WO2012172906A1 - 光接続部材、光接続構造、及び、光接続部材の製造方法 - Google Patents

光接続部材、光接続構造、及び、光接続部材の製造方法 Download PDF

Info

Publication number
WO2012172906A1
WO2012172906A1 PCT/JP2012/062410 JP2012062410W WO2012172906A1 WO 2012172906 A1 WO2012172906 A1 WO 2012172906A1 JP 2012062410 W JP2012062410 W JP 2012062410W WO 2012172906 A1 WO2012172906 A1 WO 2012172906A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
connection member
waveguide
optical connection
portions
Prior art date
Application number
PCT/JP2012/062410
Other languages
English (en)
French (fr)
Inventor
大 佐々木
知巳 佐野
井上 享
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012084183A external-priority patent/JP2013213934A/ja
Priority claimed from JP2012096905A external-priority patent/JP2013020229A/ja
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to KR1020137033863A priority Critical patent/KR101563797B1/ko
Priority to EP12800410.8A priority patent/EP2730959A4/en
Priority to CN201280029884.2A priority patent/CN103608709B/zh
Publication of WO2012172906A1 publication Critical patent/WO2012172906A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3873Connectors using guide surfaces for aligning ferrule ends, e.g. tubes, sleeves, V-grooves, rods, pins, balls
    • G02B6/3885Multicore or multichannel optical connectors, i.e. one single ferrule containing more than one fibre, e.g. ribbon type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/04Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings formed by bundles of fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3865Details of mounting fibres in ferrules; Assembly methods; Manufacture fabricated by using moulding techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/40Mechanical coupling means having fibre bundle mating means
    • G02B6/403Mechanical coupling means having fibre bundle mating means of the ferrule type, connecting a pair of ferrules

Definitions

  • the present invention relates to an optical connection member for efficiently connecting an optical component such as a plurality of single core fibers to an optical element such as a multi-core fiber suitably applied to an optical communication system, and an optical connection structure thereof
  • the present invention relates to a method for manufacturing an optical connection member.
  • each optical fiber is connected to each other by interposing a multistage optical splitter.
  • a so-called PON (Passive Optical Network) system shared by subscribers is realized.
  • the PON system has technical problems with respect to future increases in transmission capacity, such as congestion control and securing a reception dynamic range.
  • One way to solve this technical problem is to move to the SS (Single Star) system.
  • the number of fiber cores on the inner side of the station increases with respect to the PON system. Therefore, it is essential to make the diameter and the ultra-high density of the optical cable inside the station.
  • the ultrafine diameter / ultra high density optical fiber it is preferable to use, for example, a multicore fiber having a plurality of cores in the same cladding.
  • the optical fiber disclosed in Patent Document 1 has seven or more cores arranged two-dimensionally in its cross section.
  • Patent Document 2 discloses an optical fiber in which a plurality of cores are aligned in a straight line, and describes that connection with an optical waveguide unit and a semiconductor optical integrated device is facilitated.
  • network resources that are assumed to be connected to a multi-core fiber having a plurality of cores as described above, such as general optical equipment, are premised on being connected to a station via a single core fiber. Is the current situation. For this reason, a connection configuration between a multi-core fiber and a plurality of single core fibers is important, and an optical connection means that can suppress a connection loss with a simple configuration is required.
  • the present invention has been made to solve the above problems, and can efficiently connect an optical element such as a multi-core fiber having a plurality of cores and an optical component such as a plurality of single-core fibers with a simple configuration.
  • An object of the present invention is to provide an optical connection member and an optical connection structure for connecting the optical connection member and an optical element.
  • an optical connection member is an optical connection member that connects an optical element having a plurality of optical input / output units having optical axes parallel to each other to another optical component.
  • a main body having a first end on the optical element side and a second end on the other optical component side, and disposed in the main body so as to connect the first end and the second end.
  • a plurality of waveguide portions In this optical connection member, each of the plurality of waveguide portions has linear portions arranged at the first end portion so as to correspond to the arrangement of the plurality of light input / output portions and parallel to each other.
  • the optical connecting member according to the first aspect is optically connected between an optical element such as a multi-core fiber and an optical component such as a plurality of single fibers by a waveguide part connecting the first end and the second end.
  • each of the plurality of waveguide portions has linear portions arranged at the first end portion so as to correspond to the arrangement of the plurality of light output portions and parallel to each other.
  • this optical connecting member has a region in which each of the plurality of waveguides is parallel to each other on the first end side, the connecting surface of the optical connecting member is used to obtain a good connecting surface. Even when polishing is performed to some extent, the parallelism of the waveguide can be maintained.
  • each of the plurality of waveguides may be arranged two-dimensionally at the first end so as to correspond to the two-dimensional arrangement of the plurality of light input / output units. Good.
  • each of the plurality of waveguides is arranged one-dimensionally at the second end so as to correspond to the arrangement of other optical components and is parallel to each other. You may have a straight part.
  • the optical axes of the plurality of waveguides are parallel to each other on the second end side, the optical axis of the optical connecting member and the optical axes of the optical components such as the single core fibers can be easily matched. Therefore, it is possible to suitably suppress the optical connection loss.
  • this optical connecting member has a region where each of the plurality of waveguides is parallel to each other on the second end side, the connecting surface of the optical connecting member is used to obtain a good connecting surface. Even when polishing is performed to some extent, the parallelism of the waveguide can be maintained.
  • the main body portion has a plurality of through holes having an inner diameter substantially equal to the outer diameter of the plurality of waveguide portions, and the plurality of waveguide portions are formed in the plurality of through holes.
  • Each may be housed and fixed.
  • the plurality of waveguide portions may be formed by single core fibers each having a clad diameter equal to the distance between the plurality of light input / output portions, for example, when the optical element is a multicore fiber, The core array of fibers is usually formed so that the core-to-core distances are equal. Therefore, according to the above configuration, the first end portion in which the waveguide portions are arranged in the same manner as the core arrangement of the multicore fiber can be easily obtained.
  • the plurality of waveguide portions are respectively formed by filling a plurality of through holes formed in the main body portion with a liquid having a higher refractive index than the main body portion. Also good.
  • the plurality of waveguides may be formed by coating light reflecting films on the inner walls of the plurality of through holes formed in the main body. In any of these cases, it is possible to easily construct a waveguide unit that suppresses optical connection loss.
  • the first end portion may have a cylindrical shape.
  • the end face of the optical element such as the multi-core fiber and the end face of the optical connecting member can be easily connected via the sleeve.
  • the second end portion is provided with a guide portion for connecting to another optical component so that the optical axis of the other optical component coincides with the optical axis of the second end portion of the plurality of waveguide portions. It may be.
  • the end faces of the respective waveguide portions may be arranged at equal intervals in the first end portion.
  • the core arrangement of the multi-core fiber is usually two-dimensionally arranged so that the inter-core distances are equal. Therefore, the multi-core fiber can be easily connected by forming the first end portion having the above configuration.
  • the optical connection member according to the first aspect of the present invention is an optical connection member that connects a multi-core fiber having a plurality of cores and a plurality of single-core fibers.
  • Each of the plurality of waveguides is a straight portion at least having a connection end with the first end face orthogonal to the first end face.
  • This optical connecting member realizes optical connection between the multi-core fiber and the plurality of single-core fibers by the waveguide portion connecting the first end face and the second end face.
  • this optical connection member in each of the plurality of waveguides, at least the connection end with the first end surface is a linear portion orthogonal to the first end surface.
  • the optical connection member is an optical connection for connecting an optical element having a plurality of optical input / output units having optical axes parallel to each other to another optical component.
  • a main body having a first end on the optical element side and a second end on the other optical component side, and a first end and a second end disposed in the main body.
  • a plurality of waveguides extending so as to tie, and a first fixed component that holds one end of the plurality of waveguides at the first end.
  • the first fixing component fixes the plurality of waveguides inside thereof so that the plurality of waveguides are parallel to each other.
  • the optical connecting member according to the second aspect is provided between an optical element such as a multi-core fiber and an optical component such as a plurality of single-core fibers by a waveguide portion that connects the first end and the second end. Realize optical connection.
  • the plurality of waveguides are fixed in parallel to each other on the first end side by the first fixing component.
  • the optical axes of the plurality of waveguides are parallel to each other on the first end side, so that the optical axis of the optical connection member and the optical axis of the optical element such as a multi-core fiber can be easily aligned. Therefore, it is possible to suitably suppress the optical connection loss.
  • this optical connecting member has a region where each of the plurality of waveguides is parallel to each other on the first end side, the connecting surface of the optical connecting member in order to obtain a good connecting surface. It is possible to maintain the parallelism of the waveguide portion even when the surface is polished to some extent.
