JP2011210696A - レドックスフロー電池 - Google Patents

レドックスフロー電池 Download PDF

Info

Publication number
JP2011210696A
JP2011210696A JP2010203447A JP2010203447A JP2011210696A JP 2011210696 A JP2011210696 A JP 2011210696A JP 2010203447 A JP2010203447 A JP 2010203447A JP 2010203447 A JP2010203447 A JP 2010203447A JP 2011210696 A JP2011210696 A JP 2011210696A
Authority
JP
Japan
Prior art keywords
ion
ions
redox flow
flow battery
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010203447A
Other languages
English (en)
Inventor
Yongrong Dong
雍容 董
Toshio Shigematsu
敏夫 重松
Takahiro Kumamoto
貴浩 隈元
Mitsuru Hisahata
満 久畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2010203447A priority Critical patent/JP2011210696A/ja
Priority to ES11753375.2T priority patent/ES2593705T3/es
Priority to AU2011225262A priority patent/AU2011225262B2/en
Priority to EP11753375.2A priority patent/EP2546914B1/en
Priority to PCT/JP2011/055418 priority patent/WO2011111717A1/ja
Priority to US13/583,585 priority patent/US9118064B2/en
Priority to KR20127026286A priority patent/KR20130038234A/ko
Priority to CA 2792408 priority patent/CA2792408A1/en
Priority to CN201180013668.4A priority patent/CN102804472B/zh
Priority to TW100108300A priority patent/TWI489687B/zh
Publication of JP2011210696A publication Critical patent/JP2011210696A/ja
Priority to ZA2012/06762A priority patent/ZA201206762B/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】高い起電力を有しながら、析出物の析出を抑制できるレドックスフロー電池を提供する。
【解決手段】レドックスフロー電池100は、正極電極104と、負極電極105と、両電極104,105間に介在される隔膜101とを具える電池セルに正極電解液及び負極電解液を供給して充放電を行う。正極電解液は、マンガンイオンを含有する。負極電解液は、チタンイオン、バナジウムイオン、クロムイオン、亜鉛イオン、及びスズイオンから選択される少なくとも一種の金属イオンを含有する。このレドックスフロー電池100は、正極電解液の充電深度が90%以下となるように運転されることで、MnO2といった析出物の析出を抑制し、良好に充放電を行える。また、このレドックスフロー電池100は、従来のバナジウム系レドックスフロー電池と同等、又は同等以上の高い起電力を有する。
【選択図】図1

