WO2012176472A1 - 光半導体用の面封止剤、それを用いた有機elデバイスの製造方法、有機elデバイスおよび有機elディスプレイパネル - Google Patents

光半導体用の面封止剤、それを用いた有機elデバイスの製造方法、有機elデバイスおよび有機elディスプレイパネル Download PDF

Info

Publication number
WO2012176472A1
WO2012176472A1 PCT/JP2012/004072 JP2012004072W WO2012176472A1 WO 2012176472 A1 WO2012176472 A1 WO 2012176472A1 JP 2012004072 W JP2012004072 W JP 2012004072W WO 2012176472 A1 WO2012176472 A1 WO 2012176472A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic
sealing agent
surface sealing
carbon atoms
Prior art date
Application number
PCT/JP2012/004072
Other languages
English (en)
French (fr)
Inventor
祐五 山本
潤 岡部
節子 大池
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2012552600A priority Critical patent/JP5237507B1/ja
Priority to CN201280030854.3A priority patent/CN103636286B/zh
Priority to KR1020137033988A priority patent/KR101604896B1/ko
Priority to US13/818,202 priority patent/US9013049B2/en
Publication of WO2012176472A1 publication Critical patent/WO2012176472A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8423Metallic sealing arrangements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/70Chelates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present invention relates to a surface sealant for an optical semiconductor, a method for producing an organic EL device using the same, an organic EL device, and an organic EL display panel.
  • the organic EL element is an optical semiconductor device, and is expected as a liquid crystal backlight or a self-luminous thin flat display device.
  • organic EL elements are extremely susceptible to deterioration when exposed to moisture and oxygen. In other words, the interface between the metal electrode and the organic EL layer is peeled off due to the influence of moisture, the metal is oxidized to increase the resistance, or the light emitting material contained in the light emitting layer of the organic EL element is altered by moisture. I do. For this reason, there are disadvantages that the organic EL element does not emit light or the luminance is lowered. Further, even in an optical semiconductor such as an inorganic LED, an electrical circuit connected to the optical semiconductor may be deteriorated by contact with moisture or the like.
  • an organic EL sealing agent layer containing (A) a compound having a glycidyl group and (B) an acid anhydride curing agent as main components is laminated on an organic EL element (surface sealing). ), And a method of bonding glass or film is known (for example, see Patent Document 1).
  • the organic EL element since the organic EL element is easily deteriorated by moisture, oxygen, etc., it is often sealed with a laminated film having a resin layer made of a resin and an inorganic compound layer made of an inorganic compound.
  • the sealing of the organic EL element with the laminated film is 1) a method in which the organic EL element is covered with an inorganic compound layer and then further covered with a resin layer; and 2) after the organic EL element is covered with a resin layer and further inorganic.
  • There is a method of covering with a compound layer see Patent Document 2.
  • an epoxy resin composition containing a compound represented by Zn (C n H 2n + 1 COO) 2 and an imidazole compound as a curing accelerator has been proposed as a sealant for photosensors and LEDs (for example, patents).
  • Reference 3 Further, as a powder coding material, a composition containing a metal complex in which an amine compound and a carboxylate are coordinated to metal ions such as zinc has been proposed (for example, Patent Document 4).
  • JP 2006-70221 A JP 2009-252364 A Japanese Patent Laid-Open No. 10-45879 International Publication No. 2006/022899
  • the optical semiconductor sealing conditions must be adjusted according to the change in the viscosity of the surface sealant, and the manufacturing efficiency of the optical semiconductor device There was a problem that decreased.
  • the storage stability of the surface sealing agent is improved, the surface sealing agent tends to be hard to be cured when the optical semiconductor is sealed, and the curing time becomes long. There was a problem that efficiency decreased.
  • optical semiconductors particularly optical semiconductors that emit light, such as organic EL devices
  • OLEDs are exposed to sunlight for a long time when used as portable electronic devices or lighting fixtures, so that they need weather resistance.
  • the cured product of the surface sealing agent for organic EL elements is discolored by exposure to sunlight or the like, in the case of a top emission type organic EL device, the light extraction efficiency is lowered and the design property is deteriorated. There was a problem.
  • the back emission type organic EL device has a problem that the design property is deteriorated.
  • composition of Patent Document 3 sometimes had insufficient curability.
  • composition of patent document 4 can improve comparatively storage stability, since it is thought that a viscosity is high, it is thought that it is not suitable as a sealing agent.
  • the present invention has been made in view of the above circumstances, and the first object of the present invention is a resin composition for sealing an optical semiconductor, which has good curability and storage stability. It is to provide a raw material for a sealing resin layer excellent in weatherability; preferably a raw material for a sealing resin layer further excellent in weather resistance.
  • the second object of the present invention is to provide a raw material for a sealing resin layer which is a resin composition for sealing an optical semiconductor and has excellent weather resistance.
  • the first of the present invention relates to the following surface sealing agent for optical semiconductors.
  • a metal complex (b1) comprising a tertiary amine that can form a complex with a metal ion and has no NH bond, and an anionic ligand having a molecular weight of 17 to 200;
  • a surface sealant for optical semiconductors having a viscosity of 10 to 10,000 mPa ⁇ s measured at 25 ° C. and 1.0 rpm with a viscometer.
  • R 1 represents an aliphatic hydrocarbon group having 1 to 17 carbon atoms, a hydroxyl group, an aryl-containing group, or a cyanoethyl group
  • R 2 , R 3 , and R 4 are each independently a hydrogen group
  • an aliphatic hydrocarbon group having 1 to 17 carbon atoms, a hydroxyl group, an aryl-containing group, or a cyanoethyl group (In the general formula (2), RB1, RB3, RB4, and RB5 are each independently a hydrogen group, an aliphatic hydrocarbon group that may contain a heteroatom having 1 to 17 carbon atoms, a hydroxyl group, an aryl-containing group, or cyanoethyl.
  • RB2 represents an aliphatic hydrocarbon group, a hydroxyl group, an aryl-containing group or a cyanoethyl group which may contain a hetero atom having 1 to 17 carbon atoms; and is selected from RB1, RB2, RB3, RB4, and RB5
  • a plurality of groups may be connected to each other to form an alicyclic ring, an aromatic ring, or a heterocyclic ring containing a heteroatom selected from oxygen, nitrogen, and sulfur)
  • RC1, RC3, RC4, and RC5 each independently represent a hydrogen group, an aliphatic hydrocarbon group that may contain a hetero atom having 1 to 17 carbon atoms, a hydroxyl group, an aryl-containing group, or cyanoethyl.
  • RC2 represents an aliphatic hydrocarbon group, a hydroxyl group, an aryl-containing group or a cyanoethyl group which may contain a heteroatom having 1 to 17 carbon atoms; selected from RC1, RC2, RC3, RC4 and RC5
  • a plurality of groups may be connected to each other to form an alicyclic ring, an aromatic ring, or a heterocyclic ring containing a heteroatom selected from oxygen, nitrogen, and sulfur)
  • RE1, RE2, RE3, RE4, and RE5 are each independently a hydrogen group, an aliphatic hydrocarbon group that may contain a heteroatom having 1 to 17 carbon atoms, a hydroxyl group, and an aryl-containing group.
  • a cyanoethyl group a plurality of groups selected from RE1, RE2, RE3, RE4, and RE5 are connected to each other and contain an alicyclic ring, an aromatic ring, or a heteroatom selected from oxygen, nitrogen, and sulfur A heterocycle may be formed)
  • RF1, RF2, RF3, RF4, RF5, RF6, and RF7 are each independently a hydrogen group, an aliphatic hydrocarbon group that may contain 1 to 17 carbon atoms, or a hydroxyl group.
  • a heterocycle containing a heteroatom selected from: (In the general formula (6), RG1, RG2, RG3, and RG4 each independently represent a hydrogen group, an aliphatic hydrocarbon group that may contain a hetero atom having 1 to 17 carbon atoms, a hydroxyl group, an aryl-containing group, or cyanoethyl.
  • a plurality of groups selected from RG1, RG2, RG3, and RG4 are linked to each other to form an alicyclic ring, an aromatic ring, or a heterocycle containing a heteroatom selected from oxygen, nitrogen, and sulfur You may) [4]
  • the anionic ligand is selected from the group consisting of O, S and P, has 2 or more atoms capable of binding to the metal ion, and is coordinated to the metal ion to be 3 to 7 members.
  • the surface sealing agent for optical semiconductors according to any one of [1] to [3], which is capable of forming a ring.
  • the tertiary amine is a compound represented by any one of the general formulas (1) to (3), and the anionic ligand is a carboxy represented by the following general formula (7A)
  • RD1 is a free or hydrogen atom
  • RD2 is a hydrogen group, a hydrocarbon group having 1 to 10 carbon atoms, or a hydroxyl group
  • [6] of the surface sealant in CDCl 3, 25 ° C.
  • chemical shifts derived from the tertiary amine of the 1 HNMR chemical shift at 270MHz is the tertiary amine alone, in CDCl 3, 25 ° C.
  • the surface sealing agent for optical semiconductors according to any one of [1] to [5], which contains a peak that moves 0.1 ppm or more with respect to a 1 HNMR chemical shift at 270 MHz.
  • the surface sealant for optical semiconductors according to any one of [1] to [6], wherein the molar ratio of the tertiary amine to the metal ion is 0.5 to 6.0.
  • the carboxylate compound is 2-ethylhexanoic acid, formic acid, acetic acid, butanoic acid, 2-ethylbutanoic acid, 2,2-dimethylbutanoic acid, 3-methylbutanoic acid, 2,2-dimethylpropanoic acid, benzoic acid.
  • a surface sealant for optical semiconductors according to [5] which is at least one compound selected from the group consisting of naphthenic acid.
  • the tertiary amine is 1,8-diazobicyclo [5,4,0] undec-7-ene, 1-methylimidazole, 1,2-dimethylimidazole, 1-benzyl-2-methylimidazole, 1 -At least one compound selected from the group consisting of isobutyl-2-methylimidazole, 1-butylimidazole and 1,5-diazobicyclo [4,3,0] non-5-ene; 8]
  • the surface sealing agent for optical semiconductors in any one of.
  • the second of the present invention relates to the following surface sealant for optical semiconductors.
  • An E-type viscometer comprising an epoxy resin (a) having two or more epoxy groups in one molecule and a curing accelerator (b2) represented by the following general formula (11) or (12) A surface sealant for optical semiconductors having a viscosity of 10 to 10,000 mPa ⁇ s measured at 25 ° C. and 1.0 rpm.
  • R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen group, an aliphatic hydrocarbon group having 1 to 17 carbon atoms, a hydroxyl group, an aryl-containing group or a cyanoethyl group.
  • R 1 is a hydrogen group
  • R 2 and R 4 are an aryl group
  • RA 1 , RA 2 , RA 3 and RA 4 are each independently a hydrogen group, an aliphatic hydrocarbon group having 1 to 17 carbon atoms, a hydroxyl group, an aryl-containing group, or a dimethylaminomethyl group.
  • RA 1 , RA 2 , RA 3 and RA 4 is a dimethylaminomethyl group
  • R 1 represents an aliphatic hydrocarbon group having 1 to 17 carbon atoms, a hydroxyl group, an aryl-containing group, or a cyanoethyl group. Stopper.
  • the surface sealing agent for an optical semiconductor includes the metal complex (b1) in a range where the equivalent ratio of active functional group / epoxy group of tertiary amine is 0.008 to 0.3. [1] The surface sealant for optical semiconductors according to any one of [9]. [13] The surface sealing agent for an optical semiconductor contains the curing accelerator (b2) in a range where the equivalent ratio of active functional group / epoxy group of tertiary amine is 0.008 to 0.152. The surface sealing agent for optical semiconductors as described in [10] or [11]. [14] The surface sealing agent for an optical semiconductor further includes an acid anhydride in a range where the equivalent ratio of acid anhydride group / epoxy group is 0.8 to 1.2.
  • the surface sealing agent for optical semiconductors in any one of.
  • the third of the present invention relates to the following method for producing an organic EL device.
  • the process of manufacturing an organic EL device including the process.
  • An organic EL device including a cured product layer and a passivation layer in contact with the cured product layer.
  • the organic EL element and the organic EL element are sealed, and consist of Zn, Bi, Ca, Al, Cd, La, and Zr in the spectrum measured by X-ray photoelectron spectroscopy (XPS).
  • the surface sealant of the first aspect of the present invention has good curability and is excellent in storage stability. Therefore, the sealing conditions of the optical semiconductor such as the organic EL element can be made constant to some extent, and the manufacturing efficiency of the optical semiconductor can be increased. Moreover, the light resistance of the sealing film of an optical semiconductor can be improved by using the surface sealing agent of the 2nd form of this invention, for example, the transparency can be maintained. Therefore, light emitted from an optical semiconductor such as an organic EL element can be extracted with high efficiency, and design properties can be maintained. In addition, light incident on the optical semiconductor can be taken into the optical semiconductor without being greatly attenuated. Therefore, in particular, improvement of the luminance of the organic EL element is realized.
  • the epoxy resin composition of the present invention includes an epoxy resin (a) and an amine compound (b); and may further include an acid anhydride (c) and the like.
  • the epoxy resin composition of the present invention can be used, for example, as a surface sealant, a transparent fill agent, etc .; preferably as a surface sealant.
  • the transparent fill agent refers to a material that requires transparency to fill a space between a substrate such as a touch panel and an image display device such as a liquid crystal panel.
  • the surface sealant of the present invention includes the surface sealant of the first or second form described later.
  • the epoxy resin (a) contained in the surface sealing agent of the present invention may be an epoxy resin having two or more epoxy groups in one molecule, and the molecular weight is not particularly limited. An epoxy resin having no molecular weight distribution or an epoxy resin having a molecular weight distribution can be used.
  • epoxy resins having two epoxy groups in one molecule include hydroquinone diglycidyl ether, resorcin diglycidyl ether, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, cyclohexanediol diglycidyl ether, cyclohexanedimethanol diglycidyl ether, dicyclopentadienediol diglycidyl ether, 1,6-naphthalenediol diglycidyl ether, bisphenol A diglycidyl ether, bisphenol F di Examples include glycidyl ether, hydrogenated bisphenol A diglycidyl ether, and hydrogenated bisphenol F diglycidyl ether.
  • Examples of the compound having 3 or more epoxy groups in one molecule include trimethylolpropane triglycidyl ether, pentaerythritol tetraglycidyl ether, phenol novolac type epoxy, cresol novolac type epoxy and the like.
  • the epoxy resin may contain a polymer or oligomer having an epoxy group.
  • the polymer or oligomer having an epoxy group is not particularly limited, but can be obtained by polymerizing a vinyl monomer having an epoxy group.
  • vinyl monomers having an epoxy group are preferably (meth) acrylate monomers such as glycidyl (meth) acrylate, 3,4-epoxycyclohexylmethyl (meth) acrylate, and methylglycidyl (meth) acrylate.
  • the epoxy resin may be a copolymer or oligomer of a vinyl monomer having an epoxy group and another vinyl monomer.
  • examples of other vinyl monomers include (meth) acrylates.
  • the ester groups of (meth) acrylates are methyl, ethyl, isopropyl, normal butyl, isobutyl, tertiary butyl, 2-ethylhexyl, cyclohexyl, benzyl, isoboronyl, lauryl, myristyl.
  • a non-functional alkyl ester is preferable regardless of a linear structure or a branched structure.
  • the epoxy resin may be a copolymer of a vinyl monomer having an epoxy group and styrene, ⁇ -methylstyrene, vinyl acetate or the like.
  • Preferred specific examples of the epoxy resin (a) contained in the surface sealant of the present invention include tetrafunctional naphthalene type epoxy resin (aa), triphenylmethane type epoxy resin (ab), and dicyclopentadiene type.
  • the heat resistance of the cured resin containing these epoxy resins is likely to be improved.
  • the cured resin containing these epoxy resins is likely to increase transparency and adhesion.
  • the viscosity of the surface sealant containing these epoxy resins is easily adjusted to a desired range (viscosity measured at 25 ° C. and 1.0 rpm with an E-type viscometer is 10 to 10,000 mPa ⁇ s). Therefore, the surface sealing agent of the present invention is easy to form a film by screen printing or the like.
  • a cured resin containing an epoxy resin having such a bulky group is subject to plasma and thus its transparency is lowered and haze is likely to increase.
  • the surface sealing agent of this invention which mix
  • the surface sealant of the present invention preferably contains at least a low molecular weight epoxy resin (a-1) as the epoxy resin (a) so that the viscosity can be easily adjusted to a range described later. Further, a surface-sealing molded product such as a sheet can be obtained by further adding a high molecular weight epoxy resin (a-2) to the surface sealing agent of the present invention as necessary.
  • the low molecular weight epoxy resin (a-1) is an epoxy resin having a weight average molecular weight of 200 to 800; preferably an epoxy resin having a weight average molecular weight of 300 to 700.
  • the “weight average molecular weight (Mw)” is measured by gel permeation chromatography (GPC) using polystyrene as a standard substance.
  • Examples of the epoxy resin (a-1) include bisphenol type epoxy compounds, phenol novolac type epoxy compounds, cresol novolac type epoxy compounds and the like.
  • Examples of the bisphenol type epoxy compound include a compound represented by the general formula (X), and preferable examples include a compound represented by the general formula (X ′).
  • X represents a single bond, a methylene group, an isopropylidene group, —S—, or —SO 2 —; each R 1 independently represents an alkyl group having 1 to 5 carbon atoms.
  • N represents an integer of 2 or more, and P represents an integer of 0 to 4.
  • oligomeric phenol derivatives containing phenol derivatives and epichlorohydrin as monomer components examples include bisphenol, hydrogenated bisphenol, phenol novolac, cresol novolac, and the like.
  • the low molecular weight epoxy resin (a-1) include a bisphenol type epoxy compound or an oligomer having bisphenol and epichlorohydrin as monomer components, and more preferably in the general formula (X), An oligomer having a repeating number n of 2 to 4. This is because the affinity for the high molecular weight epoxy resin (a-2), which can be arbitrarily blended with the surface sealing agent of the present invention, is high when obtaining the surface sealing molded product described later.
  • the repeating structural unit contained in the low molecular weight epoxy resin (a-1) may be the same as or different from the repeating structural unit contained in the high molecular weight epoxy resin (a-2).
  • the epoxy equivalent of the low molecular weight epoxy resin (a-1) is preferably 100 to 800 g / eq.
  • the low molecular weight epoxy resin (a-1) contained in the encapsulating composition of the present invention mainly improves the fluidity of the encapsulating sheet when thermocompression-bonded to the element and improves the adhesion to the element. It has a function.
  • a surface-sealed molded product such as a sheet can be obtained by using the surface-sealing agent of the present invention.
  • the surface sealing molded product may contain either one or both of a high molecular weight epoxy resin (a-2) and a low molecular weight epoxy resin (a-1).
  • Examples of the high molecular weight epoxy resin (a-2) include a resin or an oligomer containing a phenol resin and epichlorohydrin as monomer components, and preferably an oligomer.
  • the phenol resin includes a hydroxyaryl resin such as a naphthol resin.
  • the weight average molecular weight (Mw) of the high molecular weight phenol type epoxy resin (a-2) is 3 ⁇ 10 3 to 2 ⁇ 10 4 , preferably 3 ⁇ 10 3 to 7 ⁇ 10 3 .
  • the “weight average molecular weight (Mw)” is measured by gel permeation chromatography (GPC) using polystyrene as a standard substance.
  • the weight average molecular weight (Mw) of the epoxy resin (a-2) By setting the weight average molecular weight (Mw) of the epoxy resin (a-2) within the above numerical range, it is possible to obtain a surface-sealed molded product that produces a sealing film having strong adhesion and low moisture permeability. Moreover, the surface sealing agent containing the epoxy resin (a-2) whose weight average molecular weight (Mw) is in the above numerical range is easy to apply and form a film in a sheet shape.
  • the weight average molecular weight (Mw) of the epoxy resin (a-2) is not excessively high and is appropriately controlled. For this reason, the hardened
  • the epoxy resin (a-2) is preferably an oligomer having a phenol resin and epichlorohydrin as monomer components. All of the monomer components of the epoxy resin (a-2) may be a phenol resin and epichlorohydrin, or a part of the monomer component may be a compound (comonomer component) other than the phenol resin and epichlorohydrin. By using a part of the monomer component as the comonomer component, the weight average molecular weight (Mw) of the resulting epoxy resin (a-2) can be easily controlled to a desired value. By appropriately selecting the monomer component of the epoxy resin (a-2), the smoothness of the coating film surface of the sealing composition can be improved.
  • the epoxy equivalent of the epoxy resin (a-2) is preferably 500 to 10,000 g / eq.
  • the ratio of the high molecular weight epoxy resin (a-2) and the low molecular weight epoxy resin (a-1) in the epoxy resin contained in the surface-sealed molded product of the present invention is not particularly limited, and a desired viscosity is realized. It is preferable to adjust the composition so that it is possible. If the content of the high molecular weight epoxy resin (a-2) is too large, the moisture permeability of the cured product (seal member) tends to increase. Moreover, the fluidity
  • Amine compound (b) The amine compound (b) contained in the surface sealing agent of the present invention may be a tertiary amine metal complex (b1) or a specific amine compound (b2). These amine compounds (b) can function as curing accelerators.
  • the surface sealing agent of the first embodiment of the present invention contains a tertiary amine metal complex (b1).
  • the tertiary amine metal complex (b1) includes a metal ion, a tertiary amine that coordinates to the metal ion, and an anionic ligand that coordinates or ionically bonds to the metal ion.
  • the metal ion in the metal complex (b1) may be a metal ion selected from the group consisting of Zn, Bi, Ca, Al, Cd, La, and Zr. Zn is preferable from the viewpoint of improving the transparency of the surface sealing agent.
  • the metal complex (b1) contains two or more metal ions, at least one of the metal ions may be a metal ion selected from Zn, Bi, Ca, Al, Cd, La, and Zr.
  • the tertiary amine in the metal complex (b1) is preferably capable of forming a complex with a metal ion and not having an N—H bond in order to reduce the reactivity of the tertiary amine under storage conditions.
  • the molecular weight of the tertiary amine in the metal complex (b1) is preferably 65 to 300. This is because if the molecular weight of the tertiary amine is too large, the solubility of the metal complex (b1) in the surface sealing agent may be decreased, and the catalytic activity may be decreased.
  • the tertiary amine in the metal complex (b1) is preferably a compound represented by any one of the following general formulas (1) to (6).
  • a conjugated electron cloud gathers on the nitrogen atoms constituting the ring, and a complex is easily formed with a metal ion.
  • the cured product layer of the surface sealing agent containing these compounds is considered to have good plasma resistance and weather resistance with little decrease in transparency and increase in haze even if plasma treatment is performed.
  • R 2 , R 3 , and R 4 are each independently a hydrogen group, an aliphatic hydrocarbon group having 1 to 17 carbon atoms, a hydroxyl group, an aryl-containing group, or a cyanoethyl group.
  • the aliphatic hydrocarbon group having 1 to 17 carbon atoms is preferably an alkyl group having 1 to 6 carbon atoms.
  • the aryl-containing group include an aryl group such as a phenyl group and a naphthyl group, and an arylalkyl group such as a benzyl group.
  • the number of carbon atoms constituting the aryl-containing group is preferably in the range of 6 to 11.
  • R 1 is a substituent other than a hydrogen atom (an aliphatic hydrocarbon group, an aryl group, a hydroxyl group, or a cyanoethyl group). Compared with the case where R 1 is another substituent, when R 1 is a hydrogen atom, the sealing layer made of a cured product of the surface sealing agent is exposed to plasma or the like, thereby reducing transparency. Because there are things to do.
  • amine compound represented by the general formula (1) examples include the following 1-methylimidazole, 1,2-dimethylimidazole, 1-benzyl-2-methylimidazole, 1-isobutyl-2-methylimidazole, -Butylimidazole, 1-benzyl-2-phenylimidazole, 2-phenyl-4-methylimidazole and the like.
  • RB1, RB3, RB4, and RB5 are each independently a hydrogen group, an aliphatic hydrocarbon group that may contain a heteroatom having 1 to 17 carbon atoms, a hydroxyl group, an aryl-containing group, or a cyanoethyl group.
  • RB2 represents an aliphatic hydrocarbon group, a hydroxyl group, an aryl-containing group or a cyanoethyl group that may contain a hetero atom having 1 to 17 carbon atoms.
  • a plurality of groups appropriately selected from RB1, RB2, RB3, RB4, and RB5 are connected to each other to form an alicyclic ring, an aromatic ring, or a heterocyclic ring containing a heteroatom selected from oxygen, nitrogen, and sulfur. May be.
  • the aliphatic hydrocarbon group having 1 to 17 carbon atoms is preferably an alkyl group having 1 to 6 carbon atoms.
  • Examples of the aryl-containing group include an aryl group such as a phenyl group and a naphthyl group, and an arylalkyl group such as a benzyl group.
  • the number of carbon atoms constituting the aryl-containing group is preferably in the range of 6 to 11.
  • amine compound represented by the general formula (2) include the following 1,8-diazobicyclo [5,4,0] undec-7-ene.
  • RC1, RC3, RC4, and RC5 each independently represent a hydrogen group, an aliphatic hydrocarbon group that may contain a hetero atom having 1 to 17 carbon atoms, a hydroxyl group, an aryl-containing group, or a cyanoethyl group.
  • RC2 represents an aliphatic hydrocarbon group, a hydroxyl group, an aryl-containing group or a cyanoethyl group which may contain a hetero atom having 1 to 17 carbon atoms.
  • a plurality of groups appropriately selected from RC1, RC2, RC3, RC4, and RC5 are connected to each other to form an alicyclic ring, an aromatic ring, or a heterocyclic ring containing a heteroatom selected from oxygen, nitrogen, and sulfur. May be.
  • the aliphatic hydrocarbon group having 1 to 17 carbon atoms is preferably an alkyl group having 1 to 6 carbon atoms.
  • Examples of the aryl-containing group include an aryl group such as a phenyl group and a naphthyl group, and an arylalkyl group such as a benzyl group.
  • the number of carbon atoms constituting the aryl-containing group is preferably in the range of 6 to 11.
  • amine compound represented by the general formula (3) include the following 1,5-diazobicyclo [4,3,0] non-5-ene.
  • RE1, RE2, RE3, RE4, and RE5 each independently represent a hydrogen group, an aliphatic hydrocarbon group that may contain a heteroatom having 1 to 17 carbon atoms, a hydroxyl group, an aryl-containing group, or A cyanoethyl group is shown.
  • a plurality of groups selected from RE1, RE2, RE3, RE4, and RE5 are connected to each other to form an alicyclic ring, an aromatic ring, or a heterocyclic ring containing a heteroatom selected from oxygen, nitrogen, and sulfur. May be.
  • the aliphatic hydrocarbon group having 1 to 17 carbon atoms is preferably an alkyl group having 1 to 6 carbon atoms.
  • Examples of the aryl-containing group include an aryl group such as a phenyl group and a naphthyl group, and an arylalkyl group such as a benzyl group.
  • the number of carbon atoms constituting the aryl-containing group is preferably in the range of 6 to 11.
  • amine compound represented by the general formula (4) examples include a compound represented by the following formula (4-1).
