WO2013002137A1 - レドックスフロー電池 - Google Patents

レドックスフロー電池 Download PDF

Info

Publication number
WO2013002137A1
WO2013002137A1 PCT/JP2012/065980 JP2012065980W WO2013002137A1 WO 2013002137 A1 WO2013002137 A1 WO 2013002137A1 JP 2012065980 W JP2012065980 W JP 2012065980W WO 2013002137 A1 WO2013002137 A1 WO 2013002137A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
pipe
negative electrode
electrolyte
tank
Prior art date
Application number
PCT/JP2012/065980
Other languages
English (en)
French (fr)
Inventor
貴浩 隈元
雍容 董
敏夫 重松
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011142220A external-priority patent/JP5769010B2/ja
Priority claimed from JP2011142219A external-priority patent/JP5769070B2/ja
Priority claimed from JP2011142221A external-priority patent/JP5769071B2/ja
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN201280031948.2A priority Critical patent/CN103620845B/zh
Priority to US14/129,190 priority patent/US9531028B2/en
Priority to EP12804832.9A priority patent/EP2725648B1/en
Publication of WO2013002137A1 publication Critical patent/WO2013002137A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/20Indirect fuel cells, e.g. fuel cells with redox couple being irreversible
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a redox flow battery.
  • the present invention relates to a redox flow battery capable of obtaining a high electromotive force.
  • a redox flow battery as one of large-capacity storage batteries.
  • charge and discharge are performed by supplying a positive electrode electrolyte and a negative electrode electrolyte respectively to a battery element in which a diaphragm is interposed between a positive electrode and a negative electrode.
  • the electrolytic solution typically, an aqueous solution containing metal ions whose valence changes by oxidation-reduction is used.
  • Typical examples include iron-chromium redox flow batteries using iron ions for the positive electrode and chromium ions for the negative electrode, as well as all-vanadium redox flow batteries using vanadium ions for both positive and negative electrodes (for example, JP-A-2001-043884). (Patent Document 1), JP-A-2006-147374 (Patent Document 2)).
  • Vanadium-based redox flow batteries have been put into practical use and are expected to be used in the future.
  • the conventional iron-chromium redox flow battery and all vanadium redox flow batteries cannot be said to have a sufficiently high electromotive force.
  • a new redox that has a higher electromotive force and can stably supply metal ions used for active materials, preferably stably and inexpensively. Development of a flow battery is desired.
  • the positive and negative electrolyte solutions can be mixed as in the case of all vanadium redox flow batteries, because the characteristics of the battery can be improved by the mixing.
  • one of the objects of the present invention is to provide a redox flow battery capable of obtaining a high electromotive force.
  • Another object of the present invention is to provide a redox flow battery in which positive and negative electrolytes can be mixed.
  • the standard redox potential of the metal ion of the positive electrode active material used in the conventional redox flow battery is 0.77V for Fe 2+ / Fe 3+ and 1.0V for V 4+ / V 5+ .
  • the present inventors are water-soluble metal ions as metal ions (active material ions) serving as a positive electrode active material, have a higher standard redox potential than conventional metal ions, are relatively cheaper than vanadium, A redox flow battery using manganese (Mn), which is considered to be excellent in terms of supply, was examined.
  • the standard oxidation-reduction potential of Mn 2+ / Mn 3+ is 1.51 V, and manganese ions have favorable characteristics for constituting a redox pair having a larger electromotive force.
  • the present inventors have focused on titanium (Ti) as a metal ion serving as a negative electrode active material, and studied a redox flow battery using titanium.
  • the standard oxidation-reduction potential of Ti 3+ / Ti 4+ is 0 V, and titanium ions also have preferable characteristics for constituting a redox pair having a higher electromotive force.
  • a manganese-titanium redox flow battery using manganese ions as the positive electrode active material and titanium ions as the negative electrode active material can have a high electromotive force of about 1.4V.
  • the specific gravity of the charged trivalent manganese ions (Mn 3+ ) is higher than that of the divalent manganese ions (Mn 2+ ) ( I understood that it was heavy. Therefore, the electrolyte solution in a charged state (a solution containing a relatively large amount of Mn 3+ ) easily settles at the bottom of the positive electrode tank, and when charging is continued, the Mn in the charged state is formed on the bottom side in the positive electrode tank. It was found that the ion concentration of 3+ was higher than the ion concentration of Mn 2+ in the uncharged state.
  • the positive electrode electrolyte in the positive electrode tank has an ion concentration distribution (two layers ) in which a large amount of Mn 2+ is present in the region near the liquid level of the tank and a large amount of Mn 3+ is present in the region near the bottom of the tank. It was found that the condition) was likely to occur.
  • the charged electrolyte is supplied to the battery element during charging. Therefore, the time to reach the voltage at the end of charging is shortened, overcharged, or the chargeable time is shortened, resulting in a decrease in efficiency. In the worst case, there is a risk of overvoltage during charging or precipitation of the active material.
  • manganese ions are also included in the negative electrode electrolyte
  • titanium ions are included as the negative electrode active material
  • titanium ions are also included in the positive electrode electrolyte.
  • the positive electrode opening in the communication tube is provided on the bottom side of the positive electrode tank when the positive and negative electrode electrolyte solutions are mixed through the communication tube. If so, the cathode electrolyte containing a relatively large amount of charged manganese ions and the anode electrolyte are mixed, and loss due to self-discharge tends to increase.
  • the negative electrode electrolyte containing titanium ions as the negative electrode active material compared to tetravalent titanium ions (Ti 4+ , TiO 2+, etc.), the charged trivalent titanium ions (Ti 3+ ) It was found that the specific gravity was small (light). Therefore, contrary to the above-described positive electrode electrolyte containing manganese ions, during charging, the negative electrode electrolyte in the negative electrode tank has a lot of Ti 3+ in the region near the liquid level of the tank, and the region near the bottom of the tank. In particular, there is a tendency for ion concentration distribution such that there are many tetravalent titanium ions.
  • the electrolyte solution that is not sufficiently charged during discharge (containing a relatively large amount of tetravalent titanium ions). Liquid) is supplied to the battery element, leading to a reduction in efficiency, such as a shorter discharge time.
  • the opening on the negative electrode side of the communication pipe is connected to the negative electrode tank. If provided on the liquid surface side, the negative electrode electrolyte containing a relatively large amount of charged titanium ions and the positive electrode electrolyte are mixed, and loss due to self-discharge tends to increase.
  • the redox flow battery of the present invention supplies a positive electrode electrolyte in a positive electrode tank and a negative electrode electrolyte in a negative electrode tank to a battery element including a positive electrode, a negative electrode, and a diaphragm interposed between the electrodes.
  • the present invention relates to a redox flow battery that performs charging and discharging.
  • the positive electrode electrolyte contains manganese ions.
  • the following configuration (1) is provided.
  • a positive electrode charging pipe for supplying a positive electrode electrolyte to the battery element during charging
  • a positive electrode discharging pipe for supplying the positive electrode electrolyte to the battery element during discharging.
  • One end of the positive electrode charging pipe opens to a position near the liquid surface of the positive electrode electrolyte in the positive electrode tank.
  • One end of the positive electrode discharge pipe opens at a position near the bottom of the positive electrode tank.
  • a negative electrode charging pipe for supplying a negative electrode electrolyte to the battery element at the time of charging and a negative electrode discharging pipe for supplying a negative electrode electrolyte to the battery element at the time of discharging are connected to the negative electrode tank, respectively.
  • One end of the negative electrode charging pipe opens at a position near the bottom of the negative electrode tank.
  • One end of the negative electrode discharge pipe opens at a position near the liquid surface of the negative electrode electrolyte in the negative electrode tank.
  • the positive electrode electrolyte contains manganese ions and the negative electrode electrolyte contains titanium ions.
  • This embodiment is characterized by including the above-described configuration (1) and configuration (2).
  • the following configuration (3) is provided.
  • ⁇ Configuration (3)> A stirring mechanism for stirring the positive electrode electrolyte in the positive electrode tank or the negative electrode electrolyte in the negative electrode tank, and control means for controlling the operation of the stirring mechanism are provided.
  • the installation state of the stirring mechanism differs depending on the configuration of the positive electrode electrolyte and the negative electrode electrolyte. Specifically, there are the following three. [1] When the positive electrode electrolyte contains manganese ions as the positive electrode active material and the negative electrode electrolyte does not contain titanium ions, the stirring mechanism is provided in the positive electrode tank that stores the positive electrode electrolyte.
  • a stirring mechanism may be provided also in the negative electrode tank that stores the negative electrode electrolyte.
  • the stirring mechanism is provided in the negative electrode tank.
  • a stirring mechanism may also be provided in the positive electrode tank.
  • the stirring mechanism is provided in both the positive electrode tank and the negative electrode tank.
  • the “position close to the liquid level” means that when the distance from the bottom of the tank to the liquid level of the electrolytic solution in the tank is L, it is less than (L / 2) more than L from the bottom of the tank. Position. In the present invention, the “position close to the bottom” is a position of (L / 2) or less from the bottom of the tank.
  • the redox flow battery of the present invention having at least one of the structures (1) and (2) described above is an electrolyte solution that is not fully charged during charging (a liquid in which the Mn 2+ is relatively high in the positive electrode, a negative electrode Can supply a battery element with a relatively high amount of tetravalent titanium ions), and at the time of discharge, a sufficiently charged electrolyte (a relatively high amount of Mn 3+ in the positive electrode and a relative amount of Ti 3+ in the negative electrode) A large amount of liquid) can be supplied to the battery element. Therefore, the redox flow battery of the present invention can efficiently use electrolytic solutions having different specific gravities in charge / discharge operation, and for example, a fully charged electrolytic solution can be used during discharge. Therefore, the redox flow battery of the present invention can increase voltage and output, and can have a high electromotive force over a long period of time.
  • the redox flow battery of the present invention having the above configuration (3) can quickly uniformize the distribution even when the distribution of active material ions in the electrolyte in the tank becomes non-uniform due to charge / discharge. Can do.
  • the timing of stirring may be before the electrolyte solution is sent to the battery element for charging and discharging, and it is preferable to continue stirring at least until the feeding of the electrolyte solution for charging and discharging is completed. By doing so, the problem of insufficient charge or insufficient discharge in a redox flow battery using at least one of manganese ions and titanium ions as an active material can be made difficult to occur.
  • the preferable form of this invention redox flow battery is demonstrated.
  • the other end of the charge piping of the same pole and the other end of discharge piping are one common piping among a positive electrode and a negative electrode. It is preferable that the electrode is connected to one end and the electrolyte solution of the electrode is supplied to the battery element through the common pipe.
  • a pump for pumping the electrolytic solution is attached to the charging pipe and the discharging pipe connected to the common pipe, and the charging pipe is connected to the common pipe.
  • the form with which the three-way valve was attached to the connection location with the said piping for discharge is preferable.
  • a form in which a pump and a check valve for pumping the electrolyte solution are respectively attached to the charging pipe and the discharging pipe connected to the common pipe is preferable.
  • the above-mentioned form with common piping can reduce the number of piping connected to the battery element.
  • the said form can supply electrolyte solution to a battery element with a desired pressure in both the time of charge and the time of discharge by separately providing the pump in each of the piping for charging and the piping for discharging.
  • the three-way valve is switched, and in the configuration including the check valve, the backflow of the electrolyte can be prevented by the valve, and the electrolytes having different specific gravity can be prevented from being mixed.
  • the number of parts can be reduced and the configuration can be simplified.
  • the switching operation such as the three-way valve is not required, and a malfunction due to a malfunction (such as a pump failure) does not occur.
  • a three-way valve is attached to a connection portion of the common pipe with the charging pipe and the discharge pipe, and the common pipe is connected between the three-way valve and the battery element. Also preferred is a mode in which a pump for pumping the electrolyte is attached.
  • the above-mentioned form is a form provided with one three-way valve instead of two check valves, and even by sharing one pump at the time of charging and discharging, the number of parts is small and the configuration is simplified. it can. Furthermore, the said form can reduce a running cost because there is one pump.
  • the return pipe for positive electrode charge which returns the positive electrode electrolyte solution from the said battery element to the said tank at the time of charge to the said positive electrode tank
  • a form in which a positive electrode discharge return pipe for returning the positive electrode electrolyte from the battery element to the tank at the time of discharging is connected is preferable.
  • one end of the positive electrode charging return pipe opens at a position near the bottom of the positive electrode tank, and one end of the positive electrode discharging return pipe is near the liquid level of the positive electrode electrolyte in the positive electrode tank.
  • the other end of the positive charge return pipe and the other end of the positive discharge return pipe are connected to one end of one positive common return pipe, and the positive charge return pipe and the positive charge return pipe A mode in which a three-way valve is attached to a connection point with the positive electrode discharge return pipe is preferable.
  • the positive electrolyte solution from the battery element is sent to the positive charge return pipe and the positive discharge return pipe through the positive common return pipe.
  • a negative electrode charging return pipe that returns the negative electrode electrolyte from the battery element to the tank during charging to the negative electrode tank, and a negative electrode discharge return pipe that returns the negative electrode electrolyte from the battery element to the tank during discharging. are preferably connected to each other.
  • one end of the negative electrode return return pipe is opened at a position near the liquid surface of the negative electrode electrolyte in the negative electrode tank, and one end of the negative electrode discharge return pipe is located near the bottom of the negative electrode tank.
  • the other end of the negative electrode return return pipe and the other end of the negative electrode discharge return pipe are connected to one end of one negative electrode common return pipe, and in the negative electrode common return pipe, the negative electrode charge return pipe and A form in which a three-way valve is attached to the connection portion with the negative electrode return return pipe is preferable.
  • the negative electrolyte solution from the battery element is sent to the negative charge return pipe and the negative discharge return pipe through the negative common return pipe.
  • the above-described configuration including the return pipe for charging and the return pipe for discharging is, for example, an electrolyte solution that has been charged and has a higher specific gravity or an electrolyte solution having a reduced specific gravity when returning the electrolyte solution discharged from the battery element to the tank. Therefore, it is possible to make it difficult to mix the electrolyte solutions in the tank with different specific gravity in the tank. That is, the said form is easy to make or maintain the two-layer state (ion concentration distribution) of the electrolyte solution in a charged state and the electrolyte solution in a state of not being fully charged.
  • the above-described embodiment can efficiently supply the battery element with an electrolyte containing a relatively large amount of ions that are not sufficiently charged (discharged state) at the time of charging, and ions that are sufficiently charged at the time of discharging. Can be efficiently supplied to the battery element.
  • the stirring mechanism is preferably configured to include an introduction pipe and a gas supply mechanism.
  • the introduction pipe is preferably a pipe that is introduced from the outside of the tank into the tank and opens into the electrolyte stored in the tank.
  • the gas supply mechanism is preferably a mechanism for supplying an inert gas into the tank via an introduction pipe.
  • the electrolytic solution can be stirred by bubbling the electrolytic solution with an inert gas. If more efficient bubbling is performed, it is preferable to provide a plurality of pores in the portion of the side wall portion of the introduction pipe that is disposed in the electrolytic solution.
  • a stirring mechanism shall be a structure provided with the stirring member which rotates or rock
  • the stirring member is preferably configured to operate by electromagnetic force.
  • the resin-coated magnet may be rotated or vibrated by electromagnetic force from outside the tank. This is the same configuration as a so-called magnetic stirrer.
  • the stirring mechanism preferably includes a stirring pipe and a liquid feed pump.
  • the stirring pipe is preferably a pipe having one end opened to the liquid phase in the tank and the other end opened to the liquid phase or gas phase in the same tank.
  • a liquid feeding pump is a pump which sends out electrolyte solution toward the other end side from the one end side of piping for stirring.
  • the agitation mechanism is operated before charging / discharging. Therefore, if a temperature adjusting mechanism is provided in the middle of the stirring pipe, the electrolyte can be efficiently adjusted to a temperature suitable for charging / discharging at the time of charging / discharging of the redox flow battery. In addition, since the waste of operating the temperature adjustment mechanism when the stirring mechanism is not operated can be eliminated, the running cost of the redox flow battery can be reduced.
  • a filter for removing impurities and precipitates in the electrolyte is provided in the middle of the agitation pipe.
  • the electrolytic solution can be applied to the filter while stirring the electrolytic solution. This eliminates the need for a separate pump for feeding liquid to the filter, thereby reducing the equipment cost and running cost of the redox flow battery.
  • control means is configured to intermittently operate the stirring mechanism according to a predetermined schedule.
  • the stirring mechanism can be operated according to the schedule.
  • the operation schedule is often determined to some extent in a normal redox flow battery.
  • the redox flow battery may be operated according to a fixed operation schedule such that it is charged at night and discharged in a time when power demand is high during the day. Many. If the operation schedule is determined in this way, the schedule for stirring the electrolyte can be easily determined in accordance with the operation schedule.
  • the control means may control the stirring mechanism based on the detection result of the detection mechanism.
  • a detection mechanism As shown in a fifteenth embodiment to be described later with reference to FIG. 11A, a detection mechanism that detects the concentration distribution of the active material ions by detecting the transparency (or chromaticity) of the electrolytic solution. Can be mentioned.
  • the reason why the transparency of the electrolytic solution can be detected is that the electrolytic solution containing manganese ions and the electrolytic solution containing titanium ions can have different transparency due to the difference in the oxidation number of ions.
  • an electrolyte that actually samples the electrolytic solution and detects the concentration distribution of the active material ions may be employed.
  • the positive electrode electrolyte and the negative electrode electrolyte contain a common metal ion species, and the positive electrode tank It is also preferable to provide a communication pipe that communicates the liquid phase inside and the liquid phase inside the negative electrode tank.
  • one end of the communication pipe is connected to the positive electrode tank. It is preferable to open to the position near the liquid level of the positive electrode electrolyte.
  • one end of the communication pipe is connected to the negative electrode tank. It is preferable to open at a position near the bottom.
  • the common metal ion species is a form of manganese ions and titanium ions, that is, containing manganese ions as the positive electrode active material, containing titanium ions as the negative electrode active material, and further, titanium ions in the positive electrode electrolyte,
  • one end of the communication pipe opens at a position near the liquid surface of the positive electrode electrolyte in the positive electrode tank, and the other end of the communication pipe is near the bottom of the negative electrode tank. It is preferable to open to the position.
  • the redox flow battery of the present invention having the above-described configuration can effectively reduce or substantially prevent self-discharge when the positive and negative electrolytes are mixed through the communication pipe. Therefore, the redox flow battery of the present invention mixes the electrolyte solution of both electrodes when there is a variation in the amount of electrolyte solution (occurrence of liquid level difference) or a variation in ion concentration due to the liquid transfer over time. The variation can be easily corrected, and loss due to self-discharge during mixing can be reduced.
  • the redox flow battery of the present invention mixes the electrolyte solution in a specific region in the tanks of both electrodes, it is difficult for self-discharge at the time of mixing to occur. In this case, the electrolyte solution can be mixed. Then, the redox flow battery can be self-discharged promptly to recover the battery capacity.
  • both positive and negative electrolyte solutions contain both manganese ions and titanium ions
  • the mixed electrolyte solutions of both electrodes are relatively not fully charged (discharge state). Electrolytic solution. Therefore, in this embodiment, when the electrolytes of both electrodes are mixed, loss due to self-discharge is more easily reduced, or self-discharge does not substantially occur.
  • the titanium ions in the positive electrolyte has a function of suppressing the precipitation of MnO 2 due to disproportionation Mn 3+. The present inventors have found that the above precipitation can be effectively suppressed when titanium ions are present together with manganese ions in the positive electrode electrolyte. Therefore, this form can have a high electromotive force over a long period of time.
  • the redox flow battery of the present invention provided with the communication pipe has an open / close valve attached to the communication pipe.
  • the above configuration can prevent the positive and negative tanks from being always communicated by the closing operation of the on-off valve, so that the electrolytes of both poles are always mixed. Therefore, the said form can further reduce the self discharge by mixing of the electrolyte solution of both electrodes, and can further reduce the loss accompanying self discharge.
  • an inner diameter ⁇ of at least a part of the communication pipe is 25 mm or less.
  • both positive and negative tanks are in continuous communication, and there is virtually no variation in the amount of electrolyte or ion concentration between the two electrodes. Therefore, in the above embodiment, the electrolytes of both electrodes can be mixed without performing an operation such as opening and closing the on-off valve. And the said form can prevent that electrolyte solution is mixed too much at least one part of a communicating pipe
  • the present redox flow battery has a high electromotive force.
  • the redox flow battery of the present invention has high electromotive force and stable charge / discharge characteristics.
  • FIG. 1 is a schematic configuration diagram of a basic configuration of a redox flow battery common to the embodiments.
  • FIG. 2 is a schematic configuration diagram of the redox flow battery of the present invention.
  • FIG. 2 (A) shows the first embodiment
  • FIG. 2 (B) shows the second embodiment.
  • FIG. 3 is a schematic configuration diagram of the redox flow battery of the present invention.
  • FIG. 3 (A) shows the third embodiment
  • FIG. 3 (B) shows the fourth embodiment
  • FIG. 3 (C) shows the fifth embodiment.
  • FIG. 4 is a schematic configuration diagram of a redox flow battery according to the sixth embodiment.
  • FIG. 5 is a schematic configuration diagram of the redox flow battery of the present invention.
  • FIG. 5 (A) shows the seventh embodiment
  • FIG. 6 is a schematic configuration diagram of the redox flow battery of the present invention.
  • FIG. 6 (A) shows the ninth embodiment, and
  • FIG. 6 (B) shows the tenth embodiment.
  • FIG. 7 is a schematic configuration diagram of a redox flow battery according to the eleventh embodiment.
  • FIG. 8 is a schematic configuration diagram of a redox flow battery according to the twelfth embodiment.
  • FIG. 9 is a schematic configuration diagram of a stirring mechanism described in the thirteenth embodiment that stirs the electrolytic solution in the tank by introducing an inert gas into the tank.
  • FIGS. 10A to 10C are schematic configuration diagrams of the stirring mechanism described in the fourteenth embodiment, in which the electrolytic solution is stirred by causing convection in the electrolytic solution in the tank.
  • FIGS. 11A to 11B are schematic configuration diagrams of a stirring mechanism described in the fifteenth embodiment in which the electrolytic solution in the tank is once taken out and returned to the tank to stir the electrolytic solution.
  • FIG. 12 is a schematic configuration diagram illustrating an arrangement state of communication pipes that connect the liquid phase of the positive electrode tank and the liquid phase of the negative electrode tank described in the sixteenth embodiment.
  • FIG. 13 is a schematic configuration diagram of a redox flow battery according to the seventeenth embodiment.
  • FIG. 14 is a schematic configuration diagram of a redox flow battery according to the eighteenth embodiment.
  • FIG. 15 is a schematic configuration diagram of a redox flow battery according to the nineteenth embodiment.
  • FIG. 1 is a schematic configuration diagram showing a portion having a common configuration in a redox flow battery (hereinafter referred to as an RF battery) 100 of each embodiment.
  • This RF battery 100 differs from a conventional redox flow battery in that manganese ions (hereinafter also referred to as Mn ions) are used as a positive electrode active material and titanium ions (hereinafter also referred to as Ti ions) are used as a negative electrode active material.
  • Mn ions manganese ions
  • Ti ions titanium ions
  • a solid line arrow in FIG. 1 means charging, and a broken line arrow means discharging.
  • the active material ion shown in FIG. 1 has shown the typical form, and forms other than illustration may be included. For example, in FIG. 1, Ti 4+ is shown as a tetravalent titanium ion, but other forms such as TiO 2+ may also be included.
  • the RF battery 100 of FIG. 1 typically includes electric power including a power generation unit (for example, a solar power generator, a wind power generator, other general power plants, etc.) and substation facilities via an AC / DC converter. It is connected to the grid, is charged using the power generation unit as a power supply source, and is discharged using the load as a power supply target. Similar to the conventional RF battery, the RF battery 100 includes a battery element 100c and a circulation mechanism (tank, piping, pump) that circulates the electrolyte in the battery element 100c.
  • a power generation unit for example, a solar power generator, a wind power generator, other general power plants, etc.
  • substation facilities via an AC / DC converter. It is connected to the grid, is charged using the power generation unit as a power supply source, and is discharged using the load as a power supply target.
  • the RF battery 100 includes a battery element 100c and a circulation mechanism (tank, piping, pump) that circulates the electrolyte in the
  • the battery element 100c included in the RF battery 100 includes a positive electrode cell 102 including a positive electrode 104, a negative electrode cell 103 including a negative electrode 105, and a diaphragm 101 that separates the cells 102 and 103 and transmits ions.
  • a positive electrode tank 106 that stores a positive electrode electrolyte is connected to the positive electrode cell 102 via pipes 108 and 110.
  • a negative electrode tank 107 for storing a negative electrode electrolyte solution is connected to the negative electrode cell 103 via pipes 109 and 111.
  • the pipes 108 and 109 are provided with pumps 112 and 113 for circulating the electrolyte solution of each electrode.
  • the battery element 100c uses the pipes 108 to 111 and the pumps 112 and 113 to the positive electrode cell 102 (positive electrode 104) and the negative electrode cell 103 (negative electrode 105), respectively.
  • a negative electrode electrolyte is circulated and charged and discharged along with a valence change reaction of active material ions (Mn ions for the positive electrode and Ti ions for the negative electrode) that become active materials in the electrolyte solution of each electrode. To do.
  • the battery element 100c is normally used in a form called a cell stack in which a plurality of layers are stacked.
  • the cells 102 and 103 constituting the battery element 100c discharge a bipolar plate (not shown) in which the positive electrode 104 is disposed on one surface and the negative electrode 105 on the other surface, a liquid supply hole for supplying an electrolytic solution, and an electrolytic solution.
  • a configuration using a cell frame having a drainage hole to be formed and a frame (not shown) formed on the outer periphery of the bipolar plate is representative. By laminating a plurality of cell frames, the liquid supply hole and the drainage hole constitute an electrolyte flow path, and the flow path is connected to the pipes 108 to 111.
  • the cell stack is configured by repeatedly stacking a cell frame, a positive electrode 104, a diaphragm 101, a negative electrode 105, a cell frame,.
  • the bipolar plate is made of plastic carbon
  • the cell frame is made of a resin such as vinyl chloride.
  • Embodiments 1 to 12 will be described below.
  • the RF batteries of Embodiments 1 to 12 have the above-described basic configuration, and are characterized by including at least one of the above-described configurations (1) and (2).
  • the RF battery 1A of Embodiment 1 has the above-described basic configuration, and is characterized in that an electrolytic solution containing Mn ions as a positive electrode active material is used as the positive electrode electrolytic solution, and two upstream pipes on the positive electrode side are provided. To do.
  • an electrolytic solution containing Mn ions as a positive electrode active material is used as the positive electrode electrolytic solution, and two upstream pipes on the positive electrode side are provided. To do.
  • this feature point will be mainly described.
  • Examples of the positive electrode electrolyte include those containing at least one Mn ion selected from divalent Mn ions (Mn 2+ ) and trivalent Mn ions (Mn 3+ ).
  • MnO 2 can also be used as an active material, and therefore, it is allowed to further contain tetravalent manganese (MnO 2 ).
  • Examples of the negative electrode electrolyte include a negative electrode active material containing at least one metal ion selected from titanium ions, vanadium ions, chromium ions, zinc ions, and tin ions.
  • a negative electrode active material containing at least one metal ion selected from titanium ions, vanadium ions, chromium ions, zinc ions, and tin ions.
  • electromotive force about 1.4 V
  • manganese-vanadium-based RF batteries containing vanadium ions electromotive force: about 1.8 V
  • the manganese-chromium RF battery containing chromium ions has a higher electromotive force of about 1.9 V
  • the manganese-zinc based RF battery containing zinc ions has an even higher electromotive force of about 2.2 V.
  • Can do. 2 to 4 exemplify manganese-vanadium RF batteries.
  • the concentration of the metal ion that is the active material of each electrode is preferably 0.3 M or more and 5 M or less (M: volume molar concentration).
  • the solvent of the electrolyte solution for each electrode is preferably an aqueous solution containing at least one of sulfuric acid, phosphoric acid, nitric acid, sulfate, phosphate, and nitrate. In particular, those containing sulfate anions (SO 4 2 ⁇ ) are easy to use.
  • the acid concentration is preferably less than 5M.
  • One end of the positive electrode charging pipe 11 c is connected to a position near the liquid surface of the positive electrode electrolyte in the tank 10 in the positive electrode tank 10. More specifically, one end of the positive electrode charging pipe 11c opens at a position exceeding (Lp / 2) from the bottom surface when the height from the bottom surface of the positive electrode tank 10 to the liquid surface is Lp. 2 to 8, the solid line in the positive electrode tank 10 indicates the liquid level, and the alternate long and short dash line indicates the position (Lp / 2) from the bottom. 2 to 8, the piping has a linearly bent shape, but it may have a curved shape or may be connected so as to be inclined without being bent.
  • one end of the positive electrode discharge pipe 11 d is connected to a position near the bottom of the positive electrode tank 10. More specifically, one end of the positive electrode discharge pipe 11 d opens from the bottom surface of the positive electrode tank 10 to a position of (Lp / 2) or less.
  • the other ends of the pipes 11c and 11d are both connected to the battery element 100c.
  • the pipes 11c and 11d are respectively attached with positive electrode pumps 50c and 50d so that the positive electrode electrolyte in the positive electrode tank 10 can be pumped to the battery element 100c.
  • the RF battery 1A includes a positive electrode return pipe 13 as a downstream pipe for returning the positive electrode electrolyte from the battery element 100c to the positive electrode tank 10. Further, the RF battery 1A is used as an upstream pipe for supplying the negative electrode electrolyte in the negative electrode tank 20 to the battery element 100c, and as a downstream pipe for returning the negative electrode electrolyte from the battery element 100c to the negative electrode tank 20.
  • a negative electrode return pipe 23 and a negative electrode pump 60 attached to the negative electrode supply pipe 21 are provided.
  • the negative electrode electrolyte of the RF battery 1A contains, for example, vanadium ions
  • the ion concentration distribution due to the specific gravity difference of ions is unlikely to occur like the manganese ions of the positive electrode electrolyte. Therefore, in this case, when the negative electrode electrolyte is supplied to the battery element 100c by the negative electrode supply pipe 21 and the negative electrode pump 60 in both the charge / discharge operation, as in the conventional all vanadium RF battery. Good.
  • the RF battery 1A using the positive electrode electrolyte containing manganese ions can efficiently use the electrolyte by changing the pipe for supplying the positive electrode electrolyte to the battery element 100c during charging and discharging.
  • the RF battery 1A is in a state in which the positive electrode electrolyte collected on the liquid surface side in the positive electrode tank 10 during charging, that is, a state in which manganese ions (Mn 2+ ) are relatively large and not sufficiently charged.
  • the positive electrode electrolyte in the (discharged state) can be supplied to the battery element 100c.
  • the RF battery 1A is a positive electrode electrolyte that is collected on the bottom side in the positive electrode tank 10 during discharge, that is, a positive electrode electrolyte that is sufficiently charged with a relatively large amount of manganese ions (Mn 3+ ). Can be supplied to the battery element 100c. Therefore, the RF battery 1A can have a high electromotive force over a long period of time because it can reduce overcharging and sufficiently ensure charging time and discharging time.
  • the basic configuration of the RF battery 1B according to the second embodiment shown in FIG. 2B is the same as that of the RF battery 1A according to the first embodiment.
  • the RF battery 1B of the second embodiment includes open / close valves 51c and 51d in the positive electrode charging pipe 11c and the positive electrode discharging pipe 11d, respectively. The point is different.
  • this difference will be mainly described, and detailed description of the configuration and effects common to the RF battery 1A of Embodiment 1 will be omitted.
  • the open / close valves 51c and 51d are opened and closed to ensure that the desired positive electrode electrolyte is supplied to the battery element 100c.
  • Can supply More specifically, at the time of charging, the on-off valve 51c provided in the positive electrode charging pipe 11c is opened, and the on-off valve 51d provided in the positive electrode discharging pipe 11d is closed, so that the positive electrolyte is supplied from the liquid surface side in the positive electrode tank 10.
  • the battery element 100c can be supplied.
  • the on / off valve 51d provided on the positive electrode discharge pipe 11d is opened, and the on / off valve 51c provided on the positive electrode charge pipe 11c is closed, so that the positive electrolyte can be supplied to the battery element 100c from the bottom side in the positive electrode tank 10.
  • the back-flow of the positive electrode electrolyte can be prevented by opening / closing the on-off valves 51c and 51d. Therefore, the RF battery 1B of Embodiment 2 can make it difficult to mix positive electrode electrolytes having different specific gravities, and the use efficiency of the electrolyte can be further increased.
  • on-off valves 51c and 51d electromagnetic valves or the like can be used.
  • a check valve can be used as in a fourth embodiment (FIG. 3B) described later. Also in this case, it is possible to prevent the electrolyte solution from being mixed by backflow as described above.
  • FIG. 3 Another embodiment of the upstream pipe on the positive electrode side will be described.
  • the basic configuration of the RF batteries 1C to 1E of Embodiments 3 to 5 shown in FIG. 3 is the same as that of the RF battery 1A of Embodiment 1, and the main difference is the configuration of the upstream piping on the positive electrode side.
  • this difference will be mainly described, and detailed description of the configuration and effects common to the RF battery 1A of Embodiment 1 will be omitted.
  • the positive electrode charging pipe 11c is connected to the liquid surface side (upper side) of the tank 10 in the same manner as the RF battery 1A of the first embodiment.
  • the positive electrode discharge pipe 11 d is connected to the bottom side (lower side) of the tank 10.
  • the other ends of both pipes 11 c and 11 d are connected to one end of one positive electrode common pipe 12.
  • the other end of the positive electrode common pipe 12 is connected to the battery element 100 c, and the positive electrolyte solution from each of the pipes 11 c and 11 d is supplied to the battery element 100 c through the positive electrode common pipe 12.
  • the RF batteries 1C to 1E having the positive electrode common pipe 12 have a small number of pipes connected to the battery element 100c, and can simplify the configuration.
  • the positive electrode pumps 50c and 50d are attached to the positive electrode charging pipe 11c and the positive electrode discharging pipe 11d, respectively, and both the pipes 11c and 11d in the positive electrode common pipe 12 are used.
  • the three-way valve 52 is attached to the connection location.
  • the RF battery 1C switches the three-way valve 52 so that the positive electrode electrolyte from the positive electrode charging pipe 11c is discharged using the positive electrode pump 50c during charging, and the positive electrode pump 50d is used during discharging.
  • the positive electrolyte solution from the positive electrode discharge pipe 11 d can be supplied to the battery element 100 c through the positive electrode common pipe 12.
  • the RF battery 1 ⁇ / b> C can prevent the backflow of the positive electrode electrolyte and suppress the mixing of electrolytes having different specific gravities by simply switching the three-way valve 52. Therefore, the RF battery 1C has a small number of parts and a simple configuration.
  • the three-way valve 52 is not provided, and the positive electrode pumps 50c and 50d and the check valve 53c are provided in the positive electrode charging pipe 11c and the positive electrode discharging pipe 11d, respectively. 53d is attached.
  • the RF battery 1D of the fourth embodiment having the above-described configuration does not perform a switching operation as in the case where the three-way valve 52 is provided, and the check valves 53c and 53d prevent the backflow of the positive electrode electrolyte and perform electrolysis having different specific gravities. Mixing of liquids can be suppressed. Therefore, the RF battery 1D is excellent in workability during operation.
  • Embodiment 10 (FIG. 6B) described later: a configuration including check valves 63c and 63d.
  • a three-way valve 52 is provided at a connection point between the pipes 11c and 11d in the positive electrode common pipe 12 to which the positive electrode charging pipe 11c and the positive electrode discharging pipe 11d are connected. It is attached. Further, in the RF battery 1E of the fifth embodiment, one positive pump 50 is attached between the three-way valve 52 and the battery element 100c in the positive common pipe 12, and no pump is attached to each of the pipes 11c and 11d. .
  • the RF battery 1E of the fifth embodiment having the above configuration switches the three-way valve 52 so that the positive electrode electrolyte from the positive electrode charging pipe 11c is charged during charging, and the positive electrode electrolyte from the positive electrode discharging pipe 11d is discharged during charging.
  • Each can be supplied to the battery element 100c through the positive electrode common pipe 12.
  • the RF battery 1 ⁇ / b> E can pump the electrolytic solution by the single positive electrode pump 50 during both charging and discharging.
  • the RF battery 1E prevents the backflow of the positive electrode electrolyte and suppresses the mixing of the electrolytes having different specific gravities only by switching the three-way valve 52 similarly to the RF battery 1C of the third embodiment (FIG. 3A). it can. From these points, the RF battery 1E of the fifth embodiment has a smaller number of parts and a simpler configuration.
  • FIG. 4 Another embodiment of the downstream pipe on the positive electrode side will be described.
  • the basic configuration of the RF battery 1F of the sixth embodiment shown in FIG. 4 is the same as that of the RF battery 1E of the fifth embodiment (FIG. 3C), and the main difference is the configuration of the downstream piping on the positive electrode side. is there.
  • this difference will be mainly described, and detailed description of the configuration and effects common to the RF battery 1E of Embodiment 5 will be omitted.
  • the downstream pipe on the positive electrode side includes a positive charge return pipe 15c and a positive discharge return pipe 15d connected to the positive tank 10, one end of these return pipes 15c and 15d, and a battery element 100c. And a positive electrode common return pipe 14 connected to.
  • One end of the positive electrode charging return pipe 15 c is connected to a position on the bottom side of the positive electrode tank 10: (Lp / 2) or less, and the other end is connected to one end of the positive electrode common return pipe 14.
  • One end of the positive electrode discharge return pipe 15 d is connected to a position higher than the liquid level of the positive electrode tank 10 (Lp / 2), and the other end is connected to one end of the positive electrode common return pipe 14.
  • the other end of the positive electrode common return pipe 14 is connected to the battery element 100c.
  • a three-way valve 55 is attached to a connecting portion of the positive electrode common return pipe 14 with both the return pipes 15c and 15d.
  • the RF battery 1F of the sixth embodiment having the above configuration switches the three-way valve 55 so that the positive electrode electrolyte in the charged state from the battery element 100c is charged via the positive electrode common return pipe 14 during charging.
  • the positive electrode electrolyte in the charged state is efficiently collected in the region where the positive electrode electrolyte in the charged state is collected, and is mixed with the positive electrode electrolyte in a state of not being fully charged.
  • the positive electrode electrolyte which is easy to suppress and is not sufficiently charged can be brought into a state where it is brought closer to the liquid surface side of the tank 10.
  • the RF battery 1F of Embodiment 6 efficiently supplies the positive electrode electrolyte in a state of not being sufficiently charged to the battery element 100c by the positive electrode charging pipe 11c, and ensures sufficient charging time. Or overcharging can be prevented.
  • the RF battery 1F switches the positive electrode electrolyte from the battery element 100c to the positive electrode tank via the positive electrode common return pipe 14 and the positive electrode discharge return pipe 15d during discharge. 10 liquid levels can be sent. That is, the positive electrode electrolyte in a discharged state can be efficiently collected in a region where the positive electrode electrolyte in a state where it is not sufficiently charged (discharge state) in the positive electrode tank 10 is collected. Therefore, the RF battery 1F suppresses mixing of the positive electrode electrolyte in a charged state and the positive electrode electrolyte in a discharged state even during discharge, and brings the charged positive electrode electrolyte toward the bottom side of the tank 10 Can be. Therefore, the RF battery 1F of Embodiment 6 can efficiently supply the charged positive electrode electrolyte solution to the battery element 100c by the positive electrode discharge pipe 11d at the time of discharge, and sufficiently ensure the discharge time.
  • the positive common return pipe 14 is provided.
  • the common return pipe is omitted, and the positive charge return pipe 15c and the positive discharge return pipe 15d are connected to the battery element 100c. It can be.
  • each return pipe 15c, 15d is provided with an on-off valve or a check valve, it is possible to prevent backflow and to prevent mixing of electrolytes having different specific gravities.
  • FIG. 7 An eleventh embodiment (FIG. 7) described later: a negative electrode common return pipe 24, a negative electrode charge return pipe 25c, and a negative electrode discharge return pipe 25d.
  • FIG. 4 shows an embodiment (FIG. 3C) including the positive electrode common pipe 12, the three-way valve 52, and one positive pump 50 described in the fifth embodiment as the upstream pipe on the positive electrode side. It can be replaced with the upstream pipe on the positive electrode side in Embodiments 1 to 4.
  • the RF battery 1G of the seventh embodiment shown in FIG. 5A is the same as the RF battery 1C of the third embodiment (FIG. 3A) with respect to the battery element 100c and the piping structure on the positive electrode side. That is, the RF battery 1G includes a positive electrode charging pipe 11c, a positive electrode discharging pipe 11d, a positive electrode common pipe 12, two positive pumps 50c and 50d, and a three-way valve 52.
  • the RF battery 1G of Embodiment 7 is characterized in that an electrolytic solution containing titanium ions as a negative electrode active material is used for the negative electrode electrolytic solution, and that two upstream pipes on the negative electrode side are provided.
  • an electrolytic solution containing titanium ions as a negative electrode active material is used for the negative electrode electrolytic solution, and that two upstream pipes on the negative electrode side are provided.
  • the negative electrode electrolyte includes a form containing at least one kind of titanium ions such as trivalent titanium ions (Ti 3+ ) and tetravalent titanium ions (Ti 4+ , TiO 2+, etc.). Furthermore, you may contain bivalent titanium ion.
  • the above-described manganese ions can be suitably used as the positive electrode active material.
  • examples of the positive electrode electrolyte include those containing iron ions, vanadium ions, and titanium ions as a positive electrode active material. 5 to 7 illustrate manganese-titanium RF batteries.
  • the manganese-titanium-based RF battery suppresses the precipitation of MnO 2 by mixing the titanium ions on the negative electrode side to some extent in the positive electrode electrolyte due to the liquid transfer over time.
  • Two pipes, a negative electrode charging pipe 21c and a negative electrode discharging pipe 21d, are connected to the negative electrode tank 20 provided in the RF battery 1G as upstream pipes, and the opening on the tank 20 side of each of the pipes 21c and 21d. The place is different.
  • One end of the negative electrode charging pipe 21 c is connected to a position near the bottom of the negative electrode tank 20 in the negative electrode tank 20. More specifically, one end of the negative electrode charging pipe 21d opens at a position of (La / 2) or less from the bottom surface when the height from the bottom surface of the negative electrode tank 20 to the liquid surface is La. 6 to 8, the solid line in the negative electrode tank 20 indicates the liquid level, and the alternate long and short dash line indicates the position (La / 2) from the bottom.
  • One end of the negative electrode discharge pipe 21 d is connected to a position near the liquid surface of the negative electrode electrolyte in the negative electrode tank 20. More specifically, one end of the negative electrode discharge pipe 21 d is opened at a position exceeding (La / 2) from the bottom surface of the negative electrode tank 20.
  • the other ends of the pipes 21c and 21d are both connected to the battery element 100c.
  • the pipes 21c and 21d are respectively attached with negative electrode pumps 60c and 60d so that the negative electrode electrolyte in the negative electrode tank 20 can be pumped to the battery element 100c.
  • the RF battery 1G includes a negative electrode return pipe 23 as a downstream pipe on the negative electrode side.
  • the upstream pipe on the negative electrode side included in the RF battery 1G of the seventh embodiment has a structure similar to the upstream pipe on the positive electrode side provided in the RF battery 1A (FIG. 2A) of the first embodiment, and is used during charging.
  • the connection position (opening position) with the tank in the pipe and the connection position (opening position) with the tank in the pipe used at the time of discharge are upside down between the positive electrode and the negative electrode.
  • the positive electrode side pipe structure may include a positive electrode supply pipe (not shown) as an upstream pipe and a positive electrode return pipe 13 as a downstream pipe. Further, the positive electrode supply pipe may be provided with a positive electrode pump (not shown). And like the conventional all vanadium type
  • the positive electrode electrolyte of the RF battery 1G contains the manganese ions described in the first embodiment
  • FIG. 5A a configuration including a positive electrode charging pipe 11c and a positive electrode discharging pipe 11d.
  • the positive electrode electrolyte solution may be supplied to the battery element 100c using the positive electrode charging pipe 11c during charging and the positive electrode discharging pipe 11d during discharging.
  • FIG. 5 and FIG. 6 to be described later show the same configuration as that of Embodiment 3 shown in FIG. 3 (A) as the piping structure on the positive electrode side. Can be replaced.
  • the RF battery 1G using the negative electrode electrolyte containing titanium ions can use the electrolyte efficiently by differentiating the pipe for supplying the negative electrode electrolyte to the battery element 100c during charging and discharging. Specifically, when the RF battery 1G is charged, the negative electrode electrolyte collected on the bottom side in the negative electrode tank 20, that is, a state in which a relatively large amount of titanium ions (such as Ti 4+ ) is not sufficiently charged. The negative electrode electrolyte in the (discharged state) can be supplied to the battery element 100c.
  • the RF battery 1G has a negative electrode electrolyte that is gathered on the liquid surface side in the negative electrode tank 20 during discharge, that is, a negative electrode electrolysis that is sufficiently charged with a relatively large amount of titanium ions (Ti 3+ ).
  • the liquid can be supplied to the battery element 100c. Therefore, the RF battery 1G can have a high electromotive force over a long period of time because it can reduce overcharge and sufficiently ensure charging time and discharging time.
  • the RF battery 1G of Embodiment 7 uses a positive electrode electrolyte containing manganese ions as a positive electrode active material, and includes a positive electrode charging pipe 11c and a positive electrode discharging pipe 11d. It is set as the structure which can use properly the piping which sends liquid to the battery element 100c by the time of discharge and the time of discharge. Therefore, the RF battery 1G of Embodiment 7 can efficiently use the positive and negative electrode electrolytes over a long period of time, and can have a high electromotive force.
  • the basic configuration of the RF battery 1H of the eighth embodiment shown in FIG. 5B is the same as that of the RF battery 1G of the seventh embodiment.
  • the RF battery 1H shown in FIG. 5B is the RF battery of the seventh embodiment.
  • the negative electrode charging pipe 21c and the negative electrode discharging pipe 21d are provided with on-off valves 61c and 61d, respectively. That is, the negative-side upstream pipe provided in the RF battery 1H of the eighth embodiment has a structure similar to the positive-side upstream pipe provided in the RF battery 1B (FIG. 2B) of the second embodiment, and the pipes 21c and 21d.
  • the connection position (opening position) on the negative electrode tank 20 side is different.
  • the RF battery 1H of the eighth embodiment includes the on / off valves 61c and 61d, so that the on / off valves 61c and 61d can be operated in addition to the driving / stopping operations of the negative pumps 60c and 60d.
  • the supply control of the negative electrode electrolyte can be performed by the opening / closing operation. Specifically, at the time of charging, the on-off valve 61c provided in the negative electrode charging pipe 21c is opened, and the on-off valve 61d provided in the negative electrode discharging pipe 21d is closed, whereby the negative electrode electrolyte is supplied from the bottom side in the negative electrode tank 20 to the battery element. 100c.
  • the on / off valve 61d provided in the negative electrode discharge pipe 21d is opened and the on / off valve 61c provided in the negative electrode charge pipe 21c is closed, whereby the negative electrode electrolyte can be supplied to the battery element 100c from the liquid surface side in the negative electrode tank 20.
  • the opening / closing operation of the on-off valves 61c and 61d can prevent the back flow of the negative electrode electrolyte and prevent the mixing of negative electrode electrolytes having different specific gravities. Therefore, in the RF battery 1H of the eighth embodiment, the utilization efficiency of the electrolytic solution can be further increased.
  • FIG. 6 Another form of the upstream pipe on the negative electrode side will be described.
  • the basic configuration of the RF batteries 1I and 1J of the ninth and tenth embodiments shown in FIG. 6 is the same as that of the RF battery 1G of the seventh embodiment (FIG. 5A), and the main difference is the upstream of the negative electrode side.
  • this difference will be mainly described, and detailed description of the configuration and effects common to the RF battery 1G of Embodiment 7 will be omitted.
  • the negative electrode discharge pipe 21d is connected to the liquid surface side (upper side) of the tank 20 in each of the negative electrode tanks 20 of the RF batteries 1I and 1J of the ninth and tenth embodiments.
  • the negative electrode charging pipe 21 c is connected to the bottom side (lower side) of the tank 20.
  • the other ends of both pipes 21 c and 21 d are connected to one end of one negative common pipe 22.
  • the other end of the negative electrode common pipe 22 is connected to the battery element 100 c, and the negative electrolyte solution from each of the pipes 21 c and 21 d is supplied to the battery element 100 c through the negative electrode common pipe 22.
  • the RF batteries 1I and 1J including the negative electrode common pipe 22 have a small number of pipes connected to the battery element 100c, and can simplify the configuration.
  • the negative electrode pumps 60c and 60d are attached to the negative electrode charging pipe 21c and the negative electrode discharging pipe 21d, respectively, and both the pipes 21c and 21d in the negative electrode common pipe 22 are attached.
  • a three-way valve 62 is attached to the connection point. That is, the upstream pipe on the negative electrode side included in the RF battery 1I of Embodiment 9 is the upstream pipe on the positive electrode side (positive electrode charging pipe 11c, positive electrode discharging pipe 11d, positive electrode common pipe 12, positive pumps 50c and 50d, three-way valve 52. ).
  • the RF battery 1I of the ninth embodiment having the above configuration switches the three-way valve 62 so that the negative electrode electrolyte from the negative electrode charging pipe 21c is discharged using the negative electrode pump 60c during charging, and the negative electrode pump 60d is used during discharging.
  • the negative electrode electrolyte from the negative electrode discharge pipe 21d can be supplied to the battery element 100c through the negative electrode common pipe 22, respectively.
  • the RF battery 1I according to the ninth embodiment is configured to supply the positive and negative electrolyte solutions to the battery element 100c using the positive electrode common pipe 12 and the negative electrode common pipe 22 in both positive and negative electrodes.
  • the RF battery 1I can prevent the backflow of the positive electrode electrolyte and the backflow of the negative electrode electrolyte by simply switching the three-way valves 52 and 62, and can suppress the mixing of the electrolytes having different specific gravities at the positive and negative electrodes. Therefore, the RF battery 1I has a smaller number of parts and a simpler configuration.
  • the RF battery 1J of the tenth embodiment shown in FIG. 6B does not include the three-way valve 62, and the negative electrode pumps 60c and 60d and the check valve 63c are provided in the negative electrode charging pipe 21c and the negative electrode discharging pipe 21d, respectively. 63d are attached. That is, the upstream pipe on the negative electrode side included in the RF battery 1J of the tenth embodiment has a similar structure to the upstream pipe on the positive electrode side of the RF battery 1D of the fourth embodiment shown in FIG.
  • the RF battery 1J of the tenth embodiment having the above-described configuration prevents the negative electrolyte from flowing back by the check valves 63c and 63d without performing the switching operation of the three-way valve, and is similar to the RF battery 1I of the ninth embodiment. Mixing of electrolytes having different specific gravities can be suppressed. Therefore, the RF battery 1J is excellent in workability during operation.
  • FIG. 7 Another embodiment of the upstream pipe on the negative electrode side will be described.
  • one negative electrode pump 60 is attached to the negative electrode common pipe 22 to which the negative electrode charging pipe 21c and the negative electrode discharging pipe 21d are connected, and each of the pipes 21c and 21d includes: The pump is not installed.
  • a three-way valve 62 is attached to a connecting portion of the negative electrode common pipe 22 with both pipes 21c and 21d.
  • the upstream pipe on the positive electrode side has the same configuration as the upstream pipe on the positive electrode side of the RF battery 1E of the fifth embodiment shown in FIG.
  • a positive electrode discharge pipe 11d, a positive electrode common pipe 12, a single positive electrode pump 50, and a three-way valve 52 are provided. That is, in the RF battery 1K of the eleventh embodiment, the upstream pipe on the negative electrode side and the upstream pipe on the positive electrode side have a similar structure, and the opening position on the tank 10 and 20 side in the pipe used for charging and discharging is the positive electrode. It differs from the negative electrode.
  • the positive-side upstream piping can be replaced with the positive-side upstream piping of the first to fourth embodiments described above.
  • the RF battery 1K switches the three-way valve 62 so that the negative electrode electrolyte from the negative electrode charging pipe 21c is charged during charging, and the negative electrode electrolyte from the negative electrode discharging pipe 21d is discharged during charging.
  • Each can be supplied to the battery element 100c by the negative electrode common pipe 22.
  • the RF battery 1 ⁇ / b> K can pump the electrolytic solution by the single negative electrode pump 60 during both charging and discharging.
  • the RF battery 1K prevents the reverse flow of the negative electrode electrolyte and mixes the electrolytes having different specific gravities only by switching the three-way valve 62 as in the RF battery 1I of the ninth embodiment (FIG. 6A). Can be suppressed.
  • the RF battery 1K of the eleventh embodiment has a smaller number of parts and a simpler configuration.
  • the RF battery 1K of the eleventh embodiment includes the positive electrode common pipe 12 and the single positive electrode pump 50 in the upstream pipe on the positive electrode side. From this point, the number of parts is further reduced and the configuration is further simplified. It is.
  • the RF battery 1K of the eleventh embodiment also includes two downstream pipes of positive and negative electrodes: a charging return pipe and a charging return pipe.
  • the RF battery 1K has a positive common return pipe 14, a positive charge return pipe 15c, and a positive discharge return pipe as the positive pipe downstream pipe as in the RF battery 1F of the sixth embodiment shown in FIG. 15d.
  • Three-way valve 55 is provided.
  • the negative-side downstream pipe includes a negative-charge return pipe 25c and a negative-discharge return pipe 25d connected to the negative-electrode tank 20, one end of these return pipes 25c and 25d, and the battery element 100c.
  • the negative electrode common return pipe 24 is connected to the negative electrode common return pipe 24.
  • One end of the negative electrode charging return pipe 25c is connected to a position above the liquid level of the negative electrode tank 20: (La / 2), and the other end is connected to the negative electrode common return pipe 24.
  • One end of the negative electrode return return pipe 25 d is connected to a position below the bottom side of the tank 20: La / 2, and the other end is connected to the negative electrode common return pipe 24.
  • the other end of the negative electrode common return pipe 24 is connected to the battery element 100c.
  • a three-way valve 65 is attached to a connecting portion of the negative electrode common return pipe 24 with both return pipes 25c and 25d.
  • the RF battery 1K of the eleventh embodiment having the above-described configuration switches the three-way valve 65 so that the negative electrode electrolyte in the charged state from the battery element 100c is charged through the negative electrode common return pipe 24 during charging and the negative electrode charging return pipe 25c. It can be sent to the liquid surface side of the negative electrode tank 20 via That is, the negative electrode electrolyte in the charged state is efficiently collected in the region where the negative electrode electrolyte in the charged state is gathered in the negative electrode tank 20, and mixed with the negative electrode electrolyte in a state of not being fully charged. The negative electrode electrolyte in a state that is easily suppressed and is not sufficiently charged can be brought to the bottom side of the tank 20.
  • the RF battery 1K of the eleventh embodiment efficiently supplies the negatively charged electrolyte solution in the state of being not sufficiently charged to the battery element 100c by the negative electrode charging pipe 21c, and ensures sufficient charging time. Or overcharging can be prevented.
  • the RF battery 1K switches the negative electrode electrolyte from the battery element 100c to the negative electrode tank via the negative electrode common return pipe 24 and the negative electrode discharge return pipe 25d during discharge. 20 bottom side. That is, the negative electrode electrolyte solution in a discharged state is efficiently collected in a region where the negative electrode electrolyte solution in a state (discharge state) that is not sufficiently charged is collected in the negative electrode tank 20.
  • the RF battery 1 ⁇ / b> K suppresses the mixing of the negative electrode electrolyte in the charged state and the negative electrode electrolyte in the discharged state even at the time of discharging, and brings the negative electrode electrolyte in the charged state to the liquid surface side of the tank 20. Can be in a state. Therefore, the RF battery 1K of the eleventh embodiment can efficiently supply the charged negative electrode electrolyte to the battery element 100c by the negative electrode discharge pipe 21d during discharge, and sufficiently ensure the discharge time.
  • the RF battery 1K of the eleventh embodiment also includes the plurality of return pipes 15c and 15d as described above on the positive-electrode-side downstream pipe, so that the positive and negative poles are discharged from the uncharged electrolyte during charging. At this time, the electrolyte in a charged state can be efficiently supplied to the battery element 100c. Therefore, the RF battery 1K can be charged and discharged satisfactorily for a long time.
  • the positive electrode return pipe 13 (see FIG. 2, FIG. 3, etc.) is provided as the positive electrode downstream pipe
  • the negative electrode return pipe 23 (FIG. 2) is provided as the negative electrode downstream pipe.
  • the downstream pipes of the positive and negative poles can be constituted by the positive electrode return pipe 13 and the negative electrode return pipe 23, respectively. This point can be similarly applied to the RF battery 1L of the twelfth embodiment described later.
  • RF battery 1L of Embodiment 12 provided with a communicating pipe is demonstrated.
  • the basic configuration of the RF battery 1L is the same as that of the RF battery 1K of the eleventh embodiment shown in FIG. That is, the RF battery 1L includes a positive electrode charging pipe 11c and a positive electrode discharging pipe 11d as the positive electrode side upstream pipe, and a negative electrode charging pipe 21c and a negative electrode discharge pipe 21d as the negative electrode side upstream pipe.
  • the RF battery 1 ⁇ / b> L includes a communication pipe 80 that communicates the liquid phase of the positive electrode tank 10 and the liquid phase of the negative electrode tank 20.
  • the RF battery 1L includes a metal ion species common to the positive electrode electrolyte and the negative electrode electrolyte.
  • the communication tube 80 and the electrolytic solution which are characteristic points of the RF battery 1L, will be mainly described, and detailed description of the configuration and effects common to the RF battery 1K of Embodiment 11 will be omitted.
  • the electrolytes in both electrodes are mixed.
  • the electrolyte solution can be easily mixed if the configuration is provided with a pipe (communication pipe) that connects the tanks of both electrodes.
  • the productivity of the electrolyte solution is also excellent.
  • the positive and negative electrolyte solutions may include manganese ions and titanium ions.
  • manganese ions are used as a positive electrode active material, and titanium ions are contained for aligning metal ion species, and also have a function of suppressing precipitation of MnO 2 due to a disproportionation reaction of Mn 3+.
  • titanium ions are used as a negative electrode active material, and manganese ions are contained to align metal ion species.
  • the ion shown in the positive electrode tank 10 and the negative electrode tank 20 in FIG. 8 is an illustration.
  • one end of the communication pipe 80 is connected to a position near the liquid surface of the positive electrode electrolyte in the positive electrode tank 10, and the other end is connected to a position near the bottom of the negative electrode tank 20.
  • the other end connected to the negative electrode tank 20 in the communication pipe 80 is a position lower than one end connected to the positive electrode tank 10.
  • an open / close valve 81 is attached to the communication pipe 80 so that the positive electrode tank 10 and the negative electrode tank 20 can be switched between communication and non-communication when desired.
  • an electromagnetic valve or the like can be used as the on-off valve 81.
  • a positive electrode electrolyte containing a relatively large amount of manganese ions in a discharged state exists on the liquid surface side of the positive electrode electrolyte, and in the negative electrode tank 20 is in a discharged state.
  • a negative electrode electrolyte containing a relatively large amount of titanium ions is present on the bottom side of the tank 20. Therefore, in the RF battery 1L of the twelfth embodiment, when the on-off valve 81 is opened and the tanks 10 and 20 are communicated with each other, the positive electrode electrolyte containing a large amount of manganese ions in a discharged state and a large amount of titanium ions in a discharged state.
  • the negative electrode electrolyte solution can be mixed.
  • the RF battery 1L of the twelfth embodiment can correct a defect due to liquid transfer or the like while suppressing loss due to self-discharge.
  • the sizes of the positive and negative tanks 10 and 20 and the position of the bottom surface are the same.
  • the electrolyte moves due to its own weight. Can do.
  • the on-off valve 81 may be closed when the electrolyte solution in both electrodes is sufficiently mixed.
  • the amount of mixing can be adjusted by adjusting the timing of the closing operation of the on-off valve 81 and the position of the bottom surfaces of the tanks 10 and 20 (up and down relationship).
  • a separate pump may be provided in the communication pipe 80 so that the mixing amount can be adjusted.
  • the RF battery 1L of the twelfth embodiment shows the embodiment of the fifth embodiment shown in FIG. 3C as the upstream pipe on the positive electrode side, but is replaced with the upstream pipe on the positive electrode side of the first to fourth embodiments described above. be able to.
  • the RF battery 1L of the twelfth embodiment shows the form of the eleventh embodiment shown in FIG. 7 as the negative-side upstream pipe, but can be replaced with the negative-side upstream pipe of the seventh to tenth embodiments described above. .
  • Embodiments 13 to 16 will be described below.
  • the RF batteries according to the thirteenth to sixteenth embodiments have the above-described basic configuration and the above-described configuration (3).
  • Electrode As the positive and negative electrolytes used in the RF battery 100 of the present embodiment, a common electrolyte containing Mn ions and Ti ions is used. On the positive electrode side, Mn ions work as a positive electrode active material, and on the negative electrode side, Ti ions work as a negative electrode active material. Further, Ti ions on the positive electrode side suppress the precipitation of MnO 2 for unknown reasons. Each concentration of Mn ions and Ti ions is preferably 0.3M or more and 5M or less.
  • the following three effects can be achieved by using a common electrolytic solution for the positive and negative electrolytic solutions.
  • (1) It is possible to effectively avoid a phenomenon in which the battery capacity decreases due to the active material ions moving to the counter electrode through the diaphragm of the battery element and the active material ions originally reacting at each electrode relatively decreasing.
  • (2) Liquid transfer over time with charge / discharge (a phenomenon in which the electrolyte solution of one electrode moves to the other electrode through the diaphragm) causes variations in the amount and ion concentration of the electrolyte solution of both electrodes Even in such a case, the above-mentioned variation can be easily corrected by mixing electrolytes of both electrodes.
  • (3) There is no need to prepare a dedicated electrolyte separately for positive and negative, and the productivity of the electrolyte is excellent.
  • H 2 SO 4, K 2 SO 4, Na 2 SO 4, H 3 PO 4, H 4 P 2 O 7, K 2 PO 4, Na 3 PO 4, K 3 PO 4, HNO 3 at least one aqueous solution selected from KNO 3 and NaNO 3 can be used.
  • the RF battery 100 may include a monitor cell for monitoring the battery capacity.
  • the monitor cell is basically a single cell that is smaller than the battery element 100c having the same configuration as the battery element 100c, receives positive and negative electrolytes from the positive electrode tank 106 and the negative electrode tank 107, and is similar to the battery element 100c. Generate electromotive force.
  • the battery capacity of the RF battery 100 can be known from the open circuit voltage.
  • the RF battery 100 with reference to FIG. 1 further includes a configuration for stirring the electrolyte stored in the tanks 106 and 107 in the positive electrode tank 106 and the negative electrode tank 107.
  • a configuration for stirring the electrolyte stored in the tanks 106 and 107 in the positive electrode tank 106 and the negative electrode tank 107 is demonstrated based on FIG. In FIG. 9, only the positive electrode tank 106 and the stirring mechanism 201 provided in the tank 106 are illustrated. Although not specifically illustrated, it may be considered that the negative electrode tank 107 (see FIG. 1) is provided with the same configuration.
  • stirring mechanism 201 for stirring the electrolytic solution in the positive electrode tank 106
  • control mechanism 209 for controlling the stirring mechanism 201.
  • the agitation mechanism 201 includes an introduction pipe 211 that communicates with the inside and outside of the positive electrode tank 106, and a gas supply mechanism 212 that supplies an inert gas into the positive electrode tank 106 via the introduction pipe 211.
  • the introduction pipe 211 is a pipe made of PVC, PE, fluororesin, or the like that is hardly corroded by the electrolytic solution.
  • the introduction pipe 211 in the electrolytic solution is preferably arranged so that the electrolytic solution can be convected in the vertical direction (depth direction) of the positive electrode tank 106 by introducing an inert gas.
  • a plurality of pores 211h are formed in the side wall of the introduction pipe 211 so that the inert gas fed from the gas supply mechanism 212 can be injected not only from the end opening of the introduction pipe 211 but also from the pores 211h. It has become.
  • the cross-sectional shape of the introduction pipe 211 is not particularly limited, and may be, for example, a circle or a polygon.
  • the gas supply mechanism 212 can typically be constituted by a gas cylinder that stores an inert gas and a pump that pumps the inert gas from the gas cylinder to the introduction pipe 211.
  • an inert gas helium, argon, nitrogen etc. can be mentioned, for example.
  • the control mechanism 209 is a mechanism that controls the supply mechanism 212 of the stirring mechanism 201 to adjust the amount of inert gas blown into the positive electrode tank 106, and can be configured by a computer, for example.
  • the control mechanism 9 may also serve as a computer that controls the charging / discharging operation of the RF battery 100.
  • the control mechanism 209 is also connected to the stirring mechanism in the negative electrode tank, and also controls the stirring mechanism.
  • the control mechanism 209 may be configured to control the operation of the stirring mechanism 201 according to a predetermined schedule. In that case, it is preferable to determine the operation schedule of the stirring mechanism 201 in accordance with the charge / discharge schedule of the RF battery 100. For example, if the charging / discharging schedule is such that charging is performed at a specific time during the night and discharging is performed during a specific time during the day when the power demand is high, the operation of the stirring mechanism 201 is started slightly before starting charging (discharging). It is preferable to control the agitation mechanism 201 according to an operation schedule in which the operation of the agitation mechanism 201 is stopped when (discharge) is finished. In addition, as illustrated in Embodiment 15 described later, the state of the electrolytic solution in the positive electrode tank 106 may be detected, and the stirring mechanism 201 may be controlled based on the detection result.
  • the concentration of active material ions (Mn ions in the positive electrode tank 106 and Ti ions in the negative electrode tank 107) in the electrolytic solution is made uniform when charging and discharging the RF battery 100. Can do. As a result, the RF battery 100 can be operated in a healthy state.
  • the stirring mechanism 202 shown in FIG. 10A includes a stirring member 221 having a propeller at the tip of a rotating shaft, and a motor 222 that rotates the rotating shaft about the axis. According to such a configuration, very strong convection can be generated in the electrolytic solution in the positive electrode tank 106, and the electrolytic solution can be stirred quickly and effectively.
  • the stirring mechanism 203 shown in FIG. 10B has the same configuration as a so-called magnetic stirrer.
  • a stirrer bar (stirring member) 231 and a stirrer body 232 that generates an electromagnetic force for rotating the stirrer bar 231 are provided.
  • the stirrer bar 231 can be operated without making a hole in the positive electrode tank 106.
  • a magnet whose outer periphery is covered with Teflon (registered trademark) or the like can be used.
  • Teflon registered trademark
  • the shape of the stirrer bar 231 is not particularly limited.
  • the stirrer bar 231 may have a general bowl shape, an octagonal bar shape, or a windmill blade shape. good.
  • a magnetic stirrer that stirs the electrolyte solution by vibration instead of rotation may be used.
  • the agitation mechanism 204 shown in FIG. 10C operates the submersible pump 241 by supplying power to the submersible pump (stirring member) 241 immersed in the electrolytic solution in the positive electrode tank 106 and the submerged pump 241. Power supply device 242 to be provided. According to this configuration, it is possible to generate stronger convection than the configuration of FIGS. 10 (A) and 10 (B).
  • the RF battery 100 including the stirring mechanism 205 that stirs the electrolytic solution by taking the electrolytic solution out of the positive electrode tank 106 and returning it to the positive electrode tank 106 again is shown in FIG. Based on
  • the stirring mechanism 205 includes an outward pipe (stirring pipe) 251, a return pipe (stirring pipe) 252, and a liquid feed pump 253.
  • the forward piping 251 opens to the liquid phase of the positive electrode tank 106
  • the backward piping 252 opens to the gas phase (or liquid phase is acceptable) of the positive electrode tank 106.
  • the pump 253 is provided between the pipes 251 and 252, and sends the electrolytic solution from the positive electrode tank 106 to the return pipe 252 through the forward pipe 251.
  • FIG. 11A includes a configuration for confirming the distribution of Mn ions in the electrolytic solution in the positive electrode tank 106
  • FIG. 11B includes a configuration for adjusting the temperature of the electrolytic solution. This configuration will be described later.
  • the stirring mechanism 205 having the above-described configuration, it is possible to make a flow of the electrolyte solution that becomes the positive electrode tank 106 ⁇ the outward piping 251 ⁇ the return piping 252 ⁇ the positive electrode tank 106, and the electrolytic solution can be effectively stirred.
  • the solution of Mn 3+ is colored, and the solution of Mn 2+ is almost colorless and transparent. If Mn 3+ in the electrolyte becomes dominant, the transparency of the electrolyte is lowered, and conversely, Mn 2+ is dominant. If it becomes suitable, the transparency of electrolyte solution will become high. That is, when the RF battery 100 is discharged and Mn 2+ should be dominant in the positive electrode tank 106, the electrolyte solution that can be confirmed from the window 252w is low in transparency. It can be judged that the distribution of Mn ions in the liquid is uneven.
  • the negative electrode tank 107 see FIG.
  • the necessity for stirring of the electrolytic solution can be determined from the transparency of the electrolytic solution by a configuration similar to the configuration of FIG. This is because the transparency of the electrolytic solution is lowered when Ti 3+ is dominant in the electrolytic solution, and the transparency of the electrolytic solution is increased when Ti 4+ is dominant.
  • the confirmation of the transparency of the electrolytic solution may be confirmed visually or, for example, automatically by an optical sensor.
  • the control mechanism 209 may automatically adjust the output of the pump 253 based on the detection result of the optical sensor.
  • inclination of the Mn ion of the electrolyte solution using the window part 252w is not necessarily limited to the return piping 252 and the outward piping 251.
  • the window portion may be formed near the bottom of the positive electrode tank 106, the window portion may be formed near the liquid surface of the electrolyte in the positive electrode tank 106, or both positions may be formed. A window portion may be formed.
  • the present invention can be applied to the configurations of the thirteenth and fourteenth embodiments.
  • a configuration in which the electrolytic solution is taken out from the positive electrode tank 106 and the bias of Mn ions in the electrolytic solution is detected may be employed.
  • the electrolytic solution is taken out into a separate container from the position near the bottom of the positive electrode tank 106 and the position near the liquid level, and the potential difference between the electrolytic solutions exceeds a threshold value, stirring of the electrolytic solution is necessary.
  • the structure to judge can be mentioned.
  • a temperature adjustment mechanism 208 for adjusting the temperature of the electrolyte for example, a heat exchanger, is provided in the return pipe 252 (or the forward pipe 251 is acceptable).
  • the temperature of electrolyte solution can be adjusted simultaneously.
  • the electrolyte solution is agitated before charging / discharging of the RF battery 100. Therefore, it is efficient to adjust the temperature of the electrolyte solution at that time.
  • a filter for removing impurities and precipitates in the electrolytic solution may be provided inside the stirring pipes 251 and 252. By providing the filter, the load of the liquid feeding pump 253 can be reduced.
  • a material of the filter for example, a plastic (PVC, PE, fluororesin, etc.) mesh that is not corroded by the electrolytic solution, a carbon mesh, or the like can be used.
  • the pore diameter of the filter is preferably 0.1 to 100 ⁇ m.
  • FIG. 12 is a simple drawing showing only the connection state of the positive electrode tank 106, the negative electrode tank 107 and the communication pipe 80.
  • the communication pipe 80 is a pipe that communicates the liquid phase of the positive electrode tank 106 and the liquid phase of the negative electrode tank 107. More specifically, one end of the communication pipe 80 on the negative electrode tank 107 side opens to a position near the bottom of the negative electrode tank 107, and the other end of the communication pipe 80 on the positive electrode tank 106 side is higher than the one end. The position is open at a position close to the liquid level of the electrolytic solution in the positive electrode tank 106. By providing this communication pipe 80, the electrolyte solution in both tanks 106 and 107 can be mixed. In addition, an on-off valve 81 is formed in the middle of the communication pipe 80 so that communication between the positive electrode tank 106 and the negative electrode tank 107 can be switched as necessary.
  • the communication pipe 80 is provided to recover the battery capacity of the RF battery 100. By opening the communication tube 80, the positive and negative electrolytes are mixed together, and the RF battery 100 is quickly discharged.
  • Mn 2+ in the oxidation state at the time of discharge is biased to the upper layer side of the tank 106, and in the negative electrode tank 107, Ti 4 which is in the oxidation state at the time of discharge. + Is biased to the lower layer side of the tank 107.
  • the RF battery 100 can be discharged in a discharged state more efficiently and reliably than the communication pipe that simply connects the tanks 106 and 107 horizontally. can do. If the stirring mechanism is operated after the communication tube 80 is opened and a predetermined time has elapsed, the RF battery 100 can be more reliably discharged.
  • the RF batteries of the seventeenth to twentieth embodiments have the above-described basic configuration and contain a common metal ion species as positive and negative electrode electrolytes, and are connected between tanks that store positive and negative electrode electrolytes.
  • a tube is provided.
  • the above-described configurations (1) to (3) may be provided.
  • RF battery 1 of Embodiment 17 is demonstrated.
  • the RF battery 1 of the seventeenth embodiment has the above-described basic configuration, and is characterized in that it contains manganese ions in both positive and negative electrolytes and a communication pipe 310 that communicates the tanks 106 and 107 of both electrodes.
  • this feature point will be mainly described.
  • the positive and negative electrolytes contain manganese ions as a common metal ion species. In the positive electrode, this manganese ion is used as the positive electrode active material.
  • Examples of the positive electrode electrolyte include those containing at least one manganese ion selected from divalent manganese ions (Mn 2+ ) and trivalent manganese ions (Mn 3+ ). As described above, as a result of investigations by the present inventors, it has been found that MnO 2 can also be used as an active material, and therefore it is allowed to further contain tetravalent manganese (MnO 2 ). The matter regarding the manganese ion of the positive electrode can be similarly applied to Embodiment 19 described later.
  • Examples of the negative electrode electrolyte include a negative electrode active material containing at least one metal ion selected from titanium ions, vanadium ions, chromium ions, zinc ions, and tin ions.
  • a negative electrode active material containing at least one metal ion selected from titanium ions, vanadium ions, chromium ions, zinc ions, and tin ions.
  • electromotive force about 1.4 V
  • manganese-vanadium-based RF batteries containing vanadium ions electromotive force: about 1.8 V
  • the manganese-chromium RF battery containing chromium ions has a higher electromotive force of about 1.9 V
  • the manganese-zinc based RF battery containing zinc ions has an even higher electromotive force of about 2.2 V. Can do.
  • FIG. 13 only manganese ions (valence is illustrated) are shown in the negative electrode tank 107.
  • the positive electrode electrolyte further contains a metal ion of the same type as the metal ion species contained in the negative electrode electrolyte as the negative electrode active material, and the negative electrode electrolyte contains manganese ions in addition to the metal ions that become the negative electrode active material. Furthermore, it contains.
  • the metal ions of the same type as the negative electrode active material in the positive electrode electrolyte and the manganese ions in the negative electrode electrolyte are mainly contained to make the composition uniform in the positive and negative electrode electrolytes. Depending on the metal ion for aligning the composition, it can be used as an active material in each of the positive and negative electrodes (this also applies to the embodiments described later).
  • the positive and negative electrode electrolytes can contain any metal ions as long as they do not react with each other and can be completely mixed.
  • a form in which all of the metal ion species contained in the electrolyte solution in both electrodes overlap, that is, a form in which the metal ion species in the electrolyte solution in both electrodes is completely the same is typical. This form is effective in reducing the battery capacity due to the relative decrease in metal ions (active metal ions) that react originally at each electrode when the positive and negative electrode metal ions move to the counter electrode. Can be avoided. Moreover, this form is excellent also in the productivity of electrolyte solution.
  • species contained in the electrolyte solution of both electrodes can be set as the form which only one part overlaps among metal ion seed
  • a part of the metal ion species contained in the electrolyte solution of both electrodes is prepared with only a part of it being overlapped. Can be made to overlap.
  • the above-mentioned matters (number of overlapping ions, overlapping time) can be similarly applied to the embodiments described later.
  • the concentration of each metal ion is preferably 0.3 M or more and 5 M or less (M: volume) Molar concentration).
  • the solvent of the electrolyte solution of each electrode is preferably an aqueous solution containing at least one of sulfuric acid, phosphoric acid, nitric acid, sulfate, phosphate and nitrate. In particular, those containing sulfate anions (SO 4 2 ⁇ ) are easy to use.
  • the acid concentration is preferably less than 5M.
  • the communication pipe 310 connecting the positive electrode tank 106 and the negative electrode tank 107 is opened to the electrolyte solution (liquid phase) stored in the tanks 106 and 107, and the opening locations for the tanks 106 and 107 are different.
  • One end of the communication pipe 310 connected to the positive electrode tank 106 is connected to a position near the liquid surface of the positive electrode electrolyte in the tank 106. More specifically, one end of the communication pipe 310 opens at a position exceeding (Lp / 2) from the bottom surface when the height from the bottom surface of the positive electrode tank 106 to the liquid surface is Lp.
  • the opening position of one end of the communication pipe 310 is preferably closer to the liquid level in the positive electrode tank 106, more preferably (2/3) ⁇ Lp or more and (3/4) ⁇ Lp or more from the bottom. 13 to 15, the solid line in the positive electrode tank 106 indicates the liquid level, and in FIGS. 13 and 15, the alternate long and short dash line in the positive electrode tank 106 indicates the position (Lp / 2) from the bottom surface.
  • the other end connected to the negative electrode tank 107 in the communication pipe 310 is connected to an arbitrary position with respect to the liquid phase in the tank 107. More specifically, the other end of the communication pipe 310 opens at a position less than La from the bottom surface when the height from the bottom surface of the negative electrode tank 107 to the liquid surface is La.
  • FIG. 13 shows the position of (La / 2) from the bottom surface.
  • an on-off valve 311 is attached to the communication pipe 310 so that the positive electrode tank 106 and the negative electrode tank 107 can be switched between communication and non-communication when desired.
  • an electromagnetic valve or the like can be used as the on-off valve 311.
  • the RF battery 1 having the above-described configuration contains the positive electrode electrolyte containing manganese ions and the metal ions serving as the negative electrode active material using the pipes 108 to 111 and the pumps 112 and 113, as in the conventional RF battery.
  • Charging / discharging can be performed by circulatingly supplying the negative electrode electrolyte solution to be supplied to the battery element 100c.
  • the charge / discharge operation is performed in the same manner for the embodiments described later.
  • the RF battery 1 can mix the positive and negative electrolytes by opening the on-off valve 311.
  • charged manganese ions (Mn 3+ ) are likely to collect on the bottom side of the positive electrode tank 106 due to their specific gravity, and uncharged (discharged) manganese ions (Mn 2+ ) are collected in the tank 106. It is easy to gather on the liquid surface side. Therefore, when the on-off valve 311 is opened, the positive electrode electrolyte containing a relatively large amount of discharged manganese ions and the negative electrode electrolyte in the negative electrode tank 107 can be mixed. When the electrolytes of both electrodes are sufficiently mixed, the on-off valve 311 may be closed.
  • the sizes of the positive and negative tanks 106 and 107 and the position of the bottom surface are the same. Therefore, the electrolyte solution of both electrodes is moved to and mixed with the tanks 106 and 107 due to the weight of the electrolyte solution, and when the amount of electrolyte solution of both electrodes becomes equal, the mixing can be stopped naturally. Therefore, the mixing can be easily performed by the opening / closing operation of the opening / closing valve 311 and the workability is excellent.
  • the mixing amount can also be adjusted by adjusting the closing operation timing of the on-off valve 311 and the position (vertical relationship) of the bottom surfaces of the tanks 106 and 107.
  • a separate pump may be provided in the communication pipe 310 so that the mixing amount can be adjusted. The above-mentioned matters (tank size / arrangement position, installation of the pump) can be applied to the embodiments described later.
  • the RF battery 1 of Embodiment 17 contains manganese ions in both positive and negative electrolytes, and in the positive electrode, this manganese ion is used as the positive electrode active material, so that it is higher in power than the conventional all vanadium RF battery. Can have power.
  • the RF battery 1 is gathered on the liquid surface side by setting the opening position on the positive electrode side in the communication pipe 310 close to the liquid surface of the positive electrode electrolyte solution in the positive electrode tank 106 when mixing the electrolyte solutions of both electrodes.
  • the positive electrode electrolyte containing a large amount of discharged manganese ions and the negative electrode electrolyte in the negative electrode tank 107 can be mixed.
  • the RF battery 1 has little or substantially no self-discharge due to the mixing of the electrolyte solutions of both electrodes, and can reduce loss due to self-discharge. Moreover, since the RF battery 1 that can mix the positive electrode electrolyte containing a large amount of manganese ions in the discharged state has little loss due to self-discharge, the mixing operation of the electrolyte can be performed regardless of the charged state of the positive electrode electrolyte. As described above, in the RF battery 1, as in the case of the conventional all vanadium-based RF battery, the variation in the amount of the electrolytic solution due to the liquid transfer can be easily corrected by mixing the electrolytic solution, but the loss is low, and the long-term , Can have high electromotive force.
  • the open / close valve 311 can be closed at normal times by providing the open / close valve 311 in the communication pipe 310. That is, in the RF battery 1, the positive and negative electrode electrolytes are not normally mixed, and self-discharge due to mixing cannot occur. Therefore, the RF battery 1 can more easily suppress loss due to self-discharge resulting from mixing of the electrolytic solution.
  • RF battery 2 of Embodiment 18 is demonstrated.
  • the RF battery 2 of Embodiment 18 has the above-described basic configuration, and is characterized in that it contains titanium ions in both positive and negative electrode electrolytes and a communication pipe 320 that communicates the tanks 106 and 107 of both electrodes.
  • this feature point will be mainly described.
  • Both positive and negative electrolytes contain titanium ions as a common metal ion species. In the negative electrode, this titanium ion is used as the negative electrode active material.
  • the negative electrode electrolyte includes a form containing at least one kind of titanium ions such as trivalent titanium ions (Ti 3+ ) and tetravalent titanium ions (Ti 4+ , TiO 2+, etc.). Furthermore, you may contain bivalent titanium ion. This matter regarding the titanium ions of the negative electrode can be similarly applied to Embodiment 19 described later.
  • the above-described manganese ions can be suitably used as the positive electrode active material.
  • examples of the positive electrode electrolyte include those containing iron ions, vanadium ions, and titanium ions as a positive electrode active material.
  • FIG. 14 only the titanium ions (the valence is illustrated) are shown in the positive electrode tank 106.
  • the communication pipe 320 connecting the positive electrode tank 106 and the negative electrode tank 107 is open to the electrolyte solution (liquid phase) stored in the tanks 106 and 107 in the same manner as the communication pipe 310 of the seventeenth embodiment.
  • the on-off valve 311 is attached to.
  • the communication pipe 320 also has different opening locations for the tanks 106 and 107.
  • One end of the communication pipe 320 connected to the negative electrode tank 107 is connected to a position near the bottom of the tank 107. More specifically, one end of the communication pipe 320 opens at a position of (La / 2) or less from the bottom surface when the height from the bottom surface of the negative electrode tank 107 to the liquid surface is La.
  • the opening position at one end of the communication pipe 320 is preferably closer to the bottom of the negative electrode tank 107, more preferably a position of (1/3) ⁇ La or less and a position of (1/4) ⁇ La or less from the bottom surface.
  • the alternate long and short dash line in the negative electrode tank 107 indicates the position (La / 2) from the bottom surface.
  • the other end connected to the positive electrode tank 106 in the communication pipe 320 opens at an arbitrary position with respect to the liquid phase in the tank 106, that is, at a position less than Lp from the bottom surface.
  • the position of (Lp / 2) from the bottom is shown.
  • the RF battery 2 having the above configuration can also correct variations in the amount of electrolyte and variations in ion concentration by mixing the positive and negative electrolytes using the communication tube 320.
  • the RF battery 2 of the eighteenth embodiment can mix the positive and negative electrolytes by opening the on-off valve 311.
  • the on-off valve 311 is opened, the negative electrode electrolyte containing a relatively large amount of discharged titanium ions and the positive electrode electrolyte in the positive electrode tank 106 can be mixed.
  • the on-off valve 311 may be closed.
  • the RF battery 2 of Embodiment 18 contains titanium ions in both positive and negative electrolytes, and in the negative electrode, this titanium ion is used as a negative electrode active material, so that an electromotive force equivalent to that of a conventional all-vanadium RF battery is obtained. Can have.
  • the opening position on the negative electrode side in the communication tube 320 is closer to the bottom of the negative electrode tank 107, so that the titanium ions in the discharge state gathered on the bottom side can be removed.
  • a large amount of the negative electrode electrolyte and the positive electrode electrolyte in the positive electrode tank 106 can be mixed.
  • the self-discharge due to the mixing of the electrolytes of both electrodes is small or substantially not generated, and the loss due to the self-discharge can be reduced.
  • the RF battery 2 that can mix the negative electrode electrolyte containing a large amount of titanium ions in a discharged state has little loss due to self-discharge, the mixing operation of the electrolyte can be performed regardless of the charged state of the negative electrode electrolyte.
  • the variation in the amount of the electrolyte due to the liquid transfer can be easily corrected by mixing the electrolyte, but the loss is low, and the long-term , Can have high electromotive force.
  • the positive and negative electrode electrolytes are not normally mixed as in the RF battery 1 of the seventeenth embodiment. It is easy to reduce loss due to self-discharge caused by mixing.
  • the RF battery 3 of Embodiment 19 will be described.
  • the RF battery 3 of the nineteenth embodiment has the above-described basic configuration, and includes manganese ions and titanium ions in both positive and negative electrolytes, and a communication tube 330 that communicates the tanks 106 and 107 of both electrodes. It is characterized by.
  • this feature point will be mainly described.
  • One end of the communication pipe 330 provided in the RF battery 3 is connected to a position near the liquid surface of the positive electrode electrolyte in the positive electrode tank 106 (position exceeding (Lp / 2)), and the other end is close to the bottom of the negative electrode tank 107. (Positions below (La / 2)).
  • the one end connected to the positive electrode tank 106 in the communication pipe 330 is preferably closer to the liquid level in the positive electrode tank 106, and is located at (2/3) ⁇ Lp or more from the bottom surface. A position of (3/4) ⁇ Lp or more is more preferable.
  • the other end of the communication pipe 330 connected to the negative electrode tank 107 is preferably closer to the bottom of the negative electrode tank 107, and is (1/3) ⁇ La or less, (1/4) ⁇ La or less from the bottom. Is more preferable.
  • the other end connected to the negative electrode tank 107 in the communication pipe 330 is lower than one end connected to the positive electrode tank 106.
  • the open / close valve 311 is attached to the communication pipe 330.
  • the RF battery 3 having the above configuration can also correct variations in the amount of electrolyte and variations in ion concentration by mixing the positive and negative electrolytes using the communication tube 330.
  • the RF battery 3 of Embodiment 19 can mix the positive and negative electrolytes by opening the on-off valve 311.
  • the on-off valve 311 when the on-off valve 311 is opened, a positive electrode electrolyte containing a relatively large amount of discharged manganese ions and a negative electrode electrolyte containing a relatively large amount of discharged titanium ions can be mixed. it can.
  • the on-off valve 311 may be closed.
  • the RF battery 3 of the nineteenth embodiment contains manganese ions and titanium ions in both positive and negative electrolyte solutions.
  • manganese ions are used as a positive electrode active material
  • titanium ions are used as a negative electrode active material.
  • the electromotive force can be higher than that of a conventional all-vanadium RF battery.
  • the RF battery 3 by containing titanium ions in the positive electrode electrolyte, it is possible to suppress the precipitation of MnO 2 and stabilize Mn 3+, and to have a high electromotive force over a long period of time. it can.
  • the RF battery 3 when the positive and negative electrode electrolytes are mixed, one opening position in the communication tube 330 is close to the liquid surface of the positive electrode electrolyte solution in the positive electrode tank 106, and the other opening position is in the negative electrode tank 107.
  • a positive electrode electrolyte containing a large amount of manganese ions in a discharged state and a negative electrode electrolyte containing a large amount of titanium ions in a discharged state can be mixed. Therefore, the RF battery 3 has little or substantially no self-discharge due to mixing of positive and negative electrolytes, and can reduce loss due to self-discharge.
  • the electrolyte solution can be mixed regardless of the state of charge of the electrolyte solution in both electrodes.
  • the variation in the amount of the electrolyte due to the liquid transfer can be easily corrected by mixing the electrolyte, but the loss is low, and the long-term , Can have high electromotive force.
  • the RF battery 3 of the nineteenth embodiment by providing the open / close valve 311 in the communication pipe 330, as in the RF batteries 1 and 2 of the seventeenth and eighteenth embodiments, the mixing time of the positive and negative electrode electrolytes (open / close valve) Time for opening 311) can be easily controlled at an arbitrary time. Therefore, the RF battery 3 is also easy to reduce the loss due to self-discharge resulting from the mixing of the electrolytic solution.
  • the inner diameter ⁇ of the small diameter portion is preferably 13 mm or more, and is easily about 13 mm or more and 25 mm or less.
  • the inner diameter may be uniform over the entire length of the communication pipe, and the inner diameter ⁇ may be 25 mm or less, that is, the entire communication pipe may be a small diameter portion, or a part of the communication pipe in the longitudinal direction (preferably
  • the above-mentioned effect can be obtained even when the thin-diameter portion has an inner diameter ⁇ of 25 mm or less at a length of 10 cm or more.
  • the above-described effects can be obtained even with a form having a small diameter portion.
  • the RF battery of the twentieth embodiment Since the RF battery of the twentieth embodiment is in a state where the positive and negative tanks are always connected by the communication pipe, the electrolyte amount variation (occurrence of liquid level difference), ion concentration variation, etc. over time Substantially does not occur. In addition, since the RF battery of the twentieth embodiment does not include an opening / closing valve, it is not necessary to perform an opening / closing operation when mixing the electrolyte. From these points, the RF battery of Embodiment 20 does not need to perform a separate operation for mixing the electrolytes of both electrodes.
  • the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist of the present invention.
  • the metal ions contained in the positive electrode electrolyte or the negative electrode electrolyte may be changed.
  • the redox flow battery of the present invention has a large capacity for the purpose of stabilizing fluctuations in power generation output, storing electricity when surplus of generated power, load leveling, etc., for power generation of new energy such as solar power generation and wind power generation. It can utilize suitably for a storage battery.
  • the redox flow battery of the present invention can be suitably used as a large-capacity storage battery that is installed in a general power plant or factory, for the purpose of instantaneous voltage drop / power failure countermeasures and load leveling.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