Description

本発明は、レドックスフロー電池に関するものである。特に、高い起電力が得られるレドックスフロー電池に関するものである。
昨今、地球温暖化への対策として、太陽光発電、風力発電といった新エネルギーの導入が世界的に推進されている。これらの発電出力は、天候に影響されるため、大量に導入が進むと、周波数や電圧の維持が困難になるといった電力系統の運用に際しての問題が予測されている。この問題の対策の一つとして、大容量の蓄電池を設置して、出力変動の平滑化、余剰電力の貯蓄、負荷平準化などを図ることが期待される。
大容量の蓄電池の一つにレドックスフロー電池がある。レドックスフロー電池は、正極電極と負極電極との間に隔膜を介在させた電池セルに正極電解液及び負極電解液をそれぞれ供給して充放電を行う。上記電解液は、代表的には、酸化還元により価数が変化する金属イオンを含有する水溶液が利用される。正極に鉄イオン、負極にクロムイオンを用いる鉄-クロム系レドックスフロー電池の他、両極にバナジウムイオンを用いるバナジウム系レドックスフロー電池が代表的である(例えば、特許文献1)。
特開2006-147374号公報
バナジウム系レドックスフロー電池は、実用化されており、今後も使用が期待される。しかし、従来の鉄-クロム系レドックスフロー電池やバナジウム系レドックスフロー電池では、起電力が十分に高いとは言えない。今後の世界的な需要に対応するためには、更に高い起電力を有し、かつ、活物質に用いる金属イオンを安定して供給可能な、好ましくは安定して安価に供給可能な新たなレドックスフロー電池の開発が望まれる。
そこで、本発明の目的は、高い起電力が得られるレドックスフロー電池を提供することにある。
起電力を向上するためには、標準酸化還元電位が高い金属イオンを活物質に用いることが考えられる。従来のレドックスフロー電池に利用されている正極活物質の金属イオンの標準酸化還元電位は、Fe2+/Fe3+が0.77V、V4+/V5+が1.0Vである。本発明者らは、正極活物質の金属イオンとして、水溶性の金属イオンであり、従来の金属イオンよりも標準酸化還元電位が高く、バナジウムよりも比較的安価であって資源供給面においても優れると考えられるマンガン(Mn)を用いたレドックスフロー電池を検討した。Mn2+/Mn3+の標準酸化還元電位は、1.51Vであり、マンガンイオンは、起電力がより大きなレドックス対を構成するための好ましい特性を有する。
しかし、正極活物質の金属イオンにマンガンイオンを用いた場合、充放電に伴って固体のMnO2が析出するという問題がある。
Mn3+は不安定であり、マンガンイオンの水溶液では、以下の不均化反応によってMn2+(2価)及びMnO2(4価)を生じる。
不均化反応:2Mn3++2H2O ⇔ Mn2++MnO2(析出)+4H+
上記不均化反応の式から、H2Oを相対的に減らす、例えば、電解液の溶媒を硫酸水溶液といった酸の水溶液とするとき、当該溶媒中の酸(例えば、硫酸)の濃度を高めることで、MnO2の析出をある程度抑制できることがわかる。ここで、上述したような大容量の蓄電池として実用的なレドックスフロー電池とするためには、エネルギー密度の点から、マンガンイオンの溶解度が0.3M以上であることが望まれる。しかし、マンガンイオンは、酸濃度(例えば、硫酸濃度)を高めると、溶解度が低下する特性を有する。即ち、MnO2の析出を抑制するために酸濃度を高めると、電解液中のマンガンイオンの濃度が高くできず、エネルギー密度の低下を招く。また、酸の種類によっては、酸濃度を高めることで電解液の粘度が増加して使用し難いという問題も生じる。
本発明者らは、正極活物質にマンガンイオンを用いても、Mn(3価)の不均化反応に伴う析出が生じ難く、Mn2+/Mn3+の反応が安定して行われ、実用的な溶解度が得られる構成を更に検討した。その結果、正極電解液の充電深度(SOC:State of Charge)が90%以下となるように運転することで、上記析出を効果的に抑制できることを見出した。上記特定の運転条件とすることで、上記析出を抑制できることから、溶媒の酸濃度を不必要に高くする必要が無く、マンガンイオンの溶解度を十分に実用的な値にすることができる。また、上記特定の運転条件とする場合、若干量のMnO2が析出されても、充放電過程において析出されたMnO2(4価)の少なくとも一部は、Mn(2価)に還元され得るという新たな事実も見出した。そして、正極活物質にマンガンイオンを用い、負極活物質に、チタンイオン、バナジウムイオン、クロムイオン、亜鉛イオン、及びスズイオンの少なくとも一種の金属イオンを用いた、Ti/Mn系、V/Mn系、Cr/Mn系、Zn/Mn系、Sn/Mn系レドックスフロー電池は、高い起電力を有することができ、かつ上記金属イオンが高濃度に溶解された電解液を用いて、安定して良好に動作することができる、との知見を得た。本発明は、これらの知見に基づくものである。
本発明は、正極電極と、負極電極と、これら両電極間に介在される隔膜とを具える電池セルに正極電解液及び負極電解液を供給して充放電を行うレドックスフロー電池に係るものである。上記正極電解液は、マンガンイオンを含有し、上記負極電解液は、チタンイオン、バナジウムイオン、クロムイオン、亜鉛イオン、及びスズイオンから選択される少なくとも一種の金属イオンを含有する。そして、このレドックスフロー電池は、上記正極電解液の充電深度を1電子反応で計算して90%以下となるように運転される。
上記構成によれば、従来のレドックスフロー電池と同等、又は同等以上の高い起電力が得られる上に、比較的安価な金属イオンを正極活物質に利用することで、活物質を安定して供給できると期待される。かつ、上記構成によれば、特定の運転条件とすることで、マンガンイオンを利用しながらも、MnO2の析出を効果的に抑制できるため、MnO2の析出による正極活物質の減少などの問題が生じ難く、Mn2+/Mn3+の反応を安定して行えることから、良好に充放電動作を行うことができる。そして、上記構成によれば、MnO2の析出を抑制できることから、溶媒の酸濃度を過剰に高くする必要が無いため、正極電解液におけるマンガンイオンの溶解度を高められ、実用的なマンガンイオン濃度を有することができる。従って、本発明レドックスフロー電池は、新エネルギーの出力変動の平滑化、余剰電力の貯蓄、負荷平準化に好適に利用することができると期待される。
本発明では、上記正極電解液の充電深度が、マンガンイオンの反応を全て1電子反応(Mn2+→Mn3++e-)で計算した場合に90%以下となるように運転を制御する。上記充電深度は、低いほどMnO2の析出を抑制し易く、後述する試験例に示すように70%以下とすると、実質的に析出しない、との知見を得た。従って、充電深度は、1電子反応で計算した場合に70%以下となるように運転を制御すること、代表的には電解液の液組成に応じて切替電圧を調整することが好ましい。
マンガンイオンを取り扱う本発明では、主として1電子反応が生じると考えられることから、1電子反応で充電深度を計算する。しかし、1電子反応のみではなく、2電子反応(Mn2+→Mn4++2e-)も生じ得ることから、本発明では、2電子反応を許容する。2電子反応が生じた場合、エネルギー密度を高められる効果がある。
