WO2013002243A1 - 太陽電池モジュール及び太陽電池モジュールの製造方法 - Google Patents

太陽電池モジュール及び太陽電池モジュールの製造方法 Download PDF

Info

Publication number
WO2013002243A1
WO2013002243A1 PCT/JP2012/066338 JP2012066338W WO2013002243A1 WO 2013002243 A1 WO2013002243 A1 WO 2013002243A1 JP 2012066338 W JP2012066338 W JP 2012066338W WO 2013002243 A1 WO2013002243 A1 WO 2013002243A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
tab wire
terminal box
film
current collecting
Prior art date
Application number
PCT/JP2012/066338
Other languages
English (en)
French (fr)
Inventor
正弘 西本
大地 森
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to KR1020147001721A priority Critical patent/KR20140062028A/ko
Priority to US14/127,626 priority patent/US20140124034A1/en
Priority to EP12805080.4A priority patent/EP2725626A1/en
Priority to CN201280031909.2A priority patent/CN103650152A/zh
Publication of WO2013002243A1 publication Critical patent/WO2013002243A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/02002Arrangements for conducting electric current to or from the device in operations
    • H01L31/02005Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier
    • H01L31/02008Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules
    • H01L31/0201Arrangements for conducting electric current to or from the device in operations for device characterised by at least one potential jump barrier or surface barrier for solar cells or solar cell modules comprising specially adapted module bus-bar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • H02S30/10Frame structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell having a positive electrode and a negative electrode facing one side and provided with a terminal box tab wire, and more particularly, to a connection between a terminal box tab wire and a current collecting tab wire for electrode extraction. .
  • This application claims priority on the basis of Japanese Patent Application No. 2011-141986 filed on Jun. 27, 2011 in Japan. This application is incorporated herein by reference. Incorporated.
  • thin-film solar cells in which a semiconductor layer, which is a photoelectric conversion layer, is formed on a substrate such as glass or stainless steel will be thin and light, low in manufacturing cost, and easy to increase in area. It is considered to become the mainstream of solar cells.
  • These thin-film solar cells are obtained by laminating a semiconductor layer or a metal electrode film on an inexpensive substrate with a large area using a forming apparatus such as a plasma CVD apparatus or a sputtering apparatus, and then producing the photoelectric conversion on the same substrate.
  • the solar cell string is formed by separating and connecting the layers by laser patterning or the like.
  • FIG. 7 shows an example of the configuration of a thin-film solar cell constituting a conventional solar cell string.
  • the thin-film solar cell 100 includes a plurality of solar cells 102 in which a transparent electrode film made of a transparent conductive film (not shown), a photoelectric conversion layer, and a back electrode film are stacked on a light-transmitting insulating substrate 101.
  • Each solar battery cell 102 has a long and narrow strip shape, and has a length extending over almost the entire width of the translucent insulating substrate 101.
  • the thin-film solar battery 100 is configured such that a plurality of solar battery cells 102 are connected in series by connecting one transparent electrode film and the other back electrode film between adjacent solar battery cells 102 and 102. Has been.
  • a linear P-type electrode terminal portion 103 having substantially the same length as the solar cell 102 is formed.
  • a linear N-type electrode terminal portion 104 having substantially the same length as that of the solar battery cell 102 is formed.
  • the P-type electrode terminal portion 103 and the N-type electrode terminal portion 104 are electrode extraction portions.
  • the positive electrode current collecting tab wire 105 made of copper foil is electrically and mechanically bonded to the entire surface of the P-type electrode terminal portion 103 called a bus bar.
  • a negative electrode current collecting tab wire 106 made of copper foil is electrically and mechanically bonded to the entire surface of the N-type electrode terminal portion 104 to the N-type electrode terminal portion 104.
  • a terminal box 110 connected to the P-type electrode terminal portion 103 and the N-type electrode terminal portion 104 and outputting electricity to the outside, and this terminal A terminal box tab wire 111 that connects the box 110 to the P-type electrode terminal portion 103 and the N-type electrode terminal portion 104 is connected.
  • the terminal box 110 is fixed to the center of the back surface of the thin-film solar cell 100 through an insulating adhesive, for example.
  • the terminal box tab wire 111 is made of a long copper foil or Al foil, like the positive electrode current collecting tab wire 105 or the negative electrode current collecting tab wire 106, and the back surface of the thin film solar cell 100 and the insulating tape 112 are connected to each other. It is arranged via.
  • the terminal box tab wire 111 has one end soldered to the terminal box 110 and the other end disposed on the P-type electrode terminal portion 103 or the N-type electrode terminal portion 104 via the insulating tape 112.
  • connection portion between the terminal box tab wire 111 and the positive electrode current collecting tab wire 105 is connected to both sides of the insulating tape 112 and the terminal box tab wire 111.
  • the third positive electrode current collecting tab wire 105c is connected across the insulating tape 112 and the terminal box tab wire 111 between the second positive electrode current collecting tab wires 105a and 105b.
  • the third positive electrode current collecting tab wire 105 c is connected to the terminal box tab wire 111.
  • the connection (one place) with the tab wire 111 is performed by ultrasonic soldering.
  • the connection between the negative electrode current collecting tab wire 106 and the terminal box tab wire 111 is the same.
  • the P-type electrode terminal portion 103 and the N-type electrode terminal portion 104 are formed of various materials such as Al, Ag, and ZnO depending on the manufacturing method, configuration, and the like.
  • the connection strength between the electric tab wire 105 and the negative electrode current collecting tab wire 106 cannot be maintained. For this reason, there exists a possibility of causing the raise of connection resistance value and the fall of power generation efficiency.
  • connection between the first and second positive current collecting tab wires 105a and 105b and the third positive current collecting tab wire 105c, and the third positive current collecting tab wire 105c and the terminal box tab wire 111 are provided.
  • the heat history in the high temperature region accompanying the solder connection is locally applied, so that the translucent insulating substrate 101 made of glass or the like may be warped or damaged.
  • an object of the present invention is to provide a solar cell module and a method for manufacturing the solar cell module that can prevent the connection strength of the tab wire for the terminal box and the warp and breakage of the light-transmitting insulating substrate.
  • a solar cell module includes a solar cell in which a positive electrode and a negative electrode are disposed on one surface, and a conductive adhesive layer containing conductive particles.
  • a pair of power extraction tab wires connected on the positive electrode and the negative electrode and an insulating adhesive layer not containing conductive particles are provided on one surface of the solar cell, and one end is on the positive electrode and the negative electrode.
  • the manufacturing method of the solar cell module which concerns on this invention is a pair of terminal box via the insulating adhesive layer which does not contain electroconductive particle on the said surface of the solar cell by which the positive electrode and the negative electrode are arrange
  • end portions of the tab wires for the terminal box are disposed on the positive electrode and the negative electrode through the insulating adhesive layer, and a pair of power extraction tab wires are electrically conductive.
  • the terminal box tab is connected to the positive electrode and the negative electrode of the solar cell via the conductive adhesive layer containing particles, and is connected to the positive electrode and the negative electrode via the conductive adhesive layer. Connect on the end of the wire.
  • the contact area between the terminal box tab wire and the power extraction tab wire via the conductive adhesive layer Increase in connection strength and increase in resistance value can be prevented.
  • FIG. 1 is a view showing a solar cell to which the present invention is applied, in which (A) is a perspective view showing a state before connection of tab wires, and (B) is a plan view showing a state in which tab wires are connected. It is.
  • FIG. 2 is an exploded perspective view of the solar cell module.
  • FIG. 3 is a cross-sectional view showing a connection portion between a current collecting tab line and a terminal box tab line.
  • FIG. 4 is a cross-sectional view showing the configuration of the conductive adhesive film.
  • FIG. 5 is a cross-sectional view showing a current collecting tab line to which a conductive adhesive film is attached.
  • FIG. 6 is a cross-sectional view showing another configuration example of the insulating adhesive layer.
  • FIG. 1 is a view showing a solar cell to which the present invention is applied, in which (A) is a perspective view showing a state before connection of tab wires, and (B) is a plan view showing a state in which tab wire
  • FIG. 7 is an exploded perspective view showing an example of a conventional thin film solar cell.
  • 8A and 8B are diagrams showing an example of a conventional thin film solar cell, where FIG. 8A is a plan view and FIG. 8B is a cross-sectional view at an electrode terminal portion.
  • a thin film solar cell 1 to which the present invention is applied constitutes a solar cell string in which a plurality of solar cells 2 are connected by contact lines.
  • the thin-film solar cell 1 having this string structure is composed of a single piece or a matrix in which a plurality of pieces are connected together with a sealant sheet 3 and a backsheet 5 provided on the back surface side.
  • the solar cell module 6 is formed by laminating together.
  • the solar cell module 6 is appropriately attached with a metal frame 7 such as aluminum around it.
  • sealing agent for example, a translucent sealing material such as ethylene vinyl acetate resin (EVA) is used.
  • EVA ethylene vinyl acetate resin
  • back sheet 5 a laminated body in which glass or aluminum foil is sandwiched between resin films is used.
  • a transparent electrode film made of a transparent conductive film, a photoelectric conversion layer, and a back electrode film are laminated in this order on a translucent insulating substrate 8 although not shown.
  • This is a super-straight type solar cell in which light is incident from the translucent insulating substrate 8 side.
  • a substrate type solar cell formed in order of the base material, the back surface electrode, the photoelectric converting layer, and the transparent electrode in the thin film solar cell.
  • the super straight type thin film solar cell 1 will be described as an example, but the present technology can also be used for a substrate type thin film solar cell.
  • a heat resistant resin such as glass or polyimide can be used.
  • the transparent electrode film for example, SnO 2 , ZnO, ITO or the like can be used.
  • a silicon-based photoelectric conversion film such as amorphous silicon, microcrystalline silicon, or polycrystalline silicon, or a compound-based photoelectric conversion film such as CdTe, CuInSe 2 , or Cu (In, Ga) Se 2 can be used. .
  • the back electrode film has a laminated structure of a transparent conductive film and a metal film.
  • a transparent conductive film For the transparent electrode film, SnO 2 , ZnO, ITO, or the like can be used. Silver, aluminum, or the like can be used for the metal film.
  • the thin-film solar cell 1 configured in this way has a plurality of rectangular solar cells 2 having a length extending over almost the entire width of the light-transmitting insulating substrate 8.
  • Each solar battery cell 2 is separated by an electrode dividing line, and one transparent electrode film and the other back electrode film are connected to each other in the adjacent solar battery cells 2 and 2 by a contact line.
  • a solar battery string in which the solar battery cells 2 are connected in series is configured.
  • the thin-film solar cell 1 is formed with a linear P-type electrode terminal portion 9 having substantially the same length as the solar cell 2 on the end of the transparent electrode film of the solar cell 2 at one end of the solar cell string.
  • a linear N-type electrode terminal portion 10 having substantially the same length as that of the solar battery cell 2 is formed on the end of the back electrode film of the solar battery cell 2 at the other end.
  • the P-type electrode terminal portion 9 and the N-type electrode terminal portion 10 serve as an electrode extraction portion, and electricity is supplied to the terminal box 23 through the positive electrode current collecting tab wire 11 and the negative electrode current collecting tab wire 15. Supply.
  • the positive electrode current collecting tab wire 11 and the negative electrode current collecting tab wire 15 are formed by, for example, slitting a copper foil or aluminum foil rolled to a thickness of 50 to 300 ⁇ m, or rolling a thin metal wire such as copper or aluminum into a flat plate shape. By doing so, it is a rectangular wire having a width of 1 to 3 mm which is substantially the same width as the P-type electrode terminal portion 9 and the N-type electrode terminal portion 10.
  • the positive current collecting tab wire 11 is electrically and mechanically joined to the P-type electrode terminal portion 9 via the conductive adhesive layer 16, and the negative current collecting tab wire 15 is connected to the N-type electrode terminal portion 10. Electrically and mechanically joined through the conductive adhesive layer 16.
  • the conductive adhesive layer 16 is provided on each surface 11 a, 15 a of the positive current collecting tab wire 11 and the negative current collecting tab wire 15.
  • the conductive adhesive layer 16 is provided on the entire surfaces 11 a and 15 a of the positive electrode current collecting tab wire 11 and the negative electrode current collecting tab wire 15, and is composed of, for example, a conductive adhesive film 17.
  • the conductive adhesive film 17 includes a thermosetting binder resin layer 18 containing conductive particles 19 at a high density.
  • the conductive adhesive film 17 preferably has a minimum melt viscosity of 100 to 100,000 Pa ⁇ s from the viewpoint of indentability. If the minimum melt viscosity of the conductive adhesive film 17 is too low, the resin flows in the process of low pressure bonding to main curing, and connection failure or protrusion to the cell light receiving surface is likely to occur, which causes a decrease in the light receiving rate. Moreover, even if the minimum melt viscosity is too high, defects are likely to occur when the film is adhered, and the connection reliability may be adversely affected.
  • the minimum melt viscosity can be measured while a sample is loaded in a predetermined amount of rotational viscometer and raised at a predetermined temperature increase rate.
  • the conductive particles 19 used for the conductive adhesive film 17 are not particularly limited.
  • metal particles such as nickel, gold, silver, and copper, those obtained by applying gold plating to resin particles, and gold plating on resin particles. And the like.
  • the conductive particles may be a powder in which one particle or one particle exists individually, but it is preferable that the conductive particles have a chain shape in which primary particles are connected.
  • An example of the former is a spherical nickel powder having spike-like protrusions, and an example of the latter that is preferably used is a filamentous nickel powder.
  • the conductive particles 19 have elasticity, the connection reliability between the positive electrode current collector tab wire 11 and the P-type electrode terminal portion 9 having different physical properties, and the negative electrode current collector tab wire 15 and the N-type electrode. Connection reliability with the terminal portion 10 can be improved.
  • the conductive adhesive film 17 preferably has a viscosity of about 10 to 10,000 kPa ⁇ s, more preferably 10 to 5,000 kPa ⁇ s near normal temperature. Since the conductive adhesive film 17 has a viscosity in the range of 10 to 10000 kPa ⁇ s, the conductive adhesive film 17 is provided on one surface 11a, 15a of the positive electrode current collecting tab wire 11 or the negative electrode current collecting tab wire 15, and the reel In the case of being wound around 21, blocking due to so-called protrusion can be prevented, and a predetermined tack force can be maintained.
  • composition of the binder resin layer 18 of the conductive adhesive film 17 is not particularly limited as long as it does not impair the above-described characteristics, but more preferably a film-forming resin, a liquid epoxy resin, a latent curing agent, and a silane. Containing a coupling agent.
  • the film-forming resin corresponds to a high molecular weight resin having an average molecular weight of 10,000 or more, and preferably has an average molecular weight of about 10,000 to 80,000 from the viewpoint of film formation.
  • various resins such as an epoxy resin, a modified epoxy resin, a urethane resin, and a phenoxy resin can be used.
  • a phenoxy resin is preferably used from the viewpoint of the film formation state, connection reliability, and the like. .
  • the liquid epoxy resin is not particularly limited as long as it has fluidity at room temperature, and all commercially available epoxy resins can be used.
  • Specific examples of such epoxy resins include naphthalene type epoxy resins, biphenyl type epoxy resins, phenol novolac type epoxy resins, bisphenol type epoxy resins, stilbene type epoxy resins, triphenolmethane type epoxy resins, phenol aralkyl type epoxy resins.
  • Resins, naphthol type epoxy resins, dicyclopentadiene type epoxy resins, triphenylmethane type epoxy resins, and the like can be used. These may be used alone or in combination of two or more. Moreover, you may use it combining suitably with other organic resins, such as an acrylic resin.
  • the latent curing agent various curing agents such as a heat curing type and a UV curing type can be used.
  • the latent curing agent does not normally react but is activated by some trigger and starts the reaction.
  • the trigger includes heat, light, pressurization, etc., and can be selected and used depending on the application.
  • a thermosetting latent curing agent is suitably used, and the main curing is performed by heating and pressing the bus bar electrode 11 and the back electrode 13.
  • a latent curing agent made of imidazoles, amines, sulfonium salts, onium salts, or the like can be used.
  • silane coupling agent epoxy, amino, mercapto sulfide, ureido, etc. can be used.
  • an epoxy-type silane coupling agent is used preferably. Thereby, the adhesiveness in the interface of an organic material and an inorganic material can be improved.
  • an inorganic filler as another additive composition.
  • an inorganic filler silica, talc, titanium oxide, calcium carbonate, magnesium oxide and the like can be used, and the kind of the inorganic filler is not particularly limited.
  • FIG. 5 is a diagram schematically showing an example of a product form of the conductive adhesive film 17.
  • the conductive adhesive film 17 is formed in a tape shape by laminating a binder resin layer 18 on a peeling substrate 20.
  • the tape-like conductive adhesive film 17 is wound and laminated on the reel 21 so that the peeling substrate 20 is on the outer peripheral side.
  • the peeling base material 20 PET (Poly * Ethylene * Terephthalate), OPP (Oriented * Polypropylene), PMP (Poly-4-methlpentene-1), PTFE (Polytetrafluoroethylene) etc. can be used.
  • the positive electrode current collecting tab wire 11 and the negative electrode current collecting tab wire 15 described above are integrally laminated on the binder resin layer 18.
  • the conductive adhesive film 17 is laminated by laminating a binder resin layer 18 on a wide ribbon copper foil, and further slitting it with a slitter.
  • the electroconductive adhesive film 17 with a peeling base material is laminated
  • the peeling substrate 20 is peeled off in actual use.
  • the positive electrode current collecting tab wire 11, the negative electrode current collecting tab wire 15, and each electrode are obtained by sticking the binder resin layer 18 of the conductive adhesive film 17 onto the P-type electrode terminal portion 9 or the N-type electrode terminal portion 10. Temporary pasting with the terminal portions 9 and 10 is achieved.
  • the conductive adhesive film 17 described above dissolves conductive particles 19, a film-forming resin, a liquid epoxy resin, a latent curing agent, and a silane coupling agent in a solvent.
  • a solvent toluene, ethyl acetate or the like, or a mixed solvent thereof can be used.
  • the solution for resin production obtained by dissolving is applied on the peeling substrate 20 and the solvent is volatilized to obtain the conductive adhesive film 17. Thereafter, as described above, the conductive adhesive film 17 is laminated and integrated on one surface 11a, 15a of the positive electrode current collecting tab wire 11 or the negative electrode current collecting tab wire 15, and the positive electrode current collecting tab wire 11 or the negative electrode current collecting tab wire 11 is integrated.
  • the electric tab wire 15 is formed over the entire surface 11a, 15a.
  • the positive electrode current collecting tab wire 11 and the negative electrode current collecting tab wire 15 are placed on the P-type electrode terminal portion 9 and the N-type electrode terminal portion 10 via the conductive adhesive film 17 provided on one surface 11a, 15a. Temporarily pasted. At this time, as will be described later, one end 24 a of the terminal box tab wire 24 is temporarily installed on the P-type electrode terminal portion 9 and the N-type electrode terminal portion 10 via the insulating adhesive layer 22. .
  • the thin-film solar cell 1 has the conductive adhesive film 17, the positive electrode current collecting tab wire 11, the negative electrode current collecting tab wire 15, and the terminal.
  • the box tab wires 24 are heat-pressed by a vacuum laminator and connected together.
  • the conductive adhesive film 17 is thermally pressed at a predetermined temperature and pressure by a vacuum laminator, so that the binder resin becomes between the P-type electrode terminal portion 9 and the positive electrode current collecting tab wire 11 and N And the conductive particles 19 are sandwiched between the current collecting tab wires 11 and 15 and the electrode terminal portions 9 and 10 and are discharged from between the mold electrode terminal portion 10 and the negative electrode current collecting tab wire 15, In this state, the binder resin is cured. Thereby, the conductive adhesive film 17 adheres the current collecting tab wires 11 and 15 to the electrode terminal portions 9 and 10, and also collects the current collecting tab wires 11 and 15 and the electrode terminal portions 9 and 10. Can be electrically connected.
  • the conductive adhesive layer 16 may not be laminated in advance on the one surface 11 a or 15 a of the positive electrode current collecting tab wire 11 or the negative electrode current collecting tab wire 15.
  • the conductive adhesive layer 16 may use a paste-like conductive adhesive paste in addition to the film-like conductive adhesive film.
  • the film-like conductive adhesive film 17 containing the conductive particles 19 and the paste-like conductive adhesive paste are defined as “conductive adhesive”.
  • Such a conductive adhesive layer 16 has a predetermined length corresponding to the P-type electrode terminal portion 9 or the N-type electrode terminal portion 10 when the conductive adhesive film 17 is joined to the positive electrode current collecting tab wire 11 or the like. And is temporarily attached on the P-type electrode terminal portion 9 and the N-type electrode terminal portion 10 of the thin-film solar cell 1. Alternatively, the conductive adhesive layer 16 is applied with a conductive adhesive paste on the P-type electrode terminal portion 9 and the N-type electrode terminal portion 10. Next, the positive electrode current collecting tab wire 11 and the negative electrode current collecting tab wire 15 cut to a predetermined length are placed on the conductive adhesive layer 16 so as to be conductively connected by being thermally pressurized.
  • Terminal box On the back electrode film of the thin-film solar cell 1, a terminal box 23 that is electrically connected to the positive current collecting tab wire 11 and the negative current collecting tab wire 15 via the terminal box tab wire 24 is provided. ing. The terminal box 23 is electrically connected to an external output line, and supplies the power collected by the positive current collecting tab wire 11 and the negative current collecting tab wire 15 to the outside.
  • the terminal box 23 is fixed on the back electrode film of the thin-film solar cell 1 through an insulating adhesive film 25 whose details are omitted.
  • the insulating adhesive film 25 has substantially the same components as the above-described conductive adhesive film 17 except that the conductive particles 19 are not included, and the binder resin layer is thermally cured to make the terminal box 23 a thin film solar cell. 1 is fixed on the back electrode film. Insulating adhesive film 25 does not react with the back electrode film even when temporarily bonded on the back electrode film of thin-film solar cell 1 by mixing a chemically stable fluorine-based resin. Corrosion can be prevented.
