WO2012005318A1 - 太陽電池モジュール、太陽電池モジュールの製造方法 - Google Patents
太陽電池モジュール、太陽電池モジュールの製造方法 Download PDFInfo
- Publication number
- WO2012005318A1 WO2012005318A1 PCT/JP2011/065546 JP2011065546W WO2012005318A1 WO 2012005318 A1 WO2012005318 A1 WO 2012005318A1 JP 2011065546 W JP2011065546 W JP 2011065546W WO 2012005318 A1 WO2012005318 A1 WO 2012005318A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conductive adhesive
- tab wire
- silicon
- electrode
- solar cell
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 238000000034 method Methods 0.000 title claims description 10
- 239000002313 adhesive film Substances 0.000 claims abstract description 73
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 43
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 43
- 239000010703 silicon Substances 0.000 claims abstract description 43
- 239000000758 substrate Substances 0.000 claims abstract description 34
- 239000012790 adhesive layer Substances 0.000 claims abstract description 24
- 238000010030 laminating Methods 0.000 claims description 6
- 229910021419 crystalline silicon Inorganic materials 0.000 claims description 5
- 238000003475 lamination Methods 0.000 claims description 3
- 229920005989 resin Polymers 0.000 description 24
- 239000011347 resin Substances 0.000 description 24
- 239000003822 epoxy resin Substances 0.000 description 14
- 229920000647 polyepoxide Polymers 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 13
- 238000010248 power generation Methods 0.000 description 13
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 12
- 239000002245 particle Substances 0.000 description 11
- 239000000853 adhesive Substances 0.000 description 10
- 230000001070 adhesive effect Effects 0.000 description 10
- 239000011230 binding agent Substances 0.000 description 10
- 239000010410 layer Substances 0.000 description 10
- 239000003795 chemical substances by application Substances 0.000 description 8
- 239000010408 film Substances 0.000 description 8
- 238000001723 curing Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000011256 inorganic filler Substances 0.000 description 4
- 229910003475 inorganic filler Inorganic materials 0.000 description 4
- 239000004850 liquid epoxy resins (LERs) Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000007747 plating Methods 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 239000006087 Silane Coupling Agent Substances 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- 238000007650 screen-printing Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- -1 Poly Ethylene Terephthalate Polymers 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 239000013039 cover film Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000002923 metal particle Substances 0.000 description 2
- 239000005026 oriented polypropylene Substances 0.000 description 2
- 239000013034 phenoxy resin Substances 0.000 description 2
- 229920006287 phenoxy resin Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000012945 sealing adhesive Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 238000003848 UV Light-Curing Methods 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 125000001951 carbamoylamino group Chemical group C(N)(=O)N* 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000004715 ethylene vinyl alcohol Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- RZXDTJIXPSCHCI-UHFFFAOYSA-N hexa-1,5-diene-2,5-diol Chemical compound OC(=C)CCC(O)=C RZXDTJIXPSCHCI-UHFFFAOYSA-N 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910021424 microcrystalline silicon Inorganic materials 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011342 resin composition Substances 0.000 description 1
- RXFVKZHOXNKNEU-UHFFFAOYSA-N s-(aminodisulfanyl)thiohydroxylamine Chemical compound NSSSN RXFVKZHOXNKNEU-UHFFFAOYSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical compound C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 1
- 235000021286 stilbenes Nutrition 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- AAAQKTZKLRYKHR-UHFFFAOYSA-N triphenylmethane Chemical compound C1=CC=CC=C1C(C=1C=CC=CC=1)C1=CC=CC=C1 AAAQKTZKLRYKHR-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/05—Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
- H01L31/0504—Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the present invention relates to a solar cell module in which connection electrodes of a plurality of solar cells are connected by tab wires, and a method for manufacturing the solar cell module.
- Solar cells are attracting attention as a new environment-friendly energy source because they can directly convert sunlight, which is a clean and inexhaustible energy source, into electricity.
- the output per solar cell is about several watts, so it is not used for each solar cell, but output by connecting a plurality of solar cells in series. Is used as a solar cell module whose power is increased to 100 W or more.
- a plurality of adjacent solar cells are connected by tab wires made of solder-coated ribbon-like copper foil.
- One end side of the tab wire is connected to the front surface electrode of one solar battery cell, and the other end side is connected to the back surface electrode of the adjacent solar battery cell, thereby connecting the solar battery cells in series.
- connection between the solar battery cell and the tab wire is made up of a bus bar electrode formed by screen printing of silver paste on the light receiving surface of the solar battery cell, an Ag electrode formed on the back surface connection portion of the solar battery cell, and a tab.
- the wires are connected by soldering (Patent Document 1).
- Al electrodes are formed in regions other than the connection portion on the back surface of the solar battery cell.
- a conductive adhesive film that can be connected by thermocompression treatment at a relatively low temperature is used to connect the front and back electrodes of the solar battery cell and the tab wire (Patent Document 2).
- a conductive adhesive film a film obtained by dispersing spherical or scaly conductive particles having an average particle size on the order of several ⁇ m in a thermosetting binder resin composition is used.
- the Si surface of the solar cell made of a silicon substrate and the conductive adhesive film are firmly bonded, There is no problem with the connection between the electrode and the tab wire.
- the strength of the Al electrode itself other than the connection portion on the back surface of the cell is not high, the adhesive strength between the solar cell and the tab wire is not so high.
- connection between the back electrode on the back surface of the cell and the tab wire is performed by heating the tab wire on the back electrode through a conductive adhesive film under a pressure of about 0.5 to 3 MPa, and a silicon substrate.
- a weight of several hundred N is applied to one sheet.
- crystalline silicon solar cells it has become a problem to procure silicon as a raw material at a low cost and in large quantities.
- a silicon wafer is cut out from a polycrystalline silicon ingot in an extremely thin (eg, 200 ⁇ m to 150 ⁇ m). It is being used for mass production. Accordingly, the strength of the silicon substrate is not necessarily high, and it is necessary to heat and press at a low pressure to prevent breakage.
- the connection reliability with the Ag electrode formed on the connection portion on the front and back surfaces of the cell may be impaired.