上記正極電解液の具体的な形態として、2価のマンガンイオン及び3価のマンガンイオンの少なくとも一種のマンガンイオンを含有する形態が挙げられる。上記いずれかのマンガンイオンを含有することで、放電時:2価のマンガンイオン(Mn2+)が存在し、充電時:3価のマンガンイオン(Mn3+)が存在し、充放電の繰り返しにより、両マンガンイオンが存在する形態となる。正極活物質に上記二つのマンガンイオン:Mn2+/Mn3+を利用することで標準酸化還元電位が高いため、高い起電力のレドックスフロー電池とすることができる。
本発明では、上述の特定の運転条件によりMn(3価)の不均化反応の抑制を図るが、実際の運転では、僅かながら不均化反応が生じ得る。そして、不均化反応が生じた場合、4価のマンガンが存在し得る。従って、本発明の一形態として、正極電解液が2価のマンガンイオン及び3価のマンガンイオンから選択される少なくとも一種のマンガンイオンと、4価のマンガンとを含有する形態が挙げられる。4価のマンガンはMnO2と考えられるが、このMnO2は固体の析出物ではなく、電解液中に溶解したように見える安定な状態で存在していると考えられる。この電解液中に浮遊するMnO2は、放電時、2電子反応として、Mn2+に還元され(放電して)、即ち、MnO2が活物質として作用して、繰り返し使用できることで、電池容量の増加に寄与することがある。従って、本発明では、若干量(マンガンイオンの総量(mol)に対して10%程度以下)の4価のマンガンの存在を許容する。
一方、負極電解液は、チタンイオン、バナジウムイオン、クロムイオン、亜鉛イオン、スズイオンのうちの単一種の金属イオンを含有した形態、これら列挙する複数種の金属イオンを含有した形態とすることができる。これらの金属イオンのいずれも、水溶性であり、電解液を水溶液にできるため利用し易く、これらの金属イオンを負極活物質とし、正極活物質をマンガンイオンとするにあたり、起電力が高いレドックスフロー電池が得られる。
負極電解液が上記金属イオンのうち、単一種の金属イオンを含有する形態において、チタンイオンを負極活物質として含有するチタン-マンガン系レドックスフロー電池とした場合、1.4V程度の起電力が得られる。また、充放電の繰り返し使用により、経時的に液移り(一方の極の電解液が他方の極に移動する現象)が生じて、チタンイオンがある程度正極電解液に混入された場合、詳しいメカニズムは定かでないが、MnO2の析出を抑制する効果がある、という驚くべき知見を得た。更に、チタンイオンが正極電解液に存在する場合、MnO2が生成されても析出せず、生成されたMnO2が電解液中に安定に存在して充放電が可能である、という驚くべき知見を得た。このようにMnO2の析出を抑制してMn3+を安定化することができ、充放電を十分に行えることから、負極活物質には、チタンイオンが好ましい。但し、液移りは、本来好ましい現象ではないため、本発明は、特定の運転条件により、MnO2の析出の抑制を積極的に図る。
負極電解液が上記金属イオンのうち、単一種の金属イオンを含有する形態において、バナジウムイオンを含有するバナジウム-マンガン系レドックスフロー電池とした場合、起電力:1.8V程度、クロムイオンを含有するクロム-マンガン系レドックスフロー電池とした場合、起電力:1.9V程度、亜鉛イオンを含有する亜鉛-マンガン系レドックスフロー電池とした場合、起電力:2.2V程度という更に高い起電力を有するレドックスフロー電池とすることができる。スズイオンを含有するスズ-マンガン系レドックスフロー電池とした場合、起電力:1.4V程度とチタン-マンガン系レドックスフロー電池と同程度の起電力を有するレドックスフロー電池とすることができる。
負極電解液が上記金属イオンのうち、単一種の金属イオンを含有する形態として、負極電解液は、以下の(1)〜(5)のいずれか一つを満たす形態が挙げられる。
(1) 3価のチタンイオン及び4価のチタンイオンの少なくとも一種のチタンイオンを含有する。
(2) 2価のバナジウムイオン及び3価のバナジウムイオンの少なくとも一種のバナジウムイオンを含有する。
(3) 2価のクロムイオン及び3価のクロムイオンの少なくとも一種のクロムイオンを含有する。
(4) 2価の亜鉛イオンを含有する。
(5) 2価のスズイオン及び4価のスズイオンの少なくとも一種のスズイオンを含有する。
上記(1)を満たす場合、上記いずれかのチタンイオンを含有することで、放電時:4価のチタンイオン(Ti4+、TiO2+など)が存在し、充電時:3価のチタンイオン(Ti3+)が存在し、充放電の繰り返しにより、両チタンイオンが存在する形態となる。但し、チタンイオンには、2価のものが存在し得る。従って、負極電解液として、2価のチタンイオン、3価のチタンイオン、及び4価のチタンイオンから選択される少なくとも一種のチタンイオンを含有する形態としてもよい。
上記(2)を満たす場合、上記いずれかのバナジウムイオンを含有することで、放電時:3価のバナジウムイオン(V3+)が存在し、充電時:2価のバナジウムイオン(V2+)が存在し、充放電の繰り返しにより、両バナジウムイオンが存在する形態となる。上記(3)を満たす場合、上記いずれかのクロムイオンを含有することで、放電時:3価のクロムイオン(Cr3+)が存在し、充電時:2価のクロムイオン(Cr2+)が存在し、充放電の繰り返しにより、両クロムイオンが存在する形態となる。上記(4)を満たす場合、2価の亜鉛イオンを含有することで、放電時:2価の亜鉛イオン(Zn2+)が存在し、充電時:金属亜鉛(Zn)が存在し、充放電の繰り返しにより、2価の亜鉛イオンが存在する形態となる。上記(5)を満たす場合、上記いずれかのスズイオンを含有することで、放電時:4価のスズイオン(Sn4+)が存在し、充電時:2価のスズイオン(Sn2+)が存在し、充放電の繰り返しにより、両スズイオンが存在する形態となる。
負極電解液が複数種の金属イオンを含有する場合、充電時の電圧の上昇に伴って各金属イオンが一つずつ順番に電池反応を行うように、各金属の標準酸化還元電位を考慮して組合せることが好ましい。電位が貴な順に、Ti3+/Ti4+,V2+/V3+,Cr2+/Cr3+を組み合せて含む形態が好ましい。また、負極にもマンガンイオンを含有させることができ、例えば、チタンイオン及びマンガンイオン、クロムイオン及びマンガンイオン、などを含有する負極電解液とすることができる。負極電解液に含有するマンガンイオンは、活物質として機能させるのではなく、主として、両極の電解液の金属イオン種を重複させるために含有する。両極の電解液の金属イオン種が重複したり、金属イオン種が等しくなったりすることで、(1)液移りに伴って各極の金属イオンが相互に対極に移動することにより、各極で本来活物質として反応する金属イオンが減少して電池容量が減少する現象を抑制できる、(2)液移りにより液量がアンバランスになっても是正し易い、(3)電解液の製造性に優れる、といった効果を奏する。
本発明の一形態として、上記正極電解液のマンガンイオンの濃度、及び上記負極電解液の各金属イオンの濃度がいずれも0.3M以上5M以下である形態が挙げられる(「M」:体積モル濃度)。