  • the first fixing component may be fixed such that the plurality of waveguides are two-dimensionally arranged at the first end.
  • the arrangement of the light input / output units of the optical element such as a multi-core fiber normally arranged in two dimensions with the arrangement of the waveguides of the optical connection member.
  • the first fixed component is an optical element such that the optical axes of the plurality of light input / output parts of the optical element coincide with the optical axes of one end of the plurality of waveguide parts.
  • the first fixing component for fixing the waveguide section has a guide section for matching the optical axes, the optical axis of the optical element and the optical axis of the waveguide section can be easily set. Can be matched.
  • the optical connecting member according to the second aspect may further include a second fixing component that holds the other ends of the plurality of waveguides at the second end.
  • each of the plurality of waveguides is fixed to be parallel to each other on the second end side by the second fixing component. Accordingly, since the optical axes of the plurality of waveguides are parallel to each other also on the second end side, the optical axis of the optical connection member and the optical axes of the optical components such as a plurality of single core fibers can be easily obtained. Therefore, it is possible to further reduce the optical connection loss.
  • the optical connecting member since the optical connecting member includes regions where the plurality of waveguides are parallel to each other on the second end side, the connecting surface of the optical connecting member is used to obtain a good connecting surface. It is possible to maintain the parallelism of the waveguide portion even when the surface is polished to some extent.
  • the second fixed component may be fixed such that the plurality of waveguide portions are in a one-dimensional array at the second end.
  • the arrangement of the optical input / output parts of the optical components such as a plurality of single core fibers usually arranged one-dimensionally and the arrangement of the waveguide parts of the optical connection member can be easily associated with each other.
  • the second fixed component is connected to the other optical component so that the optical axis of the other optical component matches the optical axis of the other end of the plurality of waveguides.
  • the second fixing component for fixing the waveguide portion has a guide portion for matching the optical axis, the optical axis of the other optical component and the optical axis of the waveguide portion are It can be easily matched.
  • the first or second fixed component may be a component for insert molding. In this case, it is possible to easily manufacture an optical connection member in which the first or second fixed component is accurately positioned in the main body.
  • the waveguide part may be formed of a single core fiber having a clad diameter equal to the distance between the plurality of light input / output parts of the optical element.
  • the core array of optical elements such as multi-core fibers is usually formed so that the distances between the cores are equal. Therefore, with the above configuration, a waveguide section having the same arrangement as the core arrangement of an optical element such as a multicore fiber can be easily obtained.
  • the end surface on the first end side may be substantially circular.
  • the end face of the optical element such as a multi-core fiber and the first end of the optical connecting member are easily connected via a sleeve. be able to.
  • the end faces of the respective waveguide portions may be arranged at equal intervals in the first end portion.
  • the core arrangement of optical elements such as multi-core fibers is usually two-dimensionally arranged so that the inter-core distances are equal. Accordingly, the provision of the first end portion having the above configuration facilitates connection with an optical element such as a multi-core fiber.
  • an optical connection structure includes any of the optical connection members described above and a plurality of light input / output units having optical axes parallel to each other, and is connected to the optical connection member.
  • An optical element In this optical connection structure, the optical element is connected to the optical connection member so that the plurality of waveguide portions on the first end face of the first end portion on the optical element side and the plurality of input / output portions of the optical element face each other.
  • the plurality of light input / output units of the optical element are arranged point-symmetrically around a predetermined rotation axis, and are connected with the rotation angle adjusted so as to face the plurality of waveguides on the first end face. It may be. Thereby, connection with an optical element and an optical connection member can be performed easily.
  • the optical element is a multi-core fiber having a plurality of cores surrounded by a common cladding
  • the multi-core fiber is held by an optical ferrule that is positioned and fixed with respect to the optical connection member by a guide member. It may be.
  • the multicore fiber and the optical ferrule may be provided with a regulation structure that regulates the rotation angle of the multicore fiber. Thereby, positioning in the rotation direction of a multi-core fiber and an optical connection member can be performed easily.
  • the optical element is a light emitting / receiving element in which a plurality of light receiving / emitting parts are arranged in a two-dimensional manner, and each of the light receiving / emitting parts of the light receiving / emitting element is optically connected to the plurality of waveguides.
  • the condensing optical system may be further provided.
  • a light emitting / receiving element including a plurality of light emitting / receiving units, such as a VCSEL can be connected to other optical components while suppressing connection loss suitably.