  • RF1, RF2, RF3, RF4, RF5, RF6, and RF7 are each independently a hydrogen group, an aliphatic hydrocarbon group that may contain a heteroatom having 1 to 17 carbon atoms, a hydroxyl group, An aryl-containing group or a cyanoethyl group is shown.
  • a plurality of groups selected from RF1, RF2, RF3, RF4, RF5, RF6, and RF7 are connected to each other, and an alicyclic ring, an aromatic ring, or a heterocycle containing a heteroatom selected from oxygen, nitrogen, and sulfur May be formed.
  • the aliphatic hydrocarbon group having 1 to 17 carbon atoms is preferably an alkyl group having 1 to 6 carbon atoms.
  • Examples of the aryl-containing group include an aryl group such as a phenyl group and a naphthyl group, and an arylalkyl group such as a benzyl group.
  • the number of carbon atoms constituting the aryl-containing group is preferably in the range of 6 to 11.
  • amine compound represented by the general formula (5) examples include a compound represented by the following formula (5-1).
  • RG1, RG2, RG3, and RG4 each independently represent a hydrogen group, an aliphatic hydrocarbon group that may contain a heteroatom having 1 to 17 carbon atoms, a hydroxyl group, an aryl-containing group, or a cyanoethyl group. Indicates. A plurality of groups selected from RG1, RG2, RG3, and RG4 may be connected to each other to form an alicyclic ring, an aromatic ring, or a heterocycle containing a heteroatom selected from oxygen, nitrogen, and sulfur. .
  • the aliphatic hydrocarbon group having 1 to 17 carbon atoms is preferably an alkyl group having 1 to 6 carbon atoms.
  • Examples of the aryl-containing group include an aryl group such as a phenyl group and a naphthyl group, and an arylalkyl group such as a benzyl group.
  • the number of carbon atoms constituting the aryl-containing group is preferably in the range of 6 to 11.
  • amine compound represented by the general formula (6) examples include a compound represented by the following formula (6-1).
  • the pKa of the compound represented by the formula (4) is around 5, whereas the pKa of the compound represented by the formula (1) is around 7, and the formula (2)
  • the tertiary amine in the metal complex (b1) is a compound represented by any one of the general formulas (1) to (3) because of its high basicity and good curing activity with respect to the epoxy resin. It is preferable.
  • the tertiary amine that forms a complex with the metal ion may be one type or two or more types. That is, the metal complex (b1) may be a binuclear complex having a plurality of metal ions as a central metal.
  • the molar ratio of the tertiary amine to the metal ion in the metal complex (b1) is preferably 0.5 to 6.0, more preferably 0.6 to 2.0.
  • the molar ratio is 0.5 or more, there are many tertiary amines coordinated to the metal complex (b1), and the curability of the surface sealing agent tends to be good.
  • the molar ratio is 6.0 or less, there are few tertiary amines coordinated to the metal complex (b1), so that the storage stability of the surface sealing agent becomes good.
  • the molar ratio is within the above range, the balance between curability and storage stability is good.
  • the anionic ligand in the metal complex (b1) is a compound that has an acidic group having an atom selected from the group consisting of O, S, P, and halogen and coordinates or ionically bonds to a metal ion.
  • the valence of the anionic ligand is preferably smaller than the valence of the metal ion. This is because an anionic ligand having a valence smaller than that of a metal ion can bind two or more to one metal ion and can stabilize the metal complex (b1).
  • the molecular weight of the anionic ligand is preferably 17 to 200.
  • the molecular weight of the anionic ligand is 17 or more, as will be described later, the coordination bond distance between the metal ion and the tertiary amine tends to be small, so that the curability of the metal complex (b1) is hardly impaired. Conceivable.
  • the molecular weight of the anionic ligand is 200 or less, since the anionic ligand is not too large, the steric hindrance does not significantly interfere with the coordination of the tertiary amine to the metal ion. It is done. As a result, it is considered that the stability of the metal complex (b1) under storage conditions is not easily impaired.
  • the radius of the anionic ligand is preferably 2.0 mm or more, and more preferably 2.4 mm or more. This is for improving the curability of the metal complex (b1). For example, when two anionic ligands are coordinated to a metal ion, when a tertiary amine is further coordinated to the metal ion, the bond between one anionic ligand and the metal ion and the other It is thought that the angle formed by the bond between the anionic ligand and the metal ion is narrowed and stabilized. If the radius of the anionic ligand is 2.0 mm or more, the angle formed by these bonds is difficult to narrow, so the coordination bond distance between the metal ion and the tertiary amine is likely to be small.
  • the curability of the metal complex (b1) is hardly impaired. If the curability of the metal complex (b1) is difficult to be impaired, the degree of curing of the surface of the cured product tends to increase. When the degree of cure of the surface of the cured product is high, the smoothness of the surface of the cured product is unlikely to be impaired when a passivation layer or the like is formed on the surface of the cured product. Therefore, it is considered that the external haze of the cured product is unlikely to increase and the transparency is not easily impaired.
  • the upper limit of the radius of the anionic ligand can be about 200 mm.
  • the radius of the anionic ligand is 200 mm or less, it is considered that the size of the anionic ligand does not significantly prevent the tertiary amine from coordinating to the metal ion due to its steric hindrance. As a result, it is considered that the stability of the metal complex (b1) under storage conditions is not easily impaired.
  • the radius of the anionic ligand can be calculated after determining the connolly volume of the anionic ligand; the radius when the connolly volume is assumed to be a true sphere volume.
  • the connolly volume of the anionic ligand can be calculated using, for example, Material Studio 6.0 Dmol3 after optimizing the structure of the anionic ligand. Optimization of the structure of the anionic ligand can be performed by MM2 (molecular mechanics calculation method) or PBE / DNP 4.4. Thus, after optimizing the structure of the anionic ligand, connolly volume is obtained by setting connolly radius to 1.0 ⁇ .
  • the radius of acetate ions For example, the case of calculating the radius of acetate ions will be described.
  • the connelly volume of acetate ions is obtained by the method described above, it is 54.8 kg.
  • the radius of the true sphere is determined to be about 2.36 cm, which can be used as the radius of acetate ions (ligands).
  • the radii of chloride ions, sulfate ions, etc. can be the ionic radii (calculated values by Shannon and Prewitt) described in the Chemical Handbook, Basic Edition, Revised edition 2, edited by the Chemical Society of Japan.
  • the valence of the anionic ligand is smaller than that of the metal ion, and the radius of the anionic ligand is 2.0 mm or more (preferably 2.4 mm or more).
  • Anionic ligands include carboxylate compounds, 1,3-dicarbonyl compounds, dithiocarboxylic acids and their carboxylate anions, thiocarboxylic acids and their carboxylate anions, thionocarboxylic acids and their carboxylate anions, 1,3-dithiocarbonyl It can be a compound, a nitrate ion, a halogen ion or the like.
  • the carboxylate compound is preferably a compound represented by the following formula (7A).
  • RD1 is free or represents a hydrogen group.
  • RD2 represents a hydrogen group, a hydrocarbon group having 1 to 10 carbon atoms, or a hydroxyl group.
  • the hydrocarbon group having 1 to 10 carbon atoms may be an alkyl group having 1 to 10 carbon atoms or an aryl-containing group having 6 to 10 carbon atoms, and may be a linear or branched alkyl group having 1 to 7 carbon atoms. Is preferred.
  • “RD1 is free” means that the carboxylate compound is an anion as shown in the following formula (7B).
  • the hydroxyl group is coordinated to the metal ion; when RD1 is free, O ⁇ is often coordinated to the metal ion.
  • Examples of the carboxylate compound represented by the formula (7A) include alkyl carboxylic acids having 2 to 10 carbon atoms and carboxylate anions thereof, aryl carboxylic acids having 7 to 10 carbon atoms and carboxylate anions thereof.
  • alkyl carboxylic acids having 1 to 10 carbon atoms examples include formic acid, acetic acid, butanoic acid, 2-ethylbutanoic acid, 2,2-dimethylbutanoic acid, 2-ethylhexanoic acid, 3-methylbutanoic acid, 2,2-dimethyl Propanic acid and the like are included, and formic acid, acetic acid and 2-ethylhexanoic acid are particularly preferable.
  • aryl carboxylic acids having 7 to 10 carbon atoms include benzoic acid and naphthenic acid.
  • the 1,3-dicarbonyl compound is preferably a compound represented by the formula (8).
  • R1 and R2 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms.
  • the alkyl group having 1 to 10 carbon atoms may be a methyl group, an ethyl group, or the like.
  • the aryl group having 6 to 10 carbon atoms may be a phenyl group, a naphthyl group, or the like. Examples of 1,3-dicarbonyl compounds include acetylacetonate and the like.
  • dithiocarboxylic acid and its carboxylate anion examples include an alkyl dithiocarboxylic acid having 1 to 10 carbon atoms and its dithiocarboxylate anion, an aryl dithiocarboxylic acid having 7 to 15 carbon atoms and its dithiocarboxylate anion.
  • alkyl dithiocarboxylic acid having 1 to 10 carbon atoms examples include dithioformic acid, dithioacetic acid, dithiopropanoic acid, dithio-2-ethylhexanoic acid and the like.
  • Examples of the thiocarboxylic acid and its carboxylate anion include an alkylthiocarboxylic acid having 1 to 10 carbon atoms and its alkylthiocarboxylate anion, an arylthiocarboxylic acid having 7 to 15 carbon atoms and its arylthiocarboxylate anion.
  • alkylthiocarboxylic acid having 1 to 10 carbon atoms examples include thioacetic acid and thio-2-ethylhexanoic acid.
  • thionocarboxylic acid and its carboxylate anion examples include alkylthionocarboxylic acid having 1 to 10 carbon atoms and alkylthionocarboxylate anion thereof, arylthionocarboxylic acid having 7 to 15 carbon atoms and arylthionocarboxylate anion thereof. Is included.
  • alkylthionocarboxylic acid having 1 to 10 carbon atoms examples include thionoacetic acid and thiono-2-ethylhexanoic acid.
  • the 1,3-dithiocarbonyl compound is preferably a compound represented by the formula (9).
  • R3 and R4 are each independently an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms.
  • the alkyl group having 1 to 10 carbon atoms may be a methyl group, an ethyl group, or the like.
  • the aryl group having 6 to 10 carbon atoms may be a phenyl group, a naphthyl group, or the like.
  • nitrates ions NO 3 - are included.
  • halogen ions include Br 2- and the like.
  • the number of atoms (atoms capable of binding to metal ions) selected from O, S, P and halogen contained in the anionic ligand may be one or two or more.
  • An anionic ligand containing two or more atoms that can be bonded to a metal ion may be bonded to the metal ion through one atom; or may be bonded through each of two or more atoms.
  • the metal ion contained in the anionic ligand The number of atoms that can be bonded to is preferably 2 or more.
  • an anionic ligand containing two or more atoms capable of binding to a metal ion can form a 3- to 7-membered ring with the metal ion.
  • anionic ligands include the carboxylate compound represented by the above formula (7A).
  • the carboxylate compound represented by the formula (7A) can be bonded to a metal ion through either an oxygen atom constituting a carbonyl group or an oxygen atom adjacent to the carbonyl group.
  • the metal complex (b1) includes a tertiary amine represented by any one of the above general formulas (1) to (3) and a carboxylate compound represented by the above general formula (7A). And are each a coordinated compound.
  • the tertiary amine coordinated to the metal ion may be any one of the general formulas (1) to (3), or may be two or more.
  • the metal complex (b1) is represented by the general formulas (1) to (3). It is preferable that the two amine compounds and the two carboxylate compounds represented by the general formula (7A) be a complex coordinated to a metal ion.
  • a metal complex represented by the following general formula (10) is preferable.
  • the metal complex (b1) has a polarity close to that of the epoxy resin (a) or an arbitrary acid anhydride (c) so as to be easily dissolved. Moreover, it is preferable that the tertiary amine in the metal complex (b1) is close in polarity so as to be easily dissolved in the epoxy resin (a) or any acid anhydride (c).
  • a tertiary amine forms a complex with a metal ion should be confirmed by comparing the 1 H NMR chemical shift of the tertiary amine in the metal complex (b1) with the 1 H NMR chemical shift of the tertiary amine alone. Can do. That is, the chemical shift of 1 HNMR (25 ° C., 270 MHz in CDCl 3 ) of the tertiary amine in the metal complex (b1) is changed to the chemical shift of 1 HNMR (25 ° C., 270 MHz in CDCl 3 ) of the tertiary amine alone.
  • the tertiary amine forms a complex with the metal ion by including a peak moving 0.05 ppm or more, preferably 0.1 ppm or more, more preferably 0.4 ppm or more.
  • the upper limit of the amount of peak movement is not particularly limited, but is usually about 1 ppm, and more generally 0.7 ppm in many cases.
  • Whether the tertiary amine in the surface sealing agent forms a complex with a metal ion is a chemical shift of 1 HNMR of the surface sealing agent. It can also be confirmed by comparing the chemical shift derived from the tertiary amine with the 1 HNMR chemical shift of the tertiary amine alone.
  • the chemical shift derived from the tertiary amine out of the chemical shift of 1 HNMR (CDCl 3 , 25 ° C., 270 MHz) of the surface sealing agent is 1 HNMR (CDCl 3 in a surface sealant by including a peak that is moving 0.05 ppm or more, preferably 0.1 ppm or more, more preferably 0.4 ppm or more with respect to a chemical shift of 25 ° C., 270 MHz). It can be confirmed that the secondary amine forms a complex with the metal ion.
  • the upper limit of the peak moving amount may be about 1 ppm, preferably about 0.7 ppm, as described above.
  • whether or not the tertiary amine in the surface sealing agent forms a complex with a metal ion is a chemical shift of 1 HNMR of the surface sealing agent. And 1 HNMR chemical shift of the metal complex (b1) alone can be confirmed. For example, if there is a chemical shift similar to the 1 HNMR chemical shift of the metal complex (b1) alone during the 1 HNMR chemical shift of the surface sealant, the surface sealant contains the metal complex (b1). It can be judged.
  • the peak moving in 1 HNMR originates from a hydrogen atom whose electronic state changes due to coordination of a tertiary amine to a metal ion.
  • a hydrogen atom is generally considered to be a hydrogen atom existing around a conjugated system containing a nitrogen atom.
  • the tertiary amine is an imidazole compound represented by the formula (1)
  • the peak moving in 1 HNMR is often attributed to the hydrogen atom at the 4th or 5th position.
  • Tertiary amines that do not have bulky groups around hydrogen atoms that exist around conjugated systems containing nitrogen atoms coordinate with metal ions because the nitrogen atoms contained in the conjugated system tend to approach metal ions. It is expected to be easy.
  • the content of the metal complex (b1) in the surface sealing agent is such that the equivalent ratio of “active functional group (tertiary amino group) of the metal complex (b1) / epoxy group contained in the surface sealing agent” is 0.008 to It is preferable that it is 0.3. In order to increase the curability of the surface sealing agent, it is preferably from 0.01 to 0.2, and more preferably from 0.03 to 0.152.
  • the metal complex (b1) may be composed of only one kind of metal complex or a combination of two or more kinds of metal complexes.
  • the surface sealing agent of the 2nd form of this invention contains a specific amine compound (b2).
  • the specific amine compound (b2) is represented by the general formula (11) or (12).
  • R 1 to R 4 each independently represent a hydrogen atom, an aliphatic hydrocarbon group having 1 to 17 carbon atoms, an aryl-containing group, a hydroxyl group, or a cyanoethyl group.
  • the aliphatic hydrocarbon group having 1 to 17 carbon atoms is preferably an alkyl group having 1 to 6 carbon atoms.
  • the aryl-containing group include an aryl group such as a phenyl group and a naphthyl group, and an arylalkyl group such as a benzyl group.
  • the number of carbon atoms constituting the aryl-containing group is preferably in the range of 6 to 11.
  • R 1 is preferably a substituent other than a hydrogen atom (an aliphatic hydrocarbon group, an aryl group, a hydroxyl group or a cyanoethyl group). Compared with the case where R 1 is another substituent, when R 1 is a hydrogen atom, the sealing layer made of a cured product of the surface sealing agent is exposed to plasma or the like, thereby reducing transparency. Because there are things to do.
  • R 1 when one or both of R 2 and R 4 are an aryl group, R 1 may be a hydrogen atom. This is because R 2 and R 4 which are aryl groups can lower the reactivity of R 1 which is a hydrogen atom.
  • the compound represented by the general formula (11) may be a salt.
  • the salt include hydrochloride, isocyanurate, triazine isocyanurate and the like.
  • amine compound represented by the general formula (11) include the following compounds.
  • RA 1 , RA 2 , RA 3 and RA 4 each independently represent a hydrogen atom, an aliphatic hydrocarbon group having 1 to 17 carbon atoms, an aryl-containing group, a hydroxyl group, or a dimethylaminomethyl group. Indicates.
  • the aliphatic hydrocarbon group having 1 to 17 carbon atoms is preferably an alkyl group having 1 to 6 carbon atoms.
  • Examples of the aryl-containing group include an aryl group such as a phenyl group and a naphthyl group, and an arylalkyl group such as a benzyl group.
  • the number of carbon atoms constituting the aryl-containing group is preferably in the range of 6 to 11.
  • one of RA 1, RA 2, RA 3 , RA 4 is a dimethylamino group.
  • two of RA 2 , RA 3 and RA 4 are preferably dimethylamino groups, and more preferably all of RA 2 , RA 3 and RA 4 are dimethylamino groups.
  • the dimethylaminomethyl group represented by RA 1 , RA 2 , RA 3 or RA 4 in the general formula (2) has moderate reactivity (nucleophilic reactivity).
  • the storage stability here means that the curing reaction is difficult to proceed under storage conditions and the viscosity is difficult to increase.
  • the compound represented by the general formula (12) may be a salt.
  • the salt include hydrochloride, 2-ethylhexanoate and the like.
  • amine compound represented by the general formula (12) include the following compounds.
  • the polarity of the amine compound (b2) is preferably close to that of the amine compound (b2) so as to be easily dissolved in the epoxy resin (a) or an arbitrary acid anhydride (c).
  • the content of the amine compound (b2) in the surface sealing agent is such that the equivalent ratio of “active functional group (tertiary amino group) of the amine compound (b2) / epoxy group contained in the surface sealing agent” is 0.008 to It is preferably 0.152, more preferably 0.02 to 0.15.
  • the amine compound (b2) may be composed of only one kind of compound or a combination of two or more kinds of compounds.
  • the surface sealing agent of the present invention may contain an acid anhydride (c).
  • a highly transparent cured product may be obtained from a surface sealant containing an epoxy resin that is a curable resin and an acid anhydride. Since many aromatic acid anhydrides are colored, aliphatic (aromatic hydrogenated) acid anhydrides are preferred.
  • acid anhydrides contained in the sealant include phthalic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, trimellitic anhydride, hexachloroendomethylenetetrahydrophthalic anhydride, benzophenone tetracarboxylic anhydride, etc. It is.
  • An aliphatic acid anhydride having high transparency is hexahydrophthalic anhydride or methylhexahydrophthalic anhydride.
  • the surface sealing agent of the present invention preferably contains an acid anhydride (c) so that the equivalent ratio of “acid anhydride group / epoxy group” is 0.8 to 1.2. If the equivalent ratio is too small, the viscosity stability under storage conditions such as room temperature may be reduced. On the other hand, if the equivalent ratio is too large, the amount of unreacted acid anhydride increases and moisture permeability increases, which may cause deterioration of the organic EL element.
  • the surface sealing agent of the present invention may contain a coupling agent such as a silane coupling agent, a titanium coupling agent, a zirconium coupling agent, and an aluminum coupling agent.
  • a coupling agent such as a silane coupling agent, a titanium coupling agent, a zirconium coupling agent, and an aluminum coupling agent.
  • the surface sealant containing the coupling agent increases the adhesion with the glass substrate.
  • silane coupling agents include 1) a silane coupling agent having an epoxy group, 2) a silane coupling agent having a functional group capable of reacting with an epoxy group, and 3) other silane coupling agents.
  • 1) a silane coupling agent having an epoxy group, and 2) an epoxy group it is preferable to use a silane coupling agent having a reactive functional group. Reacting with an epoxy group means an addition reaction with an epoxy group.
  • a silane coupling agent having an epoxy group is a silane coupling agent having an epoxy group such as a glycidyl group; examples thereof include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ - (3,4- Epoxycyclohexyl) ethyltrimethoxysilane and the like.
  • Functional groups capable of reacting with epoxy groups include amino groups such as primary amino groups and secondary amino groups; carboxyl groups and the like, and groups that can be converted into functional groups capable of reacting with epoxy groups (for example, Methacryloyl group, isocyanate group, etc.).
  • Examples of such a silane coupling agent having a functional group capable of reacting with an epoxy group include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3- Aminopropylmethyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- ( 1,3-dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane or 3- (4-methylpiperazino) propyltrimethoxysilane, trimethoxysilylbenzoic acid, ⁇ -methacryloxypropyltrimethoxysilane, And ⁇ -isocyanato
  • silane coupling agents examples include vinyltriacetoxysilane and vinyltrimethoxysilane. These silane coupling agents may be used alone or in combination of two or more.
  • the molecular weight of the silane coupling agent contained in the surface sealing agent of the present invention is preferably 80 to 800. When the molecular weight of the silane coupling agent exceeds 800, the adhesion may decrease.
  • the content of the silane coupling agent in the surface sealing agent of the present invention is preferably 0.05 to 30 parts by mass, and 0.1 to 20 parts by mass with respect to 100 parts by mass of the surface sealing agent. More preferred is 0.3 to 10 parts by mass.
  • the surface sealing agent of the present invention can contain other optional component (e) as long as the effects of the present invention are not impaired.
  • the other optional component (e) include a resin component, a filler, a modifier, an antioxidant, and a stabilizer.
  • the resin component include polyamide, polyamideimide, polyurethane, polybutadiene, polychloroprene, polyether, polyester, styrene-butadiene-styrene block copolymer, petroleum resin, xylene resin, ketone resin, cellulose resin, fluorine-based oligomer. And silicon oligomers and polysulfide oligomers.
  • resin components can be used individually by 1 type or in combination of 2 or more types.
  • an inorganic filler or an organic filler having a difference in refractive index with a material of 0.1 or more and a diameter of 0.1 ⁇ m or more is substantially not included.
  • filler examples include glass beads, styrene polymer particles, methacrylate polymer particles, ethylene polymer particles, and propylene polymer particles. These fillers can be used individually by 1 type or in combination of 2 or more types.
  • modifiers include polymerization initiation assistants, anti-aging agents, leveling agents, wettability improvers, surfactants, plasticizers, and the like. These modifiers can be used individually by 1 type or in combination of 2 or more types.
  • stabilizer include ultraviolet absorbers, preservatives, and antibacterial agents. These stabilizers can be used individually by 1 type or in combination of 2 or more types.
  • Antioxidants are those that deactivate radicals generated by plasma irradiation or sunlight irradiation (Hindered Amine Light Stabilizer, ⁇ HALS) and those that decompose peroxides.
  • the antioxidant can prevent discoloration of the cured product of the sealant.
  • hindered amines include bis (2,2,6,6-tetramethylpiperidin-4-yl) sebacate, 2,4-dichloro-6-tert-octylamino-s-triazine and 4,4′-hexamethylene Bis (amino-2,2,6,6-tetramethylpihelidine) polycondensation product, bis [1- (2-hydroxy-2-methylpropoxy) -2,2,6,6-tetramethylpiperidine -4-Il] sebacate.
  • phenolic antioxidants examples include monophenols such as 2,6-di-t-butyl-p-cresol, and bisphenols such as 2,2′-methylenebis (4-methyl-6-t-butylphenol). Polymeric phenols such as 1,1,3-tris (2-methyl-4-hydroxy-5-t-butylphenyl) butane are included.
  • an antioxidant selected from phosphites and a colorant selected from oxaphosphaphenanthrene oxides are preferably used.
  • Tinuvin123 bis (1-octyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacic acid
  • Tinuvin765 bis (1,2,2, 6,6-pentamethyl-4-piperidyl) sebacic acid and methyl 1,2,2,6,6-pentamethyl-4-piperidyl sebacic acid
  • Hostavin® PR25 dimethyl® 4-methoxybenzyl® Idenemalonate
  • Tinuvin® 312® or Hostavin vsu ethanediamide N- (2-ethoxyphenyl) -N '-(2-ethylphenyl)
  • CHIMASSORB 119 FL N, N'-bis (3-aminopropyl) ethylenediamine-2,4-bis [N- Butyl-N- (1,2,2,6,6-pentamethyl-4-piperidyl) amino] -6-chloro-1,3,5-tria
  • Solvent (f) The surface sealing agent of the present invention may contain a solvent (f).
  • the solvent (f) has a function of uniformly dispersing or dissolving each component.
  • Solvent (f) may be various organic solvents, aromatic solvents such as toluene and xylene; ketone solvents such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; ether, dibutyl ether, tetrahydrofuran, dioxane, ethylene glycol mono Ethers such as alkyl ethers; aprotic polar solvents such as N-methylpyrrolidone; esters such as ethyl acetate and butyl acetate are included.
  • a surface-sealing molded product is obtained by adding a high molecular weight epoxy resin (a-2) as an optional component to the surface sealing agent of the present invention
  • a high molecular weight epoxy resin (a-2) from the point of being easy to dissolve, a ketone solvent (a solvent having a keto group) such as methyl ethyl ketone is more preferable.
  • the viscosity of the surface sealant of the present invention measured by an E-type viscometer at 25 ° C. and 1.0 rpm is preferably 10 to 10,000 mPa ⁇ s, more preferably 200 to 10,000 mPa ⁇ s.
  • the viscosity of the surface sealant is measured with an E-type viscometer (RC-500 manufactured by Toki Sangyo Co., Ltd.) at a measurement temperature of 25 ° C.
  • the rate of increase in viscosity of the surface sealing agent of the first embodiment of the present invention after storage at 25 ° C. for 24 hours is preferably less than 100%, more preferably 70% or less, and 50% or less. More preferably.
  • the water content of the surface sealing agent of the present invention is preferably 0.1% by mass or less, and more preferably 0.06% by mass or less. Since an electric circuit in which an optical semiconductor such as an organic EL element is disposed is easily deteriorated by moisture, it is preferable to reduce the water content of the surface sealing agent as much as possible.
  • the moisture content of the surface sealant can be obtained by weighing about 0.1 g of a sample sample, heating to 150 ° C. using a Karl Fischer moisture meter, and measuring the amount of water generated at that time (solid) Vaporization method).
  • the surface sealant of the present invention can be preferably used as a surface sealant for optical semiconductors.
  • An optical semiconductor is an element that emits light by converting electricity into light, for example.
  • Specific examples of the optical semiconductor include inorganic LED elements, organic EL elements, and the like, and preferably organic EL elements. Since an optical semiconductor is easily deteriorated by moisture or the like, the surface needs to be sealed.
  • the light transmittance of the cured product of the surface sealing agent of the present invention is preferably 30% or more, more preferably 50% or more, and further preferably 80% or more. If the light transmittance of the cured product is too low, when used as a surface sealant for an organic EL device or the like, the light extraction efficiency from the device is likely to be lowered, and the design is also deteriorated. Generally, the upper limit of the light transmittance of the cured product of the surface sealing agent can be about 99%.
