WO2013002136A1 - プロピレン系重合体組成物及びその用途 - Google Patents

プロピレン系重合体組成物及びその用途 Download PDF

Info

Publication number
WO2013002136A1
WO2013002136A1 PCT/JP2012/065975 JP2012065975W WO2013002136A1 WO 2013002136 A1 WO2013002136 A1 WO 2013002136A1 JP 2012065975 W JP2012065975 W JP 2012065975W WO 2013002136 A1 WO2013002136 A1 WO 2013002136A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
mass
propylene
polymer composition
based polymer
Prior art date
Application number
PCT/JP2012/065975
Other languages
English (en)
French (fr)
Inventor
浦川 奈央美
中野 誠
泰広 北原
亮祐 油木
明祐 松田
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to EP12804208.2A priority Critical patent/EP2727960A1/en
Publication of WO2013002136A1 publication Critical patent/WO2013002136A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • C08L23/142Copolymers of propene at least partially crystalline copolymers of propene with other olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L35/06Copolymers with vinyl aromatic monomers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0853Vinylacetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers

Definitions

  • the present invention relates to a propylene-based polymer composition, a molded product, a sheet, a film, a laminate, and artificial leather that are excellent in wear resistance and suitable for applications such as artificial leather sheets.
  • Olefin-based synthetic leather (olefin-based leather) is used in various applications such as stationery, various cases, packaging, furniture, construction, and automobile interiors.
  • soft olefin resins used in such olefin synthetic leather include olefin thermoplastic elastomers, styrene thermoplastic elastomers, ethylene-vinyl acetate copolymers, and ethylene-methacrylic acid copolymers. It has been.
  • the olefin-based synthetic leather obtained using such a soft olefin-based resin has a problem that the wear resistance is not sufficient.
  • Patent Document 1 As a method for improving wear resistance, for example, a method (Patent Document 1) has been proposed in which a laminate is provided with a fabric layer on the skin layer of a soft olefin resin layer.
  • Patent Document 1 a method for improving wear resistance
  • this method has a large number of steps and may increase the cost.
  • a flexible olefin resin is inferior in abrasion resistance, so it is difficult to obtain a resin composition having abrasion resistance.
  • the object of the present invention is to obtain a propylene-based polymer composition having excellent wear resistance while being an olefin-based soft resin, and to obtain various molded articles such as artificial leather using the same.
  • the propylene-based polymer composition of the present invention is a propylene-based polymer composition containing the following polymers.
  • B4) Intrinsic viscosity [ ⁇ ] (dl / g) measured in decalin at 135 ° C. and MFR (g / 10 min) measured at 230 ° C. and a load of 2.16 kg satisfy the following relational expression. 1.50 ⁇ MFR ( ⁇ 0.20) ⁇ [ ⁇ ] ⁇ 2.65
  • polymers (C) to (F) In addition to (A) and (B), it contains at least one of the following polymers (C) to (F), and the polymers (G) and / or (H) are defined below. And a total of 1 to 94 parts by mass of the polymers (C) to (H) [provided that the total of the polymers (A) to (H) is 100 parts by mass. To do. ].
  • the propylene-based polymer composition of the present invention is excellent in abrasion resistance while being an olefin-based soft resin. Therefore, the propylene-based polymer composition of the present invention can be used for various molded products.
  • the propylene polymer (A) which is one of the polymer components contained in the propylene polymer composition of the present invention has a syndiotactic pentad fraction (rrrr fraction) measured by 13 C ⁇ NMR. 85% or more, preferably 90% or more, more preferably 93% or more, still more preferably 94% or more, and 90 to 100 mol%, preferably 92 to 100 mol%, more preferably 90 to 100 mol% of structural units derived from propylene.
  • the propylene-based polymer (A) having an rrrr fraction in the above range is excellent in moldability, heat resistance and transparency, and has better properties as crystalline polypropylene. Moreover, since crystallization suppression and fine spherulization occur by using the propylene polymer (A), the resulting propylene polymer composition of the present invention has high transparency and surface gloss. .
  • a propylene polymer in the above range is used as the propylene polymer (A) according to the present invention
  • a propylene polymer composition having particularly excellent heat resistance can be obtained.
  • the syndiotactic pentad fraction (rrrr fraction) of the propylene polymer (A) according to the present invention is measured as follows.
  • the rrrr fraction is expressed in terms of Prrrr (absorption intensity derived from the third unit methyl group at a site where 5 units of propylene units are continuously syndiotactically bonded) and Pw (all methyl groups of propylene units) in the 13 C-NMR spectrum. (Absorption intensity derived from the above) is determined by the following formula (1).
  • rrrr fraction (%) 100 ⁇ Prrrr / Pw (1)
  • the NMR measurement is performed as follows, for example. That is, 0.35 g of a sample is dissolved by heating in 2.0 ml of hexachlorobutadiene. After this solution is filtered through a glass filter (G2), 0.5 ml of deuterated benzene is added and charged into an NMR tube having an inner diameter of 10 mm. Then, 13 C ⁇ NMR measurement is performed at 120 ° C. using a GX-500 type NMR measurement apparatus manufactured by JEOL. The number of integration is 8,000 times or more.
  • Examples of the propylene polymer (A) according to the present invention include a propylene homopolymer or a copolymer of propylene and an ⁇ -olefin having 2 to 20 carbon atoms.
  • Examples of the ⁇ -olefin include ethylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene and 1-hexadecene. , 1-octadecene, 1-eicosene and the like, and ethylene or ⁇ -olefin having 4 to 10 carbon atoms is preferable.
  • the ⁇ -olefin copolymerized with propylene may be one type or two or more types.
  • the propylene polymer (A) according to the present invention preferably has a heat of fusion ( ⁇ H C ) obtained by differential scanning calorimetry (DSC) measurement of 20 J / g or more, more preferably 40 J / g or more, and still more preferably. It is a propylene polymer of 50 J / g or more.
  • the upper limit of the heat of fusion ( ⁇ H C ) is not particularly limited, but is usually 120 J / g or less.
  • the propylene polymer (A) according to the present invention preferably has a melting point (Tm) obtained by differential scanning calorimetry (DSC) measurement of 145 ° C. or higher, more preferably 147 ° C. or higher, more preferably 150 ° C. or higher. Particularly preferably, it is 155 ° C. or higher.
  • Tm melting point
  • the upper limit of Tm is not particularly limited, but is usually 170 ° C. or lower, for example.
  • the propylene polymer (A) having a melting point (Tm) in the above range is excellent in moldability, heat resistance and mechanical properties.
  • the propylene-based polymer (A) according to the present invention preferably has an intrinsic viscosity [ ⁇ ] measured in decalin at 135 ° C. of 0.5 to 10 dl / g, more preferably 1.0 to 6 dl / g, Desirably, it is preferably in the range of 1.0 to 4 dl / g.
  • the intrinsic viscosity is in such a range, it exhibits good fluidity and is easily blended with other components, and the resulting propylene-based polymer. There is a tendency that a molded product having excellent mechanical strength is obtained from the composition.
  • the MFR of the propylene polymer (A) according to the present invention is not particularly limited as long as the propylene polymer composition obtained by blending the propylene polymer (A) can be molded.
  • the MFR measured at 0 ° C. and a load of 2.16 kg is in the range of 0.001 to 50 g / 10 minutes, preferably 0.1 to 30 g / 10 minutes, more preferably 0.1 to 10 g / 10 minutes.
  • the propylene polymer (A) according to the present invention can be obtained by various known production methods, for example, the production methods described in International Publication No. WO2006 / 123759.
  • the propylene-based copolymer (B) which is one of the polymer components contained in the propylene-based polymer composition of the present invention, has a propylene-derived constitutional unit in an amount of 40 to 89 mol%, preferably 50 to 89 mol%, More preferably, the structural unit derived from an ⁇ -olefin having 2 to 20 carbon atoms (excluding propylene) is from 55 to 89 mol%, preferably from 11 to 60 mol%, preferably from 11 to 50 mol%, more preferably from 11 to 45%.
  • the propylene-based polymer (B) satisfying the formula (2), preferably the formula (3) of the above (b4) has a small MFR with the same intrinsic viscosity [ ⁇ ] as compared with the conventional isotactic propylene-based copolymer. Show.
  • the propylene polymer satisfying the above formula (2) of (b4) is a polymer having stereoregularity different from that of the propylene polymer having an isotactic structure. It is considered to have a tic structure. In this case, the resulting propylene polymer composition is excellent in wear resistance.
  • the propylene copolymer (B) includes a copolymer of propylene and an ⁇ -olefin having 2 to 20 carbon atoms.
  • the ⁇ -olefin include ethylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene and 1-hexadecene. , 1-octadecene, 1-eicosene and the like, and ethylene or ⁇ -olefin having 4 to 10 carbon atoms is preferable.
  • the ⁇ -olefin copolymerized with propylene may be one type or two or more types.
  • the propylene-based copolymer (B) according to the present invention preferably has a heat of fusion ( ⁇ H B ) obtained by DSC measurement of 10 J / g or less, more preferably 5 J / g or less, and even more preferably 1 J / g or less.
  • ⁇ H B heat of fusion
  • the propylene copolymer (B) according to the present invention is preferably a polymer having a melting point obtained by DSC measurement of less than 90 ° C., more preferably 80 ° C. or less, and still more preferably no melting point.
  • the absence of melting point means that the heat of fusion ⁇ H due to the melting peak is 1 J / g or less.
  • the MFR of the propylene-based copolymer (B) according to the present invention satisfies the above (b4) and the propylene-based polymer composition obtained by mixing the propylene-based copolymer (B) can be molded.
  • the MFR measured under 230.degree. C. and 2.16 kg load is usually 0.01 to 100 g / 10 min, preferably 0.01 to 50 g / 10 min, more preferably 0.1 to 30 g / min. It is in the range of 10 minutes, particularly preferably 0.1 to 10 g / 10 minutes.
  • the intrinsic viscosity [ ⁇ ] of the propylene-based copolymer (B) according to the present invention is not particularly limited as long as the above (b4) is satisfied, but the intrinsic viscosity [ ⁇ ] measured in 135 ° C. decalin is usually 0.00. It is desirable to be in the range of 01 to 10 dl / g, preferably 0.05 to 10 dl / g, more preferably 0.1 to 5 dl / g. When the propylene polymer (B) having an intrinsic viscosity [ ⁇ ] in the above range is used, the resulting propylene polymer composition has excellent fluidity during molding and excellent mechanical properties of the resulting molded product. .
  • the propylene polymer (B) according to the present invention usually has an Mw / Mn (polystyrene conversion) measured by GPC in the range of 1.2 to 3.5, more preferably 1.5 to 3.0.
  • the propylene-based copolymer (B) according to the present invention has a specific range of syndiotactic triad fractions (rr fractions) measured by 13 CNMR, as shown below. Also good.
  • the rr fraction is 40% or more, more preferably 45% or more.
  • mr-derived absorption absorption derived from at least both syndiotactic and isotactic bonds out of 3 propylene units, and Pmr (absorption intensity)
  • Rr-derived absorption used to determine the Prr (absorption intensity), absorption derived from the second unit methyl group at the site where three propylene units are continuously syndiotactically bonded
  • mm-derived absorption When the absorption derived from the methyl group of the second unit at the site where 3 units of propylene units are isotactically bonded, used for determination of Pmm (absorption intensity)) and the absorption derived from the comonomer overlap. Is calculated without subtracting the contribution of the comonomer component.
  • the rr fraction is the value of the “Syndiotacticity parameter (SP value)” described in [0018] to [0031] of Japanese Patent Laid-Open No. 2002-097325. ]
  • SP value “Syndiotacticity parameter”
  • the rr fraction is obtained by calculating from the integrated intensity of the signals of the first region, the second region, and the third region by the above formula (4).
  • NMR measurement is performed, for example, as follows. That is, 0.35 g of a sample is dissolved by heating in 2.0 ml of hexachlorobutadiene. After this solution is filtered through a glass filter (G2), 0.5 ml of deuterated benzene is added and charged into an NMR tube having an inner diameter of 10 mm. Then, 13 C-NMR measurement is performed at 120 ° C. using a JEOL GX-400 type NMR measurement apparatus. The number of integration is 8,000 times or more.
  • the rr fraction is an index indicating that the component (B) has a higher proportion of so-called syndiotactic structure, and is an index having a meaning similar to satisfying (b4) described above.
  • the propylene-based polymer (B) according to the present invention has, for example, 40 to 89 mol%, preferably 50 to 89 mol%, more preferably 55 to 80 mol% of propylene-derived structural units and ethylene-derived structural units. 1 to 35 mol%, preferably 1 to 30 mol%, more preferably 5 to 20 mol%, and a structural unit derived from an ⁇ -olefin having 4 to 20 carbon atoms, for example, 10 to 45 mol%, preferably 10 to 40 mol%.
  • Desirable is a propylene / ethylene / ⁇ -olefin copolymer (B1) having 4 to 20 carbon atoms contained in a range of 15 mol%, more preferably 15 to 40 mol% (provided that the structural unit derived from propylene, the structural unit derived from ethylene) And the total of structural units derived from ⁇ -olefins having 4 to 20 carbon atoms is 100 mol%).
  • the total amount of the structural unit derived from propylene, the structural unit derived from ethylene, and the structural unit derived from ⁇ -olefin having 4 to 20 carbon atoms in the content of the structural unit derived from ⁇ -olefin having 4 to 20 carbon atoms.
  • the ratio (mol%) to (Pb2-1) preferably satisfies the relationship Pb2-2> Pb2-1, and more preferably (Pb2-2) ⁇ (Pb2-1) ⁇ 1 mol%. .
  • propylene polymer (B) examples include, in addition to the propylene / ethylene / ⁇ -olefin copolymer having 4 to 20 carbon atoms (B1), propylene-derived structural units, for example, 50 to 89 mol%. , Preferably 55 to 89 mol%, more preferably 65 to 85 mol%, and propylene-containing structural units derived from ethylene, for example, 11 to 50 mol%, preferably 11 to 45 mol%, more preferably 15 to 35 mol%.
  • An ethylene copolymer (B2) can also be mentioned (provided that the total of propylene-derived structural units and ethylene-derived structural units is 100 mol%).
  • the propylene / ethylene / ⁇ -olefin copolymer (B1) is preferred.
  • the propylene polymer (B) according to the present invention can be produced by various known production methods. For example, it can be obtained by copolymerizing propylene and ⁇ -olefin using a catalyst capable of producing syndiotactic propylene. More specifically, for example, it can be produced by the method described in International Publication No. 2008-059895, but is not limited thereto.
  • the olefinic thermoplastic elastomer (C) which is one of the polymer components that may be included in the propylene-based polymer composition of the present invention, is a non-crosslinked or partially crosslinked olefinic thermoplastic elastomer.
  • it contains a crystalline polyolefin (C2-1) such as polypropylene and an ⁇ -olefin copolymer rubber (C2-2).
  • the MFR of the olefinic thermoplastic elastomer (C) according to the present invention is not particularly limited as long as the propylene polymer composition obtained by blending the olefinic thermoplastic elastomer (C) can be molded, but usually
  • the MFR measured at 230 ° C. and a load of 10 kg is in the range of 0.001 to 100 g / 10 minutes, preferably 0.01 to 80 g / 10 minutes.
  • the olefinic thermoplastic elastomer (C) includes a softener (C2- 3) and / or an inorganic filler (C2-4) can be included.
  • a softener usually used for rubber can be used, and specifically, petroleum-based substances such as process oil, lubricating oil, paraffin, liquid paraffin, petroleum asphalt, petroleum jelly, etc .; Coal tars such as coal tar and coal tar pitch; fatty oils such as castor oil, linseed oil, rapeseed oil, soybean oil and coconut oil; waxes such as tall oil, beeswax, carnauba wax and lanolin; ricinoleic acid and palmitic acid , Stearic acid, fatty acid such as barium stearate, calcium stearate or metal salt thereof; synthetic polymer such as petroleum resin, coumarone indene resin, atactic polypropylene; ester plastic such as dioctyl phthalate, dioctyl adipate, dioctyl sebacate Agent; other microcrystalline wax, sub (f Kuchisu), liquid polybutadiene, modified liquid polybuta
  • the softening agent (C2-3) is usually 200 parts by mass or less, preferably 200 parts by mass or less, based on 100 parts by mass of the total amount of the crystalline polyolefin resin (C2-1) and the ⁇ -olefin copolymer rubber (C2-2). It is used at a ratio of 2 to 100 parts by mass.
  • the inorganic filler (C2-4) include calcium carbonate, calcium silicate, clay, carion, talc, silica, diatomaceous earth, mica powder, asbestos, alumina, barium sulfate, aluminum sulfate, calcium sulfate, Examples thereof include basic magnesium carbonate, molybdenum disulfide, graphite, glass fiber, glass sphere, and shirasu balloon.
  • the inorganic filler (C2-4) is usually 100 parts by mass or less, preferably 100 parts by mass or less based on 100 parts by mass of the total amount of the crystalline polyolefin (C2-1) and the ⁇ -olefin copolymer rubber (C2-2). Is used in a proportion of 2 to 50 parts by mass.
  • Crystall polyolefin (C2-1) capable of constituting the olefinic thermoplastic elastomer (C) according to the present invention is obtained by polymerizing one or more ⁇ -olefins by either the high pressure method or the low pressure method.
  • a crystalline polymer Such crystalline polyolefins include, for example, isotactic and syndiotactic ⁇ -olefin polymers, and representative polymers of these are commercially available.
  • ⁇ -olefin constituting the crystalline polyolefin (C2-1) include ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 2-methyl-1-propene and 3-methyl- Examples thereof include 1-pentene, 4-methyl-1-pentene, 5-methyl-1-hexene, 1-octene and 1-decene.
  • the crystalline polyolefin may be a homopolymer of the above ⁇ -olefin or a copolymer with two or more ⁇ -olefins.
  • an isotactic polypropylene having a propylene content of 70 mol% or more, preferably a propylene content of 80 mol% or more is suitably used.
  • the crystalline polyolefin (C2-1) may be a random copolymer or a block copolymer.
  • the MFR (JIS K 7210, 2.16 kg load, 230 ° C.) of the crystalline polyolefin (C2-1) is usually in the range of 0.01 to 100 g / 10 minutes, particularly 0.05 to 50 g / 10 minutes. preferable.
  • the crystalline polyolefin (C2-1) preferably has a melting point (Tm) determined from an endothermic curve of DSC of 120 to 165 ° C, more preferably 130 to 160 ° C.
  • the crystalline polyolefin (C2-1) is usually 10 to 60 parts by mass, preferably 100 to 100 parts by mass of the total amount of the crystalline polyolefin (C2-1) and the ⁇ -olefin copolymer rubber (C2-2). Is used in a proportion of 20 to 55 parts by mass.
  • the ⁇ -olefin copolymer rubber (C2-2) that can constitute the olefinic thermoplastic elastomer (C) according to the present invention is an ⁇ -olefin having 2 to 20 carbon atoms, preferably 2 to 12 carbon atoms. And a rubber obtained by copolymerizing a non-conjugated polyene, for example, a non-conjugated diene, if necessary.
  • ⁇ -olefin examples include ethylene, propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-decene, Undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-nonadecene, 1-eicocene, 9-methyl-1-decene, 11-methyl-1-dodecene, Examples thereof include 12-ethyl-1-tetradecene.
  • the above ⁇ -olefin may be used singly or as a mixture of two or more.
  • the molar ratio of 4-methyl-1-pentene to other ⁇ -olefin is preferably in the range of 10/90 to 95/5.
  • the ⁇ -olefin copolymer rubber (C2-2) is, for example, a copolymer containing a structural unit derived from ethylene and a structural unit derived from an ⁇ -olefin having 3 or more carbon atoms, and is derived from ethylene.
  • Examples include a copolymer having an ethylene / ⁇ -olefin having 3 or more carbon atoms (molar ratio) of 40/60 to 95/5, which is the ratio of the structural unit to the ⁇ -olefin-derived structural unit having 3 or more carbon atoms. .
  • non-conjugated polyene examples include dicyclopentadiene, 1,4-hexadiene, cyclooctadiene, methylene norbornene, ethylidene norbornene, 4-methyl-1,4-hexadiene, and 5-methyl-1,4-hexadiene.
  • 5-ethylidene-2-norbornene 5-vinyl-2-norbornene, dicyclopentadiene, 4,8-dimethyl-1,4,8-decatriene (DMDT), 4-ethylidene-8-methyl-1, 7-nonadiene (EMND) is preferred.
  • DMDT 4,8-dimethyl-1,4,8-decatriene
  • EMND 4-ethylidene-8-methyl-1, 7-nonadiene
  • the ⁇ -olefin copolymer rubber (C2-2) may be used alone or as a mixture of two or more when it contains a non-conjugated polyene as described above, for example, a non-conjugated diene. Also good. Furthermore, in addition to the non-conjugated polyene as described above, other copolymerizable monomers may be used as long as the object of the present invention is not impaired.
  • the content of the structural unit derived from the non-conjugated polyene in the copolymer is preferably 0.00.
  • the content of the structural unit derived from the non-conjugated polyene in the copolymer is preferably 0.00.
  • the total amount of units is 100 mol%).
  • the ⁇ -olefin copolymer rubber (C2-2) is preferably a copolymer of ⁇ -olefin and non-conjugated polyene.
  • an ethylene / ⁇ -olefin / non-conjugated polyene copolymer having 3 or more carbon atoms which is a ratio of ethylene to an ⁇ -olefin having 3 or more carbon atoms / an ⁇ -olefin having 3 or more carbon atoms (molar ratio).
  • the ⁇ -olefin copolymer rubber (C2-2) usually has an intrinsic viscosity [ ⁇ ] measured in a decalin solvent at 135 ° C. of 1.0 to 10.0 dl / g, preferably 1.5 to 7 dl. / G. Further, although there is no particular limitation, the melting point (Tm) obtained from the DSC endothermic curve of the ⁇ -olefin copolymer rubber (C2-2) is preferably absent or less than 120 ° C.
  • the ⁇ -olefin copolymer rubber (C2-2) is 90 to 40 masses in 100 parts by mass of the total amount of the crystalline polyolefin (C2-1) and the ⁇ -olefin copolymer rubber (C2-2). Parts, preferably 80 to 45 parts by weight.
  • the ⁇ -olefin copolymer rubber (C2-2) is obtained by copolymerizing an ⁇ -olefin having 2 to 20 carbon atoms and, if necessary, a non-conjugated polyene in the presence of an olefin polymerization catalyst. Can be obtained.
  • the olefinic thermoplastic elastomer (C) includes, for example, a crystalline polyolefin (C2-1), an ⁇ -olefinic copolymer rubber (C2-2), and a softening agent blended as necessary.
  • a mixture with (C2-3) and / or inorganic filler (C2-4) is obtained by dynamically heat-treating and partially cross-linking in the presence of an organic peroxide as described below.
  • organic peroxide examples include dicumyl peroxide, di-tert-butyl peroxide, 2,5-dimethyl-2,5-di- (tert-butylperoxy) hexane, 2,5- Dimethyl-2,5-di- (tert-butylperoxy) hexyne-3, 1,3-bis (tert-butylperoxyisopropyl) benzene, 1,1-bis (tert-butylperoxy) -3,3 , 5-trimethylcyclohexane, n-butyl-4,4-bis (tert-butylperoxy) valerate, benzoyl peroxide, p-chlorobenzoyl peroxide, 2,4-dichlorobenzoyl peroxide, tert-butylperoxybenzoate , Tert-butylperoxyisoprop
  • Such an organic peroxide is 0.02 to 3 based on 100 parts by mass of the total amount of the object to be treated, that is, the total amount of the crystalline polyolefin (C2-1) and the ⁇ -olefin copolymer rubber (C2-2). It is used in an amount so as to be part by mass, preferably 0.05 to 1 part by mass. If the blending amount is within the above range, the resulting thermoplastic elastomer (C) is appropriately cross-linked, and thus has excellent heat resistance, moldability, etc., and in some cases, tensile properties, elastic recovery, rebound resilience, etc. Also excellent.
  • Peroxy crosslinking aids such as sulfur, p-quinonedioxime, p, p'-dibenzoylquinonedioxime, N-methyl-N, N'-m-phenylenedimaleimide, etc.
  • polyfunctional methacrylate monomers such as divinylbenzene, triallyl cyanurate, ethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, trimethylolpropane trimethacrylate, acrylic methacrylate, and polyfunctional vinyl monomers such as vinyl butyrate or vinyl stearate. You may mix
  • a uniform and mild crosslinking reaction can be expected by using a compound such as the above-mentioned crosslinking aid.
  • a crosslinking aid or a compound such as a polyfunctional vinyl monomer is usually in an amount of 2 parts by mass or less, more preferably 0.3 to 1 part by mass with respect to 100 parts by mass of the whole object to be treated. Used in
  • tertiary amines such as triethylamine, tributylamine, 2,4,6-tri (dimethylamino) phenol, aluminum, cobalt, vanadium, copper, calcium, zirconium, manganese
  • Decomposition accelerators such as naphthenates such as magnesium, lead, and mercury may also be used.
  • the dynamic heat treatment is preferably performed in a non-open type apparatus, and is preferably performed in an inert gas atmosphere such as nitrogen or carbon dioxide.
  • the heat treatment temperature is preferably in the range of the melting point of the crystalline polyolefin (C2-1) to 300 ° C., more preferably 150 to 250 ° C., still more preferably 170 to 225 ° C.
  • the kneading time is usually 1 to 20 minutes, preferably 1 to 10 minutes.
  • the shear force applied is, 10 ⁇ 100,000sec -1 as the shear rate is preferably 100 ⁇ 50,000sec -1.
  • a mixing roll an intensive mixer (for example, a Banbury mixer, a kneader), a single-screw or twin-screw extruder can be used, and a non-open type apparatus is preferable.
  • an intensive mixer for example, a Banbury mixer, a kneader
  • a single-screw or twin-screw extruder can be used, and a non-open type apparatus is preferable.
  • the olefinic thermoplastic elastomer (C) containing the crystalline polyolefin (C2-1) and the ⁇ -olefin copolymer rubber (C2-2) or partially crosslinked is obtained. can get.
  • the partially cross-linked olefinic thermoplastic elastomer (C) means that the gel content measured by the following method is 20% by weight or more, preferably 20 to 99.5% by weight, particularly preferably 45 to The case where it exists in the range of 98 weight%.
  • the gel content was measured by weighing 100 mg of the olefinic thermoplastic elastomer (C) and cutting it into 0.5 mm ⁇ 0.5 mm ⁇ 0.5 mm strips in 30 ml of cyclohexane in a sealed container. Then, after dipping at 23 ° C. for 48 hours, the sample is taken out on a filter paper and dried at room temperature for 72 hours or more until a constant weight is obtained.
  • the weight of the ⁇ -olefin copolymer rubber (C2-2) in the sample before being immersed in cyclohexane is defined as “corrected initial weight [x]”.
  • the olefinic thermoplastic elastomer (C) according to the present invention may have, for example, a melting point (Tm) determined from an endothermic curve of DSC in the range of 120 to 165 ° C, preferably 130 to 160 ° C.
  • Tm melting point
  • the styrene elastomer (D) which is one of the polymer components that may be included in the propylene polymer composition of the present invention, is not particularly limited as long as it is an elastomer containing styrene as the polymer component.
  • a styrene / diene thermoplastic elastomer which is a copolymer of a system component and a diene component is preferred. Of these, block copolymer elastomers and random copolymer elastomers are particularly preferred.
  • styrene component examples include styrene, ⁇ -methyl styrene, p-methyl styrene, vinyl xylene, vinyl naphthalene, and mixtures thereof.
  • diene component examples include butadiene, isoprene, pentadiene, isobutylene, and the like. A mixture etc. can be illustrated.
  • styrene elastomer (D) As a representative example of the styrene elastomer (D) according to the present invention, a hydrogenated diene polymer comprising a polybutadiene block segment and a styrene compound (including styrene, the same applies hereinafter) / butadiene copolymer block segment; Hydrogenated diene polymer comprising a polyisoprene block segment and a styrene compound / isoprene copolymer block segment; comprising a polymer block mainly comprising a styrene compound and a polymer block mainly comprising a conjugated diene compound.
  • styrene elastomer a hydrogenated diene polymer comprising a polybutadiene block segment and a styrene compound (including styrene, the same applies hereinafter) / butadiene copolymer block segment
  • the content of the segment derived from the styrenic component in the styrenic thermoplastic elastomer (D) according to the present invention is not particularly limited, but is particularly flexible if it is in the range of 5 to 40% by weight of the total amount of the elastomer (D). And rubber elasticity is preferred.
  • the styrene elastomer (D) according to the present invention can be used alone or in combination of two or more.
  • a commercially available styrene elastomer (D) can be used.
  • the MFR of the styrene-based elastomer (D) is not particularly limited as long as the propylene-based polymer composition obtained by blending the styrene-based elastomer (D) can be molded, but is usually JIS K-7210, 230 ° C.
  • the MFR measured under a load of 2.16 kg is 0.01 to 100 g / 10 min, preferably 0.01 to 50 g / 10 min, more preferably 0.1 to 30 g / 10 min, particularly preferably 0.1 to It is in the range of 10 g / 10 minutes.
  • the propylene / ethylene / C4-C20 ⁇ -olefin copolymer (E) which is one of the polymer components that may be contained in the propylene-based polymer composition of the present invention, contains propylene-derived structural units.
  • the MFR of the ⁇ -olefin copolymer (E) according to the present invention is not particularly limited as long as the propylene polymer composition obtained by mixing the ⁇ -olefin copolymer (E) can be molded.
  • the MFR measured at 230 ° C. under a load of 2.16 kg is 0.01 to 100 g / 10 minutes, preferably 0.01 to 50 g / 10 minutes, more preferably 0.1 to 30 g / 10 minutes, particularly preferably. Is in the range of 0.1 to 10 g / 10 min.
  • the ⁇ -olefin copolymer (E) according to the present invention preferably has a molecular weight distribution (Mw / Mn) of 1 to 3 as measured by gel permeation chromatography (GPC).
  • Mw / Mn molecular weight distribution
  • the ⁇ -olefin copolymer (E) according to the present invention preferably satisfies at least one of the following (o) and (p), more preferably both.
  • (O) Shore A hardness is 30 to 80, preferably 35 to 60.
  • (P) The degree of crystallinity measured by X-ray diffraction is 20% or less, preferably 10% or less.
  • the ⁇ -olefin copolymer (E) according to the present invention preferably has a melting point Tm measured by DSC of 50 ° C. or lower, or preferably has no melting point, and particularly has no melting point. More preferred.
  • the absence of melting point means that the heat of fusion ⁇ H due to the melting peak is 1 J / g or less.
  • the ⁇ -olefin copolymer (E) according to the present invention can be produced, for example, using the method described in International Publication No. 2004/087775.
  • the isotactic propylene polymer (F) which is one of the polymer components that may be contained in the propylene polymer composition of the present invention, usually has an isotactic pentad fraction measured by NMR method.
  • the propylene polymer is 0.85 or more, preferably 0.9 or more, more preferably 0.95 or more.
  • the isotactic pentad fraction (mmmm fraction) is measured and calculated by the method described in the prior publication (Japanese Patent Laid-Open No. 2003-147135).
  • the isotactic propylene-based polymer (F) according to the present invention is a propylene homopolymer or a copolymer of propylene and at least one ⁇ -olefin having 2 to 20 carbon atoms other than propylene. .
  • examples of the ⁇ -olefin having 2 to 20 carbon atoms other than propylene include ethylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, Examples thereof include 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicosene and the like, and ethylene or ⁇ -olefin having 4 to 10 carbon atoms is preferable.
  • These ⁇ -olefins may form a random copolymer with propylene or a block copolymer.
  • These ⁇ -olefin-derived structural units may be contained in the copolymer (F) in a proportion of 35 mol% or less, preferably 30 mol% or less.
  • propylene-derived structural units are contained in an amount of 90 to 100 mol%.
  • the propylene-derived structural units are preferably contained in proportions between propylene-derived structural units and ⁇ -olefin-derived structural units. It is 90 to 99 mol% of the total, and more preferably 92 to 98 mol%.
  • the isotactic propylene-based polymer (F) according to the present invention has a melt flow rate (MFR) of 0.01 to 1000 g / 10 minutes measured at 230 ° C. and a load of 2.16 kg according to ASTM D 1238. Preferably, it is in the range of 0.05 to 100 g / 10 minutes.
  • the isotactic propylene-based polymer (F) according to the present invention can be used in combination with a plurality of isotactic polypropylene as required, and for example, two or more kinds of components having different melting points and rigidity can be used. .
  • the isotactic propylene polymer (F) is a propylene homopolymer having excellent heat resistance or a polymer having an ⁇ -olefin-derived copolymer component of 3 mol% or less, and a balance between heat resistance and flexibility.
  • Block polypropylene generally known as having a normal decane-eluting rubber component of 3 to 30% by weight
  • a random copolymer of propylene and ⁇ -olefin usually determined by DSC
  • a known compound having a measured melting point in the range of 110 ° C. to 150 ° C. can be selected or used in combination in order to obtain the desired physical properties.
  • the isotactic propylene-based polymer (F) is, for example, a Ziegler catalyst system comprising a solid catalyst component containing magnesium, titanium, halogen and an electron donor as essential components, an organoaluminum compound and an electron donor, Alternatively, it can be produced by polymerizing propylene or copolymerizing propylene and another ⁇ -olefin in a metallocene catalyst system using a metallocene compound as one component of the catalyst.
  • the ethylene / vinyl acetate copolymer (G) which is one of the polymer components that may be contained in the propylene polymer composition of the present invention, is usually a propylene polymer (A) and a propylene copolymer.
  • the copolymer contains 1 to 49% by weight, preferably 5 to 49% by weight, of units derived from vinyl acetate. If the number of units derived from vinyl acetate is too smaller than the above range, the effect of mixing the ethylene / vinyl acetate copolymer is remarkably reduced.
  • the ethylene / vinyl acetate copolymer (G) according to the present invention usually has an MFR (JIS K-7210 / 1999, 190 ° C., 2.16 kg load) of 0.05 to 100 g / 10 min, preferably 0.1. It is in the range of ⁇ 50 g / 10 minutes. When MFR is in the above range, it exhibits good fluidity and is easy to mix with other components.
  • the resulting propylene polymer composition has moldability, printability and adhesiveness, and heat processability (welder processability). ).
  • the ethylene polymer that is one of the polymer components that may be contained in the propylene polymer composition of the present invention has a density of 850 to 930 kg / m 3 , preferably 860 to 930 kg / m 3 , more preferably A homopolymer of ethylene in the range of 860 to 920 kg / m 3 or ethylene and an ⁇ -olefin having 3 to 20 carbon atoms such as propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 4- It is a copolymer containing ethylene as a main component, such as methyl-1-pentene, 3-methyl-1-pentene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, 1-eicocene.
  • the density of the ethylene-based polymer (H) is within the above range, a flexible sheet / film can be obtained.
  • the ethylene-based polymer (H) according to the present invention is a copolymer
  • the content of units derived from ⁇ -olefin is usually 5 to 49 mol%, preferably 5 to 30 mol%, more preferably It is in the range of 5 to 25 mol%.
  • the ethylene polymer (H) according to the present invention usually has an MFR (JIS K-7210 ⁇ 1999, 190 ° C., 2.16 kg load) of 0.05 to 100 g / 10 minutes, preferably 0.5 to 100 g / It is in the range of 10 minutes.
  • MFR JIS K-7210 ⁇ 1999, 190 ° C., 2.16 kg load
  • the propylene polymer composition of the present invention comprises 1 to 35 parts by weight of the propylene polymer (A), preferably 2 to 20 parts by weight, and 5 to 95 parts by weight of the propylene copolymer (B).
  • the olefinic thermoplastic elastomer (C), the styrene elastomer (D), the ⁇ -olefin copolymer (E), and the isotactic propylene polymer (F) are preferably contained in an amount of 10 to 85 parts by mass.
  • At least one of (C), (D), and (E) is 0 to 94 parts by mass, preferably 0 to 50 parts by mass, and (F) is 0 to 49 parts by mass, preferably 0 to 45 parts by mass, more preferably 0 to 40 parts by mass, further preferably 0 to 35 parts by mass, further preferably 0 to 30 parts by mass, particularly preferably 0 to 25 parts by mass, Nyl copolymer (G) and / or ethylene polymer (H) is contained in an amount of 0 to 60 parts by mass, preferably 0 to 50 parts by mass, and the olefin thermoplastic elastomer (C) to the ethylene polymer
  • the total amount of (H) is 1 to 94 parts by mass, preferably 13 to 88 parts by mass [provided that the total of the polymers (A) to (H) is 100 parts by mass. ]
  • a composition. [Hereinafter, each polymer may be simply expressed as (A) to (H). ]
  • Examples of the propylene-based polymer composition of the present invention containing three kinds of polymers include (A) + (B) + (C), (A) + (B) + (D), (A) + (B) + (E) and (A) + (B) + (F) can be illustrated.
  • propylene-based polymer composition of the present invention containing four types of polymers include (A) + (B) + (C) + (D), (A) + (B) + (C) + (E), (A) + (B) + (C) + (F), (A) + (B) + (D) + (E), (A) + (B) + (D) + (F ), (A) + (B) + (E) + (F), (A) + (B) + (C) + (G), (A) + (B) + (C) + (H), (A) + (B) + (D) + (G), (A) + (B) + (D) + (H), (A) + (B) + (E) + (G), (A ) + (B) + (E) + (H), (A) + (B) + (F) + (G), and (A) + (B) + (F) + (H).
  • propylene-based polymer composition of the present invention containing five types of polymers include (A) + (B) + (C) + (D) + (E), (A) + (B) + (C) + (D) + (F), (A) + (B) + (C) + (E) + (F), (A) + (B) + (D) + (E) + (F ), (A) + (B) + (C) + (G) + (H), (A) + (B) + (D) + (G) + (H), (A) + (B) + (E) + (G) + (H), (A) + (B) + (F) + (G) + (H), (A) + (B) + (C) + (D) + (G ), (A) + (B) + (C) + (D) + (G ), (A) + (B) + (C) + (D) + (G ), (A) + (B) + (C) + (D) + (G ), (
  • propylene-based polymer composition of the present invention containing six types of polymers include (A) + (B) + (C) + (D) + (E) + (F), (A) + (B) + (C) + (D) + (G) + (H), (A) + (B) + (C) + (E) + (G) + (H), (A) + (B ) + (C) + (F) + (G) + (H), (A) + (B) + (D) + (E) + (G) + (H), (A) + (B) + (D) + (F) + (G) + (H), (A) + (B) + (C) + (E) + (F) + (H), (A) + (B) + (E ) + (F) + (G) + (H), (A) + (B) + (E ) + (F) + (G) + (H), (A) + (B) + (E ) + (F) + (G) + (H),
  • Examples of the propylene-based polymer composition of the present invention containing seven types of polymers include (A) + (B) + (C) + (D) + (E) + (G) + (H), (A) + (B) + (C) + (D) + (F) + (G) + (H), (A) + (B) + (D) + (E) + (F) + (G ) + (H), (A) + (B) + (C) + (D) + (E) + (F) + (G), (A) + (B) + (C) + (E) + (F) + (G) + (H) and (A) + (B) + (C) + (D) + (E) + (F) + (H) can be exemplified.
  • the propylene polymer composition of the present invention may also contain all of the polymers (A) to (H).
  • the propylene-based polymer composition of the present invention is not limited to the examples described above, and the polymers (A) to (H) may be two or more kinds of polymers.
  • the propylene-based polymer composition of the present invention includes any one or more of (C), (D), and (E), thereby providing flexibility and wear resistance.
  • the balance between wear resistance and flexibility is even better.
  • the propylene-based polymer composition of the present invention can appropriately adjust flexibility by including (F), (G), or (H).
  • the propylene-based polymer compositions of the present invention as a composition that is particularly excellent in the balance between flexibility and wear resistance, as an example, in addition to (A) and (B), from (C) to (H)
  • the composition which has the structure selected as follows is mentioned.
  • the propylene-based polymer composition as described above can obtain a composition having a durometer A hardness of 70 or less, preferably 40 to 70, measured according to JISK7215, for example, for a 1 mm thick press sheet.
  • the composition is excellent in abrasion resistance and is more preferable.
  • the propylene-based polymer composition of the present invention is flexible but excellent in wear resistance is not clear, but can be considered as follows. That is, the abrasion resistance is considered to be greatly influenced by the compatibility of each component contained in the polymer composition, but the propylene-based polymer composition of the present invention has an appropriate size of the dispersed phase in the matrix. It is thought that it has a distributed structure. As a result, the wear resistance is considered to be less likely to cause wear loss due to interfacial delamination starting from the dispersed phase interface because the dispersed phase has a small particle size in the phase-separated morphology.
  • the fact that the dispersed phase particle size of the propylene polymer composition will be small is supported by the relatively low haze value of the press sheet.
  • haze is not only determined by compatibility, but may also be affected by the refractive index of each component, so there is always a clear correlation between haze and dispersed particle size depending on the type of resin. However, it is likely that there is often a certain degree of correlation.
  • a propylene-based resin composition whose haze of a 1 mm-thick press sheet measured by the method described in the examples of the present invention is, for example, 50% or less tends to be more excellent in wear resistance.
  • any other component is (C), (E), (F) and (G It is desirable to include a component selected from
  • the polymers (B), (C), (D), (E) and (H) contribute to flexibility, and the total of (A) to (H) When the total is 100 parts by mass, it is desirable to include 30 parts by mass or more, and more preferably 40 parts by mass or more.
  • the content of (A) + (B) + (C) + (E) + (F) is 100 parts by mass with the total of (A) to (H).
  • 40 parts by mass or more is desirable, 50 parts by mass or more is more preferable, and 60 parts by mass or more is further preferable.
  • the wear resistance is excellent.
  • transparency tends to be particularly good. It is thought that the compatibility is further improved.
  • the components other than (G) are selected from (C), (D), (E), (F) and (H). If it is adopted, it is more desirable from the viewpoint of wear resistance. Moreover, when (D) is included, it is more desirable from the point of abrasion resistance that arbitrary other components are selected from (C), (E), (F) and (G).
  • the composition containing the composition is a composition having both flexibility and wear resistance.
  • propylene-based polymer composition of the present invention is composed of (A) + (B) + (D) + (E) + (F) represented by Example 10, and (A) is 1 to 15 respectively.
  • (B) is 10 to 75 parts by mass
  • (D) is 10 to 50 parts by mass
  • (E) is 10 to 50 parts by mass
  • the composition containing it is a composition having both flexibility and wear resistance.
  • the composition containing becomes a composition which has the outstanding abrasion resistance. As the amount of the component (F) increases, the softening temperature tends to be high and the heat resistance tends to be excellent.
  • the composition containing it exhibits excellent flexibility and abrasion resistance, and is excellent in transparency, so that it can be used for applications requiring transparency.
  • propylene-based polymer composition of the present invention is composed of (A) + (B) + (E) + (F) + (H) represented by Example 11, and (A) is 1 to 15 respectively.
  • (B) is 10 to 80 parts by mass
  • (E) is 10 to 50 parts by mass
  • (F) is 1 to 40 parts by mass
  • the composition comprising excellent wear resistance and excellent transparency can be used for applications requiring transparency.
  • the composition containing the composition is a composition having both excellent flexibility and wear resistance.
  • the propylene polymer composition of the present invention has an MFR measured in accordance with JIS K-7210 at 230 ° C. and a load of 2.16 kg, usually 0.01 to 50 g / 10 min, preferably 0.01 to 30 g. / 10 min.
  • the propylene-based polymer composition of the present invention is prepared by mixing the above-mentioned components in the above-mentioned range by various known methods such as a Henschel mixer, a V-blender, a ribbon blender, a tumbler blender, or the like. It can be produced by adopting a method of granulation or pulverization after melt-kneading with an extruder, a twin screw extruder, a kneader, a Banbury mixer or the like.
  • additives such as inorganic fillers, nucleating agents, antioxidants, flame retardants, antistatic agents, pigments, dyes, rust inhibitors are added to the propylene polymer composition of the present invention. can do.
  • inorganic filler examples include, for example, calcium carbonate, talc, glass fiber, magnesium carbonate, mica, kaolin, calcium sulfate, barium sulfate, titanium white, white carbon, carbon black, aluminum hydroxide, aluminum oxide, hydroxide
  • magnesium carbonate titanium carbonate
  • mica talc
  • kaolin calcium sulfate
  • barium sulfate titanium white, white carbon, carbon black
  • aluminum hydroxide aluminum oxide
  • hydroxide aluminum oxide
  • silica, clay, zeolite and the like can be mentioned, and these can be used alone or in admixture of two or more.
  • an inorganic filler When added to the propylene polymer composition of the present invention, it is 0.1 to 300 parts by weight, preferably 1 to 250 parts by weight, more preferably 100 parts by weight of the propylene polymer composition. It can be added in the range of 100 to 200 parts by mass.
  • nucleating agent examples include, for example, sodium benzoate, bisbenzylidene sorbitol, bis (p-methylbenzylidene) sorbitol, bis (p-ethylbenzylidene) sorbitol, sodium-2,2-methylenebis (4,6-di-). -T-butylphenyl) phosphite, talc, titanium oxide, aluminum hydroxyzyme pt-butylbenzoate and the like, and these can be used alone or in admixture of two or more.
  • antioxidants include, for example, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], triethylene glycol-bis [3- (3-t -Butyl-5-methyl-4-hydroxyphenyl) propionate] and other phosphorus-based antioxidants, tris (monononylphenyl) phosphite, tris (2,4-di-t-butylphenyl) phosphite, etc.
  • Antioxidants, sulfur antioxidants such as dilauryl thiodipropionate, and the like can be mentioned, and these can be used alone or in admixture of two or more.
  • Typical examples of the flame retardant include magnesium hydroxide, calcium hydroxide, and phosphorus compounds, and these can be used alone or in admixture of two or more.
  • the additive is added to the propylene-based polymer composition of the present invention, the additive is mixed and then kneaded with an ordinary kneader such as a roll, a Banbury mixer, a single screw extruder, a twin screw extruder or the like.
  • an ordinary kneader such as a roll, a Banbury mixer, a single screw extruder, a twin screw extruder or the like.
  • the method of preparing the composition can be adopted, but it is usually preferable to form a pellet.
  • the propylene-based polymer composition of the present invention can be widely used for conventionally known polyolefin applications.
  • the propylene-based polymer composition can be molded into various shapes of molded products including sheets, unstretched or stretched films, filaments, and the like. it can.
  • a molded body molding obtained by a known thermoforming method such as calendar molding, extrusion molding, injection molding, inflation molding, blow molding, extrusion blow molding, injection blow molding, press molding, vacuum molding, foam molding, etc.
  • the body is mentioned.
  • the molded body will be described with several examples.
  • its shape and product type are not particularly limited, and examples thereof include a sheet, a film (unstretched), a pipe, a hose, a wire coating, a filament, and the like.
  • Films, filaments and the like are preferred.
  • a single screw extruder, a kneading extruder, a ram extruder, a gear extruder can be formed into a sheet or a film (unstretched) by extruding the molten propylene polymer composition of the present invention from a T-die or the like.
  • the propylene-based polymer composition of the present invention is a sheet [generally, a sheet having a large thickness is referred to as a sheet, and a sheet having a thin thickness is referred to as a film. In the present invention, the sheet and the film are collectively referred to as “sheet”. . ] Suitable for molding.
  • Step 1) a step of heat-melting the propylene-based polymer composition
  • Step 2) a heat-melted propylene-based polymer composition Can be performed in the step of forming the sheet.
  • a step of kneading the heat-melted propylene polymer composition may be included between the (step 1) and the (step 2).
  • the propylene polymer composition of the present invention is particularly suitable for calendar molding.
  • (Step 2) may include (Step 2-2): a step of obtaining a laminated body by a step of simultaneously performing sheet molding and bonding of the following base material by calendering.
  • Artificial leather molding methods include (Step 2-1) sheet forming by calendering, and (Step 2-2) calendering and simultaneously laminating the sheet and the following substrate.
  • the sheet obtained in the above (Step 1) and (Step 2) may be taken and separately attached to the base material.
  • embossing process for attaching a pattern to the surface of the sheet by heat fusion, needle punching, or the like may be added at an appropriate stage in the manufacturing process of the sheet or laminate of the present invention. That is, embossing may be performed directly on the sheet of the present invention, a laminated body may be manufactured by laminating the embossed sheet and the substrate, or embossing may be performed after forming the laminated body. Good.
  • the sheet obtained from the propylene-based polymer composition of the present invention can be used by laminating with various known substrates depending on the application.
  • Synthetic fibers include synthetic fibers made of polypropylene, polyethylene, polyester, nylon, acrylic, polyurethane, polyvinyl chloride, silicone, and the like.
  • Examples of natural fibers include cotton, hemp, silk, and wool.
  • Examples of the inorganic fiber include glass fiber and carbon fiber.
  • Examples of the woven fabric include a woven fabric and a knitted fabric made from a fibrous material.
  • examples of the nonwoven fabric include webs obtained by intertwining fibrous materials by chemical methods, mechanical methods, or a combination thereof.
  • foams, such as a foam sheet are mentioned as a base material which can be laminated
  • Examples of the foam include polyolefins such as urethane, polyethylene, and polypropylene, and foams made of polystyrene.
  • the propylene polymer composition of the present invention can be used as artificial leather.
  • Artificial leather can be used in automobiles (including motorcycles), sports, home appliances, stationery, miscellaneous goods, furniture, clothing, horticulture, building materials, and the like.
  • automotive interior materials such as automotive flooring, ceiling materials, instrument panels, door trims, interior seats, seat leather, etc. Especially suitable.
  • MFR The measurement of MFR is according to JIS K-7210 (1999), (A) (B) (D) (E) (F) at 230 ° C., 2.16 kg load, (C) at 230 ° C. With respect to (G) and (H) at a load of 10 kg, measurement was performed at 190 ° C. and a load of 2.16 kg.
  • Mw / Mn The molecular weight distribution (Mw / Mn) was measured as follows using a gel permeation chromatograph Alliance GPC-2000 manufactured by Waters. The separation columns are two TSKgel GNH6-HT and two TSKgel GNH6-HTL.
  • the column size is 7.5 mm in diameter and 300 mm in length, the column temperature is 140 ° C., and the mobile phase is o -Using dichlorobenzene (Wako Pure Chemical Industries) and 0.025 wt% BHT (dibutylhydroxytoluene, Takeda Pharmaceutical) as an antioxidant, moving at 1.0 ml / min, sample concentration 15 mg / 10 mL, sample injection The amount was 500 microliters, and a differential refractometer was used as a detector.
  • the standard polystyrene used was manufactured by Tosoh Corporation for molecular weights of Mw ⁇ 1000 and Mw> 4 ⁇ 10 6 , and used by Pressure Chemical Co. for 1000 ⁇ Mw ⁇ 4 ⁇ 10 6 .
  • Ethylene, propylene, ⁇ -olefin content in each polymer The ethylene, propylene, ⁇ -olefin content was quantified using a JNM GX-400 type NMR measuring apparatus manufactured by JEOL Ltd. as follows. It was measured. A sample of 0.35 g was dissolved by heating in 2.0 ml of hexachlorobutadiene. The solution was filtered through a glass filter (G2), 0.5 ml of deuterated benzene was added, and the solution was charged into an NMR tube having an inner diameter of 10 mm, and 13 C / NMR measurement was performed at 120 ° C. The number of integrations was 8,000 times or more. The composition of ethylene, propylene and ⁇ -olefin was quantified by the obtained 13 C / NMR spectrum.
  • the syndiotactic triad fraction (rr fraction) is Prr in the 13 C-NMR spectrum (absorption intensity derived from the methyl group of the second unit at the site where 3 units of propylene units are syndiotactically bonded) and It calculated
  • rr fraction (%) 100 ⁇ Prr / Pw (4)
  • the obtained press sheet was allowed to stand for condition adjustment at 23 ° C. for 24 hours, and then used for measurement.
  • NDH2000 manufactured by Nippon Denshoku Industries Co., Ltd. was used as a haze meter, and measurement was performed at 23 ° C. using light source C in measurement method A and cyclohexanol according to JIS K-7105.
  • Abrasion resistance (Taber abrasion test) Using a press sheet obtained by adjusting the condition as a sample, in accordance with JIS K-7204, 23 ° C., wear wheel: H-22, rotational speed: 60 revolutions / minute (60 rpm), number of revolutions: 500 times, load The amount of wear loss was measured at 1000 g.
  • the polymers used in Examples and Comparative Examples are shown below.
  • Toluene solution (5.0 ⁇ mol) of (enyl) (3,6-di-tert-butylfluorenyl) zirconium dichloride was added and stirred for 20 minutes. This solution was added to a glass autoclave containing toluene in which propylene was circulated, and polymerization was started. Propylene gas was continuously supplied at a rate of 150 liters / hour, polymerization was carried out at 25 ° C. under normal pressure for 45 minutes, and then a small amount of methanol was added to stop the polymerization. The polymer solution was added to a large excess of methanol to precipitate a polymer and dried under reduced pressure at 80 ° C. for 12 hours.
  • MFR JIS K6721, 230 ° C., 2.16 kg load
  • composition of the propylene / ethylene / 1-butene copolymer (B-1) is composed of 62 mol% of propylene-derived structural units, 10 mol% of ethylene-derived structural units, and 28 mol% of 1-butene-derived structural units. there were.
  • C Olefin-based thermoplastic elastomer (C-1) Temperature: 230 ° C., load: 10 kg MFR: 25 g / 10 min, durometer A hardness: 52 partially crosslinked olefin-based thermoplastic elastomer (Mitsui Chemicals, trade name: Miralastomer TM 5030NS) is used It was.
  • D Styrene elastomer
  • D-1 A styrenic block copolymer elastomer (trade name Tuftec TM H1221 manufactured by Asahi Kasei Co., Ltd.) having an MFR measured at 230 ° C., a load of 2.16 kg and a durometer A hardness of 42 was used.
  • the obtained copolymer was 60.4 g.
  • the stereoregularity (mmmm) of the propylene / ethylene random copolymer (F-1) and the propylene / ethylene random copolymer (F-2) was determined by analysis of 13 C-NMR spectrum.
  • G Ethylene / vinyl acetate copolymer
  • G-1 Ethylene / vinyl acetate copolymer with vinyl acetate content: 25% by mass, temperature: 190 ° C., load: 2.16 kg, MFR: 2 g / 10 min, durometer A hardness: 86 (Mitsui / Dupont Polychemical Co., Ltd.) Ltd., trade name Eva flex TM EV360).
  • Examples 1 to 12 and Comparative Examples 1 and 2 Each polymer was weighed in the amounts described in Tables 1 and 2, and 3,5-di-t-butyl-4-hydroxytoluene was added as an antioxidant to 100 parts by weight of each polymer mixture.
  • a propylene polymer composition was obtained by blending 0.2 parts by weight and granulating by melt kneading at a resin temperature of 200 ° C. using a twin screw extruder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