 電池要素に、正極タンクに貯留される正極電解液、および負極タンクに貯留される負極電解液を供給して充放電を行なうレドックスフロー電池であり、正極電解液は、正極活物質としてMnイオンを含有し、正極タンクには、正極タンク内の正極電解液の液面寄りに開口した正極充電用配管と、正極タンクの底部寄りに開口した正極放電用配管と、を備える。このレドックスフロー電池は、タンク内の電解液を攪拌する攪拌機構を備えることができ、正極タンクと負極タンクを連通する連通管を備えることができる。

Description

レドックスフロー電池
 本発明は、レドックスフロー電池に関するものである。特に、高い起電力が得られるレドックスフロー電池に関するものである。
 昨今、地球温暖化への対策として、太陽光発電、風力発電といった新エネルギーの導入が世界的に推進されている。これらの発電出力は、天候に影響されるため、大量に導入が進むと、周波数や電圧の維持が困難になるといった電力系統の運用に際しての問題が予測されている。この問題の対策の一つとして、大容量の蓄電池を設置して、出力変動の平滑化、余剰電力の貯蓄、負荷平準化などを図ることが期待される。
 大容量の蓄電池の一つにレドックスフロー電池がある。レドックスフロー電池は、正極電極と負極電極との間に隔膜を介在させた電池要素に正極電解液および負極電解液をそれぞれ供給して充放電を行なう。上記電解液は、代表的には、酸化還元により価数が変化する金属イオンを含有する水溶液が利用される。正極に鉄イオン、負極にクロムイオンを用いる鉄-クロム系レドックスフロー電池の他、正負の両極にバナジウムイオンを用いる全バナジウム系レドックスフロー電池が代表的である(たとえば、特開2001-043884号公報(特許文献1)、特開2006-147374号公報(特許文献2))。
特開2001-043884号公報 特開2006-147374号公報
 バナジウム系レドックスフロー電池は、実用化されており、今後も使用が期待される。しかし、従来の鉄-クロム系レドックスフロー電池や全バナジウム系レドックスフロー電池では、起電力が十分に高いとは言えない。今後の世界的な需要に対応するためには、さらに高い起電力を有し、かつ、活物質に用いる金属イオンを安定して供給可能な、好ましくは安定して安価に供給可能な新たなレドックスフロー電池の開発が望まれる。
 また、全バナジウム系レドックスフロー電池のように、正負の両極の電解液が混合可能であれば、当該混合により、電池の特性を改善することができて好ましい。
 そこで、本発明の目的の一つは、高い起電力が得られるレドックスフロー電池を提供することにある。また、本発明の他の目的は、正負の両極の電解液が混合可能なレドックスフロー電池を提供することにある。
 起電力を向上するためには、標準酸化還元電位が高い金属イオンを活物質に用いることが考えられる。従来のレドックスフロー電池に利用されている正極活物質の金属イオンの標準酸化還元電位は、Fe2+/Fe3+が0.77V、V4+/V5+が1.0Vである。本発明者らは、正極活物質となる金属イオン(活物質イオン)として、水溶性の金属イオンであり、従来の金属イオンよりも標準酸化還元電位が高く、バナジウムよりも比較的安価で、資源供給面においても優れると考えられるマンガン(Mn)を用いたレドックスフロー電池を検討した。Mn2+/Mn3+の標準酸化還元電位は、1.51Vであり、マンガンイオンは、起電力がより大きなレドックス対を構成するための好ましい特性を有する。また、本発明者らは、負極活物質となる金属イオンとしてチタン(Ti)に着目し、チタンを用いたレドックスフロー電池を検討した。Ti3+/Ti4+の標準酸化還元電位は、0Vであり、チタンイオンも、起電力がより高いレドックス対を構成するための好ましい特性を有する。特に、正極活物質にマンガンイオンを用い、負極活物質にチタンイオンを用いたマンガン-チタン系レドックスフロー電池は、1.4V程度といった高い起電力を有することができる。
 本発明者らが、さらに検討した結果、正極電解液にマンガンイオンを含有するレドックスフロー電池や負極電解液にチタンイオンを含有するレドックスフロー電池では、充放電を繰り返すうちに、放電時間が短くなったり、過充電になって充電時間が短くなったりすることがあることが分かった。この理由として、上記イオンを含有する電解液では、充電状態のときの比重と放電状態のときの比重とが異なることが考えられる。
 従来の全バナジウム系レドックスフロー電池などでは、充電状態にある電解液の比重と放電状態にある電解液の比重との差がほとんどなく、タンク内の電解液は、自然に撹拌されてイオン濃度が均一的になっている。
 一方、正極活物質にマンガンイオンを含有する正極電解液では、2価のマンガンイオン(Mn2+)に比較して、充電された3価のマンガンイオン(Mn3+)の比重が大きいこと(重いこと)が分かった。そのため、充電状態にある電解液(Mn3+を相対的に多く含む液)が正極タンクの底部に沈降し易く、充電を続けていくと、正極タンク内の底部側では、充電状態にあるMn3+のイオン濃度が未充電状態にあるMn2+のイオン濃度に比較して高くなることが分かった。つまり、充電時、正極タンク内の正極電解液は、当該タンクの液面寄りの領域にMn2+が多く、当該タンクの底部寄りの領域にMn3+が多いといったイオンの濃度分布(二層状態)が生じ易いことが判明した。
 したがって、たとえば、正極タンクの底部側から電池要素に送液する構成とすると、充電時、充電状態にある電解液を電池要素に供給することになる。そのため、充電末の電圧への到達時間が短くなったり、過充電になったり、充電可能な時間が短くなったりして、効率の低下を招く。最悪の場合、充電時に過電圧となったり、活物質の析出が生じたりする恐れがある。
 また、正極活物質としてマンガンイオンを含有すると共に、負極電解液にもマンガンイオンを含有させたり、負極活物質としてチタンイオンを含有すると共に、正極電解液にもチタンイオンを含有させたりすることで、電解液を混合可能なレドックスフロー電池とした場合には、連通管を介して正負の両極の電解液を混合するにあたり、連通管における正極側の開口部が正極タンクの底部側に設けられていると、充電状態のマンガンイオンを相対的に多く含む正極電解液と、負極電解液とを混合することになり、自己放電による損失が大きくなり易い。
 他方、負極活物質としてチタンイオンを含有する負極電解液では、4価のチタンイオン(Ti4+、TiO2+など)に比較して、充電された3価のチタンイオン(Ti3+)の比重が小さいこと(軽いこと)が分かった。そのため、上述のマンガンイオンを含む正極電解液とは逆に、充電時、負極タンク内の負極電解液は、当該タンクの液面寄りの領域にTi3+が多く、当該タンクの底部寄りの領域に4価のチタンイオンが多いといったイオンの濃度分布が生じ易い。
 したがって、たとえば、上記のように負極タンクの底部側から電池要素に送液する構成とすると、放電時、十分に充電されていない状態にある電解液(4価のチタンイオンを相対的に多く含む液)を電池要素に供給することになり、放電時間が短くなるなど、効率の低下を招く。
 また、上記のように、電解液を混合可能なレドックスフロー電池とした場合には、連通管を介して正負の両極の電解液を混合するにあたり、連通管における負極側の開口部が負極タンクの液面側に設けられていると、充電状態のチタンイオンを相対的に多く含む負極電解液と、正極電解液とを混合することになり、自己放電による損失が大きくなり易い。
 以上説明した検討・知見に基づき、本発明を以下に規定する。
 本発明レドックスフロー電池は、正極電極と、負極電極と、これら電極間に介在される隔膜とを備える電池要素に、正極タンク内の正極電解液および負極タンク内の負極電解液をそれぞれ供給して充放電を行なうレドックスフロー電池に係るものである。
 第1の発明として、上記正極電解液がマンガンイオンを含有する形態が挙げられる。この形態では、以下の構成(1)を備えることを特徴とする。
 <構成(1)>
 上記正極タンクに、充電時に正極電解液を上記電池要素に供給する正極充電用配管と、放電時に正極電解液を上記電池要素に供給する正極放電用配管とがそれぞれ接続されている。上記正極充電用配管の一端が上記正極タンク内の正極電解液の液面寄りの位置に開口している。上記正極放電用配管の一端が上記正極タンクの底部寄りの位置に開口している。
 第2の発明として、上記負極電解液がチタンイオンを含有する形態が挙げられる。この形態では、以下の構成(2)を備えることを特徴とする。
 <構成(2)>
 上記負極タンクに、充電時に負極電解液を上記電池要素に供給する負極充電用配管と、放電時に負極電解液を上記電池要素に供給する負極放電用配管とがそれぞれ接続されている。上記負極充電用配管の一端が上記負極タンクの底部寄りの位置に開口している。上記負極放電用配管の一端が上記負極タンク内の負極電解液の液面寄りの位置に開口している。
 第3の発明として、上記正極電解液がマンガンイオンを含有し、上記負極電解液がチタンイオンを含有する形態が挙げられる。この形態では、上述の構成(1)および構成(2)を備えることを特徴とする。
 第4の発明として、以下の構成(3)を備えることを特徴とする。
 <構成(3)>
 上記正極タンク内の正極電解液または負極タンク内の負極電解液を攪拌する攪拌機構と、その撹拌機構の動作を制御する制御手段と、を備えることを特徴とする。ここで、第4の発明では、正極電解液と負極電解液の構成に応じて撹拌機構の設置状態が異なる。具体的には、次の3つである。
[1]正極電解液が正極活物質としてマンガンイオンを含有し、負極電解液はチタンイオンを含有しない場合、撹拌機構は正極電解液を貯留する正極タンクに設ける。もちろん、負極電解液を貯留する負極タンクにも撹拌機構を設けても構わない。
[2]負極電解液が負極活物質としてチタンイオンを含有し、正極電解液はマンガンイオンを含有しない場合、撹拌機構は負極タンクに設ける。もちろん、正極タンクにも撹拌機構を設けても構わない。
[3]正極電解液がマンガンイオンを含有し、負極電解液がチタンイオンを含有する場合、撹拌機構は正極タンクと負極タンクの両方に設ける。
 なお、本発明において「液面寄りの位置」とは、タンクの底部から同タンク内の電解液の液面までの距離をLとするとき、タンクの底部から(L/2)超L未満の位置とする。また、本発明において「底部寄りの位置」とは、タンクの底部から(L/2)以下の位置とする。
 上記構成(1)および(2)のうち少なくとも一方を備える本発明レドックスフロー電池は、充電時、十分に充電されていない状態にある電解液(正極ではMn2+が相対的に多い液、負極では4価のチタンイオンが相対的に多い液)を電池要素に供給でき、放電時、十分に充電された電解液(正極ではMn3+が相対的に多い液、負極ではTi3+が相対的に多い液)を電池要素に供給できる。そのため、本発明レドックスフロー電池は、充放電の運転にあたり、比重の異なる電解液を効率よく利用可能であり、たとえば、放電時、フル充電された電解液を用いることができる。したがって、本発明レドックスフロー電池は、電圧を高めたり、出力を高められ、長期に亘り、高い起電力を有することができる。
 また、上記構成(3)を備える本発明レドックスフロー電池は、充放電に伴ってタンク中の電解液において活物質イオンの分布が不均一になった場合でも、その分布を速やかに均一化することができる。撹拌のタイミングは、充放電のために電池要素に電解液を送液する前からとすると良く、少なくとも充放電のための電解液の送液を終えるまでの間、撹拌を継続することが好ましい。そうすることで、活物質としてマンガンイオンおよびチタンイオンの少なくとも一方を用いたレドックスフロー電池における充電不足あるいは放電不足といった問題を生じ難くすることができる。
 以下、本発明レドックスフロー電池の好ましい形態について説明する。
 上記構成(1)および(2)の少なくとも一方を備える本発明の一形態として、正極および負極のうち、同じ極の充電用配管の他端と放電用配管の他端とが一つの共通配管の一端に接続され、この共通配管を経て上記電池要素に当該極の電解液を供給する形態が好ましい。
 上記共通配管を備える形態では、たとえば、上記共通配管に接続された上記充電用配管および上記放電用配管にそれぞれ、上記電解液を圧送するためのポンプが取り付けられ、上記共通配管において上記充電用配管および上記放電用配管との接続箇所に三方弁が取り付けられた形態が好ましい。
 あるいは、上記共通配管を備える形態では、上記共通配管に接続された上記充電用配管および上記放電用配管にそれぞれ、上記電解液を圧送するためのポンプおよび逆止弁が取り付けられた形態が好ましい。
 共通配管を備える上記形態は、電池要素に接続する配管数を少なくできる。また、上記形態は、充電用配管および放電用配管のそれぞれにポンプが別個に設けられていることで、充電時および放電時のいずれにおいても電解液を所望の圧力で電池要素に供給できる。さらに、三方弁を備える形態では、三方弁を切り替えることで、逆止弁を備える形態では当該弁により、電解液の逆流を防止して、比重が異なる電解液が混合されることを防止できる。その他、三方弁を備える形態では、部品点数を低減できる上に、構成を簡素にできる。逆止弁を備える形態では、三方弁のような切替動作が不要である上に、誤動作による不具合(ポンプの故障など)が生じない。
 上記共通配管を備える別の形態として、上記共通配管において上記充電用配管および上記放電用配管との接続箇所に三方弁が取り付けられ、かつ、上記共通配管において上記三方弁と上記電池要素との間に上記電解液を圧送するためのポンプが取り付けられた形態も好ましい。
 上記形態は、上述のように三方弁を切り替えることで、電解液の逆流を防止して、比重の異なる電解液の混合を防止できる。また、上記形態は、二つの逆止弁ではなく一つの三方弁を備える形態とすると共に、充電時と放電時とで一つのポンプを共用することでも、部品点数が少なく、構成をより簡素にできる。さらに、ポンプが一つであることで、上記形態は、ランニングコストを低減できる。
 また、上記構成(1)および(2)の少なくとも一方を備える本発明の一形態として、上記正極タンクに、充電時に上記電池要素からの正極電解液を当該タンクに戻す正極充電用リターン配管と、放電時に上記電池要素からの正極電解液を当該タンクに戻す正極放電用リターン配管とがそれぞれ接続された形態が好ましい。この形態として、たとえば、上記正極充電用リターン配管の一端が上記正極タンクの底部寄りの位置に開口し、上記正極放電用リターン配管の一端が上記正極タンク内の正極電解液の液面寄りの位置に開口し、上記正極充電用リターン配管の他端と上記正極放電用リターン配管の他端とが一つの正極共通リターン配管の一端に接続され、上記正極共通リターン配管において上記正極充電用リターン配管および上記正極放電用リターン配管との接続箇所に三方弁が取り付けられた形態が好ましい。この形態では、上記電池要素からの正極電解液は、上記正極共通リターン配管を経て上記正極充電用リターン配管および上記正極放電用リターン配管にそれぞれ送られる。
 あるいは、上記負極タンクに、充電時に上記電池要素からの負極電解液を当該タンクに戻す負極充電用リターン配管と、放電時に上記電池要素からの負極電解液を当該タンクに戻す負極放電用リターン配管とがそれぞれ接続された形態が好ましい。この形態として、たとえば、上記負極充電用リターン配管の一端が上記負極タンク内の負極電解液の液面寄りの位置に開口し、上記負極放電用リターン配管の一端が上記負極タンクの底部寄りの位置に開口し、上記負極充電用リターン配管の他端と上記負極放電用リターン配管の他端とが一つの負極共通リターン配管の一端に接続され、上記負極共通リターン配管において上記負極充電用リターン配管および上記負極放電用リターン配管との接続箇所には三方弁が取り付けられた形態が好ましい。この形態では、上記電池要素からの負極電解液は、上記負極共通リターン配管を経て上記負極充電用リターン配管および上記負極放電用リターン配管にそれぞれ送られる。
 充電用リターン配管および放電用リターン配管を備える上記形態は、電池要素から排出された電解液をタンクに戻すにあたり、たとえば、充電されて比重が大きくなった電解液や比重が軽くなった電解液と、タンク内の電解液であって比重が異なる電解液とをタンク内で混ざり難くすることができる。つまり、上記形態は、充電状態にある電解液と十分に充電されていない状態にある電解液との二層状態(イオンの濃度分布)をつくり易い、あるいは維持し易い。したがって、上記形態は、充電時には、十分に充填されていない状態(放電状態)のイオンを相対的に多く含む電解液を電池要素に効率よく供給でき、放電時には、十分に充電された状態のイオンを相対的に多く含む電解液を電池要素に効率よく供給できる。
 上記構成(3)を備える本発明レドックスフロー電池の一形態として、撹拌機構は、導入配管とガス供給機構とを備える構成とすることが好ましい。
 上記導入配管は、タンク外からタンク内に導入され、そのタンク内に貯留される電解液中に開口する配管であることが好ましい。
 また、上記ガス供給機構は、導入配管を介してタンク内に不活性ガスを供給する機構であることが好ましい。該構成によれば、電解液を不活性ガスでバブリングすることで、電解液を撹拌することができる。より効率的なバブリングを行なうのであれば、導入配管の側壁部分のうち、電解液中に配置される部分に複数の気孔を設けることが好ましい。
 また、上記構成(3)を備える本発明レドックスフロー電池の一形態として、撹拌機構は、タンク内の電解液中で回転または揺動して、電解液を撹拌する撹拌部材を備える構成とすることが好ましい。該構成によれば、撹拌部材の動きによって電解液に対流を生じさせ、タンク中の電解液を効果的に撹拌することができる。
 また、上記構成(3)を備える本発明レドックスフロー電池の一形態として、撹拌部材は、電磁力により動作する構成とすることが好ましい。その場合、撹拌部材として、永久磁石を樹脂でコートした物を用いても良い。そして、この樹脂コート磁石をタンク外からの電磁力により回転あるいは振動させても良い。これは、いわゆるマグネティックスターラーと同じ構成である。
 たとえば、回転軸の先端にプロペラの付いた撹拌部材で電解液を撹拌する構成とした場合、タンクに孔を開けてその孔に回転軸を通した上で、孔と回転軸との間をシールする必要がある。これに対して、電磁力で撹拌部材を動作させる構成であれば、タンクに孔を開ける必要がなく、したがってシールの必要もない。
 また、上記構成(3)を備える本発明レドックスフロー電池の一形態として、撹拌機構は、撹拌用配管と、送液ポンプとを備える構成とすることが好ましい。撹拌用配管は、その一端がタンク内の液相に開口し、他端が同じタンク内の液相もしくは気相に開口する配管であることが好ましい。また、送液ポンプは、撹拌用配管の一端側から他端側に向かって電解液を送り出すポンプであることが好ましい。該構成とすることで、タンク内の電解液に大きな対流を生じさせることができ、タンク内の電解液を効率的かつ効果的に撹拌することができる。
 上記撹拌用配管と送液ポンプとを備える本発明レドックスフロー電池の一形態として、撹拌用配管の途中に、電解液の温度調整をする温度調整機構を設けることが好ましい。
 基本的に、本発明レドックスフロー電池では、充放電を行なう前に撹拌機構を動作させる。そのため、撹拌用配管の途中に温度調整機構を設けておけば、レドックスフロー電池の充放電の際に、効率的に電解液を充放電に適した温度に調整することができる。また、撹拌機構を動作させないときに温度調整機構を動作させる無駄を無くすことができるため、レドックスフロー電池のランニングコストを低減させることができる。
 上記撹拌用配管と送液ポンプとを備える本発明レドックスフロー電池の一形態として、撹拌用配管の途中に、電解液中の不純物および析出物を除去するフィルターを備える構成とすることが好ましい。
 上記のように撹拌用配管にフィルターを設けることで、電解液を撹拌しつつ電解液をフィルターにかけることができる。そのため、フィルターへの送液のための別ポンプが不要となることから、レドックスフロー電池の設備コストやランニングコストの低減が可能となる。
 上記構成(3)を備える本発明レドックスフロー電池の一形態として、制御手段は、予め定められたスケジュールにしたがって前記撹拌機構を間欠的に動作させる構成とすることが好ましい。
 撹拌機構を常に動作させておくのは非効率的である。これに対して、撹拌機構を間欠的に運転することで、レドックスフロー電池のランニングコストを下げることができる。撹拌機構をスケジュール通りに運転できるのは、通常のレドックスフロー電池ではその運転スケジュールもある程度決まったものである場合が多いからである。たとえば、負荷平準化のためにレドックスフロー電池を設ける場合、そのレドックスフロー電池は、夜間に充電し、昼間の電力需要が高い時間帯に放電するというような決まった運転スケジュールで運転されることが多い。このように運転スケジュールが決まっていれば、その運転スケジュールに合わせて電解液を撹拌するスケジュールも容易に決めることができる。
 上記構成(3)を備える本発明レドックスフロー電池の一形態として、タンク内における電解液中の活物質イオンの分布状態を検知する検知機構を備える構成とすることが好ましい。その場合、制御手段は、検知機構の検知結果に基づいて撹拌機構を制御しても良い。
 検知結果に基づいて撹拌機構を運転する、つまり電解液における活物質イオンの濃度分布が不均一になったときに撹拌機構を動作させることで、レドックスフロー電池のランニングコストを効果的に低減することができる。ここで、検知機構としては、図11(A)を参照する後述の実施形態15に示すように、電解液の透明度(あるいは色度)を検知して活物質イオンの濃度分布を検知する検知機構を挙げることができる。電解液の透明度を検知の対象とできるのは、マンガンイオンを含む電解液もチタンイオンを含む電解液も、イオンの酸化数の違いにより透明度に差ができるからである。その他、電解液を実際にサンプリングして活物質イオンの濃度分布を検知するものを採用しても良い。
 また、上記構成(1)~(3)の少なくとも一つを備える本発明レドックスフロー電池の一形態として、上記正極電解液と上記負極電解液とが共通の金属イオン種を含有し、上記正極タンク内の液相と上記負極タンク内の液相とを連通する連通管を備える形態も好ましい。
 上記共通の金属イオン種がマンガンイオンである形態、つまり、正極活物質としてマンガンイオンを含有し、負極電解液にもマンガンイオンを含有する形態では、上記連通管の一端は、上記正極タンク内の正極電解液の液面寄りの位置に開口していることが好ましい。
 また、共通の金属イオン種がチタンイオンである形態、つまり、負極活物質としてチタンイオンを含有し、正極電解液にもチタンイオンを含有する形態では、上記連通管の一端は、上記負極タンクの底部寄りの位置に開口していることが好ましい。
 また、上記共通の金属イオン種が、マンガンイオンおよびチタンイオンである形態、つまり、正極活物質としてマンガンイオンを含有し、負極活物質としてチタンイオンを含有し、さらに、正極電解液にチタンイオン、負極電解液にマンガンイオンを含有する形態では、上記連通管の一端が上記正極タンク内の正極電解液の液面寄りの位置に開口し、上記連通管の他端が上記負極タンクの底部寄りの位置に開口していることが好ましい。
 上記構成を備える本発明レドックスフロー電池は、連通管を介して正負の両極の電解液を混合する場合に自己放電を効果的に低減する、あるいは実質的に生じなくすることができる。したがって、本発明レドックスフロー電池は、経時的な液移りなどにより両極の電解液量のばらつき(液面差の発生)やイオン濃度のばらつきなどが生じた場合に、両極の電解液を混合して当該ばらつきを容易に是正できる上に、混合時の自己放電による損失を低減することができる。また、本発明レドックスフロー電池は、両極のタンク内における特定の領域の電解液を混合することで、混合時の自己放電が生じ難いため、上記タンク内の電解液の充電状態に依らず、任意のときに上記電解液を混合することができる。そして、レドックスフロー電池を速やかに自己放電させ、電池容量の回復を図ることができる。
 特に、正負の両極の電解液にマンガンイオンおよびチタンイオンの双方を含有する形態では、混合する両極の電解液がいずれも、十分に充電されていない状態(放電状態)のイオンが相対的に多い電解液である。そのため、この形態は、両極の電解液を混合した場合に、自己放電による損失をより低減し易い、あるいは自己放電が実質的に生じない。また、上記形態は、正極電解液中のチタンイオンが、Mn3+の不均化反応に伴うMnO2の析出を抑制する機能も有する。本発明者らは、正極電解液に、マンガンイオンと共にチタンイオンを存在させると、上記析出を効果的に抑制できることを見出した。したがって、この形態は、長期に亘り、高い起電力を有することができる。
 ここで、上記連通管を備える本発明レドックスフロー電池は、上記連通管に開閉弁が取り付けられた形態が好ましい。
 上記形態は、開閉弁の閉動作により、正負の両極のタンクが常時連通されて、両極の電解液が常時混合された状態となることを防止できる。したがって、上記形態は、両極の電解液の混合による自己放電をより低減でき、自己放電に伴う損失をより低減することができる。
 また、上記連通管を備える本発明レドックスフロー電池は、上記連通管の少なくとも一部の内径Φが25mm以下であることが好ましい。