  • the light transmittance of the cured product can be adjusted by the type and amount of the amine compound (b) contained in the surface sealing agent.
  • cured material can be performed in the following procedures. 1) A surface sealing agent is applied on a substrate and dried, and then cured to obtain a cured product having a thickness of 100 ⁇ m. 2) The light transmittance at a wavelength of 450 nm of the obtained cured product is measured using an ultraviolet / visible light photometer (MULTISPEC-1500 manufactured by Shimadzu Corporation).
  • MULTISPEC-1500 ultraviolet / visible light photometer
  • the surface sealing agent of the present invention may be used as a liquid sealing agent, but by adding the above-described high molecular weight epoxy resin (a-2) or the like, It may be used as part.
  • a-2 high molecular weight epoxy resin
  • it can be applied on an optical semiconductor such as an organic EL element by screen printing, dispenser application, etc., and the coated layer is cured to seal the optical semiconductor such as an organic EL element.
  • a sealing product such as a film
  • an optical semiconductor such as an organic EL element is surface-sealed by laminating and curing a film-like sealing agent on the optical semiconductor such as an organic EL element. Just stop.
  • the surface sealant of the present invention can be produced by any method as long as the effects of the present invention are not impaired. For example, 1) a step of preparing an epoxy resin (a), a curing accelerator (b), and other optional components, and 2) a step of mixing each component at 30 ° C. or lower in an inert gas environment. It is manufactured by the method including. Mixing includes a method in which these components are charged into a flask and agitated, and a method in which the components are kneaded with three rolls.
  • a liquid surface sealing agent may be applied to a release substrate, the coating film may be dried, and then peeled off.
  • the surface sealant may be applied using a method such as screen printing or dispenser application.
  • the tertiary amine contained in the surface sealant of the first aspect of the present invention can form a complex with a metal ion coordinated with an electron-donating anionic ligand (preferably a carboxylate compound), It is appropriately fixed as a metal complex. Accordingly, under normal storage conditions of the surface sealing agent of the present invention such as at room temperature, the tertiary amine is less likely to be detached from the metal complex, and the reaction of the epoxy resin or the like in the surface sealing agent is suppressed, and the surface sealing agent is The storage stability of the stopper can be improved.
  • the surface sealing agent of the first embodiment of the present invention seals the organic EL device as described later, the coordination bond between the tertiary amine and the metal ion is relaxed when heated or irradiated with light.
  • the tertiary amine can advance the curing reaction of the epoxy resin.
  • the storage stability here means that the curing reaction is difficult to proceed under storage conditions and the viscosity is difficult to increase.
  • the surface sealing agent of the first embodiment of the present invention has high storage stability while having good curability, the sealing step when used as a surface sealing agent for optical semiconductors Work efficiency can be increased.
  • the tertiary amine in the metal complex (b1) is a compound represented by the above general formulas (1) to (6), so that the tertiary amine under storage conditions is not deteriorated so as not to impair the curability. It is thought that the reactivity of can be reduced. Thereby, as will be described later, it is considered that haze increase of the cured product layer upon plasma treatment can be suppressed, that is, weather resistance can be improved.
  • the specific amine compound (b2) contained in the surface sealing agent of the second aspect of the present invention has a structure represented by the above general formula (11) or (12). Therefore, it is considered that the reactivity of the amine compound (b2) under storage conditions can be reduced to such an extent that the curability is not impaired. Thereby, it is thought that the haze rise of the hardened
  • epoxy resin composition of the present invention is used as a surface sealant, it is not limited thereto.
  • the epoxy resin composition of the present invention can also be used for various applications.
  • the organic EL device of the present invention includes an organic EL element disposed on a substrate, a cured resin layer in contact with the organic EL element and covering (surface-sealing) the organic EL element, and And a sealing substrate that covers the cured resin layer.
  • the organic EL device can be used as an organic EL display panel including the organic EL device.
  • the organic EL device of the present invention 1) an organic EL element disposed on a substrate, and 2) a cured resin layer that is in contact with the organic EL element and covers (surface seals) the organic EL element And 3) a passivation layer that contacts the cured resin layer and covers the cured resin layer, and 4) a sealing substrate that covers the passivation layer (see FIG. 1A).
  • the resin cured product layer is a cured product of the aforementioned surface sealant.
  • the organic EL device of the present invention 1) an organic EL element disposed on the substrate, and 2) a contact with the organic EL element and covering (sealing) the organic EL element.
  • the resin cured product layer is a cured product of the aforementioned surface sealant.
  • FIG. 1A is a cross-sectional view schematically showing a surface-sealing type organic EL device.
  • the organic EL panel 20 includes a substrate 22, an organic EL element 24, and a sealing substrate 26 stacked in this order.
  • a surface sealing layer 28 is disposed between the substrate 22 and the sealing substrate 26, and the surface sealing layer 28 covers the periphery of the organic EL element 24. In this manner, the surface sealing layer 28 seals the organic EL element 24.
  • the surface sealing layer 28 includes a cured product layer 28-1 made of a cured product of the surface sealing agent of the present invention, and a passivation layer 28- covering the cured product layer 28-1. 2 and a second cured resin layer 28-3 covering the passivation layer 28-2.
  • the substrate 22 and the sealing substrate 26 are usually a glass substrate or a resin film, and at least one of the substrate 22 and the sealing substrate 26 is a transparent glass substrate or a transparent resin film.
  • transparent resin films include aromatic polyester resins such as polyethylene terephthalate.
  • the reflective pixel electrode layer 30 (made of aluminum, silver, etc.), the organic EL layer 32, and the transparent counter electrode layer 34 (from ITO, IZO, etc.) Included).
  • the reflective pixel electrode layer 30, the organic EL layer 32, and the transparent counter electrode layer 34 may be formed by vacuum deposition, sputtering, or the like.
  • the surface sealing layer 28 includes a cured product layer 28-1, made of a cured product of the surface sealing agent of the present invention, a passivation layer 28-2, and a second cured resin layer 28-3.
  • the cured product layer 28-1 is preferably in contact with the organic EL element.
  • the thickness of the cured product layer 28-1 is preferably 0.1 to 20 ⁇ m.
  • the cured product layer 28-1 made of a cured product of the surface sealant has a Zn content in a spectrum measured by X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • a peak derived from one or more kinds of metal atoms selected from the group consisting of Bi, Ca, Al, Cd, La, and Zr and a peak derived from a nitrogen atom are detected, and the detected metal atom and nitrogen atom
  • the molar ratio of nitrogen atom to 1 mol of metal atom may depend on the content of tertiary amine to metal ion in metal complex (b1).
  • the metal atom is preferably Zn, and the content thereof is preferably 0.5 to 15% by mass in the cured product.
  • XPS measurement can be performed using AXIS-NOVA (manufactured by KRATOS).
  • the light source can be monochromatic A1 K ⁇ ; the diameter of the measurement area can be 100 ⁇ m.
  • the light transmittance of the cured product layer 28-1 made of the cured product of the surface sealing agent of the present invention is preferably 30% or more, more preferably 50% or more, and further preferably 80% or more. This is because if the light transmittance is too low, the light extraction efficiency from the element and the light absorption efficiency to the element are likely to decrease.
  • the upper limit of the light transmittance of the cured product layer 28-1 can be, for example, about 99%.
  • the passivation layer 28-2 constituting the surface sealing layer 28 is preferably an inorganic compound layer formed in a plasma environment.
  • Forming a film in a plasma environment means, for example, forming a film by a plasma CVD method, but is not particularly limited, and may be formed by a sputtering method or an evaporation method.
  • the material of the passivation layer 28-2 is preferably a transparent inorganic compound, and examples thereof include silicon nitride, silicon oxide, SiONF, and SiON, but are not particularly limited.
  • the thickness of the passivation layer 28-2 is preferably 0.1 to 5 ⁇ m.
  • the passivation layer 28-2 may be formed in contact with the cured product layer 28-1. This is because the cured product layer 28-1 made of the cured product of the surface sealing agent of the present invention can maintain its transparency even when exposed to a plasma environment.
  • the passivation layer 28-2 is formed not in direct contact with the organic EL element 24 but in direct contact with the cured product layer 28-1. If an attempt is made to form a film by bringing the passivation layer 28 into direct contact with the organic EL element 24, the edge of the organic EL element 24 is acute, and the coverage by the passivation layer 28 may be reduced.
  • the organic EL element 24 is surface-sealed with the hardened material layer 28-1 of the surface sealant of the present invention, and then on the hardened material layer 28-1.
  • a passivation layer 28-2 is formed. By sealing the surface with the cured product layer 28-1, the deposition surface of the passivation layer 28-2 can be smoothed, and the coverage is improved.
  • the second resin cured product layer 28-3 constituting the surface sealing layer 28 may be the same material (surface sealing agent of the present invention) as the cured product layer 28-1, or a different material. .
  • the moisture content of the second resin cured product layer 28-3 may be higher than the moisture content of the cured product layer 28-1. This is because the second cured resin layer 28-3 is not in direct contact with the organic EL element.
  • the light transmittance of the second cured resin layer 28-3 is As with the resin cured product layer 28-1, it needs to be high.
  • FIG. 1B is a cross-sectional view schematically showing another surface-sealing type organic EL device.
  • the organic EL panel 20 has a substrate 22, an organic EL element 24, and a sealing substrate 26 laminated in this order.
  • a surface sealing layer 28 is disposed between the substrate 22 and the sealing substrate 26, and the surface sealing layer 28 covers the periphery of the organic EL element 24. In this manner, the surface sealing layer 28 seals the organic EL element 24.
  • the surface sealing layer 28 includes a cured product layer 28-1 made of a cured product of the surface sealing agent of the present invention and a passivation covering the end surface of the cured product layer 28-1.
  • Layer 28-2 Other components of the organic EL device 20 ′ shown in FIG. 1B are the same as the constituent members of the organic EL device 20 shown in FIG. 1A.
  • the organic EL device of the present invention can be produced by an arbitrary method as long as the effects of the present invention are not impaired, but 1) a step of preparing an organic EL element disposed on a substrate, and 2) an organic EL element, A step of covering with a surface sealing agent and curing the surface sealing agent to form a surface sealing layer, and 3) a step of sealing with a sealing substrate.
  • a step of preparing an organic EL element disposed on a substrate and 2) an organic EL element
  • a step of covering with a surface sealing agent and curing the surface sealing agent to form a surface sealing layer A step of covering with a surface sealing agent and curing the surface sealing agent to form a surface sealing layer
  • 3) a step of sealing with a sealing substrate a step of sealing with a sealing substrate.
  • Examples of the step of exposing the surface sealing layer to plasma include a step of forming a passivation film on the surface sealing layer by a plasma CVD method, and a step of changing the surface characteristics by irradiating the surface sealing layer with plasma. Etc. are included.
  • the surface characteristics for example, increasing wettability
  • the adhesion with other members can be improved.
  • the sealing layer made of the surface sealing agent of the second aspect of the present invention has excellent plasma resistance, and even after these steps, the surface sealing layer is hardly deteriorated, for example, high transparency is maintained. .
  • FIG. 2 schematically shows the manufacturing process of the organic EL device of the present invention.
  • a substrate 22 on which an organic EL element 24 is laminated is prepared (FIG. 2A).
  • the organic EL element includes a reflective pixel electrode layer 30, an organic EL layer 32, and a transparent counter electrode layer 34, but may further have other functional layers.
  • the liquid surface sealing agent of the present invention is applied on the organic EL element 24 laminated on the substrate 22 (so as to cover the transparent counter electrode layer 34), or a film-like surface sealing agent is applied.
  • curing is performed to form a cured product layer 28-1 (FIG. 2B).
  • a passivation layer 28-2 is formed on the cured product layer 28-1 (FIG. 2C).
  • the passivation layer (transparent inorganic compound layer) 28-2 can be formed by any method, for example, a plasma CVD method, a sputtering method, a vapor deposition method, or the like. Especially, when the film is formed by the plasma CVD method, the effect of the present invention is remarkably exhibited. That is, when the passivation layer 28-2 is formed by the plasma CVD method, the hardened material layer 28-1 is exposed to the plasma more significantly than the sputtering method or the like. Transparency is maintained.
  • the surface sealing agent of the present invention can be particularly preferably used in a manufacturing process including a step of forming a passivation layer by a plasma CVD method.
  • the passivation layer 28-2 is covered with a resin layer (FIG. 2D), and the sealing substrate 26 is further overlapped, and the resin layer is cured in this state to form a second cured resin layer 28-3. Then, the sealing substrate 26 is bonded (FIG. 2E). In this way, the organic EL device 20 of the present invention is obtained.
  • FIG. 2 shows a flow of forming one organic EL element 24 on the substrate 22 and sealing it; the plurality of organic EL elements 24 formed on the substrate 22 are processed once in the same procedure. It can be sealed with a flow.
  • the surface sealant according to the first embodiment of the present invention tends not to cause deterioration of an optical semiconductor such as an organic EL element.
  • an optical semiconductor such as an organic EL element.
  • the reason for this is not necessarily clear, but is presumed as follows. That is, when the tertiary amine contained in the surface sealing agent is in a state of being easily moved, the tertiary amine and the metal constituting the charge transport layer and the light emitting layer of the organic EL element interact with each other, and the organic EL element It is considered that the state is easily changed and the element is likely to be deteriorated.
  • the tertiary amine contained in the surface sealing agent of the first embodiment of the present invention has previously formed a complex with a metal ion, the periphery of the tertiary amine is bulky. Therefore, it is presumed that the interaction between the tertiary amine and the charge transport layer or the light emitting layer of the organic EL element is unlikely to occur, and deterioration of the organic EL element or the like can be suppressed.
  • an organic EL element is produced by a vapor deposition method.
  • a surface sealant is applied onto the manufactured element, and then thermally cured to seal the element, whereby Sample 1 is obtained.
  • the periphery of the manufactured element is similarly sealed (hollow sealed) with a surface sealant so as not to contact the element, and sample 2 is obtained.
  • the initial light emission characteristics, life, and reliability of sample 1 and sample 2 are measured, and both are compared. If there is no difference between the two evaluation results, it can be determined that there is no deterioration of the device due to the interaction between the surface sealant and the device. Specifically, it can be evaluated by the same method as the deterioration test method described in International Publication No. 2010/035502.
  • the metal complex (b1-0) With respect to the metal complex (b1-0), the results of elemental analysis of 1 H NMR, 13 C NMR, FD MS, C, H, and N are shown below. From these results, the metal complex (b1-0) is presumed to have the structure of the general formula (10).
  • compositions of the obtained metal complexes (b1-1) to (b1-7) and the 1 HNMR peak transfer amount are summarized in Table 1.
  • the numerical value in the column of the metal complex in the table indicates the mass ratio.
  • the viscosities of the surface sealants obtained in Examples 1 to 10 and Comparative Example 1 were measured.
  • the viscosity immediately after synthesis of the surface sealing agent (0 h) and the viscosity after the surface sealing agent was stored at 25 ° C. for 24 to 48 hours after synthesis were respectively represented by an E-type viscometer (digital rheometer model DII manufactured by BROOKFIEL) -III ULTRA) at 25 ° C. and 1 rpm. Then, the measured value was applied to the following formula to determine the rate of increase in viscosity.
  • Increasing rate (%) ( ⁇ viscosity change amount (viscosity after 24 hr or 48 hr ⁇ viscosity immediately after synthesis) / viscosity immediately after synthesis) ⁇ 100
  • the curability of the surface sealants obtained in Examples 1 to 10 and Comparative Example 1 was evaluated by the following method.
  • the fluidity and tackiness of a cured product obtained by curing each surface sealing agent by heating in the air for 30 minutes were evaluated using pencil hardness.
  • the state in which the cured product had no fluidity and no tackiness was evaluated as ⁇ , the fluidity state was evaluated as x, and the state where tackiness remained was evaluated as ⁇ .
  • the haze value (%) of the cured product layer was measured using a haze meter (manufactured by Tokyo Denka, model name TC-H3DPK). Then, the glass substrate on which the cured product layer is formed is placed in a plasma processing apparatus (manufactured by Yamato Kagaku, model name PDC210, parallel plate type), and plasma processing is performed for 20 minutes under the conditions of an oxygen flow rate of 20 mL / min and an RF output of 500 W. did. And the haze value (%) of the hardened
  • a suitable surface sealing agent in a method of manufacturing an organic EL device including a step of irradiating plasma to a cured product of a surface sealing agent by performing plasma treatment and evaluating a change in haze? It is possible to evaluate whether or not the weather resistance is accelerated.
  • Table 2 shows the evaluation results of the surface sealants of Examples 1 to 10 and Comparative Example 1.
  • the haze of the cured product layer before the plasma treatment is sufficiently reduced.
  • the surface sealants of Examples 1 to 10 have the haze value of the cured layer after plasma treatment suppressed to less than 30%, whereas the surface sealants of Comparative Example 1 have plasma treatments.
  • the haze value of the later cured product layer exceeds 40%.
  • the surface sealant of Comparative Example 1 has good curability, the storage stability is low, whereas the surface sealants of Examples 1 to 8 have high curability and good storage stability. I know that there is. In particular, it can be seen that the surface sealants of Examples 2 and 5 to 8 have a low rate of increase in viscosity and good curability even after storage for 48 hours.
  • Examples 11 to 23 and 25, Comparative Example 2 In a flask replaced with nitrogen, 100 parts by weight of an epoxy resin having a composition shown in Tables 3 to 5, 84 parts by weight of an acid anhydride, 4 parts by weight of a silane coupling agent, and parts by weight of Tables 3 to 5 were added. A metal complex or an amine compound was stirred and mixed to obtain a surface sealing agent.
  • the metal complexes used in Examples 11 to 13 were the metal complexes (b1-1) to (b1-3) synthesized above.
  • Example 24 A surface sealant was obtained in the same manner as in Example 11 except that zinc bis (2-ethylhexoate) and 1,2-DMZ were added alone in place of the metal complex.
  • the viscosities of the surface sealants obtained in Examples 11 to 25 and Comparative Example 2 were measured in the same manner as described above. Furthermore, the degree of stabilization due to complexation was calculated as follows. That is, the rate of increase in viscosity after 24 hours (the rate of increase when not complexed) of the surface sealing agent in which tertiary amine and zinc bis (2-ethylhexoate) were separately blended was determined as The value obtained by dividing the surface sealing agent containing a metal complex complexed with zinc bis (2-ethylhexoate) by the rate of increase in viscosity after 24 hours was calculated as “stability by complexation”. If the degree of stabilization by complexation is greater than 1, it indicates that the stability has been increased by complexation, and if it is less than 1, it indicates that the stability has been reduced by complexation.
  • “increase rate when not complexed” is the rate of increase after 24 hr of Example 24 when the tertiary amine is “1,2-DMZ”; In the case of “IBMI12”, the rate of increase after 24 hr of Example 25 was used; in the case of “1B2MZ”, the rate of increase after 24 hr of Example 10 was used.
  • the surface sealant obtained in Examples 11 to 23 and Comparative Example 2 was applied to a screen printer (Screen Printer) on a glass substrate (7 cm ⁇ 7 cm ⁇ 0.7 mm thickness) previously cleaned by ozone treatment. Model 2200, manufactured by MITANI) was used for printing.
  • the surface sealing agent was applied so as to have a thickness of 5 cm ⁇ 5 cm ⁇ 3 ⁇ m in a dry state.
  • the glass substrate on which the surface sealing agent was printed was heated on a hot plate heated to 100 ° C. for 30 minutes to obtain a cured product layer.
  • the haze value (%) of the cured product layer was measured using a haze meter (manufactured by Tokyo Denka, model name TC-H3DPK). Thereafter, the glass substrate on which the cured product layer was formed was placed in a sputtered thin film forming apparatus (manufactured by ULVAC, Inc., JSP-8000), and SiO 2 having a thickness of 50 nm was formed under the following conditions. And the haze value (%) of the hardened
  • the haze after film-forming treatment was evaluated as ⁇ , when the haze was 25% or less, ⁇ when the haze was more than 25% to 40% or less, and x when the haze exceeded 40%.
  • the low haze after the film forming process by sputtering means that the surface of the cured product layer after the film forming process is smooth (the external haze is low) because the cured layer has a relatively high degree of curing. Means).
  • the high haze after the film-forming process by the sputtering method means that the cured layer, particularly the surface thereof, has a relatively low degree of curing, so that the surface of the cured layer is roughened by the film-forming process (external High haze).
  • the haze after the film-forming process by a sputtering method does not necessarily mean that the weather resistance of the hardened
  • the measurement results of Examples 11 to 16 are shown in Table 3; the measurement results of Examples 17 to 21 are shown in Table 4; the measurement results of Examples 22 to 25 and Comparative Example 2 are shown in Table 5.
  • surface shows the radius of an anionic ligand.
  • the radius of the anionic ligand was calculated after obtaining a connolly volume using Material Studio 6.0 Dmol3; assuming that the connolly volume is a true spherical volume.
  • the radii of chloride ions and sulfate ions used were the ion radii (calculated by Shannon and Prewitt) described in Chemistry Handbook Basic Edition 2nd edition, Japan Chemical Society.
  • the surface sealing agents of Examples 11 to 23 showed good curability and had a degree of stabilization by complexation of greater than 1, and the storage stability of the surface sealing agent. Is shown to be high. Specifically, Example 25 in which only the tertiary amine (not complexed) was added and Example 3 in which the tertiary amine and zinc bis (2-ethylhexoate) were added separately (without complexing)
  • the surface sealant of Example 24 has a slightly higher viscosity increase rate after 24 hours, whereas the surface sealants of Examples 11 to 12 and 17 to 23 have a lower viscosity increase rate after 24 hours. It is shown that the storage stability of the surface sealant is improved by the complexation of the secondary amine.
  • the surface sealing agent of Comparative Example 2 did not contain a tertiary amine, the curability was low and the cured product could not be evaluated.
  • the cured products of the surface sealing agents of Examples 11 to 16 and 18 to 20 have a low haze after the film forming treatment and maintain a good transparency. This is presumably because the increase in external haze due to the roughening of the film formation surface could be reduced due to the high curability of the surfaces of the cured products of the surface sealants of Examples 11 to 16 and 18 to 20. .
  • the viscosities of the surface sealants obtained in Examples 26 to 34 and Comparative Examples 3 to 4 were measured.
  • the viscosity of the surface sealant at 25 ° C. was measured using an E-type viscometer (digital rheometer model DII-III ULTRA manufactured by BROOKFIEL). Table 6 shows the measurement results.
  • the curability of the surface sealants obtained in Examples 26 to 34 and Comparative Examples 3 to 4 was evaluated by the following method. Samples were prepared by sandwiching each surface sealing agent between two NaCl crystal plates (thickness 5 mm). A surface sealing agent was sealed between two NaCl crystal plates (2 cm square) so that the distance between NaCl crystal plates was 15 ⁇ m. The infrared transmission spectrum before and after heat-treating this sample for 30 minutes at 100 ° C. was measured with an FT-IR measuring apparatus.
  • the height of the absorption peak (near 910 cm ⁇ 1 ) derived from the reverse symmetrical ring stretching of the epoxy group is the height of the absorption peak (near 1600 cm ⁇ 1 ) derived from the intra-CC stretching of the benzene ring. Divided by the standardization. And the reaction rate of the epoxy group was computed from the decreasing degree of the peak derived from the epoxy group by heat processing.
  • the haze value (%) of the cured product layer was measured using a haze meter (manufactured by Tokyo Denka, model name TC-H3DPK). Then, the glass substrate on which the cured product layer is formed is placed in a plasma processing apparatus (manufactured by Yamato Kagaku, model name PDC210, parallel plate type), and plasma processing is performed for 20 minutes under the conditions of an oxygen flow rate of 20 mL / min and an RF output of 500 W. did. And the haze value (%) of the hardened
  • a suitable surface sealing agent in a method of manufacturing an organic EL device including a step of irradiating plasma to a cured product of the surface sealing agent by performing plasma treatment in this way and evaluating a change in haze. As well as accelerated evaluation of weather resistance.
  • the haze of the cured product layer before the plasma treatment is sufficiently reduced. And about the surface sealing agent of Examples 26-34, while the haze value of the hardened
  • the haze value of the cured product layer after the plasma treatment is suppressed to less than 20%. This suggests that when the hydrogen atom bonded to the 1-position of the imidazole ring of the curing accelerator is substituted with another substituent, the haze increase due to plasma can be more effectively suppressed.
  • the surface sealant of the first aspect of the present invention has good curability and is excellent in storage stability. Therefore, the manufacturing efficiency of the optical semiconductor device can be increased. Moreover, the haze rise of a hardened