特定量の(A)シンジオタクチックペンタッド分率(rrrr分率)が85%以上であり、プロピレンから導かれる構成単位を90~100モル%含有するプロピレン系重合体、および(B)プロピレン由来の構成単位を40~89モル%、α-オレフィン由来の構成単位を11~60モル%含有し、極限粘度[η]とMFRとの関係が特定の式を満たす、プロピレン系共重合体と、 特定量のオレフィン系熱可塑性エラストマー(C)、スチレン系エラストマー(D)、プロピレン・エチレン・α-オレフィン共重合体(E)、及びアイソタクチックプロピレン系重合体(F)のいずれか少なくとも1種とを含み、 エチレン・酢酸ビニル共重合体(G)、及び/または、エチレン系重合体(H)を任意に含むプロピレン系重合体組成物。

Description

プロピレン系重合体組成物及びその用途
 本発明は、耐摩耗性に優れ、例えば人造皮革用シートなどの用途にも好適なプロピレン系重合体組成物、成形体、シート、フィルム、積層体、人造皮革に関する。
 オレフィン系合成皮革(オレフィン系レザー)は、文具、各種ケース、包装、家具、建装、自動車内装等の種々の用途に使用されている。そして、このようなオレフィン系合成皮革に使用される軟質オレフィン系樹脂としては、オレフィン系熱可塑性エラストマー、スチレン系熱可塑性エラストマー、エチレン-酢酸ビニル共重合体、エチレン-メタクリル酸共重合体等が知られている。しかしながら、このような軟質オレフィン系樹脂を用いて得られるオレフィン系合成皮革においては、耐摩耗性が十分ではないという問題がある。
 耐摩耗性を改良する方法として、例えば軟質オレフィン系樹脂層の表皮層に、ファブリック層を備える積層体とする方法(特許文献1)が提案されている。しかしながら、かかる方法では、工程数が多く、コストも高くなる虞がある。また、一般に、柔軟性に富むオレフィン系樹脂は、耐摩耗性が劣ることから、耐摩耗性を有する樹脂組成物を得ることが困難であり、依然として、軟質のオレフィン系樹脂でありながら、かつ耐摩耗性に優れる材料が求められている。
特開2001-287305号公報
 本発明は、オレフィン系の軟質樹脂でありながら、耐摩耗性にすぐれるプロピレン系重合体組成物を得ること、それを用いた人造皮革等の各種成形体を得ることを目的とする。
 本発明のプロピレン系重合体組成物は、以下の重合体を含むプロピレン系重合体組成物である。(A)13C・NMRにより測定されるシンジオタクチックペンタッド分率(rrrr分率)が85%以上であり、プロピレンから導かれる構成単位を90~100モル%含有するプロピレン系重合体:1~35質量部、(B)プロピレン由来の構成単位を40~89モル%、炭素数2~20のα-オレフィン由来の構成単位を11~60モル%含有し、以下の(b4)を満たすプロピレン系共重合体:5~95質量部、
 (b4)135℃、デカリン中で測定した極限粘度[η](dl/g)と230℃、荷重2.16kgで測定したMFR(g/10分)が下記の関係式を満たす。
  1.50×MFR(-0.20)≦[η]≦2.65×MFR(-0.20)
 及び、(A)及び(B)に加え、以下の(C)~(F)の重合体のいずれか少なくとも1種を含有し、(G)及び/又は(H)の重合体を下記に規定する範囲で任意に含んでもよく、且つ、(C)~(H)の重合体を合計で1~94質量部含む〔但し、(A)~(H)の重合体の合計を100質量部とする。〕。(C)非架橋の、または部分的に架橋されたオレフィン系熱可塑性エラストマー:0~94質量部、(D)スチレン系エラストマー:0~94質量部、(E)プロピレン由来の構成単位を40~85モル%、エチレン由来の構成単位を5~30モル%、炭素数4~20のα-オレフィン由来の構成単位を5~30モル%含み、かつ、アイソタクチックトライアッド分率(mm分率)が85%以上である、プロピレン・エチレン・炭素数4~20のα-オレフィン共重合体:0~94質量部、(F)アイソタクチックプロピレン系重合体:0~49質量部、(G)エチレン・酢酸ビニル共重合体:0~60質量部、(H)密度が850~930kg/m3のエチレン系重合体:0~60質量部。
 本発明のプロピレン系重合体組成物は、オレフィン系の軟質樹脂でありながら耐摩耗性に優れる。
 そのため、本発明のプロピレン系重合体組成物は、各種の成形体に用い得る。
 <プロピレン系重合体(A)>
 本発明のプロピレン系重合体組成物に含まれる重合体成分の一つであるプロピレン系重合体(A)は、13C・NMRにより測定されるシンジオタクチックペンタッド分率(rrrr分率)が85%以上、好ましくは90%以上、より好ましくは93%以上、さらに好ましくは94%以上であり、プロピレンから導かれる構成単位を90~100モル%、好ましくは92~100モル%、より好ましくは95~100モル%含むプロピレン系重合体である。
 rrrr分率が上記の範囲にあるプロピレン系重合体(A)は、成形性、さらには耐熱性および透明性にも優れ、結晶性ポリプロピレンとしての特性がより良好なものとなる。また、プロピレン系重合体(A)を用いることで、結晶化抑制と微細球晶化が起こるため、得られる本発明のプロピレン系重合体組成物は、透明性および表面光沢性の高いものとなる。
 本発明に係るプロピレン系重合体(A)として、上記範囲のプロピレン系重合体を用いると、特に耐熱性に優れるプロピレン系重合体組成物が得られる。
 本発明に係るプロピレン系重合体(A)のシンジオタクチックペンタッド分率(rrrr分率)は、以下のようにして測定される。
 rrrr分率は、13C・NMRスペクトルにおけるPrrrr(プロピレン単位が5単位連続してシンジオタクチック結合した部位における第3単位目のメチル基に由来する吸収強度)およびPw(プロピレン単位の全メチル基に由来する吸収強度)の吸収強度から下記式(1)により求められる。
    rrrr分率(%)=100×Prrrr/Pw…(1)
 NMR測定は、例えば、次のようにして行われる。すなわち、試料0.35gをヘキサクロロブタジエン2.0mlに加熱溶解させる。この溶液をグラスフィルター(G2)で濾過した後、重水素化ベンゼン0.5mlを加え、内径10mmのNMRチューブに装入する。そして日本電子製GX-500型NMR測定装置を用い、120℃で13C・NMR測定を行う。積算回数は8,000回以上とする。
 本発明に係るプロピレン系重合体(A)としては、プロピレンの単独重合体、あるいは、プロピレンと炭素原子数が2~20のα-オレフィンとの共重合体などが挙げられる。前記α-オレフィンとしては、例えば、エチレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセンなどが挙げられ、エチレンまたは炭素原子数が4~10のα-オレフィンが好ましい。プロピレンと共重合されるα-オレフィンは一種でも二種以上であってもよい。
 本発明に係るプロピレン系重合体(A)は、好ましくは、示差走査熱量計(DSC)測定により得られる融解熱量(ΔHC)が20J/g以上、より好ましくは40J/g以上、さらに好ましくは50J/g以上のプロピレン系重合体である。融解熱量(ΔHC)の上限は特に限定はされないが、通常、120J/g以下である。
 本発明に係るプロピレン系重合体(A)は、好ましくは、示差走査熱量計(DSC)測定により得られる融点(Tm)が、145℃以上、より好ましくは147℃以上、さらに好ましくは150℃以上、特に好ましくは155℃以上である。なお、Tmの上限は特にないが、通常は、例えば170℃以下である。融点(Tm)が上記の範囲にあるプロピレン系重合体(A)は、成形性、さらには耐熱性および機械特性にも優れる。
 本発明に係るプロピレン系重合体(A)は、好ましくは135℃のデカリン中で測定した極限粘度[η]が、0.5~10dl/g、より好ましくは1.0~6dl/g、さらに好ましくは1.0~4dl/gの範囲にあることが望ましく、極限粘度がこのような範囲にあると、良好な流動性を示し、他の成分と配合し易く、また得られるプロピレン系重合体組成物から機械的強度に優れる成形品が得られる傾向がある。
 本発明に係るプロピレン系重合体(A)のMFRは、プロピレン系重合体(A)を配合することにより得られるプロピレン系重合体組成物が成形加工し得る限り特に限定はされないが、通常、230℃、2.16kg荷重下で測定したMFRが0.001~50g/10分、好ましくは0.1~30g/10分、より好ましくは0.1~10g/10分の範囲にある。
 <プロピレン系重合体(A)の製造方法>
 本発明に係るプロピレン系重合体(A)は、種々公知の製造方法、例えば、国際公開番号WO2006/123759明細書に記載された製造方法などにより、得ることができる。
 <プロピレン系共重合体(B)>
 本発明のプロピレン系重合体組成物に含まれる重合体成分の一つであるプロピレン系共重合体(B)は、プロピレン由来の構成単位を40~89モル%、好ましくは50~89モル%、より好ましくは55~89モル%、炭素数2~20のα-オレフィン(但し、プロピレンを除く)由来の構成単位を11~60モル%、好ましくは11~50モル%、より好ましくは11~45モル%含有し(但し、プロピレン由来の構成単位、および、炭素数2~20のα-オレフィン(但し、プロピレンを除く)由来の構成単位の合計を100モル%とする。)、以下の(b4)を満たすプロピレン系共重合体である。
 (b4)135℃、デカリン中で測定した極限粘度[η](dl/g)と230℃、荷重2.16kgで測定したMFR(g/10分)が下記の関係式(2)、好ましくは下記の関係式(3)を満たす。
  1.50×MFR(-0.20)≦[η]≦2.65×MFR(-0.20)・・・(2)
  1.80×MFR(-0.20)≦[η]≦2.50×MFR(-0.19)・・・(3)
 上記(b4)の式(2)、好ましくは式(3)を満たすプロピレン系重合体(B)は、従来のアイソタクチックプロピレン系共重合体に比べて同一極限粘度[η]で小さなMFRを示す。
 これはMacromolecules 31、1335-1340(1998)にも記載のようにアイソタクチックポリプロピレンの絡み合い点間分子量(論文ではMe=6900(g/mol)と報告されている)と、シンジオタクチックポリプロピレンの絡み合い点間分子量(論文ではMe=2170(g/mol)と報告されている)との違いに起因すると考えられる。即ち、同一[η]ではシンジオタクチック構造を持つことにより、アイソタクチック構造を有する材料に対して絡み合い点が多くなり、MFRが小さくなると考えられる。
 以上のように、(b4)の上記式(2)を満たすプロピレン系重合体は、アイソタクチック構造を有するプロピレン系重合体とは異なった立体規則性を有した重合体であり、いわゆるシンジオタクチック構造を有するものと考えられる。この場合、得られるプロピレン系重合体組成物は耐摩耗性に優れる。
 本発明に係るプロピレン系共重合体(B)は、プロピレンと炭素原子数が2~20のα-オレフィンとの共重合体などが挙げられる。前記α-オレフィンとしては、例えば、エチレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセンなどが挙げられ、エチレンまたは炭素原子数が4~10のα-オレフィンが好ましい。プロピレンと共重合されるα-オレフィンは一種でも二種以上であってもよい。
 本発明に係るプロピレン系共重合体(B)は、好ましくは、DSC測定により得られる融解熱量(ΔHB)が10J/g以下、より好ましくは5J/g以下、さらに好ましくは1J/g以下のプロピレン系共重合体である。
 本発明に係るプロピレン系共重合体(B)は、好ましくは、DSC測定により得られる融点が90℃未満、より好ましくは、80℃以下、さらに好ましくは、融点が存在しない重合体である。本発明において、融点が存在しないとは、融解ピークに起因する融解熱量△Hが1J/g以下であることをいう。
 本発明に係るプロピレン系共重合体(B)のMFRは、前記(b4)を満たし、プロピレン系共重合体(B)を混合することにより得られるプロピレン系重合体組成物が成形加工し得る限り特に限定はされないが、通常、230℃、2.16kg荷重下で測定したMFRが0.01~100g/10分、好ましくは0.01~50g/10分、より好ましくは0.1~30g/10分、特に好ましくは0.1~10g/10分の範囲にある。
 本発明に係るプロピレン系共重合体(B)の極限粘度[η]は、前記(b4)を満たす限り特に制限されないが、135℃デカリン中で測定した極限粘度[η]が、通常、0.01~10dl/g、好ましくは0.05~10dl/g、より好ましくは0.1~5dl/gの範囲にあることが望ましい。極限粘度[η]が上記範囲にあるプロピレン系重合体(B)を用いた場合、得られるプロピレン系重合体組成物は、成形時の流動性に優れ、得られる成形体の機械物性にも優れる。
 本発明に係るプロピレン系重合体(B)は、通常、GPCで測定したMw/Mn(ポリスチレン換算)が1.2~3.5、より好ましくは1.5~3.0の範囲にある。
 本発明に係るプロピレン系共重合体(B)は、さらに以下に示すように、13CNMR法で測定したシンジオタクチックトライアッド分率(rr分率)が特定の範囲の値をとるものであってもよい。好ましくは、rr分率が40%以上、さらには45%以上であるものがよい。
 rr分率は、13C-NMRスペクトルにおけるPrr(プロピレン単位が3単位連続してシンジオタクチック結合した部位における第2単位目のメチル基に由来する吸収強度)およびPw(プロピレン単位の全メチル基に由来する吸収強度)の吸収強度から下記式(4)により求められる。
  rr分率(%)=100×Prr/Pw・・・(4)
 ここで、rr分率を求める際に、mr由来の吸収(プロピレン単位が3単位の内、少なくともシンジオタクチック結合とアイソタクチック結合の両方から由来する吸収、Pmr(吸収強度)の決定に用いる)、rr由来の吸収(プロピレン単位が3単位連続してシンジオタクチック結合した部位における第2単位目のメチル基に由来する吸収、Prr(吸収強度)の決定に用いる)、またはmm由来の吸収(プロピレン単位が3単位連続してアイソタクチック結合した部位における第2単位目のメチル基に由来する吸収、Pmm(吸収強度)の決定に用いる)と、コモノマーに由来する吸収とが重なる場合には、コモノマー成分の寄与を差し引かずそのまま算出する。
 rr分率は、具体的には、特開2002-097325号公報の[0018]~[0031]に記載された「シンジオタクティシティパラメータ(SP値)」の求め方の記載のうち、[0018]~[0023]までの帰属に従い、第1領域、第2領域、第3領域のシグナルの積算強度から上記式(4)により計算することにより求める。
 また、rr分率の測定において、NMR測定は、例えば次のようにして行われる。すなわち、試料0.35gをヘキサクロロブタジエン2.0mlに加熱溶解させる。この溶液をグラスフィルター(G2)で濾過した後、重水素化ベンゼン0.5mlを加え、内径10mmのNMRチューブに装入する。そして日本電子製GX-400型NMR測定装置を用い、120℃で13C-NMR測定を行う。積算回数は、8,000回以上とする。
 rr分率は、成分(B)がいわゆるシンジオタクチック構造の割合がより多い、ということを示す指標であり、前述した(b4)を満たすことと類似する意味を有する指標である。
 本発明に係るプロピレン系重合体(B)は、プロピレン由来の構成単位を例えば40~89モル%、好ましくは50~89モル%、より好ましくは55~80モル%、エチレン由来の構成単位を例えば1~35モル%、好ましくは1~30モル%、より好ましくは5~20モル%、及び炭素数4~20のα-オレフィン由来の構成単位を例えば10~45モル%、好ましくは10~40モル%、より好ましくは15~40モル%の範囲で含むプロピレン・エチレン・炭素数4~20のα-オレフィン共重合体(B1)が望ましい(但し、プロピレン由来の構成単位、エチレン由来の構成単位、および、炭素数4~20のα-オレフィン由来の構成単位の合計を100モル%とする。)。
 また、この場合、炭素数4~20のα-オレフィン由来の構成単位の含量の、プロピレン由来の構成単位とエチレン由来の構成単位と炭素数4~20のα-オレフィン由来の構成単位の合計量に対する割合(モル%)(Pb2-2)と、エチレン由来の構成単位の含量の、プロピレン由来の構成単位とエチレン由来の構成単位と炭素数4~20のα-オレフィン由来の構成単位の合計量に対する割合(モル%)(Pb2-1)が、Pb2-2>Pb2-1の関係を満たすことが好ましく、(Pb2-2)-(Pb2-1)≧1モル%以上であることがより好ましい。
 本発明に係るプロピレン系重合体(B)としては、前記プロピレン・エチレン・炭素数4~20のα-オレフィン共重合体(B1)以外にも、プロピレン由来の構成単位を例えば50~89モル%、好ましくは55~89モル%、より好ましくは65~85モル%、エチレン由来の構成単位を例えば11~50モル%、好ましくは11~45モル%、より好ましくは15~35モル%含むプロピレン・エチレン共重合体(B2)を挙げることもできる(但し、プロピレン由来の構成単位、および、エチレン由来の構成単位の合計を100モル%とする。)。共重合体(B1)と(B2)とを比較すると、プロピレン・エチレン・α-オレフィン共重合体(B1)が好ましい。
 <プロピレン系重合体(B)の製造方法>
 本発明に係るプロピレン系重合体(B)は、種々公知の製造方法により製造しうる。例えばシンジオタクチックプロピレンを製造可能な触媒でプロピレンとα-オレフィンとを共重合して得ることができる。より具体的には例えば、国際公開2008-059895号公報に記載の方法により製造できるがこれに限定されるものではない。
 <オレフィン系熱可塑性エラストマー(C)>
 本発明のプロピレン系重合体組成物に含まれてもよい重合体成分の一つであるオレフィン系熱可塑性エラストマー(C)は、非架橋の、または部分的に架橋されたオレフィン系熱可塑性エラストマーであり、好ましくは、ポリプロピレンなどの結晶性ポリオレフィン(C2-1)と、α-オレフィン系共重合体ゴム(C2-2)とを含有している。
 本発明に係るオレフィン系熱可塑性エラストマー(C)のMFRは、オレフィン系熱可塑性エラストマー(C)を配合することにより得られるプロピレン系重合体組成物が成形加工し得る限り特に限定はされないが、通常、230℃、10kg荷重で測定されるMFRが0.001~100g/10分、好ましくは0.01~80g/10分の範囲にある。
 本発明に係るオレフィン系熱可塑性エラストマー(C)には、以下の結晶性ポリオレフィン(C2-1)及びα-オレフィン系共重合体ゴム(C2-2)に加え、任意成分として軟化剤(C2-3)及び/または無機充填剤(C2-4)を含めることができる。
 軟化剤(C2-3)としては、通常ゴムに使用される軟化剤を用いることができ、具体的には、プロセスオイル、潤滑油、パラフィン、流動パラフィン、石油アスファルト、ワセリン等の石油系物質;コールタール、コールタールピッチ等のコールタール類;ヒマシ油、アマニ油、ナタネ油、大豆油、ヤシ油等の脂肪油;トール油、蜜ロウ、カルナウバロウ、ラノリン等のロウ類;リシノール酸、パルミチン酸、ステアリン酸、ステアリン酸バリウム、ステアリン酸カルシウム等の脂肪酸またはその金属塩;石油樹脂、クマロンインデン樹脂、アタクチックポリプロピレン等の合成高分子物質;ジオクチルフタレート、ジオクチルアジペート、ジオクチルセバケート等のエステル系可塑剤;その他マイクロクリスタリンワックス、サブ(ファクチス)、液状ポリブタジエン、変性液状ポリブタジエン、液状チオコールなどが挙げられる。