 上記形態は、正負の両極のタンクが常時連通されており、両極の電解液量のばらつきやイオン濃度のばらつきなどが実質的に生じない。したがって、上記形態は、開閉弁を開閉するなどの操作を行なうことなく、両極の電解液を混合できる。かつ、上記形態は、連通管の少なくとも一部が細いことで、過度に電解液が混合されることを防止でき、自己放電に伴う損失を抑制することができる。
 本発明レドックスフロー電池は、高い起電力を有する。また、本発明レドックスフロー電池は、高起電力で、かつ安定した充放電特性を有する。
図1は、各実施形態に共通するレドックスフロー電池の基本構成の概略構成図である。 図2は、本発明レドックスフロー電池の概略構成図であり、図2(A)は、実施形態1、図2(B)は実施形態2を示す。 図3は、本発明レドックスフロー電池の概略構成図であり、図3(A)は、実施形態3、図3(B)は実施形態4、図3(C)は実施形態5を示す。 図4は、実施形態6のレドックスフロー電池の概略構成図である。 図5は、本発明レドックスフロー電池の概略構成図であり、図5(A)は、実施形態7、図5(B)は実施形態8を示す。 図6は、本発明レドックスフロー電池の概略構成図であり、図6(A)は、実施形態9、図6(B)は実施形態10を示す。 図7は、実施形態11のレドックスフロー電池の概略構成図である。 図8は、実施形態12のレドックスフロー電池の概略構成図である。 図9は、タンク内に不活性ガスを導入することでタンク内の電解液を撹拌する実施形態13に記載される撹拌機構の概略構成図である。 図10(A)~(C)は、タンク内の電解液に対流を起こさせることで電解液を撹拌する実施形態14に記載される撹拌機構の概略構成図である。 図11(A)~(B)は、タンク内の電解液を一旦外部に取り出して、再びタンク内に戻すことで電解液を撹拌する実施形態15に記載される撹拌機構の概略構成図である。 図12は、実施形態16に記載される正極タンクの液相と負極タンクの液相を繋ぐ連通管の配置状態を説明する概略構成図である。 図13は、実施形態17のレドックスフロー電池の概略構成図である。 図14は、実施形態18のレドックスフロー電池の概略構成図である。 図15は、実施形態19のレドックスフロー電池の概略構成図である。
 以下、図面を参照して、本発明の実施形態を詳細に説明する。図中、同一符号は、同一名称物を示す。なお、図中の金属イオン(種類、価数)は例示である。
 以下、本発明レドックスフロー電池の実施形態を図面に基づいて説明する。なお、各実施形態のレドックスフロー電池に備わる構成の大部分は共通するため、その共通する構成を図1に基づいて説明する。その後、各実施形態に固有の構成についてそれぞれ図面を参照しつつ説明する。
 <基本構成>
 図1は、各実施形態のレドックスフロー電池(以下、RF電池)100のうち、共通する構成を有する部分を示す概略構成図である。このRF電池100は、正極活物質としてマンガンイオン(以下、Mnイオンとも記す)、負極活物質としてチタンイオン(以下、Tiイオンとも記す)を用いた点が、従来のレドックスフロー電池と異なる。図1における実線矢印は、充電、破線矢印は、放電を意味する。なお、図1に示す活物質イオンは代表的な形態を示しており、図示される以外の形態も含み得る。たとえば、図1では、4価のチタンイオンとしてTi4+を示すが、TiO2+などのその他の形態も含み得る。
 図1のRF電池100は、代表的には、交流/直流変換器を介して、発電部(たとえば、太陽光発電機、風力発電機、その他、一般の発電所など)や変電設備を含む電力系統に接続され、発電部を電力供給源として充電を行い、負荷を電力提供対象として放電を行なう。このRF電池100は、従来のRF電池と同様に、電池要素100cと、この電池要素100cに電解液を循環させる循環機構(タンク、配管、ポンプ)と、を備える。
 [電池要素と循環機構]
 RF電池100に備わる電池要素100cは、正極電極104を内蔵する正極セル102と、負極電極105を内蔵する負極セル103と、両セル102,103を分離すると共にイオンを透過する隔膜101と、を備える。正極セル102には、正極電解液を貯留する正極タンク106が配管108,110を介して接続される。負極セル103には、負極電解液用を貯留する負極タンク107が配管109,111を介して接続される。配管108,109には、各極の電解液を循環させるためのポンプ112,113を備える。電池要素100cは、配管108~111、ポンプ112,113を利用して、正極セル102(正極電極104)、負極セル103(負極電極105)にそれぞれ正極タンク106の正極電解液、負極タンク107の負極電解液を循環供給して、各極の電解液中の活物質となる活物質イオン(正極にあってはMnイオン、負極にあってはTiイオン)の価数変化反応に伴って充放電を行なう。
 電池要素100cは通常、複数積層されたセルスタックと呼ばれる形態で利用される。電池要素100cを構成するセル102,103は、一面に正極電極104、他面に負極電極105が配置される双極板(図示せず)と、電解液を供給する給液孔および電解液を排出する排液孔を有し、かつ上記双極板の外周に形成される枠体(図示せず)と、を備えるセルフレームを用いた構成が代表的である。複数のセルフレームを積層することで、上記給液孔および排液孔は電解液の流路を構成し、この流路は配管108~111に接続される。セルスタックは、セルフレーム、正極電極104、隔膜101、負極電極105、セルフレーム、・・・と順に繰り返し積層されて構成される。代表的には、双極板は、プラスチックカーボンからなるもの、セルフレームの枠体は、塩化ビニルなどの樹脂からなるものが挙げられる。
 <実施形態1~12>
 以下、実施形態1~12を説明する。実施形態1~12のRF電池は、上述の基本構成を備え、上述の構成(1)および(2)の少なくとも一方を備えることを特徴とする。
 <実施形態1>
 図2を参照して、実施形態1のRF電池1Aを説明する。実施形態1のRF電池1Aは、上述の基本的な構成を備え、正極活物質としてMnイオンを含有する電解液を正極電解液に用いる点、正極側の上流配管を二つ備える点を特徴とする。以下、この特徴点を中心に説明する。
 [電解液]
 正極電解液は、2価のMnイオン(Mn2+)および3価のMnイオン(Mn3+)から選択される少なくとも一種のMnイオンを含有するものが挙げられる。本発明者らが調べた結果、MnO2も活物質として利用できるとの知見を得たことから、4価のマンガン(MnO2)をさらに含有することを許容する。
 負極電解液は、たとえば、負極活物質として、チタンイオン、バナジウムイオン、クロムイオン、亜鉛イオン、およびスズイオンから選択される少なくとも一種の金属イオンを含有するものが挙げられる。チタンイオンやスズイオンを含有するマンガン-チタン系RF電池やマンガン-スズ系RF電池では、起電力:1.4V程度、バナジウムイオンを含有するマンガン-バナジウム系RF電池では、起電力:1.8V程度、クロムイオンを含有するマンガン-クロム系RF電池では、起電力:1.9V程度、亜鉛イオンを含有するマンガン-亜鉛系RF電池では、起電力:2.2V程度というさらに高い起電力を有することができる。図2~図4では、マンガン-バナジウム系RF電池を例示している。
 正負の各極の電解液において、各極の活物質となる金属イオンの濃度は0.3M以上5M以下が好ましい(M:体積モル濃度)。各極の電解液の溶媒は、硫酸、リン酸、硝酸、硫酸塩、リン酸塩、および硝酸塩の少なくとも一種を含む水溶液が好ましい。特に、硫酸アニオン(SO 2-)を含むものが利用し易い。酸の濃度は、5M未満が好ましい。
 [配管構造]
 RF電池1Aに備える正極タンク10には、上流配管として、正極充電用配管11cと正極放電用配管11dとの2本の配管がそれぞれ接続されており、各配管11c,11dのタンク10側の開口箇所が異なる。
 正極充電用配管11cの一端は、正極タンク10において、タンク10内の正極電解液の液面寄りの位置に接続されている。より具体的には、正極充電用配管11cの一端は、正極タンク10の底面から液面までの高さをLpとするとき、底面から(Lp/2)超の位置に開口している。なお、図2~図8において、正極タンク10内の実線は液面を、一点鎖線は、底面から(Lp/2)の位置を示す。また、図2~図8において、配管は、直線的に屈曲した形状を示すが、湾曲形状でもよいし、屈曲させずに単に傾斜するように接続してもよい。
 一方、正極放電用配管11dの一端は、正極タンク10の底部寄りの位置に接続されている。より具体的には、正極放電用配管11dの一端は、正極タンク10の底面から(Lp/2)以下の位置に開口している。
 RF電池1Aでは、上記配管11c,11dの他端がいずれも、電池要素100cに接続されている。また、上記配管11c,11dはそれぞれ、正極ポンプ50c,50dが取り付けられ、正極タンク10内の正極電解液を電池要素100cに圧送できるようになっている。
 その他、RF電池1Aは、電池要素100cからの正極電解液を正極タンク10に戻す下流配管として、正極リターン配管13を備える。また、RF電池1Aは、負極タンク20内の負極電解液を電池要素100cに供給する上流配管として、負極供給配管21と、電池要素100cからの負極電解液を負極タンク20に戻す下流配管として、負極リターン配管23と、負極供給配管21に取り付けられた負極ポンプ60とを備える。
 [運転方法]
 次に、上記構成を備えるRF電池1Aを充放電運転する方法を具体的に説明する。マンガンイオンを含有する正極電解液は、充電されたマンガンイオン(Mn3+)が、その比重により正極タンク10の底部側に集まり易く、未充電状態のマンガンイオン(Mn2+)がタンク10の液面側に集まり易くなっている。そこで、充電時には、正極タンク10の液面側(上方側)に取り付けられた正極充電用配管11cおよび正極ポンプ50cによって、正極電解液を電池要素100cに供給する。一方、放電時には、正極タンク10の底部側(下方側)に取り付けられた正極放電用配管11dおよび正極ポンプ50dによって、正極電解液を電池要素100cに供給する。
 RF電池1Aの負極電解液をたとえばバナジウムイオンを含有するものとする場合、正極電解液のマンガンイオンのように、イオンの比重差によるイオンの濃度分布が生じ難い。したがって、この場合は、従来の全バナジウム系RF電池と同様に、負極電解液は、充放電運転時の双方において、負極供給配管21・負極ポンプ60によって、負極電解液を電池要素100cに供給するとよい。
 [効果]
 マンガンイオンを含有する正極電解液を用いるRF電池1Aは、充電時と放電時とで、正極電解液を電池要素100cに供給する配管を異ならせることで、電解液を効率よく利用できる。具体的には、RF電池1Aは、充電時、正極タンク10内の液面側に集まっている正極電解液、つまり、マンガンイオン(Mn2+)が相対的に多く十分に充電されていない状態(放電状態)にある正極電解液を電池要素100cに供給することができる。また、RF電池1Aは、放電時、正極タンク10内の底部側に集まっている正極電解液、つまり、マンガンイオン(Mn3+)が相対的に多く十分に充電された状態にある正極電解液を電池要素100cに供給することができる。そのため、RF電池1Aは、過充電を低減したり、充電時間や放電時間を十分に確保することができることから、長期に亘り、高い起電力を有することができる。
 <実施形態2>
 図2(B)に示す実施形態2のRF電池1Bの基本的構成は、実施形態1のRF電池1Aと同様である。実施形態2のRF電池1Bは、図2(A)に示す実施形態1のRF電池1Aの構成に加えて、正極充電用配管11c・正極放電用配管11dのそれぞれに開閉弁51c,51dを備える点が異なる。以下、この相違点を中心に説明し、実施形態1のRF電池1Aと共通する構成および効果は詳細な説明を省略する。
 実施形態2のRF電池1Bは、正極ポンプ50c,50dの駆動・停止による正極電解液の供給制御に加えて、開閉弁51c,51dの開閉動作によって、所望の正極電解液を電池要素100cにより確実に供給できる。より具体的には、充電時、正極充電用配管11cに備える開閉弁51cを開き、正極放電用配管11dに備える開閉弁51dを閉じることで、正極タンク10内の液面側から正極電解液を電池要素100cに供給できる。放電時、正極放電用配管11dに備える開閉弁51dを開き、正極充電用配管11cに備える開閉弁51cを閉じることで、正極タンク10内の底部側から正極電解液を電池要素100cに供給できる。
 また、開閉弁51c,51dの開閉動作を行なうことで、正極電解液の逆流を防止できる。そのため、実施形態2のRF電池1Bは、比重の異なる正極電解液を混合され難くすることができ、電解液の利用効率をより高められる。
 開閉弁51c,51dには、電磁弁などが利用できる。開閉弁51c,51dに代えて、あるいは開閉弁51c,51dに加えて、後述する実施形態4(図3(B))のように逆止弁を利用する形態とすることができる。この場合も、上述のように逆流による電解液の混合を防止できる。これらの点は、後述する実施形態8(図5(B)):開閉弁61c,61dを備える形態についても適用できる。
 <実施形態3~5>
 図3を参照して、正極側の上流配管の別の形態を説明する。図3に示す実施形態3~5のRF電池1C~1Eの基本的な構成は、実施形態1のRF電池1Aと同様であり、主たる相違点は、正極側の上流配管の構成にある。以下、この相違点を中心に説明し、実施形態1のRF電池1Aと共通する構成および効果は詳細な説明を省略する。
 実施形態3~5のRF電池1C~1Eの正極タンク10にはいずれも、実施形態1のRF電池1Aと同様に、タンク10の液面側(上方側)に正極充電用配管11cが接続され、タンク10の底部側(下方側)に正極放電用配管11dが接続されている。但し、両配管11c,11dの他端は、一つの正極共通配管12の一端に接続されている。正極共通配管12の他端は、電池要素100cに接続されており、各配管11c,11dからの正極電解液は、正極共通配管12を経て電池要素100cに供給する。正極共通配管12を備えるRF電池1C~1Eは、電池要素100cに接続される配管数が少なく、構成を簡素にできる。
 図3(A)に示す実施形態3のRF電池1Cでは、正極充電用配管11cおよび正極放電用配管11dのそれぞれに正極ポンプ50c,50dが取り付けられると共に、正極共通配管12における両配管11c,11dとの接続箇所に三方弁52が取り付けられている。
 上記構成を備える実施形態3のRF電池1Cは、三方弁52を切り替えることで、充電時、正極ポンプ50cを用いて正極充電用配管11cからの正極電解液を、放電時、正極ポンプ50dを用いて正極放電用配管11dからの正極電解液をそれぞれ正極共通配管12により電池要素100cに供給できる。特に、RF電池1Cは、三方弁52を切り替えるだけで、正極電解液の逆流を防止して比重の異なる電解液の混合を抑制できる。そのため、RF電池1Cは、部品点数が少なく、構成が簡素である。
 図3(B)に示す実施形態4のRF電池1Dでは、三方弁52を備えておらず、正極充電用配管11cおよび正極放電用配管11dのそれぞれに正極ポンプ50c,50dおよび逆止弁53c,53dが取り付けられている。
 上記構成を備える実施形態4のRF電池1Dは、三方弁52を備える場合のように切り替え動作を行なうことなく、逆止弁53c,53dにより、正極電解液の逆流を防止して比重の異なる電解液の混合を抑制できる。そのため、RF電池1Dは、運転時の作業性に優れる。
 なお、逆止弁53c,53dに代えて、あるいは、逆止弁53c,53dに加えて実施形態2で説明した開閉弁を備える形態とすることもできる。この点は、後述する実施形態10(図6(B)):逆止弁63c,63dを備える形態についても適用できる。
 図3(C)に示す実施形態5のRF電池1Eでは、正極充電用配管11cおよび正極放電用配管11dが接続される正極共通配管12において両配管11c,11dとの接続箇所に三方弁52が取り付けられている。また、実施形態5のRF電池1Eでは、正極共通配管12において三方弁52と電池要素100cとの間に一つの正極ポンプ50が取り付けられ、各配管11c,11dには、ポンプが取り付けられていない。
 上記構成を備える実施形態5のRF電池1Eは、三方弁52を切り替えることで、充電時、正極充電用配管11cからの正極電解液を、放電時、正極放電用配管11dからの正極電解液をそれぞれ正極共通配管12により電池要素100cに供給できる。特に、RF電池1Eは、充電時および放電時の双方において、一つの正極ポンプ50により電解液を圧送できる。また、RF電池1Eは、実施形態3のRF電池1C(図3(A))と同様に三方弁52を切り替えるだけで、正極電解液の逆流を防止して比重の異なる電解液の混合を抑制できる。これらの点から、実施形態5のRF電池1Eは、部品点数がより少なく、構成がより簡素である。
 <実施形態6>
 図4を参照して、正極側の下流配管の別の形態を説明する。図4に示す実施形態6のRF電池1Fの基本的な構成は、実施形態5のRF電池1E(図3(C))と同様であり、主たる相違点は、正極側の下流配管の構成にある。以下、この相違点を中心に説明し、実施形態5のRF電池1Eと共通する構成および効果は詳細な説明を省略する。
 実施形態6のRF電池1Fにおいて正極側の下流配管は、正極タンク10に接続される正極充電用リターン配管15cおよび正極放電用リターン配管15dと、これらリターン配管15c,15dの一端と電池要素100cとに接続される正極共通リターン配管14とで構成されている。
 正極充電用リターン配管15cは、その一端が正極タンク10の底部側:(Lp/2)以下の位置に接続され、その他端が正極共通リターン配管14の一端に接続されている。正極放電用リターン配管15dは、その一端が正極タンク10の液面側:(Lp/2)超の位置に接続され、その他端が正極共通リターン配管14の一端に接続されている。正極共通リターン配管14の他端は、電池要素100cに接続されている。また、この例では、正極共通リターン配管14において両リターン配管15c,15dとの接続箇所には、三方弁55が取り付けられている。
 上記構成を備える実施形態6のRF電池1Fは、三方弁55を切り替えることで、充電時、電池要素100cからの充電状態にある正極電解液を正極共通リターン配管14を経て正極充電用リターン配管15cを介して、正極タンク10の底部側に送ることができる。つまり、正極タンク10において充電状態にある正極電解液が集まっている領域に、充電状態にある正極電解液を効率よく集められ、十分に充電されていない状態の正極電解液と混合されることを抑制し易く、十分に充電されていない状態の正極電解液をタンク10の液面側に寄せた状態にすることができる。したがって、実施形態6のRF電池1Fは、充電時、正極充電用配管11cにより、十分に充電されていない状態の正極電解液を電池要素100cに効率よく供給して、充電時間を十分に確保したり、過充電を防止したりすることができる。
 一方、RF電池1Fは、三方弁55を切り替えることで、放電時、電池要素100cからの放電状態にある正極電解液を正極共通リターン配管14を経て正極放電用リターン配管15dを介して、正極タンク10の液面側に送ることができる。つまり、正極タンク10において十分に充電されていない状態(放電状態)にある正極電解液が集まっている領域に、放電状態にある正極電解液を効率よく集められる。そのため、RF電池1Fは、放電時にも、充電状態にある正極電解液と放電状態にある正極電解液との混合を抑制して、充電状態の正極電解液をタンク10の底部側に寄せた状態にすることができる。したがって、実施形態6のRF電池1Fは、放電時、正極放電用配管11dにより、充電状態の正極電解液を電池要素100cに効率よく供給して、放電時間を十分に確保することができる。
 なお、実施形態6では、正極共通リターン配管14を備える構成としているが、共通リターン配管を省略し、正極充電用リターン配管15c・正極放電用リターン配管15dのそれぞれを電池要素100cに接続させた構成とすることができる。この場合、各リターン配管15c,15dに開閉弁や逆止弁を設けると、逆流を防止して、比重の異なる電解液の混合を防止できる。この点は、後述する実施形態11(図7):負極共通リターン配管24・負極充電用リターン配管25c・負極放電用リターン配管25dを備える形態についても適用できる。
 また、図4では、正極側の上流配管として、実施形態5で説明した正極共通配管12・三方弁52・一つの正極ポンプ50を備える形態(図3(C))を示すが、上述した実施形態1~4の正極側の上流配管に置換することができる。
 <実施形態7>
 図5を参照して、負極側の上流配管の別の形態を説明する。図5(A)に示す実施形態7のRF電池1Gは、電池要素100cおよび正極側の配管構造については、実施形態3のRF電池1C(図3(A))と同様である。つまり、RF電池1Gは、正極充電用配管11c・正極放電用配管11d・正極共通配管12・2つの正極ポンプ50c,50d・三方弁52を備える。実施形態7のRF電池1Gは、負極活物質としてチタンイオンを含有する電解液を負極電解液に用いる点、負極側の上流配管を2つ備える点を特徴とする。以下、この特徴点を中心に説明し、実施形態3のRF電池1Cと共通する構成および効果は詳細な説明を省略する。
 [電解液]
負極電解液は、3価のチタンイオン(Ti3+)および4価のチタンイオン(Ti4+、TiO2+など)の少なくとも一種のチタンイオンを含有する形態が挙げられる。さらに、2価のチタンイオンを含有していてもよい。
 正極電解液は、たとえば、正極活物質として、上述したマンガンイオンを好適に利用できる。その他、正極電解液は、たとえば、鉄イオンやバナジウムイオン、チタンイオンを正極活物質として含有するものが挙げられる。図5~図7では、マンガン-チタン系RF電池を例示している。
 本発明者らが調べたところ、マンガン-チタン系RF電池は、経時的な液移りにより、正極電解液に負極側のチタンイオンがある程度混入されることで、MnO2の析出を抑制して、Mn3+を安定化する効果がある、との知見を得た。そのため、マンガン-チタン系RF電池は、液移りが生じても、高い起電力を有することができる。
 [配管構造]
 RF電池1Gに備える負極タンク20には、上流配管として、負極充電用配管21cと負極放電用配管21dとの2本の配管がそれぞれ接続されており、各配管21c,21dのタンク20側の開口箇所が異なる。
 負極充電用配管21cの一端は、負極タンク20において、負極タンク20の底部寄りの位置に接続されている。より具体的には、負極充電用配管21dの一端は、負極タンク20の底面から液面までの高さをLaとするとき、底面から(La/2)以下の位置に開口している。なお、図6~図8において、負極タンク20内の実線は液面を、一点鎖線は、底面から(La/2)の位置を示す。
 負極放電用配管21dの一端は、負極タンク20内の負極電解液の液面寄りの位置に接続されている。より具体的には、負極放電用配管21dの一端は、負極タンク20の底面から(La/2)超の位置に開口している。
 RF電池1Gでは、上記配管21c,21dの他端はいずれも、電池要素100cに接続されている。また、上記配管21c,21dはそれぞれ負極ポンプ60c,60dが取り付けられ、負極タンク20内の負極電解液を電池要素100cに圧送できるようになっている。その他、RF電池1Gでは、負極側の下流配管として負極リターン配管23を備える。
 つまり、実施形態7のRF電池1Gに備える負極側の上流配管は、実施形態1のRF電池1A(図2(A))に備える正極側の上流配管に類似の構造であり、充電時に利用される配管におけるタンクとの接続位置(開口位置)と、放電時に利用される配管におけるタンクとの接続位置(開口位置)とが正極と負極とで上下逆の位置になっている。
 [運転方法]
 上記構成を備えるRF電池1Gを充放電運転する方法を具体的に説明する。チタンイオンを含有する負極電解液は、充電されたチタンイオン(Ti3+)が、その比重により負極タンク20の液面側に集まり易く、未充電状態のチタンイオン(Ti4+など)がタンク20の底部側に集まり易くなっている。そこで、充電時には、負極タンク20の底部側(下方側)に取り付けられた負極充電用配管21cおよび負極ポンプ60cによって、負極電解液を電池要素100cに供給する。一方、放電時には、負極タンク20の液面側(上方側)に取り付けられた負極放電用配管21dおよび負極ポンプ60dによって、負極電解液を電池要素100cに供給する。
 RF電池1Gの正極電解液をたとえばバナジウムイオンを含有するものとする場合、負極電解液のチタンイオンのように、イオンの比重差によるイオンの濃度分布が生じ難い。したがって、この場合、正極側の配管構造は、上流配管として正極供給配管(図示せず)を備え、下流配管として正極リターン配管13を備えるとよい。また、正極供給配管には、正極ポンプ(図示せず)を備えるとよい。そして、従来の全バナジウム系RF電池と同様に、正極電解液は、充放電運転時の双方において、正極供給配管・正極ポンプによって、正極電解液を電池要素100cに供給するとよい。この点は、後述する実施形態8~11(図5(B)~図7)についても同様に適用できる。
