WO2012077784A1 - 太陽電池モジュール及び太陽電池モジュールの製造方法 - Google Patents

太陽電池モジュール及び太陽電池モジュールの製造方法 Download PDF

Info

Publication number
WO2012077784A1
WO2012077784A1 PCT/JP2011/078552 JP2011078552W WO2012077784A1 WO 2012077784 A1 WO2012077784 A1 WO 2012077784A1 JP 2011078552 W JP2011078552 W JP 2011078552W WO 2012077784 A1 WO2012077784 A1 WO 2012077784A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
tab
electrode
cell module
tab wire
Prior art date
Application number
PCT/JP2011/078552
Other languages
English (en)
French (fr)
Inventor
大介 花井
明史 樋口
Original Assignee
ソニーケミカル&インフォメーションデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーケミカル&インフォメーションデバイス株式会社 filed Critical ソニーケミカル&インフォメーションデバイス株式会社
Priority to KR1020137017801A priority Critical patent/KR20130138290A/ko
Priority to CN2011800589735A priority patent/CN103262255A/zh
Priority to EP11847296.8A priority patent/EP2650928A4/en
Priority to US13/992,555 priority patent/US20130247958A1/en
Publication of WO2012077784A1 publication Critical patent/WO2012077784A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • H01L31/188Apparatus specially adapted for automatic interconnection of solar cells in a module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a solar cell module in which connection electrodes of a plurality of solar cells are electrically connected to each other by tab wires, and a method for manufacturing the solar cell module.
  • a solar cell is used as a solar cell module that realizes an output of 100 W or more by connecting a plurality of solar cells in series.
  • a plurality of adjacent solar cells are connected by tab wires made of a conductive material such as a ribbon-like copper foil solder-coated as an interconnector.
  • One end of the tab wire is connected to the surface electrode of one solar cell, and the other end is connected to the back electrode of the adjacent solar cell, thereby connecting the solar cells in series.
  • the tab line 100 is formed in a long shape, and the uneven portion 102 is formed on the light receiving side surface 101a.
  • the concavo-convex portion 102 is formed by alternately providing a plurality of convex portions 102 a and concave portions 102 b extending in the longitudinal direction of the tab wire 100 in the width direction.
  • the tab wire 100 is connected to the front surface electrode 103a of the solar battery cell 103 through the conductive adhesive film 104 on the back surface 101b.
  • grooved part 102 is orient
  • the scattered light is reflected by the protective glass surface and reenters the light receiving surface.
  • the solar cell module provided with the tab wire 100 exhibits a light containment effect and improves the power generation efficiency, and as a result, the power generation efficiency can be improved.
  • Patent Document 1 describes a configuration of a solar cell module including strings in which a plurality of solar cells are arranged in series by tab wires having uneven portions formed on the surface on the light receiving side. .
  • Patent Document 2 describes a solar cell module provided with a tab wire having a concavo-convex portion formed on the surface facing the connection electrode.
  • the convex portion of the tab wire described in Patent Document 2 is in contact with the connection electrode, and a conductive resin material is filled between the tab wire and the connection electrode.
  • connection reliability (adhesion strength) of a tab wire can be improved by making the height of an uneven
  • the solar cell including the tab line having the uneven portion formed on one surface and the surface opposite to the surface on the surface electrode on the front electrode and the back electrode is not attached to the surface when the tab wire is bonded. There will be a difference in pressure applied to the back surface. For this reason, in the solar battery cell, stress strain occurs on the surface electrode side and the back electrode side. A solar battery cell may be cracked or warped when stress strain occurs.
  • crystalline silicon solar cells it has become a problem to procure a large amount of silicon as a raw material at a low cost.
  • a silicon wafer is made extremely thin (eg, 200 ⁇ m to 150 ⁇ m) by a polycrystalline silicon ingot. It has begun to be used for cutting and mass production. In such a thin solar cell, cracks and warpage due to stress strain are more likely to occur.
  • the present invention has been proposed in view of such a conventional situation, and can maintain a good shape state of the solar battery cell and obtain sufficient connection reliability with the tab wire. It is an object of the present invention to provide a solar cell module capable of achieving the above and a method for manufacturing such a solar cell module.
  • a solar battery module includes, among a plurality of solar battery cells, another solar battery cell adjacent to one of the surface electrode of the predetermined solar battery cell and the predetermined solar battery cell.
  • the tab line is an unevenness in which a plurality of convex portions and concave portions that are continuous in the longitudinal direction are alternately provided in the width direction on both the front and back surfaces.
  • the concavo-convex angle formed by the line segment and the line segment connecting the apexes of the concave portions adjacent to both sides of the convex portion is 10 ° or more and 50 ° or less.
  • the manufacturing method of the solar cell module which concerns on this invention is adjacent to one of the surface electrode of a predetermined solar cell, and one of a predetermined solar cell among several solar cells.
  • a crimping process for crimping the tab wire to each of the front electrode and the back electrode of the solar battery cell via an adhesive resin material The tab line is formed on each of the front and back surfaces with a plurality of protrusions and recesses that are alternately provided in the width direction on the front and back surfaces.
  • the concavo-convex angle formed by the line segment connecting the apexes of the adjacent recesses and the line segment connecting the apexes of the recesses adjacent to both sides of the convex part is 10 ° or more and 50 ° or less.
  • One end of the tab line on the surface The electrode and the other end of the tab wire are connected to the back electrode via an adhesive resin material.
  • the present invention it is possible to prevent distortion of the solar battery cell and maintain a good shape state, and to obtain sufficient connection reliability with the tab wire.
  • FIG. 1 is an exploded perspective view showing the configuration of the solar cell module.
  • FIG. 2 is a longitudinal sectional view of a string of solar cells.
  • FIG. 3 is a perspective view showing solar cells connected by tab wires.
  • FIG. 4 is a cross-sectional view of a solar battery cell.
  • FIG. 5 is a cross-sectional view in the width direction of the tab line.
  • FIG. 6 is a cross-sectional view in the width direction of the conductive adhesive film.
  • FIG. 7 is a schematic diagram showing an example of the form of the conductive adhesive film.
  • FIG. 8 is a schematic diagram for explaining a temporary crimping process of the tab wire.
  • FIG. 9 is a schematic diagram for explaining the final crimping process of the tab wire.
  • FIG. 10 is a cross-sectional view of a solar battery cell.
  • FIG. 11 is a perspective view showing solar cells connected by conventional tab wires.
  • FIG. 12 is a cross-sectional view in the width direction of
  • FIG. 1 is an exploded perspective view showing a configuration of a solar cell module 1 having a tab wire to which the present invention is applied.
  • the solar cell module 1 includes strings 4 in which a plurality of solar cells 2 are connected in series by tab wires 3 serving as interconnectors, and includes a matrix 5 in which a plurality of strings 4 are arranged.
  • a matrix 5 is sandwiched between sheets 6 of a sealing adhesive, laminated together with a front cover 7 provided on the light receiving surface side and a back sheet 8 provided on the back surface side, and is surrounded by aluminum. It is formed by attaching a metal frame 9 such as.
  • sealing adhesive for the sheet 6 for example, a translucent sealing material such as ethylene vinyl acetate resin (EVA) is used.
  • EVA ethylene vinyl acetate resin
  • surface cover 7 for example, a light-transmitting material such as glass or light-transmitting plastic is used.
  • back sheet 8 a laminated body in which glass or aluminum foil is sandwiched between resin films is used.
  • FIG. 2 is a longitudinal sectional view of the string 4 formed by connecting the solar cells 2 in series.
  • Each solar battery cell 2 includes a photoelectric conversion element 10.
  • the photoelectric conversion element 10 is formed by stacking a crystalline silicon solar cell module using a single crystal silicon photoelectric conversion element, a polycrystalline photoelectric conversion element or the like, a cell made of amorphous silicon, and a cell made of microcrystalline silicon or amorphous silicon germanium.
  • Various photoelectric conversion elements 10 such as a thin-film silicon solar cell using the photoelectric conversion element that has been made can be used.
  • a bus bar electrode 11 and a finger electrode 12 which is a collecting electrode formed in a direction substantially orthogonal to the bus bar electrode 11 are provided as surface electrodes.
  • a back electrode 13 made of aluminum, silver, or the like is provided on the surface of the photoelectric conversion element 10 opposite to the light receiving surface.
  • Each solar battery cell 2 forms a string 4 by electrically connecting a bus bar electrode 11 of a predetermined solar battery cell 2 and a back electrode 13 of an adjacent solar battery cell 2 by a tab wire 3. To do.
  • one surface 30b of the tab wire 3 at one end 3a of the tab wire 3 is connected to the bus bar electrode 11 of the solar battery cell 2 via the conductive adhesive film 15a. Further, the other surface 30a of the tab wire 3 at the other end 3b of the tab wire 3 is connected to the back surface electrode 13 of the solar battery cell 2 adjacent to the other via the conductive adhesive film 15b.
  • the finger electrode 12 is formed by applying Ag paste and heating.
  • the finger electrode 12 is formed over substantially the entire light receiving surface of the solar battery cell 2.
  • the finger electrodes 12 are formed with lines having a width of about 100 ⁇ m, for example, at a predetermined interval, for example, every 2 mm.
  • the bus bar electrode 11 is formed by the same method as the finger electrode 12.
  • the bus bar electrode 11 intersects with the bus bar electrode 11 in the form of a line, for example, 1 mm wide on the surface of the photoelectric conversion element 10 serving as the light receiving surface of the solar battery cell 2 in order to reduce the area that blocks incident light and suppress shadow loss. It is formed to do.
  • the number of bus bar electrodes 11 is appropriately set in consideration of the size and resistance of the solar battery cell 2.
  • a conductive adhesive film 15 a is provided on the bus bar electrode 11, and an end portion 3 a of the tab wire 3 is provided thereon. Thereby, the bus-bar electrode 11 is connected with the surface 30b of the edge part 3a of the tab wire 3 via the electroconductive adhesive film 15a.
  • the back electrode 13 is formed of an electrode made of aluminum, silver or the like on the back surface of the photoelectric conversion element 10 by, for example, screen printing or sputtering.