 軟化剤(C2-3)は、結晶性ポリオレフィン樹脂(C2-1)及びα-オレフィン系共重合体ゴム(C2-2)の合計量100質量部に対し、通常、200質量部以下、好ましくは2~100質量部の割合で用いられる。
 無機充填剤(C2-4)としては、具体的には、炭酸カルシウム、ケイ酸カルシウム、クレー、カリオン、タルク、シリカ、ケイソウ土、雲母粉、アスベスト、アルミナ、硫酸バリウム、硫酸アルミニウム、硫酸カルシウム、塩基性炭酸マグネシウム、二硫化モリブデン、グラファイト、ガラス繊維、ガラス球、シラスバルーンなどが挙げられる。
 無機充填剤(C2-4)は、結晶性ポリオレフィン(C2-1)及びα-オレフィン系共重合体ゴム(C2-2)の合計量100質量部に対して、通常、100質量部以下、好ましくは2~50質量部の割合で用いられる。
 [結晶性ポリオレフィン(C2-1)]
 本発明に係るオレフィン系熱可塑性エラストマー(C)を構成し得る結晶性ポリオレフィン(C2-1)は、高圧法または低圧法の何れかによる1種または2種以上のα-オレフィンを重合して得られる結晶性の重合体である。このような結晶性ポリオレフィンとしては、たとえばアイソタクチックおよびシンジオタクチックのα-オレフィン重合体が挙げられるが、これらの代表的な重合体は商業的に入手できる。
 結晶性ポリオレフィン(C2-1)を構成するα-オレフィンとしては、具体的には、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、2-メチル-1-プロペン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、5-メチル-1-ヘキセン、1-オクテン、1-デセンを例示できる。結晶性ポリオレフィンは、上記α-オレフィンの単独重合体であっても、二種以上のα-オレフィンとの共重合体であってもよい。
 結晶性ポリオレフィン樹脂(C2-1)としては、特に、プロピレン含量が70モル%以上、好ましくはプロピレン含量が80モル%以上のアイソタクチックポリプロピレンが好適に用いられる。
 結晶性ポリオレフィン(C2-1)は、ランダム共重合体でもブロック共重合体であってもよい。
 結晶性ポリオレフィン(C2-1)のMFR(JIS K 7210、2.16kg荷重、230℃)は、通常0.01~100g/10分、特に0.05~50g/10分の範囲にあることが好ましい。
 結晶性ポリオレフィン(C2-1)は、DSCの吸熱曲線から求められる融点(Tm)が120~165℃であることが好ましく、130~160℃の範囲にあることが更に好ましい。
 結晶性ポリオレフィン(C2-1)は、通常、結晶性ポリオレフィン(C2-1)及びα-オレフィン系共重合体ゴム(C2-2)の合計量100質量部中に、10~60質量部、好ましくは20~55質量部の割合で用いられる。
 [α-オレフィン系共重合体ゴム(C2-2)]
 本発明に係るオレフィン系熱可塑性エラストマー(C)を構成し得るα-オレフィン系共重合体ゴム(C2-2)は、炭素原子数2~20、好ましくは炭素原子数2~12のα-オレフィンと、必要に応じて非共役ポリエン、例えば非共役ジエンとを共重合して得られるゴムであることが好ましい。
 上記α-オレフィンとしては、具体的には、エチレン、プロピレン、1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-ノナデセン、1-エイコセン、9-メチル-1-デセン、11-メチル-1-ドデセン、12-エチル-1-テトラデセンなどが挙げられる。
 α-オレフィン系共重合体ゴム(C2-2)は、上記のようなα-オレフィンを1種単独で用いてもよく、また2種以上の混合物として用いてもよい。4-メチル-1-ペンテンと、他のα-オレフィンとの混合物を用いる場合、4-メチル-1-ペンテンと、他のα-オレフィンとのモル比(他のα-オレフィン/4-メチル-1-ペンテン)は、10/90~95/5の範囲内にあることが好ましい。
 上記α-オレフィンのうち、特にエチレン、プロピレン、1-ブテンが好ましく用いられる。
 α-オレフィン系共重合体ゴム(C2-2)としては、例えば、エチレン由来の構成単位と炭素数3以上のα-オレフィン由来の構成単位とを含有する共重合体であって、エチレン由来の構成単位と炭素数3以上のα-オレフィン由来の構成単位との比率であるエチレン/炭素数3以上のα-オレフィン(モル比)が40/60~95/5である共重合体が挙げられる。
 非共役ポリエンとしては、具体的には、ジシクロペンタジエン、1,4-ヘキサジエン、シクロオクタジエン、メチレンノルボルネン、エチリデンノルボルネン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエン、4-エチル-1,4-ヘキサジエン、5-メチル-1,4-ヘプタジエン、5-エチル-1,4-ヘプタジエン、5-メチル-1,5-ヘプタジエン、6-メチル-1,5-ヘプタジエン、5-エチル-1,5-ヘプタジエン、4-メチル-1,4-オクタジエン、5-メチル-1,4-オクタジエン、4-エチル-1,4-オクタジエン、5-エチル-1,4-オクタジエン、5-メチル-1,5-オクタジエン、6-メチル-1,5-オクタジエン、5-エチル-1,5-オクタジエン、6-エチル-1,5-オクタジエン、6-メチル-1,6-オクタジエン、7-メチル-1,6-オクタジエン、6-エチル-1,6-オクタジエン、4-メチル-1,4-ノナジエン、5-メチル-1,4-ノナジエン、4-エチル-1,4-ノナジエン、5-エチル-1,4-ノナジエン、5-メチル-1,5-ノナジエン、6-メチル-1,5-ノナジエン、5-エチル-1,5-ノナジエン、6-エチル-1,5-ノナジエン、6-メチル-1,6-ノナジエン、7-メチル-1,6-ノナジエン、6-エチル-1,6-ノナジエン、7-エチル-1,6-ノナジエン、7-メチル-1,7-ノナジエン、8-メチル-1,7-ノナジエン、7-エチル-1,7-ノナジエン、5-メチル-1,4-デカジエン、5-エチル-1,4-デカジエン、5-メチル-1,5-デカジエン、6-メチル-1,5-デカジエン、5-エチル-1,5-デカジエン、6-エチル-1,5-デカジエン、6-メチル-1,6-デカジエン、7-メチル-1,6-デカジエン、6-エチル-1,6-デカジエン、7-エチル-1,6-デカジエン、7-メチル-1,7-デカジエン、8-メチル-1,7-デカジエン、7-エチル-1,7-デカジエン、8-エチル-1,7-デカジエン、8-メチル-1,8-デカジエン、9-メチル-1,8-デカジエン、8-エチル-1,8-デカジエン、9-メチル-1,8-ウンデカジエン、5-エチリデン-2-ノルボルネン、5-ビニル-2-ノルボルネン、4,8-ジメチル-1,4,8-デカトリエン、4-エチリデン-8-メチル-1,7-ノナジエンなどが挙げられる。中でも、特に5-エチリデン-2-ノルボルネン、5-ビニル-2-ノルボルネン、ジシクロペンタジエン、4,8-ジメチル-1,4,8-デカトリエン(DMDT)、4-エチリデン-8-メチル-1,7-ノナジエン(EMND)が望ましい。
 α-オレフィン系共重合体ゴム(C2-2)は、上記のような非共役ポリエン、例えば非共役ジエンを含む場合は、1種単独で用いてもよく、また2種以上の混合物として用いてもよい。さらに、上記のような非共役ポリエンの他に、他の共重合可能なモノマーを、本発明の目的を損なわない範囲で用いてもよい。
 α-オレフィン系共重合体ゴム(C2-2)において、非共役ポリエンが共重合されている場合には、共重合体中の非共役ポリエンに由来する構成単位の含有量は、好ましくは0.01~30モル%、より好ましくは0.1~20モル%、特に好ましくは0.1~10モル%の範囲内(ただし、該α-オレフィン系共重合体ゴム(C2-2)中の構成単位の全量を100モル%とする。)にある。
 α-オレフィン系共重合体ゴム(C2-2)としては、α-オレフィンと非共役ポリエンの共重合体が好ましい。特にエチレン・炭素数3以上のα-オレフィン・非共役ポリエン共重合体であって、エチレンと炭素数3以上のα-オレフィンとの比率であるエチレン/炭素数3以上のα-オレフィン(モル比)が40/60~95/5であり、かつ非共役ポリエン由来の構成単位を0.01~30モル%含有するものが好ましく挙げられる。
 α-オレフィン系共重合体ゴム(C2-2)は、通常、135℃、デカリン溶媒中で測定した極限粘度[η]が、1.0~10.0dl/g、好ましくは1.5~7dl/gの範囲にある。また、特に制限はないが、前記α-オレフィン系共重合体ゴム(C2-2)のDSCの吸熱曲線から求められる融点(Tm)は、存在しないかまたは120℃未満に存在することが好ましい。
 α-オレフィン系共重合体ゴム(C2-2)は、結晶性ポリオレフィン(C2-1)及びα-オレフィン系共重合体ゴム(C2-2)の合計量100質量部中に、90~40質量部、好ましくは80~45質量部の割合で用いられる。
 前記α-オレフィン系共重合体ゴム(C2-2)は、オレフィン重合用触媒の存在下に、炭素原子数2~20のα-オレフィンと、必要に応じて非共役ポリエンとを共重合させることにより得ることができる。
 <オレフィン系熱可塑性エラストマー(C)の製造方法>
 本発明に係るオレフィン系熱可塑性エラストマー(C)は、例えば、結晶性ポリオレフィン(C2-1)と、α-オレフィン系共重合体ゴム(C2-2)と、必要に応じて配合される軟化剤(C2-3)及び/または無機充填剤(C2-4)との混合物を、下記のような有機過酸化物の存在下に、動的に熱処理して部分的に架橋することによって得られる。
 ここに、「動的に熱処理する」とは、溶融状態で混練することをいう。有機過酸化物としては、具体的には、ジクミルパーオキサイド、ジ-tert-ブチルパーオキサイド、2,5-ジメチル-2,5-ジ-(tert-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ-(tert-ブチルパーオキシ)ヘキシン-3、1,3-ビス(tert-ブチルパーオキシイソプロピル)ベンゼン、1,1-ビス(tert-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、n-ブチル-4,4-ビス(tert-ブチルパーオキシ)バレレート、ベンゾイルパーオキサイド、p-クロロベンゾイルパーオキサイド、2,4-ジクロロベンゾイルパーオキサイド、tert-ブチルパーオキシベンゾエート、tert-ブチルパーオキシイソプロピルカーボネート、ジアセチルパーオキサイド、ラウロイルパーオキサイド、tert-ブチルクミルパーオキサイドなどが挙げられる。
 このような有機過酸化物は、被処理物全体、すなわち結晶性ポリオレフィン(C2-1)およびα-オレフィン系共重合体ゴム(C2-2)の合計量100質量部に対し0.02~3質量部、好ましくは0.05~1質量部となるような量で用いられる。この配合量が上記範囲であれば、得られる熱可塑性エラストマー(C)は、適度に架橋されているため、耐熱性、成形性などに優れ、場合によっては、引張特性、弾性回復および反発弾性等にも優れる。
 有機過酸化物による部分架橋処理に際し、硫黄、p-キノンジオキシム、p,p'-ジベンゾイルキノンジオキシム、N-メチル-N,N'-m-フェニレンジマレイミド等のパーオキシ架橋助剤、あるいはジビニルベンゼン、トリアリルシアヌレート、エチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート、アクリルメタクリレート等の多官能性メタクリレートモノマー、ビニルブチラートまたはビニルステアレート等の多官能性ビニルモノマーを配合してもよい。
 上記のような架橋助剤などの化合物を用いることにより、均一かつ温和な架橋反応が期待できる。このような架橋助剤あるいは多官能性ビニルモノマーなどの化合物は、上記被処理物全体100質量部に対し、通常、2質量部以下、さらに好ましくは0.3~1質量部となるような量で用いられる。
 また有機過酸化物の分解を促進するために、トリエチルアミン、トリブチルアミン、2,4,6-トリ(ジメチルアミノ)フェノール等の三級アミンや、アルミニウム、コバルト、バナジウム、銅、カルシウム、ジルコニウム、マンガン、マグネシウム、鉛、水銀等のナフテン酸塩などの分解促進剤を用いてもよい。
 動的な熱処理は、非開放型の装置中で行なうことが好ましく、また窒素、炭酸ガス等の不活性ガス雰囲気下で行なうことが好ましい。熱処理温度は、好ましくは結晶性ポリオレフィン(C2-1)の融点~300℃の範囲であり、より好ましくは150~250℃、さらに好ましくは170~225℃である。混練時間は、通常、1~20分間、好ましくは1~10分間である。また、加えられる剪断力は、剪断速度として10~100,000sec-1、好ましくは100~50,000sec-1である。
 混練装置としては、ミキシングロール、インテンシブミキサー(たとえばバンバリーミキサー、ニーダー)、一軸または二軸押出機等を用い得るが、非開放型の装置が好ましい。
 上述した動的な熱処理によって、結晶性ポリオレフィン(C2-1)とα-オレフィン系共重合体ゴム(C2-2)とを含む、または部分的に架橋されたオレフィン系熱可塑性エラストマー(C)が得られる。
 本発明に係るオレフィン系熱可塑性エラストマー(C)が部分的に架橋されたとは、下記の方法で測定したゲル含量が20重量%以上、好ましくは20~99.5重量%、特に好ましくは45~98重量%の範囲内にある場合をいう。ゲル含量の測定は、オレフィン系熱可塑性エラストマー(C)を100mg秤取し、これを0.5mm×0.5mm×0.5mmの細片に裁断したものを、密閉容器中にて30mlのシクロヘキサンに、23℃で48時間浸漬した後、濾紙上に取出し、室温で72時間以上、恒量となるまで乾燥することにより行うことができる。
 この乾燥残渣の重量から、重合体成分以外のすべてのシクロヘキサン不溶性成分(無機充填剤等)の重量、およびシクロヘキサン浸漬前の試料中の結晶性ポリオレフィン(C2-1)の重量を減じたものを、「補正された最終重量[y]」とする。
 一方、シクロヘキサン浸漬前の試料中のα-オレフィン系共重合体ゴム(C2-2)の重量を、「補正された初期重量[x]」とする。ここに、ゲル含量は、次の式で求められる。
 ゲル含量[wt%]=(補正された最終重量[y]/補正された初期重量[x])×100
 本発明に係るオレフィン系熱可塑性エラストマー(C)は、例えば、DSCの吸熱曲線から求められる融点(Tm)が120~165℃、好ましくは130~160℃の範囲にあるものであってもよい。
 <スチレン系エラストマー(D)>
 本発明のプロピレン系重合体組成物に含まれてもよい重合体成分の一つであるスチレン系エラストマー(D)は、重合体成分としてスチレンを含むエラストマーである限り、特に制限はないが、スチレン系成分とジエン系成分との共重合体であるスチレン・ジエン系熱可塑性エラストマーが好ましい。特に、その中でもブロック共重合体エラストマー、ランダム共重合体エラストマーが好ましい。ここでスチレン系成分としては、スチレン、α-メチルスチレン、p-メチルスチレン、ビニルキシレン、ビニルナフタレンおよびこれらの混合物などを例示でき、ジエン系成分としては、ブタジエン、イソプレン、ペンタジエン、イソブチレンおよびこれらの混合物などを例示できる。
 本発明に係るスチレン系エラストマー(D)の代表例としては、ポリブタジエンブロックセグメントと、スチレン系化合物(スチレンを含む。以下において同じ)・ブタジエン共重合体ブロックセグメントとからなる水添ジエン系重合体;ポリイソプレンブロックセグメントと、スチレン系化合物・イソプレン共重合体ブロックセグメントとからなる水添ジエン系重合体;スチレン系化合物を主体とする重合体ブロックと共役ジエン化合物を主体とする重合体ブロックとからなるブロック共重合体;スチレン系化合物と共役ジエン化合物とのランダム共重合体の水素添加物;およびスチレン系化合物を主体とする重合体ブロックと共役ジエン化合物を主体とする重合体ブロックとからなるブロック共重合体の水素添加物、などが挙げられる。
 本発明に係るスチレン系熱可塑性エラストマー(D)における、スチレン系成分由来のセグメントの含有量は特に制限されないが、エラストマー(D)の全体の5~40重量%の範囲であれば、特に柔軟性およびゴム弾性の点で好ましい。
 本発明に係るスチレン系エラストマー(D)は、1種または2種以上を組み合わせて用いることができる。また、スチレン系エラストマー(D)は市販のものを用いることができる。
 スチレン系エラストマー(D)のMFRは、スチレン系エラストマー(D)を配合することにより得られるプロピレン系重合体組成物が成形加工し得る限り特に限定はされないが、通常、JIS K-7210,230℃、2.16kg荷重下で測定したMFRが0.01~100g/10分、好ましくは0.01~50g/10分、より好ましくは0.1~30g/10分、特に好ましくは0.1~10g/10分の範囲にある。
 <プロピレン・エチレン・炭素数4~20のα-オレフィン共重合体(E)>
 本発明のプロピレン系重合体組成物に含まれてもよい重合体成分の一つであるプロピレン・エチレン・炭素数4~20のα-オレフィン共重合体(E)は、プロピレン由来の構成単位を40~85モル%、好ましくは60~82モル%、より好ましくは61~75モル%、エチレン由来の構成単位を5~30モル%、好ましくは8~15モル%、より好ましくは10~14モル%、炭素数4~20のα-オレフィン由来の構成単位を5~30モル%、好ましくは10~25モル%、より好ましくは15~25モル%の範囲(ここで、プロピレン由来の構成単位、エチレン由来の構成単位、および炭素数4~20のα-オレフィン由来の構成単位の合計は100モル%である。また、エチレン由来の構成単位、及び炭素数4~20のα-オレフィン由来の構成単位の合計は60~15モル%であることが好ましい。)で含み、かつ、13C・NMRにより測定されるアイソタクチックトライアッド分率(mm分率)が85%以上、好ましくは87%以上、より好ましくは90%以上であり、mm分率の上限が、100%、好ましくは97.5%、より好ましくは97%である、プロピレン・エチレン・炭素数4~20のα-オレフィン共重合体である。炭素数4~20のα-オレフィンとしては、1-ブテンが好ましく用いられる。
 本発明に係るα-オレフィン共重合体(E)のMFRは、α-オレフィン共重合体(E)を混合することにより得られるプロピレン系重合体組成物が成形加工し得る限り特に限定はされないが、通常、230℃、2.16kg荷重下で測定したMFRが0.01~100g/10分、好ましくは0.01~50g/10分、より好ましくは0.1~30g/10分、特に好ましくは0.1~10g/10分の範囲にある。
 本発明に係るα-オレフィン共重合体(E)は、好ましくは、ゲルパーミエーションクロマトグラフィー(GPC)によって測定された分子量分布(Mw/Mn)の値が1~3である。
 本発明に係るα-オレフィン共重合体(E)は、好ましくは、下記(o)および(p)の少なくとも1つ以上、より好ましくは両方を満たすことが望ましい。(o)ショアーA硬度が30~80、好ましくは35~60である。(p)X線回折で測定した結晶化度が20%以下、好ましくは10%以下である。
 本発明に係るα-オレフィン共重合体(E)は、好ましくは、DSCで測定した融点Tmが、50℃以下であるか、または融点が存在しないことが望ましく、特に、融点が存在しないことがより好ましい。本発明において、融点が存在しないとは、融解ピークに起因する融解熱量△Hが1J/g以下であることをいう。
 <α-オレフィン共重合体(E)の製造方法>
 本発明に係るα-オレフィン共重合体(E)は、例えば国際公開2004/087775号パンフレットに記載の方法を用いて製造できる。
