WO2012176286A1 - 内燃機関の制御装置 - Google Patents
内燃機関の制御装置 Download PDFInfo
- Publication number
- WO2012176286A1 WO2012176286A1 PCT/JP2011/064223 JP2011064223W WO2012176286A1 WO 2012176286 A1 WO2012176286 A1 WO 2012176286A1 JP 2011064223 W JP2011064223 W JP 2011064223W WO 2012176286 A1 WO2012176286 A1 WO 2012176286A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cooling
- exhaust
- passage
- water
- internal combustion
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/22—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
- F02M26/29—Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
- F02M26/32—Liquid-cooled heat exchangers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/02—Gas passages between engine outlet and pump drive, e.g. reservoirs
- F02B37/025—Multiple scrolls or multiple gas passages guiding the gas to the pump drive
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D21/00—Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
- F02D21/06—Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
- F02D21/08—Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/02—EGR systems specially adapted for supercharged engines
- F02M26/04—EGR systems specially adapted for supercharged engines with a single turbocharger
- F02M26/05—High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/22—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
- F02M26/33—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage controlling the temperature of the recirculated gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M26/00—Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
- F02M26/13—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
- F02M26/42—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders
- F02M26/43—Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories having two or more EGR passages; EGR systems specially adapted for engines having two or more cylinders in which exhaust from only one cylinder or only a group of cylinders is directed to the intake of the engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/08—Other arrangements or adaptations of exhaust conduits
- F01N13/10—Other arrangements or adaptations of exhaust conduits of exhaust manifolds
- F01N13/107—More than one exhaust manifold or exhaust collector
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P2060/00—Cooling circuits using auxiliaries
- F01P2060/02—Intercooler
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01P—COOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
- F01P2060/00—Cooling circuits using auxiliaries
- F01P2060/16—Outlet manifold
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to a control apparatus for an internal combustion engine, and more particularly, as an apparatus for controlling an internal combustion engine that includes two systems of first and second exhaust cooling means for cooling two systems of first and second exhaust passages, respectively.
- the present invention relates to a suitable control device for an internal combustion engine.
- Patent Document 1 discloses a control device for an internal combustion engine with a supercharger.
- This conventional internal combustion engine includes a first exhaust passage that communicates with a turbine of a supercharger, a second exhaust passage that does not pass through the turbine, an EGR passage that connects an upstream portion of the turbine in the first exhaust passage and an intake passage. And a communication passage connecting the middle of the EGR passage and the second exhaust passage, and an EGR cooler.
- a part of the exhaust gas flowing through the first exhaust passage is guided to the second exhaust passage through the EGR passage and the communication passage.
- the present invention has been made to solve the above-described problems, and is a control device for an internal combustion engine that can introduce external EGR gas when it is cold while suppressing the generation of condensed water from EGR gas satisfactorily.
- the purpose is to provide.
- a first invention is a control device for an internal combustion engine, A first exhaust passage through which exhaust gas discharged from one or more first cylinders flows; A second exhaust passage through which exhaust gas discharged from one or more second cylinders flows; First exhaust cooling means for cooling the first exhaust passage; A second exhaust cooling means provided separately from the first exhaust cooling means for cooling the second exhaust passage; An EGR passage connecting the first exhaust passage and the intake passage; EGR control means for controlling the amount of EGR gas introduced into the intake passage through the EGR passage; When EGR gas is introduced into the intake passage when the internal combustion engine is cold, the cooling capacity of the first exhaust passage by the first exhaust cooling means is the cooling capacity of the second exhaust passage by the second exhaust cooling means.
- Exhaust cooling adjustment means to make smaller than, It is characterized by providing.
- the second invention is the first invention, wherein
- the first exhaust cooling means is a water cooling type cooling means for cooling the first exhaust passage by circulation of first cooling water
- the exhaust cooling adjustment means is means for stopping circulation of the first cooling water by the first exhaust cooling means.
- the third invention is the first invention, wherein
- the first exhaust cooling means is a water cooling type cooling means for cooling the first exhaust passage by circulation of first cooling water
- the second exhaust cooling means is a water cooling type cooling means for cooling the second exhaust passage by circulation of second cooling water
- the exhaust cooling adjustment means is a means for making the circulating flow rate of the first cooling water smaller than the circulating flow rate of the second cooling water.
- 4th invention is 2nd or 3rd invention
- the surface area of the first exhaust passage is set smaller than the surface area of the second exhaust passage.
- a turbine operating by exhaust energy of the internal combustion engine wherein exhaust gas from the first cylinder and exhaust gas from the second cylinder are isolated using the first exhaust passage and the second exhaust passage; And a twin-entry turbocharger configured to be guided to the turbine in a heated state.
- the first exhaust cooling means is a water cooling type cooling means for cooling the first exhaust passage by circulation of first cooling water,
- the first cooling water is for cooling a water-cooled intercooler.