  • the present invention can also be understood as a manufacturing method for manufacturing the optical connecting member according to the second aspect described above by insert molding. That is, the optical connecting member according to the present invention includes a step of preparing a plurality of waveguide portions and an insert molding fixing component constituting the optical connecting member, and one end of the plurality of waveguide portions inside the fixing component. A step of holding each of the plurality of waveguide portions in parallel with each other, a step of arranging the fixed component and the plurality of waveguide portions, one end of which is held by the fixed component, in the molding die, and a predetermined molding die And a step of performing insert molding by injecting the molding material.
  • This method of manufacturing an optical connecting member includes a step of holding one end of a plurality of waveguide portions inside the fixed component so that the plurality of waveguide portions are parallel to each other.
  • insert molding is performed by arranging a plurality of waveguide portions held in parallel and fixed parts for fixing the plurality of waveguide portions in a mold.
  • the optical connection member is manufactured by fixing the plurality of waveguides so as to be parallel to each other by the fixing component.
  • the optical axes of the plurality of waveguides are parallel to each other, and the optical axis of the optical connection member and an optical element such as a multicore fiber or an optical component such as a plurality of single core fibers are used. It is possible to easily match the optical axis, and it is possible to suitably suppress the connection loss of light.
  • an optical element having a plurality of light input / output units and other optical components can be efficiently connected with a simple configuration.
  • FIG. 6 is a perspective view showing a step subsequent to FIG. 5. It is a perspective view which shows the 1st edge part of the main-body part immediately after shaping
  • FIG. 13 It is a figure which shows the 1st end surface of the main-body part of the optical connection member shown in FIG. It is a figure which shows the 2nd end surface of the main-body part of the optical connection member shown in FIG. It is a perspective view which shows the fixing component which comprises the optical connection member shown in FIG. 13, (a) shows the 1st fixing component arrange
  • FIG. 19 is a perspective view showing a step of inserting one end of the SCF shown in FIG.
  • FIG. 20 is a perspective view showing a step of inserting the other end of the SCF shown in FIG. 19 into the second fixed component. It is a perspective view which shows the process of arrange
  • FIG. 1 is a perspective view showing an optical connection member and an optical connection structure using the optical connection member according to the first embodiment of the present invention.
  • FIG. 2 is a plan view showing a part of the optical connecting member shown in FIG.
  • the optical connecting member 1 is an optical connecting member that connects a multi-core fiber (hereinafter “MCF”) 2 and a plurality of single-core fibers (hereinafter “SCF”) 3.
  • MCF multi-core fiber
  • SCF single-core fibers
  • the MCF 2 is a fiber in which a plurality of cores (light input / output units) are arranged in the same clad so that their optical axes are parallel to each other.
  • the plurality of cores of the MCF 2 are preferably arranged so that the distances between the cores are equal.
  • the core array may be a linear one-dimensional array, but is preferably a two-dimensional array such as a triangular lattice or a four-way array.
  • the MCF 2 of this embodiment is arranged in a triangular lattice shape, and is arranged so that a total of seven cores are equally spaced from each other, one at the center position of the clad and six around it at 60 ° intervals. ing. That is, the core of the MCF 2 is arranged point-symmetrically around the rotation axis located at the center. For example, when there is no central core, it is different from a strict triangular lattice arrangement. However, in the present invention, an arrangement in which a triangular lattice arrangement is realized when the existence of the central core is assumed is also included.
  • the SCF 3 is a fiber having a core having the same diameter as that of the MCF 2 and having a cladding diameter reduced at least at the tip portion so as to be equal to the distance between the cores of the MCF 2.
  • An MT connector 4 is attached to the tip of the SCF 3, and the SCF 3 is fixed by the MT connector so that the optical axes of the tip portions of the SCF 3 are parallel to each other.
  • Guide pins 5 and 5 for attaching the optical connecting member 1 are provided on the distal end surface 4a of the MT connector 4, and seven guide pins 5 and 5 are provided between the guide pins 5 and 5 according to the number of cores of the MCF 2. The ends of the SCF 3 are exposed in a horizontal row at a predetermined pitch.
  • the optical connecting member 1 is formed of a plastic resin used to constitute a general optical connector such as a PPS (polyphenylene sulfide) resin or a PEI (polyetherimide) resin.
  • a main body 11 and a plurality (seven in this case) of waveguides 12 provided in the main body 11 are provided.