- the adhesive strength of the conductive adhesive film to the Al electrode is not sufficient. While forming Al electrode other than the back surface connection part of a photovoltaic cell, and providing an Ag electrode in a connection part, the adhesive force with a conductive adhesive film can be heightened. However, in the method for securing the connection reliability between the tab wire and the back electrode in this way, it is necessary to provide an Ag electrode at the connection portion for the reasons described above, resulting in an increase in the number of parts, an increase in manufacturing man-hours and costs. It becomes difficult to supply a large amount of solar cell modules at low cost.
- the present invention improves the adhesion and power generation efficiency between the back electrode provided on the back surface of the solar cell and the conductive adhesive film, while preventing the solar cell from being damaged by heating and pressing at a low pressure.
- Another object is to provide a solar cell module and a method for manufacturing the solar cell module.
- a solar cell module includes a plurality of silicon cell substrates in which a surface electrode is provided on the light receiving surface side and an Al back electrode is provided on the back surface opposite to the light receiving surface.
- a conductive adhesive layer for connecting the tab wire, and the Al back electrode has the tab wire for exposing the silicon surface of the silicon cell substrate at the connection portion with the tab wire and the conductive material.
- An opening formed narrower than the adhesive layer and formed in a line shape along the connecting portion is formed, and the tab line is connected to the opening through the conductive adhesive layer and the opening. Exposure While being bonded to the silicon cell substrate silicon surface being, it is bonded with the Al back electrode.
- a method for manufacturing a solar cell module according to the present invention includes a plurality of silicon cell substrates provided with a surface electrode on the light receiving surface side and an Al back electrode on the back surface opposite to the light receiving surface.
- Manufacturing method of solar cell module in which the surface electrode of the silicon cell substrate and the Al back electrode of another silicon cell substrate adjacent to the one silicon cell substrate are connected with a tab wire via a conductive adhesive layer
- the Al back electrode is provided in a line shape along the connecting portion with the tab wire and exposes the silicon surface of the silicon cell substrate, and is wider than the tab adhesive and the conductive adhesive layer. And laminating the conductive adhesive layer in the narrow opening, and laminating one end of the tab wire on the conductive adhesive layer.
- the opening is provided in the connecting portion with the tab wire and the Si surface is exposed. Adhesion between the agent layer and the Si surface is improved. In addition, the periphery of the opening and the tab line are connected, so that the tab line and the Al back electrode are electrically connected. Furthermore, since the pressure at the time of thermal pressurization is concentrated on the area other than the opening by forming the opening, the tab wire is firmly connected to the area other than the opening of the connecting portion even at a low pressure.
- FIG. 1 is an exploded perspective view of a solar cell module to which the present invention is applied.
- FIG. 2 is a cross-sectional view of a solar battery cell.
- FIG. 3 is a bottom view showing an Al back electrode of a solar battery cell to which the present invention is applied.
- FIG. 4 is a bottom view showing an Al back electrode of a solar battery cell to which the present invention to which tab wires are connected is applied.
- FIG. 5 is a cross-sectional view showing a connecting portion of a solar battery cell to which the present invention is applied.
- FIG. 6 is a plan view showing a connection part of solar cells to which the present invention is applied.
- FIG. 7 is a plan view showing a connection part of solar cells to which the present invention is applied.
- FIG. 1 is an exploded perspective view of a solar cell module to which the present invention is applied.
- FIG. 2 is a cross-sectional view of a solar battery cell.
- FIG. 3 is a bottom view showing an Al back electrode of
- FIG. 8 is a cross-sectional view showing a connecting portion of a solar battery cell to which the present invention is applied.
- FIG. 9 is a plan view showing a connection portion of solar cells to which the present invention is applied.
- FIG. 10 is a cross-sectional view showing a connecting portion of a solar battery cell to which the present invention is applied.
- FIG. 11 is a cross-sectional view showing a connecting portion of a solar battery cell to which the present invention is applied.
- FIG. 12 is a cross-sectional view showing a connecting portion of a solar battery cell to which the present invention is applied.
- FIG. 13 is a cross-sectional view showing the configuration of the conductive adhesive film.
- FIG. 14 is a diagram showing a conductive adhesive film.
- the solar cell module 1 to which the present invention is applied includes a single crystal silicon photoelectric conversion device, a crystalline silicon solar cell module using a polycrystalline photoelectric conversion device, a cell made of amorphous silicon, and microcrystalline silicon as a photoelectric conversion device. Or a thin-film silicon solar cell using a photoelectric conversion element in which cells made of amorphous silicon germanium are stacked.
- the solar cell module 1 includes strings 4 in which a plurality of solar cells 2 are connected in series by tab wires 3 serving as interconnectors, and includes a matrix 5 in which a plurality of strings 4 are arranged. . And the solar cell module 1 is laminated together with the front cover 7 provided on the light receiving surface side and the back sheet 8 provided on the back surface side, with the matrix 5 sandwiched between the sealing adhesive sheets 6. Finally, a metal frame 9 such as aluminum is attached to the periphery.
- sealing adhesive for example, a translucent sealing material such as ethylene vinyl alcohol resin (EVA) is used.
- EVA ethylene vinyl alcohol resin
- surface cover 7 for example, a light-transmitting material such as glass or light-transmitting plastic is used.
- back sheet 8 a laminated body in which glass or aluminum foil is sandwiched between resin films is used.
- each solar battery cell 2 of the solar battery module has a photoelectric conversion element 10 made of a silicon substrate.
- the photoelectric conversion element 10 is provided with a bus bar electrode 11 serving as a surface electrode on the light receiving surface side and a finger electrode 12 that is a collecting electrode formed in a direction substantially orthogonal to the bus bar electrode 11.
- the photoelectric conversion element 10 is provided with an Al back electrode 13 made of aluminum on the back side opposite to the light receiving surface.
- the photovoltaic cell 2 is electrically connected to the bus bar electrode 11 on the front surface and the Al back electrode 13 of the adjacent photovoltaic cell 2 by the tab wire 3, thereby constituting the strings 4 connected in series. To do.