  • the back electrode 13 is connected to the surface 30a of the end 3b of the tab wire 3 through the conductive adhesive film 15b.
  • the solar battery cell 2 included in the solar battery module 1 is mechanically connected to the tab wire 3 on both the front and back surfaces and electrically connected to the adjacent solar battery cell 2 via the tab wire 3. .
  • the tab wire 3 is formed in a long shape using, for example, a ribbon-like copper foil having a thickness of 50 to 300 ⁇ m, and gold plating, silver plating, tin plating, solder plating, etc., as required. Is given.
  • grooved part 21 is formed in the longitudinal direction in each of one surface 30a and the other surface 30b.
  • the tab wire 3 has one end 3a fixed and connected to the bus bar electrode 11 of the solar cell 2, and the other end 3b fixed and connected to the back surface electrode 13 of the adjacent solar cell. Is done.
  • the tab line 3 has a plurality of convex portions 31 and concave portions 32 that are continuous in the longitudinal direction of the tab line 3 on both the front and back surfaces, that is, both surfaces 30a and 30b.
  • the concavo-convex portion 21 is formed by being provided on the surface.
  • the concavo-convex portion 21 is formed by press-molding a plated ribbon-like copper foil or the like.
  • the uneven portion may be subjected to a surface treatment by a known method.
  • the convex portions are not limited to those having an acute angle, and may be slightly rounded within a range in which the concave / convex angle ⁇ can be measured.
  • the tab line 3 has a symmetrical shape with the center line m1 as a boundary in the cross section in the width direction.
  • the tab wire 3 has a symmetrical shape on the front and back sides, so that when the tab wire 3 is connected to each of the bus bar electrode 11 and the back surface electrode 13 by heating and pressing described later, stress is applied evenly on the front side and the back side of the solar cell 2. .
  • the photovoltaic cell 2 can minimize the stress difference applied to the front surface and the back surface on the light receiving surface side. Thereby, since the photovoltaic cell 2 can suppress the stress distortion resulting from the shape of the tab wire 3 in front and back both surfaces to the minimum, it becomes possible to prevent generation
  • the uneven portion 21 on the surface 30b of the end 3a of the tab wire 3 is connected to the bus bar electrode 11 of the solar cell 2 through the conductive adhesive film 15a.
  • the conductive adhesive film 15a enters the concave portion 32 of the concave-convex portion 21 when the binder resin flows by heating.
  • the tab wire 3 having a predetermined unevenness angle can increase the connection strength between the bus bar electrode 11 and the back electrode 13 of the solar battery cell 2.
  • the photovoltaic cell 2 can improve high power generation efficiency.
  • the uneven portion 21 on the surface 30a of the end portion 3b of the tab wire 3 is connected to the back surface electrode 13 of the solar battery cell 2 adjacent to the predetermined solar battery cell 2 through the conductive adhesive film 15b. Also in this connection, the conductive adhesive film 15b enters the concave portion 32 of the concave and convex portion 21 by the flow of the binder resin, whereby the connection reliability (adhesion strength) with the back electrode 13 can be increased.
  • the tab wire 3 provided in the solar cell module 1 has the uneven portions 21 having a predetermined uneven angle formed on the front and back surfaces 30a and 30b.
  • the tab wire 3 and the bus bar electrode 11, the tab wire 3 and the back electrode 13 are mechanically connected with high adhesive strength, respectively, and the predetermined solar cell
  • the bus bar electrode 11 of the battery cell 2 and the back electrode 13 of the solar battery cell 2 adjacent to the predetermined solar battery cell 2 are electrically connected with high connection reliability.
  • the line formed by connecting the apex b 1 of the convex portion 31 and the apex (lowest point) a 1 of the concave portion 32 adjacent to both sides of the convex portion 31 in the cross-section in the width direction of the tab line 3. and minutes a 1 b 1, is defined as the uneven angle of the line segment a 1 a 1 and the tab line 3 the angle formed formed by connecting between vertices a 1 of recess 32 adjacent to the convex portion 31 alpha.
  • the cross section of the tab line 3 has a symmetrical shape with the center line m 1 as a boundary. For this reason, also on the other surface 30b, the same uneven
  • the unevenness angle ⁇ is preferably 10 ° or more and 50 ° or less, and particularly preferably 20 ° or more and 40 ° or less.
  • the unevenness angle ⁇ 10 ° or more, a sufficient amount of the conductive adhesive film 15 (conductive adhesive films 15a and 15b) enters the concave portion 32 of the concave and convex portion 21 due to the flow caused by heating. 3 and the bus bar electrode 11, and the connection reliability in the tab wire 3 and the back electrode 13 can be enhanced.
  • the concavo-convex portion 21 of the surface 30 b is bonded to the conductive adhesive film 15 a with high adhesive strength, and the tab wire 3 is connected to the bus bar electrode 11 of the solar battery cell 2.
  • the incident light is incident on the uneven portion 21 of the surface 30 a, the incident light is scattered by the uneven portion 21. Then, the scattered light is reflected by the surface cover 7, which is a protective glass surface, and reenters the photoelectric conversion element 10.
  • the solar cell module 1 can exhibit the light containment effect and improve the power generation efficiency. As a result, the solar cell module 1 can improve the power generation efficiency, and a sufficient amount of conductive adhesion to the concave portion 32 of the concavo-convex portion 21.
  • the connection reliability between the tab wire 3 and the bus bar electrode 11 can be improved.
  • the conductive adhesive film 15 includes a thermosetting binder resin layer 23 containing conductive particles 24 at a high density.
  • the conductive adhesive film 15 preferably has a minimum melt viscosity of 100 to 100,000 Pa ⁇ s from the viewpoint of indentability.
  • the minimum melt viscosity of the conductive adhesive film 15 is too low, the resin flows during the process of low pressure bonding to main curing, and connection failure or protrusion to the cell light receiving surface is likely to occur, which also causes a decrease in light receiving rate. Moreover, even if the minimum melt viscosity is too high, defects are likely to occur when the film is adhered, and the connection reliability may be adversely affected.
  • the minimum melt viscosity can be measured while a sample is loaded in a predetermined amount of rotational viscometer and raised at a predetermined temperature increase rate.
  • the conductive particles 24 used for the conductive adhesive film 15 are not particularly limited, and examples thereof include metal particles such as nickel, gold, and copper, resin particles that are gold-plated, and resin particles that are gold-plated.
  • the outermost layer of the particles may be an insulating coating.
  • the number of the conductive particles 24 that overlap each other can be increased, and good conduction reliability can be ensured.
  • the conductive adhesive film 15 preferably has a viscosity of about 10 to 10,000 kPa ⁇ s, more preferably 10 to 5,000 kPa ⁇ s at around room temperature.
  • the conductive adhesive film 15 has a viscosity in the range of 10 to 10,000 kPa ⁇ s, for example, when the conductive adhesive film 15 is a tape-shaped reel body described later, so-called protrusion can be prevented, A predetermined tack force can be maintained.
  • composition of the binder resin layer of the conductive adhesive film 15 is not particularly limited as long as it does not impair the above-described characteristics, but more preferably a film-forming resin, a liquid epoxy resin, a latent curing agent, a silane cup Contains a ring agent.
  • the film-forming resin corresponds to a high molecular weight resin having an average molecular weight of 10,000 or more, and preferably has an average molecular weight of about 10,000 to 80,000 from the viewpoint of film formation.
  • various resins such as an epoxy resin, a modified epoxy resin, a urethane resin, and a phenoxy resin can be used.
  • a phenoxy resin is preferably used from the viewpoint of the film formation state, connection reliability, and the like. .
  • the liquid epoxy resin is not particularly limited as long as it has fluidity at room temperature, and all commercially available epoxy resins can be used.
  • Specific examples of such epoxy resins include naphthalene type epoxy resins, biphenyl type epoxy resins, phenol novolac type epoxy resins, bisphenol type epoxy resins, stilbene type epoxy resins, triphenolmethane type epoxy resins, phenol aralkyl type epoxy resins.
  • Resins, naphthol type epoxy resins, dicyclopentadiene type epoxy resins, triphenylmethane type epoxy resins, and the like can be used. These may be used alone or in combination of two or more. Moreover, you may use it combining suitably with other organic resins, such as an acrylic resin.
  • the latent curing agent various curing agents such as a heat curing type and a UV curing type can be used.
  • the latent curing agent does not normally react but is activated by some trigger and starts the reaction.
  • the trigger includes heat, light, pressurization, etc., and can be selected and used depending on the application.
  • a latent curing agent composed of imidazoles, amines, sulfonium salts, onium salts and the like can be used.
  • silane coupling agent epoxy, amino, mercapto sulfide, ureido, etc. can be used.
  • an epoxy-type silane coupling agent is used preferably. Thereby, the adhesiveness in the interface of an organic material and an inorganic material can be improved.
  • an inorganic filler as another additive composition.
  • an inorganic filler silica, talc, titanium oxide, calcium carbonate, magnesium oxide and the like can be used, and the kind of the inorganic filler is not particularly limited.
  • FIG. 7 is a schematic diagram showing an example of the form of the conductive adhesive film 15.
  • the conductive adhesive film 15 is provided with a release substrate 25 on one surface thereof to form a film laminate, and is formed into a tape shape.
  • the tape-like conductive adhesive film 15 is wound and laminated on the reel 26 so that the peeling base material 25 is on the outer peripheral side, thereby forming a reel body 27.
  • the release substrate 25 is not particularly limited, and PET (Poly Ethylene Terephthalate), OPP (Oriented Polypropylene), PMP (Poly-4-methlpentene-1), PTFE (Polytetrafluoroethylene), or the like can be used.
  • the conductive adhesive film 15 may have a structure having a transparent cover film on the surface opposite to the surface on which the release substrate 25 is provided.
  • the tab wire 3 may be used as a cover film to be stuck on the binder resin layer.
  • the peeling base material 25 is peeled off in actual use, and the conductive adhesive film 15 is placed on the bus bar electrode 11 or the back electrode 13.
  • the tab wire 3 can be connected to the bus bar electrode 11 and the back electrode 13.
  • the conductive adhesive film 15 is not limited to a reel body shape, and may be, for example, a strip shape.