両極の活物質となる金属イオンの濃度が0.3M未満では、大容量の蓄電池として十分なエネルギー密度(例えば、10kWh/m3程度)を確保することが難しい。エネルギー密度の増大を図るためには、上記金属イオンの濃度は高い方が好ましく、0.5M以上、更に1.0M以上がより好ましい。但し、電解液の溶媒を酸の水溶液とする場合、酸濃度をある程度高めると上述のようにMnO2の析出を抑制できるものの、酸濃度の上昇により金属イオンの溶解度の低下を招くことから、上記金属イオンの濃度の上限は5Mと考えられる。
本発明の一形態として、上記両極電解液の溶媒は、H2SO4、K2SO4、Na2SO4、H3PO4、H4P2O7、K2PO4、Na3PO4、K3PO4、HNO3、KNO3、及びNaNO3から選択される少なくとも一種の水溶液である形態が挙げられる。
上述のように両極の活物質となる金属イオンが水溶性イオンであるため、両極の電解液の溶媒として、水溶液を好適に利用することができる。特に、水溶液として、上記硫酸、リン酸、硝酸、硫酸塩、リン酸塩、及び硝酸塩の少なくとも一種を含有する場合、(1)金属イオンの安定性の向上や反応性の向上、溶解度の向上が得られる場合がある、(2)Mnのような電位が高い金属イオンを用いる場合でも、副反応が生じ難い(分解が生じ難い)、(3)イオン伝導度が高く、電池の内部抵抗が小さくなる、(4)塩酸(HCl)を利用した場合と異なり、塩素ガスが発生しない、といった複数の効果が期待できる。この形態の電解液は、硫酸アニオン(SO4 2-)、リン酸アニオン(代表的にはPO4 3-)、及び硝酸アニオン(NO3 -)の少なくとも一種が存在する。但し、電解液中の上記酸の濃度が高過ぎると、マンガンイオンの溶解度の低下や電解液の粘度の増加を招く恐れがあるため、上記酸の濃度は5M未満が好ましいと考えられる。
本発明の一形態として、上記両電解液が硫酸アニオン(SO4 2-)を含有する形態が挙げられる。このとき、上記両電解液の硫酸濃度は5M未満が好ましい。
両電解液が硫酸アニオン(SO4 2-)を含有する形態では、上述したリン酸アニオンや硝酸アニオンを含有する場合と比較して、両極の活物質となる金属イオンの安定性や反応性を向上できるため好ましい。両電解液が硫酸アニオンを含有するには、例えば、上記活物質となる金属イオンを含む硫酸塩を利用することが挙げられる。更に、硫酸塩を用いることに加えて、電解液の溶媒を硫酸水溶液とすると、上述のように金属イオンの安定性や反応性の向上、副反応の抑制、内部抵抗の低減などを図ることができる。但し、硫酸濃度が高過ぎると、上記溶解度の低下を招くため、硫酸濃度は、5M未満が好ましく、1M〜4Mが利用し易い。
本発明の一形態として、上記正極電極及び上記負極電極は、以下の(1)〜(10)から選択される少なくとも一種の材料から構成された形態が挙げられる。
(1) Ru,Ti,Ir,Mn,Pd,Au,及びPtから選択される少なくとも一種の金属と、Ru,Ti,Ir,Mn,Pd,Au,及びPtから選択される少なくとも一種の金属の酸化物とを含む複合材(例えば、Ti基体にIr酸化物やRu酸化物を塗布したもの)、(2) 上記複合材を含むカーボン複合物、(3) 上記複合材を含む寸法安定電極(DSE)、(4) 導電性ポリマ(例えば、ポリアセチレン、ポリチオフェンなどの電気を通す高分子材料)、(5) グラファイト、(6) ガラス質カーボン、(7) 導電性ダイヤモンド、(8) 導電性ダイヤモンドライクカーボン(DLC)、(9) カーボンファイバからなる不織布、(10) カーボンファイバからなる織布
ここで、電解液を水溶液とする場合、Mn2+/Mn3+の標準酸化還元電位が酸素発生電位(約1.0V)よりも貴な電位であることで、充電時、酸素ガスの発生を伴う可能性がある。これに対し、例えば、カーボンファイバからなる不織布(カーボンフェルト)から構成される電極を利用すると、酸素ガスが発生し難く、導電性ダイヤモンドから構成される電極の中には、酸素ガスが実質的に発生しないものがある。このように電極材料を適宜選択することで、酸素ガスの発生をも効果的に低減又は抑制できる。また、上記カーボンファイバからなる不織布から構成される電極は、(1)表面積が大きい、(2)電解液の流通性に優れる、といった効果がある。
本発明の一形態として、上記隔膜は、多孔質膜、膨潤性隔膜、陽イオン交換膜、及び陰イオン交換膜から選択される少なくとも一種の膜である形態が挙げられる。膨潤性隔膜とは、官能基を持たず、かつ水を含む高分子(例えば、セロハン)で構成された隔膜を言う。イオン交換膜は、(1)正負極の活物質である金属イオンの隔離性に優れる、(2)H+イオン(電池内部の電荷担体)の透過性に優れる、といった効果があり、隔膜に好適に利用することができる。
本発明レドックスフロー電池は、高い起電力が得られる。
図1は、レドックスフロー電池を具える電池システムの動作原理を示す説明図である。 図2は、試験例2で作製したTi/Mn系レドックスフロー電池において、隔膜を異ならせた場合の充放電のサイクル時間(sec)と電池電圧(V)との関係を示すグラフである。 図3は、硫酸濃度(M)と、マンガンイオン(2価)の溶解度(M)との関係を示すグラフである。 図4は、試験例4で作製したV/Mn系レドックスフロー電池において、マンガンイオン濃度を変化させた場合の充放電のサイクル時間(sec)と電池電圧(V)との関係を示すグラフである。 図5は、試験例5で作製したV/Mn系レドックスフロー電池において、硫酸濃度を変化させた場合の充放電のサイクル時間(sec)と電池電圧(V)との関係を示すグラフである。
以下、図1を参照して、実施形態のレドックスフロー電池を具える電池システムの概要を説明する。図1に示すイオン種は例示である。また、図1において、実線矢印は、充電、破線矢印は、放電を意味する。その他、図1に示す金属イオンは代表的な形態を示しており、図示される以外の形態も含み得る。例えば、図1では、4価のチタンイオンとしてTi4+を示すが、TiO2+などのその他の形態も含み得る。
レドックスフロー電池100は、代表的には、交流/直流変換器を介して、発電部(例えば、太陽光発電機、風力発電機、その他、一般の発電所など)と電力系統や需要家とに接続され、発電部を電力供給源として充電を行い、電力系統や需要家を電力提供対象として放電を行う。上記充放電を行うにあたり、レドックスフロー電池100と、この電池100に電解液を循環させる循環機構(タンク、導管、ポンプ)とを具える以下の電池システムが構築される。
レドックスフロー電池100は、正極電極104を内蔵する正極セル102と、負極電極105を内蔵する負極セル103と、両セル102,103を分離すると共に適宜イオンを透過する隔膜101とを具える。正極セル102には、正極電解液用のタンク106が導管108,110を介して接続される。負極セル103には、負極電解液用のタンク107が導管109,111を介して接続される。導管108,109には、各極の電解液を循環させるためのポンプ112,113を具える。レドックスフロー電池100は、導管108〜111、ポンプ112,113を利用して、正極セル102(正極電極104)、負極セル103(負極電極105)にそれぞれタンク106の正極電解液、タンク107の負極電解液を循環供給して、各極の電解液中の活物質となる金属イオンの価数変化反応に伴って充放電を行う。