 <アイソタクチックプロピレン系重合体(F)>
 本発明のプロピレン系重合体組成物に含まれてもよい重合体成分の一つであるアイソタクチックプロピレン系重合体(F)は、NMR法により測定したアイソタクチックペンタッド分率が通常、0.85以上、好ましくは0.9以上、より好ましくは0.95以上のプロピレン系重合体ある。
 アイソタクチックペンタッド分率(mmmm分率)は、先行公報(特開2003-147135号公報)に記載されている方法で測定、計算される。
 本発明に係るアイソタクチックプロピレン系重合体(F)は、プロピレン単独重合体、またはプロピレンと、少なくとも1種のプロピレン以外の炭素原子数が2~20のα-オレフィンとの共重合体である。ここで、プロピレン以外の炭素原子数が2~20のα-オレフィンとしては、エチレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセンなどが挙げられるが、エチレンまたは炭素原子数が4~10のα-オレフィンが好ましい。
 これらのα-オレフィンは、プロピレンとランダム共重合体を形成してもよく、ブロック共重合体を形成してもよい。
 これらのα-オレフィン由来の構成単位は、共重合体(F)中に35モル%以下、好ましくは30モル%以下の割合で含まれていてもよい。好ましくはプロピレン由来の構成単位が90~100モル%含まれており、共重合体の場合、好ましくはプロピレン由来の構成単位の含有割合はプロピレン由来の構成単位とα-オレフィン由来の構成単位との合計のうちの90~99モル%、より好ましくは92~98モル%である。
 本発明に係るアイソタクチックプロピレン系重合体(F)は、ASTM D 1238に準拠して、230℃、荷重2.16kgで測定されるメルトフローレート(MFR)が0.01~1000g/10分、好ましくは0.05~100g/10分の範囲にあることが望ましい。
 本発明に係るアイソタクチックプロピレン系重合体(F)は、必要に応じて複数のアイソタクチックポリプロピレンを併用することができ、例えば、融点や剛性の異なる2種類以上の成分を用いることもできる。
 本発明に係るアイソタクチックプロピレン系重合体(F)は、耐熱性に優れるプロピレンの単独重合体あるいはα-オレフィン由来の共重合成分が3モル%以下の重合体、耐熱性および柔軟性のバランスに優れるブロックポリプロピレン(通常3~30重量%のノルマルデカン溶出ゴム成分を有する公知のもの)、さらには、柔軟性および透明性のバランスに優れるプロピレンとα-オレフィンのランダム共重合体(通常DSCにより測定される融点が110℃~150℃の範囲にある公知のもの)を、目的の物性を得るために選択してまたは併用して用いることができる。
 本発明に係るアイソタクチックプロピレン系重合体(F)は、例えば、マグネシウム、チタン、ハロゲンおよび電子供与体を必須成分として含有する固体触媒成分と有機アルミニウム化合物および電子供与体からなるチーグラー触媒系、またはメタロセン化合物を触媒の一成分として用いたメタロセン触媒系で、プロピレンを重合、またはプロピレンと他のα-オレフィンとを共重合することにより製造できる。
 <エチレン・酢酸ビニル共重合体(G)>
 本発明のプロピレン系重合体組成物に含まれてもよい重合体成分の一つであるエチレン・酢酸ビニル共重合体(G)は、通常、プロピレン系重合体(A)及びプロピレン系共重合体(B)との相溶性を考慮して酢酸ビニルから導かれる単位を1~49重量%、好ましくは5~49重量%含む共重合体である。酢酸ビニルから導かれる単位が上記範囲より少なすぎるとエチレン・酢酸ビニル共重合体を混入する効果が著しく減少する。
 本発明に係るエチレン・酢酸ビニル共重合体(G)は、通常、MFR(JIS K-7210・1999、190℃、2.16kg荷重)が0.05~100g/10分、好ましくは0.1~50g/10分の範囲にある。MFRが上記範囲にあることにより良好な流動性を示し、他の成分と配合し易く、また得られるプロピレン系重合体組成物は成形性、印刷性や接着性、さらに熱加工性(ウェルダー加工性)に優れる。
 <エチレン系重合体(H)>
 本発明のプロピレン系重合体組成物に含まれてもよい重合体成分の一つであるエチレン系重合体は、密度が850~930kg/m3、好ましくは860~930kg/m3、より好ましくは860~920kg/m3の範囲にあるエチレンの単独重合体あるいはエチレンと炭素数3~20のα-オレフィン、例えば、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセンなどのエチレンを主成分とする共重合体である。エチレン系重合体(H)の密度が前記範囲内にあると、柔軟なシート/フィルムを得ることができる。本発明に係るエチレン系重合体(H)が共重合体である場合は、通常、α-オレフィンから導かれる単位の含有量は5~49モル%、好ましくは5~30モル%、さらに好ましくは5~25モル%の範囲にある。
 本発明に係るエチレン系重合体(H)は、通常、MFR(JIS K-7210・1999、190℃、2.16kg荷重)が0.05~100g/10分、好ましくは0.5~100g/10分の範囲にある。MFRが上記範囲にあることにより、得られるプロピレン系重合体組成物の成形性や物性が優れる。
 <プロピレン系重合体組成物>
 本発明のプロピレン系重合体組成物は、前記プロピレン系重合体(A)を1~35質量部、好ましくは2~20質量部、前記プロピレン系共重合体(B)を5~95質量部、好ましくは10~85質量部含み、前記オレフィン系熱可塑性エラストマー(C)、前記スチレン系エラストマー(D)、前記α-オレフィン共重合体(E)、及び、前記アイソタクチックプロピレン系重合体(F)のいずれか少なくとも1種を、(C)、(D)、(E)についてはそれぞれ0~94質量部、好ましくは0~50質量部、(F)については0~49質量部、好ましくは0~45質量部、さらに好ましくは0~40質量部、さらに好ましくは0~35質量部、さらに好ましくは0~30質量部、特に好ましくは0~25質量部含み、前記エチレン・酢酸ビニル共重合体(G)及び/又はエチレン系重合体(H)を0~60質量部、好ましくは0~50質量部含み、且つ、前記オレフィン系熱可塑性エラストマー(C)~前記エチレン系重合体(H)を合計で1~94質量部、好ましくは13~88質量部含む〔但し、(A)~(H)の重合体の合計を100質量部とする。〕組成物である。〔以下、各重合体は、単に(A)~(H)と表記する場合がある。〕
 本発明のプロピレン系重合体組成物として、3種の重合体を含む例としては、(A)+(B)+(C)、(A)+(B)+(D)、(A)+(B)+(E)及び(A)+(B)+(F)を例示できる。
 本発明のプロピレン系重合体組成物として、4種の重合体を含む例としては、(A)+(B)+(C)+(D)、(A)+(B)+(C)+(E)、(A)+(B)+(C)+(F)、(A)+(B)+(D)+(E)、(A)+(B)+(D)+(F)、(A)+(B)+(E)+(F)、(A)+(B)+(C)+(G)、(A)+(B)+(C)+(H)、(A)+(B)+(D)+(G)、(A)+(B)+(D)+(H)、(A)+(B)+(E)+(G)、(A)+(B)+(E)+(H)、(A)+(B)+(F)+(G)、及び(A)+(B)+(F)+(H)を例示できる。
 本発明のプロピレン系重合体組成物として、5種の重合体を含む例としては、(A)+(B)+(C)+(D)+(E)、(A)+(B)+(C)+(D)+(F)、(A)+(B)+(C)+(E)+(F)、(A)+(B)+(D)+(E)+(F)、(A)+(B)+(C)+(G)+(H)、(A)+(B)+(D)+(G)+(H)、(A)+(B)+(E)+(G)+(H)、(A)+(B)+(F)+(G)+(H)、(A)+(B)+(C)+(D)+(G)、(A)+(B)+(C)+(D)+(H)、(A)+(B)+(C)+(E)+(G)、(A)+(B)+(C)+(E)+(H)、(A)+(B)+(C)+(F)+(G)、(A)+(B)+(C)+(F)+(H)、(A)+(B)+(D)+(E)+(G)、(A)+(B)+(D)+(E)+(H)、(A)+(B)+(D)+(F)+(G)、(A)+(B)+(D)+(F)+(H)、(A)+(B)+(E)+(F)+(G)、及び(A)+(B)+(E)+(F)+(H)を例示できる。
 本発明のプロピレン系重合体組成物として、6種の重合体を含む例としては、(A)+(B)+(C)+(D)+(E)+(F)、(A)+(B)+(C)+(D)+(G)+(H)、(A)+(B)+(C)+(E)+(G)+(H)、(A)+(B)+(C)+(F)+(G)+(H)、(A)+(B)+(D)+(E)+(G)+(H)、(A)+(B)+(D)+(F)+(G)+(H)、(A)+(B)+(C)+(E)+(F)+(H)、(A)+(B)+(E)+(F)+(G)+(H)、(A)+(B)+(C)+(D)+(E)+(G)、(A)+(B)+(C)+(D)+(E)+(H)、(A)+(B)+(C)+(D)+(F)+(G)、(A)+(B)+(C)+(D)+(F)+(H)、(A)+(B)+(D)+(E)+(F)+(G)、(A)+(B)+(C)+(E)+(F)+(G)及び(A)+(B)+(D)+(E)+(F)+(H)を例示できる。
 本発明のプロピレン系重合体組成物として、7種の重合体を含む例としては、(A)+(B)+(C)+(D)+(E)+(G)+(H)、(A)+(B)+(C)+(D)+(F)+(G)+(H)、(A)+(B)+(D)+(E)+(F)+(G)+(H)、(A)+(B)+(C)+(D)+(E)+(F)+(G)、(A)+(B)+(C)+(E)+(F)+(G)+(H)及び(A)+(B)+(C)+(D)+(E)+(F)+(H)を例示できる。
 本発明のプロピレン系重合体組成物は、また、(A)~(H)の重合体全てを含んでいてもよい。
 本発明のプロピレン系重合体組成物は、前記した例に限らず、(A)~(H)の重合体は、二種以上の重合体であってもよい。
 本発明のプロピレン系重合体組成物は、(A)及び(B)に加え、(C)、(D)、(E)のいずれか1種以上を含むことにより、柔軟性と耐摩耗性が優れており、特に(C)、(D)のうち1種以上を含む場合は、耐摩耗性と柔軟性とのバランスがさらに良い。
 本発明のプロピレン系重合体組成物は、更に、(F)、(G)、あるいは(H)を含むことにより、柔軟性を適宜調節することができる。
 本発明のプロピレン系重合体組成物の中でも、特に柔軟性と耐摩耗性とのバランスに優れる組成物としては、一例として、(A)及び(B)に加え、(C)~(H)から以下のように選択した構成を有する組成物が挙げられる。
 (C)、(C)と(E)との組み合わせ、(C)と(H)との組み合わせ、(D)、(D)と(E)との組み合わせ、(D)と(H)との組み合わせ、(C)と(D)との組み合わせ、(C)と(D)と(E)との組み合わせ、(C)と(D)と(H)との組み合わせなどが挙げられる。もちろんこの例に限定されるものではなく、さらに適宜柔軟性を調節するために、(F)や(G)を含んでもよい。
 上記のようなプロピレン系重合体組成物は、例えば1mm厚のプレスシートについて、JISK7215に従って測定したデュロメータA硬さが70以下、好ましくは40~70である組成物を得ることができ、このような組成物は耐摩耗性にも優れており、より好ましい。
 本発明のプロピレン系重合体組成物が、柔軟性でありながら、耐摩耗性に優れる理由は定かではないが、以下のように考えることができる。すなわち耐摩耗性は、重合体組成物に含まれる各成分の相溶性に大きく影響されると考えられるが、本発明のプロピレン系重合体組成物は、マトリックス中に分散相が適度な大きさで分散した構造をとっているのではないかと考えられる。その結果、耐摩耗性は、相分離しているモルフォロジーにおいて分散相の粒径が小さいために、分散相界面を起点とした、界面剥離に由来する摩耗損失が起きにくくなると考えられる。
 なお、本発明においては、プロピレン系重合体組成物の分散相の粒径が小さいであろうということは、プレスシートのヘイズ値が比較的小さいことから裏付けられる。もちろん、ヘイズは単に相溶性によってのみ決まるものでなく、各構成成分の屈折率の影響も受けることがあるので、樹脂の種類によってはいつもヘイズと分散粒径との間に明確な相関があるわけではないが、概ねある程度の相関がある場合が多いと考えられる。
 例えば本発明の実施例に記載した方法で測定した1mm厚プレスシートのヘイズが例えば50%以下となるようなプロピレン系樹脂組成物は、耐摩耗性により優れる傾向にある。
 本発明のプロピレン系重合体組成物において、(A)及び(B)に加えて、(D)を含む場合は、任意の他の成分は(C)、(E)、(F)及び(G)から選ばれる成分を含むことが望ましい。
 本発明のプロピレン系重合体組成物において、(B)、(C)、(D)、(E)及び(H)の重合体は、柔軟性に寄与し、合計で(A)~(H)の合計を100質量部とした場合、30質量部以上含むことが望ましく、40質量部以上含むことが、より好ましい。
 本発明のプロピレン系重合体組成物において、(A)+(B)+(C)+(E)+(F)の含有量は、(A)~(H)の合計を100質量部とした場合、40質量部以上が望ましく、50質量部以上がより好ましく、60質量部以上であることがさらに好ましい。かかる範囲で上記成分を含む場合、耐摩耗性に優れる。さらに透明性も特に良い傾向がある。相溶性がさらに向上するのではないかと考えられる。
 本発明のプロピレン系重合体組成物において、(G)を含む場合は、(G)以外の成分は(C)、(D)、(E)、(F)及び(H)から選ばれるものを採用すると、耐摩耗性の点から、より望ましい。また(D)を含む場合は、任意の他の成分は(C)、(E)、(F)及び(G)から選ばれることが、耐摩耗性の点からより望ましい。
 本発明のプロピレン系重合体組成物の内、実施例7で代表される(A)+(B)+(C)+(D)からなり、それぞれ、(A)を1~15質量部、(B)を10~80質量部、(C)を10~50質量部、及び、(D)を5~50質量部〔(A)+(B)+(C)+(D)=100質量部〕含む組成物は、柔軟性と耐摩耗性が両立した組成物となる。
 本発明のプロピレン系重合体組成物の内、実施例10で代表される(A)+(B)+(D)+(E)+(F)からなり、それぞれ、(A)を1~15質量部、(B)を10~75質量部、(D)を10~50質量部、(E)を10~50質量部、及び、(F)を1~40質量部〔(A)+(B)+(D)+(E)+(F)=100質量部〕含む組成物は、柔軟性と耐摩耗性が両立した組成物となる。
 より柔軟性と耐磨耗性と透明性が優れる組成物としては、
(A)を1~15質量部、(B)を10~75質量部、(D)を10~40質量部、(E)を10~50質量部、及び(F)を1~30質量部〔(A)+(B)+(D)+(E)+(F)=100質量部〕含む組成物、より好ましくは、(A)を1~10質量部、(B)を15~60質量部、(D)を10~40質量部、(E)を10~40質量部、及び(F)を1~15質量部〔(A)+(B)+(D)+(E)+(F)=100質量部〕を含む組成物が挙げられる。
 本発明のプロピレン系重合体組成物の内、実施例5で代表される(A)+(B)+(D)+(F)からなり、それぞれ、(A)を1~15質量部、(B)を10~80質量部、(D)を10~50質量部、及び、(F)を5~40質量部〔(A)+(B)+(D)+(F)=100質量部〕含む組成物は、優れた耐摩耗性を有する組成物となる。
(F)成分が多いほど軟化温度が高く、耐熱性に優れる傾向がある。
 本発明のプロピレン系重合体組成物の内、実施例4で代表される(A)+(B)+(C)+(E)+(F)からなり、それぞれ、(A)を1~15質量部、(B)を10~65質量部、(C)を10~50質量部、(E)を10~50質量部、及び、(F)を10~40質量部〔(A)+(B)+(C)+(E)+(F)=100質量部〕含む組成物は、優れた耐摩耗性を示し、さらに透明性にも優れるので、透明性が求められる用途に使用し得る。
 (E)成分が多いほど軟化温度が高く、耐熱性に優れる傾向がある。
 本発明のプロピレン系重合体組成物の内、実施例3で代表される(A)+(B)+(C)+(H)からなり、それぞれ、(A)を1~15質量部、(B)を10~80質量部、(C)を10~50質量部、及び(H)を5~50質量部〔(A)+(B)+(C)+(H)=100質量部〕含む組成物は、優れた柔軟性と耐摩耗性を示し、透明性にも優れるため透明性が求められる用途に使用し得る。
 本発明のプロピレン系重合体組成物の内、実施例11で代表される(A)+(B)+(E)+(F)+(H)からなり、それぞれ、(A)を1~15質量部、(B)を10~80質量部、(E)を10~50質量部、(F)を1~40質量部、及び(H)を5~50質量部〔(A)+(B)+(E)+(F)+(H)=100質量部〕含む組成物は、優れた耐摩耗性を示し、さらに透明性にも優れるため透明性が求められる用途へ使用し得る。
 本発明のプロピレン系重合体組成物の内、実施例6で代表される(A)+(B)+(D)+(H)からなり、それぞれ、(A)を1~15質量部、(B)を10~80質量部、(D)を10~50質量部、及び、(H)を5~50質量部〔(A)+(B)+(D)+(H)=100質量部〕含む組成物は、優れた柔軟性と耐摩耗性が両立した組成物となる。
 本発明のプロピレン系重合体組成物は、230℃、2.16kg荷重でJIS K-7210に準拠して測定したMFRが、通常、0.01~50g/10分、好ましくは0.01~30g/10分の範囲にある。
 本発明のプロピレン系重合体組成物は、上記各成分を上記のような範囲で種々公知の方法、例えばヘンシェルミキサー、V-ブレンダー、リボンブレンダー、タンブラブレンダー等で混合する方法、あるいは混合後、一軸押出機、二軸押出機、ニーダー、バンバリーミキサー等で溶融混練後、造粒あるいは粉砕する方法を採用して製造することができる。
 本発明のプロピレン系重合体組成物には、必要に応じて、無機充填剤、造核剤、酸化防止剤、難燃剤、帯電防止剤、顔料、染料、発錆防止剤などの添加物を添加することができる。
 前記無機充填剤の代表例としては、例えば炭酸カルシウム、タルク、ガラス繊維、炭酸マグネシウム、マイカ、カオリン、硫酸カルシウム、硫酸バリウム、チタンホワイト、ホワイトカーボン、カーボンブラック、水酸化アルミニウム、酸化アルミニウム、水酸化マグネシウム、シリカ、クレー、ゼオライトなどが挙げられ、これらは単独で又は2種以上を混合して用いることができる。
 本発明のプロピレン系重合体組成物に無機充填剤を加える場合は、プロピレン系重合体組成物100質量部に対して、0.1~300質量部、好ましくは1~250質量部、より好ましくは100~200質量部の範囲で添加し得る。
 前記造核剤の代表例としては、例えば安息香酸ナトリウム、ビスベンジリデンソルビトール、ビス(p-メチルベンジリデン)ソルビトール、ビス(p-エチルベンジリデン)ソルビトール、ソジウム-2,2-メチレンビス(4,6-ジ-t-ブチルフェニル)ホスファイト、タルク、酸化チタン、アルミニウムヒドロキシージーp-t-ブチルベンゾエートなどが挙げられ、これらは単独で又は2種以上を混合して用いることができる。
 前記酸化防止剤の代表例としては、例えばペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]などのフェノール系酸化防止剤、トリス(モノノニルフェニル)ホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイトなどのリン系酸化防止剤、ジラウリルチオジプロピオネートなどのイオウ系酸化防止剤などが挙げられ、これらは単独で又は2種以上を混合して用いることができる。
 難燃剤の代表例としては水酸化マグネシウム、水酸化カルシウム、リン系化合物をなどが挙げられ、これらは単独で又は2種以上を混合して用いることができる。
 本発明のプロピレン系重合体組成物に上記添加物を添加する場合は、上記添加物を混合した後、ロール、バンバリーミキサー、単軸押出機、二軸押出機等の通常の混練機で混練して組成物を調製する方法を採り得るが、通常はペレット状にするのが好ましい。
 <プロピレン系重合体組成物の用途>
 本発明のプロピレン系重合体組成物は、従来公知のポリオレフィン用途に広く用いることができ、例えばシート、未延伸または延伸フィルム、フィラメントなどを含む種々の形状の成形体に成形して利用することができる。
 成形体として具体的には、カレンダー成形、押出成形、射出成形、インフレーション成形、ブロー成形、押出ブロー成形、射出ブロー成形、プレス成形、真空成形、発泡成形などの公知の熱成形方法により得られる成形体が挙げられる。
 以下に数例挙げて成形体を説明する。本発明に係る成形体がたとえばカレンダー成形体である場合、その形状および製品種類は特に限定されないが、たとえばシート、フィルム(未延伸)、パイプ、ホース、電線被覆、フィラメントなどが挙げられ、特にシート、フィルム、フィラメントなどが好ましい。
 本発明のプロピレン系重合体組成物を押出成形する際には、従来公知の押出装置および成形条件を採用することができ、たとえば単軸スクリュー押出機、混練押出機、ラム押出機、ギヤ押出機などを用いて、溶融した本発明のプロピレン系重合体組成物をTダイなどから押出すことによりシートまたはフィルム(未延伸)などに成形することができる。
 <シート成形>
 本発明のプロピレン系重合体組成物は、特にシート〔一般に、厚さが厚いものをシート、薄いものをフィルムと呼称するが、本発明においては、シートおよびフィルムを総称して「シート」と呼ぶ。〕成形に適する。本発明のプロピレン系重合体組成物を用いてシート成形する場合は、(工程1):プロピレン系重合体組成物を加熱溶融する工程と、(工程2):加熱溶融したプロピレン系重合体組成物をシート成形する工程で行い得る。
 また、前記(工程1)と(工程2)の間に、加熱溶融したプロピレン系重合体組成物を混練する工程を含んでもよい。
 <カレンダー成形>
 本発明のプロピレン系重合体組成物は、特にカレンダー成形に適する。本発明のプロピレン系重合体組成物を用いてカレンダー成形する場合は、(工程1):プロピレン系重合体組成物を加熱溶融する工程と、(工程2-1):カレンダー加工により、シート成形する工程で行い得る。
 また、前記(工程1)と(工程2-1)の間に、加熱溶融したプロピレン系重合体組成物を混練する工程を含んでもよい。
 また、前記(工程2)が、(工程2-2):カレンダー加工により、シート成形と下記基材との貼り合わせを同時に行う工程により、積層体を得る工程を含んでもよい。
 <人造皮革の成形>
 人造皮革の成形方法は、(工程2-1)カレンダー加工により、シート成形する工程や、(工程2-2)カレンダー加工により、シート成形と下記基材との貼り合わせを同時に行う工程で積層体を得る方法などが好ましいが、前記(工程1)と(工程2)で得られたシートを引き取り、別途基材と貼り合わせてもよい。
 また、シートの表面に、熱融着やニードルパンチなどにより、型模様を付すエンボス加工の工程を本発明のシートないし積層体の製造過程の適当な段階で加えてもよい。
 すなわち、エンボス加工を本発明のシートに直接行ってもよいし、エンボス加工後のシートと基材を貼り合わせて積層体を製造してもよいし、積層体にした後にエンボス加工を行ってもよい。
 <積層体>
 本発明のプロピレン系重合体組成物から得られるシートは、用途により、種々公知の基材と積層して用い得る。
 積層し得る基材としては、合成繊維、天然繊維、無機繊維、またはこれらの混合物のうち少なくとも1つからなる、織布、編布、不織布、銀面層がある。
 合成繊維としては、ポリプロピレン、ポリエチレン、ポリエステル、ナイロン、アクリル、ポリウレタン、ポリ塩化ビニル、シリコーンなどからなる合成繊維が挙げられる。
 天然繊維としては、綿、麻、絹、羊毛などが挙げられる。
 無機繊維としては、グラスファイバー、炭素繊維などが挙げられる。
 また、織布としては、例えば、繊維質素材から作られた織物、編物などを挙げることができる。また不織布としては、繊維質素材を化学的方法、機械的方法、またはそれらの組み合わせにより絡み合わせてウェッブとしたものが挙げられる。
 また、積層しうる基材として、発泡体シート等の発泡体が挙げられる。発泡体としてはウレタン、ポリエチレン、ポリプロピレンなどのポリオレフィンさらにポリスチレンからなる発泡体などが挙げられる。
  <人造皮革>
  本発明のプロピレン系重合体組成物は人造皮革として用い得る。人造皮革は、自動車(二輪含む)、スポーツ、家電、文具、雑貨、家具、衣料、園芸、建材分野などで使用され得る。
  具体的には、自動車の床材、天井材、インストルメントパネル、ドアトリム、内装シート、座席レザー、シートバック、自転車サドル、デッキボード、床マット、滑り止めマット、レジャー用シート、ガスケット、防水シート、椅子表皮、鞄、ランドセル、陸上競技用シューズやマラソンシューズ、ランニング用シューズ、バスケットシューズ、テニスシューズ、ゴルフシューズ、ウォーキングシューズ、ジャンバー、コート、安全ウェア、手袋、スキーウェア、防寒用登山服、帯、たすき、リボン、携帯電話ストラップ、スイッチプレート、ジャケット、ネームタグ、ゴルフバッグ、時計ベルト、鞄グリップ、ゴルフクラブグリップ、ブーツ、手帳カバー、ブックカバー、キーホルダー、灰皿ケース、タバコケース、携帯ケース、ペンケース、ペングリップ、財布、名刺入れ、定期入れ、畳表裏、壁紙、ショルダー紐、サンダル、スリッパ、ボート、ウォータベッド、テント生地、アルバム、アドレス帳カバー、介護用品(ベッドカバー)、野球ボール、バスケットボール、ハンドボール、ドッジボール、テーブルクロス、アコーディオンカーテン、照明器具、ぬいぐるみ、下敷き、机カバー、額縁、馬具、ベルト、帽子、パラシュート、カヤック、ソファ、クッションカバー、ボール表皮、マウスパッド、ワッペン、バッジ、ブレスレット、ネックレス、収納ボックス、温室用シート、箪笥、テーブル、ティッシュボックスなどが挙げられるが上記に限定されない。
  耐摩耗性、耐傷付性などに優れる点や耐水性や軽量化、良リサイクル性の観点から、自動車の床材、天井材、インストルメントパネル、ドアトリム、内装シート、座席レザーなど自動車内装部材用途に特に適する。
  また、耐水性、軽量性、匂いや色移りがないことからマット、畳表裏、ランニングシューズ、登山靴、ボール、カヤック、スキーウェアなどのスポーツ用品に特に適する。
  以下、実施例に基づいて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
  なお、実施例および比較例における物性値等は、以下の方法により測定した。
  (1)MFR
  MFRの測定は、JIS K-7210(1999年)に従い、(A)(B)(D)(E)(F)については230℃、2.16kg荷重で、(C)については、230℃、10kg荷重で、(G)(H)については、190℃、2.16kg荷重で測定を行った。
  (2)密度(kg/m3
  密度測定は、製品ペレットをサンプルとして、密度勾配管により行った。
 (3)極限粘度[η](dl/g)
 デカリン溶媒を用いて、135℃で測定した値である。すなわち重合パウダー、ペレットまたは樹脂塊約20mgをデカリン15mlに溶解し、135℃のオイルバス中で比粘度ηspを測定した。このデカリン溶液にデカリン溶媒を5ml追加して希釈後、同様にして比粘度ηspを測定した。この希釈操作をさらに2回繰り返し、溶質の濃度(C)を0に外挿した時のηsp/Cの値を極限粘度として求めた(下式参照)。
   [η]=lim(ηsp/C) (C→0)
 (4)分子量分布(Mw/Mn)
 分子量分布(Mw/Mn)は、Waters社製ゲル浸透クロマトグラフAlliance GPC-2000型を用い、以下のようにして測定した。分離カラムは、TSKgel GNH6-HTを2本およびTSKgel GNH6-HTLを2本であり、カラムサイズはいずれも直径7.5mm、長さ300mmであり、カラム温度は140℃とし、移動相にはo-ジクロロベンゼン(和光純薬工業)および酸化防止剤としてBHT(ジブチルヒドロキシトルエン、武田薬品)0.025重量%を用い、1.0ml/分で移動させ、試料濃度は15mg/10mLとし、試料注入量は500マイクロリットルとし、検出器として示差屈折計を用いた。標準ポリスチレンは、分子量がMw<1000およびMw>4×106 については東ソー社製を用い、1000≦Mw≦4×106 についてはプレッシャーケミカル社製を用いた。
 (5)各重合体中のエチレン、プロピレン、α-オレフィン含量
 エチレン、プロピレン、α-オレフィン含量の定量化は日本電子(株)製JNM GX-400型NMR測定装置を用いて、下記のように測定した。試料0.35gをヘキサクロロブタジエン2.0mlに加熱溶解させた。この溶液をグラスフィルター(G2)で濾過した後、重水素化ベンゼン0.5mlを加え、内径10mmのNMRチューブに装入して、120℃で13C・NMR測定を行った。積算回数は、8,000回以上とした。得られた13C・NMRスペクトルにより、エチレン、プロピレン、α-オレフィンの組成を定量化した。
 (6)立体規則性(rrrr分率およびrr分率)
 立体規則性は、上記同条件で13C・NMR測定にて定量化した。
 シンジオタクチックペンタッド分率(rrrr分率)は、13C・NMRスペクトルにおけるPrrrr(プロピレン単位が5単位連続してシンジオタクチック結合した部位における第3単位目のメチル基に由来する吸収強度)およびPw(プロピレン単位の全メチル基に由来する吸収強度)の吸収強度から下記式(1)により求めた。
   rrrr分率(%)=100×Prrrr/Pw・・・(1)
 シンジオタクチックトライアッド分率(rr分率)は、13C・NMRスペクトルにおけるPrr(プロピレン単位が3単位連続してシンジオタクチック結合した部位における第2単位目のメチル基に由来する吸収強度)およびPw(プロピレン単位の全メチル基に由来する吸収強度)の吸収強度から下記式(4)により求めた。
   rr分率(%)=100×Prr/Pw・・・(4)
 (7)mmmm分率
 mmmm分率は、特開2003-147135記載の方法で測定を行った。
 (8)融点(Tm)及び融解熱量(ΔH)(J/g)
 セイコ-インスツルメンツ社製DSCを用い、測定用アルミパンに約5mgの試料をつめて、50℃/分で230℃まで昇温し、230℃で5分間保持した後、10℃/分で-100℃まで降温し、次いで、5分間保持した後、10℃/分で200℃まで昇温した。この最後の昇温時の吸熱曲線より融点(Tm)及び融解熱量(ΔH)を求めた。
 (9)内部ヘイズ
 内部ヘイズを測定する試料として、200℃に設定した神藤金属工業社製油圧式熱プレス機を用い、プロピレン系重合体組成物を用い、1mm厚のプレスシートを成形した。このとき余熱を5~7分程度し、10MPaで1~2分間加圧した後、20℃に設定した別の神藤金属工業社製油圧式熱プレス機を用い、10MPaで圧縮し、5分程度冷却して測定用試料を作成した。熱板として5mm厚の真鍮板を用いた。
 得られたプレスシートを23℃で24時間、状態調節のために静置した後、測定に用いた。ヘイズメーターとして日本電色工業株式会社製 NDH2000を用い、JIS K-7105に従い、測定法A,シクロヘキサノール中で、光源Cを用いて、23℃で測定した。
 (10)デュロメーターA硬度
 試料として、上記(9)と同じ方法で作成し、状態調節して得たプレスシートを用い、JIS K-7215に従って、保持時間5秒で測定した。
 (11)軟化温度
 上記(9)の方法で作成し、状態調節して得た厚さ1mmのプレスシートを試料として用意し、JIS K-7206に従って測定した。
 (12)耐摩耗性(テーバー摩耗試験)
 試料として、状態調節して得たプレスシートを用い、JIS K-7204に準拠し、23℃、摩耗輪;H-22、回転速度;60回転/分(60rpm)、回転回数;500回、荷重;1000gで摩耗損失量を測定した。
 実施例及び比較例で用いた重合体を以下に示す。
 (A)プロピレン系重合体(A-1)
 充分に窒素置換した内容量500mlのガラス製オートクレーブにトルエン250mlを装入し、プロピレンを150リットル/時間の量で流通させ、25℃で20分間保持させておいた。一方、充分に窒素置換した内容量30mlの枝付きフラスコにマグネチックスターラーを入れ、これにメチルアルミノキサンのトルエン溶液(Al=1.53mol/l)を5.00mmol、次いでジベンジルメチレン(シクロペンタジエニル)(3,6-ジ-tert-ブチルフルオレニル)ジルコニウムジクロリドのトルエン溶液5.0μmolを加え、20分間攪拌した。この溶液を、プロピレンを流通させておいたトルエン入りガラス製オートクレーブに加え、重合を開始した。プロピレンガスを150リットル/時間の量で連続的に供給し、常圧下、25℃で45分間重合を行った後、少量のメタノールを添加し重合を停止した。ポリマー溶液を大過剰のメタノールに加え、重合体を析出させ、80℃で12時間、減圧乾燥を行った結果、重合体2.38gが得られた。重合活性は0.63kg-PP/mmol-Zr・hrであり、得られたプロピレン単独重合体(A-1)の極限粘度[η]は1.9dl/g、Tm=158℃(Tm1=152℃、Tm2=158℃)であり、ペンタッド分率(rrrr分率)は93.5%であり、融解熱量(△HC)は57J/gであり、Mw/Mn=2.0であった。MFR(JIS K6721、230℃、2.16kg荷重)は6.0g/10分であった。
 (B)プロピレン・エチレン・1-ブテン共重合体(B-1)
 充分に窒素置換した2000mlの重合装置に、833mlの乾燥ヘキサン、1-ブテン120gとトリイソブチルアルミニウム(1.0mmol)を常温で仕込んだ後、重合装置内温を60℃に昇温し、プロピレンで系内の圧力を0.33MPaになるように加圧した後に、エチレンで、系内圧力を0.63MPaに調整した。次いで、ジ(p-クロロフェニル)メチレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ジルコニウムジクロリド0.002mmolとアルミニウム換算で0.6mmolのメチルアルミノキサン(東ソー・ファインケム社製)を接触させたトルエン溶液を重合器内に添加し、内温60℃、系内圧力を0.63MPaにエチレンで保ちながら20分間重合し、20mlのメタノールを添加し重合を停止した。脱圧後、2Lのメタノール中で重合溶液から重合体を析出し、真空下130℃、12時間乾燥した。得られたプロピレン・エチレン・1-ブテン共重合体(B-1)は97gであり、135℃デカリン中で測定した極限粘度[η]=2.3(dl/g)であった。MFR(JIS K6721、230℃、2.16kg荷重)は1.3g/10分であった。すなわち、式(2)(条件(b4))の左辺の値は、1.50×(1.3)(-0.20)=1.42、右辺の値は2.65×(1.3)(-0.20)=2.51であり、式(2)を満たしていることがわかる。DSCより得られたガラス転移点は-23.8℃であり、融解熱量(ΔHB)は1J/g以下であった。
 プロピレン・エチレン・1-ブテン共重合体(B-1)の組成はプロピレン由来の構成単位が62モル%、エチレン由来の構成単位が10モル%、1-ブテン由来の構成単位が28モル%であった。
 (C)オレフィン系熱可塑性エラストマー(C-1)
 温度:230℃、荷重:10kgで測定したMFR:25g/10分、デュロメータA硬さ:52の部分架橋されたオレフィン系熱可塑性エラストマー(三井化学株式会社製、商品名:ミラストマーTM5030NS)を用いた。
 (D)スチレン系エラストマー(D-1)
 温度:230℃、荷重:2.16kgで測定したMFR:4.5g/10分、デュロメータA硬さ:42のスチレン系ブロック共重合エラストマー(旭化成株式会社製 商品名タフテックTMH1221)を用いた。
 (E)プロピレン・エチレン・炭素数4~20のα-オレフィン共重合体(E-1)
 充分に窒素置換した2000mLの重合装置に、917mLの乾燥ヘキサン、1-ブテン85gとトリイソブチルアルミニウム(1.0mmol)を常温で仕込んだ後、重合装置内温を65℃に昇温し、プロピレンで系内の圧力を0.77MPaになるように加圧した後に、エチレンで、系内圧力を0.78MPaに調整した。次いで、ジメチルメチレン(3-tert-ブチル-5-メチルシクロペンタジエニル)フルオレニルジルコニウムジクロライド0.002mmolとアルミニウム換算で0.6mmolのメチルアルミノキサン(東ソー・ファインケム社製)を接触させたトルエン溶液を重合器内に添加し、内温65℃、系内圧力を0.78MPaにエチレンで保ちながら20分間重合し、20mLのメタノールを添加し重合を停止した。脱圧後、2Lのメタノール中で重合溶液からポリマーを析出し、真空下130℃、12時間乾燥した。得られた共重合体は、60.4gであった。得られたプロピレン・エチレン・炭素数4~20のα-オレフィン共重合体は、エチレン含量=14.0モル%、1-ブテン含量=19モル%、MFR=7g/10min、[η]=2.0、融点=観測されず(ΔH:0.5J/g未満)、分子量分布(Mw/Mn)=2.0、ショアーA硬度=45、mm分率=92%のプロピレン・エチレン・1-ブテン共重合体である。
 (F)アイソタクチックプロピレン系重合体
 (1)プロピレン・エチレンランダム共重合体(F-1)
 プロピレン含有量:95.5モル%、エチレン含有量:4.5モル%、mmmm分率:97.5%以上、融点:146℃、及び、温度:230℃、荷重:2.16kgで測定したMFR:30g/10分。
 (2)プロピレン・エチレンランダム共重合体(F-2)
 プロピレン含有量:97.0モル%、エチレン含有量:3.0モル%、mmmm分率:97.5%以上、融点:149℃、及び、温度:230℃、荷重:2.16kgで測定したMFR:20g/10分。
 なお、上記プロピレン・エチレンランダム共重合体(F-1)及びプロピレン・エチレンランダム共重合体(F-2)の立体規則性(mmmm)は、13C-NMRスペクトルの解析により求めた。
 (G)エチレン・酢酸ビニル共重合体(G-1)
 酢酸ビニル含有量:25質量%、温度:190℃、荷重:2.16kgで測定したMFR:2g/10分、デュロメータA硬さ:86のエチレン・酢酸ビニル共重合体(三井・デュポンポリケミカル社製、商品名 エバフレックスTM EV360)。
 (H)エチレン系重合体(H-1)
 密度:885kg/m3、温度:190℃、荷重:2.16kgで測定したMFR:3.6g/10分のエチレン・1-ブテンランダム共重合体(三井化学株式会社製 商品名 タフマーTMA4085)。
 [実施例1~12及び比較例1、2]
 各重合体を表1及び表2に記載した量で、それぞれ秤量し、各重合体の混合物100重量部に対して、酸化防止剤として3,5-ジ-t-ブチル-4-ヒドロキシトルエンを0.2重量部、配合し、二軸押出機を用いて、樹脂温度200℃で溶融混練して造粒することにより、プロピレン系重合体組成物を得た。
 得られたプロピレン系重合体組成物の物性を前記記載の方法で測定した。結果を表1及び表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

