WO2013002177A1 - 液晶滴下工法用シール剤、液晶滴下工法用シール剤の製造方法、上下導通材料、及び、液晶表示素子 - Google Patents

液晶滴下工法用シール剤、液晶滴下工法用シール剤の製造方法、上下導通材料、及び、液晶表示素子 Download PDF

Info

Publication number
WO2013002177A1
WO2013002177A1 PCT/JP2012/066149 JP2012066149W WO2013002177A1 WO 2013002177 A1 WO2013002177 A1 WO 2013002177A1 JP 2012066149 W JP2012066149 W JP 2012066149W WO 2013002177 A1 WO2013002177 A1 WO 2013002177A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
meth
sealant
sealing agent
acrylate
Prior art date
Application number
PCT/JP2012/066149
Other languages
English (en)
French (fr)
Inventor
長谷川 剛
耕平 三田
駿夫 ▲高▼橋
隆久 中島
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN201280003824.3A priority Critical patent/CN103229094B/zh
Priority to KR1020137010917A priority patent/KR101323895B1/ko
Priority to JP2012531157A priority patent/JP5119374B1/ja
Publication of WO2013002177A1 publication Critical patent/WO2013002177A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1433Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
    • C08G59/1438Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing oxygen
    • C08G59/1455Monocarboxylic acids, anhydrides, halides, or low-molecular-weight esters thereof
    • C08G59/1461Unsaturated monoacids
    • C08G59/1466Acrylic or methacrylic acids
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • C08L63/10Epoxy resins modified by unsaturated compounds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • G02F1/13415Drop filling process
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/16Materials and properties conductive

Definitions

  • the present invention relates to a sealant for a liquid crystal dropping method that hardly causes liquid crystal contamination. Moreover, this invention relates to the manufacturing method of this sealing compound for liquid crystal dropping methods, and the vertical conduction material and liquid crystal display element which use this sealing compound for liquid crystal dropping methods.
  • a liquid crystal display element such as a liquid crystal display cell forms a cell by facing two transparent substrates with electrodes facing each other at a predetermined interval and sealing the periphery with a sealing agent made of a curable resin composition.
  • a sealing agent made of a curable resin composition.
  • it has been manufactured by a vacuum injection method in which liquid crystal is injected into a cell from a liquid crystal injection port provided in a part thereof, and the liquid crystal injection port is sealed with a sealing agent or a sealing agent.
  • a seal pattern provided with a liquid crystal injection port is formed on one of two transparent substrates with electrodes using a thermosetting sealant, and prebaked at 60 to 100 ° C. in the sealant. Dry the solvent.
  • the two substrates are placed facing each other with a spacer in between and bonded, and hot pressing is performed at 110 to 220 ° C. for 10 to 90 minutes to adjust the gap near the seal, and then in an oven at 110 to 220 ° C. Heat for 10 to 120 minutes to fully cure the sealant.
  • liquid crystal was injected from the liquid crystal injection port, and finally the liquid crystal injection port was sealed using a sealing agent to manufacture a liquid crystal display element.
  • a method for manufacturing a liquid crystal display element called a dripping method has been studied.
  • the dropping method first, a rectangular seal pattern is formed on one of the two transparent substrates with electrodes by screen printing. Next, a liquid crystal micro-droplet is applied to the entire surface of the transparent substrate in an uncured state with the sealant uncured. The other transparent substrate is stacked under vacuum, and after returning to normal pressure, the seal portion is irradiated with ultraviolet rays. Temporary curing is performed. Thereafter, heating is performed at the time of liquid crystal annealing to perform main curing, and a liquid crystal display element is manufactured. In this method, a liquid crystal display element can be manufactured with extremely high efficiency, and this dropping method is currently the mainstream of the manufacturing method of the liquid crystal display element.
  • the liquid crystal dropping method can significantly reduce the liquid crystal introduction process time compared to the vacuum injection method, while the sealant is in contact with the liquid crystal in an uncured state, so the components of the sealant are easily eluted into the liquid crystal. There was a problem of causing liquid crystal contamination.
  • a method for preventing such liquid crystal contamination a method of performing two-stage curing by irradiation with ultraviolet rays and heating using a photocuring / thermosetting sealant is used (for example, Patent Documents 1 and 2).
  • a photocuring thermosetting combined type sealing agent the thing containing a (meth) acrylic resin and a photoinitiator as a photocuring component, and an epoxy resin and a thermosetting agent as a thermosetting component is mentioned.
  • a photocuring / thermosetting combined sealant even when such a photocuring / thermosetting combined sealant is used, liquid crystal contamination due to the sealant occurs, and as a result, there is a problem that display defects such as color unevenness occur in the obtained
  • An object of the present invention is to provide a sealing agent for a liquid crystal dropping method that hardly causes liquid crystal contamination. Moreover, this invention aims at providing the manufacturing method of this sealing compound for liquid crystal dropping methods, and the vertical conduction material and liquid crystal display element which use this sealing compound for liquid crystal dropping methods.
  • the present invention is a liquid crystal dropping method sealing agent comprising a curable resin containing a radical polymerizable compound and a radical polymerization initiator, wherein the dissolved oxygen has a partial pressure of 10 to 4000 Pa. Sealing agent.
  • the present invention is described in detail below.
  • a sealing agent for a liquid crystal dropping method using a curable resin composition containing a resin having a radical polymerizable functional group such as a (meth) acryloyloxy group is usually used.
  • the cause of the liquid crystal contamination is that the radical polymerization reaction is inhibited by a small amount of oxygen dissolved in the sealant.
  • a step of vacuum defoaming the sealing agent has been performed in order to prevent disconnection of the seal pattern due to bubbles.
  • the present inventor has found that by reducing the amount of dissolved oxygen in the sealant to a specific range that could not be reached by conventional vacuum defoaming, liquid crystal contamination by the sealant can be suppressed, and the present invention has been completed. It came to do.
  • the (meth) acryloyloxy group means an acryloyloxy group or a methacryloyloxy group.
  • the lower limit of the dissolved oxygen partial pressure (hereinafter also referred to as dissolved oxygen partial pressure) is 10 Pa, and the upper limit is 4000 Pa or less.
  • the dissolved oxygen partial pressure is less than 10 Pa, the curing reaction proceeds with a very small amount of radicals caused by slight light received during storage and other factors, so that the sealant is inferior in storage stability.
  • radical polymerization proceeds rapidly due to slight radicals that are exposed to weak light that is not intended to cure the sealing agent. Cured accidentally.
  • the dissolved oxygen partial pressure exceeds 4000 Pa, liquid crystal contamination due to the sealing agent occurs.
  • a preferable upper limit of the dissolved oxygen partial pressure is 3000 Pa, and a more preferable upper limit is 2000 Pa.
  • the dissolved oxygen partial pressure is, for example, by using a dissolved gas analyzer (manufactured by Hack Ultra) equipped with a dissolved oxygen sensor so that the sealant flows on the dissolved oxygen sensor at a constant flow rate. Can be measured.
  • the dissolved oxygen sensor consists of an electrode with a semipermeable membrane. When oxygen that has passed through the semipermeable membrane reaches an electrode with a certain voltage applied, a chemical reaction takes place in the electrolyte, and a current proportional to the amount of oxygen is generated. To do.
  • the dissolved oxygen partial pressure can be measured by measuring the current generated at this time and quantifying it as the oxygen partial pressure with the dissolved gas analyzer.
  • the sealing agent for liquid crystal dropping method of the present invention contains a curable resin.
  • the curable resin contains a radical polymerizable compound.
  • a resin having a (meth) acryloyloxy group is preferable.
  • the radical polymerizable compound preferably contains an epoxy (meth) acrylate.
  • (meth) acrylate means acrylate or methacrylate
  • the epoxy (meth) acrylate is a compound obtained by reacting all epoxy groups in the epoxy resin with (meth) acrylic acid. Represents that.
  • the epoxy (meth) acrylate is not particularly limited, and examples thereof include those obtained by reacting (meth) acrylic acid and an epoxy resin in the presence of a basic catalyst according to a conventional method.
  • (meth) acryl means acryl or methacryl.
  • the epoxy resin used as a raw material for synthesizing the epoxy (meth) acrylate is not particularly limited.
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, bisphenol S type epoxy resin, 2,2′-diallyl bisphenol A Type epoxy resin, hydrogenated bisphenol type epoxy resin, propylene oxide added bisphenol A type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy Resin, phenol novolac epoxy resin, orthocresol novolac epoxy resin, dicyclopentadiene novolac epoxy resin, biphenyl novolac epoxy resin Naphthalene phenol novolac-type epoxy resin, glycidyl amine type epoxy resin, alkyl polyol type epoxy resin, rubber modified epoxy resin, glycidyl ester compounds, bisphenol A type episulfide resins.
  • Examples of commercially available bisphenol A type epoxy resins include Epicoat 828EL, Epicoat 1001, Epicoat 1004 (all manufactured by Mitsubishi Chemical Corporation), Epicron 850-S (manufactured by DIC Corporation), and the like.
  • Epicoat 806, Epicoat 4004 all are Mitsubishi Chemical Corporation make) etc. are mentioned, for example.
  • Epicron EXA1514 made by DIC Corporation
  • Examples of commercially available 2,2′-diallylbisphenol A type epoxy resins include RE-810NM (manufactured by Nippon Kayaku Co., Ltd.).
  • Examples of commercially available diphenyl ether type epoxy resins include YSLV-80DE (manufactured by Nippon Steel Chemical Co., Ltd.).
  • Examples of commercially available dicyclopentadiene type epoxy resins include EP-4088S (manufactured by ADEKA).
  • Examples of commercially available naphthalene type epoxy resins include Epicron HP4032, Epicron EXA-4700 (both manufactured by DIC) and the like.
  • Examples of commercially available phenol novolac epoxy resins include Epicron N-770 (manufactured by DIC).
  • Examples of the ortho-cresol novolac type epoxy resin that are commercially available include epiclone N-670-EXP-S (manufactured by DIC).
  • epiclone HP7200 made by DIC
  • examples of commercially available biphenyl novolac epoxy resins include NC-3000P (manufactured by Nippon Kayaku Co., Ltd.).
  • examples of commercially available naphthalenephenol novolac type epoxy resins include ESN-165S (manufactured by Nippon Steel Chemical Co., Ltd.).
  • Examples of commercially available glycidylamine epoxy resins include Epicoat 630 (manufactured by Mitsubishi Chemical), Epicron 430 (manufactured by DIC), and TETRAD-X (manufactured by Mitsubishi Gas Chemical).
  • alkyl polyol type epoxy resins examples include ZX-1542 (manufactured by Nippon Steel Chemical Co., Ltd.), Epicron 726 (manufactured by DIC Corporation), Epolite 80MFA (manufactured by Kyoeisha Chemical Co., Ltd.), Denacol EX- 611 (manufactured by Nagase ChemteX Corporation).
  • Examples of commercially available rubber-modified epoxy resins include YR-450, YR-207 (both manufactured by Nippon Steel Chemical Co., Ltd.), Epolide PB (manufactured by Daicel Chemical Industries, Ltd.), and the like.
  • Examples of commercially available glycidyl ester compounds include Denacol EX-147 (manufactured by Nagase ChemteX Corporation).
  • Examples of commercially available bisphenol A type episulfide resins include Epicoat YL-7000 (manufactured by Mitsubishi Chemical Corporation).
  • epoxy resins include, for example, YDC-1312, YSLV-80XY, YSLV-90CR (all manufactured by Nippon Steel Chemical Co., Ltd.), XAC4151 (manufactured by Asahi Kasei Co., Ltd.), Epicoat 1031, Epicoat 1032 (all manufactured by Mitsubishi Chemical Corporation), EXA-7120 (manufactured by DIC Corporation), TEPIC (manufactured by Nissan Chemical Industries, Ltd.) and the like.
  • Examples of commercially available epoxy (meth) acrylates include, for example, Evecryl 860, Evekril 3200, Evekril 3201, Evekryl 3412, Evekril 3600, Evekril 3700, Evekrill 3703, Evekril 3703, Evekril 3800, Evekril 6040.
  • Evacryl RDX63182 (all manufactured by Daicel Cytec), EA-1010, EA-1020, EA-5323, EA-5520, EA-CHD, EMA-1020 (all manufactured by Shin-Nakamura Chemical Co., Ltd.), Epoxy ester M- 600A, epoxy ester 40EM, epoxy ester 70PA, epoxy ester 200PA, epoxy ester 80MFA, epoxy ester 3002M, epoxy ester 30 2A, epoxy ester 1600A, epoxy ester 3000M, epoxy ester 3000A, epoxy ester 200EA, epoxy ester 400EA (all manufactured by Kyoeisha Chemical Co., Ltd.), Denacol acrylate DA-141, Denacol acrylate DA-314, Denacol acrylate DA-911 (Both manufactured by Nagase ChemteX Corporation).
  • the sealing agent for liquid crystal dropping method of the present invention may contain a resin having a (meth) acryloyloxy group other than the epoxy (meth) acrylate or an epoxy resin as the curable resin.
  • resin which has (meth) acryloyloxy groups other than the said epoxy (meth) acrylate For example, (meth) acrylic acid ester etc. are mentioned.
  • the (meth) acrylic acid ester include an ester compound obtained by reacting a compound having a hydroxyl group with (meth) acrylic acid, and a urethane obtained by reacting a (meth) acrylic acid derivative having a hydroxyl group with isocyanate ( And (meth) acrylate.
  • ester compound obtained by reacting the above (meth) acrylic acid with a compound having a hydroxyl group examples include 2-hydroxyethyl acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl.
  • bifunctional compound examples include 1,4-butanediol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9 Nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, 2-n-butyl-2-ethyl-1,3-propanediol di (meth) acrylate, dipropylene glycol di (meth) acrylate , Tripropylene glycol di (meth) acrylate, polypropylene glycol (meth) acrylate, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, Pyrene oxide-added bisphenol A di (meth) acrylate, ethylene glyco
  • tri- or higher functional group examples include pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, propylene oxide-added trimethylolpropane tri (meth) acrylate, and ethylene oxide-added trimethylolpropane tri (meth).
  • Examples of the isocyanate used as a raw material of the urethane (meth) acrylate obtained by reacting the isocyanate with a (meth) acrylic acid derivative having a hydroxyl group include isophorone diisocyanate, 2,4-tolylene diisocyanate, and 2,6-tolylene diisocyanate.
  • MDI diphenylmethane-4,4'-diisocyanate
  • hydrogenated MDI polymeric MDI, 1,5-naphthalene diisocyanate, norbornane diisocyanate
  • tolidine diisocyanate xy
  • isocyanate used as a raw material of urethane (meth) acrylate obtained by reacting the above-mentioned isocyanate with a (meth) acrylic acid derivative having a hydroxyl group, ethylene glycol, glycerin, sorbitol, trimethylolpropane, (poly) propylene glycol
  • chain-extended isocyanate compounds obtained by reaction of polyols such as carbonate diols, polyether diols, polyester diols, polycaprolactone diols and excess isocyanates.
  • the (meth) acrylic acid derivative having a hydroxyl group which is a raw material for urethane (meth) acrylate obtained by reacting the isocyanate with a hydroxyl group-containing (meth) acrylic acid derivative
  • a hydroxyl group-containing (meth) acrylic acid derivative for example, 2-hydroxyethyl (meth)
  • Commercial products such as acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, ethylene glycol, propylene glycol, 1,3-propanediol, 1,3- Mono (meth) acrylates of divalent alcohols such as butanediol, 1,4-butanediol and polyethylene glycol, mono (meth) acrylates or di (meth) of trivalent alcohols such as trimethylolethane, trimethylolpropane and glycerin Acrylates, epoxy acrylates such as bisphenol
  • urethane (meth) acrylate obtained by reacting the isocyanate with a (meth) acrylic acid derivative having a hydroxyl group include, for example, 134 parts by weight of trimethylolpropane, 0.2 part by weight of BHT as a polymerization inhibitor, As reaction catalysts, 0.01 parts by weight of dibutyltin dilaurate and 666 parts by weight of isophorone diisocyanate were added and reacted at 60 ° C. with stirring under reflux for 2 hours. Next, 51 parts by weight of 2-hydroxyethyl acrylate was added and air was fed. It can be obtained by reacting at 90 ° C. with stirring under reflux for 2 hours.
  • urethane (meth) acrylates commercially available products include, for example, M-1100, M-1200, M-1210, and M-1600 (all manufactured by Toagosei Co., Ltd.), Evecryl 230, Evekril 270, Evekril.
  • any resin having an epoxy group can be used without particular limitation, and an epoxy resin as a raw material for synthesizing the epoxy (meth) acrylate can be used.
  • the said curable resin contains a partial (meth) acryl modified epoxy resin.
  • the partial (meth) acryl-modified epoxy resin means a resin having one or more epoxy groups and (meth) acryloyloxy groups in one molecule.
  • the said partial (meth) acryl modified epoxy resin can be obtained by making the epoxy group of the part of the epoxy resin which has two or more epoxy groups react with (meth) acrylic acid, for example.
  • the curable resin preferably contains an epoxy resin and / or a partial (meth) acryl-modified epoxy resin.
  • the preferable lower limit of the ratio of (meth) acryloyloxy group to the total amount of (meth) acryloyloxy group and epoxy group in the curable resin is 20 mol%, and the preferable upper limit is 95 mol%.
  • the ratio of the (meth) acryloyloxy group is less than 20 mol%, display defects such as color unevenness may occur in the obtained liquid crystal display element.
  • the ratio of the (meth) acryloyloxy group exceeds 95 mol%, the viscosity of the sealant increases with time due to the reasons described later, the panel peels off due to low adhesive strength, and the moisture resistance deteriorates over time. Problems such as degradation of the visual display quality may occur.
  • the more preferable lower limit of the ratio of the (meth) acryloyloxy group is 30 mol%, the more preferable upper limit is 90 mol%, the still more preferable lower limit is 40 mol%, and the still more preferable upper limit is 75 mol%.
  • the curable resin especially the hydroxyl group present in the epoxy (meth) acrylate molecule, is known to promote the thermosetting reaction, and has a certain degree of reaction promoting effect even at room temperature. From this point of view, it is preferable to reduce the ratio of hydroxyl groups in the curable resin by suppressing the ratio of epoxy (meth) acrylate and increasing the ratio of epoxy resin or partially (meth) acryl-modified epoxy resin.
  • epoxy resins and partially (meth) acrylic-modified epoxy resins have a lower polarity than epoxy (meth) acrylates, so a high ratio of epoxy resin and partially (meth) acrylic-modified epoxy resin in the curable resin.
  • the agent has high compatibility with the liquid crystal.
  • the sealing agent for liquid crystal dropping method of the present invention contains a radical polymerization initiator.
  • the sealing agent for liquid crystal dropping method of the present invention more preferably contains a photoradical polymerization initiator and / or a thermal radical polymerization initiator as the radical polymerization initiator.
  • photo radical polymerization initiators that generate radicals by light are not particularly limited.
  • benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds , Benzoin ether compounds, thioxanthone and the like can be preferably used.
  • Examples of commercially available photo radical polymerization initiators include IRGACURE 184, IRGACURE 369, IRGACURE 379, IRGACURE 651, IRGACURE 819, IRGACURE 907, IRGACURE 2959, IRGACUREOXE01, Lucin TPO (all from BASF M Examples include ether, benzoin ethyl ether, and benzoin isopropyl ether (all manufactured by Tokyo Chemical Industry Co., Ltd.). Of these, IRGACURE651, IRGACURE907, benzoin isopropyl ether, and lucillin TPO are preferred because of their wide absorption wavelength range. These radical photopolymerization initiators may be used alone or in combination of two or more.
  • thermal radical polymerization initiators that generate radicals by heat are not particularly limited, and examples thereof include peroxides and azo compounds.
  • examples of commercially available ones include perbutyl O and perhexyl O.
  • Perbutyl PV all manufactured by NOF Corporation
  • V-30, V-501, V-601, VPE-0201 all manufactured by Wako Pure Chemical Industries, Ltd.
  • a preferable minimum is 0.01 weight part and a preferable upper limit is 10 weight part with respect to 100 weight part of said curable resins. If the content of the radical polymerization initiator is less than 0.01 parts by weight, the resulting sealing agent may not be sufficiently cured. When content of the said radical polymerization initiator exceeds 10 weight part, the sealing agent obtained may become inferior to storage stability.
  • the sealing agent for liquid crystal dropping method of the present invention preferably contains a thermosetting agent capable of reacting with an epoxy group and / or a (meth) acryloyloxy group.
  • the said thermosetting agent is not specifically limited, For example, organic acid hydrazide, an imidazole derivative, an amine compound, a polyhydric phenol type compound, an acid anhydride etc. are mentioned.
  • latent thermosetting agents latent curing agents
  • a room temperature solid amine-based latent curing agent is preferable.
  • Examples of the room temperature solid amine-based latent curing agent include dicyandiamides, imidazole derivatives, and organic acid hydrazides.
  • Organic acid hydrazides are preferably used.
  • the organic acid hydrazide is not particularly limited.
  • sebacic acid dihydrazide (melting point 189 ° C.), isophthalic acid dihydrazide (melting point 224 ° C.), adipic acid dihydrazide (melting point 181 ° C.), malonic acid dihydrazide (melting point 152 to 154 ° C.), Dodecanediohydrazide (melting point: 190 ° C.), 1,3-bis (hydrazinocarboethyl) -5-isopropylhydantoin (melting point: 120 ° C.), and the like are commercially available, for example, SDH (Nippon Fine Chem) Amicure VDH, Amicure VDH-J, Amicure UDH (all manufactured by Ajinomoto Fine Techno Co.), ADH (manufactured by Otsuka Chemical Co., Ltd.) and the like.
  • organic acid hydrazides having a melting point of 130 ° C. or higher are preferable.
  • organic acid hydrazide having a melting point of less than 130 ° C. the viscosity stability of the sealant may be lowered due to the temperature applied during the defoaming step.
  • organic acid hydrazides having a melting point of 150 ° C. or higher are preferable.
  • thermosetting agent is not specifically limited, A preferable minimum is 2 weight part and a preferable upper limit is 25 weight part with respect to 100 weight part of said curable resins.
  • content of the thermosetting agent is less than 2 parts by weight, the effect of containing the thermosetting agent is hardly obtained.
  • content of the said thermosetting agent exceeds 25 weight part, the viscosity stability of the sealing agent obtained will fall and it may become inferior to storage stability.
  • the upper limit with more preferable content of the said thermosetting agent is 15 weight part, and a more preferable upper limit is 10 weight part.
  • the sealing agent for liquid crystal dropping method of the present invention preferably contains a filler for the purpose of adjusting the viscosity, improving the adhesiveness due to the stress dispersion effect, improving the linear expansion coefficient, and improving the moisture resistance of the cured product.
  • the filler is not particularly limited.
  • Inorganic fillers such as magnesium, aluminum hydroxide, glass beads, silicon nitride, barium sulfate, gypsum, calcium silicate, sericite activated clay, aluminum nitride, polyester fine particles, polyurethane fine particles, vinyl polymer fine particles, acrylic polymer fine particles, etc.
  • the filler may be one obtained by subjecting the inorganic filler to a surface treatment with an organic compound as necessary.
  • Sealing agents containing powders such as the above fillers have a particularly large amount of dissolved oxygen and are liable to cause liquid crystal contamination.
  • the sealing agent for liquid crystal dropping method of the present invention is manufactured by a manufacturing method having a step of performing a vacuum defoaming process, which will be described later, and even in such a case, the dissolved oxygen partial pressure in the sealing agent is easily reduced to 4000 Pa or less. be able to.
  • the minimum with a preferable average particle diameter of the said filler is 0.001 micrometer, and a preferable upper limit is 5 micrometers.
  • a preferable upper limit is 5 micrometers.
  • the average particle diameter of the filler is less than 0.001 ⁇ m, not only the viscosity of the sealant becomes too high, but also the oxygen brought into the sealant due to the air adsorbed on the powder increases and cannot be completely removed. Therefore, the dissolved oxygen partial pressure may be increased.
  • the average particle diameter of the filler exceeds 5 ⁇ m, a gap defect may occur in the liquid crystal display element manufacturing process.
  • the minimum with a more preferable average particle diameter of the said filler is 0.005 micrometer, and a more preferable upper limit is 3 micrometers.
  • the average particle size of the filler is measured using a particle size distribution measuring device.
  • a particle size distribution measuring device by a dynamic light scattering method is preferable.
  • the average particle diameter of the filler is measured, for example, by NICOM 380ZLS-S manufactured by Particle Sizing Systems, in which the filler is dispersed in an appropriate medium.
  • the preferable lower limit of the content of the filler is 5 parts by weight and the preferable upper limit is 80 parts by weight with respect to 100 parts by weight of the curable resin.
  • the content of the filler is less than 5 parts by weight, the effect of containing the filler may be hardly exhibited.
  • the content of the filler exceeds 80 parts by weight, the viscosity of the sealant increases, and it takes a long time to reduce the dissolved oxygen partial pressure in the sealant to 4000 Pa or less in the vacuum defoaming treatment step. Even if it is applied, it may not be 4000 Pa or less.
  • the vacuum defoaming process heating is performed to reduce the viscosity of the sealant, but when the liquid crystal dropping method sealant of the present invention contains a thermosetting agent, a long-time vacuum is applied.
  • the viscosity may be increased to a viscosity that cannot be used, and as a result, the dissolved oxygen partial pressure may not be 4000 Pa or less.
  • a more preferable lower limit of the content of the filler is 10 parts by weight, and a more preferable upper limit is 70 parts by weight.
  • the sealing agent for the liquid crystal dropping method of the present invention has an average particle size of 0 as the above-mentioned filler for the purpose of increasing the thixotropic index of the sealing agent described later and increasing the moisture resistance of the cured product of the sealing agent. It may contain a filler made of a relatively small powder of less than 3 ⁇ m.
  • the sealing agent having a high thixotropic index can suppress the “insertion” phenomenon that the liquid crystal under the internal pressure pushes the seal line to the outside and penetrates into the line in the manufacturing process of the liquid crystal display element by the liquid crystal dropping method.
  • the “insertion” phenomenon increases the contact area between the sealant and the liquid crystal, and therefore promotes liquid crystal contamination by the sealant component.
  • a filler with a small average particle size has a large amount of oxygen brought into the sealing agent at the time of blending, and if a large amount of filler consisting of a powder with a small average particle size is blended, dissolved oxygen in the sealing agent is removed. You may not be able to understand. Also, since the sealant with a high thixotropic index is difficult to vacuum degas, it is difficult to reduce the dissolved oxygen partial pressure, so pay attention to the amount of filler that consists of powder with a small average particle diameter. Must.
  • the content of the filler composed of powder having an average particle diameter of less than 0.3 ⁇ m is preferably 20 parts by weight or less with respect to 100 parts by weight of the curable resin. More preferably, it is less.
  • the “powder” means an aggregate of particles having a number average particle diameter of 10 ⁇ m or less.
  • the sealing agent for liquid crystal dropping method of the present invention preferably contains a silane coupling agent.
  • the silane coupling agent mainly has a role as an adhesion assistant for favorably bonding the sealing agent and the substrate.
  • the silane coupling agent is not particularly limited, and for example, ⁇ -aminopropyltrimethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane and the like are preferably used.
  • the sealing agent for liquid crystal dropping method of the present invention preferably contains a radical polymerization inhibitor.
  • the radical polymerization inhibitor include 2,6-di-t-butylcresol, butylated hydroxyanisole, 2,6-di-t-butyl-4-ethylphenol, stearyl ⁇ - (3,5-di-).
  • the content of the radical polymerization inhibitor is preferably 0.005 parts by weight and preferably 0.4 parts by weight with respect to 100 parts by weight of the curable resin.
  • the dissolved oxygen partial pressure is 4000 Pa or less, which is lower than that of the conventional sealing agent. Therefore, when the content of the radical polymerization inhibitor is less than 0.005 parts by weight, the production of the liquid crystal display element When exposed to weak light that is not intended to cure the sealing agent, such as radical polymerization inhibitors consumed more quickly than conventional sealing agents due to radicals that are sometimes generated when weak light is sometimes present May be accidentally cured.
  • the sealant may be inferior in storage stability, for example, it is cured by slight light received during storage.
  • the resulting sealing agent When the content of the radical polymerization inhibitor exceeds 0.4 parts by weight, the resulting sealing agent has extremely low ultraviolet curability, and may not be cured even when irradiated with ultraviolet rays for the purpose of curing the sealing agent.
  • the meaning of the sealing agent having a low oxygen partial pressure within the meaning of the present invention is lost.
  • the minimum with more preferable content of the said radical polymerization inhibitor is 0.01 weight part, and a more preferable upper limit is 0.1 weight part.
  • the sealing agent for the liquid crystal dropping method of the present invention further includes a reactive diluent for adjusting the viscosity, a thixotropic agent for adjusting the thixotropy, a spacer such as a polymer bead for adjusting the panel gap, if necessary. It may contain a curing accelerator such as -P-chlorophenyl-1,1-dimethylurea, an antifoaming agent, a leveling agent, and other additives.
  • the method for producing the sealant for the liquid crystal dropping method of the present invention is not particularly limited, and for example, the above-described curability using a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, or a three roll.
  • a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, or a three roll.
  • the method etc. which mix resin, the said photobase generator, the radical polymerization initiator etc. which are added as needed are mentioned.
  • it may be brought into contact with an ion-adsorbing solid.
  • a vacuum defoaming treatment step described later even if the sealing agent contains powder, the dissolved oxygen partial pressure in the sealing agent can be easily reduced to 4000 Pa or less.
  • a method for producing a sealing agent for a liquid crystal dropping method of the present invention wherein the degree of vacuum is ⁇ 90 kPa or more and the viscosity of the sealing agent is 70 Pa ⁇ s or less, continuously for 5 minutes or more.
  • the manufacturing method of the sealing agent for liquid crystal dropping methods which has the vacuum defoaming process process which renews the liquid level of a sealing agent is also one of this invention.
  • the manufacturing process of the sealant a process of vacuum defoaming the sealant to prevent disconnection of the seal pattern due to air bubbles has been performed, but dissolved oxygen content in the sealant is suppressed in order to suppress liquid crystal contamination. Vacuum defoaming was not performed until the pressure was 4000 Pa or less.
  • the dissolved oxygen partial pressure in the sealant can be easily reduced to 4000 Pa or less by the vacuum defoaming treatment step for 5 minutes or more.
  • the degree of reduced pressure ⁇ 90 ka “more than” means a state where the absolute pressure is lower (for example, ⁇ 95 kPa), and the degree of reduced pressure ⁇ 90 kPa “less than” means that the absolute pressure is higher. It means a high state (for example, ⁇ 85 kPa).
  • the upper limit of the viscosity of the sealant in the vacuum defoaming process is 70 Pa ⁇ s.
  • a preferable upper limit of the viscosity of the sealant in the vacuum defoaming treatment step is 50 Pa ⁇ s.
  • the minimum with the preferable viscosity of the sealing agent in the said vacuum defoaming treatment process is 1 Pa * s.
  • viscosity of sealant in the vacuum defoaming process refers to the viscosity measured under the condition of 1 rpm in accordance with the temperature in the vacuum defoaming process using an E-type viscometer. .
  • the viscosity of the formulation itself can be lowered by selecting a constituent material.
  • a method of reducing the viscosity by heating in the vacuum defoaming treatment step, etc. but a method of heating is preferable.
  • the preferable lower limit of the temperature of the sealing agent in the vacuum defoaming treatment step is 30 ° C., and the preferable upper limit is 55 ° C.
  • the temperature of the sealing agent in the vacuum defoaming treatment step is less than 30 ° C., it takes a long time to reduce the dissolved oxygen partial pressure in the sealing agent to 4000 Pa or less, or the dissolved oxygen content even if it takes a long time.
  • the pressure may not be 4000 Pa or less.
  • the temperature of the sealing agent in the vacuum defoaming treatment step exceeds 55 ° C., the storage stability of the sealing agent may be lowered.
  • the more preferable lower limit of the temperature of the sealing agent in the vacuum defoaming treatment step is 35 ° C.
  • the more preferable upper limit is 50 ° C.
  • the more preferable lower limit is 37 ° C.
  • the temperature of the sealing agent in the vacuum defoaming process may vary during the vacuum defoaming process, but the temperature range specified above indicates the temperature range at the maximum temperature of the sealing agent during the vacuum defoaming process. ing.
  • the degree of reduced pressure in the vacuum defoaming treatment step is ⁇ 90 kPa or more.
  • the degree of vacuum in the vacuum defoaming treatment step is less than ⁇ 90 kPa (for example, ⁇ 85 kPa)
  • the dissolved oxygen partial pressure may not be 4000 Pa or less.
  • the degree of reduced pressure in the vacuum defoaming treatment step is preferably ⁇ 92 kPa or more, and more preferably ⁇ 94 kPa or more.
  • the degree of vacuum in the vacuum defoaming process is preferably ⁇ 100 kPa or less.
  • the degree of vacuum in the vacuum defoaming treatment step exceeds ⁇ 100 kPa (for example, ⁇ 105 kPa), the dissolved oxygen partial pressure in the sealant is not too low, and the resulting sealant may have poor storage stability. is there.
  • the liquid level of the sealing agent is continuously renewed for 5 minutes or more while keeping the degree of decompression at ⁇ 90 kPa or more and the viscosity of the sealing agent at 70 Pa ⁇ s or less.
  • the removal of dissolved oxygen in the vacuum defoaming process proceeds efficiently in a high vacuum state of ⁇ 90 kPa or higher. If the time for continuously renewing the liquid surface is less than 5 minutes while maintaining the degree of vacuum and the viscosity of the sealant within the above ranges, the dissolved oxygen partial pressure in the sealant cannot be sufficiently lowered.
  • the time for continuously renewing the liquid level while maintaining the degree of vacuum and the viscosity of the sealant within the above ranges is preferably 10 minutes or more, and more preferably 20 minutes or more. However, when the viscosity of the sealant during the vacuum defoaming treatment is high, it is preferable to continue for a longer time. Moreover, it is preferable that the time for continuously renewing the liquid surface while maintaining the degree of vacuum and the viscosity of the sealant within the above ranges is 120 minutes or less. If the time for renewing the liquid level continuously exceeds 120 minutes while maintaining the degree of vacuum and the viscosity of the sealing agent within the above ranges, the thermosetting reaction of the sealing agent proceeds and the sealing agent viscosity at the end of the process may become too high.
  • the time for continuously renewing the liquid level while maintaining the degree of vacuum and the viscosity of the sealant within the above ranges is more preferably 50 minutes or less.
  • the temperature of the sealing agent during the vacuum defoaming treatment step is high, it is preferable to shorten the time within a range of 5 minutes or more.
  • the conditions for increasing the degree of vacuum from atmospheric pressure to ⁇ 90 kPa or higher are not particularly limited, but if the degree of vacuum is suddenly increased, severe foaming occurs, which is not preferable.
  • the degree of vacuum is suddenly increased, severe foaming occurs, which is not preferable.
  • the liquid level of the sealing agent is continuously updated.
  • a mechanism for flowing the sealing agent is provided in a container for vacuum treatment, and the sealing agent is flowed under vacuum.
  • the mechanism for causing the sealant to flow include those using various known stirring blades such as paddle blades, turbine blades, propeller blades, anchor blades, and spiral blades, and those using a rotor that rotates by magnetic force.
  • Another example is a mechanism in which the container itself that performs vacuum defoaming rotates while rotating and / or revolving, and the internal sealant is fluidized by gravity or centrifugal force.
  • Examples of the apparatus provided with a mechanism for causing the sealant to flow in this manner include apparatuses provided with the above-described various stirring blades uniaxially or biaxially or more.
  • various stirring blades uniaxially or biaxially or more.
  • Known stirring devices such as a mixer and a kneader can be applied.
  • a well-known rotation-revolution mixer can also be applied, for example, UFO series, VMX series (all are the products made by EME), Awatori Nerita series (made by Shinkey), etc. are mentioned.
  • the stirring device includes a mechanism capable of continuously updating the liquid level of the sealant and at the same time a mechanism capable of decompressing the contents.
  • the total partial pressure of oxygen is 4000 Pa or less simply by lowering the dissolved partial pressure of oxygen in the vicinity of the surface. It does not become or it takes a very long time.
  • the said vacuum defoaming process process is performed by the method in which the surface of a sealing agent is renewed by the mechanism in which the dead space which does not flow a sealing agent does not arise in the container which performs a vacuum process.
  • the apparatus for performing the vacuum defoaming process preferably includes a mechanism for controlling the temperature of the sealing agent.
  • a mechanism for controlling the temperature a mechanism having a jacket in which a medium capable of heating or removing heat circulates in a container for vacuum defoaming treatment is preferable.
  • the preferable upper limit of the thixotropic index after finishing a vacuum defoaming process is 1.5. If the thixotropic index of the sealing agent for liquid crystal dropping method of the present invention exceeds 1.5, it may take a long time to reduce the dissolved oxygen partial pressure in the sealing agent to 4000 Pa or less, and the coating property may deteriorate. There are things to do.
  • the more preferable upper limit of the thixotropic index of the sealing agent for liquid crystal dropping method of the present invention is 1.3.
  • the lower limit of the thixotropic index of the sealing agent for liquid crystal dropping method of the present invention is not particularly limited, but is not substantially less than 1.0.
  • the “thixotropic index” means a viscosity measured at 25 rpm at 25 ° C. using an E type viscometer, and 5.0 rpm at 25 ° C. using an E type viscometer. It means the value divided by the viscosity measured under the conditions.
  • the preferable lower limit of the viscosity of the sealing agent after the vacuum defoaming treatment step is 100 Pa ⁇ s, and the preferable upper limit is 800 Pa ⁇ s.
  • the viscosity of the sealing agent is less than 100 Pa ⁇ s, in the production of a liquid crystal display element to be described later, a liquid crystal dropping method sealing agent is applied in a frame shape to a transparent substrate, and then liquid crystal microdroplets are applied to the transparent substrate. In the step of dropping and applying in the frame of the agent and overlaying the other transparent substrate with the sealant uncured, the sealant pattern may be broken.
  • a more preferable lower limit of the viscosity of the sealing agent is 150 Pa ⁇ s, a more preferable upper limit is 600 Pa ⁇ s, a still more preferable lower limit is 200 Pa ⁇ s, and a further preferable upper limit is 400 Pa ⁇ s.
  • the viscosity of the sealing agent is a value measured using an E-type viscometer under the conditions of 25 ° C. and 1.0 rpm.
  • the vacuum defoaming treatment step is preferably performed after mixing the powder raw materials. Since the powder raw material contains a large amount of air between the particles, it is difficult to achieve a predetermined oxygen partial pressure when the powder raw material is mixed after the defoaming treatment. Moreover, the vacuum defoaming process may be performed once or may be performed twice or more.
  • a vertical conduction material can be produced by blending conductive fine particles with the sealant for the liquid crystal dropping method of the present invention.
  • Such a vertical conduction material containing the sealing agent for liquid crystal dropping method of the present invention and conductive fine particles is also one aspect of the present invention.
  • the conductive fine particles are not particularly limited, and metal balls, those obtained by forming a conductive metal layer on the surface of resin fine particles, and the like can be used. Among them, the one in which the conductive metal layer is formed on the surface of the resin fine particles is preferable because the conductive connection is possible without damaging the transparent substrate due to the excellent elasticity of the resin fine particles.
  • the liquid crystal display element using the sealing compound for liquid crystal dropping method of the present invention and / or the vertical conduction material of the present invention is also one aspect of the present invention.
  • one of two transparent substrates with electrodes, such as an ITO thin film is formed into a rectangular shape by screen printing, dispenser application, etc. of the liquid crystal dropping method sealing agent of the present invention.
  • a step of forming a seal pattern of the present invention a step of applying a fine drop of liquid crystal on the entire surface of the transparent substrate in a state where the sealing agent for liquid crystal dropping method of the present invention is uncured, and immediately overlaying the other transparent substrate And the process of irradiating light, such as ultraviolet rays, to seal pattern parts, such as the sealant for liquid crystal dropping methods of the present invention, and temporarily hardening the sealant, and the process of heating and temporarily hardening the temporarily hardened sealant And the like.
  • irradiating light such as ultraviolet rays
  • the sealing compound for liquid crystal dropping methods which hardly causes liquid crystal contamination can be provided.
  • the manufacturing method of this sealing compound for liquid crystal dropping methods, and the vertical conduction material and liquid crystal display element which use this sealing compound for liquid crystal dropping methods can be provided.
  • Example 1 (Synthesis of curable resin C) A partially acrylic-modified epoxy resin (curable resin C) was prepared by the following method. That is, 190 g of phenol novolac type epoxy resin (manufactured by DIC, “N-770”) was dissolved in 500 mL of toluene, and 0.1 g of triphenylphosphine was added to this solution to obtain a uniform solution. After 35 g of acrylic acid was added dropwise to the obtained solution under reflux stirring over 2 hours, the mixture was further stirred under reflux for 6 hours. By removing toluene, a partially acrylic-modified phenol novolac type epoxy resin (curable resin C) in which 50 mol% of the epoxy group was modified with acrylic acid was obtained.
  • phenol novolac type epoxy resin manufactured by DIC, “N-770”
  • curable resin As curable resin, bisphenol A type epoxy acrylate (acrylic acid modified product of bisphenol A type epoxy resin, manufactured by Daicel Cytec, “Evecryl 3700", curable resin A), 30 parts by weight, partially acrylic modified epoxy resin (curable resin) C) 60 parts by weight and 10 parts by weight of a bisphenol A type epoxy resin (manufactured by Mitsubishi Chemical Corporation, “Epicoat 1001”, curable resin D) were dissolved by heating to obtain a uniform solution.
  • spherical silica manufactured by Admatechs, “SO-E3”, average particle size 1.0 ⁇ m
  • adipic acid as a thermosetting agent
  • dihydrazide manufactured by Otsuka Chemical Co., Ltd., “ADH”, average particle size 1.0 ⁇ m
  • the obtained sealant before vacuum defoaming treatment was subjected to vacuum defoaming treatment using a planetary mixer (“PLM50” manufactured by Inoue Seisakusho Co., Ltd.).
  • the planetary mixer used has a tank that can be heated and cooled, and a vacuum decompression function. While stirring the sealant in the tank, the temperature was raised to 38 ° C. Depressurization was started simultaneously with heating, and it was confirmed that the degree of decompression reached ⁇ 90 kPa 20 minutes after the start of decompression under continuous stirring. The temperature at this time was kept constant at 38 ° C., and the temperature was constant in the subsequent vacuum defoaming process.
  • the degree of decompression reached ⁇ 95 kPa, and then kept at ⁇ 95 kPa.
  • the pressure was returned to atmospheric pressure to complete the vacuum defoaming process.
  • the duration of the degree of decompression above -90 kPa was 30 minutes, and the duration of the maximum degree of decompression (-95 kPa) was 25 minutes.
  • Thickening rate (%) 100 ⁇ (viscosity after storage) / (viscosity before storage)
  • the case where the thickening rate is less than 110% is “ ⁇ ”
  • the case where it is 110% or more and less than 120% is “ ⁇ ”
  • the case where it is 120% or more and less than 200% is “ ⁇ ”
  • the case where it is 200% or more was “x” as the case. The results are shown in Table 1.
  • Adhesiveness 3 parts by weight of polymer beads (Sekisui Chemical Co., Ltd., “Micropearl SP”) having an average particle diameter of 5 ⁇ m are blended with 100 parts by weight of the obtained sealant after vacuum defoaming treatment, A trace amount was taken in the center of a glass substrate (20 mm ⁇ 50 mm ⁇ 1.1 mmt), and the same type of glass substrate (Corning 1737) was overlaid thereon to spread the sealing agent. In that state, 100 mW / cm 2 of ultraviolet rays were irradiated for 30 seconds. Then, it heated at 120 degreeC for 1 hour, and obtained the adhesion test piece. About the obtained adhesion test piece, the adhesive force was measured using the tension gauge.
  • the case adhesion was 280N / cm 2 or more " ⁇ ", " ⁇ ” the case was 280N / cm 2 less than 220N / cm 2 or more, the case was 220N / cm 2 less than 180N / cm 2 or more Was evaluated as “ ⁇ ”, and the case of less than 180 N / cm 2 was evaluated as “x”.
  • Table 1 The results are shown in Table 1.
  • Example 2 Except having changed the quantity of each sealing agent component into the quantity shown in Table 1, it carried out similarly to Example 1, and obtained the sealing agent which carried out the vacuum deaeration process.
  • Example 3 Except having changed the quantity of each sealing agent component into the quantity shown in Table 1, it carried out similarly to Example 1, and obtained the sealing agent which carried out the vacuum deaeration process.
  • Example 4 Except having changed the quantity of each sealing agent component into the quantity shown in Table 1, it carried out similarly to Example 1, and obtained the sealing agent which carried out the vacuum deaeration process.
  • thermosetting agent malonic acid dihydrazide (manufactured by Nippon Finechem Co., Ltd., “MDH” pulverized product (average particle size: 1.0 ⁇ m)) was used.
  • Example 5 Except having changed the quantity of each sealing agent component into the quantity shown in Table 1, it carried out similarly to Example 1, and obtained the sealing agent which carried out the vacuum deaeration process.
  • thermosetting agent 1,3-bis (hydrazinocarboethyl) -5-isopropylhydantoin (“VDH-J” manufactured by Ajinomoto Fine Techno Co., average particle size 1.0 ⁇ m) was used.
  • Example 6 Except having changed the quantity of each sealing agent component into the quantity shown in Table 1, it carried out similarly to Example 1, and obtained the sealing agent which carried out the vacuum deaeration process.
  • nanosilica particles (“RX-200” manufactured by Nippon Aerosil Co., Ltd., average particle diameter of 0.012 ⁇ m) were used as the inorganic filler.
  • Example 7 In the same manner as in Example 1, except that the amount of each sealant component was changed to the amount shown in Table 1 and the conditions of the vacuum defoaming treatment step were changed to the conditions shown in Table 1. A foam-treated sealant was obtained.
  • nanosilica particles (“RX-200” manufactured by Nippon Aerosil Co., Ltd., average particle diameter of 0.012 ⁇ m) were used as the inorganic filler.
  • Example 9 Except having changed the quantity of each sealing agent component into the quantity shown in Table 1, it carried out similarly to Example 1, and obtained the sealing agent which carried out the vacuum deaeration process.
  • Example 11 to 16 A sealant subjected to vacuum defoaming treatment was obtained in the same manner as in Example 1 except that the conditions of the vacuum defoaming treatment step were changed to the conditions shown in Table 1.
  • Example 17 In the same manner as in Example 1, except that the amount of each sealant component was changed to the amount shown in Table 1 and the conditions of the vacuum defoaming treatment step were changed to the conditions shown in Table 1. A foam-treated sealant was obtained.
  • the curable resin only the curable resin A was used, and no thermosetting agent was used.
  • Example 4 Example 1 except that the static defoaming was performed in a state where the stirring function of the mixer used in the vacuum defoaming treatment step was stopped and the conditions of the vacuum defoaming treatment step were changed to the conditions shown in Table 1. In the same manner as above, a sealant subjected to vacuum defoaming treatment was obtained.
  • the sealing compound for liquid crystal dropping methods which hardly causes liquid crystal contamination can be provided.
  • the manufacturing method of this sealing compound for liquid crystal dropping methods, and the vertical conduction material and liquid crystal display element which use this sealing compound for liquid crystal dropping methods can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Emergency Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Material Composition (AREA)
  • Liquid Crystal (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

本発明は、液晶汚染を引き起こすことがほとんどない液晶滴下工法用シール剤を提供することを目的とする。また、本発明は、該液晶滴下工法用シール剤の製造方法、並びに、該液晶滴下工法用シール剤を用いてなる上下導通材料及び液晶表示素子を提供することを目的とする。 本発明は、ラジカル重合性化合物を含有する硬化性樹脂とラジカル重合開始剤とを含有する液晶滴下工法用シール剤であって、溶存している酸素の分圧が10~4000Paである液晶滴下工法用シール剤である。

Description

液晶滴下工法用シール剤、液晶滴下工法用シール剤の製造方法、上下導通材料、及び、液晶表示素子
本発明は、液晶汚染を引き起こすことがほとんどない液晶滴下工法用シール剤に関する。また、本発明は、該液晶滴下工法用シール剤の製造方法、並びに、該液晶滴下工法用シール剤を用いてなる上下導通材料及び液晶表示素子に関する。
従来、液晶表示セル等の液晶表示素子は、2枚の電極付き透明基板を、所定の間隔をおいて対向させ、その周囲を硬化性樹脂組成物からなるシール剤で封着してセルを形成し、その一部に設けられた液晶注入口からセル内に液晶を注入し、その液晶注入口をシール剤又は封口剤を用いて封止する真空注入法により製造されていた。
この方法では、まず、2枚の電極付き透明基板のいずれか一方に、熱硬化性シール剤を用いて液晶注入口を設けたシールパターンを形成し、60~100℃でプリベイクを行いシール剤中の溶剤を乾燥させる。次いで、スペーサーを挟んで2枚の基板を対向させてアライメントを行い貼り合わせ、110~220℃で10~90分間熱プレスを行いシール近傍のギャップを調整した後、オーブン中で110~220℃で10~120分間加熱しシール剤を本硬化させる。次いで、液晶注入口から液晶を注入し、最後に封口剤を用いて液晶注入口を封止して、液晶表示素子を製造していた。
しかし、真空注入法による製造方法では、熱歪により位置ズレ、ギャップのバラツキ、シール剤と基板との密着性の低下等が発生する、残留溶剤が熱膨張して気泡が発生しキャップのバラツキやシールパスが発生する、シール硬化時間が長い、プリベイクプロセスが煩雑、溶剤の揮発によりシール剤の使用可能時間が短い、液晶の注入に時間がかかる等の問題があった。とりわけ、近年の大型の液晶表示装置にあっては、液晶の注入に非常に時間がかかることが大きな問題となっていた。
これに対して、滴下工法と呼ばれる液晶表示素子の製造方法が検討されている。滴下工法では、まず、2枚の電極付き透明基板の一方に、スクリーン印刷により長方形状のシールパターンを形成する。次いで、シール剤未硬化の状態で液晶の微小滴を透明基板の枠内全面に滴下塗布し、真空下で他方の透明基板を重ねあわせ、常圧に戻した後シール部に紫外線を照射して仮硬化を行う。その後、液晶アニール時に加熱して本硬化を行い、液晶表示素子を作製する。この方法では、極めて高い効率で液晶表示素子を製造することができ、現在この滴下工法が液晶表示素子の製造方法の主流となっている。
液晶滴下工法は、真空注入法と比べて液晶導入工程時間の大幅な短縮が可能となる一方でシール剤が未硬化の状態で液晶と接するために、シール剤の成分が液晶に溶出しやすく、液晶汚染の原因となるという問題があった。
このような液晶汚染を防止する方法として、光硬化熱硬化併用型シール剤を用いて、紫外線の照射と加熱とによる二段階硬化を行う方法が用いられている(例えば、特許文献1、2)。上記光硬化熱硬化併用型シール剤としては、光硬化成分として(メタ)アクリル樹脂と光重合開始剤、及び、熱硬化成分としてエポキシ樹脂と熱硬化剤を含有するものが挙げられる。
しかしながら、このような光硬化熱硬化併用型シール剤を用いても、シール剤による液晶汚染が発生し、その結果、得られる液晶表示素子に色ムラ等の表示不良が生じるという問題があった。
特開2001-133794号公報 国際公開第02/092718号パンフレット
本発明は、液晶汚染を引き起こすことがほとんどない液晶滴下工法用シール剤を提供することを目的とする。また、本発明は、該液晶滴下工法用シール剤の製造方法、並びに、該液晶滴下工法用シール剤を用いてなる上下導通材料及び液晶表示素子を提供することを目的とする。
本発明は、ラジカル重合性化合物を含有する硬化性樹脂とラジカル重合開始剤とを含有する液晶滴下工法用シール剤であって、溶存している酸素の分圧が10~4000Paである液晶滴下工法用シール剤である。
以下に本発明を詳述する。
滴下工法において好適なシール剤としては、通常、(メタ)アクリロイルオキシ基等のラジカル重合性の官能基を有する樹脂を含有する硬化性樹脂組成物を用いた液晶滴下工法用シール剤が用いられている。本発明者は、驚くべきことに、液晶汚染が発生する原因が、シール剤中に微量に溶け込んでいる酸素によりラジカル重合反応が阻害されていることであることを見出した。
従来、シール剤の製造工程において、気泡によるシールパターンの断線等を防止するためにシール剤を真空脱泡する工程が行われていた。本発明者は、従来の真空脱泡では到達できなかった特定の範囲までシール剤中の溶存酸素量を低減させることにより、シール剤による液晶汚染を抑制することができることを見出し、本発明を完成するに至った。
なお、本明細書において、上記(メタ)アクリロイルオキシ基とは、アクリロイルオキシ基又はメタクリロイルオキシ基を意味する。
本発明の液晶滴下工法用シール剤は、溶存している酸素の分圧(以下、溶存酸素分圧ともいう)の下限は10Pa、上限は4000Pa以下である。上記溶存酸素分圧が10Pa未満であると、保存時に受けるわずかな光やその他の要因によりごく微量に発生するラジカルで硬化反応が進行するためシール剤が保存安定性に劣るものとなる。また、液晶パネルの製造工程において微弱な光が存在したときに、わずかに発生するラジカルによって、速やかにラジカル重合が進行してしまう等、シール剤を硬化させる目的でない微弱な光に暴露される場合に誤って硬化する。上記溶存酸素分圧が4000Paを超えると、シール剤による液晶汚染が発生する。上記溶存酸素分圧の好ましい上限は3000Pa、より好ましい上限は2000Paである。
なお、上記溶存酸素分圧は、例えば、溶存酸素センサーを備えた溶存ガス分析計(ハックウルトラ社製)を用いて、シール剤が一定流量で上記溶存酸素センサー上を流れるようにすることで、測定することができる。
上記溶存酸素センサーは、半透膜付きの電極からなり、半透膜を透過した酸素が一定電圧をかけた電極に到達すると、電解液内で化学反応が起こり、酸素量に比例した電流が発生する。この際発生した電流を測定し、上記溶存ガス分析計で酸素分圧として、定量することにより、溶存酸素分圧を測定することができる。
本発明の液晶滴下工法用シール剤は、硬化性樹脂を含有する。
上記硬化性樹脂は、ラジカル重合性化合物を含有する。
上記ラジカル重合性化合物としては、(メタ)アクリロイルオキシ基を有する樹脂が好ましい。
上記ラジカル重合性化合物としては、エポキシ(メタ)アクリレートを含有することが好ましい。
なお、本明細書において、(メタ)アクリレートとは、アクリレート又はメタクリレートを意味し、上記エポキシ(メタ)アクリレートとは、エポキシ樹脂中の全てのエポキシ基を(メタ)アクリル酸と反応させた化合物のことを表す。
上記エポキシ(メタ)アクリレートは特に限定されず、例えば、(メタ)アクリル酸とエポキシ樹脂とを、常法に従って塩基性触媒の存在下で反応させることにより得られるものが挙げられる。
なお、本明細書において、(メタ)アクリルとは、アクリル又はメタクリルを意味する。
上記エポキシ(メタ)アクリレートを合成するための原料となるエポキシ樹脂は特に限定されず、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、2,2’-ジアリルビスフェノールA型エポキシ樹脂、水添ビスフェノール型エポキシ樹脂、プロピレンオキシド付加ビスフェノールA型エポキシ樹脂、レゾルシノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、スルフィド型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ナフタレンフェノールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、アルキルポリオール型エポキシ樹脂、ゴム変性型エポキシ樹脂、グリシジルエステル化合物、ビスフェノールA型エピスルフィド樹脂等が挙げられる。
上記ビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、エピコート828EL、エピコート1001、エピコート1004(いずれも三菱化学社製)、エピクロン850-S(DIC社製)等が挙げられる。
上記ビスフェノールF型エポキシ樹脂のうち市販されているものとしては、例えば、エピコート806、エピコート4004(いずれも三菱化学社製)等が挙げられる。
上記ビスフェノールS型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンEXA1514(DIC社製)等が挙げられる。
上記2,2’-ジアリルビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、RE-810NM(日本化薬社製)等が挙げられる。
上記水添ビスフェノール型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンEXA7015(DIC社製)等が挙げられる。
上記プロピレンオキシド付加ビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、EP-4000S(ADEKA社製)等が挙げられる。
上記レゾルシノール型エポキシ樹脂のうち市販されているものとしては、例えば、EX-201(ナガセケムテックス社製)等が挙げられる。
上記ビフェニル型エポキシ樹脂のうち市販されているものとしては、例えば、エピコートYX-4000H(三菱化学社製)等が挙げられる。
上記スルフィド型エポキシ樹脂のうち市販されているものとしては、例えば、YSLV-50TE(新日鐵化学社製)等が挙げられる。
上記ジフェニルエーテル型エポキシ樹脂のうち市販されているものとしては、例えば、YSLV-80DE(新日鐵化学社製)等が挙げられる。
上記ジシクロペンタジエン型エポキシ樹脂のうち市販されているものとしては、例えば、EP-4088S(ADEKA社製)等が挙げられる。
上記ナフタレン型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンHP4032、エピクロンEXA-4700(いずれもDIC社製)等が挙げられる。
上記フェノールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンN-770(DIC社製)等が挙げられる。
上記オルトクレゾールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンN-670-EXP-S(DIC社製)等が挙げられる。
上記ジシクロペンタジエンノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンHP7200(DIC社製)等が挙げられる。
上記ビフェニルノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、NC-3000P(日本化薬社製)等が挙げられる。
上記ナフタレンフェノールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、ESN-165S(新日鐵化学社製)等が挙げられる。
上記グリシジルアミン型エポキシ樹脂のうち市販されているものとしては、例えば、エピコート630(三菱化学社製)、エピクロン430(DIC社製)、TETRAD-X(三菱ガス化学社製)等が挙げられる。
上記アルキルポリオール型エポキシ樹脂のうち市販されているものとしては、例えば、ZX-1542(新日鐵化学社製)、エピクロン726(DIC社製)、エポライト80MFA(共栄社化学社製)、デナコールEX-611(ナガセケムテックス社製)等が挙げられる。
上記ゴム変性型エポキシ樹脂のうち市販されているものとしては、例えば、YR-450、YR-207(いずれも新日鐵化学社製)、エポリードPB(ダイセル化学工業社製)等が挙げられる。
上記グリシジルエステル化合物のうち市販されているものとしては、例えば、デナコールEX-147(ナガセケムテックス社製)等が挙げられる。
上記ビスフェノールA型エピスルフィド樹脂のうち市販されているものとしては、例えば、エピコートYL-7000(三菱化学社製)等が挙げられる。
上記エポキシ樹脂のうちその他に市販されているものとしては、例えば、YDC-1312、YSLV-80XY、YSLV-90CR(いずれも新日鐵化学社製)、XAC4151(旭化成社製)、エピコート1031、エピコート1032(いずれも三菱化学社製)、EXA-7120(DIC社製)、TEPIC(日産化学社製)等が挙げられる。
上記エポキシ(メタ)アクリレートのうち市販されているものとしては、例えば、エベクリル860、エベクリル3200、エベクリル3201、エベクリル3412、エベクリル3600、エベクリル3700、エベクリル3701、エベクリル3702、エベクリル3703、エベクリル3800、エベクリル6040、エベクリルRDX63182(いずれもダイセルサイテック社製)、EA-1010、EA-1020、EA-5323、EA-5520、EA-CHD、EMA-1020(いずれも新中村化学工業社製)、エポキシエステルM-600A、エポキシエステル40EM、エポキシエステル70PA、エポキシエステル200PA、エポキシエステル80MFA、エポキシエステル3002M、エポキシエステル3002A、エポキシエステル1600A、エポキシエステル3000M、エポキシエステル3000A、エポキシエステル200EA、エポキシエステル400EA(いずれも共栄社化学社製)、デナコールアクリレートDA-141、デナコールアクリレートDA-314、デナコールアクリレートDA-911(いずれもナガセケムテックス社製)等が挙げられる。
本発明の液晶滴下工法用シール剤は、硬化性樹脂として、上記エポキシ(メタ)アクリレート以外の(メタ)アクリロイルオキシ基を有する樹脂や、エポキシ樹脂を含有してもよい。
上記エポキシ(メタ)アクリレート以外の(メタ)アクリロイルオキシ基を有する樹脂としては特に限定されず、例えば、(メタ)アクリル酸エステル等が挙げられる。
上記(メタ)アクリル酸エステルとしては、(メタ)アクリル酸に水酸基を有する化合物を反応させることにより得られるエステル化合物、イソシアネートに水酸基を有する(メタ)アクリル酸誘導体を反応させることにより得られるウレタン(メタ)アクリレート等が挙げられる。
上記(メタ)アクリル酸に水酸基を有する化合物を反応させることにより得られるエステル化合物としては1官能のものとしては、例えば、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ベンジル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H-オクタフルオロペンチル(メタ)アクリレート、イミド(メタ)アクリレート、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、ビシクロペンテニル(メタ)アクリレート、イソデシル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルコハク酸、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイロキシエチル-2-ヒドロキシプロピルフタレート、グリシジル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルホスフェート等が挙げられる。
また、2官能のものとしては、例えば、1,4-ブタンジオールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、2-n-ブチル-2-エチル-1,3―プロパンジオールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレンオキシド付加ビスフェノールAジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールAジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールFジ(メタ)アクリレート、ジメチロールジシクロペンタジエンルジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキシド変性イソシアヌル酸ジ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピル(メタ)アクリレート、カーボネートジオールジ(メタ)アクリレート、ポリエーテルジオールジ(メタ)アクリレート、ポリエステルジオールジ(メタ)アクリレート、ポリカプロラクトンジオールジ(メタ)アクリレート、ポリブタジエンジオールジ(メタ)アクリレート等が挙げられる。
また、3官能以上のものとしては、例えば、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加イソシアヌル酸トリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、プロピレンオキシド付加グリセリントリ(メタ)アクリレート、トリス(メタ)アクリロイルオキシエチルフォスフェート等が挙げられる。
上記イソシアネートに水酸基を有する(メタ)アクリル酸誘導体を反応させることにより得られるウレタン(メタ)アクリレートの原料となるイソシアネートとしては、例えば、イソホロンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート(MDI)、水添MDI、ポリメリックMDI、1,5-ナフタレンジイソシアネート、ノルボルナンジイソシネート、トリジンジイソシアネート、キシリレンジイオシアネート(XDI)、水添XDI、リジンジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオフォスフェート、テトラメチルキシレンジイソシアネート、1,6,10-ウンデカントリイソシアネート等が挙げられる。
また、上記イソシアネートに水酸基を有する(メタ)アクリル酸誘導体を反応させることにより得られるウレタン(メタ)アクリレートの原料となるイソシアネートとしては、エチレングリコール、グリセリン、ソルビトール、トリメチロールプロパン、(ポリ)プロピレングリコール、カーボネートジオール、ポリエーテルジオール、ポリエステルジオール、ポリカプロラクトンジオール等のポリオールと過剰のイソシアネートとの反応により得られる鎖延長されたイソシアネート化合物も使用することができる。
上記イソシアネートに水酸基を有する(メタ)アクリル酸誘導体を反応させることにより得られるウレタン(メタ)アクリレートの原料となる、水酸基を有する(メタ)アクリル酸誘導体としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート等の市販品やエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ポリエチレングリコール等の二価のアルコールのモノ(メタ)アクリレート、トリメチロールエタン、トリメチロールプロパン、グリセリン等の三価のアルコールのモノ(メタ)アクリレート又はジ(メタ)アクリレート、ビスフェノールA変性エポキシアクリレート等のエポキシアクリレート等が挙げられる。
上記イソシアネートに水酸基を有する(メタ)アクリル酸誘導体を反応させることにより得られるウレタン(メタ)アクリレートとしては、具体的には例えば、トリメチロールプロパン134重量部、重合禁止剤としてBHT0.2重量部、反応触媒としてジブチル錫ジラウリレート0.01重量部、イソホロンジイソシアネート666重量部を加え、60℃で還流攪拌しながら2時間反応させ、次に、2-ヒドロキシエチルアクリレート51重量部を加え、空気を送り込みながら90℃で還流攪拌しながら2時間反応させることにより得ることができる。
上記ウレタン(メタ)アクリレートのうち、市販されているものとしては、例えば、M-1100、M-1200、M-1210、M-1600(いずれも東亞合成社製)、エベクリル230、エベクリル270、エベクリル4858、エベクリル8402、エベクリル8804、エベクリル8803、エベクリル8807、エベクリル9260、エベクリル1290、エベクリル5129、エベクリル4842、エベクリル210、エベクリル4827、エベクリル6700、エベクリル220、エベクリル2220(いずれもダイセルユーシービー社製)、アートレジンUN-9000H、アートレジンUN-9000A、アートレジンUN-7100、アートレジンUN-1255、アートレジンUN-330、アートレジンUN-3320HB、アートレジンUN-1200TPK、アートレジンSH-500B(いずれも根上工業社製)、U-122P、U-108A、U-340P、U-4HA、U-6HA、U-324A、U-15HA、UA-5201P、UA-W2A、U-1084A、U-6LPA、U-2HA、U-2PHA、UA-4100、UA-7100、UA-4200、UA-4400、UA-340P、U-3HA、UA-7200、U-2061BA、U-10H、U-122A、U-340A、U-108、U-6H、UA-4000(いずれも新中村化学工業社製)、AH-600、AT-600、UA-306H、AI-600、UA-101T、UA-101I、UA-306T、UA-306I(いずれも共栄社化学社製)等が挙げられる。
上記エポキシ樹脂としては、エポキシ基が付与した樹脂なら特に限定無く使用することができ、上記エポキシ(メタ)アクリレートを合成するための原料となるエポキシ樹脂が使用できる。
また、上記硬化性樹脂は、部分(メタ)アクリル変性エポキシ樹脂を含有することが好ましい。なかでも、得られるシール剤が耐湿性に優れるものとなることから、部分メタクリル変性エポキシ樹脂を含有することがより好ましい。
なお、本明細書において上記部分(メタ)アクリル変性エポキシ樹脂とは、1分子中にエポキシ基と(メタ)アクリロイルオキシ基とをそれぞれ1つ以上有する樹脂を意味する。また、上記部分(メタ)アクリル変性エポキシ樹脂は、例えば、2つ以上のエポキシ基を有するエポキシ樹脂の一部分のエポキシ基を(メタ)アクリル酸と反応させることによって得ることができる。
本発明の液晶滴下工法用シール剤においては、上記硬化性樹脂中に、エポキシ樹脂及び/又は部分(メタ)アクリル変性エポキシ樹脂が含まれることが好ましい。上記硬化性樹脂中の(メタ)アクリロイルオキシ基とエポキシ基との合計量に対する(メタ)アクリロイルオキシ基の比率の好ましい下限は20モル%、好ましい上限は95モル%である。(メタ)アクリロイルオキシ基の比率が20モル%未満であると、得られる液晶表示素子に色ムラ等の表示不良が発生することがある。上記(メタ)アクリロイルオキシ基の比率が95モル%を超えると、後述する理由によるシール剤の経時的な粘度上昇や、接着力が低いことに起因するパネルの剥がれや、耐湿性の低下による経時的表示品質の低下等の問題が生じることがある。上記(メタ)アクリロイルオキシ基の比率のより好ましい下限は30モル%、より好ましい上限は90モル%、更に好ましい下限は40モル%、更に好ましい上限は75モル%である。
なお、上記硬化性樹脂、特にエポキシ(メタ)アクリレートの分子中に存在する水酸基は、熱硬化反応を促進することが知られており、室温においてもある程度の反応促進効果があるため、粘度安定性の観点からは、エポキシ(メタ)アクリレートの比率を抑えて、エポキシ樹脂や部分(メタ)アクリル変性エポキシ樹脂の比率を高めることで、硬化性樹脂中の水酸基の比率を下げること好ましい。しかしながら、一般に、エポキシ(メタ)アクリレートに比べてエポキシ樹脂や部分(メタ)アクリル変性エポキシ樹脂は極性が低いため、硬化性樹脂中のエポキシ樹脂や部分(メタ)アクリル変性エポキシ樹脂の比率の高いシール剤は、液晶との相溶性が高いものとなる。このため液晶中への溶出により色ムラ等の表示不良が発生しやすいという問題があった。
一方で、液晶へのシール剤成分の溶出を抑えるためには、パネル製造工程における紫外線硬化での反応を充分に進行させることが効果的である。本発明の液晶滴下工法用シール剤を用いた液晶表示素子の製造工程においては酸素阻害の影響が少なく、従来よりも紫外線硬化が充分に進む。このため、エポキシ(メタ)アクリレートの比率を従来のものより低減した組成でも粘度安定性と表示不良の防止性能とを両立することができるため、設計の自由度が広がる。
本発明の液晶滴下工法用シール剤はラジカル重合開始剤を含有する。
本発明の液晶滴下工法用シール剤は、上記ラジカル重合開始剤として、光ラジカル重合開始剤及び/又は熱ラジカル重合開始剤を含有することがより好ましい。
上記ラジカル重合開始剤のうち、光によりラジカルを発生する光ラジカル重合開始剤は特に限定されないが、例えば、ベンゾフェノン系化合物、アセトフェノン系化合物、アシルフォスフィンオキサイド系化合物、チタノセン系化合物、オキシムエステル系化合物、ベンゾインエーテル系化合物、チオキサントン等を好適に用いることができる。
また、上記光ラジカル重合開始剤のうち市販されているものとしては、例えば、IRGACURE184、IRGACURE369、IRGACURE379、IRGACURE651、IRGACURE819、IRGACURE907、IRGACURE2959、IRGACUREOXE01、ルシリンTPO(いずれもBASF Japan社製)、ベンソインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル(いずれも東京化成工業社製)等が挙げられる。なかでも吸収波長域が広いことから、IRGACURE651、IRGACURE907、ベンゾインイソプロピルエーテル、及び、ルシリンTPOが好適である。これらの光ラジカル重合開始剤は単独で用いてもよく、2種以上を併用してもよい。
上記ラジカル重合開始剤のうち、熱によりラジカルを発生する熱ラジカル重合開始剤は特に限定されず、過酸化物やアゾ化合物が挙げられ、市販されているものとしては、例えば、パーブチルO、パーヘキシルO、パーブチルPV(いずれも日油社製)、V-30、V-501、V-601、VPE-0201(いずれも和光純薬工業社製)等が挙げられる。
上記ラジカル重合開始剤の含有量は特に限定されないが、上記硬化性樹脂100重量部に対して、好ましい下限が0.01重量部、好ましい上限が10重量部である。上記ラジカル重合開始剤の含有量が0.01重量部未満であると、得られるシール剤を充分に硬化させることができないことがある。上記ラジカル重合開始剤の含有量が10重量部を超えると、得られるシール剤が保存安定性に劣るものとなることがある。
本発明の液晶滴下工法用シール剤は、エポキシ基及び/又は(メタ)アクリロイルオキシ基と反応可能な熱硬化剤を含有することが好ましい。
上記熱硬化剤は特に限定されず、例えば、有機酸ヒドラジド、イミダゾール誘導体、アミン化合物、多価フェノール系化合物、酸無水物等が挙げられる。なかでも、加熱により溶融して樹脂と相溶することで熱硬化反応が促進されるような、潜在性を有する熱硬化剤(潜在性硬化剤)がシール剤の保存安定性を確保しやすいので好ましい。このような潜在性熱硬化剤としては、常温固形のアミン系潜在性硬化剤が好ましい。
上記常温固形のアミン系潜在性硬化剤としては、ジシアンジアミド類、イミダゾール誘導体類、有機酸ヒドラジド等が挙げられるが、有機酸ヒドラジド類が好適に用いられる。
上記有機酸ヒドラジドは特に限定されず、例えば、セバシン酸ジヒドラジド(融点189℃)、イソフタル酸ジヒドラジド(融点224℃)、アジピン酸ジヒドラジド(融点181℃)、マロン酸ジヒドラジド(融点152~154℃)、ドデカンジオヒドラジド(融点190℃)、1,3-ビス(ヒドラジノカルボエチル)-5-イソプロピルヒダントイン(融点120℃)、等が挙げられ、市販されているものとしては、例えば、SDH(日本ファインケム社製)、アミキュアVDH、アミキュアVDH-J、アミキュアUDH(いずれも、味の素ファインテクノ社製)、ADH(大塚化学社製)等が挙げられる。なかでも、融点が130℃以上の有機酸ヒドラジド類が好ましい。融点が130℃未満の有機酸ヒドラジドでは脱泡工程時にかかる温度によりシール剤の粘度安定性が低下することがある。より好ましくは融点150℃以上の有機酸ヒドラジド類である。
上記熱硬化剤の含有量は特に限定されないが、上記硬化性樹脂100重量部に対して、好ましい下限が2重量部、好ましい上限が25重量部である。上記熱硬化剤の含有量が2重量部未満であると、熱硬化剤を含有させる効果がほとんど得られない。上記熱硬化剤の含有量が25重量部を超えると、得られるシール剤の粘度安定性が低下し、保存安定性に劣るものとなることがある。上記熱硬化剤の含有量のより好ましい上限は15重量部、更に好ましい上限は10重量部である。
本発明の液晶滴下工法用シール剤は、粘度の調整、応力分散効果による接着性の改善、線膨張率の改善、硬化物の耐湿性の向上等を目的として充填剤を含有することが好ましい。
上記充填剤は特に限定されず、例えば、タルク、石綿、シリカ、珪藻土、スメクタイト、ベントナイト、炭酸カルシウム、炭酸マグネシウム、アルミナ、モンモリロナイト、酸化亜鉛、酸化鉄、酸化マグネシウム、酸化錫、酸化チタン、水酸化マグネシウム、水酸化アルミニウム、ガラスビーズ、窒化珪素、硫酸バリウム、石膏、珪酸カルシウム、セリサイト活性白土、窒化アルミニウム等の無機充填剤や、ポリエステル微粒子、ポリウレタン微粒子、ビニル重合体微粒子、アクリル重合体微粒子等の有機充填剤が挙げられる。上記充填剤は、上記無機充填剤に必要に応じて有機化合物による表面処理を施したものであってもよい。
上記充填剤等の粉体を含有するシール剤は、特に溶存酸素量が多くなり、液晶汚染を引き起こし易い。本発明の液晶滴下工法用シール剤は、後述する真空脱泡処理を行う工程を有する製造方法で製造することにより、このような場合でも容易にシール剤中の溶存酸素分圧を4000Pa以下にすることができる。
上記充填剤の平均粒子径の好ましい下限は0.001μm、好ましい上限は5μmである。上記充填剤の平均粒子径が0.001μm未満であると、シール剤の粘度が高くなりすぎるだけでなく、粉体に吸着された空気によってシール剤中に持ち込まれる酸素が多くなり除去しきれなくなるため、溶存酸素分圧が高くなることがある。上記充填剤の平均粒子径が5μmを超えると、液晶表示素子製造工程においてギャップ不良が発生することがある。上記充填剤の平均粒子径のより好ましい下限は0.005μm、より好ましい上限は3μmである。
上記充填剤の平均粒子径は、粒度分布測定装置を用いて測定される。上記粒度分布測定装置としては、動的光散乱方式による粒度分布測定装置が好ましい。上記充填剤の平均粒子径は、具体的には例えば、充填剤を適当な媒体に分散させ、Particle Sizing Systems社製、NICOMP380ZLS-Sによって測定される。
上記充填剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が5重量部、好ましい上限が80重量部である。上記充填剤の含有量が5重量部未満であると、充填剤を含有させる効果がほとんど発揮されないことがある。上記充填剤の含有量が80重量部を超えるとシール剤の粘度が高くなり、真空脱泡処理工程においてシール剤中の溶存酸素分圧を4000Pa以下にするのに長時間を要するか、長時間をかけても4000Pa以下にできないことがある。また、後述するように真空脱泡処理工程においては、シール剤の粘度を低減するために加温するが、本発明の液晶滴下工法用シール剤が熱硬化剤を含有する場合、長時間の真空脱泡処理工程で使用に耐えない粘度にまで増粘することがあり、結果的に溶存酸素分圧を4000Pa以下にすることができないことがある。上記充填剤の含有量のより好ましい下限は10重量部、より好ましい上限は70重量部である。
本発明の液晶滴下工法用シール剤は、後述するシール剤のチクソトロピックインデックスを高めることや、シール剤の硬化物の耐湿性を高めること等を目的として、上記充填剤として、平均粒子径が0.3μm未満の比較的小さい粉体からなる充填剤を含有してもよい。チクソトロピックインデックスが高いシール剤は液晶滴下工法による液晶表示素子の製造工程において、内圧のかかった液晶がシールラインを外側に押し出すことでラインに貫入する「差込み」現象を抑制することができる。上記「差込み」現象は、シール剤と液晶の接触面積を増大させるため、シール剤成分による液晶汚染を促進する。また、差込みが酷い場合にはシール剤パターンの破れに至るが、チクソトロピックインデックスを高くすることでシールパターンの破れも防ぐことができる。一方で、平均粒子径の小さい充填剤は、配合時にシール剤中に持ち込まれる酸素が多く、平均粒子径の小さい粉体からなる充填剤を多量に配合すると、シール剤中の溶存酸素を除去しきれなくなることがある。また、チクソトロピックインデックスが高いシール剤は真空脱泡処理が困難になるため、溶存酸素分圧を低減することが難しくなるので、平均粒子径の小さい粉体からなる充填剤の添加量には留意しなければならない。上記充填剤のうち、平均粒子径が0.3μm未満の粉体からなる充填剤の含有量は、上記硬化性樹脂100重量部に対して、20重量部以下であることが好ましく、10重量部未満であることがより好ましい。
なお、本明細書において、上記「粉体」とは、数平均粒子径が10μm以下の粒子の集合体を意味する。
本発明の液晶滴下工法用シール剤は、シランカップリング剤を含有することが好ましい。上記シランカップリング剤は、主にシール剤と基板等とを良好に接着するための接着助剤としての役割を有する。
上記シランカップリング剤は特に限定されないが、例えば、γ-アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン等が好適に用いられる。
本発明の液晶滴下工法用シール剤は、ラジカル重合禁止剤を含むことが好ましい。
上記ラジカル重合禁止剤としては、例えば、2,6-ジ-t-ブチルクレゾール、ブチル化ヒドロキシアニソール、2,6-ジ-t-ブチル-4 -エチルフェノール、ステアリルβ-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール)、4,4’-チオビス-3-メチル-6-t-ブチルフェノール)、4,4-ブチリデンンビス(3-メチル-6-t-ブチルフェノール)、3,9 -ビス[1,1-ジメチル-2-[β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]エチル]、2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、テトラキス-[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタン、1,3,5-トリス(3’,5’-ジ-t-ブチル-4’-ヒドロキシベンジル)-sec-トリアジン-2,4,6-(1H,3H,5H)トリオン、ハイドロキン、パラメトキシフェノール等が挙げられる。これらのラジカル重合禁止剤は単独で用いてもよいし、2種以上を併用してもよい。
上記ラジカル重合禁止剤の含有量は、上記硬化性樹脂100重量部に対して、好ましい下限が0.005重量部、好ましい上限が0.4重量部である。本発明の液晶滴下工法用シール剤では溶存酸素分圧が4000Pa以下と従来のシール剤より低いため、上記ラジカル重合禁止剤の含有量が0.005重量部未満であると、液晶表示素子の生産時に微弱な光が存在したときにわずかに発生するラジカルによって、従来のシール剤より速やかにラジカル重合禁止剤が消費されてしまう等、シール剤を硬化させる目的でない微弱な光に暴露される場合に誤って硬化することがある。また、保存時に受けるわずかな光で硬化する等してシール剤が保存安定性に劣るものとなることがある。上記ラジカル重合禁止剤の含有量が0.4重量部を超えると、得られるシール剤の紫外線硬化性が著しく低くなり、シール剤を硬化させる目的で紫外線を照射した場合でも硬化しないことがあり、本発明の趣旨の酸素分圧が低いシール剤の意味がなくなる。上記ラジカル重合禁止剤の含有量のより好ましい下限は0.01重量部、より好ましい上限は0.1重量部である。
本発明の液晶滴下工法用シール剤は、更に、必要に応じて、粘度調整の為の反応性希釈剤、チクソ性を調整する揺変剤、パネルギャップ調整の為のポリマービーズ等のスペーサー、3-P-クロロフェニル-1,1-ジメチル尿素等の硬化促進剤、消泡剤、レベリング剤、その他添加剤等を含有してもよい。
本発明の液晶滴下工法用シール剤を製造する方法は特に限定されず、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリーミキサー、ニーダー、3本ロール等の混合機を用いて、上記硬化性樹脂と、上記光塩基発生剤と、必要に応じて添加するラジカル重合開始剤等とを混合する方法等が挙げられる。この際、含有するイオン性不純物を除去するために、イオン吸着性固体と接触させてもよい。
次いで、後述する真空脱泡処理工程を行うことにより、シール剤中に粉体を含有する場合等であっても、容易にシール剤中の溶存酸素分圧を4000Pa以下にすることができる。
本発明の液晶滴下工法用シール剤を製造する方法であって、減圧度が-90kPa以上であり、かつ、シール剤の粘度が70Pa・s以下である状態に保ちつつ、継続的に5分以上シール剤の液面を更新させる真空脱泡処理工程を有する液晶滴下工法用シール剤の製造方法もまた、本発明の一つである。
従来、シール剤の製造工程において、気泡によるシールパターンの断線等を防止するためにシール剤を真空脱泡する工程が行われていたが、液晶汚染を抑制するためにシール剤中の溶存酸素分圧を4000Pa以下にするまでの真空脱泡は行われていなかった。本発明の液晶滴下工法用シール剤の製造方法では、減圧度が-90kPa以上であり、かつ、シール剤の粘度が70Pa・s以下である状態に保ちつつ、継続的に液面を更新させる工程を5分以上行う真空脱泡処理工程により、容易にシール剤中の溶存酸素分圧を4000Pa以下にすることができる。
なお、本明細書中の表記において、減圧度-90ka「以上」とは、絶対圧力がより低い状態(例えば、-95kPa)を意味し、減圧度-90kPa「以下」とは、絶対圧力がより高い状態(例えば、-85kPa)を意味する。
上記真空脱泡処理工程におけるシール剤の粘度の上限は、70Pa・sである。上記真空脱泡処理工程における粘度が70Pa・sを超えると、シール剤中の溶存酸素分圧を4000Pa以下にするのに長時間を要するか、長時間をかけても溶存酸素分圧を4000Pa以下にすることができなくなる。上記真空脱泡処理工程におけるシール剤の粘度の好ましい上限は、50Pa・sである。
また、上記真空脱泡処理工程におけるシール剤の粘度の好ましい下限は、1Pa・sである。上記真空脱泡処理工程における粘度が1Pa・s未満であると、シール剤中の溶存酸素分圧が低くなくなりすぎ、得られるシール剤が保存安定性に劣るものとなったり、シール剤を構成する成分が分離したりすることがある。
なお、本明細書において、「真空脱泡処理工程におけるシール剤の粘度」とは、E型粘度計を用いて、真空脱泡処理工程での温度に合わせ、1rpmの条件で測定した粘度を示す。
本発明の液晶滴下工法用シール剤の製造方法において、上記真空脱泡処理工程におけるシール剤の粘度を70Pa・s以下に保つための方法としては、構成材料の選択により配合物自体の粘度を低くする方法や、真空脱泡処理工程において加温することで粘度を低減する方法等があるが、加温する方法によることが好ましい。上記真空脱泡処理工程におけるシール剤の温度の好ましい下限は30℃、好ましい上限は55℃である。上記真空脱泡処理工程におけるシール剤の温度が30℃未満であると、シール剤中の溶存酸素分圧を4000Pa以下にするのに長時間を要したり、長時間をかけても溶存酸素分圧を4000Pa以下にすることができなかったりすることがある。上記真空脱泡処理工程におけるシール剤の温度が55℃を超えると、シール剤の保存安定性が低下することがある。上記真空脱泡処理工程におけるシール剤の温度のより好ましい下限は35℃、より好ましい上限は50℃、更に好ましい下限は37℃である。上記真空脱泡処理工程におけるシール剤の温度は、真空脱泡処理中に変動することがあるが、上記に規定の温度範囲は、真空脱泡処理中のシール剤の最高温度における温度範囲を示している。
上記真空脱泡処理工程における減圧度は、-90kPa以上である。上記真空脱泡処理工程における減圧度が-90kPa未満(例えば、-85kPa)であると、シール剤中の溶存酸素分圧を4000Pa以下にするのに長時間を要したり、長時間をかけても溶存酸素分圧を4000Pa以下にすることができなかったりすることがある。上記真空脱泡処理工程における減圧度は、-92kPa以上であることが好ましく、-94kPa以上であることがより好ましい。
また、上記真空脱泡処理工程における減圧度は、-100kPa以下であることが好ましい。上記真空脱泡処理工程における減圧度が-100kPaを超える(例えば、-105kPa)と、シール剤中の溶存酸素分圧が低くなくなりすぎ、得られるシール剤が保存安定性に劣るものとなることがある。
上記真空脱泡処理工程では、減圧度が-90kPa以上であり、かつ、シール剤の粘度が70Pa・s以下である状態に保ちつつ、継続的に5分以上シール剤の液面を更新させる。上述したように、真空脱泡処理工程における溶存酸素の除去は、-90kPa以上の高減圧度の状態において効率よく進行する。減圧度及びシール剤の粘度を上記範囲に保ちつつ継続的に液面を更新させる時間が5分未満であると、シール剤中の溶存酸素分圧を充分に低くすることができない。減圧度及びシール剤の粘度を上記範囲に保ちつつ継続的に液面を更新させる時間は、10分以上であることが好ましく、20分以上であることがより好ましい。但し、真空脱泡処理時のシール剤の粘度が高い場合は、より長い時間継続することが好ましい。
また、減圧度及びシール剤の粘度を上記範囲に保ちつつ継続的に液面を更新させる時間は、120分以下であることが好ましい。減圧度及びシール剤の粘度を上記範囲に保ちつつ継続的に液面を更新させる時間が120分を超えると、シール剤の熱硬化反応が進行し仕上がり時のシール剤粘度が高くなりすぎることがある。減圧度及びシール剤の粘度を上記範囲に保ちつつ継続的に液面を更新させる時間は、50分以下であることがより好ましい。但し、真空脱泡処理工程時のシール剤の温度が高い場合は、5分以上の範囲で時間をより短くすることが好ましい。
なお、真空脱泡処理工程において大気圧から-90kPa以上まで、減圧度を高める過程の条件は特に限定されないが、急激に減圧度を上げると激しい発泡が起こるため好ましくない。徐々に減圧度を上げる工程を経ることで激しい発泡を抑制するとともに、シール剤温度を目的の温度範囲に安定させることができる。従って、減圧度を徐々に上げつつ、減圧度-90kPa以上の状態のシール剤温度まで加温を継続することが好ましい。
上記真空脱泡処理工程では、継続的にシール剤の液面が更新される。このような方法としては、例えば、真空処理を行う容器内にシール剤を流動させるための機構が設けられていて真空下でシール剤を流動させる方法等が挙げられる。上記シール剤を流動させる機構としては、例えば、パドル翼、タービン翼、プロペラ翼、アンカー翼、スパイラル翼等の公知の各種攪拌羽根によるものや、磁力によって回転する回転子等によるもの等が挙げられる。また、真空脱泡処理を行う容器自体が自転、及び/又は、公転しながら回転し、内部のシール剤を重力や遠心力によって流動させる機構も挙げられる。このようにシール剤を流動させる機構を備えた装置としては、上記の各種攪拌羽根を一軸、又は、二軸以上備えた装置等が挙げられ、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリーミキサー、ニーダー等の公知の攪拌装置が適用できる。また、公知の自転公転ミキサーも適用でき、例えば、UFOシリーズ、VMXシリーズ(いずれもEME社製)、あわとり練太郎シリーズ(シンキー社製)等が挙げられる。
上記攪拌装置は、シール剤の液面を継続的に更新する機構を備えると同時に、内容物を減圧することが可能な機構を備えている。
真空下でシール剤が、継続的に液面を更新されないような、例えば、静置状態での真空処理方法では、表面近傍の溶存酸素分圧が下がるだけで、全体の酸素分圧が4000Pa以下にならなかったり、非常に長時間がかかったりする。
また、上記真空脱泡処理工程は、真空処理を行う容器内にシール剤が流動しないデッドスペースが生じない機構により、シール剤の表面が更新されるような方法で行われることが好ましい。
上記真空脱泡処理を行う装置はシール剤の温度を制御する機構を備えていることが好ましい。温度を制御する機構としては、真空脱泡処理を行う容器に加熱又は除熱が可能な媒体が循環するジャケットを有する機構が好ましい。
本発明の液晶滴下工法用シール剤は、真空脱泡処理工程を終えた後のチクソトロピックインデックスの好ましい上限が1.5である。本発明の液晶滴下工法用シール剤のチクソトロピックインデックスが1.5を超えると、シール剤中の溶存酸素分圧を4000Pa以下にするのに長時間を要したり、塗布性等が悪くなったりすることがある。本発明の液晶滴下工法用シール剤のチクソトロピックインデックスのより好ましい上限は1.3である。本発明の液晶滴下工法用シール剤のチクソトロピックインデックスの下限は特に限定されないが、実質的には1.0を下回ることはない。
なお、本明細書において上記「チクソトロピックインデックス」とは、E型粘度計を用いて25℃において0.5rpmの条件で測定した粘度を、E型粘度計を用いて25℃において5.0rpmの条件で測定した粘度で除した値を意味する。
本発明の液晶滴下工法用シール剤の製造方法において、真空脱泡処理工程を終えた後のシール剤の粘度の好ましい下限は100Pa・s、好ましい上限は800Pa・sである。上記シール剤の粘度が100Pa・s未満であると、後述する液晶表示素子の製造において、液晶滴下工法用シール剤を透明基板に枠状に塗布した後、液晶の微小滴を透明基板の上記シール剤の枠内に滴下塗布し、上記シール剤が未硬化の状態で他方の透明基板を重ね合わせる工程において、シール剤パターンの破れが発生することがある。上記シール剤の粘度が800Pa・sを超えると、シール剤の塗布時に充分な吐出量が得られず、パターンの断線等の不具合が生じることがある。上記シール剤の粘度のより好ましい下限は150Pa・s、より好ましい上限は600Pa・s、更に好ましい下限は200Pa・s、更に好ましい上限は400Pa・sである。
なお、上記シール剤の粘度は、E型粘度計を用い、25℃、1.0rpmの条件で測定される値である。
本発明の液晶滴下工法用シール剤の製造方法において、上記真空脱泡処理工程は粉体原料の混合後に行うことが好ましい。粉体原料は粒子間に多量の空気を含むため、脱泡処理後に粉体原料の混合を行うと所定の酸素分圧を達成することが困難になる。
また、真空脱泡処理工程は1回であってもよいし、2回以上行ってもよい。
本発明の液晶滴下工法用シール剤に、導電性微粒子を配合することにより、上下導通材料を製造することができる。このような本発明の液晶滴下工法用シール剤と導電性微粒子とを含有する上下導通材料もまた、本発明の1つである。
上記導電性微粒子は特に限定されず、金属ボール、樹脂微粒子の表面に導電金属層を形成したもの等を用いることができる。なかでも、樹脂微粒子の表面に導電金属層を形成したものは、樹脂微粒子の優れた弾性により、透明基板等を損傷することなく導電接続が可能であることから好適である。
本発明の液晶滴下工法用シール剤及び/又は本発明の上下導通材料を用いてなる液晶表示素子もまた、本発明の1つである。
本発明の液晶表示素子を製造する方法としては、例えば、ITO薄膜等の2枚の電極付き透明基板の一方に、本発明の液晶滴下工法用シール剤等をスクリーン印刷、ディスペンサー塗布等により長方形状のシールパターンを形成する工程、本発明の液晶滴下工法用シール剤等が未硬化の状態で液晶の微小滴を透明基板の枠内全面に滴下塗布し、すぐに他方の透明基板を重ね合わせる工程、及び、本発明の液晶滴下工法用シール剤等のシールパターン部分に紫外線等の光を照射してシール剤を仮硬化させる工程、及び、仮硬化させたシール剤を加熱して本硬化させる工程を有する方法等が挙げられる。
本発明によれば、液晶汚染を引き起こすことがほとんどない液晶滴下工法用シール剤を提供することができる。また、本発明によれば、該液晶滴下工法用シール剤の製造方法、並びに、該液晶滴下工法用シール剤を用いてなる上下導通材料及び液晶表示素子を提供することができる。
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。
(実施例1)
(硬化性樹脂Cの合成)
部分アクリル変性エポキシ樹脂(硬化性樹脂C)は、以下の方法により調製した。即ち、フェノールノボラック型エポキシ樹脂(DIC社製、「N-770」)190gをトルエン500mLに溶解させ、この溶液にトリフェニルホスフィン0.1gを加え、均一な溶液とした。得られた溶液にアクリル酸35gを還流撹拌下にて2時間かけて滴下した後、更に還流撹拌を6時間行った。トルエンを除去することによって50モル%のエポキシ基をアクリル酸で変性した部分アクリル変性フェノールノボラック型エポキシ樹脂(硬化性樹脂C)を得た。
(シール剤成分の混合)
硬化性樹脂として、ビスフェノールA型エポキシアクリレート(ビスフェノールA型エポキシ樹脂のアクリル酸変性物、ダイセルサイテック社製、「エベクリル3700」、硬化性樹脂A)30重量部、部分アクリル変性エポキシ樹脂(硬化性樹脂C)60重量部、及び、ビスフェノールA型エポキシ樹脂(三菱化学社製、「エピコート1001」、硬化性樹脂D)10重量部を加熱溶解させて均一溶液とした。この硬化性樹脂の混合液に、光ラジカル重合開始剤として2,2-ジメトキシ-2-フェニルアセトフェノン(BASF Japan社製、「IRGACURE651」)1.7重量部、及び、ラジカル重合禁止剤としてハイドロキノン0.05重量部を配合して加熱溶解させ、更に、シランカップリング剤としてγ-グリシドキシプロピルトリメトキシシラン(信越シリコーン社製、「KBM-403」)1.7重量部を配合し、混合攪拌した。次いで、得られた混合物を室温に冷却した後に、無機充填剤として球状シリカ(アドマテックス社製、「SO-E3」、平均粒子径1.0μm)50重量部、及び、熱硬化剤としてアジピン酸ジヒドラジド(大塚化学社製、「ADH」、平均粒子径1.0μm)6.0重量部を混合攪拌した後、セラミックス3本ロールミルにて均一分散させ、真空脱泡処理前シール剤を得た。
(真空脱泡処理)
得られた真空脱泡処理前シール剤を、プラネタリーミキサー(井上製作所社製、「PLM50」)を用いて真空脱泡処理を行った。使用したプラネタリーミキサーはタンクに加熱及び冷却が可能なジャケットと、真空減圧の機能を備えたものである。
タンク内のシール剤を攪拌しながら温度を38℃になるように加温した。加温と同時に減圧を開始し、継続的な攪拌下で減圧開始後20分後に減圧度が-90kPaに達したことを確認した。このときの温度は38℃で一定に保たれており、その後の真空脱泡処理工程でも温度は一定であった。更に、減圧開始後25分後に減圧度が-95kPaに到達し、その後は-95kPaを保ち続け、減圧開始後50分で大気圧に戻し真空脱泡処理を完了した。-90kPa以上の減圧度の継続時間は30分、最大減圧度(-95kPa)の継続時間は25分であった。
<粘度測定>
真空脱泡処理後のシール剤の粘度を、E型粘度計(ブルックフィールド社製、「DV-III」)を用い、25℃、1rpmの条件で測定した。
また、真空脱泡処理工程におけるシール剤の粘度として、真空脱泡処理前シール剤を同様のE型粘度計を用いて、カップのジャケット温水の温度を脱泡温度に等しい温度設定(38℃)として、1rpmの条件で測定した。結果を表1に示した。
<溶存酸素分圧測定>
溶存酸素センサーを備えた溶存ガス分析計(ハックウルトラ社製、本体「Orbisphere510」、酸素センサー「2956A」)を用いて、室温下、シリンジを用いて、真空脱泡処理後のシール剤約10gを約0.5mL/minの一定流量でセンサーに供給しながら溶存酸素分圧を測定した。結果を表1に示した。
<評価>
(1)シール剤の保存安定性
真空脱泡処理後のシール剤を密封遮光容器に入れ、温度30℃、湿度50%RHの雰囲気下で48時間保存した後に、E型粘度計(ブルックフィールド社製、「DV-III」)で25℃、1rpmの条件で粘度を測定し、保存前の粘度からの増粘率を下記の式にて計算した。
 増粘率(%)=100×(保存後の粘度)/(保存前の粘度)
増粘率が110%未満であった場合を「◎」、110%以上120%未満であった場合を「○」、120%以上200%未満であった場合を「△」、200%以上であった場合を「×」としてシール剤の保存安定性を評価した。結果を表1に示した。
(2)接着性
得られた真空脱泡処理後のシール剤100重量部に対して平均粒径5μmのポリマービーズ(積水化学工業社製、「ミクロパールSP」)3重量部を配合し、ごく微量をガラス基板(20mm×50mm×1.1mmt)の中央部に取り、同型のガラス基板(コーニング1737)をその上に重ね合わせてシール剤を押し広げた。その状態で100mW/cmの紫外線を30秒照射した。その後、120℃で1時間加熱を行い、接着試験片を得た。得られた接着試験片について、テンションゲージを用いて接着力を測定した。
接着力が280N/cm以上であった場合を「◎」、280N/cm未満220N/cm以上であった場合を「○」、220N/cm未満180N/cm以上であった場合を「△」、180N/cm未満であった場合を「×」として接着性を評価した。結果を表1に示した。
(3)液晶表示素子の表示性能
(液晶表示素子の作製)
2枚の透明電極付き基板の一方にシール剤の線幅が1mmとして正方形の枠を描くようにディスペンサーで塗布した。続いて液晶(チッソ社製、JC-5004LA)の微小滴を透明電極付き基板のシール剤の枠内全面に滴下塗布し、真空中にてもう一方の透明電極付き基板を貼り合わせ、シールライン部分にメタルハライドランプを用いて100mW/cmの紫外線を30秒照射した。次いで、120℃で1時間加熱して評価用の液晶表示素子を得た。
(液晶表示素子の表示性能(初期))
得られた評価用の液晶表示素子について、作製直後における通電状態でのシール剤付近の液晶配向乱れを目視によって確認した。配向乱れは表示部の色ムラを観察し、色ムラの範囲のシールラインからの距離を測定し判断した。色ムラが全くない場合を「◎」、色ムラが僅かに認められるシールラインからの距離が3mm以下の場合は「○」、同様の距離が3mmを超え6mm以下の場合「△」、同様の距離が6mmを超える場合は「×」として表示性能を評価した。結果を表1に示した。
なお、評価が◎、○の液晶パネルは、実用に全く問題のないレベル、△はパネルの表示設計によって問題になる可能性があるレベル、×は実用に耐えないレベルである。
(液晶表示素子の表示性能(高温高湿試験後))
得られた評価用の液晶表示素子を60℃90%RHの高温高湿槽に500時間放置した。その後の液晶表示素子について、通電状態での色ムラ観察を行い、上記「液晶表示素子の表示性能(初期)」と同様の評価基準で表示性能を評価した。結果を表1に示した。
(実施例2)
各シール剤成分の量を表1に示した量に変更したこと以外は実施例1と同様にして、真空脱泡処理したシール剤を得た。
(実施例3)
各シール剤成分の量を表1に示した量に変更したこと以外は実施例1と同様にして、真空脱泡処理したシール剤を得た。
(実施例4)
各シール剤成分の量を表1に示した量に変更したこと以外は実施例1と同様にして、真空脱泡処理したシール剤を得た。熱硬化剤としては、マロン酸ジヒドラジド(日本ファインケム社製、「MDH」の粉砕物(平均粒子径1.0μm))を使用した。
(実施例5)
各シール剤成分の量を表1に示した量に変更したこと以外は実施例1と同様にして、真空脱泡処理したシール剤を得た。熱硬化剤としては、1,3-ビス(ヒドラジノカルボエチル)-5-イソプロピルヒダントイン(味の素ファインテクノ社製、「VDH-J」、平均粒子径1.0μm)を使用した。
(実施例6)
各シール剤成分の量を表1に示した量に変更したこと以外は実施例1と同様にして、真空脱泡処理したシール剤を得た。無機充填剤として、球状シリカに加えてナノシリカ粒子(日本アエロジル社製、「RX-200」、平均粒子径0.012μm)を使用した。
(実施例7)
各シール剤成分の量を表1に示した量に変更したこと、及び、真空脱泡処理工程の条件を表1に示した条件に変更したこと以外は実施例1と同様にして、真空脱泡処理したシール剤を得た。無機充填剤として、球状シリカに加えてナノシリカ粒子(日本アエロジル社製、「RX-200」、平均粒子径0.012μm)を使用した。
(実施例8)
(硬化性樹脂Bの合成)
ビスフェノールA型エポキシ樹脂(三菱化学社製、「エピコート1001」)200gをトルエン500mLに溶解させ、この溶液にトリフェニルホスフィン0.15gを加え、均一な溶液とした。得られた溶液にアクリル酸35gを還流撹拌下にて2時間かけて滴下した後、更に還流撹拌を6時間行った。反応後、トルエンを除去することによって全てのエポキシ基がアクリル酸変性されたビスフェノールA型エポキシアクリレート(硬化性樹脂B)を得た。
各シール剤成分の量を表1に示した量に変更したこと、及び、真空脱泡処理工程の条件を表1に示した条件に変更したこと以外は実施例1と同様にして、真空脱泡処理したシール剤を得た。硬化性樹脂として、硬化性樹脂A、C、Dに加えて、硬化性樹脂Bを使用した。
(実施例9、10)
各シール剤成分の量を表1に示した量に変更したこと以外は実施例1と同様にして、真空脱泡処理したシール剤を得た。
(実施例11~16)
真空脱泡処理工程の条件を表1に示した条件に変更したこと以外は実施例1と同様にして、真空脱泡処理したシール剤を得た。
(実施例17)
各シール剤成分の量を表1に示した量に変更したこと、及び、真空脱泡処理工程の条件を表1に示した条件に変更したこと以外は実施例1と同様にして、真空脱泡処理したシール剤を得た。硬化性樹脂として、硬化性樹脂Aのみを使用し、熱硬化剤は使用しなかった。
(比較例1)
「シール剤成分の混合」までを実施例1と同様にして行い、「真空脱泡処理」を行わなかったものをシール剤として用いた。
(比較例2、3)
真空脱泡処理工程の条件を表1に示した条件に変更したこと以外は実施例1と同様にして、真空脱泡処理したシール剤を得た。
(比較例4)
真空脱泡処理工程で使用したミキサーの攪拌機能を停止した状態で静置脱泡を行ったことと、真空脱泡処理工程の条件を表1に示した条件に変更したこと以外は実施例1と同様にして、真空脱泡処理したシール剤を得た。
(比較例5、6)
真空脱泡処理工程の条件を表1に示した条件に変更したこと以外は実施例1と同様にして、真空脱泡処理したシール剤を得た。
(比較例7)
真空脱泡処理工程の条件を表1に示した条件に変更したこと以外は実施例1と同様にして、真空脱泡処理したシール剤を得た。
(比較例8)
配合物の量を表1に示した量に変更したこと以外は実施例1と同様にして、真空脱泡処理したシール剤を得た。
<評価>
実施例2~17及び比較例1~8においても、実施例1と同様に「粘度測定」及び「溶存酸素分圧測定」を行い、更に、「(1)シール剤の保存安定性」、「(2)接着性」、「(3)液晶表示素子の表示性能」の評価を行った。結果を表1~3に示した。
なお、比較例5、6で得られたシール剤は、保存安定性試験において、試験後のシール剤がゲル化したため、粘度測定を行うことができなかった。また、比較例8で得られたシール剤は、粘度が保存前の段階で既に非常に高かったため、「(1)シール剤の保存安定性」の評価は行わなかった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
本発明によれば、液晶汚染を引き起こすことがほとんどない液晶滴下工法用シール剤を提供することができる。また、本発明によれば、該液晶滴下工法用シール剤の製造方法、並びに、該液晶滴下工法用シール剤を用いてなる上下導通材料及び液晶表示素子を提供することができる。
 

Claims (4)

  1. ラジカル重合性化合物を含有する硬化性樹脂とラジカル重合開始剤を含有する液晶滴下工法用シール剤であって、
    溶存している酸素の分圧が10~4000Paであることを特徴とする液晶滴下工法用シール剤。
  2. 請求項1記載の液晶滴下工法用シール剤を製造する方法であって、
    減圧度が-90kPa以上であり、かつ、シール剤の粘度が70Pa・s以下である状態に保ちつつ、継続的に5分以上シール剤の液面を更新させる真空脱泡処理工程を有する
    ことを特徴とする液晶滴下工法用シール剤の製造方法。
  3. 請求項1記載の液晶滴下工法用シール剤と導電性微粒子とを含有することを特徴とする上下導通材料。
  4. 請求項1記載の液晶滴下工法用シール剤及び/又は請求項3記載の上下導通材料を用いてなることを特徴とする液晶表示素子。
PCT/JP2012/066149 2011-06-28 2012-06-25 液晶滴下工法用シール剤、液晶滴下工法用シール剤の製造方法、上下導通材料、及び、液晶表示素子 WO2013002177A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280003824.3A CN103229094B (zh) 2011-06-28 2012-06-25 液晶滴下工艺用密封剂、液晶滴下工艺用密封剂的制造方法、上下导通材料及液晶显示元件
KR1020137010917A KR101323895B1 (ko) 2011-06-28 2012-06-25 액정 적하 공법용 시일제, 액정 적하 공법용 시일제의 제조 방법, 상하 도통 재료, 및 액정 표시 소자
JP2012531157A JP5119374B1 (ja) 2011-06-28 2012-06-25 液晶滴下工法用シール剤、液晶滴下工法用シール剤の製造方法、上下導通材料、及び、液晶表示素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-142881 2011-06-28
JP2011142881 2011-06-28

Publications (1)

Publication Number Publication Date
WO2013002177A1 true WO2013002177A1 (ja) 2013-01-03

Family

ID=47424070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066149 WO2013002177A1 (ja) 2011-06-28 2012-06-25 液晶滴下工法用シール剤、液晶滴下工法用シール剤の製造方法、上下導通材料、及び、液晶表示素子

Country Status (5)

Country Link
JP (1) JP5119374B1 (ja)
KR (1) KR101323895B1 (ja)
CN (1) CN103229094B (ja)
TW (1) TWI412544B (ja)
WO (1) WO2013002177A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105283803A (zh) * 2013-06-11 2016-01-27 积水化学工业株式会社 液晶滴下工艺用密封剂、上下导通材料及液晶显示元件
JP2020002324A (ja) * 2018-07-02 2020-01-09 日本化薬株式会社 電子部品用接着剤

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5722139B2 (ja) * 2011-07-04 2015-05-20 株式会社トクヤマデンタル 重合性組成物の製造方法
JP7402633B2 (ja) * 2019-07-30 2023-12-21 住友化学株式会社 重合性液晶組成液含有容器および重合性液晶組成液の保管方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000246007A (ja) * 1999-02-26 2000-09-12 Sharp Corp 高粘度液体の脱泡方法
JP2000275655A (ja) * 1999-03-23 2000-10-06 Matsushita Electric Ind Co Ltd シール材塗布装置
JP2005010601A (ja) * 2003-06-20 2005-01-13 Dainippon Ink & Chem Inc 液晶パネル用光硬化性シール剤組成物、及び液晶パネルの製造方法
JP2008107738A (ja) * 2006-10-27 2008-05-08 Sekisui Chem Co Ltd 液晶滴下工法用シール剤
JP2009086291A (ja) * 2007-09-28 2009-04-23 Mitsui Chemicals Inc 液晶シール剤、それを用いた液晶表示パネルの製造方法、および液晶表示パネル

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1640396A1 (en) * 2003-06-04 2006-03-29 Sekisui Chemical Co., Ltd. Curing resin composition, sealing material for liquid crystal display device and liquid crystal display device
TW200613422A (en) * 2004-07-22 2006-05-01 Three Bond Co Ltd Curable composition
CN101176033B (zh) * 2005-05-09 2010-05-26 积水化学工业株式会社 液晶滴加工序用密封剂、上下导通材料及液晶显示元件
KR20070080014A (ko) * 2006-02-06 2007-08-09 동우 화인켐 주식회사 시일제 수지 조성물
WO2007114184A1 (ja) * 2006-03-29 2007-10-11 Sekisui Chemical Co., Ltd. 液晶滴下工法用シール剤、上下導通材料及び液晶表示素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000246007A (ja) * 1999-02-26 2000-09-12 Sharp Corp 高粘度液体の脱泡方法
JP2000275655A (ja) * 1999-03-23 2000-10-06 Matsushita Electric Ind Co Ltd シール材塗布装置
JP2005010601A (ja) * 2003-06-20 2005-01-13 Dainippon Ink & Chem Inc 液晶パネル用光硬化性シール剤組成物、及び液晶パネルの製造方法
JP2008107738A (ja) * 2006-10-27 2008-05-08 Sekisui Chem Co Ltd 液晶滴下工法用シール剤
JP2009086291A (ja) * 2007-09-28 2009-04-23 Mitsui Chemicals Inc 液晶シール剤、それを用いた液晶表示パネルの製造方法、および液晶表示パネル

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105283803A (zh) * 2013-06-11 2016-01-27 积水化学工业株式会社 液晶滴下工艺用密封剂、上下导通材料及液晶显示元件
JP2020002324A (ja) * 2018-07-02 2020-01-09 日本化薬株式会社 電子部品用接着剤
JP7015220B2 (ja) 2018-07-02 2022-02-15 日本化薬株式会社 電子部品用接着剤

Also Published As

Publication number Publication date
CN103229094A (zh) 2013-07-31
KR101323895B1 (ko) 2013-10-30
KR20130054450A (ko) 2013-05-24
JP5119374B1 (ja) 2013-01-16
CN103229094B (zh) 2014-11-05
TWI412544B (zh) 2013-10-21
TW201305232A (zh) 2013-02-01
JPWO2013002177A1 (ja) 2015-02-23

Similar Documents

Publication Publication Date Title
US20100230638A1 (en) Sealant for One Drop Fill Process, Transfer Material, and Liquid Crystal Display Element
JP5960636B2 (ja) 液晶表示素子用シール剤及び液晶表示素子
JP5238910B1 (ja) 液晶表示素子用シール剤及び液晶表示素子
JP6539160B2 (ja) 液晶表示素子用シール剤及び上下導通材料
JP5255732B1 (ja) 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
JP5784936B2 (ja) 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
CN108351561B (zh) 液晶显示元件用密封剂、上下导通材料和液晶显示元件
JP5119374B1 (ja) 液晶滴下工法用シール剤、液晶滴下工法用シール剤の製造方法、上下導通材料、及び、液晶表示素子
JP6114893B1 (ja) 液晶表示素子用シール剤、上下導通材料及び液晶表示素子
JP5443941B2 (ja) 液晶滴下工法用シール剤、上下導通材料及び液晶表示素子
JP2014139662A (ja) 液晶滴下工法用シール剤、液晶滴下工法用シール剤の製造方法、上下導通材料、及び、液晶表示素子
JP6523167B2 (ja) 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
JP5386012B2 (ja) 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
JP2013060386A (ja) 変性ヒドラジド化合物、変性ヒドラジド化合物の製造方法、硬化性樹脂組成物、液晶滴下工法用シール剤、上下導通材料及び液晶表示素子
JP5756693B2 (ja) 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
JP5395872B2 (ja) 液晶滴下工法用シール剤、上下導通材料及び液晶表示素子
JP2016218257A (ja) 液晶滴下工法用シール剤に用いる硬化性樹脂粒子、液晶滴下工法用シール剤及び液晶表示素子
JP5340505B1 (ja) 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
JP5340503B1 (ja) 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
JP5559458B2 (ja) 液晶滴下工法用シール剤、上下導通材料及び液晶表示素子
TWI838338B (zh) 液晶顯示元件用密封劑、上下導通材料、及液晶顯示元件
JP2008107738A (ja) 液晶滴下工法用シール剤
JP2015022289A (ja) 液晶滴下工法用シール剤、上下導通材料、及び、液晶表示素子
JP2012093582A (ja) 液晶滴下工法用シール剤

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012531157

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12804543

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137010917

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12804543

Country of ref document: EP

Kind code of ref document: A1