レドックスフロー電池100は、代表的には、上記セル102,103を複数積層させたセルスタックと呼ばれる形態が利用される。上記セル102,103は、一面に正極電極104、他面に負極電極105が配置される双極板(図示せず)と、電解液を供給する給液孔及び電解液を排出する排液孔を有し、かつ上記双極板の外周に形成される枠体(図示せず)とを具えるセルフレームを用いた構成が代表的である。複数のセルフレームを積層することで、上記給液孔及び排液孔は電解液の流路を構成し、この流路は導管108〜111に適宜接続される。セルスタックは、セルフレーム、正極電極104、隔膜101、負極電極105、セルフレーム、…と順に繰り返し積層されて構成される。なお、レドックスフロー電池システムの基本構成は、公知の構成を適宜利用することができる。
特に、本発明では、上記正極電解液に正極活物質となるマンガンイオンを含有し、上記負極電解液に負極活物質となるチタンイオン、バナジウムイオン、クロムイオン、亜鉛イオン、及びスズイオンから選択される少なくとも一種の金属イオンを含有する(図1では、例としてチタンイオンを示す)。そして、本発明では、レドックスフロー電池100は、正極電解液の充電深度が90%以下となるように運転される。以下、電解液及び運転条件について試験例を挙げて説明する。
[試験例1]
図1に示すレドックスフロー電池システムを構築し、正極電解液として、活物質にマンガンイオンを含有する電解液を用いて充放電を行い、この正極電解液の充電深度(SOC)と析出現象との関係を調べた。
正極電解液として、硫酸濃度が4Mの硫酸水溶液(H2SO4aq)に硫酸マンガン(2価)を溶解して、マンガンイオン(2価)の濃度が1Mの電解液を用意した。負極電解液として、硫酸濃度が1.75Mの硫酸水溶液(H2SO4aq)に硫酸バナジウム(3価)を溶解して、バナジウムイオン(3価)の濃度が1.7Mの電解液を用意した。また、各極の電極には、カーボンフェルト、隔膜には、陰イオン交換膜を用いた。
この試験では、電極の反応面積が9cm2である小型セルを作製し、上記各極の電解液をそれぞれ6ml(6cc)ずつ用意して、これらの電解液を用いて充放電を行った。特に、この試験では、充電と放電とを切り替えるときの電池電圧:切替電圧を上限充電電圧とし、表1に示すように切替電圧を変化させることで、充電終了時の正極電解液の充電深度を異ならせた。充電及び放電はいずれも、電流密度:70mA/cm2の定電流で行い、表1に示す切替電圧に達したら、充電から放電に切り替えた。充電深度は、通電した電気量(積算値:A×h(時間))が全て充電(1電子反応:Mn2+→Mn3++e-)に使用されたと想定して、以下のように算出した。また、充電深度の測定は、初期の充電時間を利用した。試験例1及び後述する試験例のいずれも、充電効率がほぼ100%であり、通電した電気量が全て充電に使用されたと想定しても誤差は小さいと考えられる。
充電電気量(A・秒)=充電時間(t)×充電電流(I)
活物質電気量=モル数×ファラデー定数=体積×濃度×96,485(A・秒/モル)
理論充電時間=活物質電気量/充電電流(I)
充電深度=充電電気量/理論充電電気量
=(充電時間×電流)/(理論充電時間×電流)
=充電時間/理論充電時間
上述の条件で3回の充放電サイクルを繰り返した後、析出物の有無を調べた。その結果を表1に示す。
Figure 2011210696
表1に示すように、充電深度を90%超とすると、3回の充放電サイクルでも析出物が生じ、この析出物により、上記サイクル以降、電池として機能させることが困難であった。析出物を調べたところ、MnO2であった。
これに対して、充電深度を90%以下とすると、2価のマンガンイオンと3価のマンガンイオンとの酸化還元反応が可逆に生じて、電池として十分に機能することができた。また、充電深度が90%近くでは若干の析出物が認められたが、問題なく使用することができ、70%以下では実質的に析出物が観察されなかった。更に、カーボンフェルト製の電極を利用することで、酸素ガスの発生は、実質的に無視できる程度であった。
このように正極活物質としてマンガンイオンを含有する正極電解液を用いたレドックスフロー電池であっても、正極電解液の充電深度を90%以下として運転することで、MnO2といった析出物の析出を効果的に抑制し、良好に充放電を行えることが分かる。特に、この試験例に示すバナジウム-マンガン系レドックスフロー電池では、約1.8Vといった高い起電力を有することができる。
上記硫酸バナジウム(3価)に代えて、硫酸クロム(3価)、硫酸亜鉛(2価)、硫酸スズ(4価)を用いた場合も、充電終了時の正極電解液の充電深度が90%以下となるように運転を行うことで、析出物の析出を抑制することができる。
[試験例2]
試験例1と同様にレドックスフロー電池システムを構築して充放電を行い、電池特性(電流効率、電圧効率、エネルギー効率)を調べた。
この試験では、負極活物質を試験例1と異なる金属イオンとした。具体的には、負極電解液は、硫酸濃度が3.6Mの硫酸水溶液(H2SO4aq)に硫酸チタン(4価)を溶解して、チタンイオン(4価)の濃度が1Mの電解液を用意した。正極電解液は、試験例1と同様にした(硫酸濃度:4M、硫酸マンガン(2価)使用、マンガンイオン(2価)の濃度:1M)。また、各極の電極には、カーボンフェルト、隔膜には、陰イオン交換膜、陽イオン交換膜をそれぞれ用いた。
試験例1と同様に、電極の反応面積が9cm2の小型セルを作製し、上記各極の電解液をそれぞれ6ml(6cc)ずつ用意して、これらの電解液を用い、試験例1と同様に電流密度:70mA/cm2の定電流で充放電を行った。この試験では、充電終了時の正極電解液の充電深度が90%以下となるように、図2に示すように切替電圧が1.60Vに達したところで充電を終了し、放電に切り替えた。
その結果、陰イオン交換膜及び陽イオン交換膜のいずれを用いた場合も、若干の析出物(MnO2)が観察されたものの、図2に示すように、試験例1と同様に2価のマンガンイオンと3価のマンガンイオンとの酸化還元反応が可逆に生じて、電池として問題なく機能することが確認できた。
また、陰イオン交換膜を用いた場合、陽イオン交換膜を用いた場合のそれぞれについて、上記充放電を行った場合の電流効率、電圧効率、エネルギー効率を調べた。電流効率は、放電電気量(C)/充電電気量(C)、電圧効率は、放電電圧(V)/充電電圧(V)、エネルギー効率は、電流効率×電圧効率で表わされる。これらの各効率は、通電した電気量の積算値(A×h(時間))、充電時の平均電圧及び放電時の平均電圧をそれぞれ測定して、これら測定値を利用して算出する。更に、試験例1と同様にして充電深度を求めた。
その結果、陰イオン交換膜を用いた場合、電流効率:97.8%、電圧効率:88.6%、エネルギー効率:86.7%、放電容量:12.9min(理論放電容量に対する割合:84%)、充電深度:86%(13.2min)であり、陽イオン交換膜を用いた場合、電流効率:98.2%、電圧効率:85.1%、エネルギー効率:83.5%、放電容量:12.9min(理論放電容量に対する割合:84%)、充電深度:90%(14min)であり、いずれの場合も優れた電池特性を有することが確認できた。
[試験例3]