  • the terminal box 23 is provided on the back electrode film of the thin-film solar cell 1 at a position along substantially the middle in the width direction orthogonal to the longitudinal direction of the positive electrode current collecting tab wire 11 and the negative electrode current collecting tab wire 15. Accordingly, the terminal box tab wires 24 of the same size can be used on the positive electrode current collecting tab wire 11 side and the negative electrode current collecting tab wire 15 side.
  • the terminal box tab wire 24 for connecting the terminal box 23 with the positive electrode current collecting tab wire 11 and the negative electrode current collecting tab wire 15 is the same as the positive electrode current collecting tab wire 11 and the negative electrode current collecting tab wire 15.
  • it is a rectangular wire obtained by slitting a copper foil or an aluminum foil rolled to a thickness of 50 to 300 ⁇ m, or by rolling a thin metal wire such as copper or aluminum into a flat plate shape.
  • the terminal box tab wire 24 is provided on the back electrode film of the thin-film solar cell 1 through the insulating adhesive layer 22.
  • the terminal box tab wire 24 is prevented from short-circuiting with the back electrode film of the thin film solar cell 1 by interposing the insulating adhesive layer 22 between the back electrode film of the thin film solar cell 1.
  • the insulating adhesive layer 22 is provided over the entire surface in advance in contact with the back electrode film of the thin film solar cell 1 of the terminal box tab wire 24, for example, by an insulating adhesive film 25. Composed.
  • the insulating adhesive film 25 has the same configuration as that of the conductive adhesive film 17 except that the binder resin layer does not contain conductive particles.
  • the insulating adhesive layer 22 is constituted by a flexible substrate 31 with an insulating adhesive layer 30 or a film 33 with an insulating adhesive layer 32 as shown in FIG. 6 in addition to the insulating adhesive film 25. May be.
  • the flexible substrate 31 and the film 33 are provided with insulating adhesive layers 30 and 32 on one surface to which at least the terminal box tab wire 24 is connected.
  • the adhesive layer 34 it is optional to form the adhesive layer 34 on the other surface facing the back electrode film of the thin film solar cell 1, and the Si-based adhesive is used as the adhesive layer 34 formed on the other surface. You may make it lightly stop on the back surface electrode film of the thin film solar cell 1 using an agent.
  • the insulating adhesive layer 22 such as the insulating adhesive film 25 preferably has a width equal to or larger than the width of the terminal box tab wire 24. Thereby, the insulating adhesive film 25 can insulate the tab wire 24 for terminal boxes and the back surface electrode film of the thin film solar cell 1 reliably.
  • At least a pair of terminal box tab wires 24 are provided on the back electrode film of the thin-film solar cell 1, one of which connects the P-type electrode terminal 9 and the terminal box 23, and the other of which is the N-type electrode terminal 10 and the terminal.
  • the box 23 is connected.
  • the terminal box tab wire 24 has one end 24 a disposed on the P-type electrode terminal portion 9 and the N-type electrode terminal portion 10, and the other end 24 b connected to the terminal box 23.
  • the positive electrode current collecting tab wire 11 and the negative electrode current collecting tab wire 15 are superimposed on the one end 24 a via the conductive adhesive layer 16.
  • the P-type electrode terminal portion 9 and the N-type electrode terminal portion. 10 is connected to one end 24a of a terminal box tab wire 24 via an insulating adhesive layer 22 such as an insulating adhesive film 25, and conductive adhesive such as the conductive adhesive film 17 on the side surface and upper surface of the one end 24a.
  • the positive electrode current collecting tab wire 11 or the negative electrode current collecting tab wire 15 is connected through the agent layer 16.
  • the thin-film solar cell 1 has the terminal box tab wire 24 and the positive electrode current collecting tab through the conductive adhesive film 17 as compared with the configuration in which the terminal box tab wire is connected to the current collecting tab wire.
  • the contact area with the wire 11 or the negative electrode current collecting tab wire 15 is increased, so that the connection strength can be improved and the resistance value can be prevented from increasing.
  • the thin film solar cell 1 connects the terminal box tab wire 24, the positive electrode current collector tab wire 11 and the negative electrode current collector tab wire 15 in a lump using a vacuum laminator, air bubbles are mixed in the connection location.
  • the connection reliability can be improved over a long period of time.
  • a terminal box tab wire 24 in which an insulating adhesive layer 22 such as an insulating adhesive film 25 is formed on one surface in advance is temporarily pasted on the back electrode film of the thin-film solar cell 1, and one end 24 a of the tab wire 24 is P This is performed by temporarily pasting on the mold electrode terminal portion 9 and the N-type electrode terminal portion 10. Further, in this step, after the insulating adhesive film 25 is temporarily attached along the connection portion of the terminal box tab wire 24 on the back electrode film of the thin film solar cell 1, the insulating film 25 is used on the insulating adhesive film 25. You may carry out by sticking the tab line 24 temporarily.
  • the terminal box tab wire 24 to which the insulating adhesive film 25 is attached, and the temporary attachment of the insulating adhesive film 25 and the terminal box tab wire 24 are adhered to such an extent that the insulating adhesive film 25 is not fully cured by roll lamination. It is carried out by applying heat and pressure until it exhibits the characteristics. Further, the terminal box tab wire 24 is connected to the terminal box 23 after the other end 24b is made conductive by peeling off the insulating adhesive layer 22 by using a blade and heat.
  • Insulating adhesive layer 22 such as insulating adhesive film 25 is formed to have a width equal to or larger than the width of terminal box tab wire 24, so that insulating adhesive layer 22 is formed into a thin film and terminal box tab wire 24.
  • the back electrode film of the solar cell 1 can be reliably insulated.
  • the positive electrode current collecting tab wire 11 and the negative electrode current collecting tab wire 15 are connected to the P-type electrode terminal portion 9 and the N-type electrode terminal portion 10 through the conductive adhesive layer 16, and the P-type.
  • the terminal box tab wire 24 is connected to one end 24 a via the conductive adhesive layer 16.
  • the positive electrode current collecting tab wire 11 and the negative electrode current collecting tab wire 15 in which the conductive adhesive layer 16 such as the conductive adhesive film 17 is formed on one surface in advance are formed on the P-type electrode terminal portion 9 and the N-type.
  • This is performed by temporarily attaching the conductive adhesive layer 16 on the electrode terminal portion 10 and on one end 24a of the terminal box tab wire 24 disposed on the electrode terminal portions 9 and 10.
  • this process is performed by conducting conductive bonding on the P-type electrode terminal portion 9, the N-type electrode terminal portion 10, and one end 24 a of the terminal box tab wire 24 disposed on the electrode terminal portions 9, 10.
  • the positive electrode current collecting tab wire 11 or the negative electrode current collecting tab wire 15 may be temporarily installed on the conductive adhesive film 17.
  • the conductive adhesive film 17 is fully cured by roll lamination. It is carried out by applying heat and pressure until it exhibits tackiness to such an extent that it does not.
  • the positive electrode current collecting tab wire 11 and the negative electrode current collecting tab wire 15 are temporarily installed across the one end 24 a of the terminal box tab wire 24 through the conductive adhesive film 17.
  • the thin film solar cell 1 to which the insulating adhesive film 25, the terminal box tab wire 24, the conductive adhesive film 17, the positive electrode current collecting tab wire 11 and the negative electrode current collecting tab wire 15 are temporarily attached is the back electrode.
  • the sheet 3 and the back sheet 5 of a light-transmitting sealing material such as EVA provided on the film side they are laminated together by a vacuum laminator.
  • the insulating adhesive film 25 is thermally cured to connect the terminal box tab wire 24 onto the back electrode film of the thin film solar cell 1.
  • the one end 24 a is connected to the P-type electrode terminal portion 9 or the N-type electrode terminal portion 10.
  • each binder resin of the conductive adhesive film 17 flows, and the conductive particles 19 are sandwiched between the positive electrode current collecting tab wire 11 and one end 24a of the P-type electrode terminal portion 9 and the terminal box tab wire 24. In this state, the binder resin is cured.
  • the conductive particles 19 are sandwiched between the negative electrode current collecting tab wire 15 and one end 24a of the N-type electrode terminal portion 10 and the terminal box tab wire 24, and the binder resin is cured in this state.
  • the conductive adhesive film 17 allows the positive electrode current collecting tab wire 11 and the negative electrode current collecting tab wire 15 to adhere to the P-type electrode terminal portion 9 and the N-type electrode terminal portion 10 and to be electrically connected.
  • the positive current collecting tab wire 11 and the negative current collecting tab wire 15 can be electrically connected to the terminal box tab wire 24.
  • the terminal box tab wire 24, the positive current collecting tab wire 11, and the negative current collecting tab wire 15 can be efficiently connected. Moreover, according to this technique, compared with the process connected by heat-pressing the positive electrode current collection tab wire 11 or the negative electrode current collection tab wire 15 with a heating press head etc., local thermal pressurization is applied. There is nothing. Therefore, there is no possibility that the translucent insulating substrate 10 is warped or damaged. In particular, as shown in FIG. 3, since the portion to which one end 24 a of the terminal box tab wire 24 is connected protrudes from the other portions, the terminal box tab is thermally pressed by a heat pressing head or the like.
  • Sample 1 used was a tab wire made of an electrolytic copper foil having a width of 10 mm and a thickness of 35 ⁇ m.
  • Sample 2 used a tab wire made of an electrolytic copper foil having a width of 10 mm and a thickness of 35 ⁇ m, in which a PET film having a thickness of 25 ⁇ m to 50 ⁇ m was pasted as an insulating adhesive layer on one side.
  • Sample 3 was a tab wire made of an electrolytic copper foil having a width of 10 mm and a thickness of 120 ⁇ m solder-plated on both sides by about 15 ⁇ m.
  • Sample 4 was a tab wire made of an electrolytic copper foil having a width of 10 mm and a thickness of 150 ⁇ m solder-plated on both sides by about 15 ⁇ m.
  • an electrolytic copper foil having a thickness of 35 ⁇ m and a width of 2.0 mm coated with a conductive adhesive resin was used.
  • the coated surface of the conductive adhesive resin is subjected to a surface roughening treatment with a surface roughness Rz of 7 to 9 ⁇ m (GTS-MP: manufactured by Furukawa Electric Co., Ltd.).
  • GTS-MP manufactured by Furukawa Electric Co., Ltd.
  • each of the above samples was temporarily attached to a glass substrate with a pressure-sensitive adhesive by roll lamination while being heated to about 95 ° C., and then the current collecting tab wire was temporarily attached to the glass substrate by roll lamination while being heated to about 95 ° C. . At this time, the current-collecting tab wires are in contact with each other so as to straddle each sample through the conductive adhesive resin.
  • the glass substrate is vacuum laminated with a sealing resin (EVA), and each sample is connected to the current collecting tab wire (connection area: 2). .0 mm ⁇ 10 mm), four connected body samples were prepared.
  • EVA sealing resin
  • connection resistance value in a state where 1 A was energized was measured in each connection body sample, all were 10 m ⁇ or less. That is, it has been found that the connection between the current collecting tab wire and the terminal box tab wire via the conductive adhesive resin is a connection method that can be replaced with a conventional solder connection.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