Landscapes

  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Epoxy Resins (AREA)
  • Electroluminescent Light Sources (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Sealing Material Composition (AREA)

Abstract

 本発明の目的の第一は、光半導体を封止するための樹脂組成物であって、良好な硬化性を有し、かつ貯蔵安定性に優れた封止樹脂層の原料;好ましくはさらに耐候性に優れた封止樹脂層の原料を提供することである。本発明の第一の形態の光半導体用の面封止剤は、1分子内に2個以上のエポキシ基を有するエポキシ樹脂(a)と、Zn、Bi、Ca、Al、Cd、La、Zrからなる群から選ばれる1種類以上の金属イオンと、前記金属イオンと錯形成が可能であって、N-H結合を有さない3級アミンと、分子量が17~200のアニオン性配位子とを含む金属錯体(b1)とを含み、E型粘度計により25℃、1.0rpmで測定した粘度が10~10000mPa・sである。

Description

光半導体用の面封止剤、それを用いた有機ELデバイスの製造方法、有機ELデバイスおよび有機ELディスプレイパネル
 本発明は、光半導体用の面封止剤、それを用いた有機ELデバイスの製造方法、有機ELデバイスおよび有機ELディスプレイパネルに関する。
 有機EL素子は光半導体デバイスであり、液晶のバックライトや、自発光性の薄型平面表示デバイスとして期待されている。しかしながら有機EL素子は、水分や酸素に触れると極めて劣化しやすい。つまり、金属電極と有機物EL層との界面が水分の影響で剥離してしまったり、金属が酸化して高抵抗化してしまったり、有機EL素子の発光層に含まれる発光材などが水分によって変質してしまったりする。このようなことから、有機EL素子が発光しなくなったり、輝度が低下してしまったりするという欠点がある。また、無機LEDなどの光半導体においても、光半導体に接続される電気回路などが水分等と接触することで劣化する場合がある。
 そこで有機EL素子などの光半導体を、水分や酸素から保護する方法が多数報告されている。その手法の一つとして、有機EL素子に(A)グリシジル基を有する化合物と(B)酸無水物硬化剤とを主成分とする有機EL封止剤層を積層して(面封止して)、さらにガラスもしくはフィルムをはり合わせる手法が知られている(例えば、特許文献1を参照)。
 また、有機EL素子は、水分や酸素などによって劣化しやすいため、樹脂からなる樹脂層と、無機化合物からなる無機化合物層と、を有する積層膜で封止することが多い。有機EL素子の積層膜による封止は、1)有機EL素子を無機化合物層で覆ったのちに、さらに樹脂層で覆う方法と、2)有機EL素子を樹脂層で覆ったのちに、さらに無機化合物層で覆う方法(特許文献2を参照)とがある。
 ところで、フォトセンサやLEDなどの封止剤として、Zn(C2n+1COO)で表される化合物と、イミダゾール化合物とを硬化促進剤として含むエポキシ樹脂組成物が提案されている(例えば特許文献3)。また、パウダーコーディング材として、亜鉛などの金属イオンに、アミン化合物とカルボキシレートがそれぞれ配位した金属錯体を含む組成物なども提案されている(例えば特許文献4)。
特開2006-70221号公報 特開2009-252364号公報 特開平10-45879号公報 国際公開第2006/022899号
 光半導体の面封止剤の粘度が貯蔵条件下で大きく変動すると、光半導体の封止条件を面封止剤の粘度の変化に応じて調整しなくてはならず、光半導体デバイスの製造効率が低下するという問題があった。逆に、面封止剤の貯蔵安定性を向上させると、光半導体を封止する際に、面封止剤が硬化しにくくなる傾向があり、硬化時間が長くなるため、光半導体デバイスの製造効率が低下するという問題があった。
 また、光半導体、特に有機ELデバイスなどの発光する光半導体は、携帯用電子機器や照明器具などとして使用される場合、長時間日光に曝されるため、耐候性が必要とされる。特に、有機EL素子用の面封止剤の硬化物が日光などに曝されることで変色すると、トップエミッション型の有機ELデバイスの場合は、光取り出し効率が低下し、また意匠性が悪化するという問題があった。また、バックエミッション型の有機ELデバイスにおいても、意匠性が悪化するという問題があった。
 これに対して特許文献3の組成物は、硬化性が十分でない場合があった。また、特許文献4の組成物は、貯蔵安定性は比較的改善されうるが、粘度が高いと考えられるため、封止剤としては適さないと考えられる。
 本発明は、上記事情に鑑みてなされたものであり、本発明の目的の第一は、光半導体を封止するための樹脂組成物であって、良好な硬化性を有し、かつ貯蔵安定性に優れた封止樹脂層の原料;好ましくはさらに耐候性に優れた封止樹脂層の原料を提供することである。本発明の目的の第二は、光半導体を封止するための樹脂組成物であって、耐候性に優れた封止樹脂層の原料を提供することである。
 本発明の第一は、以下の光半導体用の面封止剤に関する。
 [1]1分子内に2個以上のエポキシ基を有するエポキシ樹脂(a)と、Zn、Bi、Ca、Al、Cd、La、Zrからなる群から選ばれる1種類以上の金属イオンと、前記金属イオンと錯形成が可能であって、N-H結合を有さない3級アミンと、分子量が17~200のアニオン性配位子とを含む金属錯体(b1)と、を含み、E型粘度計により25℃、1.0rpmで測定した粘度が10~10000mPa・sである、光半導体用の面封止剤。
 [2] 前記アニオン性配位子の価数が前記金属イオンの価数より小さく、かつ前記アニオン性配位子の半径が2.0Å以上である、[1]に記載の光半導体用の面封止剤。
 [3] 前記3級アミンが、下記一般式(1)~(6)のいずれかで表される化合物である、[1]または[2]に記載の光半導体用の面封止剤。
Figure JPOXMLDOC01-appb-C000001
(一般式(1)において、Rは、炭素数1~17の脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示し;R、R、Rは、それぞれ独立に水素基、炭素数1~17の脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示す)
Figure JPOXMLDOC01-appb-C000002
(一般式(2)において、RB1、RB3、RB4、RB5は、それぞれ独立に水素基、炭素数1~17のヘテロ原子を含有してもよい脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示し;RB2は、炭素数1~17のヘテロ原子を含有してもよい脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示し;RB1、RB2、RB3、RB4、RB5から選択された複数の基が互いに連結して、脂環式環、芳香族環、または酸素、窒素、硫黄から選ばれるヘテロ原子を含有する複素環を形成してもよい)
Figure JPOXMLDOC01-appb-C000003
(一般式(3)において、RC1、RC3、RC4、RC5は、それぞれ独立に水素基、炭素数1~17のヘテロ原子を含有してもよい脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示し;RC2は、炭素数1~17のヘテロ原子を含有してもよい脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示し;RC1、RC2、RC3、RC4、RC5から選択された複数の基が互いに連結し、脂環式環、芳香族環、または酸素、窒素、硫黄から選ばれるヘテロ原子を含有する複素環を形成してもよい)
Figure JPOXMLDOC01-appb-C000004
(一般式(4)において、RE1、RE2、RE3、RE4、RE5は、それぞれ独立に水素基、炭素数1~17のヘテロ原子を含有してもよい脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示し;RE1、RE2、RE3、RE4、RE5から選択された複数の基が互いに連結し、脂環式環、芳香族環、または酸素、窒素、硫黄から選ばれるヘテロ原子を含有する複素環を形成してもよい)
Figure JPOXMLDOC01-appb-C000005
(一般式(5)において、RF1、RF2、RF3、RF4、RF5、RF6、RF7は、それぞれ独立に水素基、炭素数1~17のヘテロ原子を含有してもよい脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示し;RF1、RF2、RF3、RF4、RF5、RF6、RF7から選択された複数の基が互いに連結し、脂環式環、芳香族環、または酸素、窒素、硫黄から選ばれるヘテロ原子を含有する複素環を形成してもよい)
Figure JPOXMLDOC01-appb-C000006
(一般式(6)において、RG1、RG2、RG3、RG4は、それぞれ独立に水素基、炭素数1~17のヘテロ原子を含有してもよい脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示し;RG1、RG2、RG3、RG4から選択された複数の基が互いに連結し、脂環式環、芳香族環、または酸素、窒素、硫黄から選ばれるヘテロ原子を含有する複素環を形成してもよい)
 [4] 前記アニオン性配位子が、O、S、Pからなる群から選ばれ、前記金属イオンに結合しうる原子を2以上有し、かつ前記金属イオンに配位して3~7員環を形成しうるものである、[1]~[3]のいずれかに記載の光半導体用の面封止剤。
 [5] 前記3級アミンが、前記一般式(1)~(3)のいずれかで表される化合物であり、かつ前記アニオン性配位子が、下記一般式(7A)で表されるカルボキシレート化合物である、[3]に記載の光半導体用の面封止剤。
Figure JPOXMLDOC01-appb-C000007
(一般式(7A)において、RD1は、フリーまたは水素原子であり、RD2は、水素基、炭素数1~10の炭化水素基または水酸基である)
 [6] 前記面封止剤の、CDCl中、25℃、270MHzにおけるHNMRの化学シフトのうち3級アミンに由来する化学シフトが、前記3級アミン単独の、CDCl中、25℃、270MHzにおけるHNMRの化学シフトに対して0.1ppm以上移動するピークを含む、[1]~[5]のいずれかに記載の光半導体用の面封止剤。
 [7] 前記金属イオンに対する前記3級アミンのモル比が、0.5~6.0である、[1]~[6]のいずれかに記載の光半導体用の面封止剤。
 [8] 前記カルボキシレート化合物が、2-エチルヘキサン酸、ギ酸、酢酸、ブタン酸、2-エチルブタン酸、2,2-ジメチルブタン酸、3-メチルブタン酸、2,2-ジメチルプロパン酸、安息香酸およびナフテン酸からなる群から選ばれる少なくとも1種類の化合物である、[5]に記載の光半導体用の面封止剤。
 [9] 前記3級アミンが、1,8-ジアゾビシクロ[5,4,0]ウンデカ-7-エン、1-メチルイミダゾール、1,2-ジメチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-イソブチル-2-メチルイミダゾール、1-ブチルイミダゾールおよび1,5-ジアゾビシクロ[4,3,0]ノン-5-エンからなる群から選ばれる少なくとも1種類の化合物である、[1]~[8]のいずれかに記載の光半導体用の面封止剤。
 本発明の第二は、以下の光半導体用の面封止剤に関する。
 [10] 1分子内に2個以上のエポキシ基を有するエポキシ樹脂(a)と、下記一般式(11)または(12)で表される硬化促進剤(b2)とを含み、E型粘度計により25℃、1.0rpmで測定した粘度が10~10000mPa・sである、光半導体用の面封止剤。
Figure JPOXMLDOC01-appb-C000008
(一般式(11)において、R、R、R、Rは、それぞれ独立に水素基、炭素数1~17の脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示すが;但し、Rが水素基である場合は、RおよびRのいずれか一方または両方がアリール基である)
Figure JPOXMLDOC01-appb-C000009
(一般式(12)において、RA、RA、RA、RAは、それぞれ独立に、水素基、炭素数1~17の脂肪族炭化水素基、水酸基、アリール含有基、ジメチルアミノメチル基を示すが;但し、RA,RA,RAおよびRAの1つ以上はジメチルアミノメチル基である)
 [11] 前記一般式(11)において、Rが、炭素数1~17の脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示す、[10]に記載の光半導体用の面封止剤。
 [12] 前記光半導体用の面封止剤は、前記金属錯体(b1)を、3級アミンの活性官能基/エポキシ基の当量比が0.008~0.3となる範囲で含む、[1]~[9]のいずれかに記載の光半導体用の面封止剤。
 [13] 前記光半導体用の面封止剤は、前記硬化促進剤(b2)を、3級アミンの活性官能基/エポキシ基の当量比が0.008~0.152となる範囲で含む、[10]または[11]に記載の光半導体用の面封止剤。
 [14] 前記光半導体用の面封止剤は、酸無水物を、酸無水物基/エポキシ基の当量比が0.8~1.2となる範囲でさらに含む、[1]~[13]のいずれかに記載の光半導体用の面封止剤。
 [15] 含水率が0.1重量%以下である、[1]~[14]のいずれかに記載の光半導体用の面封止剤。
 [16] 有機EL素子用の面封止剤である、[1]~[15]のいずれかに記載の光半導体用の面封止剤。
 本発明の第三は、以下の有機ELデバイスの製造方法等に関する。
 [17] 基板上に有機EL素子を形成する第1の工程と、前記有機EL素子を、[1]~[16]のいずれかに記載の面封止剤で覆う第2の工程と、前記面封止剤を硬化させた硬化物で、前記有機EL素子を面封止する第3の工程と、前記有機EL素子を面封止する前記硬化物上に、パッシベーション膜を成膜する第4の工程と、を含む、有機ELデバイスの製造方法。
 [18] 有機EL素子と、前記有機EL素子と接触しており、前記有機EL素子を面封止している[1]~[16]のいずれかに記載の面封止剤の硬化物からなる硬化物層と、前記硬化物層と接するパッシベーション層と、を含む有機ELデバイス。
 [19] 有機EL素子と、前記有機EL素子を面封止しており、X線光電子分光法(XPS)で測定されるスペクトルにおいて、Zn、Bi、Ca、Al、Cd、La、Zrからなる群から選ばれる1種類以上の金属原子に由来するピークと、窒素原子に由来するピークとが検出され、前記検出される金属原子と窒素原子とのモル比が、前記金属原子:前記窒素原子=1:0.5~1:6.0であり、かつ前記金属原子の含有量が0.5~15質量%であるエポキシ樹脂組成物の硬化物層と、前記硬化物層と接するパッシベーション層と、を含む、有機ELデバイス。
 [20] [18]または[19]に記載の有機ELデバイスを有する、有機ELディスプレイパネル。
 本発明の第一の形態の面封止剤は、良好な硬化性を有し、かつ貯蔵安定性に優れている。そのため、有機EL素子などの光半導体の封止条件をある程度一定にすることができ、光半導体の製造効率を高めることができる。また、本発明の第二の形態の面封止剤を用いることで、光半導体の封止膜の耐光性を高めることができ、例えばその透明性を維持することができる。そのため、有機EL素子などの光半導体が発光する光を高効率に取り出すことができたり、意匠性を維持したりすることができる。また、光半導体に入射する光を大きく減衰させことなく光半導体に取り込むことができる。よって、特に、有機EL素子の輝度の向上などが実現される。
面封止型の有機ELデバイスの断面を模式的に示す図である。 面封止型の有機ELデバイスの製造プロセスを示す図である。
 1.エポキシ樹脂組成物について
 本発明のエポキシ樹脂組成物は、エポキシ樹脂(a)と、アミン化合物(b)とを含み;さらに、酸無水物(c)などを含みうる。本発明のエポキシ樹脂組成物は、例えば面封止剤、透明フィル剤などの用途;好ましくは面封止剤として用いられうる。なお、透明フィル剤とは、例えば、タッチパネルなどの基板と液晶パネルなどの画像表示装置の間を埋める透明性が要求される材料のことをいう。以下、本発明のエポキシ樹脂組成物が面封止剤として用いられる例で説明する。本発明の面封止剤には、後述する第一または第二の形態の面封止剤が含まれる。
 エポキシ樹脂(a)について
 本発明の面封止剤に含まれるエポキシ樹脂(a)は、1分子内に2個以上のエポキシ基を有するエポキシ樹脂であればよく、分子量などは特に限定されず、分子量分布がないエポキシ樹脂も、分子量分布があるエポキシ樹脂も用いることができる。
 1分子内に2個のエポキシ基を有するエポキシ樹脂の例には、ハイドロキノンジグリシジルエーテル、レゾルシンジグリシジルエーテル、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、シクロヘキサンジオールジグリシジルエーテル、シクロヘキサンジメタノールジグリシジルエーテル、ジシクロペンタジエンジオールジグリシジルエーテル、1,6-ナフタレンジオールジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、水添ビスフェノールAジグリシジルエーテル、水添ビスフェノールFジグリシジルエーテルなどが含まれる。
 1分子内に3個以上のエポキシ基を有する化合物の例には、トリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールテトラグリシジルエーテル、フェノールノボラック型エポキシ、クレゾールノボラック型エポキシなどが含まれる。
 また、エポキシ樹脂は、エポキシ基を有するポリマーまたはオリゴマーを含有していてもよい。エポキシ基を有するポリマーまたはオリゴマーは、特に限定されるわけではないが、エポキシ基を有するビニルモノマーなどを重合して得られる。エポキシ基を有するビニルモノマーの例には、グリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、メチルグリシジル(メタ)アクリレートなどの(メタ)アクリレート系モノマーが好ましい。
 エポキシ樹脂は、エポキシ基を有するビニルモノマーと、他のビニルモノマーなどとの共重合ポリマーまたはオリゴマーでもよい。他のビニルモノマーの例には、(メタ)アクリレート類が挙げられる。(メタ)アクリレート類のエステル基は、メチル基、エチル基、イソプロピル基、ノルマルブチル基、イソブチル基、ターシャルブチル基、2-エチルヘキシル基、シクロヘキシル基、ベンジル基、イソボロニル基、ラウリル基、ミリスチル基などの、直鎖構造、分岐構造を問わず、非官能性アルキルエステルが好ましい。さらにエポキシ樹脂は、エポキシ基を有するビニルモノマーと、スチレン、α-メチルスチレン、酢酸ビニルなどとの共重合ポリマーであってもよい。
 本発明の面封止剤に含まれるエポキシ樹脂(a)の好ましい具体例には、四官能ナフタレン型エポキシ樹脂(a-a)、トリフェニルメタン型エポキシ樹脂(a-b)、ジシクロペンタジエン型エポキシ樹脂(a-c)、オルソクレゾールノボラック型エポキシ樹脂(a-d)、フェノールノボラック型エポキシ樹脂(a-e)、フルオレン型エポキシ樹脂(a-f)、ビスフェノール型3官能エポキシ樹脂(a-g)などが含まれる。各エポキシ樹脂の例を以下に構造式で示す。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 エポキシ樹脂(a-a)~(a-g)は嵩高い基(アリール基)を有しているので、これらエポキシ樹脂を含む樹脂硬化物の耐熱性が向上しやすい。また、これらエポキシ樹脂を含む樹脂硬化物は、透明性が高まりやすく、接着性も高まりやすい。さらに、これらのエポキシ樹脂を含む面封止剤の粘度は、所望の範囲(E型粘度計により25℃、1.0rpmで測定した粘度が10~10000mPa・s)に調整されやすい。そのため、本発明の面封止剤は、スクリーン印刷などで成膜しやすい。
 ところが一方で、これらの嵩高い基を有するエポキシ樹脂を含む樹脂硬化物は、プラズマに曝されることで透明性が低下して、ヘイズ上昇が生じやすい。これに対して、特定のアミン化合物(b2)を配合した本発明の面封止剤は、その樹脂硬化物の透明性の低下やヘイズ上昇が抑制されている。
 本発明の面封止剤は、粘度を後述する範囲に調整しやすくするために、エポキシ樹脂(a)として、少なくとも低分子量のエポキシ樹脂(a-1)を含むことが好ましい。また、本発明の面封止剤に、必要に応じて高分子量のエポキシ樹脂(a-2)をさらに添加することで、シート状などの面封止成形物を得ることもできる。
 低分子量のエポキシ樹脂(a-1)とは、重量平均分子量が200~800であるエポキシ樹脂であり;好ましくは重量平均分子量が300~700であるエポキシ樹脂であればよい。「重量平均分子量(Mw)」は、ポリスチレンを標準物質とするゲルパーミエーションクロマトグラフィー(GPC)により測定される。
 エポキシ樹脂(a-1)の例には、ビスフェノール型エポキシ化合物、フェノールノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物などが含まれる。ビスフェノール型エポキシ化合物の例には、一般式(X)で表される化合物が含まれ、好ましい例には、一般式(X')で表される化合物が含まれる。
Figure JPOXMLDOC01-appb-C000017
 一般式(X)において、Xは、単結合、メチレン基、イソプロピリデン基、-S-、又は-SO-を示し;Rは、それぞれ独立して炭素数が1~5のアルキル基を示し、nは、2以上の整数を示し、Pは、0~4の整数を示す。
 フェノール誘導体とエピクロロヒドリンとをモノマー成分として含むオリゴマーのフェノール誘導体の例には、ビスフェノール、水素化ビスフェノール、フェノールノボラック、クレゾールノボラックなどが含まれる。
 低分子量のエポキシ樹脂(a-1)の好ましい例には、ビスフェノール型エポキシ化合物、またはビスフェノールとエピクロロヒドリンとをモノマー成分とするオリゴマーが含まれ、より好ましくは前記一般式(X)において、繰り返し数nが2~4であるオリゴマーである。これは、後述する面封止成形物を得る際に、本発明の面封止剤に、さらに任意に配合されうる高分子量のエポキシ樹脂(a-2)との親和性が高いからである。低分子量のエポキシ樹脂(a-1)に含まれる繰り返し構造単位は、高分子量のエポキシ樹脂(a-2)に含まれる繰り返し構造単位と同じであっても、異なってもよい。
 低分子量のエポキシ樹脂(a-1)のエポキシ当量は、100~800g/eqであることが好ましい。
 本発明の封止用組成物に含まれる低分子量のエポキシ樹脂(a-1)は、主に、素子に熱圧着する際の封止用シートの流動性を高めて素子への密着性を高める機能を有する。
 本発明の面封止剤を用いて、シート状などの面封止成形物を得ることもできる。面封止成形物には、高分子量のエポキシ樹脂(a-2)と、低分子量のエポキシ樹脂(a-1)とのいずれか一方または両方が含まれていてもよい。
 高分子量のエポキシ樹脂(a-2)の例には、フェノール樹脂とエピクロロヒドリンとをモノマー成分として含む樹脂又はオリゴマーが含まれ、好ましくはオリゴマーである。フェノール樹脂とは、ナフトール樹脂などのヒドロキシアリール系樹脂を含む。高分子量のフェノール型エポキシ樹脂(a-2)の重量平均分子量(Mw)は、3×10~2×10であり、好ましくは3×10~7×10である。「重量平均分子量(Mw)」は、ポリスチレンを標準物質とするゲルパーミエーションクロマトグラフィー(GPC)により測定される。
 エポキシ樹脂(a-2)の重量平均分子量(Mw)を上記の数値範囲とすることで、接着力が強く、透湿度の低い封止膜を作製する面封止成形物を得ることができる。また、重量平均分子量(Mw)が上記の数値範囲であるエポキシ樹脂(a-2)を含む面封止剤は、塗工しやすく、かつシート状に成膜しやすい。
 エポキシ樹脂(a-2)の重量平均分子量(Mw)は、過剰に高くなく、適切に制御されている。このため、本発明の面封止剤を硬化させた硬化物(封止部材)は、透湿性が低く、接着力が高い。
 エポキシ樹脂(a-2)は、フェノール樹脂とエピクロロヒドリンとをモノマー成分とするオリゴマーであることが好ましい。エポキシ樹脂(a-2)のモノマー成分の全てをフェノール樹脂とエピクロロヒドリンとしてもよいし、モノマー成分の一部をフェノール樹脂とエピクロロヒドリン以外の化合物(コモノマー成分)としてもよい。モノマー成分の一部を上記コモノマー成分とすることで、得られるエポキシ樹脂(a-2)の重量平均分子量(Mw)を所望の値に制御しやすくなる。エポキシ樹脂(a-2)のモノマー成分を適切に選択することにより、封止用組成物の塗膜表面の平滑性を向上させることができる。
 エポキシ樹脂(a-2)のエポキシ当量は、500~10000g/eqであることが好ましい。
 本発明の面封止成形物に含まれるエポキシ樹脂における、高分子量のエポキシ樹脂(a-2)と、低分子量のエポキシ樹脂(a-1)の割合は特に限定されず、所望の粘度が実現できるように組成を調整することが好ましい。高分子量のエポキシ樹脂(a-2)の含有量が多過ぎると、硬化物(シール部材)の透湿度が高くなる傾向にある。また、有機EL素子等に圧着させる際の流動性が低くなり、封止用シートと有機EL素子等との間に隙間が形成されやすくなる。一方、高分子量のエポキシ樹脂(a-1)の含有量が少な過ぎると、ハンドリング性が低下するおそれがある。
 アミン化合物(b)
 本発明の面封止剤に含まれるアミン化合物(b)は、3級アミンの金属錯体(b1)または特定のアミン化合物(b2)でありうる。これらのアミン化合物(b)は、硬化促進剤として機能しうる。
 即ち、本発明の第一の形態の面封止剤は、3級アミンの金属錯体(b1)を含む。3級アミンの金属錯体(b1)は、金属イオンと、当該金属イオンに配位する3級アミンと、当該金属イオンに配位またはイオン結合するアニオン性配位子とを含む。
 金属錯体(b1)における金属イオンは、Zn、Bi、Ca、Al、Cd、La、Zrからなる群から選ばれる金属イオンであればよい。面封止剤の透明性を向上させるという観点からはZnが好ましい。また金属錯体(b1)が2以上の金属イオンを含む場合、そのうち少なくとも1つの金属イオンが、Zn、Bi、Ca、Al、Cd、La、Zrから選ばれる金属イオンであればよい。
 金属錯体(b1)における3級アミンは、貯蔵条件下での3級アミンの反応性を低下させるためには、金属イオンと錯体を形成でき、かつN-H結合を有しないことが好ましい。また、金属錯体(b1)における3級アミンの分子量は、65~300であることが好ましい。3級アミンの分子量が大きすぎると、金属錯体(b1)の面封止剤への溶解性が低下したり、触媒活性が低下したりすることがあるからである。
 金属錯体(b1)における3級アミンは、下記一般式(1)~(6)のいずれかで表される化合物であることが好ましい。これらの化合物は、環を構成する窒素原子上に共役系の電子雲が集まり、金属イオンと安定に錯体を形成しやすいと考えられる。また、後述するように、これらの化合物を含む面封止剤の硬化物層は、プラズマ処理されても透明性の低下やヘイズ上昇が少なく、良好なプラズマ耐性や耐候性を有すると考えられる。
Figure JPOXMLDOC01-appb-C000018
 一般式(1)において、R、R、Rは、それぞれ独立に水素基、炭素数1~17の脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基である。炭素数1~17の脂肪族炭化水素基は、好ましくは炭素数1~6のアルキル基である。アリール含有基の例には、フェニル基、ナフチル基などのアリール基と、ベンジル基などのアリールアルキル基とが含まれる。アリール含有基の構成炭素数は、6~11の範囲にあることが好ましい。
 Rは、水素原子以外の置換基(脂肪族炭化水素基、アリール基、水酸基またはシアノエチル基)である。Rが他の置換基である場合と比較して、Rが水素原子であると、面封止剤の硬化物からなる封止層が、プラズマなどに曝されることで透明性が低下することがあるからである。
 一般式(1)で表されるアミン化合物の具体例には、以下の1-メチルイミダゾール、1,2-ジメチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-イソブチル-2-メチルイミダゾール、1-ブチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾールなどが含まれる。
Figure JPOXMLDOC01-appb-C000019
 一般式(2)において、RB1、RB3、RB4、RB5は、それぞれ独立に水素基、炭素数1~17のヘテロ原子を含有してもよい脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示す。RB2は、炭素数1~17のヘテロ原子を含有してもよい脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示す。RB1、RB2、RB3、RB4、RB5から適宜選択された複数の基が互いに連結して、脂環式環、芳香族環、または酸素、窒素、硫黄から選ばれるヘテロ原子を含有する複素環を形成してもよい。
 炭素数1~17の脂肪族炭化水素基は、好ましくは炭素数1~6のアルキル基である。アリール含有基の例には、フェニル基、ナフチル基などのアリール基と、ベンジル基などのアリールアルキル基とが含まれる。アリール含有基の構成炭素数は、6~11の範囲にあることが好ましい。
 一般式(2)で表されるアミン化合物の具体例には、以下の1,8-ジアゾビシクロ[5,4,0]ウンデカ-7-エンが含まれる。
Figure JPOXMLDOC01-appb-C000020
 一般式(3)において、RC1、RC3、RC4、RC5は、それぞれ独立に水素基、炭素数1~17のヘテロ原子を含有してもよい脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示す。RC2は、炭素数1~17のヘテロ原子を含有してもよい脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示す。RC1、RC2、RC3、RC4、RC5から適宜選択された複数の基が互いに連結して、脂環式環、芳香族環、または酸素、窒素、硫黄から選ばれるヘテロ原子を含有する複素環を形成してもよい。
 炭素数1~17の脂肪族炭化水素基は、好ましくは炭素数1~6のアルキル基である。アリール含有基の例には、フェニル基、ナフチル基などのアリール基と、ベンジル基などのアリールアルキル基とが含まれる。アリール含有基の構成炭素数は、6~11の範囲にあることが好ましい。
 一般式(3)で表されるアミン化合物の具体例には、以下の1,5-ジアゾビシクロ[4,3,0]ノン-5-エンが含まれる。
Figure JPOXMLDOC01-appb-C000021
 一般式(4)において、RE1、RE2、RE3、RE4、RE5は、それぞれ独立に水素基、炭素数1~17のヘテロ原子を含有してもよい脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示す。RE1、RE2、RE3、RE4、RE5から選択された複数の基が互いに連結して、脂環式環、芳香族環、または酸素、窒素、硫黄から選ばれるヘテロ原子を含有する複素環を形成してもよい。
 炭素数1~17の脂肪族炭化水素基は、好ましくは炭素数1~6のアルキル基である。アリール含有基の例には、フェニル基、ナフチル基などのアリール基と、ベンジル基などのアリールアルキル基とが含まれる。アリール含有基の構成炭素数は、6~11の範囲にあることが好ましい。
 一般式(4)で表されるアミン化合物の具体例には、以下の下記式(4-1)で表される化合物が含まれる。
Figure JPOXMLDOC01-appb-C000022
 一般式(5)において、RF1、RF2、RF3、RF4、RF5、RF6、RF7は、それぞれ独立に水素基、炭素数1~17のヘテロ原子を含有してもよい脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示す。RF1、RF2、RF3、RF4、RF5、RF6、RF7から選択された複数の基が互いに連結し、脂環式環、芳香族環、または酸素、窒素、硫黄から選ばれるヘテロ原子を含有する複素環を形成してもよい。
 炭素数1~17の脂肪族炭化水素基は、好ましくは炭素数1~6のアルキル基である。アリール含有基の例には、フェニル基、ナフチル基などのアリール基と、ベンジル基などのアリールアルキル基とが含まれる。アリール含有基の構成炭素数は、6~11の範囲にあることが好ましい。
 一般式(5)で表されるアミン化合物の具体例には、以下の下記式(5-1)で表される化合物が含まれる。
Figure JPOXMLDOC01-appb-C000023
 一般式(6)において、RG1、RG2、RG3、RG4は、それぞれ独立に水素基、炭素数1~17のヘテロ原子を含有してもよい脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示す。RG1、RG2、RG3、RG4から選択された複数の基が互いに連結し、脂環式環、芳香族環、または酸素、窒素、硫黄から選ばれるヘテロ原子を含有する複素環を形成してもよい。
 炭素数1~17の脂肪族炭化水素基は、好ましくは炭素数1~6のアルキル基である。アリール含有基の例には、フェニル基、ナフチル基などのアリール基と、ベンジル基などのアリールアルキル基とが含まれる。アリール含有基の構成炭素数は、6~11の範囲にあることが好ましい。
 一般式(6)で表されるアミン化合物の具体例には、以下の下記式(6-1)で表される化合物が含まれる。
Figure JPOXMLDOC01-appb-C000024
 これらの3級アミンのうち、例えば式(4)で表される化合物のpKaは5付近であるのに対し、式(1)で表される化合物のpKaは7付近であり、式(2)で表される化合物の一つであるジアザビシクロウンデセンのpKaは12付近である。つまり、式(1)や(2)で表される化合物は、式(4)で表される化合物よりも高い塩基性を示す傾向がある。つまり、金属錯体(b1)における3級アミンは、塩基性度が高く、エポキシ樹脂に対する硬化活性が良好であることから、一般式(1)~(3)のいずれかで表される化合物であることが好ましい。
 金属イオンと錯体を形成する3級アミンは、1種類であってもよいし、2種類以上であってもよい。即ち、金属錯体(b1)は、複数の金属イオンを中心金属とする複核錯体であってもよい。
 金属錯体(b1)における、金属イオンに対する3級アミンのモル比は、0.5~6.0であることが好まししく、さらに好ましくは0.6~2.0である。モル比が0.5以上であると、金属錯体(b1)に配位する3級アミンが多く、面封止剤の硬化性が良好になりやすい。一方、モル比が6.0以下だと、金属錯体(b1)に配位する3級アミンが少ないため、面封止剤の貯蔵安定性が良好となる。モル比が前記範囲内であれば、硬化性と貯蔵安定性のバランスが良好となる。
 金属錯体(b1)におけるアニオン性配位子は、O、S、P、ハロゲンからなる群から選ばれる原子を有する酸性基を有し、金属イオンに配位結合またはイオン結合する化合物である。
 アニオン性配位子の価数は、金属イオンの価数よりも小さいことが好ましい。金属イオンよりも小さい価数のアニオン性配位子は、1つの金属イオンに、2以上結合することができ、金属錯体(b1)を安定化させることができるためである。
 アニオン性配位子の分子量は、17~200であることが好ましい。アニオン性配位子の分子量が17以上であると、後述するように、金属イオンと3級アミンとの配位結合距離が小さくなりやすいため、金属錯体(b1)の硬化性が損なわれにくいと考えられる。一方、アニオン性配位子の分子量が200以下であると、アニオン性配位子が大きすぎないため、その立体障害により3級アミンが金属イオンに配位するのを著しく妨げることもないと考えられる。その結果、金属錯体(b1)の貯蔵条件下での安定性が損なわれにくいと考えられる。
 アニオン性配位子の半径は、2.0Å以上であることが好ましく、2.4Å以上であることがより好ましい。金属錯体(b1)の硬化性を良好にするためである。例えば、2つのアニオン性配位子が金属イオンに配位している場合、当該金属イオンに3級アミンがさらに配位すると、一方のアニオン性配位子と金属イオンとの結合と、他方のアニオン性配位子-金属イオンとの結合とのなす角度が狭められて安定化すると考えられる。アニオン性配位子の半径が2.0Å以上であると、これらの結合同士のなす角度が狭まりにくいため、金属イオンと3級アミンとの配位結合距離が小さくなりやすいと考えられる。その結果、金属錯体(b1)の硬化性が損なわれにくいと考えられる。金属錯体(b1)の硬化性が損なわれにくいと、特に硬化物の表面の硬化度が高くなりやすい。硬化物の表面の硬化度が高いと、硬化物の表面にパッシベーション層などを形成した際に、硬化物の表面の平滑性が損なわれにくい。そのため、硬化物の外部ヘイズが上昇しにくく、透明性が損なわれにくいと考えられる。
 一方、アニオン性配位子の半径の上限は200Å程度としうる。アニオン性配位子の半径が200Å以下であると、アニオン性配位子の大きさが、その立体障害により3級アミンが金属イオンに配位するのを顕著に妨げることもないと考えられる。その結果、金属錯体(b1)の貯蔵条件下での安定性が損なわれにくいと考えられる。
 アニオン性配位子の半径は、アニオン性配位子のconnolly volumeを求めた後;connolly volumeを真球の体積と仮定したときの半径として算出することができる。
 アニオン性配位子のconnolly volumeは、アニオン性配位子の構造を最適化した後、例えばMaterial Studio 6.0 Dmol3を用いて計算することができる。アニオン性配位子の構造の最適化は、MM2(分子力学計算法)や、PBE/DNP 4.4で行うことができる。このように、アニオン性配位子の構造を最適化した後、connolly radiusを1.0Åとして、connolly volumeを求める。
 例えば、酢酸イオンの半径を計算する場合について説明する。酢酸イオンのconnelly volumeを、前述の方法で求めると、54.8Åとなる。この体積を、真球の体積として仮定して前記真球の半径を求めると、約2.36Åとなり、これを酢酸イオン(配位子)の半径とすることができる。
 一方、塩化物イオンや硫酸イオンなどの半径は、化学便覧 基礎編 改訂2版 日本化学学会編)に記載のイオン半径(ShannonおよびPrewittによる計算値)とすることができる。
 アニオン性配位子の価数は金属イオンの価数よりも小さく、かつアニオン性配位子の半径は2.0Å以上(好ましくは2.4Å以上)であることがより好ましい。
 アニオン性配位子は、カルボキシレート化合物、1,3-ジカルボニル化合物、ジチオカルボン酸やそのカルボキシレートアニオン、チオカルボン酸やそのカルボキシレートアニオン、チオノカルボン酸やそのカルボキシレートアニオン、1,3-ジチオカルボニル化合物、硝酸化物イオン、ハロゲンイオンなどでありうる。
 カルボキシレート化合物は、下記式(7A)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000025
 一般式(7A)において、RD1は、フリーまたは水素基を示す。RD2は、水素基、炭素数1~10の炭化水素基または水酸基を示す。炭素数1~10の炭化水素基は、炭素数1~10のアルキル基または炭素数6~10のアリール含有基であってよく、炭素数1~7の直鎖状ないし分岐アルキル基であることが好ましい。RD1がフリーであるとは、下記式(7B)のようにカルボキシレート化合物がアニオンになっていることを表す。RD1が水素基である場合は、水酸基が金属イオンに配位し;RD1がフリーである場合は、Oが金属イオンに配位している場合が多い。
Figure JPOXMLDOC01-appb-C000026
 式(7A)で表されるカルボキシレート化合物の例には、炭素数2~10のアルキルカルボン酸やそのカルボキシレートアニオン、炭素数7~10のアリールカルボン酸やそのカルボキシレートアニオンなどが含まれる。
 炭素数1~10のアルキルカルボン酸の例には、ギ酸、酢酸、ブタン酸、2-エチルブタン酸、2,2-ジメチルブタン酸、2-エチルヘキサン酸、3-メチルブタン酸、2,2-ジメチルプロパン酸などが含まれ、特にギ酸、酢酸、2-エチルヘキサン酸が好ましい。
Figure JPOXMLDOC01-appb-C000027
 炭素数7~10のアリールカルボン酸の例には、安息香酸、ナフテン酸などが含まれる。
 1,3-ジカルボニル化合物は、式(8)で表される化合物であることが好ましい。
 R1-(C=O)-CH=C(O)-R2 …(8)
 式(8)において、R1およびR2は、それぞれ独立に炭素数1~10のアルキル基または炭素数6~10のアリール基である。炭素数1~10のアルキル基は、メチル基、エチル基などでありうる。炭素数6~10のアリール基は、フェニル基、ナフチル基などでありうる。1,3-ジカルボニル化合物の例には、アセチルアセトナートなどが含まれる。
 ジチオカルボン酸やそのカルボキシレートアニオンの例には、炭素数1~10のアルキルジチオカルボン酸やそのジチオカルボキシレートアニオン、炭素数7~15のアリールジチオカルボン酸やそのジチオカルボキシレートアニオンなどが含まれる。
 炭素数1~10のアルキルジチオカルボン酸の例には、ジチオギ酸、ジチオ酢酸、ジチオプロパン酸、ジチオ-2-エチルヘキサン酸などが含まれる。
Figure JPOXMLDOC01-appb-C000028
 チオカルボン酸やそのカルボキシレートアニオンの例には、炭素数1~10のアルキルチオカルボン酸やそのアルキルチオカルボキシレートアニオン、炭素数7~15のアリールチオカルボン酸やそのアリールチオカルボキシレートアニオンなどが含まれる。
 炭素数1~10のアルキルチオカルボン酸の例には、チオ酢酸、チオ-2-エチルヘキサン酸などが含まれる。
Figure JPOXMLDOC01-appb-C000029
 チオノカルボン酸やそのカルボキシレートアニオンの例には、炭素数1~10のアルキルチオノカルボン酸やそのアルキルチオノカルボキシレートアニオン、炭素数7~15のアリールチオノカルボン酸やそのアリールチオノカルボキシレートアニオンなどが含まれる。
 炭素数1~10のアルキルチオノカルボン酸の例には、チオノ酢酸、チオノ-2-エチルヘキサン酸などが含まれる。
Figure JPOXMLDOC01-appb-C000030
 1,3-ジチオカルボニル化合物は、式(9)で表される化合物であることが好ましい。
 R3-(C=S)-CH=C(S)-R4 …(9)
 式(9)において、R3およびR4は、それぞれ独立に炭素数1~10のアルキル基または炭素数6~10のアリール基である。炭素数1~10のアルキル基は、メチル基、エチル基などでありうる。炭素数6~10のアリール基は、フェニル基、ナフチル基などでありうる。
 硝酸化物イオンの例には、NO が含まれる。ハロゲンイオンの例には、Brなどが含まれる。
 アニオン性配位子に含まれる、O、S、P、ハロゲンから選ばれる原子(金属イオンに結合しうる原子)の数は、1つであっても、2以上であってもよい。金属イオンに結合しうる原子を2以上含むアニオン性配位子は、金属イオンと1つの原子を介して結合してもよいし;2以上の原子のそれぞれを介して結合してもよい。金属イオンと環を形成して金属錯体(b1)を電子的に安定化させやすく、かつ金属錯体(b1)の硬化性を良好に維持するためには、アニオン性配位子に含まれる金属イオンと結合しうる原子の数は2以上であることが好ましい。
 金属イオンと結合しうる原子を2以上含むアニオン性配位子は、金属イオンと3~7員環を形成しうることが好ましい。そのようなアニオン性配位子の好ましい例には、前述の式(7A)で表されるカルボキシレート化合物が含まれる。式(7A)で表されるカルボキシレート化合物は、カルボニル基を構成する酸素原子またはカルボニル基と隣接する酸素原子のいずれかを介して金属イオンと結合しうる。
 金属錯体(b1)は、金属イオンに、前述の一般式(1)~(3)のいずれかの式で表される3級アミンと、前述の一般式(7A)で表されるカルボキシレート化合物とがそれぞれ配位した化合物であることが好ましい。
 金属イオンに配位する3級アミンは、前記一般式(1)~(3)のうちいずれか1種類であってもよいし、2種類以上であってもよい。
 本発明の面封止剤の貯蔵安定性を保ちつつ、有機EL素子の劣化を抑制できる温度で硬化を進めるためには、金属錯体(b1)は、一般式(1)~(3)で表される2つのアミン化合物と、一般式(7A)で表される2つのカルボキシレート化合物とが金属イオンに配位した錯体であることが好ましい。
 具体的には、下記一般式(10)で示される金属錯体が好ましい。
Figure JPOXMLDOC01-appb-C000031
 金属錯体(b1)は、エポキシ樹脂(a)や、任意の酸無水物(c)などに溶解しやすいように、それらとの極性が近いほうが好ましい。また、金属錯体(b1)における3級アミンも、エポキシ樹脂(a)や、任意の酸無水物(c)などに溶解しやすいように、それらとの極性が近いほうが好ましい。
 3級アミンが金属イオンと錯体を形成しているかどうかは、金属錯体(b1)における3級アミンのHNMRの化学シフトと、3級アミン単独のHNMRの化学シフトとの対比によって確認することができる。即ち、金属錯体(b1)における3級アミンのHNMR(CDCl中、25℃、270MHz)の化学シフトが、3級アミン単独のHNMR(CDCl中、25℃、270MHz)の化学シフトに対して0.05ppm以上、好ましくは0.1ppm以上、より好ましくは0.4ppm以上移動しているピークを含むことによって、3級アミンが金属イオンと錯体を形成しているということを確認できる。ピークの移動量の上限は、特に制限されないが、通常、1ppm程度であり、より一般的には0.7ppmになる場合が多い。
 面封止剤中の3級アミンが金属イオンと錯体を形成しているかどうか(面封止剤が金属錯体(b1)を含むかどうか)は、面封止剤のHNMRの化学シフトのうち3級アミンに由来する化学シフトと、3級アミン単独のHNMRの化学シフトとの対比によっても確認することができる。その場合も、前述と同様に、面封止剤のHNMR(CDCl中、25℃、270MHz)の化学シフトのうち3級アミンに由来する化学シフトが、3級アミン単独のHNMR(CDCl中、25℃、270MHz)の化学シフトに対して0.05ppm以上、好ましくは0.1ppm以上、より好ましくは0.4ppm以上移動しているピークを含むことによって、面封止剤中の3級アミンが金属イオンと錯体を形成しているということを確認できる。ピークの移動量の上限も、前述と同様に、1ppm程度、好ましくは0.7ppm程度でありうる。
 あるいは、面封止剤中の3級アミンが金属イオンと錯体を形成しているかどうか(面封止剤が金属錯体(b1)を含むかどうか)は、面封止剤のHNMRの化学シフトと、金属錯体(b1)単独のHNMRの化学シフトとの対比によっても確認することができる。例えば、面封止剤のHNMRの化学シフト中に、金属錯体(b1)単独のHNMRの化学シフトと同様の化学シフトがあれば、面封止剤が金属錯体(b1)を含んでいると判断できる。
 HNMRにおいて移動するピークは、3級アミンが金属イオンに配位することによって電子状態が変化する水素原子に由来すると考えられる。そのような水素原子は、通常、窒素原子を含む共役系の周辺に存在する水素原子であると考えられる。例えば、3級アミンが式(1)で表されるイミダゾール化合物である場合、HNMRにおいて移動するピークは、4位または5位の水素原子に帰属することが多い。
 窒素原子を含む共役系の周囲に存在する水素原子の周囲に嵩高い基を有していない3級アミンは、共役系に含まれる窒素原子が金属イオンに近づきやすいため、金属イオンに配位しやすいと予想される。
 面封止剤における金属錯体(b1)の含有量は、「金属錯体(b1)の活性官能基(3級アミノ基)/面封止剤に含まれるエポキシ基」の当量比が0.008~0.3であることが好ましい。面封止剤の硬化性を高めるためには、0.01~0.2であることが好ましく、0.03~0.152であることがより好ましい。金属錯体(b1)は、一種の金属錯体のみで構成されてもよく、二種以上の金属錯体の組み合わせであってもよい。
 本発明の第二の形態の面封止剤は、特定のアミン化合物(b2)を含む。特定のアミン化合物(b2)は、一般式(11)または(12)で表される。
Figure JPOXMLDOC01-appb-C000032
 一般式(11)において、R~Rは、それぞれ独立して、水素原子、炭素数1~17の脂肪族炭化水素基、アリール含有基、水酸基、シアノエチル基を示す。炭素数1~17の脂肪族炭化水素基は、好ましくは炭素数1~6のアルキル基である。アリール含有基の例には、フェニル基、ナフチル基などのアリール基と、ベンジル基などのアリールアルキル基とが含まれる。アリール含有基の構成炭素数は、6~11の範囲にあることが好ましい。
 Rは、好ましくは、水素原子以外の置換基(脂肪族炭化水素基、アリール基、水酸基またはシアノエチル基)であることが好ましい。Rが他の置換基である場合と比較して、Rが水素原子であると、面封止剤の硬化物からなる封止層が、プラズマなどに曝されることで透明性が低下することがあるからである。
 ただし、RおよびRのいずれか一方または両方がアリール基である場合には、Rが水素原子であっても構わない。水素原子であるRの反応性を、アリール基であるRおよびRが低下させうるからである。
 一般式(11)で表される化合物は、塩になっていてもよい。塩の例には、塩酸塩、イソシアヌル酸塩、トリアジンイソシアヌル酸塩などが含まれる。
 一般式(11)で表されるアミン化合物の具体例には、以下の化合物が含まれる。
Figure JPOXMLDOC01-appb-C000033
 一般式(12)において、RA、RA、RA、RAは、それぞれ独立して、水素原子、炭素数1~17の脂肪族炭化水素基、アリール含有基、水酸基、ジメチルアミノメチル基を示す。炭素数1~17の脂肪族炭化水素基は、好ましくは炭素数1~6のアルキル基である。アリール含有基の例には、フェニル基、ナフチル基などのアリール基と、ベンジル基などのアリールアルキル基とが含まれる。アリール含有基の構成炭素数は、6~11の範囲にあることが好ましい。
 ただし、一般式(12)において、RA、RA、RA、RAのいずれか1つはジメチルアミノ基である。好ましくは、RA、RA、RAのうちの2つがジメチルアミノ基であることが好ましく、より好ましくはRA、RA、RAの全てがジメチルアミノ基である。一般式(2)のRA、RA、RAまたはRAが示すジメチルアミノメチル基は、適度な反応性(求核反応性)を有する。つまり、ジメチルアミノメチル基(MeNCH-)のメチル基(Me)がバルキーなアルキル基になると反応性が低下するため、本発明の面封止剤の硬化促進剤としては適さない場合がある。また、ジメチルアミノメチル基(MeNCH-)をジメチルアミノ基(MeN-)とすると、反応性が高まりすぎるため、貯蔵安定性が低下し本発明の面封止剤の硬化促進剤としては適さない場合がある。なお、ここでいう貯蔵安定性とは、貯蔵条件下で硬化反応が進みにくく、粘度が上昇しにくいことをいう。
 一般式(12)で表される化合物は、塩になっていてもよい。塩の例には、塩酸塩、2-エチルヘキサン酸塩などが含まれる。
 一般式(12)で表されるアミン化合物の具体例には、以下の化合物が含まれる。
Figure JPOXMLDOC01-appb-C000034
 アミン化合物(b2)は、エポキシ樹脂(a)や、任意の酸無水物(c)などに溶解しやすいように、それらとの極性が近いほうが好ましい。
 面封止剤におけるアミン化合物(b2)の含有量は、「アミン化合物(b2)の活性官能基(3級アミノ基)/面封止剤に含まれるエポキシ基」の当量比が0.008~0.152であることが好ましく、0.02~0.15であることがより好ましい。アミン化合物(b2)は、一種の化合物のみで構成されてもよく、二種以上の化合物の組み合わせであってもよい。
 酸無水物(c)
 本発明の面封止剤は、酸無水物(c)を含んでいてもよい。特に、硬化性樹脂であるエポキシ樹脂と、酸無水物とを含む面封止剤からは、透明性の高い硬化物が得られることがある。芳香族系の酸無水物は着色しているものが多いので、脂肪族系(芳香族系の水添物)の酸無水物が好ましい。封止剤に含まれる酸無水物の例には、無水フタル酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水トリメリット酸、無水ヘキサクロロエンドメチレンテトラヒドロフタル酸、無水ベンゾフェノンテトラカルボン酸などが含まれる。透明性が高いのは脂肪族系の酸無水物であり、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸が用いられる。
 本発明の面封止剤は、「酸無水物基/エポキシ基」の当量比が0.8~1.2となるように、酸無水物(c)を含有することが好ましい。前記当量比が小さすぎると、室温などの貯蔵条件下での粘度安定性が低下する恐れがある。一方、前記当量比が大きすぎると、未反応の酸無水物が多くなり、透湿度が大きくなるなどして、有機EL素子の劣化の原因になる恐れがある。
 カップリング剤(d)
 本発明の面封止剤は、シランカップリング剤、チタン系カップリング剤、ジルコニウム系カップリング剤、アルミニウム系カップリング剤などのカップリング剤を含有してもよい。カップリング剤を含む面封止剤は、ガラス基板との密着性が高まる。
 シランカップリング剤の例には、1)エポキシ基を有するシランカップリング剤、2)エポキシ基と反応可能な官能基を有するシランカップリング剤、および3)その他のシランカップリング剤が含まれる。なかでも、封止用組成物のエポキシ樹脂と反応させて、硬化物中に低分子量成分を残さないようにするためには、1)エポキシ基を有するシランカップリング剤、および2)エポキシ基と反応可能な官能基を有するシランカップリング剤を用いることが好ましい。エポキシ基と反応するとは、エポキシ基と付加反応することなどをいう。
 1)エポキシ基を有するシランカップリング剤とは、グリシジル基等のエポキシ基を含むシランカップリング剤であり;その例には、γ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランなどが含まれる。
 2)エポキシ基と反応可能な官能基には、1級アミノ基、2級アミノ基等のアミノ基;カルボキシル基等が含まれるほか、エポキシ基と反応可能な官能基に変換される基(例えば、メタクリロイル基、イソシアネート基など)も含まれる。このようなエポキシ基と反応可能な官能基を有するシランカップリング剤の例には、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシランまたは3-(4-メチルピペラジノ)プロピルトリメトキシシラン、トリメトキシシリル安息香酸、γ-メタクリロキシプロピルトリメトキシシラン、およびγ-イソシアナトプロピルトリエトキシシランなどが含まれる。
 3)その他のシランカップリング剤の例には、ビニルトリアセトキシシラン、ビニルトリメトキシシランなどが含まれる。これらのシランカップリング剤は、1種単独であっても、2種以上の組み合わせであってもよい。
 本発明の面封止剤に含まれるシランカップリング剤の分子量は、80~800であることが好ましい。シランカップリング剤の分子量が800を超えると、密着性が低下したりすることがある。
 本発明の面封止剤におけるシランカップリング剤の含有量は、面封止剤100質量部に対して、0.05~30質量部であることが好ましく、0.1~20質量部であることがより好ましく、0.3~10質量部であることがさらに好ましい。
 その他の任意成分(e)
 本発明の面封止剤には、本発明の効果を損なわない範囲で、その他の任意成分(e)を含有させることができる。その他の任意成分(e)としては、樹脂成分、充填剤、改質剤、酸化防止剤、安定剤等を挙げることができる。樹脂成分の具体例としては、ポリアミド、ポリアミドイミド、ポリウレタン、ポリブタジェン、ポリクロロプレン、ポリエーテル、ポリエステル、スチレン-ブタジエン-スチレンブロック共重合体、石油樹脂、キシレン樹脂、ケトン樹脂、セルロース樹脂、フッ素系オリゴマー、シリコン系オリゴマー、ポリスルフィド系オリゴマー等を挙げることができる。これらの樹脂成分は、一種単独で又は二種以上を組み合わせて用いることができる。ただし、本発明の面封止剤の硬化物に透明性が求められる場合には、エポキシ樹脂と相分離し、かつエポキシ樹脂との屈折率差が大きい成分;具体的には、エポキシ樹脂の硬化物との屈折率差が0.1以上でかつ直径が0.1μm以上の無機フィラーや有機フィラーなどを実質的に含まないことが好ましい。
 充填剤の具体例としては、ガラスビーズ、スチレン系ポリマー粒子、メタクリレート系ポリマー粒子、エチレン系ポリマー粒子、プロピレン系ポリマー粒子等を挙げることができる。これらの充填剤は、一種単独で又は二種以上を組み合わせて用いることができる。
 改質剤の具体例としては、重合開始助剤、老化防止剤、レベリング剤、濡れ性改良剤、界面活性剤、可塑剤等を挙げることができる。これらの改質剤は、一種単独で又は二種以上を組み合わせて用いることができる。また、安定剤の具体例としては、紫外線吸収剤、防腐剤、抗菌剤等を挙げることができる。これらの安定剤は、一種単独で又は二種以上を組み合わせて用いることができる。
 酸化防止剤とは、プラズマ照射や日光照射により発生するラジカルを失活させるもの(Hindered Amine Light Stabilizer, HALS)や、過酸化物を分解するものなどをいう。酸化防止剤は、封止剤の硬化物の変色を防ぐことができる。
 ヒンダードアミンの例には、ビス(2,2,6,6-テトラメチルピペリジン-4-イル)セバケート、2,4-ジクロロ-6-tert-オクチルアミノ-s-トリアジンと4,4'-ヘキサメチレンビス(アミノ-2,2,6,6-テトラメチルピヘリジン)の重縮合生成物、ビス[1-(2-ヒドロキシ-2-メチルプロポキシ)-2,2,6,6-テトラメチルピペリジン-4-イル]セバケートが含まれる。
 フェノール系酸化防止剤の例には、2,6-ジ-t-ブチル-p-クレゾールなどのモノフェノール類、2,2'-メチレンビス(4-メチル-6-t-ブチルフェノール)等のビスフェノール類、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタンなどの高分子型フェノール類が含まれる。
 リン系酸化防止剤は、ホスファイト類から選ばれる酸化防止剤及びオキサホスファフェナントレンオキサイド類から選ばれる着色防止剤が好ましく用いられる。
 特に、紫外線への耐性を付与するという点では、Tinuvin123(ビス(1-オクチロキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバシン酸)、Tinuvin765(ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバシン酸とメチル 1,2,2,6,6-ペンタメチル-4-ピペリジルセバシン酸との混合物)、Hostavin PR25(ジメチル 4-メトキシベンジル Idenemalonate)、Tinuvin 312 または Hostavin vsu(エタンジアミド N-(2-エトキシフェニル)-N'-(2-エチルフェニル))、CHIMASSORB 119 FL(N,N'-ビス(3-アミノプロピル)エチレンジアミン-2,4-ビス[N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ]-6-クロロ-1,3,5-トリアジン縮合物が好ましい。
 溶剤(f)
 本発明の面封止剤は、溶剤(f)を含んでもよい。溶剤(f)は、各成分を均一に分散または溶解させる機能を有する。溶剤(f)は、各種有機溶剤であってもよく、トルエン、キシレン等の芳香族溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒;エーテル、ジブチルエーテル、テトラヒドロフラン、ジオキサン、エチレングリコ-ルモノアルキルエーテル等のエーテル類;N-メチルピロリドン等の非プロトン性極性溶媒;酢酸エチル、酢酸ブチル等のエステル類等が含まれる。特に、本発明の面封止剤に、任意成分である高分子量のエポキシ樹脂(a-2)を添加して、面封止成形物を得る場合は、高分子量のエポキシ樹脂(a-2)を溶解し易い点から、メチルエチルケトン等のケトン系溶媒(ケト基を有する溶媒)がより好ましい。
 本発明の面封止剤の、E型粘度計により25℃、1.0rpmで測定した粘度は、10~10000mPa・sであることが好ましく、200~10000mPa・sであることがより好ましい。面封止剤の粘度を上記範囲にすることで、塗工(例えばスクリーン印刷)性が高まり、かつシートなどへの成形が容易になる。面封止剤の粘度は、E型粘度計(東機産業製 RC-500)によって、25℃の測定温度で測定される。
 本発明の第一の形態の面封止剤の、25℃で24hr保存後の粘度上昇率は、100%未満であることが好ましく、70%以下であることがより好ましく、50%以下であることがさらに好ましい。
 上記粘度上昇率は、以下のようにして算出できる。即ち、前述したように、合成直後の面封止剤の粘度を、E型粘度計により25℃、1.0rpmで測定する。次いで、面封止剤を25℃、24hr保存後の粘度を同様の条件で測定する。得られた測定値をそれぞれ下記式に当てはめて、粘度上昇率を算出する。
 粘度上昇率=粘度変化量(24hr後の粘度-合成直後の粘度)/合成直後の粘度×100
 本発明の面封止剤の含水率は、0.1質量%以下であることが好ましく、0.06質量%以下であることがより好ましい。有機EL素子などの光半導体が配置された電気回路は水分により劣化しやすいので、面封止剤の含水率をできるだけ低減することが好ましい。面封止剤の含水率は、試料サンプルを約0.1g計量し、カールフィッシャー水分計を用いて150℃に加熱し、その際に発生する水分量を測定することにより求めることができる(固体気化法)。
 本発明の面封止剤は、光半導体用の面封止剤として好ましく用いられうる。光半導体とは、例えば電気を光に変換して発光する素子である。光半導体の具体的には、無機LED素子、有機EL素子などが含まれ、好ましくは有機EL素子である。光半導体は、水分などにより劣化しやすいため、表面を封止する必要がある。
 本発明の面封止剤の硬化物の光線透過率は、好ましくは30%以上、より好ましくは50%以上、さらに好ましくは80%以上である。硬化物の光線透過率が低すぎると、有機EL素子などの面封止剤として用いた場合に、素子からの光の取り出し効率が低下しやすく、また意匠性も悪化するからである。面封止剤の硬化物の光線透過率の上限値は、一般的には99%程度としうる。硬化物の光線透過率は、面封止剤に含まれるアミン化合物(b)の種類や量によって調整されうる。
 硬化物の光線透過率の測定は、以下の手順で行うことができる。
 1)面封止剤を、基材上に塗布および乾燥させた後、硬化させて、厚み100μmの硬化物を得る。
 2)得られた硬化物の、波長450nmにおける光線透過率を、紫外/可視光光度計(島津製作所製のMULTISPEC-1500)を用いて測定する。
 本発明の面封止剤は、液状の封止剤として用いられてもよいが、前述の高分子量のエポキシ樹脂(a-2)などを添加することで、フィルム状などの封止成形物の一部として用いられてもよい。液状の封止剤として用いる場合には、例えばスクリーン印刷、ディスペンサー塗布などにより有機EL素子などの光半導体上に塗布し、塗布層を硬化して有機EL素子などの光半導体を面封止すればよい。また、フィルム状などの封止成形物を用いる場合には、有機EL素子などの光半導体上にフィルム状の封止剤をラミネートして硬化することで、有機EL素子などの光半導体を面封止すればよい。
 本発明の面封止剤は、本発明の効果を損なわない限り、任意の方法で製造されうる。例えば、1)エポキシ樹脂(a)と硬化促進剤(b)と、他の任意成分を準備する工程と、2)不活性ガス環境下で、各成分を30℃以下で混合する工程と、を含む方法で製造される。混合は、これらの成分をフラスコに装入して攪拌する方法や、三本ロールで混練する方法が含まれる。本発明の面封止剤をフィルム状に成形する場合には、例えば、液状の面封止剤を剥離基板に塗布し、塗膜を乾燥させ、剥離すればよい。面封止剤の塗布は、スクリーン印刷、ディスペンサー塗布などの手法を用いて行えばよい。
 本発明の第一の形態の面封止剤に含まれる3級アミンは、電子供与性のアニオン性配位子(好ましくはカルボキシレート化合物)が配位した金属イオンと錯体を形成しうるため、金属錯体として適度に固定化される。それにより、室温下などの本発明の面封止剤の通常の貯蔵条件では、3級アミンが金属錯体から脱離しにくくなり、面封止剤中のエポキシ樹脂などの反応を抑制し、面封止剤の貯蔵安定性を向上させうる。一方、本発明の第一の形態の面封止剤が、後述するように有機EL素子を封止するため、加熱や光照射されると、3級アミンと金属イオンとの配位結合が緩和して、3級アミンがエポキシ樹脂の硬化反応を進めることができると推測される。なお、ここでいう貯蔵安定性とは、貯蔵条件下で硬化反応が進みにくく、粘度が上昇しにくいことをいう。このように、本発明の第一の形態の面封止剤は、良好な硬化性を有しつつ、高い貯蔵安定性を有するため、光半導体の面封止剤として用いた場合の封止工程での作業効率を高めることができる。
 さらに、金属錯体(b1)における3級アミンを、前述の一般式(1)~(6)で表される化合物とすることで、硬化性を損なわない程度に、貯蔵条件下での3級アミンの反応性を低下させうると考えられる。それにより、後述するように、プラズマ処理したときの硬化物層のヘイズ上昇を抑制、すなわち耐候性を向上できると考えられる。
 本発明の第二の形態の面封止剤に含まれる特定のアミン化合物(b2)は、前述の一般式(11)または(12)に示される構造を有する。そのため、硬化性を損なわない程度に、貯蔵条件下でのアミン化合物(b2)の反応性を低下させうると考えられる。それにより、後述するように、プラズマ処理したときの硬化物層のヘイズ上昇を抑制できると考えられる。そのため、本発明の第二の形態の面封止剤を光半導体用の面封止剤として用いた場合に、プラズマ処理後の硬化物層のヘイズ上昇による、光半導体の光の取り出し効率または光の吸収効率の低下を抑制できる。
 なお、本発明のエポキシ樹脂組成物が面封止剤として用いられる例について説明したが、これに限定されない。本発明のエポキシ樹脂組成物は種々の用途にも用いることができる。
 2.有機ELデバイスについて
 本発明の有機ELデバイスは、基板上に配置された有機EL素子と、有機EL素子と接触して、かつ有機EL素子を覆う(面封止する)樹脂硬化物層と、さらに樹脂硬化物層を覆う封止基板とを含む。有機ELデバイスは、それを含む有機ELディスプレイパネルとして用いられうる。
 本発明の有機ELデバイスの一態様として、1)基板上に配置された有機EL素子と、2)有機EL素子と接触して、かつ有機EL素子を覆う(面封止する)樹脂硬化物層と、3)前記樹脂硬化物層と接触して、前記樹脂硬化物層を覆うパッシベーション層と、4)パッシベーション層を覆う封止基板と、を含む態様があげられる(図1A参照)。ここで樹脂硬化物層が、前述の面封止剤の硬化物であることを特徴とする。
 また、本発明の有機ELデバイスの他の一態様として、1)基板上に配置された有機EL素子と、2)有機EL素子と接触して、かつ有機EL素子を覆う(面封止する)樹脂硬化物層と、3)前記樹脂硬化物層と接触して、前記樹脂硬化物層の端面に配置されたパッシベーション層と、4)樹脂硬化物層とパッシベーション層とを覆う封止基板と、を含む態様があげられる(図1B参照)。ここで樹脂硬化物層が、前述の面封止剤の硬化物であることを特徴とする。
 図1Aは、面封止型の有機ELデバイスを模式的に示す断面図である。図1Aに示されるように、有機ELパネル20は、基板22、有機EL素子24、および封止基板26がこの順に積層されている。基板22と封止基板26との間には面封止層28が配置されており、面封止層28は有機EL素子24の周囲を覆っている。このように、面封止層28は、有機EL素子24を面封止している。
 図1Aに示される有機ELデバイス20では、面封止層28が、本発明の面封止剤の硬化物からなる硬化物層28-1と、硬化物層28-1を覆うパッシベーション層28-2と、さらにパッシベーション層28-2を覆う第2の樹脂硬化物層28-3を含む。
 基板22および封止基板26は、通常、ガラス基板または樹脂フィルムなどであり、基板22と封止基板26の少なくとも一方は、透明なガラス基板または透明な樹脂フィルムである。このような透明な樹脂フィルムの例には、ポリエチレンテレフタレート等の芳香族ポリエステル樹脂等が含まれる。
 有機EL素子24がトップエミッション型である場合は、基板22側から、反射画素電極層30(アルミニウムや銀などからなる)と、有機EL層32と、透明対向電極層34(ITOやIZOなどからなる)とを含む。反射画素電極層30、有機EL層32および透明対向電極層34は、真空蒸着及びスパッタなどにより成膜されてもよい。
 面封止層28には、本発明の面封止剤の硬化物からなる硬化物層28-1と、パッシベーション層28-2と、第2の樹脂硬化物層28-3と、を含む。硬化物層28-1は、有機EL素子に接していることが好ましい。硬化物層28-1の厚みは、0.1~20μmであることが好ましい。
 本発明の第一の形態の面封止剤を用いる場合、面封止剤の硬化物からなる硬化物層28-1は、X線光電子分光法(XPS)で測定されるスペクトルにおいて、Zn、Bi、Ca、Al、Cd、La、Zrからなる群から選ばれる1種類以上の金属原子に由来するピークと、窒素原子に由来するピークとが検出され、検出される金属原子と窒素原子とのモル比が、金属原子:窒素原子=1:0.5~1:6.0であることが好ましい。金属原子1モルに対する窒素原子のモル比は、金属錯体(b1)における金属イオンに対する3級アミンの含有量に依存しうる。また、金属原子はZnであることが好ましく、その含有量は硬化物中0.5~15質量%であることが好ましい。
 XPS測定は、AXIS-NOVA(KRATOS社製)を用いて行うことができる。光源は、単色化A1 Kαとし;測定領域の径は100μmとしうる。
 本発明の面封止剤の硬化物からなる硬化物層28-1の光線透過率は、前述の通り、好ましくは30%以上、より好ましくは50%以上、さらに好ましくは80%以上である。光線透過率が低すぎると、素子からの光の取り出し効率や、素子への光の吸収効率が低下しやすいからである。硬化物層28-1の光線透過率の上限は、例えば99%程度としうる。
 面封止層28を構成するパッシベーション層28-2は、プラズマ環境下で成膜される無機化合物層であることが好ましい。プラズマ環境下で成膜するとは、例えばプラズマCVD法で成膜することをいうが、特に限定されず、スパッタ法や蒸着法で成膜してもよい。パッシベーション層28-2の材質は、透明な無機化合物であることが好ましく、窒化ケイ素、酸化ケイ素、SiONF、SiONなどが例示されるが、特に限定されない。パッシベーション層28-2の厚みは、0.1~5μmであることが好ましい。
 パッシベーション層28-2は、硬化物層28-1に接触させて成膜してよい。本発明の面封止剤の硬化物からなる硬化物層28-1は、たとえプラズマ環境下に曝されても、その透明性を維持することができるからである。
 本発明の有機ELデバイスでは、パッシベーション層28-2が有機EL素子24に直接接触するのではなく、硬化物層28-1に直接接触して成膜されている。パッシベーション層28を有機EL素子24に直接接触させて成膜しようとすると、有機EL素子24の端部が鋭角なため、パッシベーション層28によるカバレッジが低下することがある。これに対して、本発明の有機ELデバイスでは、有機EL素子24を、本発明の面封止剤の硬化物層28-1で面封止してから、硬化物層28-1の上にパッシベーション層28-2を成膜する。硬化物層28-1で面封止することで、パッシベーション層28-2の被成膜面をなだらかにすることができ、カバレッジが向上する。
 面封止層28を構成する第2の樹脂硬化物層28-3は、硬化物層28-1と同一の材質(本発明の面封止剤)であっても異なる材質であってもよい。例えば、第2の樹脂硬化物層28-3の水分含有量は、硬化物層28-1の水分含有量よりも高くてもよい場合がある。第2の樹脂硬化物層28-3は、有機EL素子と直接接触しないからである。また、トップエミッション型の有機ELデバイス(有機EL素子の発光を封止層28-3を介して取り出す有機ELデバイス)の場合には、第2の樹脂硬化物層28-3の光透過率は、樹脂硬化物層28-1と同様に高い必要がある。
 図1Bは、他の面封止型の有機ELデバイスを模式的に示す断面図である。図1Bに示されるように、有機ELパネル20’は、基板22、有機EL素子24、および封止基板26がこの順に積層されている。基板22と封止基板26との間には面封止層28が配置されており、面封止層28は有機EL素子24の周囲を覆っている。このように、面封止層28は、有機EL素子24を面封止している。
 図1Bに示される有機ELデバイス20’では、面封止層28が、本発明の面封止剤の硬化物からなる硬化物層28-1と、硬化物層28-1の端面を覆うパッシベーション層28-2とを含む。図1Bに示される有機ELデバイス20’の他の構成部剤は、図1Aに示される有機ELデバイス20の構成部材と同様である。
 本発明の有機ELデバイスは、本発明の効果を損なわない限り、任意の方法で製造されうるが、1)基板上に配置された有機EL素子を用意する工程と、2)有機EL素子を、面封止剤で覆い、面封止剤を硬化させて面封止層とする工程と、3)封止基板で封止する工程と、を含む。ここで、面封止層がプラズマに曝される工程が含まれると、本発明の面封止剤の効果が特に有効に発揮される。
 面封止層がプラズマに曝される工程の例には、面封止層にプラズマCVD法によってパッシベーション膜を成膜する工程や、面封止層にプラズマを照射して表面特性を変化させる工程などが含まれる。表面特性を変化させる(例えば濡れ性を高める)ことで、他の部材との密着性を向上させることができる。特に、本発明の第二の形態の面封止剤からなる封止層はプラズマ耐性に優れており、これらの工程を経ても面封止層の劣化が少なく、例えば高い透明性が維持される。
 図2には、本発明の有機ELデバイスの製造プロセスが模式的に示される。まず、有機EL素子24が積層された基板22を用意する(図2A)。有機EL素子には、反射画素電極層30と、有機EL層32と、透明対向電極層34とが含まれるが、さらに他の機能層を有していてもよい。次に、基板22に積層された有機EL素子24上に(透明対向電極層34を覆うように)、本発明の液状の面封止剤を塗布するか、またはフィルム状の面封止剤をラミネートした後、硬化させて硬化物層28-1を成膜する(図2B)。
 次に、硬化物層28-1上に、パッシベーション層28-2を成膜する(図2C)。パッシベーション層(透明無機化合物層)28-2は、任意の方法、例えばプラズマCVD法、スパッタ法、蒸着法などで成膜されうる。なかでも、プラズマCVD法で成膜すると、本発明の効果が顕著に奏される。つまり、パッシベーション層28-2をプラズマCVD法で成膜するときに、硬化物層28-1がスパッタ法などに比べて顕著にプラズマに曝されるにも係わらず、硬化物層28-1の透明性が維持される。このように、本発明の面封止剤は、プラズマCVD法でパッシベーション層を成膜する工程を含む製造プロセスにおいて、特に好ましく用いることができる。
 次に、パッシベーション層28-2を樹脂層で覆い(図2D)、さらに封止基板26を重ねあわせて、この状態で樹脂層を硬化させて第2の樹脂硬化物層28-3とするとともに、封止基板26をはり合わせる(図2E)。このようにして、本発明の有機ELデバイス20が得られる。
 図2では、基板22に、1つの有機EL素子24を形成して、それを封止するフローを示したが;基板22に形成した複数の有機EL素子24を、同様の手順で1回のフローで封止することができる。
 本発明の第一の形態の面封止剤は、有機EL素子などの光半導体の劣化が生じにくい傾向がある。この理由は、必ずしも明らかではないが、以下のように推測される。即ち、面封止剤に含まれる3級アミンが移動しやすい状態であると、3級アミンと有機EL素子の電荷輸送層や発光層を構成する金属とが相互作用して、有機EL素子の状態を変化させ、素子の劣化を生じやすいと考えられる。これに対して本発明の第一の形態の面封止剤に含まれる3級アミンは、予め金属イオンと錯体を形成しているため、3級アミンの周辺が嵩高くなっている。そのため、3級アミンと有機EL素子の電荷輸送層や発光層との相互作用が生じにくく、有機EL素子などの劣化を抑制しうると推定される。
 このような素子の劣化が生じているかどうかは、以下の方法で評価されうる。即ち、蒸着法で有機EL素子を作製する。作製した素子上に、面封止剤を塗布した後、熱硬化させて当該素子を封止し、サンプル1を得る。一方、作製した素子の周囲を、当該素子に接しないように面封止剤で同様にして封止(中空封止)し、サンプル2を得る。そして、サンプル1とサンプル2の、初期発光特性や寿命、信頼性を測定し、両者を比較する。両者の評価結果に差がなければ、面封止剤と素子との相互作用に起因する素子の劣化はないと判断されうる。具体的には、国際公開第2010/035502号に記載の劣化試験方法と同様の方法で評価することもできる。
 1.第一の形態の面封止剤の評価
 1-1.金属錯体(b1)の合成
 金属錯体(b1-0)の合成
 国際公開第2006/022899号に記載された金属アミジン錯体の合成方法に従って、Znイオンを中心金属にして、1つのZnイオンにカルボキシレート化合物として2分子の2-エチルヘキサン酸と、3級アミンとして2分子の1-メチルイミダゾールが配位した金属錯体(b1-0)を合成した。得られた金属錯体(b1-0)における金属イオンに対する3級アミンのモル比は、2.0であった。前記金属錯体(b1-0)について、1H NMR、13C NMR、FD MS、C,H,Nの元素分析の結果を以下に示す。これらの結果から、金属錯体(b1-0)は上記一般式(10)の構造であると推定される。
 1H NMR (270 MHz, CDCl3): d 0.89 (t, J = 7.6 Hz, 12 H), 1.22-1.30 (m, 8 H), 1.42-1.67 (m, 8 H), 2.32 (td, J = 6.9 Hz, 3.0 Hz, 2 H), 3.69 (s, 6 H), 6.84 (s, 2 H), 7.37 (s, 2 H), 8.15 (s, 2 H).;
13C NMR (68 MHz, CDCl3): d 183.7, 139.9, 129.0, 120.0, 49.1, 32.6, 30.1, 26.1,22.9, 14.1, 12.3.FD MS m/z (relative intensity): 82.1 (60), 127.1 (30), 725.3 (100), 1427.6 (20).Anal. Calcd for ZnC24H42N4O4: C, 55.9; H, 8.2; N, 10.9.
 金属錯体(b1-1)の合成
 5Lフラスコに、亜鉛ビス(2-エチルヘキソエート)を768.19g(2.18mol)投入し、イソプロピルアルコールを1500g加えて、常温常圧下、約150rpmで撹拌した。次いで、亜鉛ビス(2-エチルヘキソエート)が完全に溶解したのを確認後、1,2-DMZ(1,2-ジメチルイミダゾール)を210g(2.18mol)加えて、撹拌を続けた。次いで、1,2-DMZを42g(0.44mol)さらに加えて、撹拌を続けた。その後、撹拌を停止し、得られた溶液を3Lのフラスコに移してエバポレーションによりイソプロピルアルコールを留去し、液状の金属錯体(b1-1)を得た。金属イオンに対する3級アミンのモル比は1.2であった。
 得られた金属錯体(b1-1)のH NMRを測定した。
 1H NMR(270 MHz、CDCl3): δ 0.82 (t, J = 6.8 Hz, 12 H), 1.18-1.23 (m, 8 H), 1.30-1.57 (m, 8H), 2.22 (td, J = 6.9Hz, 3.0Hz, 2 H),  2.51 (s, 3.7 H), 3.57 (s, 3.7 H), 6.76(s, 1.2 H), 7.06(s, 1.2H).
 次に、1,2-DMZ(1,2-ジメチルイミダゾール)のH NMRを測定した。
 1HNMR(270 MHz、CDCl3): δ 2.34 (s, 3 H), 3.54 (s, 3 H), 6.76 (s, 1 H), 6.85 (s, 1 H).
 金属錯体(b1-1)のHNMRシフトと1,2-DMZ(1,2-ジメチルイミダゾール)のHNMRシフトの対比から、5位の水素原子に帰属するピーク(6.85→7.06)が移動していると推測される。下記式において、移動が確認されたピークに帰属する水素原子の位置を、○で示した。
Figure JPOXMLDOC01-appb-C000035
 金属錯体(b1-2)の合成
 3級アミンを1B2MZ(1-ベンジル-2-メチルイミダゾール)に変更し、かつ金属イオンに対する3級アミンのモル比が0.8となるように、2-エチルヘキサノエート亜鉛や3級アミンの仕込み量を変更した以外は合成例1と同様にして液状の金属錯体(b1-2)を得た。
 得られた金属錯体(b1-2)のHNMRを測定した。
 1H NMR(270 MHz、CDCl3、標準物質TMS): δ 0.83 (t, J = 8.1 Hz, 12 H), 1.19-1.28 (m, 8 H), 1.34-1.61 (m, 8 H), 2.22 (td, J = 4.8 Hz, 1.9 Hz, 2 H), 2.50(s, 1.8 H), 5.04 (s, 1.2 H), 6.80 (d, J = 1.6 Hz, 0.6 H), 7.06-7.11 (m, 1.8 H), 7.32-7.38 (m,2.4 H).
 次に、1B2MZ(1-ベンジル-2-メチルイミダゾール)のHNMRを測定した。
 1H NMR(270 MHz、CDCl3) : d 2.31 (s, 3H), 5.02 (s, 2 H), 6.82 (d, J = 0.68 Hz, 1 H), 6.94 (d, J = 0.68 Hz,1 H), 7.05 (dd, J = 8.5 Hz, 0.8 Hz, 2 H), 7.27-7.36 (m, 4 H).
 金属錯体(b1-2)のHNMRシフトと1B2MZ(1-ベンジル-2-メチルイミダゾール)のHNMRシフトの対比から、2位のメチル基の水素原子に帰属するピーク(2.31→2.50)と、5位の水素原子に帰属するピーク(6.94→7.06-7.11)が移動していると推測される。下記式において、移動が確認されたピークに帰属する水素原子の位置を、○で示した。
Figure JPOXMLDOC01-appb-C000036
 金属錯体(b1-3)の合成
 3級アミンを1BMI12(1-イソブチル-2-メチルイミダゾール)に変更し、かつ金属イオンに対する3級アミンのモル比が0.8となるように亜鉛ビス(2-エチルヘキソエート)や3級アミンの仕込み量を変更した以外は合成例1と同様にして液状の金属錯体(b1-3)を得た。
 得られた金属錯体(b1-3)のHNMRを測定した。
 1H NMR(270 MHz、CDCl3): δ 0.83 (t, J = 7.0 Hz, 12 H), 0.91 (t, J = 4.1 Hz, 3 H), 0.94 (d, J = 6.5 Hz, 3 H), 1.18-1.26 (m, 8 H), 1.26-1.58 (m, 8 H), 2.03 (qt, J = 13.5, 0.5 Hz, 1 H), 2.23 (td, J = 4.8 Hz, 1.9 Hz, 2 H), 2.50 (s, 3 H), 3.63 (d, 7.3 Hz, 2 H), 6.74 (d, J = 9.7 Hz, 1 H), 7.10 (d, J = 1.4 Hz, 1 H).
 次に、1BMI12(1-イソブチル-2-メチルイミダゾール)のH NMRを測定した。
 1H NMR(270MHz、CDCl3、標準物質TMS): δ 0.90 (t, J = 4.1 Hz, 3 H), 0.91 (d, J = 6.5 Hz, 3 H), 1.97 (qt, J = 13.5, 0.5 Hz, 1 H), 2.35 (s, 3 H), 3.61 (d, J = 7.3 Hz, 2 H), 6.77 (d, J = 1.4 Hz, 1 H), 6.87 (d, J = 1.4 Hz, 1 H).
 金属錯体(b1-3)のHNMRシフトと1BMI12(1-イソブチル-2-メチルイミダゾール)のHNMRシフトの対比から、2位のメチル基の水素原子に帰属するピーク(2.35→2.50)と、5位の水素原子に帰属するピーク(6.87→7.10)が移動していると推測される。下記式において、移動が確認されたピークに帰属する水素原子の位置を、○で示した。
Figure JPOXMLDOC01-appb-C000037
 金属錯体(b1-4)の合成
 3級アミンを1MI(1-メチルイミダゾール)に変更し、かつ金属イオンに対する3級アミンのモル比が2.0となるように2-エチルヘキサノエート亜鉛や3級アミンの仕込み量を変更した以外は合成例1と同様にして液状の金属錯体(b1-4)を得た。
 得られた金属錯体(b1-4)のHNMRを測定した。
 1H NMR(270MHz、CDCl3): δ = 0.89 (t, J = 7.6 Hz, 12 H), 1.22-1.30 (m, 8 H), 1.42-1.67 (m, 8 H), 2.32(td, J = 6.9 Hz, 3.0 Hz, 2 H), 3.69 (s, 6 H), 6.84(s, 2 H),7.37 (s, 2 H), 8.15(s, 2 H).
 次に、1MI(1-メチルイミダゾール)のHNMRを測定した。
 1H NMR(270MHz、CDCl3、標準物質TMS):δ= 3.66 (s, 3 H), 6.87 (s, 1 H), 7.02 (s, 1 H), 7.40 (s, 1 H).
 金属錯体(b1-4)のHNMRシフトと1MI(1-メチルイミダゾール)のHNMRシフトの対比から、2位の水素原子に帰属するピーク(7.40→8.15)と、4位の水素原子に帰属するピーク(7.02→7.37)が移動していると推測される。下記式において、移動が確認されたピークに帰属する水素原子の位置を、○で示した。
Figure JPOXMLDOC01-appb-C000038
 金属錯体(b1-5)の合成
 3級アミンを1B2PZ(1-ベンジル-2-フェニルイミダゾール)に変更し、かつ金属イオンに対する3級アミンのモル比が0.2となるように2-エチルヘキサノエート亜鉛や3級アミンの仕込み量を変更した以外は合成例1と同様にして液状の金属錯体(b1-5)を得た。
 得られた金属錯体(b1-5)のHNMRを測定した。
 1H NMR(270MHz、CDCl3): δ 0.82 (t, J = 7.8 Hz, 12 H), 1.15-1.25 (m, 8 H), 1.29-1.61 (m, 8 H), 2.23 (td, J = 8.4, 5.7 Hz, 2 H), 5.14 (s, 0.4 H), 7.01 (d, J = 1.4 Hz, 0.2 H), 7.07 (dd, J= 6.5, 1.6 Hz, 0.4 H), 7.27 (d, J = 3.8 Hz, 0.2 H), 7.33-7.45 (m, 1.2 H), 7.58-7.61 (m, 2 H).
 次に、1B2PZ(1-ベンジル-2-フェニルイミダゾール)のHNMRを測定した。
 1H NMR(270MHz、CDCl3):δ =  5.18  (s, 2 H), 6.93 (d, J =  3.2 Hz, 1 H), 7.03 (dd, J = 3.2, 1.4 Hz, 2 H), 7.18 (d, J = 3.8 Hz, 1 H), 7.23-7.41 (m, 6 H), 7.51-7.58 (m, 2 H).
 金属錯体(b1-5)のH NMRシフトと1B2PZ(1-ベンジル-2-フェニルイミダゾール)のHNMRシフトの対比から、5位の水素原子に帰属するピーク(7.18→7.27)、フェニル基の水素原子(7.23-7.41→7.33-7.45)、フェニル基の水素原子(7.51-7.58→7.58-7.61)が移動していると推測される。下記式において、移動が確認されたピークに帰属する水素原子の位置を、○で示した。
Figure JPOXMLDOC01-appb-C000039
 金属錯体(b1-6)の合成
 3級アミンをDBU(1,8-ジアザビシクロ[5,4,0]ウンデカ-7-エン)に変更し、かつ金属イオンに対する3級アミンのモル比が1.0となるように2-エチルヘキサノエート亜鉛や3級アミンの仕込み量を変更した以外は合成例1と同様にして液状の金属錯体(b1-6)を得た。
 得られた金属錯体(b1-6)のHNMRを測定した。
 1H NMR(270 MHz、CDCl3):δ 0.85 (t, J = 7.3 Hz, 12 H), 1.19-1.27 (m, 8 H), 1.29-1.67 (m, 14 H), 1.82 (quin, J = 5.9 Hz, 2 H), 2.21 (td, J = 8.1, 3.2 Hz, 2 H), 2.63-2.65 (m, 2 H), 3.21-3.41 (m, 6 H).
 次に、DBU(1,8-ジアザビシクロ[5,4,0]ウンデカ-7-エン)のHNMRを測定した。
 1HNMR(270 MHz、CDCl3、標準物質TMS):δ 1.58-1.68 (m, 6 H), 1.78 (quin, J = 6.2 Hz, 2 H), 2.36-2.40 (m, 2 H), 3.17-3.29 (m, 6 H).
 金属錯体(b1-6)のHNMRシフトとDBU(1,8-ジアザビシクロ[5,4,0]ウンデカ-7-エン)のHNMRシフトの対比から、2、9および11位の水素原子に帰属するピーク(3.17-3.29→3.21-3.41)、6位の水素原子(2.36-2.40→2.63-2.65)が移動していると推測される。下記式において、移動が確認されたピークに帰属する水素原子の位置を、○で示した。
Figure JPOXMLDOC01-appb-C000040
 金属錯体(b1-7)の合成
 3級アミンをDBN(1,5-ジアゾビシクロ[4,3,0]ノン-5-エン)に変更し、かつ金属イオンに対する3級アミンのモル比が1.0となるように2-エチルヘキサノエート亜鉛や3級アミンの仕込み量を変更した以外は合成例1と同様にして液状の金属錯体(b1-7)を得た。
 得られた金属錯体(b1-7)のHNMRを測定した。
 1H NMR(270 MHz、CDCl3):δ 0.85 (t, J = 6.8 Hz, 12 H), 1.19-1.29 (m, 8 H), 1.33-1.64 (m, 8 H), 1.82 (quin, J = 5.7 Hz, 2 H), 1.94 (quin, J = 7.8 Hz, 2 H), 2.21 (td, J = 8.1, 3.2 Hz, 2 H), 2.81 (t, J = 8.1 Hz, 2 H), 3.19 (t, J = 5.9 Hz, 2 H), 3.33-3.41 (m, 4 H).
 次に、DBN(1,5-ジアゾビシクロ[4,3,0]ノン-5-エン)のHNMRを測定した。
 1H NMR(270 MHz、CDCl3):δ 1.76 (quin, J = 3.2 Hz, 2 H), 1.89 (quin, J = 3.0 Hz, 2 H), 2.42 (t, J = 8.1 Hz, 2 H), 3.18 (t, J = 5.9 Hz, 2 H), 3.23-3.34 (m, 4 H). 
 金属錯体(b1-7)のHNMRシフトとDBN(1,5-ジアゾビシクロ[4,3,0]ノン-5-エン)のHNMRシフトの対比から、7位の水素原子に帰属するピーク(2.42→2.81)、4、9位の水素原子(3.23-3.34→3.33-3.41)が移動していると推測される。下記式において、移動が確認されたピークに帰属する水素原子の位置を、○で示した。
Figure JPOXMLDOC01-appb-C000041
 得られた金属錯体(b1-1)~(b1-7)の組成およびHNMRのピーク移動量を、表1にまとめた。表中の金属錯体の欄の数値は質量比を示す。
Figure JPOXMLDOC01-appb-T000001
 1-2.面封止剤の評価
 以下の原料を用いて、面封止剤を調製した。
 <エポキシ樹脂(a)>
 3官能エポキシ樹脂:分子量592(VG-3101L、プリンテック社製)
 ビスフェノールF型エポキシ樹脂:分子量338(YL-983U、ジャパンエポキシレジン社製)
 ビスフェノールE型エポキシ樹脂:エポキシ当量155~175(R1710、プリンテック社製)
 <金属錯体(b1)>
 前述で合成した金属錯体(b1-0)~(b1-1)を用いた。
 <アミン化合物(b2)>
 1,2-ジメチルイミダゾール(キュアゾール 1.2DMZ、四国化成製)
 1-ベンジル-2-メチルイミダゾール(キュアゾール 1B2MZ、四国化成製)
 1-ベンジル-2-フェニルイミダゾール(キュアゾール 1B2PZ、四国化成製)
 1-イソブチル-2-メチルイミダゾール(JERキュアIBMI12、ジャパンエポキシレジン製)
 2,4,6-トリス[(ジメチルアミノ)メチル]フェノール(JERキュア 3010、ジャパンエポキシレジン製)
 トリス(ジメチルアミノメチル)フェノール・トリ(2-エチルヘキソシエート)(K-61B、エアプロダクツジャパン製)
  2-フェニル-4-メチルイミダゾール(キュアゾール 2P4MZ、四国化成製)
 <比較用アミン化合物>
 2-エチル-4-メチルイミダゾール(キュアゾール 2E4MZ、四国化成製)
 ジアザシクロウンデセンフタル酸塩(SA-810、サンアプロ製)
 <酸無水物(c)>
 メチルヘキサヒドロ無水フタル酸とヘキサヒドロ無水フタル酸との混合物(リカシッドMH-700、新日本理化製)
 <シランカップリング剤(d)>
 3-グリシドキシプロピルトリメトキシシラン、分子量236(KBM-403、信越化学製)
 (実施例1~10および比較例1)
 窒素で置換したフラスコで、表2に示す組成のエポキシ樹脂100重量部と、84重量部の酸無水物と、4重量部のシランカップリング剤と、表2に示す重量部の金属錯体(b1-0)または比較用アミン化合物とを攪拌混合して、面封止剤を得た。
 実施例1~10および比較例1で得られた面封止剤の粘度を測定した。面封止剤の合成直後の粘度(0h)と、合成後に面封止剤を25℃で24時間ないし48時間保存した後の粘度を、それぞれE型粘度計(BROOKFIEL社製デジタルレオメーター型式DII-III ULTRA)を用いて、25℃、1rpmで測定した。そして、測定された値を、それぞれ下記式に当てはめて粘度の上昇率を求めた。
 上昇率(%)=(Δ粘度変化量(24hrまたは48hr後の粘度-合成直後の粘度)/合成直後の粘度)×100
 そして、合成直後の粘度から25℃で24時間貯蔵した後の粘度上昇率が50%以下のものは○、50%超100%未満であるものは△、100%を超えるものは×と評価した。また合成直後の粘度から25℃で48時間貯蔵した後の粘度の上昇率が100%以下のものは○、100%超200%未満であるものは△、200%を超えるものは×と評価した。測定結果を表2に示す。
 実施例1~10および比較例1で得られた面封止剤の硬化性を、以下の手法で評価した。各面封止剤を、大気中で30分間加熱して硬化させた硬化物の流動性とタック性を、鉛筆硬度を用いて評価した。硬化物に流動性がなく、かつタック性がない状態を○、流動性がある状態を×、タック性が残っている状態を△として評価した。
 また、得られた面封止剤の水分含有量をカールフィッシャー法で測定したところ、実施例1~10および比較例1の面封止剤の含水率は、いずれも0.1重量%以下であった。
 硬化物層の調製
 実施例1~10および比較例1で得られた面封止剤を、予めオゾン処理によって洗浄したガラス基板(7cm×7cm×0.7mm厚)に、スクリーン印刷機(Screen Printer Model 2200、MITANI製)を用いて印刷した。面封止剤の塗布は、乾燥状態で5cm×5cm×3μm厚となるように行った。印刷したガラス基板を、100℃に加熱したホットプレート上で30分間加熱して、硬化物層とした。
 硬化物層のヘイズ値(%)を、ヘイズメーター(東京電飾製、機種名TC-H3DPK)を用いて測定した。その後、硬化物層を形成したガラス基板を、プラズマ処理装置(ヤマト科学製、機種名PDC210、平行平板型)に設置し、酸素流量20mL/分、RF出力500Wの条件で20分間プラズマ処理を実施した。そして、プラズマ処理後の硬化物層のヘイズ値(%)を、ヘイズメーター(東京電飾製、機種名TC-H3DPK)を用いて測定した。それぞれのヘイズ測定値を、表2に示す。
 プラズマ照射後のヘイズが10%以下のものを○、10%超~30%以下のものを△、30%を超えるものを×として評価した。
 このように、プラズマ処理し、ヘイズの変化を評価することで、有面封止剤の硬化物にプラズマが照射される工程を含む有機ELデバイスの製法において、好適な面封止剤であるか否かを評価できるとともに、耐候性の加速評価も可能となる。
 実施例1~10および比較例1の面封止剤の評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 実施例および比較例のいずれの面封止剤についても、プラズマ処理前の硬化物層のヘイズは十分に低減されている。そして、実施例1~10の面封止剤は、プラズマ処理後の硬化物層のヘイズ値が30%未満に抑制されているのに対して、比較例1の面封止剤は、プラズマ処理後の硬化物層のヘイズ値が40%を超えている。
 また、比較例1の面封止剤が硬化性は良好なものの、貯蔵安定性が低いのに対し、実施例1~8の面封止剤は硬化性も高く、かつ貯蔵安定性も良好であることがわかる。特に実施例2、5~8の面封止剤は、48時間貯蔵後でも粘度上昇率が低くかつ硬化性が良好であることがわかる。
 (実施例11~23および25、比較例2)
 窒素で置換したフラスコで、表3~5に示す組成のエポキシ樹脂100重量部と、84重量部の酸無水物と、4重量部のシランカップリング剤と、表3~5に示す重量部の金属錯体またはアミン化合物とを攪拌混合して、面封止剤を得た。なお、実施例11~13で用いた金属錯体は、前述で合成した金属錯体(b1-1)~(b1-3)を用いた。
 (実施例24)
 金属錯体に代えて、亜鉛ビス(2-エチルヘキソエート)と1,2-DMZとをそれぞれ単独で添加した以外は、実施例11と同様にして面封止剤を得た。
 実施例11~25および比較例2で得られた面封止剤の粘度を、前述と同様にして測定した。さらに、錯体化による安定化度を以下のようにして算出した。即ち、3級アミンと、亜鉛ビス(2-エチルヘキソエート)とを別々に配合した面封止剤の24hr後の粘度上昇率(錯体化していない場合の上昇率)を、3級アミンと亜鉛ビス(2-エチルヘキソエート)とを錯体化させた金属錯体を含む面封止剤の24hr後の粘度上昇率で除した値を「錯体化による安定化度」として算出した。錯体化による安定化度が1よりも大きいと、錯体化により安定性が高められたことを示し、1よりも小さいと錯体化により安定性が低下していることを示す。
 なお、後述する表3~5において、「錯体化していない場合の上昇率」は、3級アミンが「1,2-DMZ」である場合は、実施例24の24hr後の上昇率を用い;「IBMI12」である場合は、実施例25の24hr後の上昇率を用い;「1B2MZ」である場合は、実施例10の24hr後の上昇率を用いた。
 実施例11~25および比較例2で得られた面封止剤の硬化性を、前述と同様にして評価した。
 硬化物層の調製
 実施例11~23および比較例2で得られた面封止剤を、予めオゾン処理によって洗浄したガラス基板(7cm×7cm×0.7mm厚)に、スクリーン印刷機(Screen Printer Model 2200、MITANI製)を用いて印刷した。面封止剤の塗布は、乾燥状態で5cm×5cm×3μm厚となるように行った。面封止剤を印刷したガラス基板を、100℃に加熱したホットプレート上で30分間加熱して、硬化物層とした。
 硬化物層のヘイズ値(%)を、ヘイズメーター(東京電飾製、機種名TC-H3DPK)を用いて測定した。その後、硬化物層を形成したガラス基板を、スパッタ薄膜形成装置((株)アルバック製、JSP-8000)に設置し、下記条件で厚み50nmのSiOを成膜した。そして、成膜処理後の硬化物層のヘイズ値(%)を、ヘイズメーター(東京電飾製、機種名TC-H3DPK)を用いて測定した。
 <プレスパッタ条件>
  ターゲット:SiO
  ガス種:Ar
  ガス流量:15sccm
  圧力:4.8×10-1Pa
  電源:交流電源(周波数13.56MHz)
  入力電力:300W
  時間:120秒間
  温度:室温
 <成膜条件>
  ターゲット:SiO
  ガス種:Ar
  ガス流量:15sccm
  圧力:4.8×10-1Pa
  電源:交流電源(周波数13.56MHz)
  入力電力:300W
  時間:2500秒間
  温度:室温
 成膜処理後のヘイズが25%以下のものを○、25%超~40%以下のものを△、40%を超えるものを×として評価した。
 スパッタ法による成膜処理後のヘイズが低いということは、硬化物層の特に表面の硬化度が比較的高いため、成膜処理後の硬化物層の表面が平滑であること(外部ヘイズが低いこと)を意味する。一方、スパッタ法による成膜処理後のヘイズが高いということは、硬化物層、特にその表面の硬化度が比較的低いため、成膜処理により硬化物層の表面が粗になったこと(外部ヘイズが高いこと)を意味する。なお、スパッタ法による成膜処理後のヘイズが高いということは、必ずしも面封止剤の硬化物の耐候性が低いことを意味するものではない。
 実施例11~16の測定結果を表3に示し;実施例17~21の測定結果を表4に示し;実施例22~25および比較例2の測定結果を表5に示す。表中の、金属錯体中のアニオン径とは、アニオン性配位子の半径を示す。アニオン性配位子の半径は、Material Studio 6.0 Dmol3を用いてconnolly volumeを得た後;connolly volumeを真球の体積と仮定したときの半径として算出した。一方、塩化物イオンや硫酸イオンの半径は、化学便覧 基礎編 改訂2版 日本化学学会編)に記載のイオン半径(ShannonおよびPrewittによる計算値)を用いた。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表3~5に示されるように、実施例11~23の面封止剤は、良好な硬化性を示しつつ、錯体化による安定化度が1よりも大きく、面封止剤の貯蔵安定性が高いことが示される。具体的には、(錯体化していない)3級アミンのみを添加した実施例25および3級アミンと亜鉛ビス(2-エチルヘキソエート)とを(錯体化せずに)別々に添加した実施例24の面封止剤は、24hr後の粘度上昇率がやや高めであるのに対し;実施例11~12および17~23の面封止剤は、24hr後の粘度上昇率が低く、3級アミンの錯体化により面封止剤の貯蔵安定性が向上することが示される。一方、比較例2の面封止剤は、3級アミンを含まないことから、硬化性が低く、硬化物の評価ができなかった。
 なかでも、実施例11~16および18~20の面封止剤の硬化物は、成膜処理後のヘイズが低く、透明性が良好に維持されることがわかる。これは、実施例11~16および18~20の面封止剤の硬化物の表面の硬化性が高いため、成膜面が粗化されることによる外部ヘイズの上昇を低減できたためと考えられる。
 2.第二の形態の面封止剤の評価
 (実施例26~34、比較例3~4)
 窒素で置換したフラスコで、表6に示す組成のエポキシ樹脂100重量部と、85重量部の酸無水物と、4重量部のシランカップリング剤と、表6に示す重量部のアミン化合物とを攪拌混合して、面封止剤を得た。
 実施例26~34および比較例3~4で得られた面封止剤の粘度を測定した。E型粘度計(BROOKFIEL社製デジタルレオメーター型式DII-III ULTRA)を用いて、25℃における面封止剤の粘度を測定した。測定結果を表6に示す。
 実施例26~34および比較例3~4で得られた面封止剤の硬化性を、以下の手法で評価した。各面封止剤を、2枚のNaCl結晶板(厚み5mm)の間に挟んでサンプルを用意した。2枚のNaCl結晶板(2センチ角)の間に面封止剤を封入し、NaCl結晶板同士の間隔が15μmとなるようにした。このサンプルを、100℃で30分熱処理した前後の赤外線透過スペクトルを、FT-IR測定装置によって測定した。得られたスペクトルに基づき、エポキシ基の逆対称環伸縮に由来する吸収ピーク(910cm-1付近)高さを、ベンゼン環の環内C-C伸縮に由来する吸収ピーク(1600cm-1付近)高さで除して規格化した。そして、熱処理によるエポキシ基由来のピークの減少度合いからエポキシ基の反応率を算出した。
 熱処理前のエポキシ基ピークの規格値をx1、熱処理後のエポキシ基ピークの規格値をx2とした場合、{(x1-x2)/x1}×100(%)で算出される値をエポキシ転化率として算出した。エポキシ転化率が、80%以上である場合に、評価を○とした。
 硬化物層の調製
 実施例26~34および比較例3~4で得られた面封止剤を、予めオゾン処理によって洗浄したガラス基板(7cm×7cm×0.7mm厚)に、スクリーン印刷機(Screen Printer Model 2200、MITANI製)を用いて印刷した。面封止剤の塗布は、乾燥状態で5cm×5cm×3μm厚となるように行った。印刷したガラス基板を100℃に加熱したホットプレート上で30分間加熱して硬化物層とした。
 硬化物層のヘイズ値(%)を、ヘイズメーター(東京電飾製、機種名TC-H3DPK)を用いて測定した。その後、硬化物層を形成したガラス基板を、プラズマ処理装置(ヤマト科学製、機種名PDC210、平行平板型)に設置し、酸素流量20mL/分、RF出力500Wの条件で20分間プラズマ処理を実施した。そして、プラズマ処理後の硬化物層のヘイズ値(%)を、ヘイズメーター(東京電飾製、機種名TC-H3DPK)を用いて測定した。それぞれのヘイズ測定値を、表6に示す。
 このようにプラズマ処理し、ヘイズの変化を評価することで、面封止剤の硬化物にプラズマが照射される工程を含む有機ELデバイスの製法において、好適な面封止剤であるか否かを評価できるとともに、耐候性の加速評価も可能となる。
Figure JPOXMLDOC01-appb-T000006
 実施例26~34および比較例3~4のいずれの面封止剤についても、プラズマ処理前の硬化物層のヘイズは十分に低減されている。そして、実施例26~34の面封止剤については、プラズマ処理後の硬化物層のヘイズ値が30%未満に抑制されているのに対して、比較例3~4の面封止剤については、プラズマ処理後の硬化物層のヘイズ値が50%を超えている。
 特に、実施例26~32の面封止剤については、プラズマ処理後の硬化物層のヘイズ値が20%未満に抑制されている。このことは、硬化促進剤のイミダゾール環の1位に結合している水素原子が、他の置換基に置換されていると、プラズマによるヘイズ上昇がより効果的に抑制できることを示唆している。
 本出願は、2011年6月23日出願の特願2011-139578および2011年7月12日出願の特願2011-154352に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。
 本発明の第一の形態の面封止剤は、良好な硬化性を有し、かつ貯蔵安定性に優れている。そのため、光半導体デバイスの製造効率を高めることができる。また、本発明の第二の形態の面封止剤の硬化物層で面封止された光半導体を具備する光半導体デバイスデバイスは、硬化物層のヘイズ上昇が抑制される。特に、プラズマ処理をされたときのヘイズ上昇が効果的に抑制される。従って、硬化物層上に、プラズマCVDで無機化合物層を成膜しても、硬化物層の透明性を維持することができる。よって、本発明の光半導体デバイス、特に有機ELデバイスは、光取出し効率が高まる。
 20,20’ 有機ELデバイス
 22 基板
 24 有機EL素子
 26 封止基板
 28 面封止層
 28-1 硬化物層
 28-2 パッシベーション層
 28-3 第2の樹脂硬化物層
 30 反射画素電極層
 32 有機EL層
 34 透明対向電極層

Claims (20)

  1.  1分子内に2個以上のエポキシ基を有するエポキシ樹脂(a)と、
     Zn、Bi、Ca、Al、Cd、La、Zrからなる群から選ばれる1種類以上の金属イオンと、前記金属イオンと錯形成が可能であって、N-H結合を有さない3級アミンと、分子量が17~200のアニオン性配位子とを含む金属錯体(b1)と、
     を含み、
     E型粘度計により25℃、1.0rpmで測定した粘度が10~10000mPa・sである、光半導体用の面封止剤。
  2.  前記アニオン性配位子の価数が前記金属イオンの価数より小さく、かつ
     前記アニオン性配位子の半径が2.0Å以上である、請求項1に記載の光半導体用の面封止剤。
  3.  前記3級アミンが、下記一般式(1)~(6)のいずれかで表される化合物である、請求項1に記載の光半導体用の面封止剤。
    Figure JPOXMLDOC01-appb-C000042
    (一般式(1)において、
     Rは、炭素数1~17の脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示し;
     R、R、Rは、それぞれ独立に水素基、炭素数1~17の脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示す)
    Figure JPOXMLDOC01-appb-C000043
    (一般式(2)において、
     RB1、RB3、RB4、RB5は、それぞれ独立に水素基、炭素数1~17のヘテロ原子を含有してもよい脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示し;
     RB2は、炭素数1~17のヘテロ原子を含有してもよい脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示し;
     RB1、RB2、RB3、RB4、RB5から選択された複数の基が互いに連結して、脂環式環、芳香族環、または酸素、窒素、硫黄から選ばれるヘテロ原子を含有する複素環を形成してもよい)
    Figure JPOXMLDOC01-appb-C000044
    (一般式(3)において、
     RC1、RC3、RC4、RC5は、それぞれ独立に水素基、炭素数1~17のヘテロ原子を含有してもよい脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示し;
     RC2は、炭素数1~17のヘテロ原子を含有してもよい脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示し;
     RC1、RC2、RC3、RC4、RC5から選択された複数の基が互いに連結し、脂環式環、芳香族環、または酸素、窒素、硫黄から選ばれるヘテロ原子を含有する複素環を形成してもよい)
    Figure JPOXMLDOC01-appb-C000045
    (一般式(4)において、
     RE1、RE2、RE3、RE4、RE5は、それぞれ独立に水素基、炭素数1~17のヘテロ原子を含有してもよい脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示し;
     RE1、RE2、RE3、RE4、RE5から選択された複数の基が互いに連結し、脂環式環、芳香族環、または酸素、窒素、硫黄から選ばれるヘテロ原子を含有する複素環を形成してもよい)
    Figure JPOXMLDOC01-appb-C000046
    (一般式(5)において、
     RF1、RF2、RF3、RF4、RF5、RF6、RF7は、それぞれ独立に水素基、炭素数1~17のヘテロ原子を含有してもよい脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示し;
     RF1、RF2、RF3、RF4、RF5、RF6、RF7から選択された複数の基が互いに連結し、脂環式環、芳香族環、または酸素、窒素、硫黄から選ばれるヘテロ原子を含有する複素環を形成してもよい)
    Figure JPOXMLDOC01-appb-C000047
    (一般式(6)において、
     RG1、RG2、RG3、RG4は、それぞれ独立に水素基、炭素数1~17のヘテロ原子を含有してもよい脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示し;
     RG1、RG2、RG3、RG4から選択された複数の基が互いに連結し、脂環式環、芳香族環、または酸素、窒素、硫黄から選ばれるヘテロ原子を含有する複素環を形成してもよい)
  4.  前記アニオン性配位子が、O、S、Pからなる群から選ばれ、前記金属イオンに結合しうる原子を2以上有し、かつ前記金属イオンに配位して3~7員環を形成しうるものである、請求項2に記載の光半導体用の面封止剤。
  5.  前記3級アミンが、前記一般式(1)~(3)のいずれかで表される化合物であり、かつ
     前記アニオン性配位子が、下記一般式(7A)で表されるカルボキシレート化合物である、請求項3に記載の光半導体用の面封止剤。
    Figure JPOXMLDOC01-appb-C000048
    (一般式(7A)において、
     RD1は、フリーまたは水素基であり、
     RD2は、水素基、炭素数1~10の炭化水素基または水酸基である)
  6.  前記面封止剤の、CDCl中、25℃、270MHzにおけるHNMRの化学シフトのうち3級アミンに由来する化学シフトが、前記3級アミン単独の、CDCl中、25℃、270MHzにおけるHNMRの化学シフトに対して0.05ppm以上移動するピークを含む、請求項1に記載の光半導体用の面封止剤。
  7.  前記金属イオンに対する前記3級アミンのモル比が、0.5~6.0である、請求項1に記載の光半導体用の面封止剤。
  8.  前記カルボキシレート化合物が、2-エチルヘキサン酸、ギ酸、酢酸、ブタン酸、2-エチルブタン酸、2,2-ジメチルブタン酸、3-メチルブタン酸、2,2-ジメチルプロパン酸、安息香酸およびナフテン酸からなる群から選ばれる少なくとも1種類の化合物である、請求項5に記載の光半導体用の面封止剤。
  9.  前記3級アミンが、1,8-ジアゾビシクロ[5,4,0]ウンデカ-7-エン、1-メチルイミダゾール、1,2-ジメチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-イソブチル-2-メチルイミダゾール、1-ブチルイミダゾールおよび1,5-ジアゾビシクロ[4,3,0]ノン-5-エンからなる群から選ばれる少なくとも1種類の化合物である、請求項1に記載の光半導体用の面封止剤。
  10.  1分子内に2個以上のエポキシ基を有するエポキシ樹脂(a)と、下記一般式(11)または(12)で表される硬化促進剤(b2)とを含み、
     E型粘度計により25℃、1.0rpmで測定した粘度が10~10000mPa・sである、光半導体用の面封止剤。
    Figure JPOXMLDOC01-appb-C000049
     (一般式(11)において、R、R、R、Rは、それぞれ独立に水素基、炭素数1~17の脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示すが;但し、Rが水素基である場合は、RおよびRのいずれか一方または両方がアリール基である)
    Figure JPOXMLDOC01-appb-C000050
    (一般式(12)において、RA、RA、RA、RAは、それぞれ独立に、水素基、炭素数1~17の脂肪族炭化水素基、水酸基、アリール含有基、ジメチルアミノメチル基を示すが;但し、RA,RA,RAおよびRAの1つ以上はジメチルアミノメチル基である)
  11.  前記一般式(11)において、Rが、炭素数1~17の脂肪族炭化水素基、水酸基、アリール含有基またはシアノエチル基を示す、請求項10に記載の光半導体用の面封止剤。
  12.  前記光半導体用の面封止剤は、前記金属錯体(b1)を、3級アミンの活性官能基/エポキシ基の当量比が0.008~0.3となる範囲で含む、請求項1に記載の光半導体用の面封止剤。
  13.  前記光半導体用の面封止剤は、前記硬化促進剤(b2)を、3級アミンの活性官能基/エポキシ基の当量比が0.008~0.152となる範囲で含む、請求項10に記載の光半導体用の面封止剤。
  14.  前記光半導体用の面封止剤は、酸無水物を、酸無水物基/エポキシ基の当量比が0.8~1.2となる範囲でさらに含む、請求項1または10に記載の光半導体用の面封止剤。
  15.  含水率が0.1重量%以下である、請求項1または10に記載の光半導体用の面封止剤。
  16.  有機EL素子用の面封止剤である、請求項1または10に記載の光半導体用の面封止剤。
  17.  基板上に有機EL素子を形成する第1の工程と、
     前記有機EL素子を、請求項1または10に記載の面封止剤で覆う第2の工程と、
     前記面封止剤を硬化させた硬化物で、前記有機EL素子を面封止する第3の工程と、
     前記有機EL素子を面封止する前記硬化物上に、パッシベーション膜を成膜する第4の工程と、を含む、有機ELデバイスの製造方法。
  18.  有機EL素子と、
     前記有機EL素子と接触しており、前記有機EL素子を面封止している請求項1または10に記載の面封止剤の硬化物からなる硬化物層と、
     前記硬化物層と接するパッシベーション層と、を含む有機ELデバイス。
  19.  有機EL素子と、
     前記有機EL素子を面封止しており、X線光電子分光法(XPS)で測定されるスペクトルにおいて、Zn、Bi、Ca、Al、Cd、La、Zrからなる群から選ばれる1種類以上の金属原子に由来するピークと、窒素原子に由来するピークとが検出され、検出される前記金属原子と前記窒素原子とのモル比が、前記金属原子:前記窒素原子=1:0.5~1:6.0であり、かつ前記金属原子の含有量が0.5~15質量%であるエポキシ樹脂組成物の硬化物層と、
     前記硬化物層と接するパッシベーション層と、を含む、有機ELデバイス。
  20.  請求項18に記載の有機ELデバイスを有する、有機ELディスプレイパネル。
     
     
PCT/JP2012/004072 2011-06-23 2012-06-22 光半導体用の面封止剤、それを用いた有機elデバイスの製造方法、有機elデバイスおよび有機elディスプレイパネル WO2012176472A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012552600A JP5237507B1 (ja) 2011-06-23 2012-06-22 光半導体用の面封止剤、それを用いた有機elデバイスの製造方法、有機elデバイスおよび有機elディスプレイパネル
CN201280030854.3A CN103636286B (zh) 2011-06-23 2012-06-22 光半导体用的表面密封剂、使用其的有机el器件的制造方法、有机el器件以及有机el显示面板
KR1020137033988A KR101604896B1 (ko) 2011-06-23 2012-06-22 광 반도체용 면 봉지제, 그것을 이용한 유기 el 디바이스의 제조 방법, 유기 el 디바이스 및 유기 el 디스플레이 패널
US13/818,202 US9013049B2 (en) 2011-06-23 2012-06-22 Surface sealant for optical semiconductor, method for manufacturing organic EL device, organic EL device and organic EL display panel using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011139578 2011-06-23
JP2011-139578 2011-06-23
JP2011154352 2011-07-12
JP2011-154352 2011-07-12

Publications (1)

Publication Number Publication Date
WO2012176472A1 true WO2012176472A1 (ja) 2012-12-27

Family

ID=47422325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004072 WO2012176472A1 (ja) 2011-06-23 2012-06-22 光半導体用の面封止剤、それを用いた有機elデバイスの製造方法、有機elデバイスおよび有機elディスプレイパネル

Country Status (6)

Country Link
US (1) US9013049B2 (ja)
JP (2) JP5237507B1 (ja)
KR (1) KR101604896B1 (ja)
CN (1) CN103636286B (ja)
TW (1) TWI621650B (ja)
WO (1) WO2012176472A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013187394A1 (ja) * 2012-06-15 2013-12-19 古河電気工業株式会社 有機エレクトロルミネッセンス素子封止用樹脂組成物、有機エレクトロルミネッセンス素子用封止フィルム、有機エレクトロルミネッセンス素子用ガスバリアフィルムおよびこれを用いた有機エレクトロルミネッセンス素子
WO2014097647A1 (ja) * 2012-12-21 2014-06-26 三井化学株式会社 シート状エポキシ樹脂組成物、それを用いた有機elデバイスの製造方法、有機elデバイスおよび有機elディスプレイパネル
JP2015122297A (ja) * 2013-11-19 2015-07-02 Jsr株式会社 有機el素子および水分捕獲フィルム
TWI565118B (zh) * 2014-11-25 2017-01-01 財團法人工業技術研究院 封裝膜材與電子元件封裝體
JP2018097943A (ja) * 2016-12-08 2018-06-21 コニカミノルタ株式会社 有機エレクトロルミネッセンス発光装置
WO2019220896A1 (ja) * 2018-05-18 2019-11-21 日本ゼオン株式会社 印刷用樹脂溶液及びデバイス構造体の製造方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014017524A1 (ja) * 2012-07-26 2014-01-30 電気化学工業株式会社 樹脂組成物
KR102167315B1 (ko) * 2014-04-30 2020-10-20 삼성디스플레이 주식회사 유기전계발광 표시장치
CN106008924A (zh) * 2016-06-23 2016-10-12 柳州市强威锻造厂 一种酸酐类环氧树脂固化配方
JP6866472B2 (ja) * 2016-12-09 2021-04-28 エルジー・ケム・リミテッド 有機電子装置の製造方法
US10281090B2 (en) * 2017-01-24 2019-05-07 Osram Gmbh Lighting device and corresponding manufacturing method
CN110603277B (zh) * 2017-06-23 2022-05-03 三井化学株式会社 图像显示装置密封材料及图像显示装置密封片
TWI634468B (zh) * 2017-08-18 2018-09-01 財團法人工業技術研究院 透明顯示裝置
US10396256B2 (en) 2017-08-18 2019-08-27 Industrial Technology Research Institute Electronic device package
CN109411417B (zh) * 2017-08-18 2020-09-11 财团法人工业技术研究院 电子组件封装体以及显示面板
JP6705568B1 (ja) * 2019-02-13 2020-06-03 横浜ゴム株式会社 導電性組成物
WO2020166137A1 (ja) * 2019-02-13 2020-08-20 横浜ゴム株式会社 導電性組成物
JPWO2021100366A1 (ja) * 2019-11-19 2021-05-27
KR20230021827A (ko) * 2021-08-06 2023-02-14 (주)이녹스첨단소재 유기발광소자의 봉지재용 열경화성 액상 조성물

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4101514A (en) * 1970-07-17 1978-07-18 Minnesota Mining And Manufacturing Company Imidazole type curing agents and latent systems containing them
JP2000267359A (ja) * 1999-03-19 2000-09-29 Canon Inc トナー及び画像形成方法
US6353081B1 (en) * 1998-10-10 2002-03-05 Bakelite Ag Curing agents for epoxy compounds, processes for their production and their use
US6372861B1 (en) * 1999-02-09 2002-04-16 Bakelite A.G. Cyanate resin, polyepoxide and metal complex curing agent
US20060247341A1 (en) * 2004-08-12 2006-11-02 Bing Hsieh Organometallic compositions and coating compositions
JP2009252364A (ja) * 2008-04-01 2009-10-29 Canon Inc 有機発光装置
WO2010119706A1 (ja) * 2009-04-17 2010-10-21 三井化学株式会社 封止用組成物および封止用シート
JP2011099031A (ja) * 2009-11-05 2011-05-19 Mitsui Chemicals Inc 接着性組成物

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2796187B2 (ja) * 1990-10-01 1998-09-10 日東電工株式会社 光半導体装置
JP3714568B2 (ja) 1996-08-06 2005-11-09 住友ベークライト株式会社 光半導体封止用エポキシ樹脂組成物
US7579203B2 (en) * 2000-04-25 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
EP1440991A4 (en) * 2001-09-28 2005-01-05 Mitsui Chemicals Inc HARDENING COMPOSITION FOR EPOXY RESINS, EPOXY RESIN COMPOSITION AND USE THEREOF
TWI295410B (en) 2002-11-29 2008-04-01 Zeon Corp Radiation-sensitive resin composition
MY151065A (en) * 2003-02-25 2014-03-31 Kaneka Corp Curing composition and method for preparing same, light-shielding paste, light-shielding resin and method for producing same, package for light-emitting diode, and semiconductor device
US7119409B2 (en) * 2003-06-13 2006-10-10 Fuji Electric Holdings Co., Ltd. Organic el display
CN1239608C (zh) * 2003-12-22 2006-02-01 中国石化集团巴陵石油化工有限责任公司 一种压缩天然气瓶环氧树脂专用料
EP1778778A4 (en) * 2004-08-12 2011-04-27 King Industries Inc METAL-ORGANIC COMPOSITIONS AND COATING COMPOSITIONS
JP4780275B2 (ja) 2004-09-06 2011-09-28 株式会社スリーボンド 有機el素子封止材
US8193034B2 (en) * 2006-11-10 2012-06-05 Stats Chippac, Ltd. Semiconductor device and method of forming vertical interconnect structure using stud bumps
US20100051973A1 (en) * 2008-08-28 2010-03-04 Seiko Epson Corporation Light-emitting device, electronic equipment, and process of producing light-emitting device
WO2010035502A1 (ja) 2008-09-29 2010-04-01 三井化学株式会社 封止剤および封止部材、ならびに有機elデバイス

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4101514A (en) * 1970-07-17 1978-07-18 Minnesota Mining And Manufacturing Company Imidazole type curing agents and latent systems containing them
US6353081B1 (en) * 1998-10-10 2002-03-05 Bakelite Ag Curing agents for epoxy compounds, processes for their production and their use
US6372861B1 (en) * 1999-02-09 2002-04-16 Bakelite A.G. Cyanate resin, polyepoxide and metal complex curing agent
JP2000267359A (ja) * 1999-03-19 2000-09-29 Canon Inc トナー及び画像形成方法
US20060247341A1 (en) * 2004-08-12 2006-11-02 Bing Hsieh Organometallic compositions and coating compositions
JP2009252364A (ja) * 2008-04-01 2009-10-29 Canon Inc 有機発光装置
WO2010119706A1 (ja) * 2009-04-17 2010-10-21 三井化学株式会社 封止用組成物および封止用シート
JP2011099031A (ja) * 2009-11-05 2011-05-19 Mitsui Chemicals Inc 接着性組成物

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013187394A1 (ja) * 2012-06-15 2013-12-19 古河電気工業株式会社 有機エレクトロルミネッセンス素子封止用樹脂組成物、有機エレクトロルミネッセンス素子用封止フィルム、有機エレクトロルミネッセンス素子用ガスバリアフィルムおよびこれを用いた有機エレクトロルミネッセンス素子
JP2014002875A (ja) * 2012-06-15 2014-01-09 Furukawa Electric Co Ltd:The 有機エレクトロルミネッセンス素子封止用樹脂組成物、有機エレクトロルミネッセンス素子用封止フィルム、有機エレクトロルミネッセンス素子用ガスバリアフィルムおよびこれを用いた有機エレクトロルミネッセンス素子
US9913324B2 (en) 2012-06-15 2018-03-06 Furukawa Electric Co., Ltd. Resin composition for sealing organic electroluminescent element, sealing film for organic electroluminescent element, gas-barrier film for organic electroluminescent element, and organic electroluminescent element using these films
WO2014097647A1 (ja) * 2012-12-21 2014-06-26 三井化学株式会社 シート状エポキシ樹脂組成物、それを用いた有機elデバイスの製造方法、有機elデバイスおよび有機elディスプレイパネル
JP2015122297A (ja) * 2013-11-19 2015-07-02 Jsr株式会社 有機el素子および水分捕獲フィルム
TWI565118B (zh) * 2014-11-25 2017-01-01 財團法人工業技術研究院 封裝膜材與電子元件封裝體
JP2018097943A (ja) * 2016-12-08 2018-06-21 コニカミノルタ株式会社 有機エレクトロルミネッセンス発光装置
WO2019220896A1 (ja) * 2018-05-18 2019-11-21 日本ゼオン株式会社 印刷用樹脂溶液及びデバイス構造体の製造方法

Also Published As

Publication number Publication date
KR20140024432A (ko) 2014-02-28
TWI621650B (zh) 2018-04-21
US20130153880A1 (en) 2013-06-20
CN103636286B (zh) 2017-02-15
KR101604896B1 (ko) 2016-03-18
CN103636286A (zh) 2014-03-12
JP2013166949A (ja) 2013-08-29
JPWO2012176472A1 (ja) 2015-02-23
US9013049B2 (en) 2015-04-21
TW201311791A (zh) 2013-03-16
JP5237507B1 (ja) 2013-07-17

Similar Documents

Publication Publication Date Title
JP5237507B1 (ja) 光半導体用の面封止剤、それを用いた有機elデバイスの製造方法、有機elデバイスおよび有機elディスプレイパネル
JP5763280B2 (ja) 有機el素子用面封止剤およびその硬化物
WO2013118509A1 (ja) 有機el素子用の面封止剤、これを用いた有機elデバイス、及びその製造方法
JP5577667B2 (ja) 樹脂組成物
TWI614301B (zh) 有機el顯示元件用封止劑
JP7120017B2 (ja) 封止用の樹脂組成物および封止用シート
JP6316811B2 (ja) 接着フィルム及びこれを利用した有機電子装置の封止製品
JPWO2016092816A1 (ja) 有機el素子用の面封止材及びその硬化物
TW201305234A (zh) 環氧聚合性組成物及有機電激發光裝置
WO2021111855A1 (ja) 封止剤、封止シート、電子デバイスおよびペロブスカイト型太陽電池
JP6896190B1 (ja) 画像表示装置封止材
TW201425372A (zh) 樹脂組成物及其硬化物(3)
JP2016012559A (ja) 有機エレクトロルミネッセンス表示素子用封止剤
JP6342331B2 (ja) 有機el素子の面封止用シート、それを用いた有機elデバイスの製造方法、有機elデバイスおよび有機elディスプレイパネル

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012552600

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12802308

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13818202

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137033988

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12802308

Country of ref document: EP

Kind code of ref document: A1