硫酸(H2SO4)に対するマンガンイオン(2価)の溶解度を調べた。その結果を図3に示す。図3に示すように硫酸濃度の増加に従って、マンガンイオン(2価)の溶解度が減少し、硫酸濃度が5Mの場合、溶解度は0.3Mとなることが分かる。逆に、硫酸濃度が低い領域では、4Mという高い溶解度が得られることが分かる。この結果から、電解液中のマンガンイオン濃度を高めるためには、特に、実用上望まれる0.3M以上の濃度を得るためには、電解液の溶媒に硫酸水溶液を用いる場合、硫酸濃度を5M未満と低くすることが好ましいことが分かる。
[試験例4]
試験例1と同様にバナジウム-マンガン系レドックスフロー電池システムを構築して充放電を行い、析出状態を調べた。
この試験では、正極電解液として、硫酸マンガン(2価)を硫酸水溶液(H2SO4aq)に溶解したものであって、硫酸濃度と、マンガンイオン(2価)の濃度とを変化させた以下の3種類の正極電解液(I)〜(III)を用意した。また、負極電解液は、硫酸濃度が1.75Mの硫酸水溶液(H2SO4aq)に硫酸バナジウム(3価)を溶解して、バナジウムイオン(3価)の濃度が1.7Mの電解液を用意した。電解液以外の構成は、試験例1のレドックスフロー電池と同様の構成とした(隔膜:陰イオン交換膜、電極:カーボンフェルト、電池反応面積:9cm2、各電解液量:6ml)。
(I) 硫酸濃度:マンガンイオン(2価)濃度=1M:4M
(II) 硫酸濃度:マンガンイオン(2価)濃度=2M:3M
(III) 硫酸濃度:マンガンイオン(2価)濃度=4M:1.5M
充電及び放電のいずれも、電流密度:70mA/cm2の定電流で行い、図4に示すように電池電圧(切替電圧)が2.10Vに達したときに充電を終了し、放電に切り替える、という充放電を繰り返し行った。
その結果、上記(I)及び(II)の正極電解液を用いた場合、後述するように充電深度が90%以下となっており、若干の析出物(MnO2)が観察されたものの、問題なく良好に充放電を行えた。これに対し、上記(III)の正極電解液を用いた場合、充電深度が90%超(122%)となっており、数回のサイクルで多くのMnO2の析出が観察された。このように液組成が異なると、切替電圧を等しくしても、充電深度が異なることが分かる。従って、正極電解液の充電深度を90%超として長期に亘り運転する場合、MnO2の析出を抑制する対策が必要である。
この試験に用いたレドックスフロー電池に対して、試験例2と同様にして電池特性を調べたところ、正極電解液(I)を用いたレドックスフロー電池は、電流効率:84.2%、電圧効率:81.4%、エネルギー効率:68.6%、放電容量:18.2min(理論放電容量に対する割合:30%)、充電深度:44%(26.8min)であり、正極電解液(II)を用いたレドックスフロー電池は、電流効率:94.2%、電圧効率:87.6%、エネルギー効率:82.6%、放電容量:25.7min(理論放電容量に対する割合:56%)、充電深度:60%(27.4min)であり、正極電解液(III)を用いたレドックスフロー電池は、運転初期に測定したところ、電流効率:97.1%、電圧効率:89.4%、エネルギー効率:86.7%、放電容量:25.6min(理論放電容量に対する割合:111%)、充電深度:122%(28.1min)であった。正極電解液(I),(II)を用いた場合、優れた電池特性を有することが分かる。また、この結果から、硫酸濃度が高いほど、また、マンガンイオン(2価)の濃度が0.3M以上5M以下の範囲では当該濃度が低いほど、電池特性に優れる傾向にあると言える。
[試験例5]
試験例4と同様にバナジウム-マンガン系レドックスフロー電池システムを構築して充放電を行い、析出状態を調べた。
この試験では、正極電解液のマンガンイオン(2価)の濃度を1Mに固定し、硫酸濃度を2M,3M,4Mに変化させた3種類の正極電解液(順に電解液(I),(II),(III)と呼ぶ)を用意した以外の構成は、試験例4と同様にし(負極電解液;硫酸濃度:1.75M,バナジウムイオン(3価)濃度:1.7M,隔膜:陰イオン交換膜、電極:カーボンフェルト、電池反応面積:9cm2、各電解液量:6ml)、試験例4と同様の条件で充放電を繰り返し行った(切替電圧:2.1V、電流密度:70mA/cm2)。図5に、電解液(I)〜(III)を用いた場合の充放電のサイクル時間と電池電圧との関係を示す。
その結果、後述するように充電深度が90%以下となるように運転を行えた電解液(I),(II)を用いたレドックスフロー電池では、若干の析出物(MnO2)が観察されたものの、問題なく良好に充放電を行えた。一方、充電深度が90%超となった電解液(III)を用いたレドックスフロー電池では、3サイクル程度の運転は可能であったが、数回の運転で多量の析出物が認められ、運転の継続が困難であった。
この試験に用いたレドックスフロー電池に対して、試験例2と同様にして電池特性を調べたところ、電解液(I)を用いたレドックスフロー電池は、電流効率:86.1%、電圧効率:84.4%、エネルギー効率:72.6%、放電容量:7.3min(理論放電容量に対する割合:48%)、充電深度:63%(9.7min)であり、電解液(II)を用いたレドックスフロー電池は、電流効率:89.1%、電圧効率:87.3%、エネルギー効率:77.7%、放電容量:11.8min(理論放電容量に対する割合:77%)、充電深度:90%(13.7min)であり、優れた電池特性を有することが分かる。一方、電解液(III)を用いたレドックスフロー電池は、運転初期に測定したところ、電流効率:96.9%、電圧効率:88.5%、エネルギー効率:85.7%、放電容量:19.3min(理論放電容量に対する割合:126%)、充電深度:159%(24.3min)であった。
ここで、体積:6ml、マンガンイオン(2価)の濃度:1Mの電解液における1電子反応の理論放電容量(放電時間)は15.3分である。これに対して、この試験では、硫酸濃度が4Mである電解液(III)を用いた場合、驚くべきことに19.3分の放電容量が得られた。放電容量がこのように増加した理由は、不均化反応により生成されたMnO2(4価)が2電子反応によりマンガンイオン(2価)に還元されたためと考えられる。このことから、2電子反応(4価→2価)に伴う現象を利用することで、エネルギー密度が高められ、より大きな電池容量が得られると考えられる。
上述した実施形態は、本発明の要旨を逸脱することなく、適宜変更することが可能であり、上述した構成に限定されるものではない。例えば、正極電解液のマンガンイオンの濃度、正極電解液の溶媒の酸濃度、負極活物質の金属イオンの種類や濃度、各極電解液の溶媒の種類や濃度、電極の材質、隔膜の材質などを適宜変更することができる。
本発明レドックスフロー電池は、太陽光発電、風力発電などの新エネルギーの発電に対して、発電出力の変動の安定化、発電電力の余剰時の蓄電、負荷平準化などを目的とした大容量の蓄電池に好適に利用することができる。その他、本発明レドックスフロー電池は、一般的な発電所に併設されて、瞬低・停電対策や負荷平準化を目的とした大容量の蓄電池としても好適に利用することができる。
100 レドックスフロー電池 101 隔膜 102 正極セル 103 負極セル
104 正極電極 105 負極電極 106 正極電解液用のタンク
107 負極電解液用のタンク 108,109,110,111 導管 112,113 ポンプ