- the EGR gas is introduced into the intake passage when cold.
- the cooling capacity of the first exhaust passage by the first exhaust cooling means is made smaller than the cooling capacity of the second exhaust passage by the second exhaust cooling means.
- the wall surface temperature of the first exhaust passage can be raised at an early stage as compared with the case where the first exhaust passage is cooled in the cold without special consideration.
- the temperature of the EGR gas flowing from the first exhaust passage into the EGR passage can be increased.
- the amount of condensed water flowing into the cylinder can be reduced by suppressing the generation of condensed water from the EGR gas.
- the exhaust cooling adjustment means stops the circulation of the first cooling water by the first exhaust cooling means, so that the cooling capacity of the first exhaust passage by the first exhaust cooling means can be reduced when cold.
- the cooling capacity of the second exhaust passage by the second exhaust cooling means can be made smaller.
- the exhaust cooling adjusting means makes the circulation flow rate of the first cooling water smaller than the circulation flow rate of the second cooling water, so that the first exhaust passage by the first exhaust cooling means is cold when cold.
- the cooling capacity can be made smaller than the cooling capacity of the second exhaust passage by the second exhaust cooling means.
- the wall surface temperature of the first exhaust passage can be more easily warmed than the wall surface temperature of the second exhaust temperature, the temperature increase of the first cooling water temperature during cold can be promoted. Can do.
- a hardware configuration that can suitably suppress the generation of condensed water from the EGR gas flowing into the EGR passage from the first exhaust passage side can be obtained.
- the effects of the first and fifth inventions can be achieved.
- the effects of the first and sixth inventions can be achieved in an internal combustion engine having a cooling system different from normal engine cooling water for a water-cooled intercooler.
- Embodiment 1 of this invention It is a figure for demonstrating the system configuration
- FIG. 1 is a diagram for explaining a system configuration of an internal combustion engine 10 according to Embodiment 1 of the present invention.
- the internal combustion engine 10 is an inline 4-cylinder engine as an example, and the explosion order is assumed to be # 1 ⁇ # 3 ⁇ # 4 ⁇ # 2.
- the internal combustion engine 10 includes an intake passage 12 for taking air into the cylinder and an exhaust passage 14 through which exhaust gas discharged from the cylinder flows.
- the exhaust passage 14 is exhaust gas discharged from the first cylinder of the internal combustion engine 10 (in the present embodiment, the two cylinders, # 2 and # 3, are referred to as “first cylinder group” hereinafter). (Hereinafter, referred to as “first exhaust gas”) and the remaining second cylinders of the internal combustion engine 10 (in this embodiment, the two cylinders # 1 and # 4 are targeted). , Hereinafter referred to as “second cylinder group”), a second exhaust passage 14b through which exhaust gas (hereinafter referred to as “second exhaust gas”) flows, a first exhaust passage 14a, and a second exhaust passage 14b. And a post-merging exhaust passage 14c after merging.
- the surface area of the first exhaust passage 14a is set smaller than the surface area of the second exhaust passage 14b.
- an air flow meter 16 that outputs a signal corresponding to the flow rate of air sucked into the intake passage 12 is provided.
- a compressor 18 a of the turbocharger 18 is disposed downstream of the air flow meter 16.
- the turbocharger 18 includes a turbine 18b that is integrally connected to the compressor 18a and that is operated by exhaust gas exhaust energy.
- the compressor 18a is rotationally driven by the exhaust energy of the exhaust gas input to the turbine 18b.
- a water-cooled intercooler 20 for cooling the air compressed by the compressor 18a is disposed in the intake passage 12 on the downstream side of the compressor 18a. Further, an electronically controlled throttle valve 22 for adjusting the amount of air flowing through the intake passage 12 is disposed downstream of the intercooler 20.
- the turbine 18b of the turbocharger 18 is installed at the junction of the first exhaust passage 14a and the second exhaust passage 14b.
- the turbocharger 18 is independent of each other through the first exhaust passage 14a and the second exhaust passage 14b, and the first cylinder group (# 2 and # 3) and the second cylinder group ( This is a turbocharger that receives supply of the first exhaust gas and the second exhaust gas from # 1 and # 4), that is, a so-called twin entry type (twin scroll type) turbocharger.
- an EGR passage 24 is connected to the first exhaust passage 14a.
- the other end of the EGR passage 24 is connected to the intake passage 12 (the surge tank 12a) on the downstream side of the throttle valve 22.
- An EGR valve 26 that opens and closes the EGR passage 24 is provided in the vicinity of the end of the EGR passage 24 on the intake passage 12 side.
- the system of the present embodiment includes two exhaust cooling systems configured to be different between the first cylinder group (# 2 and # 3) and the second cylinder group (# 1 and # 4). .