- the tab wire 3 is connected to the bus bar electrode 11 and the Al back electrode 13 by the conductive adhesive film 20.
- the tab wire 3 can use the tab wire used in the conventional solar cell module.
- the tab wire 3 is formed by using, for example, a ribbon-like copper foil having a thickness of 50 to 300 ⁇ m and performing gold plating, silver plating, tin plating, solder plating, or the like as necessary.
- the bus bar electrode 11 is formed by applying Ag paste and heating.
- the bus bar electrode 11 formed on the light receiving surface of the solar battery cell 2 is formed in a line shape with a width of 1 mm, for example, in order to reduce the area that blocks incident light and suppress shadow loss.
- the number of bus bar electrodes 11 is appropriately set in consideration of the size and resistance of the solar battery cell 2.
- the finger electrode 12 is formed over almost the entire light receiving surface of the solar battery cell 2 so as to intersect the bus bar electrode 11 by the same method as the bus bar electrode 11.
- the finger electrodes 12 are formed with lines having a width of about 100 ⁇ m, for example, at a predetermined interval, for example, every 2 mm.
- the Al back electrode 13 is an aluminum electrode formed on the back surface of the solar cell 2 by, for example, screen printing or sputtering.
- the Al back electrode 13 has an opening 31 formed in the connection portion 30 with the tab wire 3, and Si constituting the photoelectric conversion element 10 is exposed to the outside. Therefore, as shown in FIGS. 4 and 5, in the solar battery cell 2, the conductive adhesive film 20 comes into contact with Si on the surface of the photoelectric conversion element 10 through the opening 31 of the Al back electrode 13.
- the opening part 31 has a width
- the solar battery cell 2 is formed by laminating the conductive adhesive film 20 and the tab wire 3 on the connection portion 30, so that the conductive adhesive film 20 is filled in the opening portion 31, and on both sides of the opening portion 31. It is also laminated on the Al back electrode 13.
- the solar battery cell 2 becomes the adhesive portion 33 in which the inside of the opening 31 is firmly bonded to the conductive adhesive film 20 and Si exposed to the outside via the opening 31.
- the periphery is a conductive portion 34 where the Al back electrode 13 and the tab wire 3 are electrically connected.
- the solar battery cell 2 is provided with the opening 31 in the connection portion 30 between the Al back electrode 13 and the tab wire 3.
- conduction can be achieved in the Al portion, and connection strength can be ensured in the Si portion exposed through the opening 31.
- the solar cell 2 is also provided with the opening 31 in the connection portion 30, so that the pressure at the time of pressurization is concentrated in the region of the connection portion 30 other than the opening 31. Therefore, even when the solar battery cell 2 is formed by using an ultrathin silicon wafer, the tab wire 3 is heated and pressed to the Al back electrode 13 at a low pressure using the conductive adhesive film 20. It is possible to connect, there is no danger such as cell breakage, and the connection strength between the tab wire 3 and the Al back electrode 13 can be ensured. Further, the solar battery cell 2 does not need to be provided with an Ag electrode on the back surface, and can achieve low cost, reduction in manufacturing man-hours, and the like.
- connection part 30 to which the tab wire 3 is connected by the conductive adhesive film 20 is secured in a line shape, and the connection part 30 is formed in a line shape over the longitudinal direction of the connection part 30. Opened openings 31 are formed.
- the solar battery cell 2 is provided with the opening 31 formed in a line shape along the connection portion 30, thereby increasing the bonding area between the Si surface and the conductive adhesive film 20, and the tab wire 3 and the Al back electrode 13. Adhesiveness can be improved.
- FIG.7 and FIG.8 while the photovoltaic cell 2 is opened in the shape of a line over the longitudinal direction of the connection part 30, it is the stripe form which paralleled the several narrow opening part in the width direction.
- the opening 36 may be formed.
- Each of the openings 36a, 36b,... Arranged in parallel in the width direction of the connecting portion 30 has a portion where the Si surface of the solar battery cell 2 is exposed and directly bonded to the conductive adhesive film 20 as an adhesive portion 33.
- Both sides of 36a, 36b,... Become conductive portions 34 where the Al back electrode 13 and the tab wire 3 are electrically connected.
- the opening 36 is formed so that the entire width in the direction in which the openings 36 a, 36 b...
- the contact area between the Si surface and the conductive adhesive film 20 is dispersed in the width direction, and the contact area between the tab wire 3 and the Al back electrode 13 is increased as compared with the opening 31. Therefore, the power generation efficiency can be improved while maintaining the adhesiveness with the connection portion 30.
- the solar battery cell 2 is opened in a line shape over the longitudinal direction of the connection part 30, and the conduction part 34 is formed in a zigzag manner along the longitudinal direction of the connection part 30.
- An opening 37 may be formed.
- the portion where the conductive portion 34 is not formed in the longitudinal direction of the connection portion 30 becomes the bonding portion 33 where the Si substrate of the solar battery cell 2 is exposed, and both sides of the bonding portion 33 and the connection portion 30.
- An Al electrode portion covering the Si surface formed in a zigzag shape becomes a conductive portion 34 that is electrically connected to the tab wire 3.
- the opening 37 also increases the contact area between the tab wire 3 and the Al back electrode 13 as compared with the opening 31, so that the power generation efficiency can be improved while maintaining the adhesiveness with the connecting portion 30. it can.
- the solar battery cell 2 may have an opening 38 whose cross-sectional shape is composed of a large diameter portion 41 and a small diameter portion 42.
- the large diameter portion 41 has substantially the same width as the tab wire 3 and the conductive adhesive film 20, and has a depth obtained by combining the tab wire 3 and the conductive adhesive film 20.
- the tab wire 3 and the conductive adhesive film 20 are disposed in the large diameter portion 41 and are substantially flush with the back surface of the solar battery cell 2. Therefore, the solar battery cell 2 can prevent the tab wire 3 from protruding on the Al back electrode 13, prevent the tab wire 3 from being peeled off or damaged, and improve the design.
- the photovoltaic cell 2 can increase the contact area of the tab wire 3 and the Al back surface electrode 13, and can improve electric power generation efficiency.