 一方、RF電池1Gの正極電解液を実施形態1で説明したマンガンイオンを含有するものとする場合、図5(A)に示すように正極充電用配管11cおよび正極放電用配管11dを備える形態とする。そして、実施形態1などで説明したように、充電時、正極充電用配管11cを利用して、放電時、正極放電用配管11dを利用して、それぞれ正極電解液を電池要素100cに供給するとよい。なお、図5および後述する図6では、正極側の配管構造として、図3(A)に示す実施形態3と同様の形態を示すが、実施形態1,2,4~6で説明した形態に置換することができる。
 [効果]
 チタンイオンを含有する負極電解液を用いるRF電池1Gは、充電時と放電時とで、負極電解液を電池要素100cに供給する配管を異ならせることで、電解液を効率よく利用できる。具体的には、RF電池1Gは、充電時、負極タンク20内の底部側に集まっている負極電解液、つまり、チタンイオン(Ti4+など)が相対的に多く十分に充電されていない状態(放電状態)にある負極電解液を電池要素100cに供給することができる。また、RF電池1Gは、放電時、負極タンク20内の液面側に集まっている負極電解液、つまり、チタンイオン(Ti3+)が相対的に多く十分に充電された状態にある負極電解液を電池要素100cに供給することができる。そのため、RF電池1Gは、過充電を低減したり、充電時間や放電時間を十分に確保することができることから、長期に亘り、高い起電力を有することができる。
 特に、実施形態7のRF電池1Gでは、正極活物質としてマンガンイオンを含有する正極電解液を用い、かつ正極充電用配管11cおよび正極放電用配管11dを備える形態とし、正極電解液についても、充電時と放電時とで電池要素100cに送液する配管を使い分けることが可能な構成としている。そのため、実施形態7のRF電池1Gは、正負の両極の電解液を長期に亘り効率よく利用でき、高い起電力を有することができる。
 <実施形態8>
 図5(B)に示す実施形態8のRF電池1Hの基本的構成は、実施形態7のRF電池1Gと同様であり、図5(B)に示すRF電池1Hは、実施形態7のRF電池1Gの構成に加えて、負極充電用配管21c・負極放電用配管21dのそれぞれに開閉弁61c,61dを備えている。つまり、実施形態8のRF電池1Hに備える負極側の上流配管は、実施形態2のRF電池1B(図2(B))に備える正極側の上流配管に類似の構造であり、配管21c,21dの負極タンク20側の接続位置(開口位置)が異なる。
 実施形態8のRF電池1Hは、実施形態2のRF電池1Bと同様に、開閉弁61c,61dを備えることで、負極ポンプ60c,60dの駆動・停止動作に加えて、開閉弁61c,61dの開閉動作によって、負極電解液の供給制御を行える。具体的には、充電時、負極充電用配管21cに備える開閉弁61cを開き、負極放電用配管21dに備える開閉弁61dを閉じることで、負極タンク20内の底部側から負極電解液を電池要素100cに供給できる。放電時、負極放電用配管21dに備える開閉弁61dを開き、負極充電用配管21cに備える開閉弁61cを閉じることで、負極タンク20内の液面側から負極電解液を電池要素100cに供給できる。また、開閉弁61c,61dの開閉動作により、負極電解液の逆流を防止し、比重の異なる負極電解液の混合を防止できる。そのため、実施形態8のRF電池1Hは、電解液の利用効率をより高められる。
 <実施形態9,10>
 図6を参照して、負極側の上流配管の別の形態を説明する。図6に示す実施形態9,10のRF電池1I,1Jの基本的な構成は、実施形態7のRF電池1G(図5(A))と同様であり、主たる相違点は、負極側の上流配管の構成にある。以下、この相違点を中心に説明し、実施形態7のRF電池1Gと共通する構成および効果は詳細な説明を省略する。
 実施形態9,10のRF電池1I,1Jの負極タンク20にはいずれも、実施形態7のRF電池1Gと同様に、タンク20の液面側(上方側)に負極放電用配管21dが接続され、タンク20の底部側(下方側)に負極充電用配管21cが接続されている。但し、両配管21c,21dの他端は、1つの負極共通配管22の一端に接続されている。負極共通配管22の他端は、電池要素100cに接続されており、各配管21c,21dからの負極電解液は、負極共通配管22を経て電池要素100cに供給する。負極共通配管22を備えるRF電池1I,1Jは、電池要素100cに接続される配管数が少なく、構成を簡素にできる。
 図6(A)に示す実施形態9のRF電池1Iでは、負極充電用配管21cおよび負極放電用配管21dのそれぞれに負極ポンプ60c,60dが取り付けられると共に、負極共通配管22における両配管21c,21dとの接続箇所に三方弁62が取り付けられている。つまり、実施形態9のRF電池1Iに備える負極側の上流配管は、正極側の上流配管(正極充電用配管11c・正極放電用配管11d、正極共通配管12、正極ポンプ50c,50d、三方弁52)に類似の構造である。
 上記構成を備える実施形態9のRF電池1Iは、三方弁62を切り替えることで、充電時、負極ポンプ60cを用いて負極充電用配管21cからの負極電解液を、放電時、負極ポンプ60dを用いて負極放電用配管21dからの負極電解液をそれぞれ負極共通配管22により電池要素100cに供給できる。つまり、実施形態9のRF電池1Iは、正負の両極において、正極共通配管12・負極共通配管22を用いて、電池要素100cに正負の各極の電解液を供給する構成である。特に、RF電池1Iは、三方弁52,62を切り替えるだけで、正極電解液の逆流や負極電解液の逆流を防止して、正負の各極において、比重の異なる電解液の混合を抑制できる。そのため、RF電池1Iは、部品点数がさらに少なく、構成がより簡素である。
 図6(B)に示す実施形態10のRF電池1Jでは、三方弁62を備えておらず、負極充電用配管21cおよび負極放電用配管21dのそれぞれに負極ポンプ60c,60d、および逆止弁63c,63dが取り付けられている。つまり、実施形態10のRF電池1Jに備える負極側の上流配管は、図3(B)に示す実施形態4のRF電池1Dの正極側の上流配管に類似の構造である。
 上記構成を備える実施形態10のRF電池1Jは、三方弁の切り替え動作を行なうことなく、逆止弁63c,63dにより負極電解液の逆流を防止して、実施形態9のRF電池1Iと同様に比重の異なる電解液の混合を抑制できる。そのため、RF電池1Jは、運転時の作業性に優れる。
 <実施形態11>
 図7を参照して、負極側の上流配管の別の形態を説明する。図7に示す実施形態11のRF電池1Kでは、負極充電用配管21cおよび負極放電用配管21dが接続される負極共通配管22に1つの負極ポンプ60が取り付けられ、各配管21c,21dには、ポンプが取り付けられていない。また、負極共通配管22において両配管21c,21dとの接続箇所には、三方弁62が取り付けられている。
 さらに、実施形態11のRF電池1Kでは、正極側の上流配管を図3(C)に示す実施形態5のRF電池1Eの正極側の上流配管に同様の構成としており、正極充電用配管11c・正極放電用配管11d、正極共通配管12、1つの正極ポンプ50、三方弁52を備える。つまり、実施形態11のRF電池1Kは、負極側の上流配管と正極側の上流配管とが類似の構造であり、充電時・放電時に用いられる配管におけるタンク10,20側の開口位置が正極と負極とで異なる。なお、正極側の上流配管として、上述した実施形態1~4の正極側の上流配管に置換することができる。
 上記構成を備える実施形態11のRF電池1Kは、三方弁62を切り替えることで、充電時、負極充電用配管21cからの負極電解液を、放電時、負極放電用配管21dからの負極電解液をそれぞれ負極共通配管22により電池要素100cに供給できる。特に、RF電池1Kは、充電時および放電時の双方において、一つの負極ポンプ60により電解液を圧送できる。また、RF電池1Kは、実施形態9のRF電池1I(図6(A))と同様に三方弁62を切り替えるだけで、負極電解液の逆流を防止して、比重の異なる電解液の混合を抑制できる。これらの点から、実施形態11のRF電池1Kは、部品点数がより少なく、構成がより簡素である。特に、実施形態11のRF電池1Kでは、正極側の上流配管においても、正極共通配管12を備えると共に、正極ポンプ50を一つとしており、この点から、部品点数がさらに少なく、構成がさらに簡素である。
 さらに、実施形態11のRF電池1Kは、正負の両極の下流配管も、2つの配管:充電用リターン配管および充電用リターン配管を備える。具体的には、RF電池1Kは、正極側の下流配管として、図4に示す実施形態6のRF電池1Fと同様に、正極共通リターン配管14・正極充電用リターン配管15c・正極放電用リターン配管15d・三方弁55を備える。加えて、RF電池1Kでは、負極側の下流配管が、負極タンク20に接続される負極充電用リターン配管25cおよび負極放電用リターン配管25dと、これらリターン配管25c,25dの一端と電池要素100cとに接続される負極共通リターン配管24とで構成されている。
 負極充電用リターン配管25cは、その一端が負極タンク20の液面側:(La/2)超の位置に接続され、その他端が負極共通リターン配管24に接続されている。負極放電用リターン配管25dは、その一端がタンク20の底部側:La/2以下の位置に接続され、その他端が負極共通リターン配管24に接続されている。負極共通リターン配管24の他端は、電池要素100cに接続されている。また、この例では、負極共通リターン配管24において両リターン配管25c,25dとの接続箇所には、三方弁65が取り付けられている。
 上記構成を備える実施形態11のRF電池1Kは、三方弁65を切り替えることで、充電時、電池要素100cからの充電状態にある負極電解液を負極共通リターン配管24を経て負極充電用リターン配管25cを介して、負極タンク20の液面側に送ることができる。つまり、負極タンク20において充電状態にある負極電解液が集まっている領域に、充電状態にある負極電解液を効率よく集められ、十分に充電されていない状態の負極電解液と混合されることを抑制し易く、十分に充電されていない状態の負極電解液をタンク20の底部側に寄せた状態にすることができる。したがって、実施形態11のRF電池1Kは、充電時、負極充電用配管21cにより、十分に充電されていない状態の負極電解液を電池要素100cに効率よく供給して、充電時間を十分に確保したり、過充電を防止したりすることができる。
 一方、RF電池1Kは、三方弁65を切り替えることで、放電時、電池要素100cからの放電状態にある負極電解液を負極共通リターン配管24を経て負極放電用リターン配管25dを介して、負極タンク20の底部側に送ることができる。つまり、負極タンク20において十分に充電されていない状態(放電状態)にある負極電解液が集まっている領域に、放電状態にある負極電解液を効率よく集められる。そのため、RF電池1Kは、放電時にも、充電状態にある負極電解液と放電状態にある負極電解液との混合を抑制して、充電状態の負極電解液をタンク20の液面側に寄せた状態にすることができる。したがって、実施形態11のRF電池1Kは、放電時、負極放電用配管21dにより、充電状態の負極電解液を電池要素100cに効率よく供給して、放電時間を十分に確保することができる。
 特に、実施形態11のRF電池1Kは、正極側の下流配管も上述のように複数のリターン配管15c,15dを備えることから、正負の両極について、充電時、未充電状態の電解液を、放電時、充電状態の電解液を電池要素100cに効率よく供給できる。したがって、RF電池1Kは、長期に亘り、充放電を良好に行える。
 なお、実施形態11のRF電池1Kにおいて、正極側の下流配管として、正極リターン配管13(図2,図3など参照)のみを備える形態、負極側の下流配管として、負極リターン配管23(図2,図3など参照)のみを備える形態、正負の各極の下流配管がそれぞれ正極リターン配管13・負極リターン配管23で構成される形態とすることができる。この点は、後述する実施形態12のRF電池1Lについても同様に適用できる。
 <実施形態12>
 図8を参照して、連通管を備える実施形態12のRF電池1Lを説明する。RF電池1Lの基本的な構成は、図7に示す実施形態11のRF電池1Kと同様である。すなわち、RF電池1Lは、正極側の上流配管として、正極充電用配管11cおよび正極放電用配管11dを備え、負極側の上流配管として、負極充電用配管21cおよび負極放電用配管21dを備える。さらに、RF電池1Lは、正極タンク10の液相と負極タンク20の液相とを連通する連通管80を備える。また、RF電池1Lは、正極電解液および負極電解液が共通の金属イオン種を備える。以下、RF電池1Lの特徴点である連通管80および電解液を中心に説明し、実施形態11のRF電池1Kと共通する構成および効果は詳細な説明を省略する。
 正負の両極の電解液が共通する金属イオン種を備える形態では、たとえば、経時的な液移りによる電解液量のばらつきや金属イオンの濃度のばらつきなどが生じた場合、両極の電解液を混合することで、上記ばらつきを容易に是正できる。電解液を混合するにあたり、両極のタンク間を接続する配管(連通管)を備えた形態とすると、電解液の混合を容易に行える。また、両極の電解液が同じ金属イオン種のみを備える形態であると、電解液の製造性にも優れる。
 たとえば、正負の両極の電解液がマンガンイオンおよびチタンイオンを備える形態が挙げられる。この場合、正極では、マンガンイオンを正極活物質として利用し、チタンイオンは、金属イオン種を揃えるために含有すると共に、Mn3+の不均化反応に伴うMnO2の析出を抑制する機能も有する。本発明者らは、正極電解液に、マンガンイオンと共にチタンイオンを存在させると、上記析出を効果的に抑制できることを見出した。負極では、チタンイオンを負極活物質として利用し、マンガンイオンは、金属イオン種を揃えるために含有する。なお、図8において正極タンク10内および負極タンク20内に示すイオンは、例示である。
 ここで、連通管80は、その一端が正極タンク10内の正極電解液の液面寄りの位置に接続され、その他端が負極タンク20の底部寄りの位置に接続されている。この例では、連通管80において負極タンク20に接続される他端が、正極タンク10に接続される一端よりも低い位置である。また、この例では、連通管80には、開閉弁81が取り付けられており、所望のときに、正極タンク10と負極タンク20との間を連通または非連通に切り替えられるようにしている。開閉弁81には、電磁弁などが利用できる。
 上述のように、正極タンク10内には、放電状態にあるマンガンイオンを相対的に多く含む正極電解液が正極電解液の液面側に存在し、負極タンク20内には、放電状態にあるチタンイオンを相対的に多く含む負極電解液がタンク20の底部側に存在している。したがって、実施形態12のRF電池1Lは、開閉弁81を開き、両タンク10,20間を連通させると、放電状態にあるマンガンイオンを多く含む正極電解液と、放電状態にあるチタンイオンを多く含む負極電解液とを混合することができる。正負の両極の電解液が放電状態にあるイオンを多く含むことから、混合による自己放電を低減できる。したがって、実施形態12のRF電池1Lは、自己放電に伴う損失を抑制しつつ、液移りなどによる不具合を是正できる。
 図8に示す例では、正負の両極のタンク10,20の大きさおよび底面の位置を同じにしていることから、たとえば、液量差がある場合、電解液の自重により電解液が移動することができる。この場合、両極の電解液量が等しくなると、混合を自然に止めることができることから、両極の電解液を十分に混合できたら、開閉弁81を閉じるとよい。その他、開閉弁81の閉動作の時期やタンク10,20の底面の位置(上下関係)などを調整して、混合量を調整することもできる。あるいは、連通管80にポンプを別途設けて、混合量を調整できるようにすることもできる。
 なお、実施形態12のRF電池1Lは、正極側の上流配管として、図3(C)に示す実施形態5の形態を示すが、上述した実施形態1~4の正極側の上流配管に置換することができる。また、実施形態12のRF電池1Lは、負極側の上流配管として、図7に示す実施形態11の形態を示すが、上述した実施形態7~10の負極側の上流配管に置換することができる。
 <実施形態13~16>
 以下、実施形態13~16を説明する。実施形態13~16のRF電池は、上述の基本構成を備え、上述の構成(3)を備えることを特徴とする。
 [電解液]
 本実施形態のRF電池100に用いられる正負の電解液には、MnイオンとTiイオンを含有する共通のものを使用している。正極側にあってはMnイオンが正極活物質として働き、負極側にあってはTiイオンが負極活物質として働く。また、正極側におけるTiイオンは、理由は不明ではあるが、MnO2の析出を抑制する。MnイオンおよびTi イオンの各濃度はいずれも0.3M 以上5M以下とすることが好ましい。
 本実施形態のように、正負の電解液に共通の電解液を用いることで、次の3つの効果を奏することができる。
(1)活物質イオンが電池要素の隔膜を介して対極に移動して、各極で本来反応する活物質イオンが相対的に減少することによる電池容量の減少現象を効果的に回避できる。
(2)充放電に伴って経時的に液移り(一方の極の電解液が隔膜を介して他方の極に移動する現象)が生じて両極の電解液の液量やイオン濃度にばらつきが生じた場合でも、両極の電解液を混合するなどして、上記ばらつきを容易に是正できる。
(3)正負個別に専用の電解液を作製する必要がなく、電解液の製造性に優れる。
 電解液の溶媒としては、H2SO4、K2SO4、Na2SO4、H3PO4、H427、K2PO4、Na3PO4、K3PO4、HNO3、KNO3、およびNaNO3から選択される少なくとも一種の水溶液を利用することができる。
 [その他]
 図示しないが、RF電池100は、電池容量を監視するモニタセルを備えていても良い。モニタセルは基本的に電池要素100cと同一の構成を備える電池要素100cよりも小型の単セルであり、正極タンク106と負極タンク107から正負の電解液の供給を受けて、電池要素100cと同様に起電力を生じる。その開路電圧からRF電池100の電池容量を知ることができる。
 <実施形態13>
 図1を参照したRF電池100は、さらに正極タンク106と負極タンク107に、各タンク106,107内に貯留される電解液を撹拌するための構成を備える。以下、本実施形態の撹拌機構の構成を図9に基づいて説明する。なお、図9では、正極タンク106と、そのタンク106に設けられる撹拌機構201のみを図示する。具体的に図示しないが、負極タンク107(図1参照)にも同様の構成が設けられていると考えて良い。
 図9に示す本実施形態には、正極タンク106内の電解液を撹拌するための撹拌機構201と、その撹拌機構201を制御する制御機構209とを備える。
 [撹拌機構]
 撹拌機構201は、正極タンク106の内外に連通する導入配管211と、導入配管211を介して正極タンク106内に不活性ガスを供給するガス供給機構212と、を備える。これらの構成のうち、導入配管211は、電解液により腐食され難いPVCや、PE、フッ素樹脂などからなる配管である。電解液中の導入配管211は、不活性ガスの導入により正極タンク106の上下方向(深さ方向)に電解液を対流させることができるように配置されることが好ましい。この導入配管211の側壁には複数の気孔211hが形成されており、ガス供給機構212から送り込まれる不活性ガスを、導入配管211の端部開口部からだけでなく気孔211hからも噴射できるようになっている。なお、導入配管211の断面形状は特に限定されず、たとえば円形であっても良いし、多角形であっても良い。
 一方、ガス供給機構212は、代表的には不活性ガスを貯留するガスボンベと、ガスボンベから導入配管211に不活性ガスを圧送するポンプとで構成することができる。不活性ガスとしては、たとえば、ヘリウムやアルゴン、窒素などを挙げることができる。
 [制御機構]
 制御機構209は、撹拌機構201の供給機構212を制御して、正極タンク106への不活性ガスの吹き込み量を調節する機構であって、たとえば、コンピューターなどで構成することができる。RF電池100の充放電動作を制御するコンピューターに制御機構9を兼任させても良い。なお、この制御機構209は、負極タンクにおける撹拌機構にも繋がっており、その撹拌機構も制御する。
 制御機構209は、予め定められたスケジュールにしたがって撹拌機構201の動作を制御するように構成すれば良い。その場合、RF電池100の充放電スケジュールに応じて撹拌機構201の動作スケジュールを決定することが好ましい。たとえば、夜間の特定時間帯に充電し、電力需要が高い昼間の特定時間帯に放電するといった充放電スケジュールであれば、充電(放電)を始める少し前から撹拌機構201の運転を開始し、充電(放電)を終了すれば撹拌機構201の運転も停止する、といった動作スケジュールで撹拌機構201を制御すると良い。その他、後述する実施形態15に例示するように、正極タンク106内の電解液の状態を検知して、その検知結果に基づいて撹拌機構201を制御しても良い。
 以上説明した実施形態13の構成によれば、RF電池100の充放電にあたり、電解液における活物質イオン(正極タンク106においてはMnイオン、負極タンク107においてはTiイオン)の濃度を均一にすることができる。その結果、健全な状態でRF電池100の運転を行なうことができる。
 <実施形態14>
 実施形態14では、実施形態13とは異なり、電解液に正極タンク106の上下方向の対流を生じさせることで電解液を撹拌する撹拌機構を備えるRF電池100を図10に基づいて説明する。
 まず、図10(A)に示す撹拌機構202は、回転軸の先端にプロペラを有する撹拌部材221と、回転軸を軸周りに回転させるモーター222とを備える。このような構成によれば、正極タンク106内の電解液に非常に強い対流を生じさせることができ、迅速かつ効果的に電解液を撹拌することができる。
 次に、図10(B)に示す撹拌機構203は、いわゆるマグネティックスターラーと同じ構成を備える。具体的には、スターラー・バー(撹拌部材)231と、スターラー・バー231を回転させる電磁力を発生させるスターラー本体232とを備える。このような構成によれば、正極タンク106に孔を開けることなくスターラー・バー231を動作させることができる。スターラー・バー231は、磁石の外周をテフロン(登録商標)などで被覆したものを使用することができる。このスターラー・バー231の形状は特に限定されず、たとえば、一般的な繭型のものであっても良いし、八角棒状のものであっても良いし、風車の羽根状のものであっても良い。なお、回転ではなく振動により電解液を撹拌するマグネティックスターラーであっても良い。
 最後に、図10(C)に示す撹拌機構204は、正極タンク106内の電解液に浸漬させた水中ポンプ(撹拌部材)241と、その水中ポンプ241に電力を供給して水中ポンプ241を動作させる電源装置242とを備える。この構成によれば、図10(A),(B)の構成よりも強い対流を発生させることができる。
 <実施形態15>
 実施形態15では、実施形態13,14とは異なり、電解液を一旦、正極タンク106外に取り出し、再び正極タンク106に戻すことで電解液を撹拌する撹拌機構205を備えるRF電池100を図11に基づいて説明する。
 図11(A),(B)に示すように、撹拌機構205は、往路配管(撹拌用配管)251と、復路配管(撹拌用配管)252と、送液ポンプ253と、を備える。往路配管251は正極タンク106の液相に開口し、復路配管252は正極タンク106の気相(液相でも可)に開口する。また、ポンプ253は、両配管251,252の間に設けられ、電解液を正極タンク106内から往路配管251を介して復路配管252に送り出す。なお、上記構成に加えて図11(A)では正極タンク106内における電解液のMnイオンの分布を確認する構成を、図11(B)では電解液の温度調整を行なう構成を備えるが、これらの構成については後述する。
 上記構成の撹拌機構205によれば、正極タンク106→往路配管251→復路配管252→正極タンク106となる電解液の流れを作ることができ、電解液を効果的に撹拌することができる。
 [Mnイオンの分布を確認する構成]
 正極タンク106内の電解液のMnイオンに常に偏りがあるわけではないので、上記構成を常時動作させることは、非効率的である。そこで、当該偏りを検知し、その検知結果に基づいて電解液の撹拌の必要性を判断して撹拌機構5を動作させることが好ましい。たとえば、図11(A)に示す構成では、当該偏りを検知する構成として、復路配管252(往路配管251でも可)に電解液の透明度を確認できる透明な窓部252wを形成している。
 ここで、Mn3+の溶液は有色、Mn2+の溶液はほぼ無色透明であり、電解液におけるMn3+が支配的になれば電解液の透明度は低くなり、逆にMn2+が支配的になれば電解液の透明度は高くなる。つまり、RF電池100を放電して正極タンク106内でMn2+が支配的になっているはずであるのに、窓部252wから確認できる電解液の透明度が低い場合、正極タンク106内で電解液中のMnイオンの分布に偏りが生じていると判断できる。ここで、負極タンク107(図1参照)においても、図11(A)の構成と同様の構成により、電解液の透明度から電解液の撹拌の必要性を判断することができる。電解液においてTi3+が支配的になれば電解液の透明度は低くなり、Ti4+が支配的になれば電解液の透明度は高くなるからである。