  • the main body 11 includes a first end 13 including a first end surface 13 a connected to the end surface of the MCF 2, a second end 14 including a second end surface 14 a connected to the end surface of the SCF 3, and a first end 13. And an intermediate portion 15 located between the first end portion 14 and the second end portion 14.
  • the first end portion 13 has a cylindrical shape having the same diameter as the outer diameter of the ferrule 7 in which the MCF 2 is inserted, and the end surface is a first end surface 13a having a circular cross section.
  • the length of the first end 13 is, for example, five times or more the core diameter of the MCF2.
  • the second end portion 14 has a substantially rectangular parallelepiped shape, and an end surface thereof is a second end surface 14 a having the same shape as the distal end surface 4 a of the MT connector 4.
  • the length of the second end portion 14 is, for example, five times or more the core diameter of the MCF 2, similarly to the first end portion 13.
  • the second end portion 14 is provided with fitting holes 16 and 16 (guide portions) into which the guide pins 5 and 5 of the MT connector 4 are fitted.
  • the intermediate portion 15 has a shape that spreads from the first end portion 13 side to the second end portion 14 side so as to connect the cylindrical first end portion 13 and the substantially rectangular second end portion 14. ing.
  • the waveguide portion 12 has a through hole 17 extending into the main body portion 11 so as to connect the first end surface 13a of the first end portion 13 and the second end surface 14a of the second end portion 14. It is comprised by SCF18 arrange
  • the through hole 17 has an inner diameter substantially equal to the outer diameter of the SCF 18.
  • SCF 18 is the same fiber as SCF 3, and the cladding diameter is reduced to be equal to the distance between the cores of MCF 2.
  • Each of the plurality of waveguide portions 12 is a straight portion in which a connection end 12A with the first end surface 13a is orthogonal to the first end surface 13a.
  • 12 A of connection ends which consist of these linear parts in the 1st end part 13 of the some waveguide part 12 are arranged so that it may mutually become parallel.
  • a branch end 12B with the second end surface 14a is a straight line portion orthogonal to the second end surface 14a.
  • the branch ends 12B composed of these straight portions in the second end portions 14 of the plurality of waveguide portions 12 are arranged so as to be parallel to each other.
  • connection end 12A and the branch end 12B are, for example, five times or more the core diameter of the MCF2.
  • the intermediate portion of the waveguide portion 12 is gently curved along the shape of the main body portion 11 between the first end surface 13a and the second end surface 14a, and connects the connection end 12A and the branch end 12B.
  • One end face of the waveguide 12 is exposed to the first end face 13a so that the position of the core of the MCF 2 corresponds to the position of the core of the SCF 18, and as shown in FIG. 3, the center position of the first end face 13a is exposed. And a total of seven are arranged so as to be equally spaced from each other.
  • the other end face of the waveguide 12 is exposed to the second end face 14a so that the position of the core of the SCF 3 and the position of the core of the SCF 18 correspond to each other, and as shown in FIG. They are arranged in a horizontal row at a predetermined pitch between them.
  • the plurality of waveguide portions 12 are two-dimensionally formed so as to correspond to the plurality of cores of the MCF 2 at the connection end 12A (that is, a straight line connecting the cores forms a polygon). To be arranged). On the other hand, as shown in FIG. 4, the plurality of waveguide portions 12 are one-dimensionally formed so as to correspond to the plurality of cores of the SCF 3 at the branch ends 12B (that is, straight lines connecting the cores form a straight line). Is arranged).
  • the core position of the MCF 2 and the position of the waveguide section 12 on the first end face 13a are matched, that is, the core of the MCF 2 and the waveguide section on the first end face 13a.
  • the end face of the MCF 2 fixed by the ferrule 7 and the first end face 13a of the main body 11 are brought into contact with each other in the split sleeve 19 (guide member).
  • the guide pins 5 and 5 are fitted into the fitting holes 16 and 16 of the second end portion 14 so that the distal end surface 4a of the MT connector 4 and the second end surface 14a of the main body portion 11 are brought into contact with each other.
  • MCF 2 and SCF 3 can be connected via wave portion 12.
  • connection end 12 ⁇ / b> A with the first end surface 13 a is a linear portion orthogonal to the first end surface 13 a, and these linear portions are parallel to each other.
  • the branch end 12B with the second end surface 14a is a straight portion orthogonal to the second end surface 14a, and these straight portions are parallel to each other.