- the small diameter portion 42 is formed at the substantially center of the bottom surface of the large diameter portion 41 so that the Si surface faces outward and is filled with the conductive adhesive film 20.
- the solar battery cell 2 secures connection strength at the Si portion exposed through the small diameter portion 42.
- the contact area between the tab wire 3 and the Al electrode is increased to improve the power generation efficiency, and the tab wire 3 is formed substantially flush without protruding on the Al back electrode 13. It is possible to prevent peeling and breakage of the film and to improve the design.
- the photovoltaic cell 2 may form the opening part 39 which provided the taper part 43 which diameter reduces toward outward.
- the Si surface side of the solar battery cell 2 whose diameter has been expanded by the tapered portion 43 becomes an adhesive portion 33 where the conductive adhesive film 20 and Si are firmly bonded, and the outer side whose diameter has been reduced is the Al back electrode 13.
- the tab wire 3 are electrically connected to each other.
- the solar battery cell 2 is formed by forming the opening 39 having the tapered portion 43 whose diameter is reduced outward from the Si surface of the solar battery cell 2, so that the conductive adhesive film 20 and the Si surface And the contact surface between the tab wire 3 and the Al back electrode 13 can be increased. Therefore, by providing the opening 39, the solar battery cell 2 improves the adhesiveness between the conductive adhesive film 20 and the Si surface, and improves the electrical connection between the tab wire 3 and the Al back electrode 13, thereby generating power. Can be improved.
- the solar battery cell 2 may form an opening 40 having a cross-sectional shape including a large-diameter portion 44 and a tapered portion 45.
- the large diameter portion 44 has substantially the same width as the tab wire 3 and the conductive adhesive film 20 in the same manner as the large diameter portion 41, and the combined depth of the tab wire 3 and the conductive adhesive film 20.
- the solar battery cell 2 is.
- the tab wire 3 and the conductive adhesive film 20 are substantially flush with the back surface of the solar battery cell 2, and the tab wire 3 and the Al back electrode 13 Increase the contact area. Therefore, the solar battery cell 2 can prevent the tab wire 3 from protruding on the Al back electrode 13, prevent the tab wire 3 from being peeled off or damaged, improve the design, and improve the power generation efficiency. Can be made.
- the tapered portion 45 also has a shape that decreases in diameter from the Si surface of the solar battery cell 2 outward as in the tapered portion 43. Accordingly, the solar battery cell 2 increases the contact area between the conductive adhesive film 20 and the Si surface and the contact surface between the tab wire 3 and the Al back electrode 13, respectively. While improving adhesiveness, the electroconductivity with the tab wire 3 and Al back surface electrode 13 can be improved, and electric power generation efficiency can be improved.
- the conductive adhesive film 20 is a thermosetting binder resin layer containing conductive particles 23 at a high density.
- the conductive adhesive film 20 preferably has a minimum melt viscosity of 100 to 100,000 Pa ⁇ s from the viewpoint of indentability. If the minimum melt viscosity of the conductive adhesive film 20 is too low, the resin flows from the low pressure bonding to the main curing process, and connection failure or protrusion to the light receiving surface is likely to occur, which causes a decrease in the light receiving rate. Moreover, even if the minimum melt viscosity is too high, defects are likely to occur when the film is adhered, and the connection reliability may be adversely affected.
- the minimum melt viscosity can be measured while a sample is loaded in a predetermined amount of rotational viscometer and raised at a predetermined temperature increase rate.
- the conductive particles 23 used in the conductive adhesive film 20 are not particularly limited, and examples thereof include metal particles such as nickel, gold, and copper, resin particles that are plated with gold, and resin particles that are plated with gold.
- the outermost layer of the particles may be an insulating coating.
- the number of the conductive particles 23 that overlap each other can be increased, and good conduction reliability can be ensured.
- the conductive adhesive film 20 preferably has a viscosity of about 10 to 10000 kPa ⁇ s near room temperature, more preferably 10 to 5000 kPa.
- a viscosity in the range of 10 to 10000 kPa ⁇ s
- protrusion can be prevented, and a predetermined tack can be prevented. You can maintain power.
- composition of the binder resin layer of the conductive adhesive film 20 is not particularly limited as long as it does not impair the above-described characteristics, but more preferably a film-forming resin, a liquid epoxy resin, a latent curing agent, a silane cup Contains a ring agent.
- the film-forming resin corresponds to a high molecular weight resin having an average molecular weight of 10,000 or more, and preferably has an average molecular weight of about 10,000 to 80,000 from the viewpoint of film formation.
- various resins such as an epoxy resin, a modified epoxy resin, a urethane resin, and a phenoxy resin can be used.
- a phenoxy resin is preferably used from the viewpoint of the film formation state, connection reliability, and the like. .
- the liquid epoxy resin is not particularly limited as long as it has fluidity at room temperature, and all commercially available epoxy resins can be used.
- Specific examples of such epoxy resins include naphthalene type epoxy resins, biphenyl type epoxy resins, phenol novolac type epoxy resins, bisphenol type epoxy resins, stilbene type epoxy resins, triphenolmethane type epoxy resins, phenol aralkyl type epoxy resins.
- Resins, naphthol type epoxy resins, dicyclopentadiene type epoxy resins, triphenylmethane type epoxy resins, and the like can be used. These may be used alone or in combination of two or more. Moreover, you may use it combining suitably with other organic resins, such as an acrylic resin.
- the latent curing agent various curing agents such as a heat curing type and a UV curing type can be used.
- the latent curing agent does not normally react but is activated by some trigger and starts the reaction.
- the trigger includes heat, light, pressurization, etc., and can be selected and used depending on the application.
- a latent curing agent composed of imidazoles, amines, sulfonium salts, onium salts and the like can be used.
- silane coupling agent epoxy, amino, mercapto sulfide, ureido, etc. can be used.
- an epoxy-type silane coupling agent is used preferably. Thereby, the adhesiveness in the interface of an organic material and an inorganic material can be improved.
- an inorganic filler as another additive composition.
- an inorganic filler silica, talc, titanium oxide, calcium carbonate, magnesium oxide and the like can be used, and the kind of the inorganic filler is not particularly limited.
- FIG. 14 is a diagram schematically illustrating an example of a product form of the conductive adhesive film 20.
- the conductive adhesive film 20 is formed in a tape shape by laminating a binder resin layer on a release substrate 21. This tape-like conductive adhesive film is wound and laminated on the reel 22 so that the peeling substrate 21 is on the outer peripheral side.
- the peeling base material 21 PET (Poly Ethylene Terephthalate), OPP (Oriented Polypropylene), PMP (Poly-4-methlpentene-1), PTFE (Polytetrafluoroethylene), etc.
- the conductive adhesive film 20 may have a structure having a transparent cover film on the binder resin layer.
- the above-described tab wire 3 may be used as a cover film to be stuck on the binder resin layer.
- the tab wire 3 and the conductive adhesive film 20 are laminated and integrated in advance, so that the release substrate 21 is peeled off during actual use, and the binder resin layer of the conductive adhesive film 20 is used as a bus bar.
- the tab wire 3 and each of the electrodes 11 and 13 are connected by sticking on the connection portion 30 of the electrode 11 or the Al back electrode 13.
- the conductive adhesive film 20 is not limited to a reel shape, and may be a strip shape.
- the viscosity of the conductive adhesive film 20 is set in the range of 10 to 10000 kPa ⁇ s. Deformation can be prevented and a predetermined dimension can be maintained. Similarly, when two or more conductive adhesive films 20 are stacked in a strip shape, deformation can be prevented and a predetermined dimension can be maintained.
- the conductive adhesive film 20 described above dissolves the conductive particles 23, the film-forming resin, the liquid epoxy resin, the latent curing agent, and the silane coupling agent in a solvent.
- a solvent toluene, ethyl acetate or the like, or a mixed solvent thereof can be used.
- the conductive adhesive film 20 is obtained by applying the solution for resin production obtained by dissolution onto a release sheet and volatilizing the solvent.
- the solar battery cell 2 is formed with finger electrodes 12 and bus bar electrodes 11 by applying and baking Ag paste on the surface of the photoelectric conversion element 10, and opening 31 at the connection portion 30 of the tab wire 3 by Al screen printing on the back surface.
- An Al back electrode 13 having 36 to 40 is formed.
- the conductive adhesive film 20 is attached to the bus bar electrode 11 on the front surface and the connection portion 30 on the back surface, and the tab wire 3 is disposed on the conductive adhesive film 20.
- the lamination of the conductive adhesive film 20 and the tab wire 3 is performed by sticking a film in which the binder resin layer of the conductive adhesive film 20 is formed on one surface of the tab wire 3 to the bus bar electrode 11 and the connection portion 30. Also good.
- the tab wire 3 is electrically connected to the bus bar electrode 11 and the Al back electrode 13 by heating and pressing from above the tab wire 3 with a predetermined pressure. At this time, the tab wire 3 is mechanically firmly connected to the bus bar electrode 11 because the binder resin of the conductive adhesive film 20 has good adhesiveness with the bus bar electrode 11 formed of Ag paste. Further, the tab wire 3 has a good adhesiveness with the Si surface exposed from the openings 31 and 36 to 40 formed in the connection part 30 of the Al back electrode 13 by the binder resin of the conductive adhesive film 20. The openings 31 and 36 to 40 are mechanically firmly connected to the Al back electrode 13 and are electrically connected to other Al portions.
- the tab wire 3 concentrates the pressure at the time of pressurization in a region other than the openings 31 and 36 to 40 of the connection portion 30, so that the opening portions 31 and 36 to 40 of the connection portion 30 even at low pressure. It is firmly connected to other areas.
- the tab wire 3 and the electrodes 11 and 13 may be connected by applying a paste-like conductive adhesive.
- the melt viscosity is preferably from 50 to 200 Pa ⁇ s, more preferably from 50 to 150 Pa ⁇ s, at 25 ° C. as measured with a cone plate viscometer.
- the solar battery cell 2 does not necessarily need to be provided with the bus bar electrode 11.
- the current of the finger electrode 12 is collected by the tab wire 3 that intersects the finger electrode 12.
- the photovoltaic cell 2 may form an opening part in the connection part with the tab wire 3 formed in the surface side, and this can also ensure connection strength similarly at low pressure.
- Example 1 the opening 31 (opening dimensions: 1.5 mm ⁇ 15.6 cm, depth: 30 ⁇ m) opened in a line shape over the longitudinal direction of the connecting portion 30 is formed, and conductive bonding is performed.
- the tab wire 3 was bonded by heat and pressure (180 ° C., 15 seconds, 1 MPa) with a heater head through the film 20.
- Example 2 a plurality of narrow openings are arranged in parallel in the form of stripes (the dimensions of each opening 36: 1.5 mm ⁇ 15.6 cm, depth: 40 ⁇ m, distance between the openings 36: 0.3 mm) was formed, and the tab wire 3 was bonded by applying heat and pressure (180 ° C., 15 seconds, 1 MPa) with a heater head through the conductive adhesive film 20.
- Comparative Example 1 did not provide an opening in the connection portion of the tab wire, and the tab wire was directly heated and bonded to the Al back electrode through the conductive adhesive film 20.
- an Ag electrode is formed by printing / drying an Ag paste without providing an opening in the connection portion of the tab wire, and the tab wire 3 is formed on the Ag electrode via the conductive adhesive film 20. Heat-pressed and adhered.
- an Ag electrode was formed by printing and drying the Ag paste without providing an opening in the connection portion of the tab wire, and the soldered tab wire was heated and bonded to the Ag electrode.
- the adhesiveness was measured by 90 ° peel strength (N / cm).
- the power generation efficiency the power generation efficiency (%) before the tab line connection and the power generation efficiency (%) after the tab line connection were measured by a simulator. The measurement results are shown in Table 1.
- Example 1 and Example 2 have the same adhesiveness and power generation efficiency as Comparative Example 2 and Comparative Example 3 in which the Ag electrode is formed. That is, in Example 1 and Example 2, it is not necessary to form an Ag electrode on the Al back electrode, and the same adhesiveness and power generation efficiency as in the past are provided while no Ag paste procurement, printing, and drying steps are required.
- the solar battery cell 2 can be obtained.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Manufacturing & Machinery (AREA)
- Photovoltaic Devices (AREA)
Abstract
Description
本出願は、日本国において2010年7月8日に出願された日本特許出願番号特願2010-155758を基礎として優先権を主張するものであり、この出願を参照することにより、本出願に援用される。
太陽電池モジュール1は、図1に示すように、複数の太陽電池セル2がインターコネクタとなるタブ線3によって直列に接続されたストリングス4を有し、このストリングス4を複数配列したマトリクス5を備える。そして、太陽電池モジュール1は、このマトリクス5が封止接着剤のシート6で挟まれ、受光面側に設けられた表面カバー7及び裏面側に設けられたバックシート8とともに一括してラミネートされ、最後に、周囲にアルミニウムなどの金属フレーム9が取り付けられることにより形成される。
太陽電池モジュールの各太陽電池セル2は、図2に示すように、シリコン基板からなる光電変換素子10を有する。光電変換素子10は、受光面側に表面電極となるバスバー電極11と、バスバー電極11とほぼ直交する方向に形成された集電極であるフィンガー電極12が設けられている。また、光電変換素子10は、受光面と反対の裏面側に、アルミニウムからなるAl裏面電極13が設けられている。
また、開口部31は、図5に示すように、タブ線3及び導電性接着フィルム20の幅よりも小さな幅を有する。そして、太陽電池セル2は、導電性接着フィルム20及びタブ線3が接続部30上に積層されることにより、開口部31内に導電性接着フィルム20が充填するとともに、開口部31の両側のAl裏面電極13上にも積層される。
また、図7及び図8に示すように、太陽電池セル2は、接続部30の長手方向に亘ってライン状に開口されるとともに、幅方向に幅狭の開口部を複数並列させたストライプ状の開口部36を形成してもよい。接続部30の幅方向に並列する各開口部36a、36b・・・は、それぞれ太陽電池セル2のSi表面が露出し導電性接着フィルム20と直接接着する部分が接着部33となり、各開口部36a、36b・・・の両側が、Al裏面電極13とタブ線3とが電気的に接続される導通部34となる。また、開口部36は、各開口部36a、36b・・・が並列する方向の全幅が、タブ線3及び導電性接着フィルム20の幅よりも狭い幅で形成される。この開口部36によれば、Si表面と導電性接着フィルム20との接触領域が幅方向に分散するとともに、開口部31に比してタブ線3とAl裏面電極13との接触面積が増加するため、接続部30との接着性を維持しつつ、発電効率を向上させることができる。
また、図9に示すように、太陽電池セル2は、接続部30の長手方向に亘ってライン状に開口されるとともに、接続部30の長手方向に沿ってジグザグに導通部34が形成された開口部37を形成してもよい。この開口部37は、接続部30の長手方向に亘って、導通部34が形成されていない部分が太陽電池セル2のSi基板が露出した接着部33となり、接着部33の両側及び接続部30内をジグザグ状に形成されたSi表面を覆うAl電極部分がタブ線3と電気的に接続される導通部34となる。この開口部37によっても、開口部31と比してタブ線3とAl裏面電極13との接触面積が増加するため、接続部30との接着性を維持しつつ、発電効率を向上させることができる。
また、図10に示すように、太陽電池セル2は、断面形状が大径部41と小径部42とから構成される開口部38を形成してもよい。大径部41は、タブ線3及び導電性接着フィルム20の幅と略同じ幅を有し、また、タブ線3及び導電性接着フィルム20を合わせた深さを有する。そして、タブ線3及び導電性接着フィルム20は、大径部41内に配設され、太陽電池セル2の裏面と略面一となる。したがって、太陽電池セル2は、Al裏面電極13上にタブ線3が突出することがなく、タブ線3の剥離や破損を防止するとともに、意匠性を高めることができる。また、太陽電池セル2は、タブ線3とAl裏面電極13との接触面積を増大させることができ、発電効率を向上させることができる。
また、図11に示すように、太陽電池セル2は、外方に向かって縮径するテーパ部43を設けた開口部39を形成してもよい。開口部39は、テーパ部43によって拡径された太陽電池セル2のSi表面側が導電性接着フィルム20とSiとが強固に接着する接着部33となり、縮径された外方側がAl裏面電極13とタブ線3とが電気的に接続される導通部34となる。
また、図12に示すように、太陽電池セル2は、断面形状を、大径部44と、テーパ部45とから構成する開口部40を形成してもよい。大径部44は、上記大径部41と同様に、タブ線3及び導電性接着フィルム20の幅と略同じ幅を有し、また、タブ線3及び導電性接着フィルム20を合わせた深さを有する。したがって、太陽電池セル2は。大径部44内にタブ線3及び導電性接着フィルム20が配設されることにより、タブ線3が太陽電池セル2の裏面と略面一となり、かつ、タブ線3とAl裏面電極13との接触面積を増大させる。したがって、太陽電池セル2は、Al裏面電極13上にタブ線3が突出することがなく、タブ線3の剥離や破損を防止するとともに、意匠性を高めることができ、また、発電効率を向上させることができる。
導電性接着フィルム20は、図13に示すように、導電性粒子23が高密度に含有された熱硬化性のバインダー樹脂層である。
Claims (13)
- 受光面側に表面電極が設けられるとともに、上記受光面と反対側の裏面にAl裏面電極が設けられた複数のシリコンセル基板と、
一の上記シリコンセル基板の上記表面電極と、上記一のシリコンセル基板と隣接する他のシリコンセル基板の上記Al裏面電極とを接続するタブ線と、
上記表面電極及び上記Al裏面電極と、上記タブ線とを接続する導電性接着剤層とを備え、
上記Al裏面電極には、上記タブ線との接続部に、上記シリコンセル基板のシリコン表面を露出させる上記タブ線及び上記導電性接着剤層よりも幅狭に設けられ、上記接続部に沿ってライン状に形成された開口部が形成され、
上記タブ線は、上記導電性接着剤層を介して、上記開口部を介して露出されている上記シリコンセル基板のシリコン表面と接着されるとともに、上記Al裏面電極とも接着されている太陽電池モジュール。 - 上記開口部は、上記タブ線及び上記導電性接着剤層の幅方向に複数開口されている請求項1記載の太陽電池モジュール。
- 上記開口部は、大径部と該大径部の内側に形成された小径部とを有する請求項1記載の太陽電池モジュール。
- 上記開口部は、外方に向かって縮径する断面テーパ状に形成されている請求項1記載の太陽電池モジュール。
- 上記小径部は、外方に向かって縮径する断面テーパ状に形成されている請求項3記載の太陽電池モジュール。
- 上記タブ線と上記導電性接着剤層とが予め一体化された導電性接着フィルムを構成している請求項1~請求項5のいずれか1項に記載の太陽電池モジュール。
- 上記導電性接着剤層は、上記タブ線の上から熱加圧されることにより硬化する請求項6記載の太陽電池モジュール。
- 上記表面電極は、上記受光面上に並列して形成された複数のフィンガー電極と、該複数のフィンガー電極と交差するバスバー電極とを有し、
上記タブ線は、上記シリコンセル基板の上記受光面に設けられた上記バスバー電極と接続される請求項1~請求項7のいずれか1項に記載の太陽電池モジュール。 - 上記表面電極の上記タブ線との接続部にも、上記開口部が形成されている請求項1~請求項8のいずれか1項に記載の太陽電池モジュール。
- 結晶シリコン系太陽電池である請求項1~請求項9のいずれか1項に記載の太陽電池モジュール。
- 受光面側に表面電極が設けられるとともに、上記受光面と反対側の裏面にAl裏面電極が設けられた複数のシリコンセル基板を備え、一のシリコンセル基板の上記表面電極と、該一のシリコンセル基板と隣接する他のシリコンセル基板の上記Al裏面電極とを導電性接着剤層を介してタブ線で接続する太陽電池モジュールの製造方法において、
上記Al裏面電極の上記タブ線との接続部に該接続部に沿ってライン状に設けられ、上記シリコンセル基板のシリコン表面を露出させる上記タブ線及び上記導電性接着剤層よりも幅狭の開口部に上記導電性接着剤層を積層する工程と、
上記導電性接着剤層上に上記タブ線の一端を積層する工程とを有する太陽電池モジュールの製造方法。 - 上記タブ線と上記導電性接着剤層とが予め一体化された導電性接着フィルムを構成し、上記導電性接着剤層の積層工程と、上記タブ線の積層工程とを同時に行う請求項11記載の太陽電池モジュールの製造方法。
- 上記タブ線の上から熱加圧することにより、上記導電性接着剤層を硬化させる請求項12記載の太陽電池モジュールの製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020137003426A KR20130036326A (ko) | 2010-07-08 | 2011-07-07 | 태양 전지 모듈, 태양 전지 모듈의 제조 방법 |
EP11803652.4A EP2592657A1 (en) | 2010-07-08 | 2011-07-07 | Solar cell module and method for manufacturing solar cell module |
CN2011800338065A CN102971861A (zh) | 2010-07-08 | 2011-07-07 | 太阳能电池模块、太阳能电池模块的制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-155758 | 2010-07-08 | ||
JP2010155758A JP5676944B2 (ja) | 2010-07-08 | 2010-07-08 | 太陽電池モジュール、太陽電池モジュールの製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012005318A1 true WO2012005318A1 (ja) | 2012-01-12 |
Family
ID=45441295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/065546 WO2012005318A1 (ja) | 2010-07-08 | 2011-07-07 | 太陽電池モジュール、太陽電池モジュールの製造方法 |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP2592657A1 (ja) |
JP (1) | JP5676944B2 (ja) |
KR (1) | KR20130036326A (ja) |
CN (1) | CN102971861A (ja) |
WO (1) | WO2012005318A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109564945A (zh) * | 2016-08-23 | 2019-04-02 | 纳美仕有限公司 | 导电性糊剂和太阳能电池 |
CN112352320A (zh) * | 2018-06-26 | 2021-02-09 | 亚特比目有限会社 | 太阳能电池及太阳能电池的制造方法 |
WO2024062062A1 (fr) * | 2022-09-22 | 2024-03-28 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Procédé de collage d'un élément d'interconnexion sur une cellule photovoltaïque et dispositif associé |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN202523736U (zh) | 2011-03-08 | 2012-11-07 | 日立化成工业株式会社 | 太阳能电池单元 |
US9455359B2 (en) | 2011-05-31 | 2016-09-27 | Hitachi Chemical Company, Ltd. | Solar battery cell, solar battery module and method of making solar battery module |
KR102233893B1 (ko) * | 2014-01-09 | 2021-03-30 | 엘지전자 주식회사 | 태양전지 모듈 |
EP3200239B1 (en) * | 2014-09-22 | 2021-04-14 | Panasonic Intellectual Property Management Co., Ltd. | Solar cell module and method for manufacturing solar cell module |
WO2018159117A1 (ja) * | 2017-03-03 | 2018-09-07 | 株式会社カネカ | 太陽電池モジュール |
TWI699899B (zh) * | 2018-06-26 | 2020-07-21 | 日商亞特比目有限公司 | 太陽能電池及太陽能電池的製造方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05174890A (ja) * | 1992-05-06 | 1993-07-13 | Casio Comput Co Ltd | 接合構造 |
JPH08264817A (ja) * | 1995-03-27 | 1996-10-11 | Mitsubishi Electric Corp | 薄膜太陽電池の製造方法 |
JPH0983001A (ja) * | 1995-09-14 | 1997-03-28 | Kanegafuchi Chem Ind Co Ltd | 集積化薄膜太陽電池 |
JP2004356349A (ja) | 2003-05-28 | 2004-12-16 | Kyocera Corp | 太陽電池モジュールの製造方法 |
JP2005243935A (ja) * | 2004-02-26 | 2005-09-08 | Shin Etsu Handotai Co Ltd | 太陽電池モジュール及び太陽電池モジュールの製造方法 |
JP2008135654A (ja) | 2006-11-29 | 2008-06-12 | Sanyo Electric Co Ltd | 太陽電池モジュール |
JP2008135565A (ja) * | 2006-11-28 | 2008-06-12 | Kyocera Corp | 太陽電池素子、及びそれを用いた太陽電池モジュール |
JP2008135652A (ja) * | 2006-11-29 | 2008-06-12 | Sanyo Electric Co Ltd | 太陽電池モジュール |
JP2009295940A (ja) * | 2008-06-09 | 2009-12-17 | Mitsubishi Electric Corp | 太陽電池セルおよび太陽電池モジュール |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6420752U (ja) * | 1987-07-28 | 1989-02-01 |
-
2010
- 2010-07-08 JP JP2010155758A patent/JP5676944B2/ja active Active
-
2011
- 2011-07-07 EP EP11803652.4A patent/EP2592657A1/en not_active Withdrawn
- 2011-07-07 KR KR1020137003426A patent/KR20130036326A/ko not_active Application Discontinuation
- 2011-07-07 WO PCT/JP2011/065546 patent/WO2012005318A1/ja active Application Filing
- 2011-07-07 CN CN2011800338065A patent/CN102971861A/zh active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05174890A (ja) * | 1992-05-06 | 1993-07-13 | Casio Comput Co Ltd | 接合構造 |
JPH08264817A (ja) * | 1995-03-27 | 1996-10-11 | Mitsubishi Electric Corp | 薄膜太陽電池の製造方法 |
JPH0983001A (ja) * | 1995-09-14 | 1997-03-28 | Kanegafuchi Chem Ind Co Ltd | 集積化薄膜太陽電池 |
JP2004356349A (ja) | 2003-05-28 | 2004-12-16 | Kyocera Corp | 太陽電池モジュールの製造方法 |
JP2005243935A (ja) * | 2004-02-26 | 2005-09-08 | Shin Etsu Handotai Co Ltd | 太陽電池モジュール及び太陽電池モジュールの製造方法 |
JP2008135565A (ja) * | 2006-11-28 | 2008-06-12 | Kyocera Corp | 太陽電池素子、及びそれを用いた太陽電池モジュール |
JP2008135654A (ja) | 2006-11-29 | 2008-06-12 | Sanyo Electric Co Ltd | 太陽電池モジュール |
JP2008135652A (ja) * | 2006-11-29 | 2008-06-12 | Sanyo Electric Co Ltd | 太陽電池モジュール |
JP2009295940A (ja) * | 2008-06-09 | 2009-12-17 | Mitsubishi Electric Corp | 太陽電池セルおよび太陽電池モジュール |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109564945A (zh) * | 2016-08-23 | 2019-04-02 | 纳美仕有限公司 | 导电性糊剂和太阳能电池 |
CN109564945B (zh) * | 2016-08-23 | 2022-11-29 | 纳美仕有限公司 | 导电性糊剂和太阳能电池 |
CN112352320A (zh) * | 2018-06-26 | 2021-02-09 | 亚特比目有限会社 | 太阳能电池及太阳能电池的制造方法 |
WO2024062062A1 (fr) * | 2022-09-22 | 2024-03-28 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Procédé de collage d'un élément d'interconnexion sur une cellule photovoltaïque et dispositif associé |
FR3140207A1 (fr) * | 2022-09-22 | 2024-03-29 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Procédé de collage d’un élément d’interconnexion sur une cellule photovoltaïque et dispositif associé |
Also Published As
Publication number | Publication date |
---|---|
CN102971861A (zh) | 2013-03-13 |
KR20130036326A (ko) | 2013-04-11 |
JP2012019078A (ja) | 2012-01-26 |
EP2592657A1 (en) | 2013-05-15 |
JP5676944B2 (ja) | 2015-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5676944B2 (ja) | 太陽電池モジュール、太陽電池モジュールの製造方法 | |
JP5415396B2 (ja) | 太陽電池モジュールの製造方法及び太陽電池モジュール | |
JP5318815B2 (ja) | 太陽電池モジュール、太陽電池モジュールの製造方法 | |
JP5356347B2 (ja) | 太陽電池モジュール及び太陽電池モジュールの製造方法 | |
JP5892584B2 (ja) | 太陽電池モジュール、太陽電池モジュールの製造方法 | |
JP5877604B2 (ja) | 太陽電池モジュールの製造方法、太陽電池モジュール及びタブ線の接続方法 | |
WO2012128366A1 (ja) | 太陽電池モジュール、太陽電池モジュールの製造方法、タブ線が巻装されたリール巻装体 | |
WO2012077784A1 (ja) | 太陽電池モジュール及び太陽電池モジュールの製造方法 | |
JP5480120B2 (ja) | 太陽電池モジュール、太陽電池モジュールの製造方法、太陽電池セル及びタブ線の接続方法 | |
JP5798772B2 (ja) | 太陽電池モジュール、太陽電池モジュールの製造方法、タブ線 | |
JP5828582B2 (ja) | 太陽電池モジュール、太陽電池モジュールの製造方法、導電性接着剤 | |
JP5745349B2 (ja) | 太陽電池モジュールの製造方法 | |
JP5759220B2 (ja) | 太陽電池モジュール、太陽電池モジュールの製造方法 | |
WO2012099257A1 (ja) | 太陽電池モジュール及び太陽電池モジュールの製造方法 | |
JP2016021577A (ja) | 太陽電池モジュール、太陽電池モジュールの製造方法、導電性接着剤 | |
JP2013048201A (ja) | 太陽電池モジュール及び太陽電池モジュールの製造方法 | |
JP2016167641A (ja) | 太陽電池モジュール及び太陽電池モジュールの製造方法 | |
JP2016001765A (ja) | 太陽電池モジュール及び太陽電池モジュールの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180033806.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11803652 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011803652 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20137003426 Country of ref document: KR Kind code of ref document: A |