- a main cooling water passage 30 through which normal engine cooling water (hereinafter referred to as “main cooling water”) flows is formed inside the cylinder head 28.
- the main cooling water is supplied by a main water pump (not shown) to a cooling water passage for a predetermined cooling portion (in addition to the cylinder head, a cylinder block, etc.) of the internal combustion engine 10 including the main cooling water passage 30 and the main cooling water. It is configured to circulate between a main radiator (not shown) for cooling. As shown in FIG. 1, a main coolant passage 30 passes through the cylinder head 28 around the second exhaust port 14b1 of the second exhaust passage 14b on the second cylinder group (# 1 and # 4) side. For this reason, the second exhaust port 14b1 is cooled by the main cooling water.
- the cylinder head 28 around the first exhaust port 14a1 of the first exhaust passage 14a on the first cylinder group (# 2 and # 3) side is a separate system from the main cooling water, and cools the intercooler 20.
- the sub-cooling water passage 32 through which cooling water (hereinafter referred to as “sub-cooling water”) flows is passed.
- the sub cooling water passage 32 is a passage for circulating the sub cooling water through the intercooler 20.
- a flow rate control valve 38 for adjusting the flow rate.
- the first exhaust port 14a1 is cooled by the sub cooling water.
- the circulation flow rate of the sub cooling water is basically less than the circulation flow rate of the main cooling water flowing through the main cooling system having a large heat load by bearing the main cooling of the internal combustion engine 10.
- a cooling system is configured.
- the system shown in FIG. 1 includes an ECU (Electronic Control Unit) 40.
- an input part of the ECU 40 includes a main cooling water temperature sensor 42 for detecting the temperature of the main cooling water and a temperature of the sub cooling water in the vicinity of the first exhaust port 14a1.
- Various sensors for detecting the operating state of the internal combustion engine 10 such as the sub cooling water temperature sensor 44 are connected.
- the output portion of the ECU 40 includes a fuel injection valve 46 for supplying fuel to the internal combustion engine 10, and an air-fuel mixture.
- Various actuators for controlling the operating state of the internal combustion engine 10 such as a spark plug 48 for igniting the engine are connected.
- the ECU 40 controls the operating state of the internal combustion engine 10 by operating various actuators according to a predetermined program based on the outputs of the various sensors described above.
- FIG. 2 is a diagram showing the relationship between the amount of condensed water and the wall surface temperature.
- FIG. 3 is a diagram showing the relationship between the in-cylinder pressure (compression end pressure) and the in-cylinder inflow water amount.
- the greater the amount of condensed water flowing into the cylinder together with the EGR gas the higher the compression end pressure. This is because water, which is a liquid, is difficult to be compressed in the cylinder, so that the volume of air in the cylinder decreases accordingly, and as a result, the cylinder pressure increases.
- the cooling capacity of the first exhaust passage 14a responsible for introducing EGR gas into the EGR passage 24 is set to the other second exhaust passage. It was made to be smaller than the cooling capacity of 14b. Specifically, the circulation of the sub cooling water to the first exhaust passage 14a (first exhaust port 14a1) is stopped when cold.
- the sub cooling water temperature in the vicinity of the first exhaust port 14a1 is not excessively increased.
- the circulation flow rate of the cooling water was adjusted. Specifically, when the sub cooling water temperature near the first exhaust port 14a1 is higher than a predetermined value while the sub cooling water circulation is stopped, the sub cooling water is circulated (the circulation stop is canceled). I made it.
- FIG. 4 is a flowchart showing a control routine executed by the ECU 40 in order to realize cold control in the first embodiment of the present invention. As a premise of the control of this routine, it is assumed that the external EGR control is executed in the cold state.
- step 100 it is first determined whether or not the internal combustion engine 10 is in a cold state (step 100). Specifically, in step 100, when the temperature of the main cooling water detected by the main cooling water temperature sensor 42 is lower than a predetermined value, the internal combustion engine 10 is in a cold state (that is, during warm-up). Is determined).
- step 102 If it is determined in step 100 that the internal combustion engine 10 is in a cold state, the circulation of the sub cooling water is stopped (step 102). Specifically, the driving of the sub water pump 34 is stopped, and the flow control valve 38 is closed.
- step 104 it is determined whether or not the temperature of the sub cooling water detected by the sub cooling water temperature sensor 44 is higher than a predetermined value (step 104).
- the predetermined value in this step 104 is a value set in advance as a threshold for determining whether or not the temperature of the sub-cooling water near the first exhaust port 14a1 is excessively increased.
- the sub cooling water is circulated (circulation stop is released) (step 106). Specifically, the sub water pump 34 is driven, and the flow control valve 38 is opened to a predetermined opening.
- the opening degree of the flow control valve 38 may be changed according to the temperature of the sub cooling water. For example, the opening degree of the flow control valve 38 may be increased as the temperature of the sub cooling water is higher so that the temperature of the sub cooling water is equal to or lower than the predetermined value.
- step 106 When the processing of step 106 is executed, or when the determination of step 104 is not established, it is determined whether or not the internal combustion engine 10 is still in a cold state (step 108). As a result, when it is determined that the internal combustion engine 10 is still in the cold state, the processing after step 104 is repeatedly executed.
- step 110 when it is determined in step 100 or 108 that the internal combustion engine 10 is not in the cold state, that is, when it can be determined that the warm-up of the internal combustion engine 10 is completed (or completed), the normal operation is performed.
- the sub-cooling water flow rate control is executed (step 110). Specifically, the sub water pump 34 is driven, and the opening degree of the flow control valve 38 is controlled to a predetermined opening degree corresponding to the operating state of the internal combustion engine 10.
- the cooling capacity of the first exhaust passage 14a (the first exhaust port 14a1) responsible for introducing the EGR gas into the EGR passage 24 is the other second exhaust passage 14b. This is smaller than the cooling capacity of the (second exhaust port 14b1).
- the wall surface temperature of the first exhaust port 14a1 can be raised at an early stage when it is cold, the temperature of the EGR gas flowing into the EGR passage 24 from the first exhaust passage 14a can be increased.
- the amount of condensed water flowing into the cylinder can be reduced by suppressing the generation of condensed water from the EGR gas, the deterioration of the durability of the internal combustion engine 10 due to the inflow of condensed water into the cylinder can be prevented. Can do.
- the cooling water main cooling
- the cooling water that circulates the internal combustion engine 10 using the other cooling system that uses the main cooling water while performing the above-described control during the cold time. The warm-up of water) can be continued.
- FIG. 5 is a time chart showing changes in the opening degree of the flow control valve 38 and the temperature of the sub cooling water when the control of the routine shown in FIG. 4 is executed.
- FIG. 6 is a graph showing the relationship between the target temperature arrival time of the cooling water and the surface area of the exhaust passage.
- the waveform shown by the solid line in FIG. 5 uses the configuration shown in FIG. 1, that is, the configuration in which the sub cooling water cools the first exhaust port 14a1 on the first cylinder group (# 2 and # 3) side.
- the waveform shown by the broken line in FIG. 5 is a configuration for comparison, more specifically, the second exhaust port 14b1 on the second cylinder group (# 1 and # 4) side is sub This is a case where a cooling water cooling structure is used.
- the water temperature rises over time.
- the routine shown in FIG. 4 when the temperature of the sub cooling water reaches the predetermined value after the circulation of the sub cooling water is stopped as shown in FIG. 5 (B), as shown in FIG. 5 (A).
- the flow control valve 38 is opened (in addition to this, the sub water pump 34 is driven), the circulation of the sub cooling water is executed. Thereby, as shown to FIG. 5 (B), it can prevent that the temperature of sub-cooling water exceeds the said predetermined value, and rises too much.
- FIG. 5 is intended for a cold time in which the internal combustion engine 10 is warmed up over time, so the temperature of the sub-cooling water basically increases as the internal combustion engine 10 warms up. Tend to.
- the surface area of the first exhaust passage 14a connected to the EGR passage 24 is set smaller than the surface area of the second exhaust passage 14b.
- the cooling capacity of the first exhaust passage 14a is basically reduced by stopping the circulation of the sub cooling water (as long as the sub cooling water temperature does not rise excessively) during the cold time.
- the cooling capacity of the second exhaust passage 14b is made smaller.
- the specific method for the exhaust cooling adjustment means of the present invention to make the cooling capacity of the first exhaust passage smaller than that of the other second exhaust passage is limited to stopping the circulation of the sub cooling water. Absent.
- this alternative method is not limited to controlling the flow rate so that a difference occurs in the circulation flow rates of the sub cooling water and the main cooling water during the cold time. That is, this alternative method is provided with two cooling systems having a configuration in which the circulation flow rate of the sub cooling water is smaller than the circulation flow rate of the main cooling water, as in the hardware configuration of the internal combustion engine 10 described above.
- the amount of the sub cooling water is adjusted so that the temperature of the sub cooling water for cooling the first exhaust passage 14a does not rise excessively as in the first embodiment. It may be.
- the following setting in the first embodiment that is, the setting that the surface area of the first exhaust passage 14a connected to the EGR passage 24 is made smaller than the surface area of the second exhaust passage 14b is the first exhaust passage 14a.
- the above-described alternative method that does not stop the circulation of the sub-cooling water for cooling the sub-cooling water it is suitable for promoting the temperature increase of the sub-cooling water during the cold time.
- production of the condensed water from EGR gas can be suppressed favorably.
- the first cylinder group includes the first cylinder group consisting of two cylinders # 2 and # 3, and the second cylinder includes two cylinders # 1 and # 4.
- the explanation has been given by taking the internal combustion engine 10 having a group as an example.
- the first cylinder and the second cylinder in the present invention are not limited to the above example. That is, the first cylinder may be one cylinder or a plurality of cylinders of three or more cylinders, and similarly, the second cylinder may be one cylinder or a plurality of cylinders of three or more cylinders.
- the sub-cooling system including the sub-cooling water passage 32, the sub-water pump 34, the sub-radiator 36, and the flow rate control valve 38 is the “first exhaust cooling means” in the first invention.
- the main cooling system including the main cooling water passage 30 and a main water pump and a main radiator (not shown) correspond to the “second exhaust cooling means” in the first invention.
- the ECU 40 controls the opening degree of the EGR valve 26 to control the amount of EGR gas
- the “EGR control means” in the first aspect of the present invention determines that the determination of step 100 is satisfied. By executing the processing, the “exhaust cooling adjusting means” in the first aspect of the present invention is realized.
- the sub cooling water is the “first cooling water” in the second, third or seventh invention
- the main cooling water is the “second cooling water” in the third invention.
- the “water temperature excessive rise suppression means” according to the fourth aspect of the present invention is realized by the ECU 40 executing the process of step 106 when the determination of step 104 is established. Yes.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust-Gas Circulating Devices (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Supercharger (AREA)
Abstract
Description
尚、出願人は、本発明に関連するものとして、上記の文献を含めて、以下に記載する文献を認識している。
1または複数の第1気筒から排出される排気ガスが流れる第1排気通路と、
1または複数の第2気筒から排出される排気ガスが流れる第2排気通路と、
前記第1排気通路を冷却する第1排気冷却手段と、
前記第1排気冷却手段とは別に備えられ、前記第2排気通路を冷却する第2排気冷却手段と、
前記第1排気通路と吸気通路とを接続するEGR通路と、
前記EGR通路を介して前記吸気通路に導入するEGRガス量を制御するEGR制御手段と、
内燃機関の冷間時にEGRガスを前記吸気通路に導入する場合に、前記第1排気冷却手段による前記第1排気通路の冷却能力を、前記第2排気冷却手段による前記第2排気通路の冷却能力よりも小さくする排気冷却調整手段と、
を備えることを特徴とする。
前記第1排気冷却手段は、第1冷却水の循環により前記第1排気通路を冷却する水冷式の冷却手段であり、
前記排気冷却調整手段は、前記第1排気冷却手段による前記第1冷却水の循環を停止させる手段であることを特徴とする。
前記第1排気冷却手段は、第1冷却水の循環により前記第1排気通路を冷却する水冷式の冷却手段であり、
前記第2排気冷却手段は、第2冷却水の循環により前記第2排気通路を冷却する水冷式の冷却手段であり、
前記排気冷却調整手段は、前記第2冷却水の循環流量よりも前記第1冷却水の循環流量を少なくする手段であることを特徴とする。
前記内燃機関の冷間時にEGRガスを前記吸気通路に導入する場合に、前記第1冷却水の温度が過上昇しないように、前記第1冷却水の循環流量を調整する水温過上昇抑制手段を更に備えることを特徴とする。
前記第1排気通路の表面積は、前記第2排気通路の表面積よりも小さく設定されていることを特徴とする。
前記内燃機関の排気エネルギーにより作動するタービンを有し、前記第1気筒からの排気ガスと前記第2気筒からの排気ガスとが前記第1排気通路と前記第2排気通路とを用いて隔離された状態で前記タービンに導かれるように構成されたツインエントリー式ターボ過給機を更に備えることを特徴とする。
前記第1排気冷却手段は、第1冷却水の循環により前記第1排気通路を冷却する水冷式の冷却手段であり、
前記第1冷却水は、水冷式のインタークーラーを冷却するためのものであることを特徴とする。
[実施の形態1のシステム構成]
図1は、本発明の実施の形態1における内燃機関10のシステム構成を説明するための図である。ここでは、内燃機関10は、一例として直列4気筒型エンジンであり、その爆発順序は、#1→#3→#4→#2であるものとする。図1に示すように、内燃機関10は、筒内に空気を取り込むための吸気通路12と、筒内から排出される排気ガスが流れる排気通路14とを備えている。
ところで、内燃機関10から排出される排気ガス中には所定割合の水が多量に含まれている。このため、上述した本実施形態の内燃機関10のように排気通路と吸気通路とを接続するEGR通路を備える内燃機関において、冷間時に外部EGR制御を行うようにすると、EGRガスが流れる通路(排気通路、EGR通路および吸気通路)の壁面温度が低いために、EGRガスから凝縮水が発生し易くなる。
また、上述した実施の形態1においては、サブ冷却水が前記第2、第3または第7の発明における「第1冷却水」に、メイン冷却水が前記第3の発明における「第2冷却水」に、それぞれ相当している。
また、上述した実施の形態1においては、ECU40が上記ステップ104の判定が成立した場合に上記ステップ106の処理を実行することにより前記第4の発明における「水温過上昇抑制手段」が実現されている。
12 吸気通路
12a サージタンク
14 排気通路
14a 第1排気通路
14a1 第1排気ポート
14b 第2排気通路
14b1 第2排気ポート
14c 合流後排気通路
16 エアフローメータ
18 ツインエントリー型ターボ過給機
18a コンプレッサ
18b タービン
20 水冷式インタークーラー
22 スロットルバルブ
24 EGR(Exhaust Gas Recirculation)通路
26 EGR弁
28 シリンダヘッド
30 メイン冷却水通路
32 サブ冷却水通路
34 サブウォーターポンプ
36 サブラジエーター
38 流量制御弁
40 ECU(Electronic Control Unit)
42 メイン冷却水温度センサ
44 サブ冷却水温度センサ
46 燃料噴射弁
48 点火プラグ
Claims (7)
- 1または複数の第1気筒から排出される排気ガスが流れる第1排気通路と、
1または複数の第2気筒から排出される排気ガスが流れる第2排気通路と、
前記第1排気通路を冷却する第1排気冷却手段と、
前記第1排気冷却手段とは別に備えられ、前記第2排気通路を冷却する第2排気冷却手段と、
前記第1排気通路と吸気通路とを接続するEGR通路と、
前記EGR通路を介して前記吸気通路に導入するEGRガス量を制御するEGR制御手段と、
内燃機関の冷間時にEGRガスを前記吸気通路に導入する場合に、前記第1排気冷却手段による前記第1排気通路の冷却能力を、前記第2排気冷却手段による前記第2排気通路の冷却能力よりも小さくする排気冷却調整手段と、
を備えることを特徴とする内燃機関の制御装置。 - 前記第1排気冷却手段は、第1冷却水の循環により前記第1排気通路を冷却する水冷式の冷却手段であり、
前記排気冷却調整手段は、前記第1排気冷却手段による前記第1冷却水の循環を停止させる手段であることを特徴とする請求項1記載の内燃機関の制御装置。 - 前記第1排気冷却手段は、第1冷却水の循環により前記第1排気通路を冷却する水冷式の冷却手段であり、
前記第2排気冷却手段は、第2冷却水の循環により前記第2排気通路を冷却する水冷式の冷却手段であり、
前記排気冷却調整手段は、前記第2冷却水の循環流量よりも前記第1冷却水の循環流量を少なくする手段であることを特徴とする請求項1記載の内燃機関の制御装置。 - 前記内燃機関の冷間時にEGRガスを前記吸気通路に導入する場合に、前記第1冷却水の温度が過上昇しないように、前記第1冷却水の循環流量を調整する水温過上昇抑制手段を更に備えることを特徴とする請求項2または3記載の内燃機関の制御装置。
- 前記第1排気通路の表面積は、前記第2排気通路の表面積よりも小さく設定されていることを特徴とする請求項1乃至4の何れか1項記載の内燃機関の制御装置。
- 前記内燃機関の排気エネルギーにより作動するタービンを有し、前記第1気筒からの排気ガスと前記第2気筒からの排気ガスとが前記第1排気通路と前記第2排気通路とを用いて隔離された状態で前記タービンに導かれるように構成されたツインエントリー式ターボ過給機を更に備えることを特徴とする請求項1乃至5の何れか1項記載の内燃機関の制御装置。
- 前記第1排気冷却手段は、第1冷却水の循環により前記第1排気通路を冷却する水冷式の冷却手段であり、
前記第1冷却水は、水冷式のインタークーラーを冷却するためのものであることを特徴とする請求項1乃至6の何れか1項記載の内燃機関の制御装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201180031432.3A CN103608569B (zh) | 2011-06-22 | 2011-06-22 | 内燃机的控制装置 |
JP2012516419A JP5288046B2 (ja) | 2011-06-22 | 2011-06-22 | 内燃機関の制御装置 |
PCT/JP2011/064223 WO2012176286A1 (ja) | 2011-06-22 | 2011-06-22 | 内燃機関の制御装置 |
US13/514,475 US8813730B2 (en) | 2011-06-22 | 2011-06-22 | Control apparatus for internal combustion engine |
DE112011105370.3T DE112011105370B4 (de) | 2011-06-22 | 2011-06-22 | Steuervorrichtung für einen Verbrennungsmotor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/064223 WO2012176286A1 (ja) | 2011-06-22 | 2011-06-22 | 内燃機関の制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012176286A1 true WO2012176286A1 (ja) | 2012-12-27 |
Family
ID=47422168
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/064223 WO2012176286A1 (ja) | 2011-06-22 | 2011-06-22 | 内燃機関の制御装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8813730B2 (ja) |
JP (1) | JP5288046B2 (ja) |
CN (1) | CN103608569B (ja) |
DE (1) | DE112011105370B4 (ja) |
WO (1) | WO2012176286A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2995353A1 (fr) * | 2012-09-12 | 2014-03-14 | Peugeot Citroen Automobiles Sa | Procede de gestion de la circulation d'un liquide de refroidissement |
JP2017137828A (ja) * | 2016-02-04 | 2017-08-10 | いすゞ自動車株式会社 | 吸気温度制御システム |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9228548B2 (en) * | 2011-06-22 | 2016-01-05 | Nissan Motor Co., Ltd. | Intake device for internal combustion engine with supercharger |
US9222405B2 (en) * | 2013-07-08 | 2015-12-29 | Massachusetts Institute Of Technology | Turbocharged single cylinder internal combustion engine using an air capacitor |
KR101534725B1 (ko) * | 2013-12-06 | 2015-07-07 | 현대자동차 주식회사 | 터보차저를 갖는 엔진시스템 |
KR101490963B1 (ko) * | 2013-12-11 | 2015-02-06 | 현대자동차 주식회사 | 터보차저를 갖는 엔진시스템 |
US9284920B2 (en) * | 2014-06-19 | 2016-03-15 | Ford Global Technologies, Llc | Systems and methods for stopping and starting an engine with dedicated EGR |
US9581114B2 (en) * | 2014-07-17 | 2017-02-28 | Ford Global Technologies, Llc | Systems and methods for dedicated EGR cylinder exhaust gas temperature control |
JP6072752B2 (ja) * | 2014-11-12 | 2017-02-01 | 本田技研工業株式会社 | 内燃機関の冷却制御装置 |
KR101826564B1 (ko) * | 2016-03-16 | 2018-02-07 | 현대자동차 주식회사 | 통합된 열교환기를 갖는 엔진 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5968545A (ja) * | 1982-10-12 | 1984-04-18 | Nippon Soken Inc | 内燃機関の暖機促進装置 |
JP2002147292A (ja) * | 2000-11-13 | 2002-05-22 | Hino Motors Ltd | クーラ付き排ガス再循環装置 |
JP2003503626A (ja) * | 1999-06-30 | 2003-01-28 | サーブ オートモービル アクティエボラーグ | 排気ガス再循環を持つ燃焼機関 |
JP2004308613A (ja) * | 2003-04-09 | 2004-11-04 | Denso Corp | 内燃機関の排気温制御装置 |
JP2007040141A (ja) * | 2005-08-02 | 2007-02-15 | Toyota Motor Corp | Egrクーラシステム |
JP2009121393A (ja) * | 2007-11-16 | 2009-06-04 | Toyota Motor Corp | 内燃機関の排気再循環装置 |
JP2009287435A (ja) * | 2008-05-28 | 2009-12-10 | Toyota Motor Corp | 内燃機関の排気還流装置 |
JP2011007139A (ja) * | 2009-06-26 | 2011-01-13 | Toyota Motor Corp | エンジンの冷却装置 |
JP2011099335A (ja) * | 2009-11-04 | 2011-05-19 | Honda Motor Co Ltd | 内燃機関の排ガス処理装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3379354B2 (ja) * | 1996-10-07 | 2003-02-24 | トヨタ自動車株式会社 | 2系統冷却装置付き内燃機関の排気再循環制御装置 |
EP1722090B1 (en) * | 1998-12-01 | 2013-07-17 | Honda Giken Kogyo Kabushiki Kaisha | Cylinder head structure in multi-cylinder engine |
JP4168809B2 (ja) * | 2003-04-03 | 2008-10-22 | いすゞ自動車株式会社 | Egr付き排気過給エンジン |
ATE454544T1 (de) * | 2004-02-01 | 2010-01-15 | Behr Gmbh & Co Kg | Anordnung zur kühlung von abgas und ladeluft |
SE527481C2 (sv) * | 2004-05-28 | 2006-03-21 | Scania Cv Ab | Arrangemang för återcirkulation av avgaser hos en överladdad förbränningsmotor |
JP2009191678A (ja) * | 2008-02-13 | 2009-08-27 | Toyota Motor Corp | 内燃機関の制御装置 |
SE533055C2 (sv) * | 2008-11-21 | 2010-06-15 | Scania Cv Ab | Expansionstank |
JP2010174647A (ja) * | 2009-01-27 | 2010-08-12 | Toyota Motor Corp | Egr装置を備えた内燃機関 |
-
2011
- 2011-06-22 JP JP2012516419A patent/JP5288046B2/ja not_active Expired - Fee Related
- 2011-06-22 WO PCT/JP2011/064223 patent/WO2012176286A1/ja active Application Filing
- 2011-06-22 DE DE112011105370.3T patent/DE112011105370B4/de active Active
- 2011-06-22 CN CN201180031432.3A patent/CN103608569B/zh not_active Expired - Fee Related
- 2011-06-22 US US13/514,475 patent/US8813730B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5968545A (ja) * | 1982-10-12 | 1984-04-18 | Nippon Soken Inc | 内燃機関の暖機促進装置 |
JP2003503626A (ja) * | 1999-06-30 | 2003-01-28 | サーブ オートモービル アクティエボラーグ | 排気ガス再循環を持つ燃焼機関 |
JP2002147292A (ja) * | 2000-11-13 | 2002-05-22 | Hino Motors Ltd | クーラ付き排ガス再循環装置 |
JP2004308613A (ja) * | 2003-04-09 | 2004-11-04 | Denso Corp | 内燃機関の排気温制御装置 |
JP2007040141A (ja) * | 2005-08-02 | 2007-02-15 | Toyota Motor Corp | Egrクーラシステム |
JP2009121393A (ja) * | 2007-11-16 | 2009-06-04 | Toyota Motor Corp | 内燃機関の排気再循環装置 |
JP2009287435A (ja) * | 2008-05-28 | 2009-12-10 | Toyota Motor Corp | 内燃機関の排気還流装置 |
JP2011007139A (ja) * | 2009-06-26 | 2011-01-13 | Toyota Motor Corp | エンジンの冷却装置 |
JP2011099335A (ja) * | 2009-11-04 | 2011-05-19 | Honda Motor Co Ltd | 内燃機関の排ガス処理装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2995353A1 (fr) * | 2012-09-12 | 2014-03-14 | Peugeot Citroen Automobiles Sa | Procede de gestion de la circulation d'un liquide de refroidissement |
WO2014041273A1 (fr) * | 2012-09-12 | 2014-03-20 | Peugeot Citroen Automobiles Sa | Procede de gestion de la circulation d'un liquide de refroidissement |
JP2017137828A (ja) * | 2016-02-04 | 2017-08-10 | いすゞ自動車株式会社 | 吸気温度制御システム |
Also Published As
Publication number | Publication date |
---|---|
JPWO2012176286A1 (ja) | 2015-02-23 |
US8813730B2 (en) | 2014-08-26 |
US20140102427A1 (en) | 2014-04-17 |
DE112011105370B4 (de) | 2016-08-18 |
CN103608569A (zh) | 2014-02-26 |
DE112011105370T5 (de) | 2014-05-15 |
JP5288046B2 (ja) | 2013-09-11 |
CN103608569B (zh) | 2016-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5288046B2 (ja) | 内燃機関の制御装置 | |
US10473063B2 (en) | EGR system for internal-combustion engine | |
EP2957744B1 (en) | Temperature control apparatus for intercooler | |
US20120192557A1 (en) | Engine System | |
JP5799963B2 (ja) | 内燃機関の排気循環装置 | |
JP2011190742A (ja) | 内燃機関用排気再循環装置 | |
US9835116B2 (en) | Internal combustion engine for a motor vehicle, and method for operating such an internal combustion engine | |
JP5092962B2 (ja) | 過給機付き内燃機関の制御装置 | |
JP2011047305A (ja) | 内燃機関 | |
WO2014208361A1 (ja) | エンジンの制御装置 | |
JPWO2012081081A1 (ja) | エンジンの冷却装置 | |
JP2007211594A (ja) | エンジン | |
JP2014001703A (ja) | 内燃機関の冷却システム | |
JP2008057449A (ja) | 内燃機関の排気再循環装置 | |
JP2009264335A (ja) | 内燃機関用多段過給システム | |
JP2020105912A (ja) | 過給機付エンジンの吸気温度制御装置 | |
JP2010229878A (ja) | 内燃機関の冷却システム | |
JP2007023920A (ja) | エンジン | |
JP2016109081A (ja) | インタークーラの温度制御装置 | |
JP2009085094A (ja) | エンジンの排気還流装置 | |
JP2012163082A (ja) | 内燃機関の排気循環装置 | |
JP2012189063A (ja) | 内燃機関の冷却装置 | |
JP2014020288A (ja) | 内燃機関の制御装置 | |
JP7135402B2 (ja) | 冷却システム | |
JP2008157157A (ja) | 内部egrシステム付き多シリンダ4サイクルエンジン |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180031432.3 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: 2012516419 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13514475 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11868151 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112011105370 Country of ref document: DE Ref document number: 1120111053703 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11868151 Country of ref document: EP Kind code of ref document: A1 |