  • the conductive adhesive film 15 When the conductive adhesive film 15 is provided as the reel body 27, by setting the viscosity of the conductive adhesive film 15 in the range of 10 to 10000 kPa ⁇ s, deformation of the conductive adhesive film 15 is prevented, and a predetermined dimension is set. Can be maintained. Similarly, when two or more conductive adhesive films 15 are stacked in a strip shape, deformation can be prevented and a predetermined dimension can be maintained.
  • the conductive adhesive film 15 can be manufactured, for example, by the following method. First, the conductive particles 24, the film-forming resin, the liquid epoxy resin, the latent curing agent, and the silane coupling agent are dissolved in a solvent. As the solvent, toluene, ethyl acetate or the like, or a mixed solvent thereof can be used. And the solution for resin production obtained by making it melt
  • Temporary press-bonding step that is arranged on the bus bar electrode 11 and the back electrode 13 by hot pressing at low temperature and low pressure, and the conductive adhesive film 15 is thermally cured by hot pressing from the tab wire 3, and the tab wire 3 and the bus bar.
  • an uncured conductive adhesive film 15 is temporarily pasted on the bus bar electrode 11 and the back electrode 13 of each solar battery cell 2 (temporary pasting step).
  • the temporary attachment step of the conductive adhesive film 15 for example, the conductive adhesive film 15 wound around the reel body 27 is transported to a predetermined position on the front and back sides of the solar battery cell 2 and pressed by the temporary attachment head. Then, the conductive adhesive film 15 is temporarily attached.
  • the conductive adhesive film 15 By heating the conductive adhesive film 15 with a temporary sticking head (not shown) at a temperature (for example, 40 to 60 ° C.) that does not cause main curing, for a predetermined time (for example, 1 to 5 seconds).
  • the conductive adhesive film 15 is temporarily attached to the solar battery cell 2.
  • the solar cells 2 to which the conductive adhesive film 15 is temporarily attached are arranged in the order in which they are connected in series.
  • the tab wire 3 is temporarily pressure-bonded onto the conductive adhesive film 15 with respect to each solar cell 2 arranged at a predetermined position facing the pair of upper and lower temporary pressure-bonding heads 26 (temporary pressure-bonding step).
  • one of the tab wires 3 is formed on the bus bar electrode 11 formed on the surface of the preceding one solar battery cell 2 through the uncured conductive adhesive film 15 a.
  • the end 3a is temporarily crimped.
  • the other end part 3b of the tab wire 3 is temporarily crimped
  • a tab is formed on the bus bar electrode 11 formed on the surface of the solar battery cell 2 and on the back electrode 13 of the solar battery cell 2 subsequent to the solar battery cell 2 through an uncured conductive adhesive film 15.
  • One end 3a and the other end 3b of the wire 3 are temporarily crimped. In this way, adjacent solar cells 2 are connected in series with the tab wire 3.
  • the surface 30b on which the concave and convex portion 21 is formed is temporarily crimped onto the bus bar electrode 11 at one end 3a, and the concave and convex portion 21 is formed on the other end 3b.
  • the front surface 20 a is temporarily pressure-bonded to the back electrode 13.
  • the temporary crimping of the tab wire 3 is performed by the temporary crimping head 26.
  • the temporary pressure bonding head 26 is heated to a temperature at which the curing reaction of the conductive adhesive film 15 does not proceed (for example, about 70 to 100 ° C.), and presses the tab wire 3 with the pressing surface 26a for a predetermined time. Therefore, the conductive adhesive film 15 temporarily fixes the tab wire 3 on the bus bar electrode 11 and the back electrode 13 when the binder resin exhibits fluidity and exhibits high adhesive strength.
  • the plurality of solar cells 2 to which the tab wires 3 are temporarily fixed are transported and supported directly below the pair of upper and lower heating and pressing heads 28, and then are pressed by the pressing surface 28 a of the heating and pressing head 28.
  • the tab wire 3 is finally press-bonded to the bus bar electrode 11 and the back electrode 13 of the solar battery cell 2 to cure the conductive adhesive film 15 (main press-bonding step).
  • the plurality of solar cells 2 are configured so that the preceding solar cell 2 is moved up and down in synchronization with a pair of heating and pressing heads 28 provided above and below, so that the tab wire 3 is moved to a predetermined pressure (for example, the pressure is about 3 MPa to 12 MPa.
  • the heating and pressing head 28 is heated to a predetermined temperature (for example, about 180 to 220 ° C.) at which the conductive adhesive film 15 is cured. Therefore, the binder resin is thermally cured in the conductive adhesive film 15, and the tab wire 3 and the bus bar electrode 11 or the back electrode 13 are electrically and mechanically connected.
  • the conductive adhesive film 15 enters the concave portion 32 of the concave / convex portion 21 having the concave / convex angle ⁇ of 10 to 50 °, so that the connection reliability between the bus bar electrode 11 and the back electrode 13 can be improved. It becomes. Moreover, high conduction reliability can be obtained by increasing the particle trapping rate in the recess 32.
  • the pair of heating and pressing heads 28 are separated from the tab wire 3, and the subsequent solar cell 2 is connected to the pair of heating and pressing heads 28. It is transported directly below. In this way, the solar cells 2 are conveyed one by one directly below the heating and pressing head 28, and the tab wires 3 are sequentially bonded to the bus bar electrode 11 and the back electrode 13, and in series with the adjacent solar cells 2. It will be connected to.
  • each of the bus bar electrode 11 and the back electrode 13 is connected to the tab wire 3 by the conductive adhesive film 15.
  • either of Ag and Ag can be used, but by using a back surface Al current collecting electrode as the back surface electrode 13, it is not necessary to provide a conventional Ag electrode for solder connection, so the manufacturing process of the solar battery cell is shortened. , Have production technical advantages.
  • the tab wire 3 having the concavo-convex portions 21 on both sides and the bus bar electrode 11 and the back electrode 13 are connected through the thermosetting resin.
  • the solar cell module 1 is provided with the tab wire 3 of the front and back symmetrical shape which provided the uneven
  • the solar cell module 1 can increase the power generation efficiency by exhibiting the light confinement effect by the scattered light by setting the concavo-convex angle ⁇ in the concavo-convex portion 21 of the tab wire 3 to 10 to 50 °, and can improve the power generation efficiency.
  • Stable conduction reliability and connection reliability can be realized on the side and back electrode side.
  • the conductive adhesive film 15 is used as the adhesive resin material to connect each of the bus bar electrode 11 and the back electrode 13 and the tab wire 3, but another adhesive resin material is used. You may do it.
  • a non-conductive adhesive film is used as the adhesive resin material, conduction is achieved by directly contacting the convex portion 31 of the concave-convex portion 21 of the tab wire 3 with each of the bus bar electrode 11 and the back electrode 13. Moreover, it replaces with providing these adhesive films, and you may make it apply
  • the solar cell module 1 provided with the single-sided light reception type solar cell 2 was demonstrated, it was not limited to this,
  • the double-sided light reception type solar cell 2A shown in FIG. 10 was provided. It is good also as a solar cell module.
  • Solar cell 2 ⁇ / b> A includes finger electrode 12 and bus bar 11 instead of back electrode 13.
  • the solar battery module including the solar battery cell 2 ⁇ / b> A is provided with a surface cover 7 instead of the back sheet 8.
  • the front and back surfaces of each solar cell 2A are connected simultaneously with the tab wire 3 by using the tab wires 3 having a symmetrical shape.
  • the stress strain generated on the front surface side and the back surface side of the solar battery cell 2 can be suppressed to the minimum, so that the solar battery cell 2 can be prevented from being cracked or warped.
  • stable conduction reliability and connection reliability can be realized on the surface electrode (bus bar electrode 11, finger electrode 12) side and the back electrode 13 side.
  • SP100 series manufactured by Sony Chemical & Information Device Co., Ltd.
  • Example 5 The same process as in Example 1 was performed except that the tab line in Example 1 was used instead of the tab line having a planar shape on which both of the concave and convex portions were not formed.
  • connection reliability A 90 ° peel test (JIS K6854-1) was conducted to peel the tab wire from the conductive adhesive film bonded to each of the bus bar electrode and the back electrode in the 90 ° direction, and the peel strength (N / cm) was measured. Based on the measured peel strength, the connection reliability in each of the tab wire and the bus bar electrode and the tab wire and the back electrode was evaluated. The connection reliability was evaluated with a peel strength of 10 N / cm or more as ⁇ , 8 to 10 N / cm as ⁇ , 6 to 8 N / cm as ⁇ , and 6 N / cm or less as ⁇ . The evaluation results are shown in [Table 1].
  • Example 1 in Examples 1 to 5 in which the concavo-convex angle ⁇ is 10 ° or more and 50 ° or less, the incident light is incident on the concavo-convex portion having the concavo-convex angle ⁇ , so that a favorable scattering angle is obtained. Scattered light could be obtained, and the light containment effect was expressed by the scattered light, and a high value in power generation efficiency could be obtained. In particular, in Example 3 in which the unevenness angle ⁇ was 30 °, the light confinement effect was best exhibited and the highest power generation efficiency could be obtained.
  • the unevenness angle ⁇ is set to 20 ° or more and 40 ° or less, the scattering angle of incident light can be set to a more favorable value, thereby further increasing the power generation efficiency. I was able to get it.
  • the unevenness angle is 20 °, the filling amount of the binder resin of the conductive adhesive film that flows by heating and enters the recesses can be increased, and high connection reliability can be obtained.
  • Comparative Example 3 since the surface of the tab line on the light receiving surface side that is connected to the bus bar electrode has a planar shape, the filling amount of the binder resin cannot be obtained at all on the tab line surface having the planar shape. The connection reliability between the tab line on the light receiving surface side and the bus bar electrode was not good.
  • Comparative Example 4 the surface of the tab wire on the back surface side that is connected to the back surface electrode has a planar shape, so that the amount of binder resin filling cannot be obtained at all on the tab wire surface having this planar shape. The connection reliability between the tab wire and the back electrode was not good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 本発明は、良好な形状状態を維持することができるとともに、充分な接続信頼性が確保できるタブ線を備えた太陽電池モジュール及びこのような太陽電池モジュールの製造方法を提供する。タブ線(3)は、表裏両面に、それぞれ長手方向に亘って連続する複数の凸部及び凹部が幅方向に交互に設けられてなる凹凸部(21)が形成されており、その一端が表面電極であるバスバー電極(11)と、その他端が裏面電極(13)とそれぞれ接着性樹脂材を介して接続されている。また、タブ線(3)は、凸部の頂点と凸部に隣接する凹部の頂点とを結んでなる線分と、凸部の両側に隣接する凹部の頂点間を結んでなる線分とがなす凹凸角度が10°以上50°以下である。

Description

太陽電池モジュール及び太陽電池モジュールの製造方法
 本発明は、複数の太陽電池セルの接続用電極がタブ線によって互いに電気的に接続されてなる太陽電池モジュール及び太陽電池モジュールの製造方法に関する。
 本出願は、日本国において2010年12月9日に出願された日本特許出願番号特願2010-274844を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。
 一般に、太陽電池は、複数の太陽電池セルを直列に接続することで100W以上の出力を実現する太陽電池モジュールとして使用される。
 結晶シリコン系太陽電池モジュールは、複数の隣接する太陽電池セルが、インターコネクタとして半田コートされたリボン状の銅箔等の導電材からなるタブ線によって接続されている。タブ線は、その一端部が一の太陽電池セルの表面電極に接続され、その他端部が隣接する太陽電池セルの裏面電極に接続されることにより、各太陽電池セルを直列的に接続する。
 近年、タブ線としては、一方の表面に凹凸部が形成されたものが提案されている。例えば、タブ線100は、図11に示すように、長尺状に形成され、受光側の表面101aに凹凸部102が形成されている。凹凸部102は、図12に示すように、タブ線100の長手方向に亘って連続する複数の凸部102aと凹部102bとが幅方向に亘って交互に設けられることにより形成されている。
 そして、タブ線100は、裏面101bが導電性接着フィルム104を介して太陽電池セル103の表面電極103aと接続される。これにより、太陽電池セル103は、受光面側に凹凸部102が向けられるため、入射光が凹凸部102によって散乱される。そして、その散乱光が保護ガラス面で反射し、受光面に再入射する。これにより、タブ線100を備えた太陽電池モジュールは、光封じ込め効果を発現して発電効率を向上させ、結果的に発電効率を向上させることができる。
 特許文献1には、このような受光側の表面に凹凸部が形成されたタブ線により複数の太陽電池セルが直列的に配列されてなるストリングスを備えた太陽電池モジュールの構成が記載されている。
 一方、特許文献2には、接続用電極と対向する側の表面に凹凸部が形成されたタブ線を備えた太陽電池モジュールが記載されている。特許文献2に記載のタブ線の凸部は、接続用電極に接しており、タブ線と接続用電極との間には導電性樹脂材料が充填されている。そして、凹凸部の高さを高くすることで、タブ線の接続信頼性(接着強度)を向上させることができる。
特開2010-16300号公報 特開2008-147567号公報
 このように、一方の表面に凹凸部が形成され、これとは反対側の表面が平面であるタブ線を表面電極上及び裏面電極上に備えた太陽電池セルは、タブ線の接着時に表面と裏面とにかかる圧力に差が生じてしまう。このため、太陽電池セルは、表面電極側と裏面電極側とで応力歪が生じることとなる。太陽電池セルは、応力歪が生じると割れや反りが発生するおそれがある。
 ここで、結晶シリコン系太陽電池セルでは、原料となるシリコンを安価かつ大量に調達することが課題となっており、近年では、多結晶シリコンインゴットによりシリコンウェハを極薄(例えば200μm~150μm)で切り出し、量産に使用され始めている。このような薄型の太陽電池セルにおいては、応力歪による割れや反りが一段と生じやすくなる。
 また、タブ線は、表面電極、裏面電極それぞれと対向する平面状の表面が表面電極、裏面電極のそれぞれと充分な接着強度で接続できないおそれがある。
 本発明は、このような従来の実情に鑑みて提案されたものであり、太陽電池セルの良好な形状状態を維持することができるとともに、タブ線との間で充分な接続信頼性を得ることが可能な太陽電池モジュール及びこのような太陽電池モジュールの製造方法を提供することを目的とする。
 上述した課題を解決するために、本発明に係る太陽電池モジュールは、複数の太陽電池セルのうち、所定の太陽電池セルの表面電極と所定の太陽電池セルの一方に隣接する他の太陽電池セルの裏面電極とがタブ線によって接続されている太陽電池モジュールにおいて、タブ線は、表裏両面に、それぞれ長手方向に亘って連続する複数の凸部及び凹部が幅方向に交互に設けられてなる凹凸部が形成されており、その一端が表面電極と、その他端が裏面電極とそれぞれ接着性樹脂材を介して接続されており、凸部の頂点と凸部に隣接する凹部の頂点とを結んでなる線分と、凸部の両側に隣接する凹部の頂点間を結んでなる線分とがなす凹凸角度が10°以上50°以下である。
 また、上述した課題を解決するために、本発明に係る太陽電池モジュールの製造方法は、複数の太陽電池セルのうち、所定の太陽電池セルの表面電極と所定の太陽電池セルの一方に隣接する他の太陽電池セルの裏面電極とがタブ線によって接続されている太陽電池モジュールの製造方法において、太陽電池セルの表面電極及び裏面電極それぞれに接着性樹脂材を介してタブ線を圧着する圧着工程を有し、タブ線は、表裏両面に、それぞれ長手方向に亘って連続する複数の凸部及び凹部が幅方向に交互に設けられてなる凹凸部が形成され、凸部の頂点と凸部に隣接する凹部の頂点とを結んでなる線分と、凸部の両側に隣接する凹部の頂点間を結んでなる線分とがなす凹凸角度が10°以上50°以下であり、圧着工程では、タブ線の一端を表面電極と、タブ線の他端を裏面電極とそれぞれ接着性樹脂材を介して接続する。
 本発明によれば、太陽電池セルの歪みを防止して良好な形状状態を維持することができるとともに、タブ線との間で充分な接続信頼性を得ることが可能となる。
図1は、太陽電池モジュールの構成を示す分解斜視図である。 図2は、太陽電池セルのストリングスの長手方向断面図である。 図3は、タブ線により接続された太陽電池セルを示す斜視図である。 図4は、太陽電池セルの断面図である。 図5は、タブ線の幅方向断面図である。 図6は、導電性接着フィルムの幅方向断面図である。 図7は、導電性接着フィルムの形態の一例を示す模式図である。 図8は、タブ線の仮圧着工程を説明するための模式図である。 図9は、タブ線の本圧着工程を説明するための模式図である。 図10は、太陽電池セルの断面図である。 図11は、従来のタブ線により接続された太陽電池を示す斜視図である。 図12は、従来のタブ線の幅方向断面図である。
 以下、本発明の実施の形態(以下、「本実施の形態」という。)について、図面を参照しながら詳細に説明する。
 [太陽電池モジュール]
 図1は、本発明を適用したタブ線を備える太陽電池モジュール1の構成を示す分解斜視図である。太陽電池モジュール1は、複数の太陽電池セル2がインターコネクタとなるタブ線3によって直列に接続されたストリングス4を有し、ストリングス4を複数配列したマトリクス5を備える。
 太陽電池モジュール1は、マトリクス5が封止接着剤のシート6で挟まれ、受光面側に設けられた表面カバー7及び裏面側に設けられたバックシート8とともに一括してラミネートされ、周囲にアルミニウム等の金属フレーム9が取り付けられることにより形成される。
 シート6の封止接着剤としては、例えば、エチレンビニルアセテート樹脂(EVA)等の透光性封止材が用いられる。また、表面カバー7としては、例えば、ガラスや透光性プラスチック等の透光性の材料が用いられる。また、バックシート8としては、ガラスやアルミニウム箔を樹脂フィルムで挟持した積層体等が用いられる。
 図2は、太陽電池セル2を直列的に接続してなるストリングス4の長手方向断面図である。各太陽電池セル2は、光電変換素子10を備える。光電変換素子10は、単結晶型シリコン光電変換素子、多結晶型光電変換素子等を用いる結晶シリコン系太陽電池モジュールや、アモルファスシリコンからなるセルと微結晶シリコンやアモルファスシリコンゲルマニウムからなるセルとを積層させた光電変換素子を用いた薄膜シリコン系太陽電池等、各種光電変換素子10を用いることができる。
 また、光電変換素子10の受光面には、表面電極として、バスバー電極11と、バスバー電極11と略直交する方向に形成された集電極であるフィンガー電極12とが設けられている。また、光電変換素子10の受光面とは反対側の面には、アルミニウムや銀等からなる裏面電極13が設けられている。
 各太陽電池セル2同士は、タブ線3によって、所定の太陽電池セル2のバスバー電極11と、隣接する太陽電池セル2の裏面電極13とが電気的に接続されることにより、ストリングス4を構成する。
 具体的には、タブ線3の一方の端部3aにおいてタブ線3の一方の表面30bは、太陽電池セル2のバスバー電極11と導電性接着フィルム15aを介して接続される。また、タブ線3の他方の端部3bにおいてタブ線3の他方の表面30aは、一方に隣接する太陽電池セル2の裏面電極13と導電性接着フィルム15bを介して接続される。
 フィンガー電極12は、Agペーストを塗布し、加熱することにより形成される。フィンガー電極12は、太陽電池セル2の受光面の略全面に亘って形成されている。また、フィンガー電極12は、例えば約100μm程度の幅を有するラインが、所定間隔、例えば2mmおきに形成されている。
 バスバー電極11は、フィンガー電極12と同様の方法により形成される。バスバー電極11は、入射光を遮る面積を小さくし、シャドーロスを抑えるために、太陽電池セル2の受光面となる光電変換素子10の表面において、例えば1mm幅でライン状にバスバー電極11と交差するように形成されている。