Claims (32)

  1.  以下の重合体を含むプロピレン系重合体組成物からなるシートまたはフィルムを含む人造皮革;
    (A)13C・NMRにより測定されるシンジオタクチックペンタッド分率(rrrr分率)が85%以上であり、プロピレンから導かれる構成単位を90~100モル%含有するプロピレン系重合体:1~35質量部、
    (B)プロピレン由来の構成単位を40~89モル%、炭素数2~20のα-オレフィン由来の構成単位を11~60モル%含有し、以下の(b4)を満たすプロピレン系共重合体:5~95質量部、
     (b4)135℃、デカリン中で測定した極限粘度[η](dl/g)と230℃、荷重2.16kgで測定したMFR(g/10分)が下記の関係式を満たす。
      1.50×MFR(-0.20)≦[η]≦2.65×MFR(-0.20)
     及び、(A)及び(B)に加え、以下の(C)~(F)の重合体のいずれか少なくとも1種を含有し、(G)及び/又は(H)の重合体を下記に規定する範囲で任意に含んでもよく、且つ、(C)~(H)の重合体を合計で1~94質量部含む〔但し、(A)~(H)の重合体の合計を100質量部とする。〕。
    (C)非架橋の、または部分的に架橋されたオレフィン系熱可塑性エラストマー:0~94質量部
    (D)スチレン系エラストマー:0~94質量部
    (E)プロピレン由来の構成単位を40~85モル%、エチレン由来の構成単位を5~30モル%、炭素数4~20のα-オレフィン由来の構成単位を5~30モル%含み、かつ、アイソタクチックトライアッド分率(mm分率)が85%以上である、プロピレン・エチレン・炭素数4~20のα-オレフィン共重合体:0~94質量部
    (F)アイソタクチックプロピレン系重合体:0~49質量部
    (G)エチレン・酢酸ビニル共重合体:0~60質量部
    (H)密度が850~930kg/m3のエチレン系重合体:0~60質量部
  2.  前記プロピレン系重合体組成物が、(C)~(E)の重合体の少なくともいずれか1種を含有する請求項1に記載の人造皮革。
  3.  前記プロピレン系重合体組成物が、(D)~(E)の重合体の少なくともいずれか1種を含有する請求項1に記載の人造皮革。
  4.  前記プロピレン系重合体組成物が、(D)の重合体を含有するとともに、さらに(C)、(E)、(F)及び(G)からなる群より選ばれる少なくともいずれか1種の重合体を含有する請求項1に記載の人造皮革。
  5.  前記プロピレン系重合体組成物が、(E)および(F)の重合体を含有する請求項1~4のいずれか1項に記載の人造皮革。
  6.  前記プロピレン系重合体組成物が、(A)を1~15質量部、(B)を10~80質量部、(C)を10~50質量部、及び、(D)を5~50質量部〔(A)+(B)+(C)+(D)=100質量部〕含む請求項1に記載の人造皮革。
  7.  前記プロピレン系重合体組成物が、(A)を1~15質量部、(B)を10~75質量部、(D)を10~50質量部、(E)を10~50質量部、及び、(F)を1~40質量部〔(A)+(B)+(D)+(E)+(F)=100質量部〕含む請求項1に記載の人造皮革。
  8.  前記プロピレン系重合体組成物が、(A)を1~15質量部、(B)を10~80質量部、(D)を10~50質量部、及び、(F)を5~40質量部〔(A)+(B)+(D)+(F)=100質量部〕含む請求項1に記載の人造皮革。
  9.  前記プロピレン系重合体組成物が、(A)を1~15質量部、(B)を10~65質量部、(C)を10~50質量部、(E)を10~50質量部、及び、(F)を10~40質量部〔(A)+(B)+(C)+(E)+(F)=100質量部〕含む請求項1に記載の人造皮革。
  10.  前記プロピレン系重合体組成物が、(A)を1~15質量部、(B)を10~80質量部、(C)を10~50質量部、及び(H)を5~50質量部〔(A)+(B)+(C)+(H)=100質量部〕含む請求項1に記載の人造皮革。
  11.  前記プロピレン系重合体組成物が、(A)を1~15質量部、(B)を10~80質量部、(E)を10~50質量部、(F)を1~40質量部、及び(H)を5~50質量部〔(A)+(B)+(E)+(F)+(H)=100質量部〕含む請求項1に記載の人造皮革。
  12.  前記プロピレン系重合体組成物が、(A)を1~15質量部、(B)を10~80質量部、(D)を10~50質量部、及び、(H)を5~50質量部〔(A)+(B)+(D)+(H)=100質量部〕含む請求項1に記載の人造皮革。
  13.  前記プロピレン系重合体組成物から得られる1mm厚のプレスシートについてJIS K-7215に従って測定したデュロメータA硬さが70以下である請求項1~12のいずれか1項に記載の人造皮革。
  14.  前記プロピレン系重合体組成物から得られる1mm厚プレスシートについてJIS K-7105に従って測定した内部ヘイズが50%以下である請求項1~13のいずれか1項に記載の人造皮革。
  15.  以下の重合体を含むプロピレン系重合体組成物;
    (A)13C・NMRにより測定されるシンジオタクチックペンタッド分率(rrrr分率)が85%以上であり、プロピレンから導かれる構成単位を90~100モル%含有するプロピレン系重合体:1~35質量部、
    (B)プロピレン由来の構成単位を40~89モル%、炭素数2~20のα-オレフィン由来の構成単位を11~60モル%含有し、以下の(b4)を満たすプロピレン系共重合体:5~95質量部、
     (b4)135℃、デカリン中で測定した極限粘度[η](dl/g)と230℃、荷重2.16kgで測定したMFRが下記の関係式を満たす。
      1.50×MFR(-0.20)≦[η]≦2.65×MFR(-0.20)
     及び、(A)及び(B)に加え、以下の(C)~(F)の重合体のいずれか少なくとも1種を含有し、(G)及び/又は(H)の重合体を下記に規定する範囲で任意に含んでもよく、且つ、(C)~(H)の重合体を合計で1~94質量部含む〔但し、(A)~(H)の重合体の合計を100質量部とする。〕。
    (C)非架橋の、または部分的に架橋されたオレフィン系熱可塑性エラストマー:0~94質量部
    (D)スチレン系エラストマー:0~94質量部
    (E)プロピレン由来の構成単位を40~85モル%、エチレン由来の構成単位を5~30モル%、炭素数4~20のα-オレフィン由来の構成単位を5~30モル%含み、かつ、アイソタクチックトライアッド分率(mm分率)が85%以上である、プロピレン・エチレン・炭素数4~20のα-オレフィン共重合体:0~94質量部
    (F)アイソタクチックプロピレン系重合体:0~49質量部
    (G)エチレン・酢酸ビニル共重合体:0~60質量部
    (H)密度が850~930kg/m3のエチレン系重合体:0~60質量部
  16.  (C)~(E)の重合体の少なくともいずれか1種を含有する請求項15に記載のプロピレン系重合体組成物。
  17. (D)~(E)の重合体の少なくともいずれか1種を含有する請求項15に記載のプロピレン系重合体組成物。
  18. (D)の重合体を含有するとともに、さらに(C)、(E)、(F)及び(G)から選ばれる重合体を含有する請求項15に記載のプロピレン系重合体組成物。
  19. (E)および(F)の重合体を含有する請求項15~18のいずれか1項に記載のプロピレン系重合体組成物。
  20.  (A)を1~15質量部、(B)を10~80質量部、(C)を10~50質量部、及び、(D)を5~50質量部〔(A)+(B)+(C)+(D)=100質量部〕含む請求項15に記載のプロピレン系重合体組成物。
  21.  (A)を1~15質量部、(B)を10~75質量部、(D)を10~50質量部、(E)を10~50質量部、及び、(F)を1~40質量部〔(A)+(B)+(D)+(E)+(F)=100質量部〕含む請求項15に記載のプロピレン系重合体組成物。
  22.  (A)を1~15質量部、(B)を10~80質量部、(D)を10~50質量部、及び、(F)を5~40質量部〔(A)+(B)+(D)+(F)=100質量部〕含む請求項15に記載のプロピレン系重合体組成物。
  23.  (A)を1~15質量部、(B)を10~65質量部、(C)を10~50質量部、(E)を10~50質量部、及び、(F)を10~40質量部〔(A)+(B)+(C)+(E)+(F)=100質量部〕含む請求項15に記載のプロピレン系重合体組成物。
  24.  (A)を1~15質量部、(B)を10~80質量部、(C)を10~50質量部、及び(H)を5~50質量部〔(A)+(B)+(C)+(H)=100質量部〕含む請求項15に記載のプロピレン系重合体組成物。
  25.  (A)を1~15質量部、(B)を10~80質量部、(E)を10~50質量部、(F)を1~40質量部、及び(H)を5~50質量部〔(A)+(B)+(E)+(F)+(H)=100質量部〕含む請求項15に記載のプロピレン系重合体組成物。
  26.  (A)を1~15質量部、(B)を10~80質量部、(D)を10~50質量部、及び、(H)を5~50質量部〔(A)+(B)+(D)+(H)=100質量部〕含む請求項15に記載のプロピレン系重合体組成物。
  27.  前記プロピレン系重合体組成物から得られる1mm厚のプレスシートについてJIS K-7215に従って測定したデュロメータA硬さが70以下である請求項15~26のいずれか1項に記載のプロピレン系重合体組成物。
  28.  前記プロピレン系重合体組成物から得られる1mm厚プレスシートについてJIS K-7105に従って測定した内部ヘイズが50%以下である請求項15~27のいずれか1項に記載のプロピレン系重合体組成物。
  29.  請求項15~28のいずれか1項に記載のプロピレン系重合体組成物からなる成形体。
  30.  請求項15~28のいずれか1項に記載のプロピレン系重合体組成物からなるシート。
  31.  請求項15~28のいずれか1項に記載のプロピレン系重合体組成物からなるフィルム。
  32.  請求項30に記載のシートまたは請求項31に記載のフィルムを含む積層体。
PCT/JP2012/065975 2011-06-29 2012-06-22 プロピレン系重合体組成物及びその用途 WO2013002136A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12804208.2A EP2727960A1 (en) 2011-06-29 2012-06-22 Propylene-based polymer composition and application therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-144364 2011-06-29
JP2011144364A JP2011225890A (ja) 2011-06-29 2011-06-29 プロピレン系重合体組成物及びその用途