 電解液の透明度の確認は、目視にて確認しても良いし、たとえば光学的センサにより自動で確認しても良い。前者の場合、目視にて電解液の透明度を確認して作業者が制御機構209を操作してポンプ253の出力を調整すると良い。後者の場合、光学的センサの検知結果に基づいて制御機構209がポンプ253の出力を自動で調整すると良い。
 なお、窓部252wを用いた電解液のMnイオンの偏りを検知する構成は、復路配管252や往路配管251に限定されるわけではない。たとえば、正極タンク106の底部寄りの位置に窓部を形成しても良いし、正極タンク106内の電解液の液面寄りの位置に窓部を形成しても良いし、あるいは両方の位置に窓部を形成しても良い。正極タンク106に設ける場合、実施形態13や14の構成に適用することもできる。
 電解液の透明度を参照する構成の他、正極タンク106内から電解液を取り出して、電解液のMnイオンの偏りを検知する構成を採用しても良い。たとえば、正極タンク106の底部寄りの位置と、液面寄りの位置とから電解液を別々の容器に取り出し、それら電解液の間の電位差が閾値を超える場合、電解液の撹拌が必要であると判断する構成を挙げることができる。
 [電解液の温度調整を行なう構成]
 図11(B)では、復路配管252(往路配管251でも可)に電解液の温度調整を行なう温度調整機構208、たとえば熱交換器を設けている。この構成によれば、電解液を撹拌する際、電解液の温度を同時に調整することできる。そもそも、本発明の構成では、RF電池100の充放電を行なう前に電解液の撹拌操作を行なうため、そのときに電解液の温度調整をすることが効率的である。
 [その他]
撹拌用配管251,252の内部に、電解液中の不純物および析出物を除去するフィルターを設けても良い。フィルターを設けることで送液ポンプ253の負荷を低減することができる。フィルターの材質としては、たとえば電解液により腐食されないプラスチック(PVCや、PE、フッ素樹脂など)メッシュや、カーボンメッシュなどを用いることができる。また、フィルターの孔径は0.1~100μmとすることが好ましい。
 <実施形態16>
 実施形態16では、図12に基づいて、実施形態13~15の構成にさらに正極タンク106の液相と負極タンク107の液相とを連通する連通管80を備えるRF電池100を説明する。なお、図12は、正極タンク106,負極タンク107と連通管80の接続状態のみを示す簡易的な図面である。
 [連通管]
 連通管80は、正極タンク106の液相と、負極タンク107の液相と、を連通する配管である。より具体的には、負極タンク107側にある連通管80の一端は、負極タンク107の底部寄りの位置に開口し、正極タンク106側にある連通管80の他端は、上記一端よりも高い位置で、かつ正極タンク106中の電解液の液面寄りの位置に開口している。この連通管80を設けることで、両タンク106,107内の電解液を混合させることができる。また、連通管80の途中には開閉弁81が形成されており、必要に応じて正極タンク106と負極タンク107との連通・非連通を切り換えることができるようになっている。
 上記連通管80は、RF電池100の電池容量を回復させるために設けられるものである。連通管80を開放することで、正負の電解液が混ざり合い、RF電池100は速やかに放電状態となる。ここで、既に述べたように、正極タンク106では、放電時の酸化状態であるMn2+が当該タンク106の上層側に偏っており、負極タンク107では、放電時の酸化状態であるTi4+が当該タンク107の下層側に偏っている。そのため、正極タンク106の上方と、負極タンク107の下方とを繋ぐ連通管80によれば、単に水平にタンク106,107 間を繋ぐ連通管よりも効率的かつ確実にRF電池100を放電状態とすることができる。なお、連通管80を開放して所定時間経過した後、撹拌機構を動作させると、RF電池100をより確実に放電状態とすることができる。
 <実施形態17~20>
 実施形態17~20のRF電池は、上述の基本構成を備え、正負の両極の電解液として、共通する金属イオン種を含有し、正負の両極の電解液を貯留するタンク間に接続される連通管を備えることを特徴とする。なお、本実施形態において、上述した構成(1)~(3)を備えていても構わない。
 <実施形態17>
 図13を参照して、実施形態17のRF電池1を説明する。実施形態17のRF電池1は、上述の基本構成を備え、正負の両極の電解液にマンガンイオンを含有する点、両極のタンク106,107を連通する連通管310を備える点を特徴とする。以下、この特徴点を中心に説明する。
 [電解液]
 正負の両極の電解液は、共通する金属イオン種として、マンガンイオンを含有する。正
極では、このマンガンイオンを正極活物質とする。
 正極電解液は、2価のマンガンイオン(Mn2+)および3価のマンガンイオン(Mn3+)から選択される少なくとも一種のマンガンイオンを含有するものが挙げられる。上述したように、本発明者らが調べた結果、MnO2も活物質として利用できるとの知見を得たことから、4価のマンガン(MnO2)をさらに含有することを許容する。この正極のマンガンイオンに関する事項は、後述する実施形態19についても同様に適用できる。
 負極電解液は、たとえば、負極活物質として、チタンイオン、バナジウムイオン、クロムイオン、亜鉛イオン、およびスズイオンから選択される少なくとも一種の金属イオンを含有するものが挙げられる。チタンイオンやスズイオンを含有するマンガン-チタン系RF電池やマンガン-スズ系RF電池では、起電力:1.4V程度、バナジウムイオンを含有するマンガン-バナジウム系RF電池では、起電力:1.8V程度、クロムイオンを含有するマンガン-クロム系RF電池では、起電力:1.9V程度、亜鉛イオンを含有するマンガン-亜鉛系RF電池では、起電力:2.2V程度というさらに高い起電力を有することができる。なお、図13では、負極タンク107にマンガンイオン(価数は例示)のみを示す。
 そして、正極電解液は、負極活物質として負極電解液に含有される金属イオン種と同種の金属イオンをさらに含有し、負極電解液は、負極活物質となる金属イオンに加えて、マンガンイオンをさらに含有する。正極電解液における上記負極活物質と同種の金属イオン、負極電解液におけるマンガンイオンは、主として、正負の各極の電解液において組成を揃えるために含有する。組成を揃えるための金属イオンによっては、正負の各極において活物質として利用することもできる(この点は、後述する実施形態についても同様である)。
 正負の両極の電解液は、互いに反応し合わず、完全に混合可能であれば、任意の金属イオンを含有することができる。両極の電解液に含有される金属イオン種の全てが重複する形態、すなわち、両極の電解液の金属イオン種が完全に同じである形態が代表的である。この形態は、正負の各極の金属イオンが対極に移動して、各極で本来反応する金属イオン(活物質となる金属イオン)が相対的に減少することによる電池容量の減少現象を効果的に回避できる。また、この形態は、電解液の製造性にも優れる。なお、両極の電解液に含有される金属イオン種のうち、一部のみが重複する形態とすることができる。たとえば、設置初期のRF電池として、両極の電解液に含有される金属イオン種のうち、一部のみが重複したものを用意し、混合作業を行った以降のRF電池では、金属イオン種の全てが重複する形態とすることができる。上述の事項(重複するイオン数、重複する時期)は、後述する実施形態についても同様に適用できる。
 正負の各極の電解液において、各金属イオン(活物質として含有するもの、組成を揃えるために含有するもののいずれの金属イオンも含む)の濃度は0.3M以上5M以下が好ましい(M:体積モル濃度)。各極の電解液の溶媒は、硫酸、リン酸、硝酸、硫酸塩、リン酸塩および硝酸塩の少なくとも一種を含む水溶液が好ましい。特に、硫酸アニオン(SO4 2-)を含むものが利用し易い。酸の濃度は、5M未満が好ましい。上述の事項(イオン濃度、溶媒)は、後述する実施形態についても同様に適用できる。
 [連通管]
 正極タンク106と負極タンク107とを連結する連通管310は、各タンク106,107内に貯留される電解液(液相)にそれぞれ開口しており、各タンク106,107に対する開口箇所が異なる。
 連通管310において正極タンク106に接続される一端は、タンク106内の正極電解液の液面寄りの位置に接続されている。より具体的には、連通管310の一端は、正極タンク106の底面から液面までの高さをLpとするとき、底面から(Lp/2)超の位置に開口している。この連通管310の一端の開口位置は、正極タンク106内の液面に近いほど好ましく、底面から(2/3)×Lp以上の位置、(3/4)×Lp以上の位置がより好ましい。なお、図13~図15において、正極タンク106内の実線は液面を、図13,図15において、正極タンク106内の一点鎖線は、底面から(Lp/2)の位置を示す。
 一方、連通管310において負極タンク107に接続される他端は、タンク107内の液相に対して任意の位置に接続されている。より具体的には、連通管310の他端は、負極タンク107の底面から液面までの高さをLaとするとき、底面からLa未満の位置に開口している。図13では、底面から(La/2)の位置を示す。
 また、RF電池1では、連通管310に開閉弁311が取り付けられており、所望のときに、正極タンク106と負極タンク107との間を連通または非連通に切り替えられるようにしている。開閉弁311は、電磁弁などが利用できる。
 [運転方法]
 上記構成を備えるRF電池1は、従来のRF電池と同様に、配管108~111およびポンプ112,113を利用して、マンガンイオンを含有する正極電解液、および負極活物質となる金属イオンを含有する負極電解液を電池要素100cに循環供給することで、充放電を行なうことができる。充放電運転は、後述する実施形態についても同様に行なう。
 一方、経時的な液移りなどにより、正負の各極の電解液量にばらつき(液面差)が生じたり、各極の電解液内の金属イオンのイオン濃度にばらつきが生じた場合などに、連通管310を利用して正負の両極の電解液を混合することで、上記ばらつきを是正できる。
 ここでは、RF電池1は、開閉弁311を開くことで、正負の両極の電解液を混合することができる。特に、RF電池1では、正極タンク106の底部側に、充電されたマンガンイオン(Mn3+)がその比重により集まり易く、未充電状態(放電状態)のマンガンイオン(Mn2+)がタンク106の液面側に集まり易くなっている。そのため、開閉弁311を開くと、放電状態のマンガンイオンを相対的に多く含む正極電解液と、負極タンク107内の負極電解液とを混合することができる。両極の電解液を十分に混合できたら、開閉弁311を閉じるとよい。
 この例では、正負の両極のタンク106,107の大きさおよび底面の位置を同じとしている。そのため、両極の電解液は、電解液の自重により各タンク106,107に移動して混合され、両極の電解液量が等しくなると、混合を自然に止めることができる。したがって、開閉弁311の開閉動作によって容易に混合を行えて、作業性に優れる。その他、開閉弁311の閉動作の時期やタンク106,107の底面の位置(上下関係)などを調整して、混合量を調整することもできる。あるいは、連通管310にポンプを別途設けて、混合量を調整できるようにすることもできる。上述の事項(タンクの大きさ・配置位置、ポンプの取り付け)は、後述する実施形態についても適用できる。
 [効果]
 実施形態17のRF電池1は、正負の両極の電解液にマンガンイオンを含有し、正極では、このマンガンイオンを正極活物質とすることで、従来の全バナジウム系RF電池に比較して高い起電力を有することができる。特に、RF電池1は、両極の電解液を混合するにあたり、連通管310における正極側の開口位置を正極タンク106内の正極電解液の液面寄りとすることで、液面側に集まっている放電状態のマンガンイオンを多く含む正極電解液と、負極タンク107内の負極電解液とを混合することができる。したがって、RF電池1は、両極の電解液の混合による自己放電が少なく、あるいは実質的に生じず、自己放電による損失を低減することができる。また、放電状態のマンガンイオンを多く含む正極電解液を混合できるRF電池1は、自己放電による損失が少ないことから、正極電解液の充電状態に係わらず、電解液の混合作業を行える。このようにRF電池1では、従来の全バナジウム系RF電池と同様に液移りなどによる電解液量のばらつきなどを電解液の混合により容易に是正可能でありながら、低損失であり、長期に亘り、高い起電力を有することができる。
 さらに、実施形態17のRF電池1では、連通管310に開閉弁311を備えることで、通常時、開閉弁311を閉じることができる。つまり、RF電池1は、通常時、正負の両極の電解液が混合されず、混合による自己放電が生じ得ない。したがって、RF電池1は、電解液の混合に起因する自己放電による損失をより抑制し易い。
 <実施形態18>
 図14を参照して、実施形態18のRF電池2を説明する。実施形態18のRF電池2は、上述の基本構成を備え、正負の両極の電解液にチタンイオンを含有する点、両極のタンク106,107を連通する連通管320を備える点を特徴とする。以下、この特徴点を中心に説明する。
 [電解液]
 正負の両極の電解液は、共通する金属イオン種として、チタンイオンを含有する。負極では、このチタンイオンを負極活物質とする。
 負極電解液は、3価のチタンイオン(Ti3+)および4価のチタンイオン(Ti4+、TiO2+など)の少なくとも一種のチタンイオンを含有する形態が挙げられる。さらに、2価のチタンイオンを含有していてもよい。この負極のチタンイオンに関する事項は、後述する実施形態19についても同様に適用できる。
 正極電解液は、たとえば、正極活物質として、上述したマンガンイオンを好適に利用できる。その他、正極電解液は、たとえば、鉄イオンやバナジウムイオン、チタンイオンを正極活物質として含有するものが挙げられる。なお、図14では、正極タンク106にチタンイオン(価数は例示)のみを示す。
 [連通管]
 正極タンク106と負極タンク107とを連結する連通管320は、実施形態17の連通管310と同様に各タンク106,107内に貯留される電解液(液相)にそれぞれ開口しており、途中に開閉弁311が取り付けられている。また、連通管320も、各タンク106,107に対する開口箇所が異なる。
 連通管320において負極タンク107に接続される一端は、タンク107の底部寄りの位置に接続されている。より具体的には、連通管320の一端は、負極タンク107の底面から液面までの高さをLaとするとき、底面から(La/2)以下の位置に開口している。この連通管320の一端の開口位置は、負極タンク107の底部に近いほど好ましく、底面から(1/3)×La以下の位置、(1/4)×La以下の位置がより好ましい。なお、図14において、負極タンク107内の一点鎖線は、底面から(La/2)の位置を示す。
 一方、連通管320において正極タンク106に接続される他端は、タンク106内の液相に対して任意の位置、つまり、底面からLp未満の位置に開口している。図14では、底面から(Lp/2)の位置を示す。
 [運転方法]
 上記構成を備えるRF電池2も、連通管320を利用して、正負の両極の電解液を混合することで、電解液量のばらつきやイオン濃度のばらつきがなどを是正することができる。
 具体的には、実施形態17のRF電池1と同様に、実施形態18のRF電池2は、開閉弁311を開くことで、正負の両極の電解液を混合することができる。特に、RF電池2では、負極タンク107内の負極電解液の液面側に、充電されたチタンイオン(Ti3+)がその比重により集まり易く、未充電状態(放電状態)のチタンイオン(Ti4+など)がタンク107の底部側に集まり易くなっている。そのため、開閉弁311を開くと、放電状態のチタンイオンを相対的に多く含む負極電解液と、正極タンク106内の正極電解液とを混合することができる。両極の電解液を十分に混合できたら、開閉弁311を閉じるとよい。
 [効果]
 実施形態18のRF電池2は、正負の両極の電解液にチタンイオンを含有し、負極では、このチタンイオンを負極活物質とすることで、従来の全バナジウム系RF電池と同等程度の起電力を有することができる。特に、RF電池2は、両極の電解液を混合するにあたり、連通管320における負極側の開口位置を負極タンク107の底部寄りとすることで、底部側に集まっている放電状態にあるチタンイオンを多く含む負極電解液と、正極タンク106内の正極電解液とを混合することができる。したがって、RF電池2では、両極の電解液の混合による自己放電が少なく、あるいは実質的に生じず、自己放電による損失を低減することができる。また、放電状態のチタンイオンを多く含む負極電解液を混合できるRF電池2は、自己放電による損失が少ないことから、負極電解液の充電状態に係わらず、電解液の混合作業を行える。このようにRF電池2では、従来の全バナジウム系RF電池と同様に液移りなどによる電解液量のばらつきなどを電解液の混合により容易に是正可能でありながら、低損失であり、長期に亘り、高い起電力を有することができる。
 さらに、実施形態18のRF電池2では、連通管320に開閉弁311を備えることで、実施形態17のRF電池1と同様に、通常時には正負の両極の電解液が混合されず、電解液の混合に起因する自己放電による損失を低減し易い。
 <実施形態19>
 図15を参照して、実施形態19のRF電池3を説明する。実施形態19のRF電池3は、上述の基本的な構成を備え、正負の両極の電解液にマンガンイオンおよびチタンイオンを含有する点、両極のタンク106,107を連通する連通管330を備える点を特徴とする。以下、この特徴点を中心に説明する。
 [電解液]
 正負の両極の電解液にマンガンイオンおよびチタンイオンの双方を含有するRF電池3では、正極電解液中のマンガンイオンを正極活物質として利用する。かつ、正極電解液中のチタンイオンは、金属イオン種を揃えるために含有すると共に、Mn3+の不均化反応に伴うMnO2の析出を抑制する析出抑制剤としても機能させる。かつ、RF電池3では、負極電解液中のチタンイオンを負極活物質として利用し、負極電解液中のマンガンイオンは、金属イオン種を揃えるために含有する。
 [連通管]
 RF電池3に備える連通管330は、その一端が正極タンク106内の正極電解液の液面寄りの位置((Lp/2)超の位置)に接続され、その他端が負極タンク107の底部寄りの位置((La/2)以下の位置)に接続されている。実施形態17,18で説明したように、連通管330において正極タンク106に接続される一端は、正極タンク106内の液面に近いほど好ましく、底面から(2/3)×Lp以上の位置、(3/4)×Lp以上の位置がより好ましい。また、連通管330において負極タンク107に接続される他端は、負極タンク107の底部に近いほど好ましく、底面から(1/3)×La以下の位置、(1/4)×La以下の位置がより好ましい。この例では、連通管330において負極タンク107に接続される他端は、正極タンク106に接続される一端よりも低い位置になっている。その他、この例でも、連通管330には、開閉弁311が取り付けられている。
 [運転方法]
 上記構成を備えるRF電池3も、連通管330を利用して、正負の両極の電解液を混合することで、電解液量のばらつきやイオン濃度のばらつきがなどを是正することができる。
 具体的には、実施形態17,18のRF電池1,2と同様に、実施形態19のRF電池3は、開閉弁311を開くことで、正負の両極の電解液を混合することができる。特に、RF電池3では、開閉弁311を開くと、放電状態のマンガンイオンを相対的に多く含む正極電解液と、放電状態のチタンイオンを相対的に多く含む負極電解液とを混合することができる。両極の電解液を十分に混合できたら、開閉弁311を閉じるとよい。
 [効果]
 実施形態19のRF電池3は、正負の両極の電解液にマンガンイオンおよびチタンイオンを含有し、正極では、マンガンイオンを正極活物質とし、負極では、チタンイオンを負極活物質とすることで、従来の全バナジウム系RF電池に比較して高い起電力を有することができる。特に、RF電池3では、正極電解液にチタンイオンを含有することで、MnO2の析出を抑制して、Mn3+を安定化することができ、長期に亘り、高い起電力を有することができる。
 かつ、RF電池3では、正負の両極の電解液を混合するにあたり、連通管330における一方の開口位置を正極タンク106内の正極電解液の液面寄りとし、他方の開口位置を負極タンク107の底部寄りとすることで、放電状態にあるマンガンイオンを多く含む正極電解液と、放電状態にあるチタンイオンを多く含む負極電解液とを混合することができる。したがって、RF電池3は、正負の両極の電解液の混合による自己放電が少なく、あるいは実質的に生じず、自己放電に伴う損失を低減することができる。また、正負の両極において放電状態の電解液を混合できるRF電池3は、自己放電による損失が少ないことから、両極の電解液の充電状態に係わらず、電解液の混合作業を行える。このようにRF電池3では、従来の全バナジウム系RF電池と同様に液移りなどによる電解液量のばらつきなどを電解液の混合により容易に是正可能でありながら、低損失であり、長期に亘り、高い起電力を有することができる。
 さらに、実施形態19のRF電池3では、連通管330に開閉弁311を備えることで、実施形態17,18のRF電池1,2と同様に、正負の両極の電解液の混合時間(開閉弁311を開く時間)を任意の時間に容易に制御できる。そのため、RF電池3も、電解液の混合に起因する自己放電による損失を低減し易い。
 <実施形態20>
 実施形態17~19では、連通管310,320,330に開閉弁311を備える形態を説明した。その他、開閉弁を省略した形態とすることができる。この形態は、常時、正極タンク106の液相と負極タンク107の液相とが連通されることになる。しかし、この場合にも、連通管の少なくとも一部の太さを特定の大きさとすることによって、自己放電による損失を低減することができる。
 この形態では、RF電池の仕様(電池要素100cの大きさや電池容量など)にもよるが、内径Φが25mm以下である細径部を有する連通管を利用することが好ましい。上記細径部が細過ぎると、正負の両極の電解液を十分に混合することが難しくなるため、上記細径部の内径Φは13mm以上が好ましく、13mm以上25mm以下程度が利用し易い。連通管の全長に亘って内径が一様であり、当該内径Φが25mm以下の形態、つまり、連通管全体が細径部である形態としてもよいし、連通管の長手方向の一部(好ましくは長さ10cm以上)おいて内径Φが25mm以下の細径部を有する形態としても、上述の効果を得られる。細径部を有する形態としても、上述の効果を得られる。
 実施形態20のRF電池は、正負の両極のタンクが連通管により、常時、連通された状態であるため、経時的に、電解液量のばらつき(液面差の発生)やイオン濃度のばらつきなどが実質的に生じない。また、実施形態20のRF電池は、開閉弁を備えていないため、電解液の混合にあたり、開閉動作を行なう必要が無い。これらの点から、実施形態20のRF電池は、両極の電解液を混合するための別途作業を行なう必要がない。
 本発明は、上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することができる。たとえば、正極電解液や負極電解液に含有する金属イオンを変更しても良い。
 本発明レドックスフロー電池は、太陽光発電、風力発電などの新エネルギーの発電に対して、発電出力の変動の安定化、発電電力の余剰時の蓄電、負荷平準化などを目的とした大容量の蓄電池に好適に利用することができる。その他、本発明レドックスフロー電池は、一般的な発電所や工場などに併設されて、瞬低・停電対策や負荷平準化を目的とした大容量の蓄電池としても好適に利用することができる。
 1A,1B,1C,1D,1E,1F,1G,1H,1I,1J,1K,1L,1,2,3,100 レドックスフロー電池、100c 電池要素、101 隔膜、102 正極セル、103 負極セル、104 正極電極、105 負極電極、108,109,110,111 配管、112,113 ポンプ、10,106 正極タンク、11c 正極充電用配管、11d 正極放電用配管、12 正極共通配管、13 正極リターン配管、14 正極共通リターン配管、15c 正極充電用リターン配管、15d 正極放電用リターン配管、50,50c,50d 正極ポンプ、51c,51d 開閉弁、52,55 三方弁、53c,53d 逆止弁、20,107 負極タンク、21 負極供給配管、21c 負極充電用配管、21d 負極放電用配管、22 負極共通配管、23 負極リターン配管、24 負極共通リターン配管、25c 負極充電用リターン配管、25d 負極放電用リターン配管、60,60c,60d 負極ポンプ、61c,61d,81,311 開閉弁、62,65 三方弁、63c,63d 逆止弁、201,202,203,204,205 撹拌機構、208 温度調整機構、209 制御機構、211 導入配管、211h 気孔、212 ガス供給機構、221 回転軸(撹拌部材)、222 モーター、231 スターラー・バー(撹拌部材)、232 スターラー本体、241 水中ポンプ(撹拌部材)、242 電源装置、251,252 撹拌用配管、253 送液ポンプ、252w 窓部、80,310,320,330 連通管。