 端子ボックス用タブ線の接続強度及び透光性絶縁基板の反りや破損を防止する。 一面に正極(9)及び負極(10)が配置されている太陽電池(1)と、導電性接着剤層(16)を介して太陽電池1の正極(9)上及び負極(10)上に接続された一対の電力取出し用タブ線(11),(15)と、絶縁性接着剤層(22)を介して太陽電池(1)の一面上に設けられるとともに、一端(24a)が正極(9)上及び負極(10)上に配設され、端子ボックス(23)と一対の電力取出し用タブ線(11),(15)とを接続する一対の端子ボックス用タブ線(24)とを備え、電力取出し用タブ線(11),(15)は、正極(9)上及び負極(10)上において、端子ボックス用タブ線(24)の一端(24a)に、導電性接着剤層(16)を介して接続されている。

Description

太陽電池モジュール及び太陽電池モジュールの製造方法
 本発明は、一方の面に正極及び負極が臨まされているとともに端子ボックス用タブ線が設けられる太陽電池に関し、特に、端子ボックス用タブ線と電極取出し用の集電用タブ線との接続に関する。
 本出願は、日本国において2011年6月27日に出願された日本特許出願番号特願2011-141986を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。
 近年、環境負荷の低減が地球的な課題となる中、クリーンでかつ再生可能なエネルギーとして、太陽光発電に大きな期待が寄せられている。太陽電池の主流は、現在までのところ、単結晶シリコンや多結晶シリコンの結晶を製造し、これをスライス加工して板状の半導体として使用するバルクシリコン太陽電池である。しかし、バルクシリコン太陽電池は、シリコン結晶の成長に多くのエネルギーと時間を要し、また製造工程においても複雑な工程が必要となる。
 一方で、ガラスやステンレススチールなどの基板上に、光電変換層である半導体層を形成したいわゆる薄膜太陽電池は、薄型で軽量、製造コストの安さ、大面積化が容易であることなどから、今後の太陽電池の主流になると考えられている。薄膜太陽電池としては、アモルファスシリコンや微結晶シリコン膜、あるいはこれらのタンデム型等の薄膜シリコン太陽電池、Cu(銅)、In(インジウム)、Ga(ガリウム)、Se(セレン)に代表される元素を混ぜ合わせた化合物半導体を用いたCIGS系太陽電池等がある。
 これらの薄膜太陽電池は、大面積の安価な基板上に、プラズマCVD装置又はスパッタ装置のような形成装置を用いて半導体層又は金属電極膜を積層させ、その後、同一基板上に作製した光電変換層をレーザパターニング等により分離接続させることにより、太陽電池ストリングを形成する。
 図7に、従来の太陽電池ストリングを構成する薄膜太陽電池の一構成例を示す。この薄膜太陽電池100は、透光性絶縁基板101上に図示しない透明導電膜からなる透明電極膜、光電変換層、裏面電極膜が積層されてなる複数の太陽電池セル102からなる。各太陽電池セル102は、細長い短冊状で、透光性絶縁基板101のほぼ全幅にわたる長さを有している。また、薄膜太陽電池100は、隣接する太陽電池セル102,102同士において一方の透明電極膜と他方の裏面電極膜とが互いに接続されることで複数の太陽電池セル102が直列に接続されて構成されている。
 この薄膜太陽電池100における一端部の太陽電池セル102の透明電極膜の端部上に、太陽電池セル102とほぼ同一長さの線状のP型電極端子部103が形成され、他端部の太陽電池セル102の裏面電極膜の端部上に、太陽電池セル102とほぼ同一長さの線状のN型電極端子部104が形成されている。これらP型電極端子部103及びN型電極端子部104が電極取出し部になる。
 P型電極端子部103には、銅箔からなる正極集電用タブ線105が、バスバーと呼ばれるP型電極端子部103の全面に対して電気的かつ機械的に接合されている。同様に、N型電極端子部104には、銅箔からなる負極集電用タブ線106が、N型電極端子部104の全面に対して電気的かつ機械的に接合されている。これらの接合手段としては、一般に半田付けで行われている。
 また、図8(A)に示すように、薄膜太陽電池100の裏面には、P型電極端子部103及びN型電極端子部104と接続され外部に電気を出力する端子ボックス110と、この端子ボックス110とP型電極端子部103及びN型電極端子部104とを接続する端子ボックス用タブ線111とが接続されている。
 端子ボックス110は、例えば絶縁性接着剤を介して薄膜太陽電池100の裏面中央に固定されている。端子ボックス用タブ線111は、上記正極集電用タブ線105や負極集電用タブ線106と同様に長尺状の銅箔やAl箔からなり、薄膜太陽電池100の裏面と絶縁テープ112を介して配設されている。
 この端子ボックス用タブ線111は、一端が端子ボックス110とハンダ接続され、他端が絶縁テープ112を介してP型電極端子部103又はN型電極端子部104上に配設される。
 端子ボックス用タブ線111と正極集電用タブ線105との接続部は、図8(B)に示すように、絶縁テープ112及び端子ボックス用タブ線111を挟んだ両側に接続された第1、第2の正極集電用タブ線105a、105b間に亘って第3の正極集電用タブ線105cが、絶縁テープ112及び端子ボックス用タブ線111を跨いで接続されている。また、第3の正極集電用タブ線105cは端子ボックス用タブ線111と接続されている。これら、第1、第2の正極集電用タブ線105a、105bと第3の正極集電用タブ線105cとの接続(2箇所)、及び第3の正極集電用タブ線105cと端子ボックス用タブ線111との接続(1箇所)は、超音波ハンダ接合によって行われている。負極集電用タブ線106と端子ボックス用タブ線111との接続も同様である。
特開2009-295744号公報
 しかし、薄膜太陽電池100は、P型電極端子部103やN型電極端子部104を製造手法や構成等に応じて、Al、Ag、ZnO等様々材料で形成され、材料によってはハンダによって正極集電用タブ線105や負極集電用タブ線106との接続強度が保てないものもある。このため、接続抵抗値の上昇や発電効率の低下を招くおそれがある。
 また、第1、第2の正極集電用タブ線105a、105bと第3の正極集電用タブ線105cとの接続や、第3の正極集電用タブ線105cと端子ボックス用タブ線111との接続時に、ハンダ接続に伴う高温域の熱履歴が局部的に加わることにより、ガラス等からなる透光性絶縁基板101に反りが生じたり、破損する場合もあった。
 そこで、本発明は、端子ボックス用タブ線の接続強度及び透光性絶縁基板の反りや破損を防止できる太陽電池モジュール及び太陽電池モジュールの製造方法を提供すること目的とする。
 上述した課題を解決するために、本発明に係る太陽電池モジュールは、一面に正極及び負極が配置されている太陽電池と、導電性粒子を含有した導電性接着剤層を介して上記太陽電池の正極上及び負極上に接続された一対の電力取出し用タブ線と、導電性粒子を含有しない絶縁性接着剤層を介して上記太陽電池の一面上に設けられるとともに、一端が上記正極上及び負極上に配設され、端子ボックスと一対の上記電力取出し用タブ線とを接続する一対の端子ボックス用タブ線とを備え、電力取出し用タブ線は、上記正極上及び負極上において、端子ボックス用タブ線の上記一端に、上記導電性接着剤層を介して接続されている。
 また、本発明に係る太陽電池モジュールの製造方法は、一面に正極及び負極が配置されている太陽電池の上記一面上に、導電性粒子を含有しない絶縁性接着剤層を介して一対の端子ボックス用タブ線を配設するとともに、上記絶縁性接着剤層を介して上記正極上及び負極上に上記端子ボックス用タブ線の端部を配設し、一対の電力取出し用タブ線を、導電性粒子を含有した導電性接着剤層を介して、上記太陽電池の上記正極上及び負極上に接続するとともに、上記正極上及び負極上において、上記導電性接着剤層を介して上記端子ボックス用タブ線の上記端部上に接続する。
 本発明によれば、電力取出し用タブ線上に端子ボックス用タブ線を接続させる構成に比して、導電性接着剤層を介しての端子ボックス用タブ線と電力取出し用タブ線との接触面積が増え、接続強度の向上、抵抗値の増大を防止することができる。
図1は、本発明が適用された太陽電池を示す図であり、(A)はタブ線の接続前の状態を示す斜視図であり、(B)はタブ線を接続した状態を示す平面図である。 図2は、太陽電池モジュールの分解斜視図である。 図3は、集電タブ用線と端子ボックス用タブ線との接続箇所を示す断面図である。 図4は、導電性接着フィルムの構成を示す断面図である。 図5は、導電性接着フィルムが貼付された集電用タブ線を示す断面図である。 図6は、絶縁性接着剤層の他の構成例を示す断面図である。 図7は、従来の薄膜太陽電池の一例を示す分解斜視図である。 図8は、従来の薄膜太陽電池の一例を示す図であり(A)は平面図、(B)は電極端子部における断面図である。
 以下、本発明が適用された太陽電池モジュール及び、太陽電池モジュールの製造方法について、図面を参照しながら詳細に説明する。なお、本発明は、以下の実施形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。
 [太陽電池モジュール]
 本発明が適用された薄膜太陽電池1は、図1(A)(B)に示すように、複数の太陽電池セル2がコンタクトラインによって接続された太陽電池ストリングを構成する。図2に示すように、このストリング構造を有する薄膜太陽電池1は、単体で、又は複数枚連結されたマトリクスを構成して、裏面側に設けられた封止剤のシート3およびバックシート5とともに一括してラミネートされることにより太陽電池モジュール6が形成される。なお、太陽電池モジュール6は、適宜、周囲にアルミニウムなどの金属フレーム7が取り付けられる。
 封止剤としては、例えばエチレンビニルアセテート樹脂(EVA)等の透光性封止材が用いられる。また、バックシート5としては、ガラスや、アルミニウム箔を樹脂フィルムで挟持した積層体等が用いられる。
 [太陽電池セル]
 本発明が適用された薄膜太陽電池1は、透光性絶縁基板8上に、図示は省略しているが、透明導電膜からなる透明電極膜、光電変換層、裏面電極膜がこの順に積層されて形成され、透光性絶縁基板8側から光を入射させるスーパーストレート型の太陽電池である。なお、薄膜太陽電池には、基材、裏面電極、光電変換層、透明電極の順で形成されたサブストレート型太陽電池もある。以下では、スーパーストレート型の薄膜太陽電池1を例に説明するが、本技術は、サブストレート型の薄膜太陽電池に用いることもできる。
 透光性絶縁基板8としては、ガラスやポリイミドなどの耐熱性樹脂を用いることができる。
 透明電極膜としては、例えばSnO、ZnO、ITOなどを用いることができる。光電変換層としては、アモルファスシリコン、微結晶シリコンあるいは多結晶シリコンなどのシリコン系光電変換膜や、CdTe,CuInSe、Cu(In,Ga)Seなどの化合物系光電変換膜を用いることができる。
 裏面電極膜としては、例えば透明導電膜と金属膜の積層構造を有する。透明電極膜は、SnO、ZnO、ITOなどを用いることができる。金属膜は、銀、アルミニウム等を用いることができる。
 このように構成された薄膜太陽電池1は、図1(A)に示すように、透光性絶縁基板8のほぼ全幅にわたる長さを有する矩形状の太陽電池セル2が複数形成されている。各太陽電池セル2は、電極分割ラインによって分離されるとともに、コンタクトラインによって隣接する太陽電池セル2,2同士において一方の透明電極膜と他方の裏面電極膜とが互いに接続されることで、複数の太陽電池セル2が直列に接続された太陽電池ストリングが構成されている。
 そして、薄膜太陽電池1は、太陽電池ストリングにおける一端部の太陽電池セル2の透明電極膜の端部上に、太陽電池セル2とほぼ同一長さの線状のP型電極端子部9が形成され、他端部の太陽電池セル2の裏面電極膜の端部上に、太陽電池セル2とほぼ同一長さの線状のN型電極端子部10が形成されている。薄膜太陽電池1は、これらP型電極端子部9及びN型電極端子部10が電極取出し部となり、正極集電用タブ線11及び負極集電用タブ線15を介して端子ボックス23へ電気を供給する。
 [集電用タブ線]
 正極集電用タブ線11及び負極集電用タブ線15は、例えば厚さ50~300μmに圧延された銅箔やアルミ箔をスリットし、あるいは銅やアルミなどの細い金属ワイヤーを平板状に圧延することにより、P型電極端子部9やN型電極端子部10とほぼ同じ幅の1~3mm幅の平角線である。
 正極集電用タブ線11は、P型電極端子部9に導電性接着剤層16を介して電気的かつ機械的に接合され、負極集電用タブ線15は、N型電極端子部10に導電性接着剤層16を介して電気的かつ機械的に接合されている。
 [導電性接着剤層]
 図3に示すように、導電性接着剤層16は、正極集電用タブ線11及び負極集電用タブ線15の各一面11a,15aに設けられている。導電性接着剤層16は、正極集電用タブ線11及び負極集電用タブ線15の一面11a,15aの全面に設けられ、例えば導電性接着フィルム17によって構成される。
 導電性接着フィルム17は、図4に示すように、熱硬化性のバインダー樹脂層18に導電性粒子19が高密度に含有されてなる。また、導電性接着フィルム17は、押し込み性の観点から、バインダー樹脂の最低溶融粘度が、100~100000Pa・sであることが好ましい。導電性接着フィルム17は、最低溶融粘度が低すぎると低圧着から本硬化の過程で樹脂が流動してしまい接続不良やセル受光面へのはみ出しが生じやすく、受光率低下の原因ともなる。また、最低溶融粘度が高すぎてもフィルム貼着時に不良を発生しやすく、接続信頼性に悪影響が出る場合もある。なお、最低溶融粘度については、サンプルを所定量回転式粘度計に装填し、所定の昇温速度で上昇させながら測定することができる。
 導電性接着フィルム17に用いられる導電性粒子19としては、特に制限されず、例えば、ニッケル、金、銀、銅などの金属粒子、樹脂粒子に金めっきなどを施したもの、樹脂粒子に金めっきを施した粒子の最外層に絶縁被覆を施したものなどを挙げることができる。
 導電性粒子は、1個、1個が個別に存在する粉体であってもよいが、一次粒子が連なった鎖状のものであることが好ましい。前者の例としてはスパイク状の突起をもつ球状のニッケルパウダがあり、好ましく用いられる後者の例としては、フィラメント状ニッケルパウダがある。後者を用いることにより導電性粒子19が弾性を備え、互いに物性の異なる正極集電用タブ線11とP型電極端子部9との接続信頼性、及び負極集電用タブ線15とN型電極端子部10との接続信頼性を、それぞれ向上させることができる。
 なお、導電性接着フィルム17は、常温付近での粘度が10~10000kPa・sであることが好ましく、さらに好ましくは、10~5000kPa・sである。導電性接着フィルム17の粘度が10~10000kPa・sの範囲であることにより、導電性接着フィルム17を正極集電用タブ線11や負極集電用タブ線15の一面11a,15aに設け、リール21に巻装した場合において、いわゆるはみ出しによるブロッキングを防止することができ、また、所定のタック力を維持することができる。
 導電性接着フィルム17のバインダー樹脂層18の組成は、上述のような特徴を害さない限り、特に制限されないが、より好ましくは、膜形成樹脂と、液状エポキシ樹脂と、潜在性硬化剤と、シランカップリング剤とを含有する。
 膜形成樹脂は、平均分子量が10000以上の高分子量樹脂に相当し、フィルム形成性の観点から、10000~80000程度の平均分子量であることが好ましい。膜形成樹脂としては、エポキシ樹脂、変性エポキシ樹脂、ウレタン樹脂、フェノキシ樹脂等の種々の樹脂を使用することができ、その中でも膜形成状態、接続信頼性等の観点からフェノキシ樹脂が好適に用いられる。
 液状エポキシ樹脂としては、常温で流動性を有していれば、特に制限はなく、市販のエポキシ樹脂が全て使用可能である。このようなエポキシ樹脂としては、具体的には、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトール型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂などを用いることができる。これらは単独でも、2種以上を組み合わせて用いてもよい。また、アクリル樹脂など他の有機樹脂と適宜組み合わせて使用してもよい。
 潜在性硬化剤としては、加熱硬化型、UV硬化型などの各種硬化剤が使用できる。潜在性硬化剤は、通常では反応せず、何かしらのトリガーにより活性化し、反応を開始する。トリガーには、熱、光、加圧などがあり、用途により選択して用いることができる。なかでも、本願では、加熱硬化型の潜在性硬化剤が好適に用いられ、バスバー電極11や裏面電極13に加熱押圧されることにより本硬化される。液状エポキシ樹脂を使用する場合は、イミダゾール類、アミン類、スルホニウム塩、オニウム塩などからなる潜在性硬化剤を使用することができる。
 シランカップリング剤としては、エポキシ系、アミノ系、メルカプト・スルフィド系、ウレイド系などを用いることができる。これらの中でも、本実施の形態では、エポキシ系シランカップリング剤が好ましく用いられる。これにより、有機材料と無機材料の界面における接着性を向上させることができる。
 また、その他の添加組成物として、無機フィラーを含有することが好ましい。無機フィラーを含有することにより、圧着時における樹脂層の流動性を調整し、粒子捕捉率を向上させることができる。無機フィラーとしては、シリカ、タルク、酸化チタン、炭酸カルシウム、酸化マグネシウム等を用いることができ、無機フィラーの種類は特に限定されるものではない。
 図5は、導電性接着フィルム17の製品形態の一例を模式的に示す図である。この導電性接着フィルム17は、剥離基材20上にバインダー樹脂層18が積層され、テープ状に成型されている。このテープ状の導電性接着フィルム17は、リール21に剥離基材20が外周側となるように巻回積層される。剥離基材20としては、特に制限はなく、PET(Poly Ethylene Terephthalate)、OPP(Oriented Polypropylene)、PMP(Poly-4-methlpentene-1)、PTFE(Polytetrafluoroethylene)などを用いることができる。
 導電性接着フィルム17は、バインダー樹脂層18上に、上述した正極集電用タブ線11や負極集電用タブ線15が一体積層される。具体的に、導電性接着フィルム17は、バインダー樹脂層18が広幅のリボン銅箔上に積層されてラミネートされ、更にスリッターによって細幅にスリットされる。これにより、剥離基材付き導電性接着フィルム17は、正極集電用タブ線11や負極集電用タブ線15の一面11a,15aに全面に亘って積層される。このように、予め正極集電用タブ線11や負極集電用タブ線15と導電性接着フィルム17とを積層一体化させておくことにより、実使用時においては、剥離基材20を剥離し、導電性接着フィルム17のバインダー樹脂層18をP型電極端子部9やN型電極端子部10上に貼着することにより正極集電用タブ線11や負極集電用タブ線15と各電極端子部9,10との仮貼りが図られる。
 上述した導電性接着フィルム17は、導電性粒子19と、膜形成樹脂と、液状エポキシ樹脂と、潜在性硬化剤と、シランカップリング剤とを溶剤に溶解させる。溶剤としては、トルエン、酢酸エチルなど、又はこれらの混合溶剤を用いることができる。溶解させて得られた樹脂生成用溶液を剥離基材20上に塗布し、溶剤を揮発させることにより、導電性接着フィルム17を得る。その後、上述したように、導電性接着フィルム17は、正極集電用タブ線11や負極集電用タブ線15の一面11a,15aに積層一体化され、正極集電用タブ線11や負極集電用タブ線15の一面11a,15aの全面に亘って形成される。
 正極集電用タブ線11や負極集電用タブ線15は、一面11a,15aに設けられた導電性接着フィルム17を介して、P型電極端子部9上及びN型電極端子部10上に仮貼りされる。このとき、後述するように、P型電極端子部9上及びN型電極端子部10上には、絶縁性接着剤層22を介して端子ボックス用タブ線24の一端24aが仮設置されている。
 その後、薄膜太陽電池1は、裏面側に封止材のシート3、バックシート5が積層された後、導電性接着フィルム17、正極集電用タブ線11、負極集電用タブ線15及び端子ボックス用タブ線24が、真空ラミネーターによって熱加圧され一括して接続される。このとき、導電性接着フィルム17は、真空ラミネーターによって所定の温度、圧力で熱加圧されることにより、バインダー樹脂がP型電極端子部9と正極集電用タブ線11との間、及びN型電極端子部10と負極集電用タブ線15との間より流出されるとともに導電性粒子19が各集電用タブ線11,15と各電極端子部9,10との間で挟持され、この状態でバインダー樹脂が硬化する。これにより、導電性接着フィルム17は、各集電用タブ線11,15を各電極端子部9,10上に接着させると共に、各集電用タブ線11,15と各電極端子部9,10とを導通接続させることができる。
 [変形例]
 また、導電性接着剤層16は、正極集電用タブ線11や負極集電用タブ線15の一面11a,15aに予め積層されていなくともよい。この場合、導電性接着剤層16は、フィルム状の導電性接着フィルムの他、ペースト状の導電性接着ペーストを用いてもよい。
 本願では、導電性粒子19を含有するフィルム状の導電性接着フィルム17やペースト状の導電性接着ペーストを「導電性接着剤」と定義する。
 このような導電性接着剤層16は、導電性接着フィルム17が、正極集電用タブ線11等の接合時に、P型電極端子部9やN型電極端子部10に応じた所定の長さにカットされ、薄膜太陽電池1のP型電極端子部9上、及びN型電極端子部10上に仮貼りされる。あるいは、導電性接着剤層16は、導電性接着ペーストがP型電極端子部9上、及びN型電極端子部10上に塗布される。次いで、所定の長さにカットされた正極集電用タブ線11及び負極集電用タブ線15が導電性接着剤層16上に重畳配置され、熱加圧されることにより導通接続される。
 [端子ボックス]
 また、薄膜太陽電池1の裏面電極膜上には、正極集電用タブ線11及び負極集電用タブ線15と端子ボックス用タブ線24を介して電気的に接続する端子ボックス23が設けられている。端子ボックス23は、外部出力線が電気的に接続され、正極集電用タブ線11及び負極集電用タブ線15が集電した電力を外部に供給する。
 この端子ボックス23は、詳細を省略する絶縁性接着フィルム25を介して薄膜太陽電池1の裏面電極膜上に固定されている。絶縁性接着フィルム25は、導電性粒子19を含有しない点を除き、上述した導電性接着フィルム17とほぼ同一の成分を有し、バインダー樹脂層が熱硬化することにより端子ボックス23を薄膜太陽電池1の裏面電極膜上に固定する。なお、絶縁性接着フィルム25は、化学的に安定なフッ素系の樹脂を混合することにより、薄膜太陽電池1の裏面電極膜上に仮貼りされたときにも、裏面電極膜と反応することなく腐食を防止することができる。
 なお、端子ボックス23は、薄膜太陽電池1の裏面電極膜上において、正極集電用タブ線11や負極集電用タブ線15の長手方向と直交する幅方向の略中間に沿った位置に設けられることにより、同一サイズの端子ボックス用タブ線24を正極集電用タブ線11側及び負極集電用タブ線15側に用いることができる。
 [端子ボックス用タブ線]
 端子ボックス23と正極集電用タブ線11及び負極集電用タブ線15とを接続する端子ボックス用タブ線24は、上記正極集電用タブ線11や負極集電用タブ線15と同様に、例えば厚さ50~300μmに圧延された銅箔やアルミ箔をスリットし、あるいは銅やアルミなどの細い金属ワイヤーを平板状に圧延した平角線である。
 端子ボックス用タブ線24は、絶縁性接着剤層22を介して薄膜太陽電池1の裏面電極膜上に設けられている。端子ボックス用タブ線24は、薄膜太陽電池1の裏面電極膜との間に絶縁性接着剤層22を介在させることにより、薄膜太陽電池1の裏面電極膜との短絡が防止されている。
 絶縁性接着剤層22は、図1に示すように、予め端子ボックス用タブ線24の薄膜太陽電池1の裏面電極膜に接する一面に、全面に亘って設けられ、例えば絶縁性接着フィルム25によって構成される。絶縁性接着フィルム25は、バインダー樹脂層に導電性粒子が含まれていない他は、導電性接着フィルム17と同様の構成を有する。
 端子ボックス用タブ線24に設けられる絶縁性接着フィルム25においても、化学的に安定なフッ素系の樹脂を混合することにより、薄膜太陽電池1の裏面電極膜上に仮貼りされたときにも、裏面電極膜と反応することなく腐食を防止することができる。
 また、絶縁性接着剤層22は、絶縁性接着フィルム25以外にも、例えば図6に示すように、絶縁性の接着層30付きフレキシブル基板31や、絶縁性の接着層32付きフィルム33によって構成してもよい。この場合、フレキシブル基板31及びフィルム33は、絶縁性の接着層30,32が、少なくとも端子ボックス用タブ線24が接続される一面に設けられる。フレキシブル基板31及びフィルム33は、薄膜太陽電池1の裏面電極膜上に面する他面に接着層34を形成することは任意であり、また、他面に形成される接着層34としてSi系接着剤を用いて、薄膜太陽電池1の裏面電極膜上に軽く止めておくようにしてもよい。
 なお、絶縁性接着フィルム25等の絶縁性接着剤層22は、端子ボックス用タブ線24の幅以上の幅を有することが好ましい。これにより、絶縁性接着フィルム25は、端子ボックス用タブ線24と薄膜太陽電池1の裏面電極膜とを確実に絶縁することができる。
 端子ボックス用タブ線24は、薄膜太陽電池1の裏面電極膜上に少なくとも一対設けられ、一方がP型電極端子部9と端子ボックス23とを接続し、他方がN型電極端子部10と端子ボックス23とを接続している。
 また、端子ボックス用タブ線24は、一端24aがP型電極端子部9、N型電極端子部10に配設され、他端24bが端子ボックス23に接続されている。そして、端子ボックス用タブ線24は、一端24a上に導電性接着剤層16を介して正極集電用タブ線11、負極集電用タブ線15が重畳される。
 すなわち、図3に示すように、端子ボックス用タブ線24と正極集電用タブ線11あるいは負極集電用タブ線15との接続部においては、P型電極端子部9及びN型電極端子部10上に絶縁性接着フィルム25等の絶縁性接着剤層22を介して端子ボックス用タブ線24の一端24aが接続され、その一端24aの側面及び上面に導電性接着フィルム17等の導電性接着剤層16を介して正極集電用タブ線11あるいは負極集電用タブ線15が接続されている。
 これにより、薄膜太陽電池1は、集電タブ用線上に端子ボックス用タブ線を接続させる構成に比して、導電性接着フィルム17を介しての端子ボックス用タブ線24と正極集電用タブ線11あるいは負極集電用タブ線15との接触面積が増え、接続強度の向上、抵抗値の増大を防止することができる。
 また、薄膜太陽電池1は、端子ボックス用タブ線24と正極集電用タブ線11及び負極集電用タブ線15との接続を真空ラミネーターにより一括して接続するため、接続箇所に気泡の混入もなく、長期に亘って接続信頼性を向上させることができる。なお、超音波ハンダ接続の場合には、ボイドの発生によって、接続強度の低下や接続抵抗の上昇、また亀裂の発生による接続信頼性の低下といった危険があるが、薄膜太陽電池1によれば、このような危険もない。
 [製造方法]
 次いで、正極集電用タブ線11、負極集電用タブ線15と及び端子ボックス用タブ線24の接続工程について説明する。先ず、薄膜太陽電池1の裏面電極膜上に絶縁性接着剤層22を介して一対の端子ボックス用タブ線24を配設するとともに、絶縁性接着剤層22を介して端子ボックス用タブ線24の一端24aをP型電極端子部9上及びN型電極端子部10上に配設する。
 この工程は、予め一面に絶縁性接着フィルム25等の絶縁性接着剤層22を形成した端子ボックス用タブ線24を薄膜太陽電池1の裏面電極膜上に仮貼りするとともに、その一端24aをP型電極端子部9上及びN型電極端子部10上に仮貼りすることにより行う。また、この工程は、薄膜太陽電池1の裏面電極膜上における端子ボックス用タブ線24の接続箇所に沿って、絶縁性接着フィルム25を仮貼りした後、絶縁性接着フィルム25上に端子ボックス用タブ線24を仮貼りすることにより行ってもよい。
 絶縁性接着フィルム25が貼着された端子ボックス用タブ線24や、絶縁性接着フィルム25及び端子ボックス用タブ線24の仮貼りは、ロールラミネートによって絶縁性接着フィルム25が本硬化しない程度に粘着性を奏するまで熱加圧されることにより行われる。また、端子ボックス用タブ線24は、他端24bが刃物及び熱を利用することによって絶縁性接着剤層22を剥離され、導通可能とされた後、端子ボックス23に接続される。
 なお、絶縁性接着フィルム25等の絶縁性接着剤層22を、端子ボックス用タブ線24の幅以上の幅で形成することにより、絶縁性接着剤層22は、端子ボックス用タブ線24と薄膜太陽電池1の裏面電極膜とを確実に絶縁することができる。
 次に、正極集電用タブ線11及び負極集電用タブ線15を、導電性接着剤層16を介してP型電極端子部9及びN型電極端子部10上に接続するとともに、P型電極端子部9及びN型電極端子部10上において、導電性接着剤層16を介して端子ボックス用タブ線24の一端24a上に接続する。
 この工程は、予め一面に導電性接着フィルム17等の導電性接着剤層16を形成した正極集電用タブ線11や負極集電用タブ線15を、P型電極端子部9上、N型電極端子部10上及びこれら電極端子部9,10上に配設されている端子ボックス用タブ線24の一端24a上に、導電性接着剤層16を向けて仮貼りすることにより行う。また、この工程は、P型電極端子部9上、N型電極端子部10上及びこれら電極端子部9,10上に配設されている端子ボックス用タブ線24の一端24a上に導電性接着フィルム17を仮貼りした後、導電性接着フィルム17上に正極集電用タブ線11又は負極集電用タブ線15を仮設置することにより行ってもよい。
 導電性接着フィルム17が貼着された集電用タブ線11,15や、導電性接着フィルム17及び集電用タブ線11,15の仮設置は、ロールラミネートによって導電性接着フィルム17が本硬化しない程度に粘着性を奏するまで熱加圧されることにより行われる。
 これにより、正極集電用タブ線11及び負極集電用タブ線15は、導電性接着フィルム17を介して、端子ボックス用タブ線24の一端24a上を跨ぐようにして仮設置される。
 このように絶縁性接着フィルム25、端子ボックス用タブ線24、導電性接着フィルム17、正極集電用タブ線11及び負極集電用タブ線15が仮貼りされた薄膜太陽電池1は、裏面電極膜側に設けられたEVA等の透光性封止材のシート3及びバックシート5とともに、真空ラミネーターによって一括してラミネートされる。
 このとき、薄膜太陽電池1が所定の温度、圧力で熱加圧されるため、絶縁性接着フィルム25が熱硬化し端子ボックス用タブ線24を薄膜太陽電池1の裏面電極膜上に接続するとともに、一端24aがP型電極端子部9上又はN型電極端子部10上に接続する。また、導電性接着フィルム17の各バインダー樹脂が流動し、導電性粒子19が正極集電用タブ線11とP型電極端子部9及び端子ボックス用タブ線24の一端24aとの間で挟持され、この状態でバインダー樹脂が硬化する。同様に、導電性粒子19が負極集電用タブ線15とN型電極端子部10及び端子ボックス用タブ線24の一端24aとの間で挟持され、この状態でバインダー樹脂が硬化する。これにより、導電性接着フィルム17は、正極集電用タブ線11及び負極集電用タブ線15をP型電極端子部9やN型電極端子部10上に接着させると共に、導通接続させることができ、また正極集電用タブ線11及び負極集電用タブ線15を端子ボックス用タブ線24と導通接続させることができる。
 このように、本技術によれば、端子ボックス用タブ線24、正極集電用タブ線11及び負極集電用タブ線15を効率的に接続することができる。また、本技術によれば、正極集電用タブ線11や負極集電用タブ線15を加熱押圧ヘッド等によって熱加圧することにより接続する工程に比して、局部的な熱加圧をかけることがない。したがって、透光性絶縁基板10の反りや損傷を与えるおそれもない。特に、図3に示すように、端子ボックス用タブ線24の一端24aが接続される箇所は、他の部位よりも突出しているため、加熱押圧ヘッド等によって熱加圧した場合、端子ボックス用タブ線24の接続部に熱や応力が集中してしまい、透光性絶縁基板8の反りや破損、集電用タブ線や端子ボックス用タブ線の接続不良が発生する。したがって、一括ラミネート方式を採用することにより、このような熱や応力の集中を回避し、透光性絶縁基板8等の反りや破損を効果的に防止することができ、また集電用タブ線11,15と電極端子部9,10や端子ボックス用タブ線24との接続を良好に行うことができる。
 次いで、本発明が適用された端子ボックス用タブ線の実施例について説明する。サンプル1は、幅10mm、厚さ35μmの電解銅箔からなるタブ線を用いた。サンプル2は、片面に絶縁性接着剤層として厚さ25μm~50μmのPETフィルムを貼着した幅10mm、厚さ35μmの電解銅箔からなるタブ線を用いた。サンプル3は、両面に15μm程度ハンダメッキした幅10mm、厚さ120μmの電解銅箔からなるタブ線を用いた。サンプル4は、両面に15μm程度ハンダメッキした幅10mm、厚さ150μmの電解銅箔からなるタブ線を用いた。
 集電用タブ線には、導電性接着樹脂が塗布された厚さ35μm、幅2.0mmの電解銅箔を用いた。導電性接着樹脂の塗布面には、表面粗さRz:7~9μmに粗面化処理が施されている(GTS-MP:古河電工株式会社製)。また、バインダー樹脂には、Ni粒子(バーレインコ社製)を30重量添加した。
 上記各サンプルを粘着剤を用いてガラス基板に95℃程度に加熱しながらロールラミネートにより仮貼りし、次いで、集電用タブ線をガラス基板に95℃程度に加熱しながらロールラミネートにより仮貼りした。このとき集電用タブ線は、導電性接着樹脂を介して各サンプルを跨ぐように接する。
 その後、160℃、20minの加熱と、100KPa程度の圧力を加えながら、ガラス基板を封止樹脂(EVA)によって真空ラミネートし、各サンプルと集電用タブ線との接続を行い(接続面積:2.0mm×10mm)、4つの接続体サンプルを作成した。
 各接続体サンプルにて、1Aを通電させた状態での接続抵抗値を測定したところ、いずれも10mΩ以下であった。すなわち、集電用タブ線と端子ボックス用タブ線との導電性接着樹脂を介した接続は、従来のハンダ接続に置き換えることが可能な接続方法であることが分かった。
 また、超音波ハンダ接続に比して、ハンダ溶融に伴う局所的な高温高圧による熱加圧が不要となり、ガラス基板の反りや破損を防止することができた。さらに、集電用タブ線と端子ボックス用タブ線との導電性接着樹脂を介した接続をロールラミネートによって行うと、簡易なプロセスで薄膜太陽電池を製造することができる。
1 薄膜太陽電池、2 太陽電池セル、3 シート、5 バックシート、6 太陽電池モジュール、7 金属フレーム、8 透光性絶縁基板、9 P型電極端子部、10 N型電極端子部、11 正極集電用タブ線、15 負極集電用タブ線、17 導電性接着フィルム、18 バインダー樹脂層、19 導電性粒子、20 剥離基材、21 リール、23 端子ボックス、24 端子ボックス用タブ線、25 絶縁性接着フィルム、30 接着層、31 フレキシブル基板、32 接着層、33 フィルム

Claims (11)

  1.  一面に正極及び負極が配置されている太陽電池と、
     導電性粒子を含有した導電性接着剤層を介して上記太陽電池の正極上及び負極上に接続された一対の電力取出し用タブ線と、
     導電性粒子を含有しない絶縁性接着剤層を介して上記太陽電池の一面上に設けられるとともに、一端が上記正極上及び負極上に配設され、端子ボックスと一対の上記電力取出し用タブ線とを接続する一対の端子ボックス用タブ線とを備え、
     電力取出し用タブ線は、上記正極上及び負極上において、端子ボックス用タブ線の上記一端に、上記導電性接着剤層を介して接続されている太陽電池モジュール。
  2.  一対の上記端子ボックス用タブ線は上記正極上又は負極上に設けられ、
     一対の上記電力取出し用タブ線は、上記端子ボックス用タブ線の端部上を跨って設けられている請求項1記載の太陽電池モジュール。
  3.  上記導電性粒子は、フィラメント状の導電性粒子である請求項1又は請求項2に記載の太陽電池モジュール。
  4.  上記電力取出し用タブ線と、上記端子ボックス用タブ線とは、ラミネートにより一括して接続される請求項1~請求項3のいずれか1項に記載の太陽電池モジュール。
  5.  上記絶縁性接着剤層は、接着剤付きフィルム又は接着剤付きフレキシブル基板である請求項1~請求項4のいずれか1項に記載の太陽電池モジュール。
  6.  上記端子ボックス用タブ線は、上記絶縁性接着剤層の幅以下の幅である請求項1~請求項5のいずれか1項に記載の太陽電池モジュール。
  7.  上記導電性接着剤層は、フッ素系樹脂を含有する請求項1~請求項6のいずれか1項に記載の太陽電池モジュール。
  8.  一面に正極及び負極が配置されている太陽電池の上記一面上に、導電性粒子を含有しない絶縁性接着剤層を介して一対の端子ボックス用タブ線を配設するとともに、上記絶縁性接着剤層を介して上記正極上及び負極上に上記端子ボックス用タブ線の端部を配設し、
     一対の電力取出し用タブ線を、導電性粒子を含有した導電性接着剤層を介して、上記太陽電池の上記正極上及び負極上に接続するとともに、上記正極上及び負極上において、上記導電性接着剤層を介して上記端子ボックス用タブ線の上記端部上に接続する太陽電池モジュールの製造方法。
  9.  上記一面に端子ボックスを固定し、
     一対の上記端子ボックス用タブ線の各端部を上記端子ボックスに接続する請求項8記載の太陽電池モジュールの製造方法。
  10.  上記電力取出し用タブ線と、上記端子ボックス用タブ線とは、ラミネートにより一括して接続される請求項8又は請求項9に記載の太陽電池モジュールの製造方法。
  11.  上記電力取出し用タブ線は、予め上記導電性接着剤層が設けられ、
     上記端子ボックス用タブ線は、予め上記絶縁性接着剤層が設けられている請求項8~請求項10のいずれか1項に記載の太陽電池モジュールの製造方法。
PCT/JP2012/066338 2011-06-27 2012-06-27 太陽電池モジュール及び太陽電池モジュールの製造方法 WO2013002243A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147001721A KR20140062028A (ko) 2011-06-27 2012-06-27 태양 전지 모듈 및 태양 전지 모듈의 제조 방법
US14/127,626 US20140124034A1 (en) 2011-06-27 2012-06-27 Solar cell module and solar cell module manufacturing method
EP12805080.4A EP2725626A1 (en) 2011-06-27 2012-06-27 Solar cell module and solar cell module manufacturing method
CN201280031909.2A CN103650152A (zh) 2011-06-27 2012-06-27 太阳能电池模块以及太阳能电池模块的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-141986 2011-06-27
JP2011141986A JP5745349B2 (ja) 2011-06-27 2011-06-27 太陽電池モジュールの製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/146,863 Continuation US8905534B2 (en) 2011-07-08 2014-01-03 Ink composition and image forming method

Publications (1)

Publication Number Publication Date
WO2013002243A1 true WO2013002243A1 (ja) 2013-01-03

Family

ID=47424134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066338 WO2013002243A1 (ja) 2011-06-27 2012-06-27 太陽電池モジュール及び太陽電池モジュールの製造方法

Country Status (7)

Country Link
US (1) US20140124034A1 (ja)
EP (1) EP2725626A1 (ja)
JP (1) JP5745349B2 (ja)
KR (1) KR20140062028A (ja)
CN (1) CN103650152A (ja)
TW (1) TW201316525A (ja)
WO (1) WO2013002243A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013121877A1 (ja) * 2012-02-14 2013-08-22 デクセリアルズ株式会社 導電性接着剤、太陽電池モジュール及び太陽電池モジュールの製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5903993B2 (ja) * 2012-04-03 2016-04-13 住友電気工業株式会社 通信システム
TWI720181B (zh) * 2016-05-30 2021-03-01 日商新力股份有限公司 薄膜製造方法、薄膜製造裝置、光電轉換元件之製造方法、邏輯電路之製造方法、發光元件之製造方法及調光元件之製造方法
US10790777B2 (en) * 2017-08-17 2020-09-29 Tesla, Inc. Flexible solar roofing modules
US10862420B2 (en) 2018-02-20 2020-12-08 Tesla, Inc. Inter-tile support for solar roof tiles
JP7373658B2 (ja) * 2019-10-25 2023-11-02 ファースト・ソーラー・インコーポレーテッド 光起電力デバイスおよび製作方法
CN114664953B (zh) * 2020-11-30 2024-03-29 晶科能源(海宁)有限公司 太阳能电池组件、太阳能电池片及其制造方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000068542A (ja) * 1998-08-26 2000-03-03 Sharp Corp 集積型薄膜太陽電池モジュール
JP2000280411A (ja) * 1999-03-31 2000-10-10 Dainippon Printing Co Ltd 積層プラスチックフィルム、透明導電性カバーテープ及び包装体
JP2002016273A (ja) * 2000-06-27 2002-01-18 Canon Inc 太陽電池モジュールの製造方法
JP2002141535A (ja) * 2000-11-06 2002-05-17 Fuji Electric Co Ltd 太陽電池モジュールの電力リード引き出し方法
JP2009295744A (ja) 2008-06-04 2009-12-17 Sharp Corp 太陽電池モジュール
JP2010049243A (ja) * 2008-07-25 2010-03-04 Fujifilm Corp プリズムシート用積層フィルム、プリズムシート用積層フィルムの製造方法、プリズムシート、及び表示装置
JP2010103998A (ja) * 2008-10-22 2010-05-06 Hanbit Precision Co Ltd キーパッド内蔵型携帯電話機用スライドヒンジモジュール
JP2010272725A (ja) * 2009-05-22 2010-12-02 Mitsubishi Electric Corp 薄膜太陽電池モジュールとその製造方法
JP2011049525A (ja) * 2009-07-30 2011-03-10 Sanyo Electric Co Ltd 太陽電池モジュール
JP2011066448A (ja) * 2006-04-26 2011-03-31 Hitachi Chem Co Ltd 接着テープ及びそれを用いた太陽電池モジュール
JP2011108969A (ja) * 2009-11-20 2011-06-02 Hitachi Cable Ltd 太陽電池モジュールの製造方法、及び太陽電池用配線基板
JP2011119367A (ja) * 2009-12-01 2011-06-16 Sony Chemical & Information Device Corp 電子部品の製造方法、電子部品および導電性フィルム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102796487B (zh) * 2005-03-16 2014-04-02 日立化成株式会社 粘接剂组合物、电路连接材料、电路构件的连接结构及半导体装置
KR101157771B1 (ko) * 2007-05-09 2012-06-25 히다치 가세고교 가부시끼가이샤 도전체 접속용 부재, 접속 구조 및 태양 전지 모듈
JP4384241B1 (ja) * 2008-06-04 2009-12-16 シャープ株式会社 端子ボックス及び太陽電池モジュール
MY157233A (en) * 2009-03-11 2016-05-13 Shinetsu Chemical Co Connection sheet for solar battery cell electrode, process for manufacturing solar cell module, and solar cell module

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000068542A (ja) * 1998-08-26 2000-03-03 Sharp Corp 集積型薄膜太陽電池モジュール
JP2000280411A (ja) * 1999-03-31 2000-10-10 Dainippon Printing Co Ltd 積層プラスチックフィルム、透明導電性カバーテープ及び包装体
JP2002016273A (ja) * 2000-06-27 2002-01-18 Canon Inc 太陽電池モジュールの製造方法
JP2002141535A (ja) * 2000-11-06 2002-05-17 Fuji Electric Co Ltd 太陽電池モジュールの電力リード引き出し方法
JP2011066448A (ja) * 2006-04-26 2011-03-31 Hitachi Chem Co Ltd 接着テープ及びそれを用いた太陽電池モジュール
JP2009295744A (ja) 2008-06-04 2009-12-17 Sharp Corp 太陽電池モジュール
JP2010049243A (ja) * 2008-07-25 2010-03-04 Fujifilm Corp プリズムシート用積層フィルム、プリズムシート用積層フィルムの製造方法、プリズムシート、及び表示装置
JP2010103998A (ja) * 2008-10-22 2010-05-06 Hanbit Precision Co Ltd キーパッド内蔵型携帯電話機用スライドヒンジモジュール
JP2010272725A (ja) * 2009-05-22 2010-12-02 Mitsubishi Electric Corp 薄膜太陽電池モジュールとその製造方法
JP2011049525A (ja) * 2009-07-30 2011-03-10 Sanyo Electric Co Ltd 太陽電池モジュール
JP2011108969A (ja) * 2009-11-20 2011-06-02 Hitachi Cable Ltd 太陽電池モジュールの製造方法、及び太陽電池用配線基板
JP2011119367A (ja) * 2009-12-01 2011-06-16 Sony Chemical & Information Device Corp 電子部品の製造方法、電子部品および導電性フィルム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013121877A1 (ja) * 2012-02-14 2013-08-22 デクセリアルズ株式会社 導電性接着剤、太陽電池モジュール及び太陽電池モジュールの製造方法
JP2013168442A (ja) * 2012-02-14 2013-08-29 Dexerials Corp 導電性接着剤、太陽電池モジュール及び太陽電池モジュールの製造方法

Also Published As

Publication number Publication date
TW201316525A (zh) 2013-04-16
EP2725626A1 (en) 2014-04-30
US20140124034A1 (en) 2014-05-08
JP5745349B2 (ja) 2015-07-08
JP2013008922A (ja) 2013-01-10
KR20140062028A (ko) 2014-05-22
CN103650152A (zh) 2014-03-19

Similar Documents

Publication Publication Date Title
JP5745349B2 (ja) 太陽電池モジュールの製造方法
JP5415396B2 (ja) 太陽電池モジュールの製造方法及び太陽電池モジュール
JP5676944B2 (ja) 太陽電池モジュール、太陽電池モジュールの製造方法
WO2013035667A1 (ja) 太陽電池モジュールの製造方法、太陽電池モジュール及びタブ線の接続方法
WO2012165353A1 (ja) 太陽電池モジュール、太陽電池モジュールの製造方法、及び薄膜太陽電池用タブ線
WO2011132682A1 (ja) 太陽電池モジュール、太陽電池モジュールの製造方法
JP5892584B2 (ja) 太陽電池モジュール、太陽電池モジュールの製造方法
WO2012077784A1 (ja) 太陽電池モジュール及び太陽電池モジュールの製造方法
WO2012077557A1 (ja) 太陽電池モジュール、太陽電池モジュールの製造方法、太陽電池セル及びタブ線の接続方法
JP5828582B2 (ja) 太陽電池モジュール、太陽電池モジュールの製造方法、導電性接着剤
JP2012204666A (ja) 太陽電池モジュール、太陽電池モジュールの製造方法、タブ線
WO2015008646A1 (ja) 導電性接着テープ及び導電性接着テープの接続方法、並びに太陽電池モジュール及びその製造方法
JP6039905B2 (ja) 導電性接着剤、太陽電池モジュール及び太陽電池モジュールの製造方法
WO2012133340A1 (ja) 太陽電池モジュール、太陽電池モジュールの製造方法
JP5958701B2 (ja) 配線材、太陽電池モジュール及び太陽電池モジュールの製造方法
US20110287568A1 (en) Method of manufacturing thin film solar cell
JP2016021577A (ja) 太陽電池モジュール、太陽電池モジュールの製造方法、導電性接着剤
JP2013165193A (ja) 太陽電池モジュールの製造方法、タブ線の接続方法
JP6061417B2 (ja) 太陽電池モジュールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12805080

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 14127626

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012805080

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147001721

Country of ref document: KR

Kind code of ref document: A