Publications (1)

Publication Number Publication Date
WO2013002136A1 true WO2013002136A1 (ja) 2013-01-03

Family

ID=45041612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065975 WO2013002136A1 (ja) 2011-06-29 2012-06-22 プロピレン系重合体組成物及びその用途

Country Status (4)

Country Link
US (1) US8735499B2 (ja)
EP (1) EP2727960A1 (ja)
JP (2) JP2011225890A (ja)
WO (1) WO2013002136A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015151493A (ja) * 2014-02-17 2015-08-24 三菱樹脂株式会社 ウェルダー加工用フィルム
US10550261B2 (en) 2014-06-27 2020-02-04 Kuraray Plastics Co., Ltd. Anti-slipping material

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101044214B1 (ko) * 2005-05-18 2011-06-29 미쓰이 가가쿠 가부시키가이샤 올레핀 중합용 촉매, 올레핀 중합체의 제조방법, 프로필렌계 공중합체의 제조방법, 프로필렌 중합체, 프로필렌계 중합체 조성물 및 이들의 용도
JP6057827B2 (ja) * 2013-04-25 2017-01-11 三井化学株式会社 熱可塑性重合体組成物、およびその用途
JP6260772B2 (ja) * 2013-12-24 2018-01-17 キョーラク株式会社 クッション材及びその製造方法
JP6335583B2 (ja) * 2014-03-28 2018-05-30 新日鐵住金ステンレス株式会社 プロピレン系樹脂組成物、及びそれから成形された配管部材及びタンクから選ばれた製品
WO2017206044A1 (en) * 2016-05-31 2017-12-07 Dow Global Technologies Llc Thermoplastic polyolefin blends having improved low temperature impact performance
JP6890474B2 (ja) * 2016-06-08 2021-06-18 三井化学株式会社 プロピレン系樹脂組成物およびその製造方法、ならびに該プロピレン系樹脂組成物を用いた成形体
KR101913812B1 (ko) 2017-07-25 2018-11-02 코오롱글로텍주식회사 폴리올레핀계 인조가죽 및 이의 제조방법
WO2019025372A1 (en) 2017-07-31 2019-02-07 Sabic Global Technologies B.V. POLYOLEFIN COMPOSITION
CN111836855B (zh) * 2018-03-14 2023-09-22 住友化学株式会社 多相丙烯聚合材料

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001287305A (ja) 2000-04-05 2001-10-16 Idemitsu Petrochem Co Ltd 樹脂積層体、レザー調シートおよび自動車内装材
JP2002097325A (ja) 2000-09-20 2002-04-02 Mitsui Chemicals Inc シンジオタクティックポリプロピレン系共重合体組成物および成形体
JP2003147135A (ja) 2001-11-08 2003-05-21 Mitsui Chemicals Inc ポリプロピレン樹脂組成物
WO2004087775A1 (ja) 2003-03-28 2004-10-14 Mitsui Chemicals, Inc. プロピレン系共重合体、ポリプロピレン組成物およびその用途、ならびに遷移金属化合物、オレフィン重合用触媒
WO2006057361A1 (ja) * 2004-11-25 2006-06-01 Mitsui Chemicals, Inc. プロピレン系樹脂組成物およびその用途
WO2006123759A1 (ja) 2005-05-18 2006-11-23 Mitsui Chemicals, Inc. オレフィン重合用触媒、オレフィン重合体の製造方法、プロピレン系共重合体の製造方法、プロピレン重合体、プロピレン系重合体組成物およびこれらの用途
WO2008059895A1 (fr) 2006-11-17 2008-05-22 Mitsui Chemicals, Inc. Film en résine de polypropylène et son utilisation
JP2008169316A (ja) * 2007-01-12 2008-07-24 Mitsui Chemicals Inc プロピレン重合体組成物、該組成物からなるペレット、樹脂用改質剤、熱可塑性樹脂組成物の製造方法、プロピレン系重合体組成物からなる成形体の製造方法、プロピレン系重合体組成物からなる成形体
WO2009084517A1 (ja) * 2007-12-27 2009-07-09 Mitsui Chemicals, Inc. プロピレン系重合体組成物
JP2010111822A (ja) * 2008-11-10 2010-05-20 Mitsui Chemicals Inc 耐圧パイプまたは耐圧容器
JP2010144007A (ja) * 2008-12-17 2010-07-01 Mitsui Chemicals Inc インフレーションフィルム
JP2010189474A (ja) * 2009-02-16 2010-09-02 Mitsui Chemicals Inc 表面改質フィルム
JP2010189475A (ja) * 2009-02-16 2010-09-02 Mitsui Chemicals Inc 放射線滅菌された成形体

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3328360B2 (ja) * 1993-03-31 2002-09-24 三井化学株式会社 熱可塑性エラストマー
DE69701819T2 (de) * 1996-02-12 2000-10-12 Fina Research Polypropylenfasern
CA2514426C (en) * 2003-01-27 2008-09-16 Mitsui Chemicals, Inc. Propylene polymer composition and use thereof

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001287305A (ja) 2000-04-05 2001-10-16 Idemitsu Petrochem Co Ltd 樹脂積層体、レザー調シートおよび自動車内装材
JP2002097325A (ja) 2000-09-20 2002-04-02 Mitsui Chemicals Inc シンジオタクティックポリプロピレン系共重合体組成物および成形体
JP2003147135A (ja) 2001-11-08 2003-05-21 Mitsui Chemicals Inc ポリプロピレン樹脂組成物
WO2004087775A1 (ja) 2003-03-28 2004-10-14 Mitsui Chemicals, Inc. プロピレン系共重合体、ポリプロピレン組成物およびその用途、ならびに遷移金属化合物、オレフィン重合用触媒
WO2006057361A1 (ja) * 2004-11-25 2006-06-01 Mitsui Chemicals, Inc. プロピレン系樹脂組成物およびその用途
WO2006123759A1 (ja) 2005-05-18 2006-11-23 Mitsui Chemicals, Inc. オレフィン重合用触媒、オレフィン重合体の製造方法、プロピレン系共重合体の製造方法、プロピレン重合体、プロピレン系重合体組成物およびこれらの用途
WO2008059895A1 (fr) 2006-11-17 2008-05-22 Mitsui Chemicals, Inc. Film en résine de polypropylène et son utilisation
JP2008169316A (ja) * 2007-01-12 2008-07-24 Mitsui Chemicals Inc プロピレン重合体組成物、該組成物からなるペレット、樹脂用改質剤、熱可塑性樹脂組成物の製造方法、プロピレン系重合体組成物からなる成形体の製造方法、プロピレン系重合体組成物からなる成形体
WO2009084517A1 (ja) * 2007-12-27 2009-07-09 Mitsui Chemicals, Inc. プロピレン系重合体組成物
JP2010111822A (ja) * 2008-11-10 2010-05-20 Mitsui Chemicals Inc 耐圧パイプまたは耐圧容器
JP2010144007A (ja) * 2008-12-17 2010-07-01 Mitsui Chemicals Inc インフレーションフィルム
JP2010189474A (ja) * 2009-02-16 2010-09-02 Mitsui Chemicals Inc 表面改質フィルム
JP2010189475A (ja) * 2009-02-16 2010-09-02 Mitsui Chemicals Inc 放射線滅菌された成形体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MACROMOLECULES, vol. 31, 1998, pages 1335 - 1340

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015151493A (ja) * 2014-02-17 2015-08-24 三菱樹脂株式会社 ウェルダー加工用フィルム
US10550261B2 (en) 2014-06-27 2020-02-04 Kuraray Plastics Co., Ltd. Anti-slipping material

Also Published As

Publication number Publication date
JPWO2013002136A1 (ja) 2015-02-23
EP2727960A1 (en) 2014-05-07
US8735499B2 (en) 2014-05-27
US20130137826A1 (en) 2013-05-30
JP2011225890A (ja) 2011-11-10

Similar Documents

Publication Publication Date Title
WO2013002136A1 (ja) プロピレン系重合体組成物及びその用途
KR100878869B1 (ko) 프로필렌계 중합체 조성물, 그 용도, 및 열가소성 중합체조성물의 제조 방법
JP5590517B2 (ja) 透明ポリオレフィン組成物
US7847040B2 (en) α-olefin-based polymer composition, molded product formed from the composition, and novel polymer
WO2012157709A1 (ja) プロピレン系共重合体、プロピレン系共重合体組成物、その成形体およびその発泡体、およびそれらの製造方法
US20060247381A1 (en) Propylene polymer compsotions and uses thereof
JP2014210869A (ja) 熱可塑性重合体組成物、およびその用途
JP5330637B2 (ja) プロピレン系重合体組成物、該組成物からなる成形体、プロピレン系重合体組成物の製造方法
JP2010241933A (ja) 熱可塑性エラストマー組成物
KR100712631B1 (ko) 신디오택틱 프로필렌계 중합체 조성물
JP6057827B2 (ja) 熱可塑性重合体組成物、およびその用途
JP2013147593A (ja) プロピレン系重合体組成物から得られる成形体、該成形体を含む積層体、及び成形体の製造方法
JP4841955B2 (ja) オレフィン系熱可塑性エラストマー積層体
US8609772B2 (en) Elastic films having improved mechanical and elastic properties and methods for making the same
JP2013067818A (ja) 熱可塑性エラストマー組成物
JP4712739B2 (ja) オレフィン系熱可塑性エラストマー製合成皮革
JP6029746B2 (ja) 熱可塑性重合体組成物、およびその用途
JP2008169316A (ja) プロピレン重合体組成物、該組成物からなるペレット、樹脂用改質剤、熱可塑性樹脂組成物の製造方法、プロピレン系重合体組成物からなる成形体の製造方法、プロピレン系重合体組成物からなる成形体
JP2018172532A (ja) 熱可塑性重合体組成物及びその用途
JP2020100725A (ja) オレフィン系重合体組成物およびそれを用いた合成皮革
US20110152460A1 (en) Syndiotactic propylene based polymer composition, formed body, and laminated sheet
JP2004292668A (ja) オレフィン系熱可塑性エラストマー組成物および該組成物からなる成形体
WO2022270572A1 (ja) 熱可塑性エラストマー組成物、その成形体、およびその用途
JP2007160610A (ja) オレフィン系熱可塑性エラストマー積層体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12804208

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013522811

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012804208

Country of ref document: EP