 バスバー電極11の数は、太陽電池セル2のサイズや抵抗を考慮して適宜設定される。バスバー電極11上には、導電性接着フィルム15aが設けられ、その上にタブ線3の端部3aが設けられる。これにより、バスバー電極11は、導電性接着フィルム15aを介してタブ線3の端部3aの表面30bと接続される。
 裏面電極13は、アルミニウムや銀等からなる電極が、例えばスクリーン印刷やスパッタ等により光電変換素子10の裏面に形成される。裏面電極13は、導電性接着フィルム15bを介してタブ線3の端部3bの表面30aと接続される。
 このようにして、太陽電池モジュール1が備える太陽電池セル2は、表裏両面においてタブ線3と機械的に接続されるとともにタブ線3を介して隣接する太陽電池セル2と電気的に接続される。
 [タブ線]
 タブ線3は、図3に示すように、例えば、50~300μm厚のリボン状銅箔を使用して長尺状に形成されており、必要に応じて金メッキ、銀メッキ、スズメッキ、ハンダメッキ等が施されている。タブ線3は、一方の表面30a、他方の表面30bのそれぞれにおいて長手方向に亘って凹凸部21が形成されている。このタブ線3は、一方の端部3aが太陽電池セル2のバスバー電極11上に固定されて接続されるとともに、他方の端部3bが隣接する太陽電池セルの裏面電極13と固定されて接続される。
 具体的に、タブ線3は、図4に示すように、表裏両面すなわち表面30a,30bの両面においてタブ線3の長手方向に亘って連続する複数の凸部31及び凹部32が幅方向に交互に設けられていることにより凹凸部21が形成されている。凹凸部21は、メッキ処理されたリボン状銅箔をプレス成形すること等より形成されている。
 また、凹凸部には、公知の手法で表面処理を呈してもよい。凸部は、鋭角をなしているものに限定されず、凹凸角度αを測定できる範囲で若干丸みを帯びていてもよい。
 タブ線3は、幅方向断面において中心線m1を境界として表裏対称形状である。これにより、表裏対称形状のタブ線3がバスバー電極11及び裏面電極13に接続された太陽電池セル2は、タブ線3の接続時に生じる応力歪による反りの発生を防止することができる。
 すなわち、タブ線3は、表裏対称形状であることにより、後述する加熱押圧によりバスバー電極11、裏面電極13のそれぞれと接続される際、太陽電池セル2の表側と裏側とで均等に応力がかかる。このため、太陽電池セル2は、受光面側の表面と裏面とにかかる応力差を最小限とすることができる。これにより、太陽電池セル2は、表裏両面におけるタブ線3の形状に起因する応力歪を最小限に抑制することができることから、割れや反りの発生を防止することが可能となる。
 所定の太陽電池セル2は、タブ線3の端部3aの表面30bにおける凹凸部21が、図5に示すように、導電性接着フィルム15aを介して太陽電池セル2のバスバー電極11と接続される。後述するように、導電性接着フィルム15aは、バインダ樹脂が加熱によって流動することにより凹凸部21の凹部32に入り込む。これにより、後述するように、所定の凹凸角度を有するタブ線3は、太陽電池セル2のバスバー電極11、裏面電極13それぞれとの接続強度を高めることができる。
 また、この所定の太陽電池セル2は、受光面側において、タブ線3の端部3aの表面30aにおける凹凸部21に入射された入射光が、凹凸部21によって散乱され、その散乱光がガラス等の表面カバー7にて反射して受光面に入射する。これにより、太陽電池セル2は、高い発電効率を向上させることができる。
 また、タブ線3の端部3bの表面30aにおける凹凸部21は、この所定の太陽電池セル2に隣接する太陽電池セル2の裏面電極13と、導電性接着フィルム15bを介して接続される。この接続においても、導電性接着フィルム15bがバインダ樹脂の加熱よる流動により凹凸部21の凹部32に入り込むことで、裏面電極13と接続信頼性(接着強度)を高めることができる。
 このように、太陽電池モジュール1が備えるタブ線3は、表裏両面30a,30bに所定の凹凸角度を有する凹凸部21が形成されている。これにより、太陽電池モジュール1は、所定の太陽電池セル2において、タブ線3とバスバー電極11、タブ線3と裏面電極13とがそれぞれ高い接着強度で機械的に接続されるとともに、所定の太陽電池セル2のバスバー電極11と、この所定の太陽電池セル2に隣接する太陽電池セル2の裏面電極13とが高い接続信頼性により電気的に接続される。
 次いで、凹凸部21の凹凸角度について説明する。先の図4に示すように、タブ線3の幅方向断面において、凸部31の頂点bと凸部31の両側に隣接する凹部32の頂点(最低点)aとを結んでなる線分aと、凸部31に隣接する凹部32の頂点a間を結んでなる線分aとがなす角度をタブ線3の凹凸角度αと定義する。なお、タブ線3の断面は、中心線mを境界として表裏対称形状となっている。このため、他方の表面30bにおいても、凸部31と凹部32とから同値の凹凸角度αを得ることができる。
 凹凸角度αとしては、10°以上50°以下とすることが好ましく、20°以上40°以下とすることが特に好ましい。凹凸角度αを10°以上50°以下とすることにより、入射光を散乱して表面カバー7にて反射させることができ、太陽電池モジュール1において光封じ込め効果を発現して発電効率を高めることができる。
 また、凹凸角度αを10°以上とすることにより、充分な量の導電性接着フィルム15(導電性接着フィルム15a,15b)が加熱による流動によって凹凸部21の凹部32に入り込むことで、タブ線3とバスバー電極11、タブ線3と裏面電極13における接続信頼性を高めることができる。
 そして、タブ線3は、図5に示すように、表面30bの凹凸部21が導電性接着フィルム15aと高い接着強度により接着し、太陽電池セル2のバスバー電極11と接続される。入射光が表面30aの凹凸部21に入射すると、この凹凸部21によって散乱される。そして、その散乱光が保護ガラス面である表面カバー7で反射し、光電変換素子10に再入射する。
 太陽電池モジュール1は、このようにして光封じ込め効果を発現して発電効率を向上させ、結果的に発電効率を向上させることができるとともに、凹凸部21の凹部32に充分な量の導電性接着フィルム15aが入り込むことによりタブ線3とバスバー電極11との接続信頼性を高めることができる。
 [導電性接着フィルム]
 導電性接着フィルム15は、例えば図6に示すように、熱硬化性のバインダ樹脂層23に、導電性粒子24が高密度に含有されてなる。また、導電性接着フィルム15は、押し込み性の観点から、バインダ樹脂の最低溶融粘度が、100~100000Pa・sであることが好ましい。
 導電性接着フィルム15は、最低溶融粘度が低すぎると低圧着から本硬化の過程で樹脂が流動してしまい接続不良やセル受光面へのはみ出しが生じやすく、受光率低下の原因ともなる。また、最低溶融粘度が高すぎてもフィルム貼着時に不良を発生しやすく、接続信頼性に悪影響が出る場合もある。なお、最低溶融粘度については、サンプルを所定量回転式粘度計に装填し、所定の昇温速度で上昇させながら測定することができる。
 導電性接着フィルム15に用いられる導電性粒子24としては、特に制限されず、例えば、ニッケル、金、銅などの金属粒子、樹脂粒子に金めっきなどを施したもの、樹脂粒子に金めっきを施した粒子の最外層に絶縁被覆を施したもの等を挙げることができる。なお、導電性粒子24として、扁平なフレーク状金属粒子を含有することにより、互いに重なり合う導電性粒子24の数を増加させ、良好な導通信頼性を確保することができる。
 また、導電性接着フィルム15は、常温付近での粘度が10~10000kPa・sであることが好ましく、さらに好ましくは、10~5000kPa・sである。導電性接着フィルム15の粘度が10~10000kPa・sの範囲であることにより、導電性接着フィルム15を例えば後述するテープ状のリール体とした場合において、いわゆるはみ出しを防止することができ、また、所定のタック力を維持することができる。
 導電性接着フィルム15のバインダ樹脂層の組成は、上述のような特徴を害さない限り、特に制限されないが、より好ましくは、膜形成樹脂と、液状エポキシ樹脂と、潜在性硬化剤と、シランカップリング剤とを含有する。
 膜形成樹脂は、平均分子量が10000以上の高分子量樹脂に相当し、フィルム形成性の観点から、10000~80000程度の平均分子量であることが好ましい。膜形成樹脂としては、エポキシ樹脂、変性エポキシ樹脂、ウレタン樹脂、フェノキシ樹脂等の種々の樹脂を使用することができ、その中でも膜形成状態、接続信頼性等の観点からフェノキシ樹脂が好適に用いられる。
 液状エポキシ樹脂としては、常温で流動性を有していれば、特に制限はなく、市販のエポキシ樹脂が全て使用可能である。このようなエポキシ樹脂としては、具体的には、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトール型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂などを用いることができる。これらは単独でも、2種以上を組み合わせて用いてもよい。また、アクリル樹脂など他の有機樹脂と適宜組み合わせて使用してもよい。
 潜在性硬化剤としては、加熱硬化型、UV硬化型などの各種硬化剤が使用できる。潜在性硬化剤は、通常では反応せず、何かしらのトリガーにより活性化し、反応を開始する。トリガーには、熱、光、加圧などがあり、用途により選択して用いることができる。液状エポキシ樹脂を使用する場合は、イミダゾール類、アミン類、スルホニウム塩、オニウム塩などからなる潜在性硬化剤を使用することができる。
 シランカップリング剤としては、エポキシ系、アミノ系、メルカプト・スルフィド系、ウレイド系などを用いることができる。これらの中でも、本実施の形態では、エポキシ系シランカップリング剤が好ましく用いられる。これにより、有機材料と無機材料の界面における接着性を向上させることができる。
 また、その他の添加組成物として、無機フィラーを含有することが好ましい。無機フィラーを含有することにより、圧着時における樹脂層の流動性を調整し、粒子捕捉率を向上させることができる。無機フィラーとしては、シリカ、タルク、酸化チタン、炭酸カルシウム、酸化マグネシウム等を用いることができ、無機フィラーの種類は、特に限定されるものではない。
 図7は、導電性接着フィルム15の形態の一例を示す模式図である。導電性接着フィルム15は、その一方の表面に剥離基材25を設けてフィルム積層体とし、テープ状に成型されている。このテープ状の導電性接着フィルム15は、リール26に剥離基材25が外周側となるように巻回積層されてリール体27を形成する。
 剥離基材25としては、特に制限はなく、PET(Poly Ethylene Terephthalate)、OPP(Oriented Polypropylene)、PMP(Poly-4-methlpentene-1)、PTFE(Polytetrafluoroethylene)等を用いることができる。また、導電性接着フィルム15は、剥離基材25が設けられた表面とは反対の表面に透明なカバーフィルムを有する構成としてもよい。
 このとき、バインダ樹脂層上に貼付されるカバーフィルムとしてタブ線3を用いてもよい。予めタブ線3と導電性接着フィルム15とを積層一体化させておくことにより、実使用時においては、剥離基材25を剥離し、導電性接着フィルム15をバスバー電極11や裏面電極13上に貼着することでタブ線3とバスバー電極11、裏面電極13との接続を図ることができる。なお、導電性接着フィルム15は、リール体形状に限らず、例えば短冊形状であってもよい。
 導電性接着フィルム15がリール体27として提供される場合、導電性接着フィルム15の粘度を10~10000kPa・sの範囲とすることにより、導電性接着フィルム15の変形を防止し、所定の寸法を維持することができる。また、導電性接着フィルム15が短冊形状で2枚以上積層された場合も同様に、変形を防止し、所定の寸法を維持することができる。
 導電性接着フィルム15は、例えば次の方法で製造することができる。先ず、導電性粒子24と、膜形成樹脂と、液状エポキシ樹脂と、潜在性硬化剤と、シランカップリング剤とを溶剤に溶解させる。溶剤としては、トルエン、酢酸エチル等、又はこれらの混合溶剤を用いることができる。そして、溶解させて得られた樹脂生成用溶液を剥離シート上に塗布し、溶剤を揮発させる。これにより、導電性接着フィルム15を得る。
 [製造工程]
 次いで、太陽電池モジュール1の製造工程について説明する。太陽電池モジュール1は、バスバー電極11及び裏面電極13に導電性接着フィルム15を仮貼りする仮貼り工程と、太陽電池セル2を配列する配列工程と、タブ線3を導電性接着フィルム15上に低温低圧で熱加圧することによりバスバー電極11上及び裏面電極13上に配置する仮圧着工程と、タブ線3上から熱加圧することにより導電性接着フィルム15を熱硬化させ、タブ線3とバスバー電極11及び裏面電極13とを接続する本圧着工程とを備える。
 先ず、各太陽電池セル2のバスバー電極11及び裏面電極13上に、未硬化の導電性接着フィルム15を仮貼りする(仮貼り工程)。導電性接着フィルム15の仮貼り工程では、例えば、リール体27に巻回されている導電性接着フィルム15を太陽電池セル2の表裏面側の所定位置に搬送し、仮貼りヘッドによって押圧することによって導電性接着フィルム15を仮貼りする。
 導電性接着フィルム15に流動性を生じさせ、本硬化を生じさせない程度の温度(例えば40~60℃)で所定時間(例えば1~5秒)仮貼りヘッド(図示せず)によって加熱することで、導電性接着フィルム15を太陽電池セル2に仮貼りする。導電性接着フィルム15が仮貼りされた太陽電池セル2は、直列接続される順に配列される。
 次いで、上下一対の仮圧着ヘッド26と対峙する所定の位置に配列された各太陽電池セル2に対し、タブ線3を導電性接着フィルム15上に仮圧着する(仮圧着工程)。このとき、図2、図8に示すように、先行する一の太陽電池セル2の表面に形成されたバスバー電極11上に、未硬化の導電性接着フィルム15aを介してタブ線3の一方の端部3aを仮圧着する。そして、後に続く他の太陽電池セル2の裏面電極13に、未硬化の導電性接着フィルム15bを介してタブ線3の他方の端部3bを仮圧着する。
 同様に、太陽電池セル2の表面に形成されたバスバー電極11上と、この太陽電池セル2の後に続く太陽電池セル2の裏面電極13とに、未硬化の導電性接着フィルム15を介してタブ線3の一方の端部3a及び他方の端部3bを仮圧着する。このように、隣接する太陽電池セル2同士をタブ線3で直列に連結していく。
 タブ線3は、上述したように、一方の端部3aにおいて、凹凸部21が形成された表面30bがバスバー電極11上に仮圧着され、他方の端部3bにおいて、凹凸部21が形成された表面20aが裏面電極13に仮圧着される。
 仮圧着工程では、仮圧着ヘッド26によってタブ線3の仮圧着を行う。仮圧着ヘッド26は、導電性接着フィルム15の硬化反応が進行しない程度の温度(例えば70~100℃程度)に加熱され、その押圧面26aにて所定時間タブ線3を押圧する。したがって、導電性接着フィルム15は、バインダ樹脂が流動性を示し、高い接着強度を奏することにより、バスバー電極11上及び裏面電極13にタブ線3を仮固定する。
 次いで、図9に示すように、タブ線3が仮固定された複数の太陽電池セル2を、上下一対の加熱押圧ヘッド28の直下に搬送、支持した後、加熱押圧ヘッド28の押圧面28aによってタブ線3を太陽電池セル2のバスバー電極11、裏面電極13にそれぞれ本圧着して導電性接着フィルム15を硬化させる(本圧着工程)。
 このとき、複数の太陽電池セル2は、先行する太陽電池セル2が、上方及び下方に設けられた一対の加熱押圧ヘッド28が同期して昇降されることによって、タブ線3が所定の圧力(例えば3MPa~12MPa程度)で押圧される。加熱押圧ヘッド28は、導電性接着フィルム15が硬化する所定の温度(例えば180~220℃程度)に加熱される。したがって、導電性接着フィルム15は、バインダ樹脂が熱硬化し、タブ線3とバスバー電極11又は裏面電極13とを電気的及び機械的に接続する。
 このような本圧着により、凹凸角度αが10~50°である凹凸部21の凹部32に導電性接着フィルム15が入り込むことでバスバー電極11及び裏面電極13との接続信頼性を高めることが可能となる。また、凹部32における粒子捕捉率が高まることにより高い導通信頼性を得ることができる。
 加熱押圧ヘッド28によって先行する太陽電池セル2にタブ線3が本圧着されると、一対の加熱押圧ヘッド28がタブ線3より離間し、後に続く太陽電池セル2が一対の加熱押圧ヘッド28の直下に搬送される。このように、太陽電池セル2は、一枚ずつ加熱押圧ヘッド28の直下に搬送され、順次、タブ線3がバスバー電極11及び裏面電極13に接着されると共に、隣接する太陽電池セル2と直列に接続されていく。
 このように、太陽電池モジュール1の製造工程では、導電性接着フィルム15によってバスバー電極11、裏面電極13のそれぞれとタブ線3との接続を行うため、太陽電池セル2の裏面電極13として、Al又はAgのいずれも用いることができるが、裏面電極13として、裏面Al集電電極を用いることにより、従来の半田接続用のAg電極を設ける必要がないため、太陽電池セルの製造工程が短縮され、生産技術的なメリットを有する。
 太陽電池モジュール1の製造工程では、このように両面に凹凸部21を有するタブ線3とバスバー電極11、裏面電極13のそれぞれとを熱硬化性樹脂を介して接続する。両面同じ形状のタブ線3に対してタブ線3の両面側から同一の圧力をかけることで、太陽電池セル2における応力歪を最小限として太陽電池セル2の割れや反りを抑制することができる。
 また、太陽電池モジュール1は、表裏両面に凹凸部21を設けた表裏対称形状のタブ線3を備えることから、太陽電池セル2の表裏両面を同時に接続する際に太陽電池セル2の表面と裏面とで生じる応力歪を最小限に抑制することができるため、太陽電池セル2の割れや反りの発生を防止することができる。例えば太陽電池セル2が非常に薄い場合であってもこのような応力歪抑制による効果を得ることができる。
 また、太陽電池モジュール1は、タブ線3の凹凸部21における凹凸角度αを10~50°とすることにより、散乱光による光封じ込め効果を発現して発電効率を高めることができるとともに、表面電極側、裏面電極側のそれぞれでは安定した導通信頼性及び接続信頼性を実現することができる。
 以上、本実施の形態について説明してきたが、本発明が前述の実施の形態に限定されるものでないことは言うまでもなく、本発明の要旨を逸脱しない範囲で種々の変更が可能である。
 上述した実施の形態では、接着性樹脂材として導電性接着フィルム15を用いてバスバー電極11、裏面電極13のそれぞれとタブ線3とを接続するようにしたが、他の接着性樹脂材を用いるようにしてもよい。接着性樹脂材として非導電性接着フィルムを用いる場合、タブ線3の凹凸部21の凸部31とバスバー電極11、裏面電極13のそれぞれとを直接接触させることにより導通が図られる。また、これらの接着フィルムを設けることに替え、導電性ペースト、非導電性ペースト等のペースト状接着剤を適当な厚さで塗布するようにしてもよい。導電性ペースト或いは非導電性ペーストを適当な厚さで塗布することで、それぞれ導電性接着フィルム15、非導電性接着フィルムと同等の作用効果を得ることができる。