Claims (7)

  1. 正極電極と、負極電極と、これら両電極間に介在される隔膜とを具える電池セルに正極電解液及び負極電解液を供給して充放電を行うレドックスフロー電池であって、
    前記正極電解液は、マンガンイオンを含有し、
    前記負極電解液は、チタンイオン、バナジウムイオン、クロムイオン、亜鉛イオン、及びスズイオンから選択される少なくとも一種の金属イオンを含有し、
    前記正極電解液の充電深度を1電子反応で計算して90%以下となるように運転されることを特徴とするレドックスフロー電池。
  2. 前記マンガンイオンの濃度、及び前記負極電解液の各金属イオンの濃度がいずれも0.3M以上5M以下であることを特徴とする請求項1に記載のレドックスフロー電池。
  3. 前記両電解液は、硫酸アニオンを含有し、
    前記両電解液の硫酸濃度が5M未満であることを特徴とする請求項1又は2に記載のレドックスフロー電池。
  4. 前記正極電解液は、2価のマンガンイオン及び3価のマンガンイオンの少なくとも一種のマンガンイオンを含有し、
    前記負極電解液は、以下の(1)〜(5)のいずれか一つを満たすことを特徴とする請求項1〜3のいずれか1項に記載のレドックスフロー電池。
    (1) 3価のチタンイオン及び4価のチタンイオンの少なくとも一種のチタンイオンを含有する。
    (2) 2価のバナジウムイオン及び3価のバナジウムイオンの少なくとも一種のバナジウムイオンを含有する。
    (3) 2価のクロムイオン及び3価のクロムイオンの少なくとも一種のクロムイオンを含有する。
    (4) 2価の亜鉛イオンを含有する。
    (5) 2価のスズイオン及び4価のスズイオンの少なくとも一種のスズイオンを含有する。
  5. 前記正極電解液は、2価のマンガンイオン及び3価のマンガンイオンの少なくとも一種のマンガンイオンと、4価のマンガンとを含有し、
    前記負極電解液は、以下の(I)〜(V)のいずれか一つを満たすことを特徴とする請求項1〜4のいずれか1項に記載のレドックスフロー電池。
    (I) 2価のチタンイオン、3価のチタンイオン、及び4価のチタンイオンから選択される少なくとも一種のチタンイオンを含有する。
    (II) 2価のバナジウムイオン及び3価のバナジウムイオンの少なくとも一種のバナジウムイオンを含有する。
    (III) 2価のクロムイオン及び3価のクロムイオンの少なくとも一種のクロムイオンを含有する。
    (IV) 2価の亜鉛イオンを含有する。
    (V) 2価のスズイオン及び4価のスズイオンの少なくとも一種のスズイオンを含有する。
  6. 前記正極電極及び前記負極電極は、
    Ru,Ti,Ir,Mn,Pd,Au,及びPtから選択される少なくとも一種の金属と、Ru,Ti,Ir,Mn,Pd,Au,及びPtから選択される少なくとも一種の金属の酸化物とを含む複合材、
    前記複合材を含むカーボン複合物、
    前記複合材を含む寸法安定電極(DSE)、
    導電性ポリマ、
    グラファイト、
    ガラス質カーボン、
    導電性ダイヤモンド、
    導電性ダイヤモンドライクカーボン(DLC)、
    カーボンファイバからなる不織布、
    及びカーボンファイバからなる織布から選択される少なくとも一種の材料から構成されており、
    前記隔膜は、多孔質膜、膨潤性隔膜、陽イオン交換膜、及び陰イオン交換膜から選択される少なくとも一種の膜であることを特徴とする請求項1〜5のいずれか1項に記載のレドックスフロー電池。
  7. 前記両極電解液の溶媒は、H2SO4、K2SO4、Na2SO4、H3PO4、K2PO4、Na3PO4、K3PO4、H4P2O7、HNO3、KNO3、及びNaNO3から選択される少なくとも一種の水溶液であることを特徴とする請求項1〜6のいずれか1項に記載のレドックスフロー電池。
JP2010203447A 2010-03-12 2010-09-10 レドックスフロー電池 Pending JP2011210696A (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2010203447A JP2011210696A (ja) 2010-03-12 2010-09-10 レドックスフロー電池
US13/583,585 US9118064B2 (en) 2010-03-12 2011-03-08 Redox flow battery
AU2011225262A AU2011225262B2 (en) 2010-03-12 2011-03-08 Redox flow battery
EP11753375.2A EP2546914B1 (en) 2010-03-12 2011-03-08 Redox flow battery
PCT/JP2011/055418 WO2011111717A1 (ja) 2010-03-12 2011-03-08 レドックスフロー電池
ES11753375.2T ES2593705T3 (es) 2010-03-12 2011-03-08 Batería de flujo redox
KR20127026286A KR20130038234A (ko) 2010-03-12 2011-03-08 레독스 흐름 전지
CA 2792408 CA2792408A1 (en) 2010-03-12 2011-03-08 Redox flow battery
CN201180013668.4A CN102804472B (zh) 2010-03-12 2011-03-08 氧化还原液流电池
TW100108300A TWI489687B (zh) 2010-03-12 2011-03-11 氧化還原液流電池
ZA2012/06762A ZA201206762B (en) 2010-03-12 2012-09-10 Redox flow battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010056441 2010-03-12
JP2010056441 2010-03-12
JP2010203447A JP2011210696A (ja) 2010-03-12 2010-09-10 レドックスフロー電池

Publications (1)

Publication Number Publication Date
JP2011210696A true JP2011210696A (ja) 2011-10-20

Family

ID=44941514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010203447A Pending JP2011210696A (ja) 2010-03-12 2010-09-10 レドックスフロー電池

Country Status (1)

Country Link
JP (1) JP2011210696A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002755A1 (ja) 2012-06-29 2014-01-03 株式会社 日立製作所 大容量蓄電装置
WO2014147778A1 (ja) * 2013-03-21 2014-09-25 日新電機 株式会社 電力貯蔵電池
JP2017054631A (ja) * 2015-09-08 2017-03-16 昭和電工株式会社 レドックスフロー電池用電解液およびレドックスフロー電池
JP2018537838A (ja) * 2015-12-14 2018-12-20 インペリアル・イノベ−ションズ・リミテッド 再生燃料電池
WO2024056104A1 (zh) * 2022-09-15 2024-03-21 大连融科储能集团股份有限公司 一种钒铬电解液、其制备方法及由其构成的液流电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS579073A (en) * 1980-06-17 1982-01-18 Agency Of Ind Science & Technol Bedox battery
JPH0279374A (ja) * 1988-09-14 1990-03-19 Agency Of Ind Science & Technol 教材用レドックス電地
JPH08138718A (ja) * 1994-11-08 1996-05-31 Sumitomo Electric Ind Ltd レドックスフロー電池の運転方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS579073A (en) * 1980-06-17 1982-01-18 Agency Of Ind Science & Technol Bedox battery
JPH0279374A (ja) * 1988-09-14 1990-03-19 Agency Of Ind Science & Technol 教材用レドックス電地
JPH08138718A (ja) * 1994-11-08 1996-05-31 Sumitomo Electric Ind Ltd レドックスフロー電池の運転方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014002755A1 (ja) 2012-06-29 2014-01-03 株式会社 日立製作所 大容量蓄電装置
WO2014147778A1 (ja) * 2013-03-21 2014-09-25 日新電機 株式会社 電力貯蔵電池
JP6065351B2 (ja) * 2013-03-21 2017-01-25 日新電機株式会社 電力貯蔵電池
US9774054B2 (en) 2013-03-21 2017-09-26 Nissin Electric Co., Ltd. Electricity storage battery
JP2017054631A (ja) * 2015-09-08 2017-03-16 昭和電工株式会社 レドックスフロー電池用電解液およびレドックスフロー電池
JP2018537838A (ja) * 2015-12-14 2018-12-20 インペリアル・イノベ−ションズ・リミテッド 再生燃料電池
WO2024056104A1 (zh) * 2022-09-15 2024-03-21 大连融科储能集团股份有限公司 一种钒铬电解液、其制备方法及由其构成的液流电池

Similar Documents

Publication Publication Date Title
JP4835792B2 (ja) レドックスフロー電池
WO2011111717A1 (ja) レドックスフロー電池
KR101178327B1 (ko) 레독스 플로우 전지
JP5712688B2 (ja) レドックスフロー電池
JP6365883B2 (ja) レドックスフロー電池用電解液
JP6646896B2 (ja) レドックスフロー電池
JP5713186B2 (ja) レドックスフロー電池
WO2015019973A1 (ja) レドックスフロー電池
JP2011233372A (ja) レドックスフロー電池
JP5769071B2 (ja) レドックスフロー電池
JP2011210696A (ja) レドックスフロー電池
JP4863172B2 (ja) レドックスフロー電池
JP5489008B2 (ja) レドックスフロー電池
JP2011233373A (ja) レドックスフロー電池
JP6719728B2 (ja) 電解液、電解槽用電解液、及び電解槽システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140515