Claims (22)

  1.  正極電極と、負極電極と、これら電極間に介在される隔膜とを備える電池要素に、正極タンク内の正極電解液および負極タンク内の負極電解液をそれぞれ供給して充放電を行なうレドックスフロー電池であって、
     前記正極電解液は、マンガンイオンを含有し、
     前記正極タンクには、充電時に正極電解液を前記電池要素に供給する正極充電用配管と、放電時に正極電解液を前記電池要素に供給する正極放電用配管とがそれぞれ接続され、
     前記正極充電用配管の一端は、前記正極タンク内の正極電解液の液面寄りの位置に開口し、
     前記正極放電用配管の一端は、前記正極タンクの底部寄りの位置に開口していることを特徴とするレドックスフロー電池。
  2.  正極電極と、負極電極と、これら電極間に介在される隔膜とを備える電池要素に、正極タンク内の正極電解液および負極タンク内の負極電解液をそれぞれ供給して充放電を行なうレドックスフロー電池であって、
     前記負極電解液は、チタンイオンを含有し、
     前記負極タンクには、充電時に負極電解液を前記電池要素に供給する負極充電用配管と、放電時に負極電解液を前記電池要素に供給する負極放電用配管とがそれぞれ接続され、
     前記負極充電用配管の一端は、前記負極タンクの底部寄りの位置に開口し、
     前記負極放電用配管の一端は、前記負極タンク内の負極電解液の液面寄りの位置に開口していることを特徴とするレドックスフロー電池。
  3.  正極電極と、負極電極と、これら電極間に介在される隔膜とを備える電池要素に、正極タンク内の正極電解液および負極タンク内の負極電解液をそれぞれ供給して充放電を行なうレドックスフロー電池であって、
     前記正極電解液は、マンガンイオンを含有し、
     前記負極電解液は、チタンイオンを含有し、
     前記正極タンクには、充電時に正極電解液を前記電池要素に供給する正極充電用配管と、放電時に正極電解液を前記電池要素に供給する正極放電用配管とがそれぞれ接続され、
     前記正極充電用配管の一端は、前記正極タンク内の正極電解液の液面寄りの位置に開口し、
     前記正極放電用配管の一端は、前記正極タンクの底部寄りの位置に開口し、
     前記負極タンクには、充電時に負極電解液を前記電池要素に供給する負極充電用配管と、放電時に負極電解液を前記電池要素に供給する負極放電用配管とがそれぞれ接続され、
     前記負極充電用配管の一端は、前記負極タンクの底部寄りの位置に開口し、
     前記負極放電用配管の一端は、前記負極タンク内の負極電解液の液面寄りの位置に開口していることを特徴とするレドックスフロー電池。
  4.  正極および負極のうち、同じ極の充電用配管の他端と放電用配管の他端とが一つの共通配管の一端に接続され、この共通配管を経て前記電池要素に当該極の電解液を供給し、
     前記共通配管に接続された前記充電用配管および前記放電用配管にはそれぞれ、前記電解液を圧送するためのポンプが取り付けられ、
     前記共通配管において前記充電用配管および前記放電用配管との接続箇所には三方弁が取り付けられていることを特徴とする請求項1~3のいずれか1項に記載のレドックスフロー電池。
  5.  正極および負極のうち、同じ極の充電用配管の他端と放電用配管の他端とが一つの共通配管の一端に接続され、この共通配管を経て前記電池要素に当該極の電解液を供給し、
     前記共通配管に接続された前記充電用配管および前記放電用配管にはそれぞれ、前記電解液を圧送するためのポンプおよび逆止弁が取り付けられていることを特徴とする請求項1~3のいずれか1項に記載のレドックスフロー電池。
  6.  正極および負極のうち、同じ極の充電用配管の他端と放電用配管の他端とは一つの共通配管の一端に接続され、この共通配管を経て前記電池要素に当該極の電解液を供給し、
     前記共通配管において前記充電用配管および前記放電用配管との接続箇所に三方弁が取り付けられ、かつ、前記共通配管において前記三方弁と前記電池要素との間に前記電解液を圧送するためのポンプが取り付けられていることを特徴とする請求項1~3のいずれか1項に記載のレドックスフロー電池。
  7.  前記正極タンクには、充電時に前記電池要素からの正極電解液を当該タンクに戻す正極充電用リターン配管と、放電時に前記電池要素からの正極電解液を当該タンクに戻す正極放電用リターン配管とがそれぞれ接続され、
     前記正極充電用リターン配管の一端は、前記正極タンクの底部寄りの位置に開口し、
     前記正極放電用リターン配管の一端は、前記正極タンク内の正極電解液の液面寄りの位置に開口し、
     前記正極充電用リターン配管の他端と前記正極放電用リターン配管の他端とが一つの正極共通リターン配管の一端に接続され、この正極共通リターン配管を経て前記電池要素からの正極電解液が前記正極充電用リターン配管および前記正極放電用リターン配管にそれぞれ送られ、
     前記正極共通リターン配管において前記正極充電用リターン配管および前記正極放電用リターン配管との接続箇所には三方弁が取り付けられていることを特徴とする請求項1または3に記載のレドックスフロー電池。
  8.  前記負極タンクには、充電時に前記電池要素からの負極電解液を当該タンクに戻す負極充電用リターン配管と、放電時に前記電池要素からの負極電解液を当該タンクに戻す負極放電用リターン配管とがそれぞれ接続され、
     前記負極充電用リターン配管の一端は、前記負極タンク内の負極電解液の液面寄りの位置に開口し、
     前記負極放電用リターン配管の一端は、前記負極タンクの底部寄りの位置に開口し、
     前記負極充電用リターン配管の他端と前記負極放電用リターン配管の他端とが一つの負極共通リターン配管の一端に接続され、この負極共通リターン配管を経て前記電池要素からの負極電解液が前記負極充電用リターン配管および前記負極放電用リターン配管にそれぞれ送られ、
     前記負極共通リターン配管において前記負極充電用リターン配管および前記負極放電用リターン配管との接続箇所には三方弁が取り付けられていることを特徴とする請求項2または3に記載のレドックスフロー電池。
  9.  正極電極と、負極電極と、これら電極間に介在される隔膜とを備える電池要素に、正極タンク内の正極電解液および負極タンク内の負極電解液をそれぞれ供給して充放電を行なうレドックスフロー電池であって、
     正極活物質としてマンガンイオンを含む正極電解液、および負極活物質としてチタンイオンを含む負極電解液の少なくとも一方を有し、
     マンガンイオンまたはチタンイオンを含む電解液を貯留するタンク内の電解液を撹拌する撹拌機構と、前記撹拌機構の動作を制御する制御手段と、
    を備えることを特徴とするレドックスフロー電池。
  10.  前記撹拌機構は、前記タンク外からタンク内に導入され、そのタンク内に貯留される電解液中に開口する導入配管と、
     前記導入配管を介して前記タンク内に不活性ガスを供給するガス供給機構と、
    を備えることを特徴とする請求項9に記載のレドックスフロー電池。
  11.  前記撹拌機構は、前記タンク内の電解液中で回転または揺動して、電解液を撹拌する撹拌部材を備えることを特徴とする請求項9に記載のレドックスフロー電池。
  12.  前記撹拌部材は、電磁力により動作することを特徴とする請求項11に記載のレドックスフロー電池。
  13.  前記撹拌機構は、一端が前記タンク内の液相に開口し、他端が同じタンク内の液相もしくは気相に開口する撹拌用配管と、
     前記一端側から他端側に向かって電解液を送り出す送液ポンプと、
    を備えることを特徴とする請求項9に記載のレドックスフロー電池。
  14.  前記撹拌用配管の途中に設けられ、電解液の温度調整をする温度調整機構を備えることを特徴とする請求項13に記載のレドックスフロー電池。
  15.  前記撹拌用配管の途中に設けられ、電解液中の不純物および析出物を除去するフィルターを備えることを特徴とする請求項13または14に記載のレドックスフロー電池。
  16.  前記制御手段は、予め定められたスケジュールに従って前記撹拌機構を間欠的に動作させることを特徴とする請求項9~15のいずれか1項に記載のレドックスフロー電池。
  17.  前記タンク内における電解液中の活物質イオンの分布状態を検知する検知機構を備え、
     前記制御手段は、前記検知機構の検知結果に基づいて前記撹拌機構を制御することを特徴とする請求項9~15のいずれか1項に記載のレドックスフロー電池。
  18.  前記正極電解液と前記負極電解液とは、共通の金属イオン種を含有し、
     前記共通の金属イオン種がマンガンイオンであり、
     前記正極タンク内の液相と前記負極タンク内の液相とを連通する連通管を備え、
     前記連通管の一端は、前記正極タンク内の正極電解液の液面寄りの位置に開口していることを特徴とする請求項1~17のいずれか1項に記載のレドックスフロー電池。
  19.  前記正極電解液と前記負極電解液とは、共通の金属イオン種を含有し、
     前記共通の金属イオン種がチタンイオンであり、
     前記正極タンク内の液相と前記負極タンク内の液相とを連通する連通管を備え、
     前記連通管の一端は、前記負極タンクの底部寄りの位置に開口していることを特徴とする請求項1~17のいずれか1項に記載のレドックスフロー電池。
  20.  前記正極電解液と前記負極電解液とは、共通の金属イオン種を含有し、
     前記共通の金属イオン種が、マンガンイオンおよびチタンイオンであり、
     前記正極タンク内の液相と前記負極タンク内の液相とを連通する連通管を備え、
     前記連通管の一端は、前記正極タンク内の正極電解液の液面寄りの位置に開口し、
     前記連通管の他端は、前記負極タンクの底部寄りの位置に開口していることを特徴とする請求項1~17のいずれか1項に記載のレドックスフロー電池。
  21.  前記連通管には、開閉弁が取り付けられていることを特徴とする請求項18~20のいずれか1項に記載のレドックスフロー電池。
  22.  前記連通管の少なくとも一部の内径Φが25mm以下であることを特徴とする請求項18~20のいずれか1項に記載のレドックスフロー電池。
PCT/JP2012/065980 2011-06-27 2012-06-22 レドックスフロー電池 WO2013002137A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280031948.2A CN103620845B (zh) 2011-06-27 2012-06-22 氧化还原液流电池
US14/129,190 US9531028B2 (en) 2011-06-27 2012-06-22 Redox flow battery
EP12804832.9A EP2725648B1 (en) 2011-06-27 2012-06-22 Redox flow battery

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011142220A JP5769010B2 (ja) 2011-06-27 2011-06-27 レドックスフロー電池
JP2011142219A JP5769070B2 (ja) 2011-06-27 2011-06-27 レドックスフロー電池
JP2011-142219 2011-06-27
JP2011-142221 2011-06-27
JP2011-142220 2011-06-27
JP2011142221A JP5769071B2 (ja) 2011-06-27 2011-06-27 レドックスフロー電池

Publications (1)

Publication Number Publication Date
WO2013002137A1 true WO2013002137A1 (ja) 2013-01-03

Family

ID=47424032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065980 WO2013002137A1 (ja) 2011-06-27 2012-06-22 レドックスフロー電池

Country Status (4)

Country Link
US (1) US9531028B2 (ja)
EP (1) EP2725648B1 (ja)
CN (1) CN103620845B (ja)
WO (1) WO2013002137A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105009344A (zh) * 2013-08-07 2015-10-28 住友电气工业株式会社 氧化还原液流电池
CN105474446A (zh) * 2013-08-07 2016-04-06 住友电气工业株式会社 氧化还原液流电池
JP2017054631A (ja) * 2015-09-08 2017-03-16 昭和電工株式会社 レドックスフロー電池用電解液およびレドックスフロー電池

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015054878A1 (zh) * 2013-10-18 2015-04-23 中国电力科学研究院 基于变化率控制储能电站平滑风光发电波动的方法及系统
CN103985893B (zh) * 2014-06-01 2017-01-11 广东金光高科股份有限公司 锂离子液流电池的液流泵间歇工作自动控制器
KR102354666B1 (ko) * 2014-08-01 2022-01-24 스미토모덴키고교가부시키가이샤 레독스 플로우 전지용 전해액, 및 레독스 플로우 전지 시스템
CN107112567B (zh) * 2014-12-18 2020-05-12 株式会社Lg化学 使液流电池的电解液再生的组件和使用该组件使液流电池的电解液再生的方法
CN107112569B (zh) * 2014-12-22 2021-06-15 住友电气工业株式会社 氧化还原液流电池
US20180013156A1 (en) * 2015-01-23 2018-01-11 Sumitomo Electric Industries, Ltd. Redox flow battery
US20160372763A1 (en) * 2015-06-17 2016-12-22 Institute of Nuclear Energy Research, Atomic Energy Council, Executive Yuan, R.O.C. Apparatus of Multifunctional Integrating Flow Battery
WO2017006729A1 (ja) * 2015-07-09 2017-01-12 住友電気工業株式会社 レドックスフロー電池用電極、及びレドックスフロー電池システム
US10069161B2 (en) 2016-03-17 2018-09-04 Saudi Arabian Oil Company In-situ gravitational separation of electrolyte solutions in flow redox battery systems
EP3467924B1 (en) * 2016-05-25 2020-06-03 Sumitomo Electric Industries, Ltd. Redox flow battery piping, method for manufacturing redox flow battery piping, piping unit, and redox flow battery
CN108232267A (zh) * 2016-12-15 2018-06-29 松下知识产权经营株式会社 液流电池
CN108232266A (zh) * 2016-12-15 2018-06-29 松下知识产权经营株式会社 液流电池
US20190341642A1 (en) * 2016-12-28 2019-11-07 Showa Denko K.K. Redox flow battery system and method of operating redox flow battery system
CN106654078A (zh) * 2017-02-07 2017-05-10 安徽浙科智创新能源科技有限公司 一种方便集成的钒电池电解液储存装置
JP7122698B2 (ja) * 2017-09-11 2022-08-22 パナソニックIpマネジメント株式会社 フロー電池
EP3709420A4 (en) 2017-11-07 2021-11-10 Sumitomo Electric Industries, Ltd. RAW MATERIAL FOR ELECTROLYTIC SOLUTION, PROCESS FOR PRODUCING AN ELECTROLYTIC SOLUTION, AND PROCESS FOR MANUFACTURING A REDOX FLOW BATTERY
CN110100342A (zh) * 2017-11-28 2019-08-06 住友电气工业株式会社 氧化还原液流电池
US20210083305A1 (en) * 2017-12-14 2021-03-18 Showa Denko K.K. Battery body unit for redox flow battery, redox flow battery using same, and method for operating redox flow battery
CN109461953B (zh) * 2018-09-07 2021-08-03 中国电力科学研究院有限公司 一种钒电池电堆内电解液分布情况的测试方法及装置
US11025072B2 (en) * 2018-10-17 2021-06-01 Ess Tech, Inc. System and method for operating an electrical energy storage system
DE102020124437B3 (de) 2020-09-18 2022-03-17 Holger Fink Fluidsystem für Redox-Flow-Batterien
AU2021106103A4 (en) * 2021-03-23 2021-10-28 Uon Pty Ltd Powering of submersible pumps by via renewable energy sources

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58176880A (ja) * 1982-04-12 1983-10-17 Agency Of Ind Science & Technol レドツクス・フロ−型電池の運転制御方法
JPH0676850A (ja) * 1991-09-30 1994-03-18 Hiroyuki Sakami 亜鉛硝酸燃料電池
JPH06260204A (ja) * 1993-03-01 1994-09-16 Sumitomo Electric Ind Ltd 電解液再調整装置付電解液流通型電池
JPH10334938A (ja) * 1997-06-02 1998-12-18 Sumitomo Electric Ind Ltd 電力貯蔵用二次電池
JPH11204124A (ja) * 1998-01-08 1999-07-30 Sumitomo Electric Ind Ltd 電解液流通型電池
JP2001043884A (ja) 1999-07-28 2001-02-16 Sumitomo Electric Ind Ltd レドックスフロー型2次電池およびその運転方法
JP2004119311A (ja) * 2002-09-27 2004-04-15 Sumitomo Electric Ind Ltd 電解液循環型電池の運転方法及び電解液循環型電池
JP2006147374A (ja) 2004-11-19 2006-06-08 Kansai Electric Power Co Inc:The バナジウムレドックスフロー電池システムの運転方法
JP2006147375A (ja) * 2004-11-19 2006-06-08 Kansai Electric Power Co Inc:The レドックスフロー電池およびその運転方法
JP2009218080A (ja) * 2008-03-10 2009-09-24 Osaka Prefecture Univ 光燃料電池
JP2010170782A (ja) * 2009-01-21 2010-08-05 Sharp Corp レドックスフロー電池およびその充放電方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3996064A (en) * 1975-08-22 1976-12-07 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Electrically rechargeable REDOX flow cell
NZ306364A (en) * 1995-05-03 1999-04-29 Unisearch Ltd High energy density vanadium electrolyte solutions, preparation thereof and redox cells and batteries containing the electrolyte solution
JP3260280B2 (ja) * 1996-04-16 2002-02-25 住友電気工業株式会社 レドックスフロー型二次電池装置およびその運転方法
US7820321B2 (en) * 2008-07-07 2010-10-26 Enervault Corporation Redox flow battery system for distributed energy storage
JP2010244972A (ja) 2009-04-09 2010-10-28 Sharp Corp レドックスフロー電池

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58176880A (ja) * 1982-04-12 1983-10-17 Agency Of Ind Science & Technol レドツクス・フロ−型電池の運転制御方法
JPH0676850A (ja) * 1991-09-30 1994-03-18 Hiroyuki Sakami 亜鉛硝酸燃料電池
JPH06260204A (ja) * 1993-03-01 1994-09-16 Sumitomo Electric Ind Ltd 電解液再調整装置付電解液流通型電池
JPH10334938A (ja) * 1997-06-02 1998-12-18 Sumitomo Electric Ind Ltd 電力貯蔵用二次電池
JPH11204124A (ja) * 1998-01-08 1999-07-30 Sumitomo Electric Ind Ltd 電解液流通型電池
JP2001043884A (ja) 1999-07-28 2001-02-16 Sumitomo Electric Ind Ltd レドックスフロー型2次電池およびその運転方法
JP2004119311A (ja) * 2002-09-27 2004-04-15 Sumitomo Electric Ind Ltd 電解液循環型電池の運転方法及び電解液循環型電池
JP2006147374A (ja) 2004-11-19 2006-06-08 Kansai Electric Power Co Inc:The バナジウムレドックスフロー電池システムの運転方法
JP2006147375A (ja) * 2004-11-19 2006-06-08 Kansai Electric Power Co Inc:The レドックスフロー電池およびその運転方法
JP2009218080A (ja) * 2008-03-10 2009-09-24 Osaka Prefecture Univ 光燃料電池
JP2010170782A (ja) * 2009-01-21 2010-08-05 Sharp Corp レドックスフロー電池およびその充放電方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105009344A (zh) * 2013-08-07 2015-10-28 住友电气工业株式会社 氧化还原液流电池
CN105474446A (zh) * 2013-08-07 2016-04-06 住友电气工业株式会社 氧化还原液流电池
US9972858B2 (en) 2013-08-07 2018-05-15 Sumitomo Electric Industries, Ltd. Redox flow battery
US10290889B2 (en) 2013-08-07 2019-05-14 Sumitomo Electric Industries, Ltd. Redox flow battery
JP2017054631A (ja) * 2015-09-08 2017-03-16 昭和電工株式会社 レドックスフロー電池用電解液およびレドックスフロー電池

Also Published As

Publication number Publication date
EP2725648A1 (en) 2014-04-30
US20140134465A1 (en) 2014-05-15
US9531028B2 (en) 2016-12-27
CN103620845A (zh) 2014-03-05
EP2725648B1 (en) 2018-06-13
CN103620845B (zh) 2016-10-05
EP2725648A4 (en) 2015-03-11

Similar Documents

Publication Publication Date Title
WO2013002137A1 (ja) レドックスフロー電池
JP5769070B2 (ja) レドックスフロー電池
KR101178327B1 (ko) 레독스 플로우 전지
JP5007849B1 (ja) レドックスフロー電池、及びその運転方法
KR101118448B1 (ko) 레독스 흐름 전지
WO2011111717A1 (ja) レドックスフロー電池
JP5772366B2 (ja) レドックスフロー電池
JP5769071B2 (ja) レドックスフロー電池
WO2014045337A9 (ja) レドックスフロー電池
JP5172230B2 (ja) 非常用電源機能を有するレドックスフロー電池システム及びレドックスフロー電池システムの非常時運転方法
JP2011233372A (ja) レドックスフロー電池
JP2014137946A (ja) レドックスフロー電池の運転方法
JP5769010B2 (ja) レドックスフロー電池
JP2016213034A (ja) 蓄電装置
KR20160085113A (ko) 플로우 배터리에 적용 가능한 전해액 혼합 모듈 및 이를 이용한 플로우 배터리의 전해액 혼합 방법
JP2011210696A (ja) レドックスフロー電池
JP4863172B2 (ja) レドックスフロー電池
JP5489008B2 (ja) レドックスフロー電池
WO2019208431A1 (ja) レドックスフロー電池及びその運転方法
JP2012204347A (ja) レドックスフロー電池、及びその運転方法
JP2011233373A (ja) レドックスフロー電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12804832

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012804832

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14129190

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE