WO2013002141A1 - ターボチャージャの軸受装置 - Google Patents

ターボチャージャの軸受装置 Download PDF

Info

Publication number
WO2013002141A1
WO2013002141A1 PCT/JP2012/065999 JP2012065999W WO2013002141A1 WO 2013002141 A1 WO2013002141 A1 WO 2013002141A1 JP 2012065999 W JP2012065999 W JP 2012065999W WO 2013002141 A1 WO2013002141 A1 WO 2013002141A1
Authority
WO
WIPO (PCT)
Prior art keywords
floating bush
peripheral surface
rotor shaft
bearing
inner peripheral
Prior art date
Application number
PCT/JP2012/065999
Other languages
English (en)
French (fr)
Inventor
恵太郎 釜田
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CN201280023223.9A priority Critical patent/CN103534460B/zh
Priority to EP12803960.9A priority patent/EP2728137B1/en
Priority to US14/124,013 priority patent/US9599119B2/en
Publication of WO2013002141A1 publication Critical patent/WO2013002141A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • F01D25/166Sliding contact bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/18Lubricating arrangements
    • F01D25/183Sealing means
    • F01D25/186Sealing means for sliding contact bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/14Lubrication of pumps; Safety measures therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/12Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load
    • F16C17/18Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load with floating brasses or brushing, rotatable at a reduced speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/1075Wedges, e.g. ramps or lobes, for generating pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/1085Channels or passages to recirculate the liquid in the bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/23Gas turbine engines
    • F16C2360/24Turbochargers

Definitions

  • the present invention relates to a floating bush bearing suitable for a rotating machine having a high-speed rotating shaft such as a turbocharger.
  • the floating bush In the floating bush bearing, the floating bush is rotatably interposed in a gap between the rotating shaft and the bearing housing, and pressurized lubricating oil supplied from the bearing housing is supplied between the inner peripheral surface of the bearing housing and the outer peripheral surface of the floating bush.
  • the oil is supplied to the gap between the inner peripheral surface of the floating bush and the rotary shaft by a radial oil supply passage provided in the floating bush. And it is comprised so that a stable support may be performed and the seizure may be prevented while suppressing the vibration of the rotating shaft by the damping effect of the lubricating oil film formed in these gaps.
  • FIG. 7 shows a detailed view of a floating bush bearing that rotatably supports a rotating shaft of a high-speed rotating machine such as a turbocharger.
  • a turbocharger 0100 includes a pair of impellers 0102a and 0102b and a rotor shaft 0104 that integrally connects them.
  • the floating bush bearing 0110 includes a bearing housing 0112 and a floating bush 0114 that is interposed between the bearing housing 0112 and the rotor shaft 0104 and supports the rotor shaft 0104 in a rotatable manner.
  • Oil passages 0116 and 0118 are provided in the bearing housing 0112 and the floating bush 0114, respectively. Then, the lubricating oil passes through the oil passages 0116 and 0118 from the bearing housing 0112, and the clearance between the inner peripheral surface of the bearing housing 0112 and the outer peripheral surface of the floating bush 0114 and the clearance between the inner peripheral surface of the floating bush 0114 and the rotor shaft 0104. To be supplied.
  • the floating bush 0114 is rotatably arranged and rotates at a slower speed than the rotor shaft 0104 due to sliding resistance with the rotor shaft 0104. By forming an oil film in these gaps with lubricating oil, seizure and damage (abrasion) occurring on the sliding surfaces of the gaps are prevented.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 58-14014 (Patent Document 1) has an oil supply passage that communicates between the inner and outer peripheral surfaces of the floating bush, and communicates with the oil supply passage on the outer peripheral surface or inner peripheral surface of the floating bush.
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2007-46642
  • a spiral groove is provided on at least one of the inner peripheral surface and the outer peripheral surface of the full float bearing, and when the full float bearing rotates, the inner peripheral surface and the outer peripheral surface are rotated.
  • a technique is disclosed in which the distribution of the pressure received from the fluid (lubricating oil) on the inner peripheral surface and the outer peripheral surface changes along the axial direction by a spiral groove provided in at least one of the above. This change shows that the full float bearing is less likely to be in a stable state and self-excited vibration is suppressed.
  • Patent Document 1 the groove part connected to the oil supply path which connects between the inner and outer peripheral surfaces of a floating bush is provided in an outer peripheral surface or an inner peripheral surface, and the lack of lubricating oil is eliminated with the dynamic pressure of lubricating oil.
  • Patent Document 2 self-excited vibration of the full float bearing is suppressed by a structure in which a spiral groove is provided on at least one of the inner peripheral surface and the outer peripheral surface of the full float bearing. Therefore, these Patent Documents 1 and 2 do not disclose a structure that reduces the friction loss during low-speed rotation by rotating the rotor shaft at an early stage in the low-speed rotation range.
  • the present invention has been made in view of such problems, and the flow of the lubricating oil is received at a position avoiding the oil supply hole communicating with the inner peripheral surface of the floating bush and the inner peripheral surface of the floating bush.
  • the present invention achieves such an object, and includes a bearing housing having a bearing portion interposed between a turbine housing and a compressor housing of a turbocharger that pressurizes supply air to a combustion chamber of an internal combustion engine, and the bearing housing.
  • a rotor shaft of a turbine rotor that penetrates the interior;
  • An oil supply hole is provided between the bearing portion and the rotor shaft and communicates between the outer peripheral surface and the inner peripheral surface, and the lubricating oil from the bearing housing is supplied to the outer peripheral surface and the inner peripheral surface.
  • a floating bush configured to receive the flow of the lubricating oil at a position along the inner circumferential surface of the floating bush and avoiding communication with the oil supply hole. It is characterized in that a pressure receiving part to be generated is provided.
  • the pressure receiving portion is provided on the inner peripheral surface of the floating bush, the rotation of the floating bush by the rotor shaft is generated early in the low rotation region of the rotor shaft, thereby reducing the rotational frictional resistance of the rotor shaft. Further, it is possible to improve the supercharging pressure in the low speed range of the turbocharger.
  • a plurality of the pressure receiving portions are arranged at equal intervals in the circumferential direction of the inner peripheral surface.
  • the pressure receiving portion has a groove shape whose depth changes in the rotation direction of the rotor shaft while avoiding the oil supply hole.
  • the pressure receiving portion has a groove shape that becomes deeper in a rotation direction of the rotor shaft while avoiding the oil supply hole, and a final portion of the groove shape forms a pressure receiving surface.
  • the pressure receiving surface may be formed at a right angle or an acute angle with respect to the bottom surface forming the groove shape.
  • the pressure receiving portion has a groove shape that becomes deeper as it advances in the rotation direction, the lubricating oil is smoothly introduced into the groove shape portion along the rotation of the rotor shaft, so that bubbles and the like are generated.
  • the pressure receiving surface is formed at a right angle or an acute angle with respect to the bottom surface forming the groove shape, the lubricating oil hitting the pressure receiving surface is difficult to escape into the gap between the rotor shaft and the floating bush. Even in the low rotation range, the rotation starting force of the floating bush can be obtained effectively.
  • the width of the groove shape is narrowed along the rotation direction of the rotor shaft.
  • the width of the groove-shaped width is reduced along the rotational direction, so that the pressure increases between the groove-shaped portion and the rotor shaft until the lubricating oil reaches the pressure-receiving surface. Since the surface pressure becomes higher, the rotation of the floating bush can be easily started even in the low rotation region of the turbocharger.
  • the pressure receiving portions are arranged in a staggered manner on both sides of the center of the floating bush in the width direction.
  • the floating bush is preferably an offset bearing with respect to the rotor shaft.
  • a shaft system can be realized. Therefore, the accompanying rotation of the floating bush by the rotor shaft is generated at an early stage to reduce the friction loss in the low rotation region of the turbocharger, and the rotor shaft can be stably supported in the high rotation region.
  • the pressure receiving portion is provided on the inner peripheral surface of the floating bush, the rotation of the floating bush by the rotor shaft is generated early in the low rotation region of the rotor shaft, and the rotational friction resistance of the rotor shaft is reduced. This can reduce the supercharging pressure in the low speed range of the turbocharger.
  • the expanded sectional view of the bearing device of the turbocharger concerning a 1st embodiment of the present invention is shown.
  • (A) is a schematic view of the floating bush bearing of the first embodiment
  • (B) is a view taken along the line ZZ of (A)
  • (C) is a modification of (B).
  • the internal peripheral surface partial expansion perspective view of the floating bush bearing of 1st Embodiment is shown.
  • (A) shows the schematic of the floating bush bearing concerning 2nd Embodiment.
  • (A) is a schematic view of a floating bush bearing according to the third embodiment, and (B) is a view taken along the line YY of (A).
  • the schematic of the floating bush bearing concerning 4th Embodiment is shown. An explanatory view of prior art is shown.
  • FIG. 1 is a detailed view of a floating bush bearing that rotatably supports high-speed rotation of a turbocharger embodying the present invention.
  • a turbocharger 1 is supplied to an engine by an exhaust turbine 14 driven by exhaust gas of an internal combustion engine (hereinafter referred to as “engine”), a turbine housing 11 covering the exhaust turbine 14, and a driving force of the exhaust turbine 14.
  • engine an internal combustion engine
  • a compressor impeller 15 that pressurizes the supply air, a compressor housing 12 that covers the compressor impeller 15, a rotor shaft 16 that integrally connects the exhaust turbine 14 and the compressor impeller 15, a turbine housing 11 and the compressor housing 12, And a bearing housing 13 that supports the rotor shaft 16, a thrust bearing 16 b that receives the thrust load of the rotor shaft 16, and tightening by a fastening member (not shown) from the compressor impeller 15 side.
  • Compressor impeller 15 It is constituted by a sleeve 16c which the determining.
  • the bearing housing 13 is provided with a first floating bush bearing 17 that supports the rotor shaft 16 on the compressor impeller 15 side, and a second floating bush bearing 18 that supports the exhaust turbine 14 side.
  • the first floating bush bearing 17 includes a bearing portion 13d formed in the bearing housing 13 and a first floating bush 19 that is fitted in the bearing portion 13d and in which the rotor shaft 16 is disposed.
  • the first floating bush 19 is formed in an annular shape, and is provided with an oil supply hole 19a penetrating from the outer peripheral surface to the inner peripheral surface.
  • the second floating bush bearing 18 includes a bearing portion 13d formed in the bearing housing 13 and a second floating bush 20 that is fitted in the bearing portion 13d and in which the rotor shaft 16 is disposed. ing.
  • the second floating bush 20 is formed in an annular shape, and is provided with an oil supply hole 20a penetrating from the outer peripheral surface to the inner peripheral surface.
  • Lubricating oil is fed to the floating bush bearings 17 and 18 through a pipe (not shown) connected to the connection port 13a of the bearing housing 13.
  • the compressor side lubricating oil passage 13c is an oil passage inclined linearly from the connection port 13a toward the first floating bush bearing 17 side.
  • the lubricating oil fed to the first floating bush bearing 17 side is also fed to the first floating bush bearing 17 and between the first floating bush bearing 17 and the thrust bearing 16b to lubricate the part. Cooling is in progress.
  • the turbine-side lubricating oil passage 13b is an oil passage inclined linearly from the connection port 13a toward the second floating bush bearing 18 side.
  • the lubricating oil fed to the second floating bush bearing 18 side is fed to the second floating bush bearing 18 and the enlarged diameter portion of the rotor shaft 16 on the exhaust turbine 14 side to lubricate and cool the portion. Yes.
  • the lubricating oil fed to the first floating bush bearing 17 fills the gap between the bearing portion 13d and the first floating bush 19 and passes through the oil supply hole 19a penetrating from the outer peripheral side of the first floating bush 19 to the inner peripheral side. As shown, the first floating bush 19 and the support shaft portion 16a of the rotor shaft 16 are supplied.
  • the lubricating oil sent to the second floating bush bearing 18 fills the gap between the bearing portion 13d and the second floating bush 20, and passes through the oil supply hole 20a penetrating from the outer peripheral side to the inner peripheral side of the second floating bush 20. As a result, the second floating bush 20 is supplied between the second floating bush 20 and the support shaft portion 16 a of the rotor shaft 16.
  • the floating bushes 19 and 20 and the rotor shaft 16 are each floated and supported by the lubricating oil with respect to the bearing housing 13.
  • the first floating bush bearing 17 including the first floating bush 19
  • the second floating bush bearing 18 including the second floating bush 20
  • the “first floating bush bearing 17” will be described as the “floating bush bearing 17”
  • the “first floating bush 19” will be described as the “floating bush 19”.
  • FIG. 2 shows the floating bush bearing 17 of the present invention, which will be described with reference to FIG. 2A is a schematic view of the floating bush bearing of the first embodiment, FIG. 2B is a view taken along the line ZZ of FIG. 2A, and FIG. 2C is a modification of FIG.
  • the floating bush 19 constituting the floating bush bearing 17 is disposed so as to have a gap ⁇ for forming an oil film between the bearing portion 13 d of the bearing housing 13 and the outer peripheral surface 19 b of the floating bush 19. Between the inner peripheral surface 19 c of the floating bush 19 and the support shaft portion 16 a of the rotor shaft 16, there is a loose fit with a gap ⁇ for forming an oil film.
  • Lubricating oil is pumped into the gaps ⁇ and ⁇ through the compressor side lubricating oil passage 13c (same as the turbine side lubricating oil passage 13b) in the bearing housing 13.
  • the lubricating oil fills the clearance ⁇ , passes through the oil supply hole 19a of the floating bush 19, fills the clearance ⁇ between the inner peripheral surface 19c of the floating bush 19 and the support shaft portion 16a, and the rotor shaft 16 is floated by the lubricating oil.
  • a pressure receiving portion 25 that generates pressure by receiving the flow of the lubricating oil on the inner peripheral surface 19c of the floating bush 19 along the rotational direction of the rotor shaft 16 and at a position avoiding communication with the oil supply hole 19a.
  • the pressure receiving portion 25 is a groove 25 b in which the bottom surface 25 c smoothly and deeply (in the radial direction) from the inner peripheral surface 19 c of the floating bush 19 toward the pressure receiving surface 25 a in the rotation direction of the rotor shaft 16. It is comprised by.
  • the pressure receiving part 25 is arrange
  • the oil supply hole 19a is provided on one side of the side portion, but it may be provided on both sides (see FIG. 2B) with the oil supply hole 19a as the center.
  • the pressure receiving surface 25a is formed such that the angle ⁇ formed by the pressure receiving surface 25a and the bottom surface 25c of the groove 25b is a right angle or an acute angle.
  • the floating bush 19 is disposed at two equal intervals in the circumferential direction on the inner peripheral surface 19c, the rotational force generated in the floating bush 19 is balanced in the circumferential direction, and the fluctuation of the rotational force accompanying the floating bush is changed. By making it small, it is possible to suppress the occurrence of rotating noise and rotating spots of the floating bush.
  • the pressure receiving portion 25 has a groove shape that becomes deeper as it advances in the rotation direction, since the lubricating oil is smoothly introduced into the groove shape portion along the rotation of the rotor shaft, generation of bubbles (cavitation) and the like is suppressed, Rotation unevenness (rotational resistance due to air bubbles) of the floating bush is eliminated, and the dynamic pressure of the lubricating oil acts on the pressure receiving surface 25a, so that the pressure can be increased efficiently.
  • the pressure receiving surface 25a is formed so that the angle ⁇ formed by the pressure receiving surface 25a and the bottom surface 25c of the groove 25b is a right angle or an acute angle, so that the lubricating oil received by the pressure receiving surface 25a is applied to the rotor shaft 16 and the floating bush 19.
  • the width W of the groove 25b is constant, if the width W is narrowed toward the rotational direction, the pressure increases between the groove-shaped portion and the rotor shaft until the lubricating oil reaches the pressure receiving surface 25a. Since the pressure on the pressure receiving surface 25a becomes higher, the rotational force of the floating bush 19 can be further increased.
  • the pressure receiving portions 25 are arranged at two equal intervals in the circumferential direction, but the circumferential length of the pressure receiving portions 25 is shortened, and the pressure receiving portions 25 are arranged in a staggered manner on both sides. May be. [FIG.
  • the pressure receiving surface of the floating bush is increased, the rotation starting force of the floating bush is increased in the low rotation region of the rotor shaft, and the rotor shaft and the floating bush are compared with the case where the pressure receiving portions are arranged in the same phase.
  • the bearing area can be prevented from decreasing, and the support shaft is stabilized.
  • FIG. 4A shows a schematic shape of the floating bush bearing according to the second embodiment of the present invention
  • FIG. 4B shows a ZZ arrow view of FIG.
  • this embodiment is the same except for the shape of the floating bush, description of the whole structure of the turbocharger 1 is abbreviate
  • FIG. 4A shows a schematic shape of the floating bush bearing 21, and the floating bush 22 constituting the floating bush bearing 21 forms an oil film between the bearing portion 13 d of the bearing housing 13 and the outer peripheral surface 22 b of the floating bush 22.
  • a clearance ⁇ Between the inner peripheral surface 22 c of the floating bush 22 and the support shaft portion 16 a of the rotor shaft 16, there is a loose fit with a gap ⁇ for forming an oil film.
  • Lubricating oil is pumped into the gaps ⁇ and ⁇ through the compressor side lubricating oil passage 13c (same as the turbine side lubricating oil passage 13b) in the bearing housing 13.
  • the lubricating oil fills the clearance ⁇ , passes through the oil supply hole 22a of the floating bush 22, fills the clearance ⁇ between the inner peripheral surface 22c of the floating bush 22 and the support shaft portion 16a, and the rotor shaft 16 floats due to the oil film of the lubricating oil. It is supported by the state.
  • a pressure receiving portion 23 that generates pressure by receiving the flow of the lubricating oil on the inner peripheral surface 22c of the floating bush 22 along the rotational direction of the rotor shaft 16 and avoiding communication with the oil supply hole 22a. are provided at two locations at equal intervals in the circumferential direction. As shown in FIG. 4, the pressure receiving portion 23 has a bottom surface 23 b that is a pressure receiving surface that is smoothly shallow along the rotation direction on the inner peripheral surface 22 c of the floating bush 22 in the rotation direction of the rotor shaft 16 (in the radial direction). ). The bottom surface 23b is a surface in which the lubricating oil comes into contact with an inclined surface that becomes shallower and causes an acting force in the rotational direction.
  • channel 23a which is the pressure receiving part 23 is arrange
  • the floating bush 22 is arranged at two equal intervals in the circumferential direction on the inner peripheral surface 22c, the rotational force generated in the floating bush 22 is balanced in the circumferential direction, and the floating bush 19 rotates together. By reducing the fluctuation of the force, it is possible to suppress the rotation noise of the floating bush and the occurrence of rotation spots. Further, since the pressure receiving portion 23 has a groove shape that becomes shallower as it advances in the rotation direction, the lubricating oil comes into contact with the inclined surface to generate an acting force in the rotation direction.
  • FIG. 5A shows a schematic shape of the floating bush bearing 26 according to the third embodiment of the present invention
  • FIG. 5B shows a view taken along the line YY of FIG.
  • this embodiment is the same except for the shape of the floating bush
  • description of the whole structure of the turbocharger 1 is abbreviate
  • the floating bush 27 constituting the floating bush bearing 26 has a gap ⁇ for forming an oil film between the bearing portion 13 d of the bearing housing 13 and the outer peripheral surface 27 b of the floating bush 27.
  • a pressure receiving portion 28 is provided on the inner peripheral surface 27c of the floating bush 27 along the inner peripheral surface 27c and in the circumferential direction of the oil supply hole 27a.
  • the pressure receiving portion 28 is formed by a groove 28a having substantially the same depth in the circumferential direction.
  • the circumferential wall surface 28c of each groove is formed so that an angle ⁇ formed with the bottom surface 28b is a right angle or an acute angle.
  • the pressure receiving portion 28 is formed so that the lubricating oil comes into contact with the wall surface 28c on the rotation direction side in FIG.
  • the pressure receiving portion 28 is disposed between the oil supply hole 27a and the oil supply hole 27a.
  • the oil supply hole 27a may be provided on both sides with the oil supply hole 27a as the center, or both may be combined. May be. Further, although the width W of the groove 25b is constant, if the width W is narrowed in the rotational direction, the rotational force of the floating bush 27 can be further increased.
  • the floating bush 27 since the floating bush 27 has a large number of pressure receiving portions 28 disposed between the oil supply hole 27a and the oil supply hole 27a, the rotational starting force of the floating bush 27 is likely to increase even in the low rotation region of the rotor shaft 16. Have. *
  • FIG. 6 is an enlarged cross-sectional view of a floating bush according to a fourth embodiment of the present invention.
  • this embodiment is the same except for the shape of the floating bush, description of the whole structure of the turbocharger 1 is abbreviate
  • the floating bush 31 constituting the floating bush bearing 30 is disposed so as to have a gap ⁇ for forming an oil film between the bearing portion 13 d of the bearing housing 13 and the outer peripheral surface 31 b of the floating bush 31.
  • the inner peripheral surface 31a of the floating bush 31 is formed in a multi-arc shape having two centers (C1, C2) of the radius R of the arc (the radial thickness of the floating bush bearing 30 varies as shown in FIG. 6). ing. Therefore, the floating bush 31 is disposed in an offset relative to the rotor shaft 16.
  • the inner peripheral surface 31a of the floating bush 31 is formed in a multi-arc shape, but the outer peripheral surface 31b of the floating bush 31 may be formed in a multi-arc shape, or the inner periphery and the outer peripheral surface are formed. Even if it is formed in a multi-arc shape, the same effect can be obtained.
  • a pressure receiving portion 32 that receives the flow of the lubricating oil and generates pressure on the inner peripheral surface 31a of the floating bush 31 along the rotational direction of the rotor shaft 16 and at a position avoiding communication with the oil supply hole 31c. are provided at two locations at equal intervals in the circumferential direction.
  • a groove 32d is formed along the rotational direction of the rotor shaft 16 so that the bottom surface 32c is smoothly deep (in the radial direction) from the inner peripheral surface 31a of the floating bush 31 toward the first pressure receiving surface 32a.
  • the wall portion forming the groove 32d is an intermediate portion from the base point P of the wall portion toward the pressure receiving surface 25a and the intermediate portion in the depth direction of the groove 32d (the radial direction of the floating bush 31).
  • a second pressure receiving surface 32b in the circumferential direction is formed.
  • the second pressure receiving surface 32b forms an angle ⁇ 2 formed with the thickness surface of the wall surface of the deleted groove 32d at a right angle or an acute angle, so that the rotational starting force of the floating bush 31 is easily increased.
  • the floating bush 31 further increases the follow-up starting force with respect to the rotor shaft 16 in the low rotation region of the rotor shaft 16 by the second pressure receiving surface 32b in addition to the first pressure receiving surface 32a. Further performance improvement in the region is achieved.
  • the clearance between the inner peripheral surface 31a and the rotor shaft 16 or the outer peripheral surface depending on the radial direction since the gap between 31b and the bearing housing 13 changes (different) depending on the direction in the radial direction, the spring constant and the damping characteristic of the oil film formed in the gap also change depending on the direction in the radial direction. A rotating shaft system in which vibration is not likely to occur can be realized.
  • the accompanying rotation of the floating bush 31 by the rotor shaft 16 is generated early, so that the friction loss in the low rotation region of the turbocharger is reduced and the stable support shaft of the rotor shaft 16 in the high rotation region is possible.
  • the shape of the inner peripheral surface 31 a of the floating bush 31 is such that the arc becomes smaller in thickness along the rotation direction of the rotor shaft 16, but the arc extends along the rotation direction of the rotor shaft 16. Thus, the same effect can be obtained even when the thickness is increased.
  • the turbocharger 1 reduces the rotational resistance between the floating bush 31 and the rotor shaft 16 even in the low speed rotation region.
  • an effect of improving the supercharging pressure of the turbocharger 1 in the low speed region can be obtained, and the support shaft of the rotor shaft 16 in the high speed region can be stabilized by using the floating bush 31 as an offset bearing.
  • the gap between the inner peripheral surface and the rotor shaft, or the outer peripheral surface at least between the inner peripheral surface 19c and the support shaft portion 16a of the rotor shaft 16 or between the outer peripheral surface and the bearing housing. Since the gap with the bearing housing changes (different) depending on the direction in the radial direction, the spring constant and damping characteristics of the oil film formed in the gap also change depending on the direction in the radial direction, and oil whip (self-excited vibration) occurs. A rotating shaft system that is unlikely to occur can be realized.
  • the rotation of the floating bush by the rotor shaft can be caused at an early stage to reduce the friction loss in the low rotation region of the turbocharger and increase the rotational action force, and the stable support of the rotor shaft in the high rotation region.
  • An axis is possible.
  • the pressure receiving portion is provided on the inner peripheral surface of the floating bush, the rotation of the floating bush by the rotor shaft is generated early in the low rotation region of the rotor shaft, and the rotational friction resistance of the rotor shaft is reduced. Since it can reduce and increase the rotational force in the low rotation range, it can be applied to a rotating machine such as a turbocharger.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

浮動ブッシュの内周面に、該浮動ブッシュの内外周面を連通する給油孔を避けた位置に、潤滑油の流れを受け止めて圧力を発生させる受圧部を設けることにより、浮動ブッシュを低速回転域の早い時期にロータ軸に対し連れ回りさせて、低速回転時における摩擦損失の低減を図り、ターボチャージャの低速回転域での過給圧力上昇を図ることを目的とし、ターボチャージャ1の軸受部13dを有する軸受ハウジング13と、該軸受ハウジング13内を貫通するロータ軸16と、軸受部13dとロータ軸16との間に介装され、外周面19bと内周面19cとを連通する給油孔19aを介して潤滑油を外周面19bと内周面19cに供給されるようにした浮動ブッシュ19とを備え、浮動ブッシュ19の内周面19cに、給油孔19aとの連通を避けた位置に、潤滑油の流れを受け止めて圧力を発生させる受圧部25を設けたことを特徴とする。

Description

ターボチャージャの軸受装置
 本発明は、ターボチャージャなどの高速回転軸を有する回転機械に好適である浮動ブッシュ軸受に関する。
 浮動ブッシュ軸受は、回転軸と軸受ハウジングとの隙間に浮動ブッシュを回転可能に介装させ、軸受ハウジングから供給される加圧された潤滑油を軸受ハウジング内周面と浮動ブッシュの外周面との間に供給すると共に、浮動ブッシュに設けた半径方向の給油路によって、浮動ブッシュ内周面と回転軸との隙間に供給する。
 そして、これらの隙間に形成された潤滑油膜の減衰効果によって回転軸の振動を抑制しながら安定した支持を行い、且つ焼付きを防止するように構成されている。
 図7に、ターボチャージャなどの高速回転機械の回転軸を回転可能に支持する浮動ブッシュ軸受の詳細図を示す。
 図7において、ターボチャージャ0100は、一対の羽根車0102a及び0102bとこれらを一体的に連結するロータ軸0104からなる。浮動ブッシュ軸受0110は、軸受ハウジング0112と、該軸受ハウジング0112とロータ軸0104との間に介装されて、ロータ軸0104を回転可能に支持する浮動ブッシュ0114とから構成されている。
 軸受ハウジング0112及び浮動ブッシュ0114には、夫々油路0116及び0118が設けられている。そして、潤滑油は軸受ハウジング0112から油路0116及び0118を通って、軸受ハウジング0112の内周面と浮動ブッシュ0114の外周面の隙間、及び浮動ブッシュ0114の内周面とロータ軸0104との隙間に供給される。
 浮動ブッシュ0114は回転可能に配設され、ロータ軸0104との摺動抵抗によりロータ軸0104より遅い速度で連れ回りする。
 潤滑油でこれらの隙間に油膜を形成することで、該隙間の摺動面に発生する焼付き、損傷(磨耗)を防止している。 
 また、特開昭58-142014号公報(特許文献1)には浮動ブッシュの内外周面間を連通する給油路を設けると共に、浮動ブッシュの外周面又は、内周面に該給油路に連通した溝部を形成し、該溝部の隙間に潤滑油による高い動圧力を発生させることにより、浮動ブッシュの内外周面への潤滑油の供給を行い、内外周面の焼付き、損傷を防止する技術が開示されている。
 更に、特開2007-46642号公報(特許文献2)においては、フルフロートベアリングの内周面及び外周面の少なくとも一方に螺旋溝が設けられて、フルフロートベアリングが回転すると内周面及び外周面の少なくとも一方に設けられた螺旋溝により、内周面及び外周面が流体(潤滑油)から受ける圧力の分布が軸方向に沿って変化する技術が開示されている。この変化によってフルフロートベアリングが安定状態となりにくく、自励振動を抑制するようにしたものが示されている。
特開昭58-142014号公報 特開2007-46642号公報
 特許文献1においては、浮動ブッシュの内外周面間を連通する給油路に連通した溝部を外周面又は、内周面に設け、潤滑油の動圧力によって、潤滑油不足を解消するものである。
 更に、特許文献2においては、フルフロートベアリングの内周面及び外周面の少なくとも一方に螺旋溝が設けられている構造によって、フルフロートベアリングの自励振動を抑制するようにしたものである。
 従って、これら特許文献1、2には、低速回転域の早い時期にロータ軸に対し連れ回りさせて、低速回転時における摩擦損失を低減させるような構造については開示されていない。
 そこで、本発明はこのような不具合に鑑み成されたもので、浮動ブッシュの内周面に、該浮動ブッシュの内外周面を連通する給油孔を避けた位置に、潤滑油の流れを受け止めて圧力を発生させる受圧部を設けることにより、浮動ブッシュを低速回転域の早い時期にロータ軸に対し連れ回りさせて、低速回転時における摩擦損失の低減を図り、ターボチャージャの低速回転域での過給圧力上昇を図ることを目的とする。
 本発明はかかる目的を達成するもので、内燃機関の燃焼室への給気を加圧するターボチャージャのタービンハウジングとコンプレッサハウジングとの間に介装され、軸受部を有する軸受ハウジングと、該軸受ハウジング内を貫通するタービンロータのロータ軸と、
 前記軸受部と前記ロータ軸との間に介装されると共に、外周面と内周面とを連通する給油孔を設け、前記軸受ハウジングからの潤滑油を前記外周面と前記内周面に供給されるようにした浮動ブッシュと、を備え、前記浮動ブッシュの内周面に、該内周面に沿い且つ、前記給油孔との連通を避けた位置に、潤滑油の流れを受け止めて圧力を発生させる受圧部を設けたことを特徴とすることを特徴とする。
 かかる発明において、浮動ブッシュの内周面に受圧部を設けたので、ロータ軸の低回転域において、浮動ブッシュのロータ軸による連れ回りを早期に発生させて、ロータ軸の回転摩擦抵抗を軽減し、ターボチャージャの低回転域での過給圧力向上を図ることができる。
 また、本願発明において好ましくは、前記受圧部は前記内周面の周方向へ等間隔に複数配設するとよい。
 このような構成にすることにより、浮動ブッシュに発生する回転力を周方向においてバランスさせ、浮動ブッシュの連れ回りの回転力の変動を小さくすることにより、浮動ブッシュの回転騒音、回転斑の発生を抑制する。
 また、本願発明において好ましくは、前記受圧部は前記給油孔を避けて前記ロータ軸の回転方向へ向かって深さが変化する溝形状にするとよい。
 このような構成にすることにより、受圧部の溝の底面深さを変化させることにより、潤滑油の回転に対向する斜面(又は垂直面)に潤滑油があたり、浮動ブッシュの回転力を生起させて、浮動ブッシュの回転をターボチャージャの低回転域においても容易に起動させることができる。
 また、本願発明において好ましくは、前記受圧部は前記給油孔を避けて前記ロータ軸の回転方向へ向かって深くなる溝形状で、該溝形状の最終部が受圧面を形成するとよく、さらに、前記受圧面は前記溝形状を形成する底面と成す角度θを直角又は、鋭角に形成するとよい。
 このような構成にすることにより、前記受圧部は回転方向に進むに従い、深くなる溝形状なので、潤滑油がロータ軸の回転に沿って滑らかに溝形状部に導入されるので、気泡等の発生が抑えられ、浮動ブッシュの回転斑(気泡による回転抵抗)をなくし、受圧面に効率よく圧力を発生させることができ、浮動ブッシュの回転をターボチャージャの低回転域においても容易に起動させることができる。
 さらに、受圧面が前記溝形状を形成する底面と成す角度θを直角又は、鋭角に形成されているため、受圧面に当たった潤滑油がロータ軸と浮動ブッシュとの隙間に逃げ難く、ロータ軸の低回転域においても浮動ブッシュの回転起動力を効果的に得ることができる。
 また、本願発明において好ましくは、前記溝形状の幅は、前記ロータ軸の回転方向に沿って狭くするとよい。
 このような構成にすることにより、溝形状の幅の幅が回転方向に沿って狭くしたので、潤滑油が受圧面に至るまでに、溝形状部分とロータ軸との間において圧力が高まり、受圧面の圧力がより高くなるので、浮動ブッシュの回転をターボチャージャの低回転域においても容易に起動させることができる。
 また、本願発明において好ましくは、前記受圧部は前記浮動ブッシュの幅方向中心の両側に千鳥状に配設されるとよい。
 このような構成にすることにより、浮動ブッシュの受圧面を多く配置でき、ロータ軸の低回転域において浮動ブッシュの回転起動力が高くなると共に、受圧部を同位相(中心に対して片側)に配設した場合に比べ、ロータ軸と浮動ブッシュとの軸受面積が少なくなるのを防止でき支軸が安定する。
 また、本願発明において好ましくは、前記浮動ブッシュをロータ軸に対しオフセット軸受としたことを特徴とする。
 このような構成にすることにより、内周面とロータ軸との間、又は外周面と軸受ハウジングとの間の少なくとも一方において、内周面とロータ軸との隙間、又は外周面と軸受ハウジングとの隙間が、ラジアル方向の向きによって変化する(異なる)ので、その隙間に形成される油膜のバネ定数及び、減衰特性もラジアル方向の向きによって変化し、オイルウィップ(自励振動)が生じ難い回転軸系が実現できる。
 従って、浮動ブッシュのロータ軸による連れ回りを早期に発生させて、ターボチャージャの低回転域における摩擦損失を低減させると共に、高回転域におけるロータ軸の安定支軸が可能となる。
 本発明によれば、浮動ブッシュの内周面に受圧部を設けたので、ロータ軸の低回転域において、浮動ブッシュのロータ軸による連れ回りを早期に発生させて、ロータ軸の回転摩擦抵抗を軽減し、ターボチャージャの低回転域での過給圧力向上を図ることができる。
本発明の第1実施形態にかかるターボチャージャの軸受装置の拡大断面図を示す。 (A)は第1実施形態の浮動ブッシュ軸受の概略図を示し、(B)は(A)のZ-Z矢視図、(C)は(B)の変形例を示す。 第1実施形態の浮動ブッシュ軸受の内周面部分拡大斜視図を示す。 (A)は第2実施形態にかかる浮動ブッシュ軸受の概略図を示す。 (A)は第3実施形態にかかる浮動ブッシュ軸受の概略図を示し、(B)は(A)のY-Y矢視図を示す。 第4実施形態にかかる浮動ブッシュ軸受の概略図を示す。 従来技術の説明図を示す。
(第1実施形態)
 図1に、本発明を実施したターボチャージャの高速回転を回転可能に支持する浮動ブッシュ軸受の詳細図を示す。
 図1において、ターボチャージャ1は、内燃機関(以後「エンジン」と称す)の排ガスによって駆動される排気タービン14と、該排気タービン14を覆うタービンハウジング11と、排気タービン14の駆動力によってエンジンへの給気を加圧するコンプレッサインペラ15と、該コンプレッサインペラ15を覆うコンプレッサハウジング12と、排気タービン14とコンプレッサインペラ15とを一体的に連結するロータ軸16と、タービンハウジング11とコンプレッサハウジング12と、の間に介装され該ロータ軸16を軸支する軸受ハウジング13と、ロータ軸16のスラスト荷重を受けるスラストベアリング16bと、コンプレッサインペラ15側からの締結部材(図示省略)による締付に対し該コンプレッサインペラ15の位置決めをするスリーブ16cとで構成されている。
 軸受ハウジング13には、該ロータ軸16のコンプレッサインペラ15側を支軸する第1浮動ブッシュ軸受17と、排気タービン14側を支軸する第2浮動ブッシュ軸受18と、が配設されている。
 第1浮動ブッシュ軸受17は、軸受ハウジング13に形成された軸受部13dと、該軸受部13dに内嵌し、内部にロータ軸16が配設される第1浮動ブッシュ19とで構成されている。
 第1浮動ブッシュ19は環状に形成され、外周面から内周面に貫通した給油孔19aが配設されている。
 また、第2浮動ブッシュ軸受18は、軸受ハウジング13に形成された軸受部13dと、該軸受部13dに内嵌し、内部にロータ軸16が配設される第2浮動ブッシュ20とで構成されている。
 第2浮動ブッシュ20は環状に形成され、外周面から内周面に貫通した給油孔20aが配設されている。
 浮動ブッシュ軸受17及び、18には軸受ハウジング13の連結口13aに連結された配管(図示省略)によって潤滑油が送油されている。
 コンプレッサ側潤滑油路13cは第1浮動ブッシュ軸受17側に連結口13aから直線状に傾斜させた油路になっている。第1浮動ブッシュ軸受17側に送油された潤滑油は、第1浮動ブッシュ軸受17と、該第1浮動ブッシュ軸受17とスラストベアリング16bとの間にも送油させて、当該部の潤滑と冷却を行っている。
 一方、タービン側潤滑油路13bは第2浮動ブッシュ軸受18側に連結口13aから直線状に傾斜させた油路になっている。第2浮動ブッシュ軸受18側に送油された潤滑油は、第2浮動ブッシュ軸受18と、ロータ軸16の排気タービン14側の拡径部に送油されて当該部の潤滑と冷却を行っている。
 そして、第1浮動ブッシュ軸受17に送油された潤滑油は、軸受部13dと第1浮動ブッシュ19の隙間を満たし、第1浮動ブッシュ19の外周側から内周側に貫通した給油孔19aを通り、第1浮動ブッシュ19とロータ軸16の支軸部16aとの間に供給される。
 また、第2浮動ブッシュ軸受18に送油された潤滑油は、軸受部13dと第2浮動ブッシュ20の隙間を満たし、第2浮動ブッシュ20の外周側から内周側に貫通した給油孔20aを通り、第2浮動ブッシュ20とロータ軸16の支軸部16aとの間に供給される。
そして、浮動ブッシュ19及び、20とロータ軸16夫々を軸受ハウジング13に対し潤滑油にて浮動支持させた構成になっている。
 尚、説明上混乱を避けるため、第1浮動ブッシュ軸受17(含む第1浮動ブッシュ19)と第2浮動ブッシュ軸受18(含む第2浮動ブッシュ20)は同形状になっているにも係わらず説明した。
 従って、以後は「第1浮動ブッシュ軸受17」を「浮動ブッシュ軸受17」として、さらに「第1浮動ブッシュ19」を「浮動ブッシュ19」として説明する。
 図2に本発明の浮動ブッシュ軸受17を示し、図2に基づいて説明する。
 図2(A)は第1実施形態の浮動ブッシュ軸受の概略図を示し、(B)は(A)のZ-Z矢視図、(C)は(B)の変形例を示す。
 浮動ブッシュ軸受17を構成する浮動ブッシュ19は軸受ハウジング13の軸受部13dと浮動ブッシュ19の外周面19bとの間に油膜を形成するための隙間αを有するように配置されている。
 浮動ブッシュ19の内周面19cとロータ軸16の支軸部16aとの間に油膜を形成するための隙間βを有して遊嵌している。
 これらの隙間α、βには、軸受ハウジング13内のコンプレッサ側潤滑油路13c(タービン側潤滑油路13bも同様)を通って潤滑油が圧送されてくる。
 潤滑油は隙間αを満たしながら、浮動ブッシュ19の給油孔19aを通って、浮動ブッシュ19の内周面19cと支軸部16aとの隙間βを満たし、ロータ軸16は潤滑油によって浮いた状態に支持される。
 そして、浮動ブッシュ19の内周面19cには、ロータ軸16の回転方向に沿い、且つ、給油孔19aとの連通を避けた位置に、潤滑油の流れを受けて圧力を発生させる受圧部25が周方向へ等間隔で2箇所に設けられている。
 図3に示すように、受圧部25は、ロータ軸16の回転方向に向かって、浮動ブッシュ19の内周面19cから受圧面25aに向け底面25cが滑らかに深く(ラジアル方向へ)なる溝25bにより構成されている。
 そして、受圧部25は、給油孔19aを避けて内周面に沿って配設されている。
 尚、図3では給油孔19aの側部の片側に配設してあるが、給油孔19aを中心にして両サイド〔図2(B)参照〕に設けてもよい。
 また、本実施形態において、受圧面25aは該受圧面25aと溝25bの底面25cとの成す角度θが直角又は鋭角に形成してある。
 従って、浮動ブッシュ19は内周面19cに周方向へ2箇所等間隔に配設したので、浮動ブッシュ19に発生する回転力を周方向においてバランスさせ、浮動ブッシュの連れ回りの回転力の変動を小さくすることにより、浮動ブッシュの回転騒音、回転斑の発生を抑制することができる。
 また、受圧部25は回転方向に進むに従い、深くなる溝形状なので、潤滑油がロータ軸の回転に沿って滑らかに溝形状部に導入されるので、気泡(キャビテーション)等の発生が抑えられ、浮動ブッシュの回転斑(気泡による回転抵抗)をなくし、受圧面25aに潤滑油の動圧が作用して効率よく圧力を高めることができる。
 更に、受圧面25aは該受圧面25aと溝25bの底面25cとの成す角度θが直角又は鋭角に形成してあるので、受圧面25aに受け止められた潤滑油がロータ軸16と浮動ブッシュ19との隙間に逃げ難く、ロータ軸16の低回転域においても浮動ブッシュ19の回転起動力が高くなり易くなる効果を有している。
 さらに、溝25bの幅Wを一定にしてあるが、回転方向に向かうに従い幅Wを狭めると、潤滑油が受圧面25aに至るまでに、溝形状部分とロータ軸との間において圧力が高まり、受圧面25aの圧力がより高くなるので、さらに、浮動ブッシュ19の回転作用力を大きくすることができる。
 また、さらに本実施形態では、受圧部25を周方向へ2箇所等間隔に配設したが、受圧部25の周方向の長さを短くして、受圧部25は両サイドに千鳥状に配置してもよい。〔図2(c)〕
 この場合、浮動ブッシュの受圧面が多くなり、ロータ軸の低回転域において浮動ブッシュの回転起動力が高くなると共に、受圧部を同位相に配設した場合に比べ、ロータ軸と浮動ブッシュとの軸受面積が少なくなるのを防止でき、支軸が安定する。
(第2実施形態)
 図4(A)は本発明の第2実施形態にかる浮動ブッシュ軸受の概略形状を示し、(B)は(A)のZ-Z矢視図を示す。
 尚、本実施形態は浮動ブッシュの形状以外は同じなので、ターボチャージャ1の全体構造の説明は省略し、同じものは同一符号を付与して説明を省略し、浮動ブッシュの形状のみを説明する。
 図4(A)は浮動ブッシュ軸受21の概略形状を示し、浮動ブッシュ軸受21を構成する浮動ブッシュ22は軸受ハウジング13の軸受部13dと浮動ブッシュ22の外周面22bとの間に油膜を形成するための隙間αを有するように配置されている。
 浮動ブッシュ22の内周面22cとロータ軸16の支軸部16aとの間に油膜を形成するための隙間βを有して遊嵌している。
 これらの隙間α、βには、軸受ハウジング13内のコンプレッサ側潤滑油路13c(タービン側潤滑油路13bも同様)を通って潤滑油が圧送されてくる。
 潤滑油は隙間αを満たしながら、浮動ブッシュ22の給油孔22aを通って、浮動ブッシュ22の内周面22cと支軸部16aとの隙間βを満たし、ロータ軸16は潤滑油の油膜によって浮いた状態に支持される。
 そして、浮動ブッシュ22の内周面22cには、ロータ軸16の回転方向に沿い、且つ、給油孔22aとの連通を避けた位置に、潤滑油の流れを受けて圧力を発生させる受圧部23が周方向へ等間隔で2箇所に設けられている。
 図4に示すように、受圧部23は、ロータ軸16の回転方向に向かって、浮動ブッシュ22の内周面22cに回転方向に沿って受圧面である底面23bが滑らかに浅く(ラジアル方向へ)なる溝23aに成っている。
 底面23bは、浅くなっていく傾斜面に潤滑油が当接して、回転方向の作用力を生起させるものである。
 そして、受圧部23である溝23aは、給油孔22aを中心にして図2(B)に示すように、両サイドに配設されている。
 さらに、溝23aの幅Wを一定にしてあるが、回転方向に向かうに従い幅Wを狭めるとさらに、浮動ブッシュ22の回転作用力を大きくすることができる。
 従って、浮動ブッシュ22は内周面22cに周方向へ2箇所等間隔に配設したので、浮動ブッシュ22に発生する回転力が周方向においてバランスさせることになり、浮動ブッシュ19の連れ回りの回転力の変動を小さくすることにより、浮動ブッシュの回転騒音、回転斑の発生を抑制することができる。
 また、受圧部23は回転方向に進むに従い、浅くなる溝形状なので、傾斜面に潤滑油が当接して、回転方向の作用力を生起させるものである。
(第3実施形態)
 図5(A)は、本発明の第3実施形態にかかる浮動ブッシュ軸受26の概略形状を示し、(B)は(A)のY-Y矢視図を示す。
 尚、本実施形態は浮動ブッシュの形状以外は同じなので、ターボチャージャ1の全体構造の説明は省略し、同じものは同一符号を付与して説明を省略し、浮動ブッシュの形状のみを説明する。
 図5(A)に示すように、浮動ブッシュ軸受26を構成する浮動ブッシュ27は軸受ハウジング13の軸受部13dと浮動ブッシュ27の外周面27bとの間に油膜を形成するための隙間αを有するように配置されている。
 浮動ブッシュ27の内周面27cとロータ軸16の支軸部16aとの間に油膜を形成するための隙間βを有して遊嵌している。
 これらの隙間α、βには、軸受ハウジング13内のコンプレッサ側潤滑油路13c(タービン側潤滑油路13bも同様)を通って潤滑油が圧送されてくる。
 潤滑油は隙間αを満たしながら、浮動ブッシュ27の給油孔27aを通って、浮動ブッシュ27の内周面27cと支軸部16aとの隙間βを満たし、ロータ軸16は潤滑油の油膜によって浮いた状態に支持される。
 そして、図5(A)に示すように、浮動ブッシュ27の内周面27cには、該内周面27cに沿い、且つ、給油孔27aの周方向における間に受圧部28が設けられている。
 受圧部28は、周方向に略同一深さの溝28aにより形成されている。
 各溝の周方向の壁面28cは底面28bと成す角度θが直角又は鋭角に形成してある。受圧部28は図5(A)の回転方向側の壁面28cに潤滑油が当接して、浮動ブッシュ27の連れ回り力を生起するように形成されている。
 尚、図5(B)では給油孔27aと給油孔27aとの間に受圧部28が配設されているが、給油孔27aを中心にして両サイドに設けてもよいし、両方を併合してもよい。
 さらに、溝25bの幅Wを一定にしてあるが、回転方向に向かうに従い幅Wを狭めるとさらに、浮動ブッシュ27の回転作用力を大きくすることができる。
 従って、浮動ブッシュ27は受圧部28を給油孔27aと給油孔27aとの間に多数配設したので、ロータ軸16の低回転域においても浮動ブッシュ27の回転起動力が高くなり易くなる効果を有している。  
(第4実施形態)
 図6は本発明の第4実施形態にかかる浮動ブッシュの拡大断面図である。
 尚、本実施形態は浮動ブッシュの形状以外は同じなので、ターボチャージャ1の全体構造の説明は省略し、同じものは同一符号を付与して説明を省略し、浮動ブッシュの形状のみを説明する。
 浮動ブッシュ軸受30を構成する浮動ブッシュ31は軸受ハウジング13の軸受部13dと浮動ブッシュ31の外周面31bとの間に油膜を形成するための隙間αを有するように配置されている。
 浮動ブッシュ31の内周面31aとロータ軸16の支軸部16aとの間に油膜を形成するための隙間βを有して遊嵌している。
 これらの隙間α、βには、軸受ハウジング13内のコンプレッサ側潤滑油路13c(タービン側潤滑油路13bも同様)を通って潤滑油が圧送されてくる。
 潤滑油は隙間αを満たしながら、浮動ブッシュ19の給油孔31cを通って、浮動ブッシュ19の内周面19cと支軸部16aとの隙間βを満たし、ロータ軸16は潤滑油によって浮いた状態に支持される。
 浮動ブッシュ31の内周面31aは円弧の半径Rの中心(C1,C2)が2箇所ある多円弧状に形成され(図6に示すように浮動ブッシュ軸受30のラジアル方向の肉厚が変化)ている。
 従って、ロータ軸16に対し、浮動ブッシュ31がオフセットした位置関係に配設されている。
 尚、本実施形態では、浮動ブッシュ31の内周面31aを多円弧状に形成したが、浮動ブッシュ31の外周面31bを多円弧状に形成してもよく、又は、内周及び外周面を多円弧状に形成しても同様の効果を得ることができる。
 そして、浮動ブッシュ31の内周面31aには、ロータ軸16の回転方向に沿い、且つ、給油孔31cとの連通を避けた位置に、潤滑油の流れを受け止めて圧力を発生させる受圧部32が周方向へ等間隔で2箇所に設けられている。
 受圧部32は、ロータ軸16の回転方向に沿って、浮動ブッシュ31の内周面31aから第1受圧面32aに向け底面32cが滑らかに深く(ラジアル方向)なる溝32dが形成されている。
 そして、溝32dを形成している壁部は、該壁部の基点Pから受圧面25aに向う中間部で、且つ溝32dの深さ方向(浮動ブッシュ31のラジアル方向)中間部までを削除して、周方向の第2受圧面32bを形成したものである。
 また、第2受圧面32bは上記削除した溝32dの壁面の厚さ面と成す角度θ2を直角又は鋭角に形成して、浮動ブッシュ31の回転起動力が高くなり易くしている。
 これにより、浮動ブッシュ31は、第1受圧面32aに加え第2受圧面32bによって、ロータ軸16の低回転域でのロータ軸16に対する連れ回り起動力がさらに増すこととなり、ターボチャージャの低回転域での更なる性能向上が図られる。
 また、内周面31aとロータ軸16との間、又は外周面31bと軸受ハウジング13との間の少なくとも一方において、ラジアル方向の向きによって内周面31aとロータ軸16との隙間、又は外周面31bと軸受ハウジング13との隙間が、ラジアル方向の向きによって変化する(異なる)ので、その隙間に形成される油膜のバネ定数及び、減衰特性もラジアル方向の向きによって変化し、オイルウィップ(自励振動)が生じ難い回転軸系が実現できる。
 従って、浮動ブッシュ31のロータ軸16による連れ回りを早期に発生させて、ターボチャージャの低回転域における摩擦損失を低減させると共に、高回転域におけるロータ軸16の安定支軸が可能となる。
 尚、本実施形態の場合、浮動ブッシュ31の内周面31a形状は、円弧がロータ軸16の回転方向に沿って肉厚が小さくなる形状にしたが、円弧がロータ軸16の回転方向に沿って肉厚が大きくなる形状にしても同様の効果を得ることができる。
 従って、ロータ軸16の回転数が比較的低い時期から浮動ブッシュ31の連れ回りするようにすることにより、ターボチャージャ1が低速回転域においても浮動ブッシュ31とロータ軸16との回転抵抗を小さくして、低速域におけるターボチャージャ1の過給圧力の向上効果を得ると共に、浮動ブッシュ31をオフセット軸受とすることで、高速域でのロータ軸16の支軸を安定させることができる。
 本発明によると、内周面19cとロータ軸16の支軸部16aとの間、又は外周面と軸受ハウジングとの間の少なくとも一方において、内周面とロータ軸との隙間、又は外周面と軸受ハウジングとの隙間が、ラジアル方向の向きによって変化する(異なる)ので、その隙間に形成される油膜のバネ定数及び、減衰特性もラジアル方向の向きによって変化し、オイルウィップ(自励振動)が生じ難い回転軸系が実現できる。
 従って、浮動ブッシュのロータ軸による連れ回りを早期に生起させて、ターボチャージャの低回転域における摩擦損失を低減させ、回転作用力を大きくすることができると共に、高回転域におけるロータ軸の安定支軸が可能となる。
 本発明によれば、浮動ブッシュの内周面に受圧部を設けたので、ロータ軸の低回転域において、浮動ブッシュのロータ軸による連れ回りを早期に発生させて、ロータ軸の回転摩擦抵抗を軽減し、低回転域での回転作用力を大きくすることができるため、ターボチャージャ等の回転機械に適用できる。
 1   ターボチャージャ
 11   タービンハウジング
 12   コンプレッサハウジング
 13   軸受ハウジング
 13a  連結口
 13b、13c  潤滑油路
 13d  軸受部
 14   排気タービン
 15   コンプレッサインペラ
 16   ロータ軸
 16a  支軸部
 17,21,26,30   第1浮動ブッシュ軸受(浮動ブッシュ軸受)
 18   第2浮動ブッシュ軸受
 19、22,27,31   第1浮動ブッシュ(浮動ブッシュ)
 19a、20a、22a、27a  給油孔
 19b  外周面
 19c  内周面
 20   第2浮動ブッシュ
 23、25、28,32   受圧部
 25a 受圧面
 25b 溝

Claims (8)

  1.  内燃機関の燃焼室への給気を加圧するターボチャージャのタービンハウジングとコンプレッサハウジングとの間に介装され、軸受部を有する軸受ハウジングと、
     該軸受ハウジング内を貫通するタービンロータのロータ軸と、
     前記軸受部と前記ロータ軸との間に介装されると共に、外周面と内周面とを連通する給油孔を設け、前記軸受ハウジングからの潤滑油を前記外周面と前記内周面に供給されるようにした浮動ブッシュと、を備え、
     前記浮動ブッシュの内周面に、該内周面に沿い且つ、前記給油孔との連通を避けた位置に、潤滑油の流れを受け止めて圧力を発生させる受圧部を設けたことを特徴とするターボチャージャの軸受装置。
  2.  前記受圧部は前記内周面の周方向へ等間隔に複数配設したことを特徴とする請求項1記載のターボチャージャの軸受装置。
  3.  前記受圧部は前記ロータ軸の回転方向へ向かって深さが変化する溝形状になっていることを特徴とする請求項1記載のターボチャージャの軸受装置。
  4.  前記受圧部は前記ロータ軸の回転方向へ向かって深くなる溝形状で、該溝形状の最終部が受圧面になっていることを特徴とする請求項1記載のターボチャージャの軸受装置。
  5.  前記受圧面は前記溝形状を形成する底面と成す角度θを直角又は、鋭角に形成したことを特徴とする請求項4記載のターボチャージャの軸受装置。
  6.  前記溝形状の幅は、前記ロータ軸の回転方向に沿って狭くしたことを特徴とする請求項 3記載のターボチャージャの軸受装置。
  7.  前記受圧部は前記浮動ブッシュの幅方向中心の両側に千鳥状に配設したことを特徴とする請求項1記載のターボチャージャの軸受装置。
  8.  前記浮動ブッシュをロータ軸に対しオフセット軸受としたことを特徴とする請求項1乃至7記載のターボチャージャの軸受装置。
PCT/JP2012/065999 2011-06-30 2012-06-22 ターボチャージャの軸受装置 WO2013002141A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280023223.9A CN103534460B (zh) 2011-06-30 2012-06-22 涡轮增压器的轴承装置
EP12803960.9A EP2728137B1 (en) 2011-06-30 2012-06-22 Bearing device for turbocharger
US14/124,013 US9599119B2 (en) 2011-06-30 2012-06-22 Bearing device for turbocharger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011145796A JP5595346B2 (ja) 2011-06-30 2011-06-30 ターボチャージャの軸受装置
JP2011-145796 2011-06-30

Publications (1)

Publication Number Publication Date
WO2013002141A1 true WO2013002141A1 (ja) 2013-01-03

Family

ID=47424036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065999 WO2013002141A1 (ja) 2011-06-30 2012-06-22 ターボチャージャの軸受装置

Country Status (5)

Country Link
US (1) US9599119B2 (ja)
EP (1) EP2728137B1 (ja)
JP (1) JP5595346B2 (ja)
CN (1) CN103534460B (ja)
WO (1) WO2013002141A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10330152B2 (en) 2014-02-27 2019-06-25 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Floating bush bearing device and turbocharger provided with the bearing device

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010052892A1 (de) * 2010-12-01 2012-06-06 Voith Patent Gmbh Lageranordnung für eine Welle eines Turbinenrades
WO2015009560A1 (en) * 2013-07-15 2015-01-22 Borgwarner Inc. Exhaust-gas turbocharger
CN106460648B (zh) * 2014-06-12 2019-11-01 株式会社Ihi 轴承构造及增压器
DE112015003829T5 (de) * 2014-08-21 2017-05-11 Ihi Corporation Lagerstruktur und Turbolader
CN105508443A (zh) * 2014-10-14 2016-04-20 摩尔动力(北京)技术股份有限公司 大间隙轴承系统
JP6512296B2 (ja) 2015-07-21 2019-05-15 株式会社Ihi 軸受構造および過給機
JP7000010B2 (ja) 2016-02-29 2022-01-19 三菱パワー株式会社 ジャーナル軸受および回転機械
US11125384B2 (en) * 2016-03-01 2021-09-21 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd Bearing device and exhaust turbine turbocharger
DE102016224094A1 (de) * 2016-12-05 2018-06-07 Bosch Mahle Turbo Systems Gmbh & Co. Kg Lagerbuchse und zugehörige Ladeeinrichtung
CN106837471B (zh) * 2017-03-23 2022-11-08 吉林大学 一种发动机涡轮增压器压气机出口气体中机油回收装置
DE102017213502A1 (de) * 2017-08-03 2019-02-07 Continental Automotive Gmbh Schwimmbuchsenlager für einen Abgasturbolader
US10557498B1 (en) * 2018-10-12 2020-02-11 Borgwarner Inc. Full-floating bearing and turbocharger including the same
WO2020144733A1 (ja) * 2019-01-07 2020-07-16 三菱重工エンジン&ターボチャージャ株式会社 軸受装置及びこれを備えたターボチャージャ

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58142014A (ja) 1982-02-17 1983-08-23 Hitachi Ltd 浮動ブツシユ軸受
JPH01193409A (ja) * 1988-01-26 1989-08-03 Ishikawajima Harima Heavy Ind Co Ltd フローテイングメタルを備えた軸受
JP2000130432A (ja) * 1998-10-27 2000-05-12 Mitsubishi Heavy Ind Ltd 流体軸受及び研削盤
JP2007046642A (ja) 2005-08-08 2007-02-22 Toyota Motor Corp 過給機およびフルフロートベアリング
JP2008190498A (ja) * 2007-02-07 2008-08-21 Toyota Motor Corp ターボチャージャの軸受構造
JP2009167872A (ja) * 2008-01-15 2009-07-30 Toyota Motor Corp 過給機
JP2010043680A (ja) * 2008-08-12 2010-02-25 Mitsubishi Heavy Ind Ltd 浮動ブッシュ軸受

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3432303B2 (ja) 1994-09-08 2003-08-04 川崎重工業株式会社 二重反転プロペラ用反転軸受
RU2297535C2 (ru) 2002-05-06 2007-04-20 Абб Турбо Системс Аг Устройство для закрепления рабочего колеса на валу
JP2007071165A (ja) 2005-09-09 2007-03-22 Ishikawajima Harima Heavy Ind Co Ltd 電動過給機の軸受構造
JP2009156333A (ja) 2007-12-26 2009-07-16 Ihi Corp 回転機械の軸受装置
DE102008000853A1 (de) 2008-03-27 2009-10-01 Bosch Mahle Turbo Systems Gmbh & Co. Kg Radiallager mit Ölnut
JP5359206B2 (ja) 2008-11-11 2013-12-04 トヨタ自動車株式会社 浮動ブッシュ軸受式の軸受装置及びこれを備える内燃機関の過給機
JP2010138757A (ja) 2008-12-10 2010-06-24 Toyota Motor Corp ターボチャージャ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58142014A (ja) 1982-02-17 1983-08-23 Hitachi Ltd 浮動ブツシユ軸受
JPH01193409A (ja) * 1988-01-26 1989-08-03 Ishikawajima Harima Heavy Ind Co Ltd フローテイングメタルを備えた軸受
JP2000130432A (ja) * 1998-10-27 2000-05-12 Mitsubishi Heavy Ind Ltd 流体軸受及び研削盤
JP2007046642A (ja) 2005-08-08 2007-02-22 Toyota Motor Corp 過給機およびフルフロートベアリング
JP2008190498A (ja) * 2007-02-07 2008-08-21 Toyota Motor Corp ターボチャージャの軸受構造
JP2009167872A (ja) * 2008-01-15 2009-07-30 Toyota Motor Corp 過給機
JP2010043680A (ja) * 2008-08-12 2010-02-25 Mitsubishi Heavy Ind Ltd 浮動ブッシュ軸受

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10330152B2 (en) 2014-02-27 2019-06-25 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Floating bush bearing device and turbocharger provided with the bearing device

Also Published As

Publication number Publication date
US9599119B2 (en) 2017-03-21
JP2013011251A (ja) 2013-01-17
EP2728137A1 (en) 2014-05-07
CN103534460B (zh) 2017-02-22
EP2728137B1 (en) 2018-10-03
EP2728137A4 (en) 2015-04-15
JP5595346B2 (ja) 2014-09-24
US20140112776A1 (en) 2014-04-24
CN103534460A (zh) 2014-01-22

Similar Documents

Publication Publication Date Title
JP5595346B2 (ja) ターボチャージャの軸受装置
JP2013011251A5 (ja)
US7753591B2 (en) Turbocharger bearing and associated components
JP5082477B2 (ja) 浮動ブッシュ軸受構造
JP5863422B2 (ja) スラスト軸受及び回転機械
JP2009167872A (ja) 過給機
JP6704107B2 (ja) スラストカラーおよびスラスト軸受装置
US8360657B2 (en) Hydrodynamic tapered roller bearings and gas turbine engine systems involving such bearings
JP5359206B2 (ja) 浮動ブッシュ軸受式の軸受装置及びこれを備える内燃機関の過給機
JP2019035435A (ja) スラスト軸受装置
JP6469716B2 (ja) 排気ガスターボチャージャーのための軸受装置および排気ガスターボチャージャー
JP2002332864A (ja) ターボチャージャの潤滑装置
JP2015530537A (ja) 軸受装置及び排気ガスターボチャージャー
JP2010138753A (ja) 過給機の軸受装置
JP2014034879A (ja) 過給機および軸受
JP2007309346A (ja) 回転軸支持構造
JP6079058B2 (ja) ターボチャージャー用転がり軸受装置
WO2012057012A1 (ja) 回転軸の軸受方法及び装置
WO2016063456A1 (ja) 浮動ブシュ軸受及び舶用排気タービン
JP6540281B2 (ja) 複列玉軸受
WO2017014084A1 (ja) 軸受構造および過給機
JP2009041745A (ja) スラスト滑り軸受装置
JP2007192303A (ja) ターボチャージャ用アンギュラ玉軸受
KR20150034847A (ko) 터보 차저
WO2019078801A1 (en) MONOBLOC TURBOCHARGER BEARING

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12803960

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012803960

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14124013

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE