WO2012176755A1 - 炭化珪素基板の製造方法 - Google Patents

炭化珪素基板の製造方法 Download PDF

Info

Publication number
WO2012176755A1
WO2012176755A1 PCT/JP2012/065595 JP2012065595W WO2012176755A1 WO 2012176755 A1 WO2012176755 A1 WO 2012176755A1 JP 2012065595 W JP2012065595 W JP 2012065595W WO 2012176755 A1 WO2012176755 A1 WO 2012176755A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
substrate
carbide substrate
chamfered portion
silicon
Prior art date
Application number
PCT/JP2012/065595
Other languages
English (en)
French (fr)
Inventor
恭子 沖田
藤原 伸介
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to DE112012002597.0T priority Critical patent/DE112012002597T5/de
Priority to CN201280025086.2A priority patent/CN103563055A/zh
Publication of WO2012176755A1 publication Critical patent/WO2012176755A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/06Joining of crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02021Edge treatment, chamfering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide

Definitions

  • the present invention relates to a method for manufacturing a silicon carbide substrate, and more particularly to a method for manufacturing a silicon carbide substrate capable of suppressing the occurrence of chipping during the formation of a chamfered portion.
  • silicon carbide has been increasingly adopted as a material constituting semiconductor devices in order to enable higher breakdown voltage, lower loss, and use in high-temperature environments.
  • Silicon carbide is a wide band gap semiconductor having a larger band gap than silicon that has been widely used as a material for forming semiconductor devices. Therefore, by adopting silicon carbide as a material constituting the semiconductor device, it is possible to achieve a high breakdown voltage and a low on-resistance of the semiconductor device.
  • a semiconductor device that employs silicon carbide as a material has an advantage that a decrease in characteristics when used in a high temperature environment is small as compared with a semiconductor device that employs silicon as a material.
  • a semiconductor device using silicon carbide as a material is manufactured, for example, by forming an epitaxial growth layer on a silicon carbide substrate, forming a region in which a desired impurity is introduced into the epitaxial growth layer, and forming an electrode.
  • the silicon carbide substrate is generally manufactured by cutting (slicing) a silicon carbide crystal (ingot).
  • silicon carbide has an extremely high hardness, the cutting is not easy. For this reason, various studies have been made on a method for cutting a silicon carbide crystal, and various methods have been proposed (see, for example, JP-A-2009-61528 (Patent Document 1)).
  • a chamfered portion is formed in a region including the outer peripheral surface in order to improve ease of subsequent handling.
  • the chamfered portion is formed without taking any measures, there is a problem that chipping occurs in the chamfered portion.
  • the present invention has been made to solve such problems, and an object of the present invention is to provide a method for manufacturing a silicon carbide substrate capable of suppressing the occurrence of chipping during the formation of a chamfered portion. is there.
  • a method of manufacturing a silicon carbide substrate according to the present invention includes a step of preparing a single crystal silicon carbide crystal, a step of obtaining a substrate by cutting the crystal, and a chamfered portion in a region including the outer peripheral surface of the substrate. Forming. In the step of obtaining the substrate, the crystal is cut so that the main surface of the substrate forms an angle of 10 ° or more with respect to the ⁇ 0001 ⁇ plane.
  • the present inventor has made a detailed study on a measure for suppressing the occurrence of chipping at the time of forming the chamfered portion, and obtained the following knowledge and arrived at the present invention.
  • the present inventor examined the frequency of chipping by paying attention to the chipping occurrence location and the surface orientation of the main surface of the substrate. As a result, it has been clarified that chipping is likely to occur at the boundary portion between the main surface on the silicon surface side of the silicon carbide substrate and the chamfered portion connected to the main surface.
  • the silicon carbide crystal is cut to obtain a substrate, the crystal is cut so that the main surface of the substrate forms an angle of a predetermined value or more with respect to the ⁇ 0001 ⁇ plane, more specifically, an angle of 10 ° or more. It was found that the above chipping was clearly suppressed in the substrate obtained in this way.
  • the crystal is cut so that the main surface of the substrate forms an angle of 10 ° or more with respect to the ⁇ 0001 ⁇ plane.
  • the hexagonal silicon carbide single crystal has a (0001) plane that is a silicon plane in which silicon atoms are arranged on the surface, and a (000-1) plane that is formed on the opposite side and is a carbon plane in which carbon atoms are arranged on the surface. have.
  • the main surface on the silicon surface side is a main surface on the side close to the silicon surface.
  • the surface of the region connected to the main surface on the silicon surface side of the substrate in the chamfered portion is an angle of 20 ° or more with respect to the (0001) plane.
  • a chamfer may be formed so as to form
  • chipping occurs when the angle formed by the surface of the region connected to the main surface on the silicon surface side of the substrate in the chamfered portion becomes smaller than the (0001) plane and becomes less than 20 °. It becomes easy to do. Therefore, chipping is generated by forming the chamfered portion so that the surface of the region connected to the main surface on the silicon surface side of the substrate forms an angle of 20 ° or more with respect to the (0001) plane in the chamfered portion. Can be suppressed.
  • the chamfering angle in the chamfered portion formed to be continuous with the main surface on the silicon surface side of the substrate is ⁇ ° and the chamfered width is Lmm.
  • the chamfered portion may be formed so that ⁇ / L exceeds 30 and is less than 200.
  • the chamfering process is often performed by supplying a liquid such as a polishing liquid to the outer peripheral surface of the substrate, bringing a grindstone into contact with the outer peripheral surface, and rotating the substrate in the circumferential direction. At this time, if the chamfer width is small, the polishing liquid is not sufficiently supplied to the processed portion, and chipping is likely to occur. On the other hand, when the chamfer angle is increased, the occurrence of this chipping is suppressed. And when the influence of both the chamfering width and the chamfering angle is taken into account, the occurrence of chipping can be effectively suppressed by making ⁇ / L exceed 30.
  • the ⁇ / L is preferably more than 30 and less than 200.
  • the chamfering angle refers to an angle on an acute angle side among angles formed by a plane including the main surface and a curved surface including a chamfered portion connected thereto.
  • the chamfer width refers to the length in the radial direction of the region processed by the chamfering process.
  • the chamfered portion in the step of forming the chamfered portion, may be formed so that the chamfer radius is 0.1 mm or greater and 0.3 mm or less.
  • the chamfer radius is preferably 0.1 mm or more and 0.3 mm or less.
  • the chamfer radius is a curvature radius of a curved surface formed on the outer peripheral surface of the substrate in a cross section in the thickness direction of the substrate on which chamfering has been performed.
  • the chamfered portion in the step of forming the chamfered portion, may be formed in a region of the substrate including an outer peripheral surface that is concave on the silicon surface side of the substrate.
  • the above chipping is particularly likely to occur.
  • the method for manufacturing a silicon carbide substrate of the present invention capable of suppressing the occurrence of chipping is particularly suitable when chamfering is performed in a situation where such chipping is particularly likely to occur.
  • the chamfered portion in the step of forming the chamfered portion, may be formed so that the variation in the chamfer width is within 100 ⁇ m.
  • the variation in the chamfer width causes the substrate to warp.
  • the curvature of the silicon carbide substrate manufactured can be reduced by making the said dispersion
  • the variation in the chamfer width refers to the difference between the maximum value and the minimum value of the chamfer width.
  • the method for manufacturing a silicon carbide substrate of the present invention it is possible to provide a method for manufacturing a silicon carbide substrate capable of suppressing the occurrence of chipping during the formation of the chamfered portion. .
  • a method for manufacturing a silicon carbide substrate in one embodiment of the present invention will be described.
  • a step of preparing a crystal (ingot) of single crystal silicon carbide is performed.
  • an ingot of single crystal silicon carbide is produced, for example, by a sublimation method described below. That is, first, a seed crystal made of single crystal silicon carbide and a raw material powder made of silicon carbide are inserted into a container made of graphite. Next, the raw material powder is heated to sublimate silicon carbide and recrystallize on the seed crystal. At this time, recrystallization proceeds while a desired impurity such as nitrogen is introduced. As a result, the single crystal silicon carbide ingot 1 shown in FIG. 1 is obtained.
  • the ingot 1 can be efficiently produced by setting the growth direction of the ingot 1 to the ⁇ 0001> direction as shown in FIG.
  • the produced ingot 1 is cut to produce a substrate.
  • the columnar (cylindrical) ingot 1 produced is set so that a part of the side surface is supported by the support base 2.
  • the wire 9 travels in a direction along the diameter direction of the ingot 1, the wire 9 approaches the ingot 1 along the cutting direction ⁇ that is a direction perpendicular to the travel direction, and the wire 9 and the ingot 1 come into contact with each other.
  • the ingot 1 is cut
  • silicon carbide substrate 3 shown in FIG. 3 is obtained.
  • ingot 1 is cut so that main surface 3 ⁇ / b> A of silicon carbide substrate 3 forms an angle of 10 ° or more with respect to the ⁇ 0001 ⁇ plane of the silicon carbide single crystal constituting silicon carbide substrate 3.
  • the region including the outer peripheral surface of silicon carbide substrate 3 obtained by cutting (slicing) ingot 1 as described above is the main surface on the silicon surface side.
  • the first inclined surface 3C having a conical surface shape inclined toward the side of reducing the thickness of the silicon carbide substrate 3, and the other main surface 3B which is the main surface on the carbon surface side.
  • the second inclined surface 3D having a conical surface shape inclined to the side on which the thickness of the silicon substrate 3 is reduced, and the curved surface shape (toroidal surface shape) connecting the first inclined surface 3C and the second inclined surface 3D.
  • a chamfered portion including the outer peripheral curved surface 3E is formed.
  • ingot 1 is cut such that main surface 3A of silicon carbide substrate 3 forms an angle of 10 ° or more with respect to the ⁇ 0001 ⁇ plane. Therefore, occurrence of chipping at the boundary portion between the main surface 3A on the silicon surface side and the first inclined surface 3C, which is likely to generate chipping in chamfering, is suppressed.
  • the surface of the region connected to main surface 3A on the silicon surface side of silicon carbide substrate 3 in the chamfered portion is used. It is preferable that the chamfered portion is formed so that a certain first inclined surface 3C forms an angle of 20 ° or more with respect to the (0001) plane. Thereby, generation
  • the silicon carbide substrate 3 when chamfering is performed, referring to FIG. 4, the silicon carbide substrate 3 is connected to main surface 3 ⁇ / b> A on the silicon surface side.
  • the chamfer angle in the chamfered portion to be formed is ⁇ ° and the chamfer width is Lmm
  • the chamfered portion is preferably formed so that ⁇ / L exceeds 30 and is less than 200. Thereby, generation
  • the chamfer radius R is 0.1 mm or more and 0.3 mm or less. It is preferable that a chamfered portion is formed. Thereby, generation
  • O indicates the center of curvature of the curved surface formed on the outer peripheral surface of the substrate in the cross section in the thickness direction of the silicon carbide substrate 3 that has been chamfered.
  • the method for manufacturing a silicon carbide substrate in the present embodiment when chamfering is performed, concave shape is formed on the main surface 3A side of silicon carbide substrate 3 on the silicon surface side of silicon carbide substrate 3.
  • the chamfered portion may be formed in a region including the outer peripheral surface. Even under such conditions in which chipping is likely to occur, according to the silicon carbide substrate manufacturing method of the present embodiment, the occurrence of chipping can be suppressed.
  • silicon carbide substrate 3 can be deformed into various forms due to the influence of conditions and the like when cutting ingot 1.
  • FIG. 5 when the entire silicon carbide substrate 3 is deformed into an arcuate shape, at least the region including the outer peripheral surface 3G having a concave shape on the main surface 3A on the silicon surface side, that is, the regions on the left and right sides in FIG.
  • the chamfered portion is preferably formed on ⁇ .
  • the chamfered portion is formed.
  • the chamfered portion is formed not only in the region ⁇ of FIG. 5 and FIG. 6 where chipping is likely to occur, but also in other regions including the outer peripheral surface 3G (regions along the outer peripheral surface 3G other than the region ⁇ ).
  • the chamfered portion may be formed over the entire circumference including the region ⁇ .
  • the chamfered portion is formed so that the variation in chamfering width L is within 100 ⁇ m in the entire circumference. Is preferred. Thereby, the curvature of silicon carbide substrate 3 can be reduced.
  • an ingot was prepared by the same method as in the above embodiment, and a silicon carbide substrate was produced by slicing the ingot.
  • the ingot was sliced so that the angle of the main surface on the silicon surface side of the silicon carbide substrate with respect to the (0001) plane, that is, the off angle from the (0001) plane was in the range of 0 ° to 80 °.
  • the off direction three types of off directions of ⁇ 10-10> direction, ⁇ 11-20> direction, and ⁇ 31-10> direction were adopted. And the chamfering process was implemented with respect to the produced silicon carbide substrate.
  • the chamfering angle ⁇ was 25 °
  • the chamfering length L was 0.2 mm
  • the chamfering radius was 0.2 mm.
  • the grindstone used for chamfering is an electrodeposition grindstone with a diamond particle size of # 600. Then, after the chamfering process was completed, the presence or absence of chipping was investigated. The experimental results are shown in Tables 1 to 3.
  • the method for manufacturing a silicon carbide substrate of the present invention can be applied particularly advantageously to the manufacture of a silicon carbide substrate that is required to suppress the occurrence of chipping during the formation of a chamfered portion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

 炭化珪素基板の製造方法は、単結晶炭化珪素のインゴットを準備する工程と、インゴットを切断することにより炭化珪素基板(3)を得る工程と、炭化珪素基板(3)の外周面を含む領域に面取り部(3C,3D,3E)を形成する工程とを備え、炭化珪素基板(3)を得る工程では、炭化珪素基板(3)の主面(3A)が{0001}面に対して10°以上の角度をなすようにインゴットが切断される。

Description

炭化珪素基板の製造方法
 本発明は炭化珪素基板の製造方法に関し、より特定的には、面取り部の形成時におけるチッピングの発生を抑制することが可能な炭化珪素基板の製造方法に関するものである。
 近年、半導体装置の高耐圧化、低損失化、高温環境下での使用などを可能とするため、半導体装置を構成する材料として炭化珪素の採用が進められつつある。炭化珪素は、従来から半導体装置を構成する材料として広く使用されている珪素に比べてバンドギャップが大きいワイドバンドギャップ半導体である。そのため、半導体装置を構成する材料として炭化珪素を採用することにより、半導体装置の高耐圧化、オン抵抗の低減などを達成することができる。また、炭化珪素を材料として採用した半導体装置は、珪素を材料として採用した半導体装置に比べて、高温環境下で使用された場合の特性の低下が小さいという利点も有している。
 炭化珪素を材料として用いた半導体装置は、たとえば炭化珪素基板上にエピタキシャル成長層を形成し、当該エピタキシャル成長層に所望の不純物を導入した領域を形成するとともに、電極を形成することにより製造される。そして、炭化珪素基板は、炭化珪素の結晶(インゴット)を切断(スライス)することにより製造されるのが一般的である。しかし、炭化珪素は極めて高い硬度を有するため、その切断は容易ではない。そのため、炭化珪素結晶の切断方法については様々な検討がなされ、種々の方法が提案されている(たとえば、特開2009-61528号公報(特許文献1)参照)。
特開2009-61528号公報
 上述のように作製された炭化珪素基板においては、その後の取り扱いの容易性を向上させるため、外周面を含む領域に面取り部が形成されることが好ましい。しかし、何ら対策を講じることなく面取り部を形成すると、面取り部にチッピングが発生するという問題が生じる。
 本発明はこのような課題を解決するためになされたものであって、その目的は、面取り部の形成時におけるチッピングの発生を抑制することが可能な炭化珪素基板の製造方法を提供することである。
 本発明に従った炭化珪素基板の製造方法は、単結晶炭化珪素の結晶を準備する工程と、上記結晶を切断することにより基板を得る工程と、当該基板の外周面を含む領域に面取り部を形成する工程とを備えている。そして、上記基板を得る工程では、基板の主面が{0001}面に対して10°以上の角度をなすように上記結晶が切断される。
 本発明者は、面取り部の形成時におけるチッピングの発生を抑制する方策について詳細な検討を行ない、以下のような知見を得て本発明に想到した。
 すなわち、本発明者は、チッピングの発生箇所および基板主面の面方位に着目し、チッピングの発生頻度について検討した。その結果、チッピングは、炭化珪素基板のシリコン面側の主面と、当該主面に連なる面取り部との境界部に発生し易いことが明らかとなった。そして、炭化珪素結晶を切断して基板を得るにあたって、基板の主面が{0001}面に対して所定値以上の角度、より具体的には10°以上の角度をなすように上記結晶を切断して得られた基板においては、上記チッピングの発生が明確に抑制されることを見出した。
 本発明の炭化珪素基板の製造方法においては、上記基板を得る工程で、基板の主面が{0001}面に対して10°以上の角度をなすように上記結晶が切断される。その結果、本発明の炭化珪素基板の製造方法によれば、面取り部の形成時におけるチッピングの発生を抑制することができる。
 なお、六方晶炭化珪素単結晶は、表面に珪素原子が並ぶシリコン面である(0001)面と、その反対側に形成され、表面に炭素原子が並ぶカーボン面である(000-1)面とを有している。そして、上記シリコン面側の主面とは、上記シリコン面に近い側の主面をいう。
 上記炭化珪素基板の製造方法においては、面取り部を形成する工程では、面取り部において上記基板のシリコン面側の主面に接続される領域の表面が(0001)面に対して20°以上の角度をなすように面取り部が形成されてもよい。
 本発明者の検討によれば、面取り部において上記基板のシリコン面側の主面に接続される領域の表面が(0001)面に対してなす角が小さくなり、20°未満となるとチッピングが発生し易くなる。そのため、面取り部において上記基板のシリコン面側の主面に接続される領域の表面が(0001)面に対して20°以上の角度をなすように面取り部を形成することにより、チッピングの発生を抑制することができる。
 上記炭化珪素基板の製造方法においては、面取り部を形成する工程では、上記基板のシリコン面側の主面に連なるように形成される面取り部における面取り角をθ°、面取り幅をLmmとした場合、θ/Lが30を超え、200未満となるように面取り部が形成されてもよい。
 面取り加工は、基板の外周面に研磨液などの液体を供給しつつ当該外周面に砥石を接触させ、基板を周方向に回転させることにより実施される場合が多い。このとき、面取り幅が小さいと、加工部に研磨液が十分に供給されず、チッピングが発生し易くなる。一方、面取り角を大きくすると、このチッピングの発生が抑制される。そして、面取り幅および面取り角の両方の影響を考慮すると、θ/Lが30を超える状態とすることにより、チッピングの発生を有効に抑制することができる。一方、θ/Lが200以上となると、主面と面取り部の表面とが垂直に近づくため、チッピングが発生しやすくなるという問題が発生するおそれがある。そのため、上記θ/Lは30を超え、200未満とすることが好ましい。
 ここで、面取り角とは、主面を含む平面とそれに連なる面取り部を含む曲面とがなす角のうち、鋭角側の角度をいう。また、面取り幅とは、面取り加工により加工される領域の径方向の長さをいう。
 上記炭化珪素基板の製造方法においては、面取り部を形成する工程では、面取り半径が0.1mm以上0.3mm以下となるように面取り部が形成されてもよい。
 面取り半径が0.1mm未満では外周部が尖るため、チッピングが発生しやすくなるという問題が発生するおそれがある。一方、面取り半径が0.3mmを超えると、外周面(外周曲面)と当該外周面に連なる傾斜面とが垂直に近づくため、チッピングが発生しやすくなるという問題が発生するおそれがある。そのため、面取り半径は0.1mm以上0.3mm以下とすることが好ましい。なお、面取り半径とは、面取り加工が実施された基板の厚み方向の断面における、基板外周面に形成される曲面の曲率半径をいう。
 上記炭化珪素基板の製造方法においては、面取り部を形成する工程では、基板のうち、基板のシリコン面側に凹形状となっている外周面を含む領域に、上記面取り部が形成されてもよい。
 シリコン面側の主面側に凹形状を有する領域に面取り部を形成した場合、上記チッピングが特に発生し易い。チッピングの発生を抑制可能な本発明の炭化珪素基板の製造方法は、このようなチッピングが特に発生し易い状況で面取り加工が実施される場合に、特に好適である。
 上記炭化珪素基板の製造方法においては、面取り部を形成する工程では、面取り幅のばらつきが100μm以内となるように上記面取り部が形成されてもよい。面取り幅のばらつきは、基板の反りの原因となる。そして、上記ばらつきを100μm以内とすることにより、製造される炭化珪素基板の反りを軽減することができる。なお、面取り幅のばらつきとは、面取り幅の最大値と最小値との差をいう。
 以上の説明から明らかなように、本発明の炭化珪素基板の製造方法によれば、面取り部の形成時におけるチッピングの発生を抑制することが可能な炭化珪素基板の製造方法を提供することができる。
単結晶炭化珪素のインゴットを示す概略斜視図である。 インゴットの切断方法を示す概略平面図である。 インゴットを切断することにより得られた基板を示す概略斜視図である。 基板の面取り部の形状を示す概略部分断面図である。 基板の変形状態と面取り部の形成が望ましい部位との関係を示す概略断面図である。 基板の変形状態と面取り部の形成が望ましい部位との関係を示す概略断面図である。
 以下、図面に基づいて本発明の実施の形態を説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。また、本明細書中においては、個別方位を[]、集合方位を<>、個別面を()、集合面を{}でそれぞれ示す。また、負の指数については、結晶学上、”-”(バー)を数字の上に付けることになっているが、本明細書中では、数字の前に負の符号を付けている。
 まず、本発明の一実施の形態における炭化珪素基板の製造方法について説明する。図1を参照して、本実施の形態における炭化珪素基板の製造方法では、まず、単結晶炭化珪素の結晶(インゴット)を準備する工程が実施される。具体的には、たとえば以下に説明する昇華法により、単結晶炭化珪素のインゴットが作製される。すなわち、まずグラファイトからなる容器内に単結晶炭化珪素からなる種結晶と、炭化珪素からなる原料粉末とが挿入される。次に、原料粉末が加熱されることにより炭化珪素が昇華し、種結晶上に再結晶する。このとき、所望の不純物、たとえば窒素などが導入されつつ再結晶が進行する。これにより、図1に示す単結晶炭化珪素のインゴット1が得られる。ここで、インゴット1の成長方向を図1に示すように<0001>方向とすることにより、効率よくインゴット1を作製することができる。
 次に、作製されたインゴット1が切断されることにより、基板が作製される。具体的には、図2を参照して、まず作製された柱状(円柱状)のインゴット1が、その側面の一部が支持台2により支持されるようにセットされる。次に、ワイヤー9が、インゴット1の直径方向に沿った方向に走行しつつ、走行方向に垂直な方向である切断方向αに沿ってインゴット1に近づき、ワイヤー9とインゴット1とが接触する。そして、ワイヤー9が切断方向αに沿って進行し続けることによりインゴット1が切断される。これにより、図3に示す炭化珪素基板3が得られる。このとき、炭化珪素基板3の主面3Aが炭化珪素基板3を構成する炭化珪素単結晶の{0001}面に対して10°以上の角度をなすようにインゴット1が切断される。
 次に、得られた炭化珪素基板3の外周面を含む領域に面取り部を形成する面取り加工が実施される。より具体的には、図4を参照して、たとえば上述のようにインゴット1が切断(スライス)されて得られた炭化珪素基板3の外周面を含む領域に、シリコン面側の主面である一方の主面3Aに接続され炭化珪素基板3の厚みを減じる側に傾斜した円錐面形状を有する第1の傾斜面3Cと、カーボン面側の主面である他方の主面3Bに接続され炭化珪素基板3の厚みを減じる側に傾斜した円錐面形状を有する第2の傾斜面3Dと、第1の傾斜面3Cと第2の傾斜面3Dとを接続する曲面形状(トロイダル面形状)を有する外周曲面3Eとを含む面取り部が形成される。その後、炭化珪素基板3の主面3A,3Bが、たとえば研磨により平坦化されることにより、本実施の形態における炭化珪素基板3が完成する。
 上記本実施の形態における炭化珪素基板の製造方法においては、炭化珪素基板3の主面3Aが{0001}面に対して10°以上の角度をなすようにインゴット1が切断されている。そのため、面取り加工においてチッピングが発生し易いシリコン面側の主面3Aと第1の傾斜面3Cとの境界部におけるチッピングの発生が抑制されている。
 また、上記本実施の形態における炭化珪素基板の製造方法においては、面取り加工が実施される際には、面取り部において炭化珪素基板3のシリコン面側の主面3Aに接続される領域の表面である第1の傾斜面3Cが(0001)面に対して20°以上の角度をなすように面取り部が形成されることが好ましい。これにより、チッピングの発生を一層抑制することができる。
 さらに、上記本実施の形態における炭化珪素基板の製造方法においては、面取り加工が実施される際には、図4を参照して、炭化珪素基板3のシリコン面側の主面3Aに連なるように形成される面取り部における面取り角をθ°、面取り幅をLmmとした場合、θ/Lが30を超え、200未満となるように面取り部が形成されることが好ましい。これにより、チッピングの発生を一層抑制することができる。
 また、上記本実施の形態における炭化珪素基板の製造方法においては、面取り加工が実施される際には、図4を参照して、面取り半径Rが0.1mm以上0.3mm以下となるように面取り部が形成されることが好ましい。これにより、チッピングの発生を一層抑制することができる。なお、図4において、Oは面取り加工が実施された炭化珪素基板3の厚み方向の断面における、基板外周面に形成される曲面の曲率中心を示している。
 さらに、上記本実施の形態における炭化珪素基板の製造方法においては、面取り加工が実施される際には、炭化珪素基板3のうち、炭化珪素基板3のシリコン面側の主面3A側に凹形状となっている外周面を含む領域に、上記面取り部が形成されてもよい。チッピングが発生し易いこのような条件下においても、本実施の形態における炭化珪素基板の製造方法によれば、チッピングの発生を抑制することができる。
 より具体的には、炭化珪素基板3は、インゴット1を切断する際の条件等の影響により、種々の形態に変形し得る。たとえば図5に示すように炭化珪素基板3全体が弓状に変形した場合、少なくともシリコン面側の主面3Aに凹形状となっている外周面3Gを含む領域、すなわち図5において左右両側の領域αに上記面取り部が形成されることが好ましい。また、図6に示すように炭化珪素基板3が波形に変形した場合、少なくともシリコン面側の主面3Aに凹形状となっている外周面3Gを含む領域α、すなわち図6において左側の領域αに上記面取り部が形成されることが好ましい。このとき、チッピングが発生し易い上記図5および図6の領域αだけでなく、外周面3Gを含む他の領域(領域α以外の外周面3Gに沿った領域)にも上記面取り部が形成されていてもよく、領域αを含む全周にわたって上記面取り部が形成されていてもよい。
 また、上記本実施の形態における炭化珪素基板の製造方法においては、面取り加工が実施される際には、面取り幅Lのばらつきが全周において100μm以内となるように上記面取り部が形成されることが好ましい。これにより、炭化珪素基板3の反りを軽減することができる。
 炭化珪素基板の面取り加工を実施した場合における基板主面と(0001)面とのなす角と、チッピングの発生との関係を調査する実験を行なった。実験の手順は以下の通りである。
 まず、上記実施の形態と同様の方法でインゴットを準備し、これをスライスすることにより炭化珪素基板を作製した。このとき、炭化珪素基板のシリコン面側の主面の(0001)面に対する角度、すなわち(0001)面からのオフ角が0°~80°の範囲となるようにインゴットをスライスした。また、オフ方位については、<10-10>方向、<11-20>方向、および<31-10>方向の3通りのオフ方位を採用した。そして、作製された炭化珪素基板に対して面取り加工を実施した。面取り部の形状としては、面取り角θを25°、面取り長さLを0.2mm、面取り半径を0.2mmとした。また、面取り加工に用いた砥石は、ダイヤモンド粒径#600の電着砥石である。そして、面取り加工の完了後、チッピング発生の有無を調査した。実験結果を表1~表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1~表3に示すように、オフ方位に関係なく、(0001)面からのオフ角が0°および5°の場合にはチッピングが発生したのに対し、10°以上の場合、より具体的には10°以上80°以下の場合、チッピングは発生しなかった。このことから、炭化珪素基板の面取り加工を実施する場合、基板主面と(0001)面とのなす角を10°以上とすることにより、チッピングの発生を抑制できることが確認される。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 本発明の炭化珪素基板の製造方法は、面取り部の形成時におけるチッピングの発生を抑制することが求められる炭化珪素基板の製造に、特に有利に適用され得る。
 1 インゴット、2 支持台、3 炭化珪素基板、3A,3B 主面、3C 第1の傾斜面、3D 第2の傾斜面、3E 外周曲面、3G 外周面、9 ワイヤー。

Claims (6)

  1.  単結晶炭化珪素の結晶(1)を準備する工程と、
     前記結晶(1)を切断することにより基板(3)を得る工程と、
     前記基板(3)の外周面(3G)を含む領域に面取り部(3C,3D,3E)を形成する工程とを備え、
     前記基板(3)を得る工程では、前記基板(3)の主面(3A)が{0001}面に対して10°以上の角度をなすように前記結晶(1)が切断される、炭化珪素基板(3)の製造方法。
  2.  前記面取り部(3C,3D,3E)を形成する工程では、前記面取り部(3C,3D,3E)において前記基板(3)のシリコン面側の主面(3A)に接続される領域の表面(3C)が(0001)面に対して20°以上の角度をなすように前記面取り部(3C,3D,3E)が形成される、請求項1に記載の炭化珪素基板(3)の製造方法。
  3.  前記面取り部(3C,3D,3E)を形成する工程では、前記基板(3)のシリコン面側の主面(3A)に連なるように形成される前記面取り部(3C,3D,3E)における面取り角をθ°、面取り幅をLmmとした場合、θ/Lが30を超え、200未満となるように前記面取り部(3C,3D,3E)が形成される、請求項1または2に記載の炭化珪素基板(3)の製造方法。
  4.  前記面取り部(3C,3D,3E)を形成する工程では、面取り半径が0.1mm以上0.3mm以下となるように前記面取り部(3C,3D,3E)が形成される、請求項1~3のいずれか1項に記載の炭化珪素基板(3)の製造方法。
  5.  前記面取り部(3C,3D,3E)を形成する工程では、前記基板(3)のうち、前記基板(3)のシリコン面側に凹形状となっている外周面(3G)を含む領域に、前記面取り部(3C,3D,3E)が形成される、請求項1~4のいずれか1項に記載の炭化珪素基板(3)の製造方法。
  6.  前記面取り部(3C,3D,3E)を形成する工程では、面取り幅のばらつきが100μm以内となるように前記面取り部(3C,3D,3E)が形成される、請求項1~5のいずれか1項に記載の炭化珪素基板(3)の製造方法。
PCT/JP2012/065595 2011-06-23 2012-06-19 炭化珪素基板の製造方法 WO2012176755A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112012002597.0T DE112012002597T5 (de) 2011-06-23 2012-06-19 Verfahren zur Herstellung eines Siliciumcarbidsubstrats
CN201280025086.2A CN103563055A (zh) 2011-06-23 2012-06-19 制造碳化硅基板的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-139145 2011-06-23
JP2011139145A JP2013008769A (ja) 2011-06-23 2011-06-23 炭化珪素基板の製造方法

Publications (1)

Publication Number Publication Date
WO2012176755A1 true WO2012176755A1 (ja) 2012-12-27

Family

ID=47360622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065595 WO2012176755A1 (ja) 2011-06-23 2012-06-19 炭化珪素基板の製造方法

Country Status (5)

Country Link
US (1) US20120325196A1 (ja)
JP (1) JP2013008769A (ja)
CN (1) CN103563055A (ja)
DE (1) DE112012002597T5 (ja)
WO (1) WO2012176755A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6011339B2 (ja) * 2011-06-02 2016-10-19 住友電気工業株式会社 炭化珪素基板の製造方法
JP6233058B2 (ja) 2013-09-25 2017-11-22 住友電気工業株式会社 炭化珪素半導体基板の製造方法
JP6668674B2 (ja) * 2015-10-15 2020-03-18 住友電気工業株式会社 炭化珪素基板
WO2017090279A1 (ja) 2015-11-24 2017-06-01 住友電気工業株式会社 炭化珪素単結晶基板、炭化珪素エピタキシャル基板および炭化珪素半導体装置の製造方法
EP3567139B1 (en) * 2018-05-11 2021-04-07 SiCrystal GmbH Chamfered silicon carbide substrate and method of chamfering
EP3567138B1 (en) * 2018-05-11 2020-03-25 SiCrystal GmbH Chamfered silicon carbide substrate and method of chamfering

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58103144U (ja) * 1981-12-29 1983-07-13 三菱マテリアル株式会社 GaAs面取りウエハ−
WO2001048802A1 (fr) * 1999-12-27 2001-07-05 Shin-Etsu Handotai Co., Ltd. Plaquette pour evaluer l'usinabilite du pourtour d'une plaquette et procede pour evaluer l'usinabilite du pourtour d'une plaquette
WO2010119792A1 (ja) * 2009-04-15 2010-10-21 住友電気工業株式会社 基板、薄膜付き基板、半導体装置、および半導体装置の製造方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4655191A (en) * 1985-03-08 1987-04-07 Motorola, Inc. Wire saw machine
JPH0635107B2 (ja) * 1987-12-26 1994-05-11 株式会社タカトリハイテック ワイヤソー
JP2571477B2 (ja) * 1991-06-12 1997-01-16 信越半導体株式会社 ウエーハのノッチ部面取り装置
CH690845A5 (de) * 1994-05-19 2001-02-15 Tokyo Seimitsu Co Ltd Verfahren zum Positionieren eines Werkstücks und Vorrichtung hierfür.
TW355151B (en) * 1995-07-07 1999-04-01 Tokyo Seimitsu Co Ltd A method for cutting single chip material by the steel saw
JP3397968B2 (ja) * 1996-03-29 2003-04-21 信越半導体株式会社 半導体単結晶インゴットのスライス方法
CH691045A5 (fr) * 1996-04-16 2001-04-12 Hct Shaping Systems Sa Procédé pour l'orientation de plusieurs pièces cristallines posées côte à côte sur un support de découpage en vue d'une découpe simultanée dans une machine de découpage et dispositif pour la
JP3984655B2 (ja) * 1997-05-07 2007-10-03 アシュセテ シェーピング システムズ ソシエテ アノニム 少なくとも2層の糸の角交差を利用した薄片カット用の糸によるスライス装置
DE60033829T2 (de) * 1999-09-07 2007-10-11 Sixon Inc. SiC-HALBLEITERSCHEIBE, SiC-HALBLEITERBAUELEMENT SOWIE HERSTELLUNGSVERFAHREN FÜR EINE SiC-HALBLEITERSCHEIBE
DE19959414A1 (de) * 1999-12-09 2001-06-21 Wacker Chemie Gmbh Vorrichtung zum gleichzeitigen Abtrennen einer Vielzahl von Scheiben von einem Werkstück
CH697024A5 (fr) * 2000-09-28 2008-03-31 Hct Shaping Systems Sa Dispositif de sciage par fil.
JP4162892B2 (ja) * 2002-01-11 2008-10-08 日鉱金属株式会社 半導体ウェハおよびその製造方法
JP4256214B2 (ja) * 2003-06-27 2009-04-22 株式会社ディスコ 板状物の分割装置
JP4684569B2 (ja) * 2004-03-31 2011-05-18 株式会社ディスコ テープ拡張装置
JP4447392B2 (ja) * 2004-07-23 2010-04-07 株式会社ディスコ ウエーハの分割方法および分割装置
JP4511903B2 (ja) * 2004-10-20 2010-07-28 株式会社ディスコ ウエーハの分割装置
JP4748968B2 (ja) * 2004-10-27 2011-08-17 信越半導体株式会社 半導体ウエーハの製造方法
US7422634B2 (en) * 2005-04-07 2008-09-09 Cree, Inc. Three inch silicon carbide wafer with low warp, bow, and TTV
JP4951914B2 (ja) * 2005-09-28 2012-06-13 信越半導体株式会社 (110)シリコンウエーハの製造方法
JP4939038B2 (ja) * 2005-11-09 2012-05-23 日立電線株式会社 Iii族窒化物半導体基板
JP4742845B2 (ja) * 2005-12-15 2011-08-10 信越半導体株式会社 半導体ウエーハの面取り部の加工方法及び砥石の溝形状の修正方法
JP4915146B2 (ja) * 2006-06-08 2012-04-11 信越半導体株式会社 ウェーハの製造方法
DE102008051673B4 (de) * 2008-10-15 2014-04-03 Siltronic Ag Verfahren zum gleichzeitigen Auftrennen eines Verbundstabs aus Silicium in eine Vielzahl von Scheiben
EP2482307A1 (en) * 2009-09-24 2012-08-01 Sumitomo Electric Industries, Ltd. Silicon carbide ingot, silicon carbide substrate, methods for manufacturing the ingot and the substrate, crucible, and semiconductor substrate
JP2011129740A (ja) * 2009-12-18 2011-06-30 Disco Abrasive Syst Ltd ウエーハ分割装置およびレーザー加工機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58103144U (ja) * 1981-12-29 1983-07-13 三菱マテリアル株式会社 GaAs面取りウエハ−
WO2001048802A1 (fr) * 1999-12-27 2001-07-05 Shin-Etsu Handotai Co., Ltd. Plaquette pour evaluer l'usinabilite du pourtour d'une plaquette et procede pour evaluer l'usinabilite du pourtour d'une plaquette
WO2010119792A1 (ja) * 2009-04-15 2010-10-21 住友電気工業株式会社 基板、薄膜付き基板、半導体装置、および半導体装置の製造方法

Also Published As

Publication number Publication date
JP2013008769A (ja) 2013-01-10
US20120325196A1 (en) 2012-12-27
DE112012002597T5 (de) 2014-03-20
CN103563055A (zh) 2014-02-05

Similar Documents

Publication Publication Date Title
WO2012176755A1 (ja) 炭化珪素基板の製造方法
US8975643B2 (en) Silicon carbide single-crystal substrate and method for manufacturing same
US9896781B2 (en) Silicon carbide single-crystal substrate, silicon carbide epitaxial substrate and method of manufacturing them
US10269554B2 (en) Method for manufacturing SiC epitaxial wafer and SiC epitaxial wafer
US9844893B2 (en) Method of manufacturing silicon carbide substrate
US20130099252A1 (en) Method of manufacturing silicon carbide substrate and silicon carbide substrate
JP2015086128A (ja) 炭化珪素半導体基板およびその製造方法
WO2015119067A1 (ja) ダイヤモンド基板及びダイヤモンド基板の製造方法
JP6722578B2 (ja) SiCウェハの製造方法
JP7125252B2 (ja) SiCエピタキシャルウェハ及びその製造方法
WO2016171168A1 (ja) SiC単結晶シード、SiCインゴット、SiC単結晶シードの製造方法及びSiC単結晶インゴットの製造方法
JP2018016542A (ja) 炭化珪素半導体基板
JP6149988B2 (ja) 炭化珪素単結晶基板
CN110769975B (zh) 金刚石晶体的研磨方法和金刚石晶体
JP7338759B2 (ja) 4H-SiC単結晶基板
JP2018107476A (ja) SiCエピタキシャルウェハ
US9768057B2 (en) Method for transferring a layer from a single-crystal substrate
JP2016007690A (ja) サファイア基板の製造方法
JP2017100922A (ja) SiC単結晶の製造方法、SiC単結晶及びSiCインゴット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12803220

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112012002597

Country of ref document: DE

Ref document number: 1120120025970

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12803220

Country of ref document: EP

Kind code of ref document: A1