region 1PA.
  • FIG. 1 the description of the insulating layer L shown in FIG. 2 is omitted for clarification of the structure.
  • 1st reflector E2 consists of reflector E21 which a plane shape consists of an L-shaped metal layer.
  • the first reflector E21 (E2) located on the semiconductor substrate 1N and the annular surface electrode E3 having the first opening are electrically isolated. That is, the anode and the cathode of the photodiode D1 are provided with electrodes, respectively, but one surface electrode E3 is electrically separated from the first reflector E2. Thereby, the 1st reflector E2 is clearly distinguished from the surface electrode E3, and the freedom degree of the design for arrange
  • the other end of the resistance layer R1 connected to each photodiode D1 is electrically connected to a common signal readout line TL via a wiring electrode continuous to the resistance layer R1 as necessary.
  • a pair of photodiodes adjacent to each other in the column direction are both connected to a signal readout line TL extending in the row direction via a resistance layer R1.
  • a plurality of pairs of photodiodes are respectively connected to one signal readout line TL via a resistance layer R1.
  • a plurality of signal lines TL extending in the row direction are aligned along the column direction.
  • a plurality of pairs of photodiodes are also connected to each signal line TL via a resistance layer R1.
  • Each signal line TL shown in FIG. 1 is finally all connected, and a circuit as shown in FIG. 3 is configured as one signal line TL in terms of circuit.
  • the resistance layer R1 has a higher resistivity than the surface electrode E3 to which it is connected, and has a higher resistivity than the first reflector E2.
  • the resistance layer R1 is made of polysilicon, and the remaining electrodes and reflectors are all made of a metal such as aluminum.
  • the semiconductor substrate 1 is made of Si, AuGe / Ni or the like is often used in addition to aluminum as the electrode material.
  • a Group 3 element such as B is used as the P-type impurity
  • a Group 5 element such as N, P, or As is used as the N-type impurity. Even if N-type and P-type semiconductors are substituted for each other to form an element, the element can function.
  • a diffusion method or an ion implantation method can be used.
  • the insulating layer L As a material of the insulating layer L, SiO 2 or SiN can be used. As a method for forming the insulating layer L, when the insulating layer L is made of, for example, SiO 2 , a thermal oxidation method or a sputtering method can be used.
  • a photodiode PN is formed by forming a PN junction between the N-type semiconductor substrate 1N and the P-type first semiconductor region 1PA.
  • the semiconductor substrate 1N is electrically connected to the first electrode E1 formed on the back surface of the substrate.
  • the first semiconductor region 1PA is connected to the surface electrode E3 via the second semiconductor region 1PB.
  • the resistance layer R1 is connected in series to the photodiode D1 (see FIG. 2B).
  • the individual photodiodes D1 are operated in the Geiger mode.
  • a reverse voltage (reverse bias voltage) larger than the breakdown voltage of the photodiode D1 is applied between the anode and the cathode of the photodiode D1. That is, the ( ⁇ ) potential V1 is applied to the anode and the (+) potential V2 is applied to the cathode.
  • the polarities of these potentials are relative, and one of the potentials can be a ground potential.
  • the anode is a P-type semiconductor region 1PA
  • the cathode is an N-type semiconductor substrate 1N.
  • the photodiode D1 functions as an avalanche photodiode. When light (photon) enters the photodiode D1, photoelectric conversion is performed inside the substrate to generate photoelectrons. In the region AVC near the PN junction interface of the P-type semiconductor region 1PA shown in FIG. 2A, avalanche multiplication is performed, and the amplified electron group flows toward the electrode E1.
  • the first reflector E2 is provided on the surface of the semiconductor substrate 1N outside the first semiconductor region 1PA having a relatively low impurity concentration with respect to the second semiconductor region 1PB.
  • the region of the exposed surface of the semiconductor substrate 1N is a dead space that hardly contributes to detection with respect to light incidence.
  • the first reflector E2 reflects incident light and makes it incident on a second reflector (for example, an inner surface of a metal package).
  • the second reflector reflects incident light again, and effectively guides the re-reflected light to the photodiode D1.
  • the other end of the resistance layer R1 connected to each photodiode D1 is electrically connected to a common signal readout line TL along the surface of the semiconductor substrate 1N.
  • the plurality of photodiodes D1 operate in Geiger mode, and each photodiode D1 is connected to a common signal line TL. For this reason, when photons are incident on a plurality of photodiodes D1 at the same time, the outputs of the plurality of photodiodes D1 are all input to a common signal line TL, and are measured as high-intensity signals according to the number of incident photons as a whole.
  • the A load resistor that causes a voltage drop for signal readout may be connected to the signal readout line TL.
  • the above-described structure is a front-illuminated photodiode array structure, but a back-illuminated photodiode array structure may be employed.
  • the thickness of the semiconductor substrate 1N may be reduced and the backside electrode E1 may be a transparent electrode.
  • the back surface side electrode E1 may be disposed at another position of the semiconductor substrate 1N (for example, the substrate surface side).
  • FIG. 4 is a diagram showing changes in current with respect to the reverse bias voltage.
  • FIG. 5 is a diagram showing a result of differentiating the current-voltage characteristic shown in FIG. 4 once with respect to the current.
  • a reverse bias voltage is applied to the photodiode array 10.
  • the output current is measured by changing the reverse bias voltage. That is, the current-voltage characteristic of the photodiode array 10 is measured.
  • an amplifier such as a charge amplifier
  • the reverse bias voltage entering the Geiger region can be predicted in advance. Therefore, the lower limit value for changing the reverse bias voltage does not need to be set to zero, and may be set to a voltage lower than the reverse bias voltage entering the Geiger region by a predetermined value. Thereby, the time for measuring the output current of the photodiode array 10 can be shortened.
  • FIG. 4 An example of the measurement result is shown in FIG. In FIG. 4, the measurement result of the five photodiode array 10 is shown. As can be seen from FIG. 4, each photodiode array 10 has different current-voltage characteristics IV1 to IV5. Therefore, it is necessary to set a multiplication factor for each photodiode array 10.
  • each photodiode array 10 As can be seen from the current-voltage characteristics IV1 to IV5 shown in FIG. 4, in each photodiode array 10, after the reverse bias voltage exceeds the breakdown voltage, the Geiger region is entered, and the photodiode D1 enters Geiger mode. Then, the value of the output current rises (portion indicated by arrow A1 in FIG. 4). The value of the reverse bias voltage at which the output current rises differs for each photodiode array 10.
  • the recommended operating voltage can be easily and accurately determined by setting the recommended operating voltage based on the reverse bias voltage at the inflection point of each of the current-voltage characteristics IV1 to IV5 as the reference voltage. can do.
  • the current-voltage characteristics IV1 to IV5 shown in FIG. 4 are differentiated with respect to the output current.
  • the results are shown in FIG.
  • each of the current-voltage characteristics IV1 to IV5 is differentiated once with respect to the output current.
  • the value differentiated once is divided by the output current.
  • the inflection point in the change of the output current with respect to the reverse bias voltage is represented by the peak of the first derivative of the output current (in FIG. 5, the arrow Part indicated by A3).
  • the reverse bias voltage at the inflection point is the reverse bias voltage at which most photodiodes D1 enter the Geiger mode. Therefore, the reverse bias voltage at which the most photodiodes D1 enter the Geiger mode is used as a reference voltage for determining the recommended operating voltage.
  • the reference voltage is different for each photodiode array 10.
  • the recommended operating voltage is a range that is equal to or higher than the reverse bias voltage (reference voltage) at which most photodiodes D1 enter Geiger mode and less than the reverse bias voltage at which afterpulses etc. increase dramatically, that is, the above two It is preferable to set the reverse bias voltage between the inflection points.
  • C is known because it is the junction capacitance of the photodiode D1. Therefore, the multiplication factor M is uniquely determined by determining ⁇ V. That is, a desired multiplication factor M can be obtained by determining a reverse bias voltage obtained by adding ⁇ V to the reference voltage as a recommended operating voltage.
  • the reverse bias voltage is determined as the recommended operating voltage.
  • V ref the reference voltage
  • V op the operating voltage obtained by adding a predetermined value ⁇ V to the reference voltage V ref
  • the recommended operating voltage is different for each photodiode array 10. However, since each photodiode array 10 has the same difference ⁇ V between the recommended operating voltage and the reference voltage, the multiplication factor M of each photodiode array 10 is the same.
  • the multiplication factor M becomes high, and the detection efficiency (PDE: Photon detection (Efficiency) is high, and there is an advantage that time resolution is improved.
  • PDE Photon detection (Efficiency)
  • time resolution is improved.
  • the detection efficiency PDE: Photon detection (Efficiency)
  • the recommended operating voltage is set lower than the reverse bias voltage that becomes the bottom of the downwardly convex curve portion in the differential characteristics Div1 to Div5 shown in FIG. 5
  • the multiplication factor M becomes low, dark count, crosstalk, And there is an advantage that the after pulse is reduced.
  • the predetermined value to be added to the reference voltage is determined in consideration of characteristics required for the photodiode array 10.
  • the reverse bias voltage at the inflection point in the measured change in the output current is determined as the reference voltage, and the voltage obtained by adding a predetermined value to the reference voltage is It is determined as the recommended operating voltage.
  • the reference voltage and the recommended operating voltage can be accurately determined without being affected by dark noise.
  • an inflection point of the change is obtained by applying a reverse bias voltage and measuring a change in the output current with respect to the change in the reverse bias voltage. For this reason, the reference voltage and the recommended operating voltage can be easily determined.
  • the multiplication factor M based on the recommended operating voltage determined with high accuracy is set. Therefore, it is possible to suppress the multiplication factor M from varying from one photodiode array 10 to another.
  • the reverse bias voltage at which the first derivative of the measured output current peaks is determined as the reference voltage.
  • the conventional recommended operating voltage determination method described above requires appropriate detection of light from the light source. For this reason, it is necessary to employ a configuration in which light (disturbance light) other than light from the light source does not enter the photodiode array, such as arranging a photodiode array in a dark box.
  • the photodiode array 10 detects the disturbance light and outputs it as an output current. That is, since disturbance light is also reflected in the output current, it is not necessary to employ a configuration in which disturbance light is not incident.
  • a configuration in which ambient light is not incident may be employed.
  • the measurement needs to be repeated thousands of times in order to obtain the frequency distribution, and the measurement time has to be long.
  • the change in output current (current-voltage characteristics) with respect to the reverse bias voltage of the photodiode array 10 may be measured, and the measurement time is extremely short.
  • the inflection point in the current change (current-voltage characteristic) with respect to the reverse bias voltage is obtained by one-time differentiation, but the present invention is not limited to this.
  • the inflection point can be obtained mathematically by double differentiation. Therefore, the reverse bias voltage at which the second derivative of the measured current becomes zero may be determined as the reference voltage.
  • the recommended operating voltage is determined based on the reference voltage.
  • the present invention is not limited to this.
  • the recommended operating voltage may be determined directly from the change in current with respect to the reverse bias voltage without determining the reference voltage.
  • the recommended operating voltage is obtained by dramatically increasing the inflection point and the after-pulse that are generated when the most photodiodes D1 shift to the Geiger mode in the current change with respect to the reverse bias voltage. It is preferable to set the reverse bias voltage between inflection points. Therefore, after obtaining the current-voltage characteristics IV1 to IV5 as shown in FIG. 4, when the reverse bias voltage is increased in the current-voltage characteristics IV1 to IV5, the convexity changes from downward to upward.
  • the reverse bias voltage at the curve portion between the two inflection points may be determined as the recommended operating voltage. This also makes it possible to determine the recommended operating voltage accurately and easily. Also in this case, the inflection point can be obtained by either one-time differentiation or two-time differentiation.
  • the present invention can be used for a photodiode array including a plurality of avalanche photodiodes operating in Geiger mode and a quenching resistor connected in series to each avalanche photodiode.
  • Photodiode array D1 ... Photodiode (avalanche photodiode), R1 ... Resistance layer (quenching resistor).

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Light Receiving Elements (AREA)

Abstract

 ガイガーモードで動作する複数のアバランシェフォトダイオードと、各アバランシェフォトダイオードに対して直列に接続されたクエンチング抵抗と、を備えているフォトダイオードアレイに逆バイアス電圧を印加する。印加する逆バイアス電圧を変化させて電流を測定し、測定した電流の変化における変曲点での逆バイアス電圧を基準電圧として決定する。決定された基準電圧に所定の値を加えて得た電圧を推奨動作電圧として決定する。

Description

フォトダイオードアレイ、基準電圧決定方法、及び推奨動作電圧決定方法
 本発明は、フォトダイオードアレイ、当該フォトダイオードアレイに印加する逆バイアス電圧の推奨動作電圧を決定する推奨動作電圧決定方法、及び、当該推奨動作電圧を決定するための基準電圧を決定する基準電圧決定方法に関する。
 ガイガーモードで動作する複数のアバランシェフォトダイオードと、それぞれのアバランシェフォトダイオードに対して直列に接続されたクエンチング抵抗と、を備えているフォトダイオードアレイが知られている(たとえば、特許文献1参照)。このようなフォトダイオードアレイは、特許文献1にも記載されているように、フォトンカウンティング用光半導体素子「MPPC」(登録商標)に用いられる。
特開2008-153311号公報
「MPPC(登録商標) Multi-Pixel Photon Counter 技術資料(2009年5月)」、浜松ホトニクス株式会社
 非特許文献1に記載されているように、上述したフォトダイオードアレイでは、所望のゲイン(増倍率)が得られるように、フォトダイオードアレイに印加する逆バイアス電圧の推奨動作電圧が決定される。一般に、推奨動作電圧の決定は、以下の手法により行われている。
 上述したフォトダイオードアレイの増倍率は、フォトダイオードアレイがフォトンを検出したときの出力電荷量から算出できる。この増倍率は、フォトダイオードアレイに印加される逆バイアス電圧によって変化する。したがって、出力電荷量から算出される増倍率が所望の値となるときの逆バイアス電圧を求め、この逆バイアス電圧を推奨動作電圧として決定する。
 ところで、増倍率は、次のようにして測定される。上述したフォトダイオードアレイに増幅器(たとえば、チャージアンプなど)を接続し、増幅器からの出力から、出力電荷量の度数分布を取る。出力電荷量の度数分布は、単位時間当たりの積算電荷量の分布をプロットすることにより得られる。出力電荷量の度数分布には、複数のピークが分離して現われ、隣り合うピークの間隔が、1フォトン検出分の出力電荷量に相当する。このため、隣り合うピークの間隔に基づいて、増倍率を算出することができる。
 しかしながら、上述した増倍率の測定手法は、以下のような問題点を有している。
 上述したフォトダイオードアレイは、固体素子であるため、熱的に発生した暗電流のキャリアによるノイズ(ダークノイズ)が発生する。特に、上述したフォトダイオードアレイでは、ダークノイズが増倍されると共にランダムに発生するため、ダークノイズとフォトンの検出信号とが区別し難い。すなわち、ダークノイズの発生頻度(ダークカウント)と所定数のフォトンを検出する頻度とを区別し難い。このため、出力電荷量の度数分布において、ピークが分離して現われ難くなり、増倍率そのものを算出することが困難である。特に、フォトダイオードアレイの大面積化を図る場合、ダークカウントが増加するため、増倍率の測定が困難となる問題はより顕著である。
 フォトダイオードアレイに増幅器を接続し、フォトダイオードアレイからの出力を増幅している。このため、測定結果が増幅器の特性ばらつきに大きく左右され、増倍率を精度良く算出することは困難である。
 したがって、上述した推奨動作電圧の決定手法では、出力電荷量から算出される増倍率に基づいて推奨動作電圧を決定するため、推奨動作電圧を精度良く且つ容易に決定することが困難である。
 本発明は、フォトダイオードアレイに印加する逆バイアス電圧の推奨動作電圧及び当該推奨動作電圧を決定するための基準電圧を容易に且つ精度良く決定することが可能な基準電圧決定方法及び推奨動作電圧決定方法、及び、推奨動作電圧に基づいて決まる増倍率が設定されたフォトダイオードアレイを提供することを目的とする。
 本発明者らは、調査研究の結果、以下のような事実を新たに見出した。
 ガイガーモードで動作する複数のアバランシェフォトダイオードが配列されていると共に複数のアバランシェフォトダイオードそれぞれに一端が電気的に接続されたクエンチング抵抗を備えているフォトダイオードアレイに逆バイアス電圧を印加し、当該逆バイアス電圧を変化させた場合、電流-電圧特性は、次のように変化する。すなわち、逆バイアス電圧が降伏(ブレークダウン)電圧以上となった後にガイガー領域に入り、アバランシェフォトダイオードがガイガーモードに移行し始めると、電流の値が立ち上がる。そして、最も多くのアバランシェフォトダイオードがガイガーモードに移行する逆バイアス電圧で、逆バイアス電圧に対する電流の変化に変曲点が現われる。これらは、複数のアバランシェフォトダイオードが並列接続されている構成と、各アバランシェフォトダイオードにクエンチング抵抗が直列接続されている構成と、に起因する。したがって、この変曲点における逆バイアス電圧を基準電圧とし、当該基準電圧に基づいて推奨動作電圧を設定することにより、当該推奨動作電圧を容易に且つ精度良く決定することができる。
 かかる事実を踏まえ、本発明は、ガイガーモードで動作する複数のアバランシェフォトダイオードと、それぞれのアバランシェフォトダイオードに対して直列に接続されたクエンチング抵抗と、を備えているフォトダイオードアレイに印加する逆バイアス電圧の、推奨動作電圧を決定するための基準電圧を決定する基準電圧決定方法であって、フォトダイオードアレイに印加する逆バイアス電圧を変化させて電流を測定し、測定した電流の変化における変曲点での逆バイアス電圧を基準電圧として決定する。
 本発明に係る基準電圧決定方法では、測定された電流の変化における変曲点での逆バイアス電圧が、基準電圧として決定される。これにより、ダークノイズの影響を受け難く、基準電圧を精度良く決定することができる。本発明では、逆バイアス電圧を印加し、逆バイアス電圧の変化に対する電流の変化を測定することで、当該変化の変曲点を求めている。このため、基準電圧を容易に決定することができる。
 測定した電流の一回微分がピークとなる逆バイアス電圧を基準電圧として決定してもよい。また、測定した電流の二回微分がゼロとなる逆バイアス電圧を基準電圧として決定してもよい。いずれの場合にも、電流の変化における変曲点を確実に求めることができる。
 ところで、フォトダイオードアレイの増倍率Mは、下記関係式で表される。
   M=C×ΔV
Cは、各アバランシェフォトダイオードの接合容量である。ΔVは、最も多くのアバランシェフォトダイオードがガイガーモードに移行する逆バイアス電圧、すなわち基準電圧からの電位差である。したがって、推奨動作電圧と基準電圧との差が決まれば、増倍率Mが一意的に決まる。逆に、所望の増倍率Mを得るためには、基準電圧に上記関係式を満たすΔVを加えればよい。
 本発明は、ガイガーモードで動作する複数のアバランシェフォトダイオードと、それぞれのアバランシェフォトダイオードに対して直列に接続されたクエンチング抵抗と、を備えているフォトダイオードアレイに印加する逆バイアス電圧の、推奨動作電圧を決定する推奨動作電圧決定方法であって、上記基準電圧決定方法にて決定された基準電圧に所定の値を加えて得た電圧を推奨動作電圧として決定する。
 本発明に係る推奨動作電圧決定方法では、上記基準電圧決定方法にて決定された基準電圧に所定の値を加えて得られた電圧が、推奨動作電圧として決定される。これにより、ダークノイズの影響を受け難く、推奨動作電圧を精度良くに決定することができると共に、推奨動作電圧を容易に決定することができる。
 本発明者らは、調査研究の結果、以下のような事実も新たに見出した。
 電流-電圧特性において、最も多くのアバランシェフォトダイオードがガイガーモードに移行する逆バイアス電圧で、電流の変化に変曲点が現われる。逆バイアス電圧を更に増大させていくと、電流がアフターパルスなどの影響により飛躍的に増大する領域が存在する。このとき、新たな変曲点が現われる。これらの変曲点は、逆バイアス電圧を増加させた際に、下に凸から上に凸に変わる変曲点である。したがって、逆バイアス電圧に対する電流の変化における、上記二つの変曲点の間の曲線部分における逆バイアス電圧を推奨動作電圧に設定することにより、当該推奨動作電圧を容易に且つ精度良く決定することができる。
 かかる事実を踏まえ、本発明は、ガイガーモードで動作する複数のアバランシェフォトダイオードと、それぞれの前記アバランシェフォトダイオードに対して直列に接続されたクエンチング抵抗と、を備えているフォトダイオードアレイに印加する逆バイアス電圧の、推奨動作電圧を決定する推奨動作電圧決定方法であって、フォトダイオードアレイに印加する逆バイアス電圧を変化させて電流を測定し、測定した電流の変化において、下に凸から上に凸に変わる二つの変曲点の間の曲線部分での逆バイアス電圧を推奨動作電圧として決定する。
 本発明に係る推奨動作電圧決定方法では、測定した電流の変化において、下に凸から上に凸に変わる二つの変曲点の間の曲線部分での逆バイアス電圧が、推奨動作電圧として決定される。これにより、ダークノイズの影響を受け難く、推奨動作電圧を精度良くに決定することができると共に、推奨動作電圧を容易に決定することができる。
 本発明は、ガイガーモードで動作する複数のアバランシェフォトダイオードと、それぞれのアバランシェフォトダイオードに対して直列に接続されたクエンチング抵抗と、を備えているフォトダイオードアレイであって、上記推奨動作電圧決定方法にて決定された推奨動作電圧に基づいた増倍率が設定されている。
 本発明に係るフォトダイオードアレイでは、精度良く決定された推奨動作電圧に基づいた増倍率が設定されているので、増倍率がばらつくのを抑制することができる。
 本発明によれば、フォトダイオードアレイに印加する逆バイアス電圧の推奨動作電圧及び当該推奨動作電圧を決定するための基準電圧を容易に且つ精度良く決定することが可能な基準電圧決定方法及び推奨動作電圧決定方法、及び、推奨動作電圧に基づいた増倍率が設定されたフォトダイオードアレイを提供することができる。
図1は、本実施形態に係るフォトダイオードアレイの斜視図である。 図2は、図1に示したフォトダイオードアレイのII-II矢印断面図(a)と、その回路図(b)である。 図3は、本実施形態に係るフォトダイオードアレイの全体の回路図である。 図4は、逆バイアス電圧に対する電流の変化を示す線図である。 図5は、図4に示された電流-電圧特性を電流について一回微分した結果を示す線図である。
 以下、添付図面を参照して、本発明の好適な実施形態について詳細に説明する。なお、説明において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。
 まず、図1~図3を参照して、本実施形態に係るフォトダイオードアレイの構成を説明する。図1は、フォトダイオードアレイの斜視図であり、図2は、図1に示したフォトダイオードアレイのII-II矢印断面図(a)と、その回路図(b)である。図3は、フォトダイオードアレイの全体の回路図である。
 フォトダイオードアレイ10では、複数のフォトダイオードD1(図3参照)がN型(第1導電型)の半導体基板1Nに形成されている。
 個々のフォトダイオードD1は、半導体基板1Nの一方の表面側に形成されたP型(第2導電型)の第1半導体領域1PAと、第1半導体領域1PA内に形成されたP型(第2導電型)の第2半導体領域1PBと、を有している。第2半導体領域1PBは、第1半導体領域1PAよりも高い不純物濃度を有する。フォトダイオードD1は、半導体基板1Nに電気的に接続された第1電極E1と、第2半導体領域1PB上に形成された表面電極E3と、を有している。第1半導体領域1PAの平面形状は、四角形である。第2半導体領域1PBは、第1半導体領域の内側に位置し、平面形状は四角形である。第1半導体領域1PAの深さは、第2半導体領域1PBよりも深い。図1中の半導体基板1は、N型の半導体基板1Nと、P型の半導体領域1PA,1PBの双方を含んだものを示している。
 フォトダイオードアレイ10は、個々のフォトダイオードD1毎に、金属層からなる第1反射体E2と、抵抗層(クエンチング抵抗)R1と、を備えている。第1反射体E2は、第1半導体領域1PAの外側の半導体基板1N上に、絶縁層L(図2参照)を介して形成されている。抵抗層R1は、その一方端が表面電極E3に連続し、第1半導体領域1PA上の絶縁層Lの表面に沿って延びている。図1では、構造の明確化のため、図2に示した絶縁層Lの記載を省略している。
 第1反射体E2は、平面形状がL字型の金属層からなる反射体E21からなる。半導体基板1N上に位置する第1反射体E21(E2)と、第1開口を有する環状の表面電極E3とは、電気的に隔離されている。すなわち、フォトダイオードD1のアノードとカソードには、それぞれ電極が設けられるが、一方の表面電極E3は、第1反射体E2から電気的に分離している。これにより、第1反射体E2は、表面電極E3とは明確に区別され、反射に適した箇所にこれを配置するための設計の自由度が増加している。個々のフォトダイオードD1に接続される抵抗層R1の他方端は、必要に応じて抵抗層R1に連続した配線電極を介して、共通の信号読出線TLに電気的に接続されている。
 図1においては、列方向に隣接する一対のフォトダイオード(半導体領域1PAの直下の領域)は、共に、抵抗層R1を介して、行方向に延びる信号読出線TLに接続されている。1つの信号読出線TLには、複数対のフォトダイオードが、それぞれ抵抗層R1を介して接続されている。行方向に延びる信号線TLは、列方向に沿って複数本整列している。個々の信号線TLに対しても、同様に複数対のフォトダイオードが、それぞれ、抵抗層R1を介して接続されている。図1に示される各信号線TLは、最終的には全て接続され、回路的には1本の信号線TLとして、図3に示されるような回路を構成する。
 抵抗層R1は、これが接続される表面電極E3よりも抵抗率が高く、また、第1反射体E2よりも抵抗率が高い。具体的には、抵抗層R1は、ポリシリコンからなり、残りの電極及び反射体は全てアルミニウムなどの金属からなる。半導体基板1がSiからなる場合には、電極材料としては、アルミニウムの他に、AuGe/Niなどもよく用いられる。Siを用いた場合におけるP型不純物としてはBなどの3族元素が用いられ、N型不純物としては、N、P又はAsなどの5族元素が用いられる。半導体の導電型であるN型とP型は、互いに置換して素子を構成しても、当該素子を機能させることができる。これらの不純物の添加方法としては、拡散法やイオン注入法を用いることができる。
 絶縁層Lの材料としては、SiO又はSiNを用いることができる。絶縁層Lの形成方法としては、絶縁層LがたとえばSiOからなる場合には、熱酸化法やスパッタ法を用いることができる。
 上述した構造の場合、N型の半導体基板1NとP型の第1半導体領域1PAとの間に、PN接合が構成されることで、フォトダイオードD1が形成されている。半導体基板1Nは、基板裏面に形成された第1電極E1に電気的に接続されている。第1半導体領域1PAは、第2半導体領域1PBを介して、表面電極E3に接続されている。抵抗層R1はフォトダイオードD1に対して直列に接続されている(図2の(b)参照)。
 フォトダイオードアレイ10においては、個々のフォトダイオードD1をガイガーモードで動作させる。ガイガーモードでは、フォトダイオードD1のブレークダウン電圧よりも大きな逆方向電圧(逆バイアス電圧)をフォトダイオードD1のアノード/カソード間に印加する。すなわち、アノードには(-)電位V1を、カソードには(+)電位V2を印加する。これらの電位の極性は相対的なものであり、一方の電位をグランド電位とすることも可能である。
 アノードはP型の半導体領域1PAであり、カソードはN型の半導体基板1Nである。フォトダイオードD1は、アバランシェフォトダイオードとして機能する。フォトダイオードD1に光(フォトン)が入射すると、基板内部で光電変換が行われて光電子が発生する。図2の(a)に示されたP型半導体領域1PAのPN接合界面の近傍領域AVCにおいて、アバランシェ増倍が行われ、増幅された電子群は電極E1に向けて流れる。
 第1反射体E2は、第2半導体領域1PBに対して、相対的に低不純物濃度の第1半導体領域1PAの外側の半導体基板1Nの表面上に設けられている。半導体基板1Nの露出面の領域は、光入射に対しては、殆ど検出に寄与しないデッドスペースである。第1反射体E2は、入射した光を反射し、第2反射体(たとえば、金属パッケージ内面など)に入射させる。第2反射体は、入射した光を再度反射させ、再反射された光を、有効にフォトダイオードD1に導く。
 個々のフォトダイオードD1に接続された抵抗層R1の他方端は、半導体基板1Nの表面に沿って共通の信号読出線TLに電気的に接続されている。複数のフォトダイオードD1は、ガイガーモードで動作しており、各フォトダイオードD1は、共通の信号線TLに接続されている。このため、複数のフォトダイオードD1に同時にフォトンが入射した場合、複数のフォトダイオードD1の出力は全て共通の信号線TLに入力され、全体としては入射フォトン数に応じた高強度の信号として計測される。信号読出線TLには、信号読み出し用の電圧降下が生じる負荷抵抗を接続してもよい。
 上述した構造は、表面入射型のフォトダイオードアレイの構造であるが、裏面入射型のフォトダイオードアレイの構造を採用してもよい。この場合には、半導体基板1Nの厚みを薄くして、裏面側の電極E1を透明電極とすればよい。裏面側の電極E1を、半導体基板1Nの別の位置(例えば基板表面側)に配置してもよい。
 次に、図4~図5を参照して、フォトダイオードアレイ10の基準電圧決定方法、推奨動作電圧決定方法、及び増倍率設定方法について説明する。図4は、逆バイアス電圧に対する電流の変化を示す線図である。図5は、図4に示された電流-電圧特性を電流について一回微分した結果を示す線図である。
 まず、フォトダイオードアレイ10に、逆バイアス電圧を印加する。そして、逆バイアス電圧を変化させて、出力電流を測定する。すなわち、フォトダイオードアレイ10の電流-電圧特性を測定する。このとき、必ずしも、チャージアンプなどの増幅器をフォトダイオードアレイ10に接続する必要はない。増幅器の特性ばらつきの影響を無くすためには、フォトダイオードアレイ10に増幅器を接続しないことが好ましい。出力電流の代わりに、フォトダイオードアレイ10への入力電流を測定してもよい。
 フォトダイオードアレイ10において、ガイガー領域に入る逆バイアス電圧は予め予測できる。したがって、逆バイアス電圧を変化させる際の下限値は、ゼロに設定する必要はなく、ガイガー領域に入る逆バイアス電圧より所定の値だけ低い電圧に設定すればよい。これにより、フォトダイオードアレイ10の出力電流を測定する時間の短縮化を図ることができる。
 測定結果の一例を図4に示す。図4では、五体のフォトダイオードアレイ10の測定結果が示されている。図4から分かるように、各フォトダイオードアレイ10で、電流-電圧特性IV1~IV5が異なる。したがって、個々のフォトダイオードアレイ10に対して、増倍率を設定する必要がある。
 図4に示された各電流-電圧特性IV1~IV5から分かるように、フォトダイオードアレイ10それぞれにおいて、逆バイアス電圧が降伏電圧以上となった後にガイガー領域に入り、フォトダイオードD1がガイガーモードに移行し始めると、出力電流の値が立ち上がる(図4中、矢印A1で示される部分)。出力電流が立ち上がる逆バイアス電圧の値は、フォトダイオードアレイ10毎で異なる。
 逆バイアス電圧が高くなるにしたがって、ガイガーモードに移行するフォトダイオードD1の数が増えて、出力電流が増加する。そして、各電流-電圧特性IV1~IV5には、ガイガーモードに移行するフォトダイオードD1の数が最も多い逆バイアス電圧で、出力電流の変化に変曲点が現われる(図4中、矢印A2で示される部分)。したがって、各電流-電圧特性IV1~IV5の変曲点での逆バイアス電圧を基準電圧とし、当該基準電圧に基づいて推奨動作電圧を設定することにより、当該推奨動作電圧を容易に且つ精度良く決定することができる。
 逆バイアス電圧に対する出力電流の変化における変曲点を求めるために、図4に示された各電流-電圧特性IV1~IV5を出力電流について微分する。結果を図5に示す。ここでは、各電流-電圧特性IV1~IV5を出力電流について一回微分している。また、規格化のために、一回微分した値を出力電流で除している。
 図5に示された微分特性Div1~Div5から分かるように、逆バイアス電圧に対する出力電流の変化における変曲点は、出力電流の一回微分がピークとなって表される(図5中、矢印A3で示される部分)。変曲点での逆バイアス電圧が、最も多くのフォトダイオードD1がガイガーモードに移行する逆バイアス電圧である。したがって、最も多くのフォトダイオードD1がガイガーモードに移行する逆バイアス電圧を、推奨動作電圧を決定するための基準電圧とする。基準電圧は、フォトダイオードアレイ10毎で異なる。
 図5に示された微分特性Div1~Div5では、出力電流の一回微分が、一度ピークを迎えた後に、再度ピークを迎えている(図5中、矢印A4で示される部分)。これは、逆バイアス電圧を増加させるにしたがって、アフターパルスなどが飛躍的に増大した結果である。すなわち、逆バイアス電圧に対する出力電流の変化には、最も多くのフォトダイオードD1がガイガーモードに移行することにより生じる変曲点とは別に、アフターパルスなどの影響により出力電流が飛躍的に増大することにより生じる変曲点が現われる。これらの変曲点は、逆バイアス電圧を増加させた際に、下に凸から上に凸に変わる変曲点である。したがって、推奨動作電圧は、最も多くのフォトダイオードD1がガイガーモードに移行する逆バイアス電圧(基準電圧)以上で且つアフターパルスなどが飛躍的に増大する逆バイアス電圧未満の範囲、すなわち上述した二つの変曲点間となる逆バイアス電圧に設定することが好ましい。
 続いて、所望の増倍率を得るための推奨動作電圧を決定する。フォトダイオードアレイ10の増倍率Mは、上述したように、M=C×ΔVで表される。Cは、フォトダイオードD1の接合容量であるため、既知である。したがって、ΔVが決まることにより、増倍率Mが一意に決定される。すなわち、基準電圧にΔVを加えた逆バイアス電圧を推奨動作電圧として決定することにより、所望の増倍率Mが得られる。
 たとえば、図5に示された各微分特性Div1~Div5においてピークとなる逆バイアス電圧(基準電圧)から所定の値を加えて、各微分特性Div1~Div5における下に凸の曲線部分の底となる逆バイアス電圧を推奨動作電圧として決定する。具体例として、図5には、微分特性Div1に関し、ピークとなる基準電圧Vrefと、基準電圧Vrefに所定の値ΔVを加えて得られる推奨動作電圧Vopと、が示されている。推奨動作電圧は、フォトダイオードアレイ10毎で異なる。しかしながら、各フォトダイオードアレイ10において、推奨動作電圧と基準電圧との差ΔVが同じであるため、各フォトダイオードアレイ10の増倍率Mは同じである。
 推奨動作電圧を、図5に示された各微分特性Div1~Div5における下に凸の曲線部分の底となる逆バイアス電圧よりも高く設定する場合、増倍率Mが高くなり、検出効率(PDE:Photon Detection Efficiency)が高く、時間分解能が向上するメリットがある。反面、ダークカウント、クロストーク、及びアフターパルスが増加するデメリットがある。推奨動作電圧を、図5に示された微分特性Div1~Div5における下に凸の曲線部分の底となる逆バイアス電圧よりも低く設定する場合、増倍率Mが低くなり、ダークカウント、クロストーク、及びアフターパルスが減少するメリットがある。反面、検出効率が低く、時間分解能が悪化するデメリットがある。したがって、基準電圧に加える上記所定の値は、フォトダイオードアレイ10に求める特性を考慮して、決定される。
 以上のように、本実施形態では、測定された出力電流の変化における変曲点での逆バイアス電圧が、基準電圧として決定され、当該基準電圧に所定の値を加えて得られた電圧が、推奨動作電圧として決定されている。これにより、ダークノイズの影響を受け難く、基準電圧及び推奨動作電圧を精度良く決定することができる。本実施形態では、逆バイアス電圧を印加し、逆バイアス電圧の変化に対する出力電流の変化を測定することにより、当該変化の変曲点を求めている。このため、基準電圧及び推奨動作電圧を容易に決定することができる。
 そして、本実施形態では、精度良く決定された推奨動作電圧に基づいた増倍率Mが設定されている。したがって、増倍率Mがフォトダイオードアレイ10毎でばらつくのを抑制することができる。
 本実施形態では、測定した出力電流の一回微分がピークとなる逆バイアス電圧を基準電圧として決定している。これにより、出力電流の変化における変曲点を確実に求めることができる。
 上述した従来の推奨動作電圧の決定手法では、光源からの光を適切に検出する必要がある。このため、暗箱内にフォトダイオードアレイを配置するなど、フォトダイオードアレイに光源からの光以外の光(外乱光)が入射しない構成を採用する必要がある。しかしながら、本実施形態の基準電圧及び推奨動作電圧の決定方法では、外乱光がフォトダイオードアレイ10に入射した場合でも、フォトダイオードアレイ10が外乱光を検出し、出力電流として出力する。すなわち、外乱光も出力電流に反映されることから、外乱光が入射しない構成を採用する必要はない。もちろん、本実施形態においても、外乱光が入射しない構成を採用してもよい。
 上述した従来の推奨動作電圧の決定手法では、度数分布を得るために、測定を数千回繰り返す必要があり、測定時間が長くならざるを得なかった。しかしながら、本実施形態では、フォトダイオードアレイ10の逆バイアス電圧に対する出力電流の変化(電流-電圧特性)を測定すればよく、測定時間が極めて短い。
 以上、本発明の好適な実施形態について説明してきたが、本発明は必ずしも上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で様々な変更が可能である。
 本実施形態では、逆バイアス電圧に対する電流の変化(電流-電圧特性)における変曲点を一回微分により求めているが、これに限られない。変曲点は、数学的には、二回微分によっても求めることができる。したがって、測定した電流の二回微分がゼロとなる逆バイアス電圧を基準電圧として決定してもよい。
 本実施形態では、基準電圧を決定した後に、当該基準電圧に基づいて推奨動作電圧を決定しているが、これに限られない。たとえば、基準電圧を決定することなく、逆バイアス電圧に対する電流の変化から直接的に推奨動作電圧を決定してもよい。
 上述したように、推奨動作電圧は、逆バイアス電圧に対する電流の変化において、最も多くのフォトダイオードD1がガイガーモードに移行することにより生じる変曲点と、アフターパルスなどが飛躍的に増大することにより生じる変曲点の間となる逆バイアス電圧に設定することが好ましい。したがって、図4に示されるような電流-電圧特性IV1~IV5を得た後に、当該電流-電圧特性IV1~IV5において、逆バイアス電圧を増加させた際に、下に凸から上に凸に変わる二つの変曲点の間の曲線部分での逆バイアス電圧を推奨動作電圧として決定してもよい。これによっても、推奨動作電圧を精度良く且つ容易に決定することができる。この場合にも、変曲点は、一回微分又は二回微分のいずれかにより求めることができる。
 本発明は、ガイガーモードで動作する複数のアバランシェフォトダイオードと、それぞれのアバランシェフォトダイオードに対して直列に接続されたクエンチング抵抗と、を備えているフォトダイオードアレイに利用できる。
 10…フォトダイオードアレイ、D1…フォトダイオード(アバランシェフォトダイオード)、R1…抵抗層(クエンチング抵抗)。

Claims (6)

  1.  ガイガーモードで動作する複数のアバランシェフォトダイオードと、それぞれの前記アバランシェフォトダイオードに対して直列に接続されたクエンチング抵抗と、を備えているフォトダイオードアレイに印加する逆バイアス電圧の、推奨動作電圧を決定するための基準電圧を決定する基準電圧決定方法であって、
     前記フォトダイオードアレイに印加する逆バイアス電圧を変化させて電流を測定し、測定した電流の変化における変曲点での逆バイアス電圧を前記基準電圧として決定する。
  2.  請求項1に記載の基準電圧決定方法であって、
     測定した電流の一回微分がピークとなる逆バイアス電圧を前記基準電圧として決定する。
  3.  請求項1に記載の基準電圧決定方法であって、
     測定した電流の二回微分がゼロとなる逆バイアス電圧を前記基準電圧として決定する。
  4.  ガイガーモードで動作する複数のアバランシェフォトダイオードと、それぞれの前記アバランシェフォトダイオードに対して直列に接続されたクエンチング抵抗と、を備えているフォトダイオードアレイに印加する逆バイアス電圧の、推奨動作電圧を決定する推奨動作電圧決定方法であって、
     請求項1~3のいずれか一項に記載の基準電圧決定方法にて決定された基準電圧に所定の値を加えて得た電圧を前記推奨動作電圧として決定する。
  5.  ガイガーモードで動作する複数のアバランシェフォトダイオードと、それぞれの前記アバランシェフォトダイオードに対して直列に接続されたクエンチング抵抗と、を備えているフォトダイオードアレイに印加する逆バイアス電圧の、推奨動作電圧を決定する推奨動作電圧決定方法であって、
     前記フォトダイオードアレイに印加する逆バイアス電圧を変化させて電流を測定し、測定した電流の変化において、下に凸から上に凸に変わる二つの変曲点の間の曲線部分での逆バイアス電圧を推奨動作電圧として決定する。
  6.  ガイガーモードで動作する複数のアバランシェフォトダイオードと、それぞれの前記アバランシェフォトダイオードに対して直列に接続されたクエンチング抵抗と、を備えているフォトダイオードアレイであって、
     請求項4又は5に記載の推奨動作電圧決定方法にて決定された推奨動作電圧に基づいた増倍率が設定されている。
PCT/JP2011/078085 2011-07-04 2011-12-05 フォトダイオードアレイ、基準電圧決定方法、及び推奨動作電圧決定方法 WO2013005353A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147000525A KR101883528B1 (ko) 2011-07-04 2011-12-05 포토 다이오드 어레이, 기준 전압 결정 방법, 및 권장 동작 전압 결정 방법
CN201180072092.9A CN103650166B (zh) 2011-07-04 2011-12-05 光电二极管阵列、基准电压决定方法及推荐动作电压决定方法
RU2014103622/28A RU2567089C2 (ru) 2011-07-04 2011-12-05 Матрица фотодиодов, способ определения опорного напряжения и способ определения рекомендуемого рабочего напряжения
EP11869094.0A EP2731148B1 (en) 2011-07-04 2011-12-05 Photodiode array, reference voltage determining method, and recommended operation voltage determining method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011148308A JP5808592B2 (ja) 2011-07-04 2011-07-04 基準電圧決定方法及び推奨動作電圧決定方法
JP2011-148308 2011-07-04

Publications (1)

Publication Number Publication Date
WO2013005353A1 true WO2013005353A1 (ja) 2013-01-10

Family

ID=47436722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078085 WO2013005353A1 (ja) 2011-07-04 2011-12-05 フォトダイオードアレイ、基準電圧決定方法、及び推奨動作電圧決定方法

Country Status (8)

Country Link
US (1) US9153608B2 (ja)
EP (1) EP2731148B1 (ja)
JP (1) JP5808592B2 (ja)
KR (1) KR101883528B1 (ja)
CN (1) CN103650166B (ja)
RU (1) RU2567089C2 (ja)
TW (1) TWI525850B (ja)
WO (1) WO2013005353A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8907290B2 (en) * 2012-06-08 2014-12-09 General Electric Company Methods and systems for gain calibration of gamma ray detectors
JP6162595B2 (ja) * 2013-12-19 2017-07-12 浜松ホトニクス株式会社 光検出器
JP6223881B2 (ja) 2014-03-18 2017-11-01 株式会社東芝 光検出器
WO2015162445A1 (fr) 2014-04-25 2015-10-29 Arcelormittal Investigación Y Desarrollo Sl Procede et dispositif de preparation de toles d'acier aluminiees destinees a etre soudees puis durcies sous presse; flan soude correspondant
JP2016062996A (ja) * 2014-09-16 2016-04-25 株式会社東芝 光検出器
US9927537B2 (en) 2014-12-15 2018-03-27 General Electric Company Systems and methods for positron emission tomography signal isolation
GB201704203D0 (en) 2017-03-16 2017-05-03 Pixquanta Ltd An electromagnetic radiation detection device
CN107275433B (zh) * 2017-03-29 2018-12-04 湖北京邦科技有限公司 一种新型半导体光电倍增器件
JP2018078304A (ja) * 2017-12-07 2018-05-17 株式会社東芝 光検出器
JP6862386B2 (ja) * 2018-03-22 2021-04-21 株式会社東芝 光検出器、ライダー装置、及び光検出器の製造方法
JP2020048019A (ja) * 2018-09-18 2020-03-26 ソニーセミコンダクタソリューションズ株式会社 受光素子および測距システム
EP3660473A1 (en) 2018-11-30 2020-06-03 STMicroelectronics (Research & Development) Limited Apparatus & method for controlling the voltage applied to a single photon avalanche photodiode (spad)
KR20210117436A (ko) 2020-03-19 2021-09-29 강장석 동물 사체 처리 방법 및 이를 수행하는 장치
JP2020129674A (ja) * 2020-04-20 2020-08-27 株式会社東芝 光検出器
KR102615564B1 (ko) 2021-05-03 2024-01-08 농업회사법인 대흥바이오 주식회사 폐사축 호기호열 부숙장치
CN114739433B (zh) * 2022-04-15 2023-12-26 北京京东方光电科技有限公司 一种光电传感器信号读取电路及光电传感器装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004547A1 (fr) * 2006-07-03 2008-01-10 Hamamatsu Photonics K.K. Ensemble photodiode
JP2010536186A (ja) * 2007-08-10 2010-11-25 センスル・テクノロジーズ・リミテッド シリコンフォトマルチプライヤ回路に関連する方法及び装置
JP2011003739A (ja) * 2009-06-18 2011-01-06 Hamamatsu Photonics Kk フォトダイオードアレイ

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2712081A (en) * 1955-06-28 Method for neutron well logging x
US3577125A (en) * 1968-10-16 1971-05-04 Itt Monolithic electronic switching network having variable voltage levels
US4493745A (en) * 1984-01-31 1985-01-15 International Business Machines Corporation Optical emission spectroscopy end point detection in plasma etching
JP3273047B2 (ja) * 1991-07-26 2002-04-08 アジレント・テクノロジー株式会社 電流−電圧特性測定方法
US5532474A (en) * 1993-12-17 1996-07-02 Eg&G Limited Active quench circuit and reset circuit for avalanche photodiode
JP3421103B2 (ja) * 1993-12-20 2003-06-30 浜松ホトニクス株式会社 アバランシェフォトダイオードを用いた光検出回路
US5721424A (en) * 1996-06-10 1998-02-24 Alcatel Network Systems, Inc. Avalanche photodiode apparatus biased with a modulating power signal
US5953690A (en) * 1996-07-01 1999-09-14 Pacific Fiberoptics, Inc. Intelligent fiberoptic receivers and method of operating and manufacturing the same
US6649075B1 (en) * 1996-07-23 2003-11-18 Applied Materials, Inc. Method and apparatus for measuring etch uniformity of a semiconductor wafer
RU2102821C1 (ru) 1996-10-10 1998-01-20 Зираддин Ягуб-оглы Садыгов Лавинный фотодиод
US5929982A (en) * 1997-02-04 1999-07-27 Tektronix, Inc. Active APD gain control for an optical receiver
US6879422B2 (en) * 1999-12-24 2005-04-12 Avanex Corporation Method of analog modulation and optical emitter using this method
US6858829B2 (en) 2001-06-20 2005-02-22 Agilent Technologies, Inc. Avalanche photodiode array biasing device and avalanche photodiode structure
US6654215B2 (en) * 2001-08-10 2003-11-25 The Boeing Company Photodetector circuit with avalanche photodiode
GB0201260D0 (en) 2002-01-21 2002-03-06 Europ Org For Nuclear Research A sensing and imaging device
WO2004100200A2 (en) * 2003-05-01 2004-11-18 Yale University Solid state microchannel plate photodetector
JP3956923B2 (ja) * 2003-09-19 2007-08-08 住友電気工業株式会社 アバランシェフォトダイオードのバイアス電圧制御回路
US7683308B2 (en) * 2004-01-12 2010-03-23 Ecole Polytechnique Federale de Lausanne EFPL Controlling spectral response of photodetector for an image sensor
CN100363724C (zh) 2004-02-24 2008-01-23 华东师范大学 双门控雪崩光电二极管单光子探测方法
US7103288B2 (en) * 2004-03-17 2006-09-05 Nortel Networks Limited Dynamic control of photodiode bias voltage
US20050224697A1 (en) * 2004-04-08 2005-10-13 Naoki Nishiyama Light-receiving circuit capable of expanding a dynamic range of an optical input
US7547872B2 (en) * 2005-02-14 2009-06-16 Ecole Polytechnique Federale De Lausanne Integrated circuit comprising an array of single photon avalanche diodes
US7501628B2 (en) * 2005-02-14 2009-03-10 Ecole Polytechnique Federale De Lausanne Epfl Transducer for reading information stored on an optical record carrier, single photon detector based storage system and method for reading data from an optical record carrier
EP1875273B1 (en) * 2005-04-22 2011-11-16 Koninklijke Philips Electronics N.V. Pet/mr scanner with time-of-flight capability
US7612340B2 (en) * 2005-08-03 2009-11-03 Drs Sensors & Targeting Systems, Inc. Method of operating an avalanche photodiode for reducing gain normalized dark current
US7439481B2 (en) * 2005-09-09 2008-10-21 Allied Telesyn, Inc. In-situ power monitor having an extended range to stabilize gain of avalanche photodiodes across temperature variations
JP2007279017A (ja) * 2006-03-15 2007-10-25 Omron Corp レーダ装置
WO2007120674A2 (en) * 2006-04-10 2007-10-25 Quantum Molecular Technologies, Inc. Imaging apparatus and systems, and related methods
EP2036586B1 (en) 2006-07-04 2015-09-09 Toppan Printing Co., Ltd. Method for manufacturing microneedle
JP2008153311A (ja) 2006-12-14 2008-07-03 Sumitomo Electric Ind Ltd 半導体受光素子、視界支援装置および生体医療装置
US7897906B2 (en) 2007-03-23 2011-03-01 Excelitas Canada Inc. Double quench circuit for an avalanche current device
SE531025C2 (sv) 2007-04-02 2008-11-25 Bo Cederwall System och metod för fotondetektion och för mätning av fotonflöden
IT1392366B1 (it) * 2008-12-17 2012-02-28 St Microelectronics Rousset Fotodiodo operante in modalita' geiger con resistore di soppressione integrato e controllabile, schiera di fotodiodi e relativo procedimento di fabbricazione
JP5185207B2 (ja) 2009-02-24 2013-04-17 浜松ホトニクス株式会社 フォトダイオードアレイ
IT1393781B1 (it) * 2009-04-23 2012-05-08 St Microelectronics Rousset Fotodiodo operante in modalita' geiger con resistore di soppressione integrato e controllabile ad effetto jfet, schiera di fotodiodi e relativo procedimento di fabbricazione
JP5297907B2 (ja) 2009-06-18 2013-09-25 浜松ホトニクス株式会社 光検出装置
WO2011127348A2 (en) * 2010-04-08 2011-10-13 Bae Systems Information And Electronic Systems Integration Inc. Dc bias evaluation in an ac coupled circuit via transient gain response

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008004547A1 (fr) * 2006-07-03 2008-01-10 Hamamatsu Photonics K.K. Ensemble photodiode
JP2010536186A (ja) * 2007-08-10 2010-11-25 センスル・テクノロジーズ・リミテッド シリコンフォトマルチプライヤ回路に関連する方法及び装置
JP2011003739A (ja) * 2009-06-18 2011-01-06 Hamamatsu Photonics Kk フォトダイオードアレイ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHRISTOPHER J. STAPELS ET AL.: "Characterization of a CMOS Geiger Photodiode Pixel", IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 53, no. 4, April 2006 (2006-04-01), pages 631 - 635, XP055141402 *

Also Published As

Publication number Publication date
KR101883528B1 (ko) 2018-07-30
US20130009266A1 (en) 2013-01-10
KR20140037917A (ko) 2014-03-27
TWI525850B (zh) 2016-03-11
EP2731148A4 (en) 2015-03-18
EP2731148A1 (en) 2014-05-14
RU2567089C2 (ru) 2015-10-27
CN103650166B (zh) 2016-02-10
US9153608B2 (en) 2015-10-06
TW201304180A (zh) 2013-01-16
CN103650166A (zh) 2014-03-19
JP5808592B2 (ja) 2015-11-10
JP2013016637A (ja) 2013-01-24
EP2731148B1 (en) 2016-06-22
RU2014103622A (ru) 2015-08-10

Similar Documents

Publication Publication Date Title
JP5808592B2 (ja) 基準電圧決定方法及び推奨動作電圧決定方法
JP5872197B2 (ja) フォトダイオードアレイモジュール
JP5297276B2 (ja) フォトダイオードアレイ
JP5791461B2 (ja) 光検出装置
JP6282368B2 (ja) 光検出装置
JP6650261B2 (ja) 光電変換素子
JP6663167B2 (ja) 光検出装置
JP5869293B2 (ja) 放射線検出装置
JP5297907B2 (ja) 光検出装置
JP6140868B2 (ja) 半導体光検出素子
JP5823813B2 (ja) 放射線検出器
JP5927334B2 (ja) 光検出装置
JP5911629B2 (ja) 光検出装置
JP6186038B2 (ja) 半導体光検出素子
US20230282655A1 (en) Photodetector having an Avalanche Photodiode, Radiation Detector, Positron Emission Tomograph and Method for Operating a Photodetector
US20230358534A1 (en) Photodetector and distance measuring system
JP6244403B2 (ja) 半導体光検出素子
JP6282307B2 (ja) 半導体光検出素子
JP5989872B2 (ja) 光検出装置の接続構造
JP6116728B2 (ja) 半導体光検出素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869094

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147000525

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011869094

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014103622

Country of ref document: RU

Kind code of ref document: A