 また、上述した実施の形態では、片面受光型の太陽電池セル2を備える太陽電池モジュール1について説明したが、これに限定されず、例えば図10に示す両面受光型の太陽電池セル2Aを備えた太陽電池モジュールとしてもよい。太陽電池セル2Aは、裏面電極13に替えてフィンガー電極12及びバスバー11を備える。また、この太陽電池セル2Aを備えた太陽電池モジュールは、バックシート8に替えて表面カバー7を備えるようにする。
 このように、両面受光型の太陽電池セル2Aを備えた太陽電池モジュールにおいても、表裏対称形状のタブ線3を用いることで、各太陽電池セル2Aの表裏両面をこのタブ線3と同時に接続する際に、太陽電池セル2の表面側と裏面側とで生じる応力歪を最小限に抑制して太陽電池セル2の割れや反りの発生を防止することができる。また、表面電極(バスバー電極11、フィンガー電極12)側、裏面電極13側では安定した導通信頼性及び接続信頼性を実現することができる。更に両面に凹凸部21が形成されたタブ線3を備えることにより、発電効率をより向上させることが可能となる。
 [実施例]
 次いで、本発明の具体的な実施例について説明する。なお、本発明の範囲は、以下の実施例に限定されるものではない。本実施例では、以下の実施例1~5、比較例1~5に示すタブ線を先の図2に示すように太陽電池セル2に接続させた。
(実施例1)
 先ず、1つの片面受光型の太陽電池セルを用意した。この太陽電池セルが備えるバスバー電極及び裏面電極上のそれぞれに、未硬化の導電性接着フィルム(商品名:SP100シリーズ、ソニーケミカル&インフォメーションデバイス株式会社製)を仮貼りヘッドにより加熱温度180℃、圧力2MPaにて15秒加熱加圧することで仮貼りした。次いで、太陽電池セルのバスバー電極上に仮貼りされた導電性接着フィルム上、この太陽電池セルの裏面電極上に仮貼りされた導電性接着フィルム上のそれぞれに凹凸角度α=10°の凹凸部が両面に形成されたタブ線を圧着させた。この圧着では、圧着ヘッドを用いて180℃、圧力2MPaにて15秒加熱加圧して行った。
(実施例2)
 実施例1のタブ線に替え、凹凸角度α=20°の凹凸部が両面に形成されたタブ線を用いた以外は、実施例1と同様の処理を行った。
(実施例3)
 実施例1のタブ線に替え、凹凸角度α=30°の凹凸部が両面に形成されたタブ線を用いた以外は、実施例1と同様の処理を行った。
(実施例4)
 実施例1のタブ線に替え、凹凸角度α=40°の凹凸部が両面に形成されたタブ線を用いた以外は、実施例1と同様の処理を行った。
(実施例5)
 実施例1のタブ線に替え、凹凸角度α=50°の凹凸部が両面に形成されたタブ線を用いた以外は、実施例1と同様の処理を行った。
(比較例1)
 実施例1のタブ線に替え、凹凸角度α=5°の凹凸部が両面に形成されたタブ線を用いた以外は、実施例1と同様の処理を行った。
(比較例2)
 実施例1のタブ線に替え、凹凸角度α=60°の凹凸部が両面に形成されたタブ線を用いた以外は、実施例1と同様の処理を行った。
(比較例3)
 実施例1のタブ線に替え、凹凸角度α=30°の凹凸部が片面に形成されたタブ線を用いた。バスバー電極と接続したタブ線においては凹凸部が形成された表面を受光面側とし、また、裏面電極と接続したタブ線においては凹凸部が形成された面を裏面電極と対向させた([表1]中「片面(1)」)。これ以外は、実施例1と同様の処理を行った。
(比較例4)
 実施例1のタブ線に替え、凹凸角度α=30°の凹凸部が片面に形成されたタブ線を用いた。バスバー電極と接続したタブ線においては凹凸部が形成された面をバスバー電極と対向させ、また、裏面電極と接続したタブ線においては凹凸部が形成された面とは反対側の表面を裏面電極と対向させた([表1]中「片面(2)」)。これ以外は、実施例1と同様の処理を行った。
(比較例5)
 実施例1のタブ線に替え、両面とも凹凸部が形成されていない平面形状のタブ線を用いた以外は、実施例1と同様の処理を行った。
<発電効率の評価>
 タブ線を接続した後における太陽電池セルあたりの発電効率(%)をソーラシュミレータ(型式PVS1116i-M(JIS C8913)日清紡メカトロニクス株式会社製)により測定した。発電効率が16%以上を◎、15.75~16%を○、15.6~15.75%を△、15.6%以下を×として評価した。評価結果を[表1]に示す。
<接続信頼性の評価>
 タブ線をバスバー電極、裏面電極のそれぞれに接着された導電性接着フィルムから90°方向で剥離する90°剥離試験(JIS K6854-1)を行い、ピール強度(N/cm)を測定した。測定したピール強度に基づいてタブ線とバスバー電極、タブ線と裏面電極それぞれにおける接続信頼性を評価した。ピール強度が10N/cm以上を◎、8~10N/cmを○、6~8N/cmを△、6N/cm以下を×として接続信頼性を評価した。評価結果を[表1]に示す。
<反り量の評価>
 太陽電池セルを平面に置いた状態で(反りによる凸面を下側に置く)、太陽電池セルの四隅における平面からの高さ(mm)の最大値を反り量(mm)として測定した。反り量が1mm以下を○、1mm以上2.5mm未満を△、2.5mm以上を×として評価した。評価結果を[表1]に示す。
<総合評価>
 発電効率、接続信頼性、反り量の各評価項目のうち、1つも×の評価結果がなく、実用上問題なく使用できるものを総合評価○とし、各評価項目のうち、1つでも×の評価結果を得たものを総合評価×とした。総合評価の評価結果を[表1]に示す。
Figure JPOXMLDOC01-appb-T000001
 [表1]に示すように、凹凸角度αを10°以上50°以下とした実施例1~5においては、入射光がこの凹凸角度αの凹凸部へ入射することにより、良好な散乱角度の散乱光を得ることができ、この散乱光により光封じ込め効果が発現されて発電効率において高い値を得ることができた。特に、凹凸角度αを30°とした実施例3においては、光封じ込め効果が最も良好に発現されて最も高い発電効率を得ることができた。
 また、実施例1~5では、凹凸角度αを10°以上50°以下としたことから、加熱によって流動して凹部に入り込む導電性接着フィルムのバインダ樹脂の充填量が充分量であることからタブ線とバスバー電極、タブ線と裏面電極における接続信頼性が良好なものとなった。特に、凹凸角度αを40°以上とした実施例4、5においては、凹部においてより多くのバインダ充填量を得て高い接続信頼性を得ることができた。
 また、実施例1~5では、表裏対称形状のタブ線を設けていることから、反りの発生を最小限に抑制することができた。
 このように、実施例1~5では、発電効率、接続信頼性、反り量の評価結果から実用上問題なく使用できる総合評価結果を得た。
 特に、実施例2~4では、凹凸角度αを20°以上40°以下としたことから、入射光の散乱角度をより良好な値とすることができるため、これにより発電効率において更に高い値を得ることができた。また、凹凸角度が20°であることにより、加熱によって流動して凹部に入り込む導電性接着フィルムのバインダ樹脂の充填量をより多くすることができ、高い接続信頼性を得ることができた。
 一方、比較例1、2、4、5では、発電効率が低い値となった。これは、比較例1では、タブ線の両面に形成された凹凸部の凹凸角度αが小さすぎたため、比較例2では、タブ線の両面に形成された凹凸部の凹凸角度αが大きすぎたため、比較例4では、タブ線の平面形状の表面を受光面側としたため、比較例5では、タブ線の両面が平面形状であるため(凹凸角度α=0°)、何れも散乱光による光封じ込め効果を充分に発現することができなかったためと考えられる。
 また、比較例1、3~5では、タブ線とバスバー電極、タブ線と裏面電極における接続信頼性は良好ではなかった。これは、比較例1では、凹凸角度αが小さすぎることから、加熱によって流動して凹部に入り込む導電性接着フィルムのバインダ樹脂の充填量が充分ではなかったため接続信頼性が良好ではなかったと考えられる。
 また、比較例3では、受光面側におけるタブ線のバスバー電極に接続する側の表面が平面形状であることからこの平面形状であるタブ線表面においてバインダ樹脂の充填量を全く得ることができず受光面側のタブ線とバスバー電極との接続信頼性が良好ではなかった。比較例4では、裏面側におけるタブ線の裏面電極に接続する側の表面が平面形状であることからこの平面形状であるタブ線表面においてバインダ樹脂の充填量を全く得ることができず裏面側のタブ線と裏面電極との接続信頼性が良好ではなかった。
 また、比較例5では、タブ線の両面が平面形状であることからこの平面形状であるタブ線表面においてバインダ樹脂の充填量を全く得ることができず、バスバー電極側、裏面電極側の何れにおいても接続信頼性が良好ではなかった。
 また、比較例3、4では、表裏非対称形状のタブ線と接続したことから、タブ線の接続時、太陽電池セルのバスバー電極側と裏面電極側とで応力歪が生じたことから反り量が大きかったと考えられる。
1 太陽電池モジュール、2 太陽電池セル、3 タブ線、4 ストリングス、5 マトリクス、10 光電変換素子、11 バスバー電極、12 フィンガー電極、13 裏面電極、15 導電性接着フィルム 21 凹凸部

Claims (4)

  1.  複数の太陽電池セルのうち、所定の該太陽電池セルの表面電極と該所定の太陽電池セルの一方に隣接する他の該太陽電池セルの裏面電極とがタブ線によって接続されている太陽電池モジュールにおいて、
     前記タブ線は、
     表裏両面に、それぞれ長手方向に亘って連続する複数の凸部及び凹部が幅方向に交互に設けられてなる凹凸部が形成されており、
     その一端が前記表面電極と、その他端が前記裏面電極とそれぞれ接着性樹脂材を介して接続されており、
     前記凸部の頂点と該凸部に隣接する前記凹部の頂点とを結んでなる線分と、該凸部の両側に隣接する前記凹部の頂点間を結んでなる線分とがなす凹凸角度が10°以上50°以下である太陽電池モジュール。
  2.  前記凹凸角度は、20°以上40°以下である請求項1記載の太陽電池モジュール。
  3.  前記接着性樹脂材は、導電性粒子を含有する導電性接着フィルム又は導電性粒子を含有しない非導電性接着フィルムである請求項1又は請求項2記載の太陽電池モジュール。
  4.  複数の太陽電池セルのうち、所定の該太陽電池セルの表面電極と該所定の太陽電池セルの一方に隣接する他の該太陽電池セルの裏面電極とがタブ線によって接続されている太陽電池モジュールの製造方法において、
     前記太陽電池セルの表面電極及び裏面電極それぞれに接着性樹脂材を介して前記タブ線を圧着する圧着工程を有し、
     前記タブ線は、表裏両面に、それぞれ長手方向に亘って連続する複数の凸部及び凹部が幅方向に交互に設けられてなる凹凸部が形成され、該凸部の頂点と該凸部に隣接する該凹部の頂点とを結んでなる線分と、該凸部の両側に隣接する該凹部の頂点間を結んでなる線分とがなす凹凸角度が10°以上50°以下であり、
     前記圧着工程では、前記タブ線の一端を前記表面電極と、該タブ線の他端を前記裏面電極とそれぞれ前記接着性樹脂材を介して接続する太陽電池モジュールの製造方法。
PCT/JP2011/078552 2010-12-09 2011-12-09 太陽電池モジュール及び太陽電池モジュールの製造方法 WO2012077784A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137017801A KR20130138290A (ko) 2010-12-09 2011-12-09 태양 전지 모듈 및 태양 전지 모듈의 제조 방법
CN2011800589735A CN103262255A (zh) 2010-12-09 2011-12-09 太阳能电池模块以及太阳能电池模块的制造方法
EP11847296.8A EP2650928A4 (en) 2010-12-09 2011-12-09 SOLAR CELL MODULE AND METHOD FOR PRODUCING THE SOLAR CELL MODULE
US13/992,555 US20130247958A1 (en) 2010-12-09 2011-12-09 Solar cell module, and method of manufacturing solar cell module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-274844 2010-12-09
JP2010274844A JP2012124375A (ja) 2010-12-09 2010-12-09 太陽電池モジュール及び太陽電池モジュールの製造方法

Publications (1)

Publication Number Publication Date
WO2012077784A1 true WO2012077784A1 (ja) 2012-06-14

Family

ID=46207266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078552 WO2012077784A1 (ja) 2010-12-09 2011-12-09 太陽電池モジュール及び太陽電池モジュールの製造方法

Country Status (7)

Country Link
US (1) US20130247958A1 (ja)
EP (1) EP2650928A4 (ja)
JP (1) JP2012124375A (ja)
KR (1) KR20130138290A (ja)
CN (1) CN103262255A (ja)
TW (1) TWI542025B (ja)
WO (1) WO2012077784A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014146700A (ja) * 2013-01-29 2014-08-14 Sanyo Electric Co Ltd 太陽電池モジュール
TWI620337B (zh) * 2013-04-30 2018-04-01 日立化成股份有限公司 太陽電池模組的製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5909667B2 (ja) * 2011-06-30 2016-04-27 パナソニックIpマネジメント株式会社 太陽電池モジュール及びその製造方法
JP6083639B2 (ja) * 2012-09-18 2017-02-22 パナソニックIpマネジメント株式会社 太陽電池モジュール
KR102185939B1 (ko) * 2014-01-14 2020-12-03 엘지전자 주식회사 태양 전지 모듈
JP6495650B2 (ja) * 2014-12-25 2019-04-03 京セラ株式会社 太陽電池モジュールおよびこれを用いた太陽電池アレイ
TWI539613B (zh) * 2015-07-16 2016-06-21 有成精密股份有限公司 高功率太陽能電池模組
JP6269631B2 (ja) * 2015-09-29 2018-01-31 イビデンエンジニアリング株式会社 太陽光発電ユニット
WO2017179523A1 (ja) * 2016-04-14 2017-10-19 株式会社カネカ 太陽電池用配線材および太陽電池モジュール
CN108376721A (zh) * 2018-04-25 2018-08-07 海门市绣羽工业设计有限公司 一种太阳能电池组件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008147567A (ja) 2006-12-13 2008-06-26 Sanyo Electric Co Ltd 太陽電池モジュール及び太陽電池モジュールの製造方法
JP2008543062A (ja) * 2005-06-01 2008-11-27 ルバタ オサケ ユキチュア 電気的接続要素
JP2009518823A (ja) * 2005-12-05 2009-05-07 マサチューセッツ インスティテュート オブ テクノロジー パターン成形された太陽電池バス線での光捕獲
JP2009218315A (ja) * 2008-03-10 2009-09-24 Sanyo Electric Co Ltd 太陽電池モジュール
JP2010016300A (ja) 2008-07-07 2010-01-21 Sanyo Electric Co Ltd 太陽電池モジュール
JP2010087060A (ja) * 2008-09-30 2010-04-15 Sanyo Electric Co Ltd 太陽電池モジュール
JP2010274844A (ja) 2009-05-29 2010-12-09 Aisin Seiki Co Ltd 車両用回転シート装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006059991A (ja) * 2004-08-19 2006-03-02 Shin Etsu Handotai Co Ltd 太陽電池モジュール及びその製造方法
US7476800B2 (en) * 2005-06-01 2009-01-13 Outokumpu Copper Neumayer Gmbh Electric connection element
CN101669258B (zh) * 2007-05-09 2016-04-13 日立化成株式会社 导电体的连接方法、导电体连接用部件、连接结构及太阳能电池模块

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008543062A (ja) * 2005-06-01 2008-11-27 ルバタ オサケ ユキチュア 電気的接続要素
JP2009518823A (ja) * 2005-12-05 2009-05-07 マサチューセッツ インスティテュート オブ テクノロジー パターン成形された太陽電池バス線での光捕獲
JP2008147567A (ja) 2006-12-13 2008-06-26 Sanyo Electric Co Ltd 太陽電池モジュール及び太陽電池モジュールの製造方法
JP2009218315A (ja) * 2008-03-10 2009-09-24 Sanyo Electric Co Ltd 太陽電池モジュール
JP2010016300A (ja) 2008-07-07 2010-01-21 Sanyo Electric Co Ltd 太陽電池モジュール
JP2010087060A (ja) * 2008-09-30 2010-04-15 Sanyo Electric Co Ltd 太陽電池モジュール
JP2010274844A (ja) 2009-05-29 2010-12-09 Aisin Seiki Co Ltd 車両用回転シート装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2650928A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014146700A (ja) * 2013-01-29 2014-08-14 Sanyo Electric Co Ltd 太陽電池モジュール
TWI620337B (zh) * 2013-04-30 2018-04-01 日立化成股份有限公司 太陽電池模組的製造方法

Also Published As

Publication number Publication date
TWI542025B (zh) 2016-07-11
KR20130138290A (ko) 2013-12-18
EP2650928A4 (en) 2014-10-15
TW201230362A (en) 2012-07-16
CN103262255A (zh) 2013-08-21
JP2012124375A (ja) 2012-06-28
US20130247958A1 (en) 2013-09-26
EP2650928A1 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
WO2012077784A1 (ja) 太陽電池モジュール及び太陽電池モジュールの製造方法
JP5415396B2 (ja) 太陽電池モジュールの製造方法及び太陽電池モジュール
WO2012128366A1 (ja) 太陽電池モジュール、太陽電池モジュールの製造方法、タブ線が巻装されたリール巻装体
JP5318815B2 (ja) 太陽電池モジュール、太陽電池モジュールの製造方法
WO2013035667A1 (ja) 太陽電池モジュールの製造方法、太陽電池モジュール及びタブ線の接続方法
JP5356347B2 (ja) 太陽電池モジュール及び太陽電池モジュールの製造方法
WO2012005318A1 (ja) 太陽電池モジュール、太陽電池モジュールの製造方法
JP5480120B2 (ja) 太陽電池モジュール、太陽電池モジュールの製造方法、太陽電池セル及びタブ線の接続方法
WO2012133338A1 (ja) 太陽電池モジュール、太陽電池モジュールの製造方法、タブ線
WO2013047247A1 (ja) 太陽電池モジュール、太陽電池モジュールの製造方法
JP5828582B2 (ja) 太陽電池モジュール、太陽電池モジュールの製造方法、導電性接着剤
WO2012133340A1 (ja) 太陽電池モジュール、太陽電池モジュールの製造方法
JP5643620B2 (ja) 太陽電池モジュール及び太陽電池モジュールの製造方法
JP2016021577A (ja) 太陽電池モジュール、太陽電池モジュールの製造方法、導電性接着剤
JP2016167641A (ja) 太陽電池モジュール及び太陽電池モジュールの製造方法
JP2014107356A (ja) 太陽電池モジュールの製造方法、及び太陽電池モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11847296

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 13992555

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011847296

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011847296

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137017801

Country of ref document: KR

Kind code of ref document: A