  • the optical axis in the connection part of the waveguide part 12 and SCF3 can also be matched easily. Therefore, compared to the case where light is emitted obliquely from the first end surface 13a and the second end surface 14a, it is possible to suitably suppress the light connection loss.
  • the optical connecting member 1 described above can be formed by, for example, injection molding.
  • a pair of molds 21 and 21 having recesses 22 and 22 corresponding to the shape of the main body 11 is prepared.
  • the indentations 22 and 22 correspond to the shape of one half of the main body 11 in the width direction and the shape of the other half, respectively, and when the molds 21 and 21 are closed, A space S (see FIG. 6) of the same type as the main body 11 is formed in 21.
  • a small-diameter portion 24 is provided on the distal end side with respect to the position where the first end portion 13 is formed.
  • each molding pin 23 has a linear portion orthogonal to the first end surface 13a and a linear portion orthogonal to the second end surface 14a.
  • a convex portion 25 corresponding to the shape of the small diameter portion 24 remains on the first end surface 13a of the main body portion 11 obtained at this time. Therefore, the 1st end surface 13a is formed by removing the convex part 25 by grinding
  • the protrusion amount of the convex part 25 is small (for example, comparable to a core diameter), the convex part 25 may remain. This is because the risk of damage to the convex portion 25 is small even when connected to the MCF 2.
  • the present invention is not limited to the above embodiment, and various modifications can be applied.
  • the SCF 18 is disposed in the through hole 17 to configure the waveguide unit 12.
  • a through hole 37 having the same diameter as the core diameter of the MCF 2 is formed to
  • the waveguide section 12 may be formed by filling the hole 37 with a liquid 38 having a higher refractive index than that of the main body section 11.
  • a matching oil containing a silicone resin or the like can be used.
  • the waveguide 12 may be formed by forming a through hole 47 having the same diameter as the core diameter of the MCF 2 and coating the inner wall of the through hole 47 with a light reflecting film 48.
  • a light reflecting film 48 is an Au film formed by electroless plating.
  • the SCF 18 disposed in the through hole 17 may extend with a sufficient length from the second end face 14a (see FIG. 26 described later).
  • the SCF 18 extending from the second end surface 14a of the optical connecting member 1 can be directly connected to another optical device without a guide pin.
  • the SCF 18 fixed inside the optical connecting member 1 is preferably a coated optical fiber.
  • the SCF 18 is reduced in diameter on the first end face 13 a side and the coating is removed, and at least a part of the coating is fixed inside the optical connecting member 1.
  • one end of the molding pin 23 has a large diameter (corresponding to the coating diameter), and the other end has a small diameter (corresponding to the outer diameter of the coating removal portion).
  • the light emitting / receiving element 57 includes a plurality of (seven in the example of FIG. 11) light emitting / receiving sections 52 arranged in the same manner as the core arrangement of the MCF 2.
  • the optical axes of the plurality of waveguide sections 12 and the plurality of light emitting / receiving sections 52 can be easily matched.
  • connection loss of light is preferably suppressed as compared with the case where light is emitted obliquely from the first end surface 13a and the second end surface 14a. Is possible.
  • the example in which the MCF 2 having a circular cross section is inserted into the optical ferrule 7 has been described.
  • a part of the MCF 62 is cut away to provide a flat surface 62a.
  • a flat surface 67 a corresponding to the flat surface 62 a may be provided in the inner hole of the ferrule 67.
  • the rotation of the MCF 62 can be regulated by the optical ferrule 67.
  • the through hole 17 is formed in the main body 11 using the molding pin 23, and then the SCF 18 is disposed in the through hole 17 to form the waveguide unit 12.
  • the molding pin 23 is used.
  • the SCF 18 may be disposed on the pair of molds 21 and 21 from the beginning to form the waveguide section 12.
  • FIG. 13 is a perspective view showing an example of an aspect in which a multi-core fiber and a plurality of single-core fibers are connected by an optical connection member according to the second embodiment of the present invention.
  • FIG. 14 is a plan view showing a part of the optical connection member shown in FIG.
  • the optical connecting member 101 is an optical connecting member that connects a multi-core fiber (hereinafter “MCF”) 102 and a plurality of single-core fibers (hereinafter “SCF”) 103.
  • MCF multi-core fiber
  • SCF single-core fibers
  • the MCF 102 (optical element) is a fiber in which a plurality of cores (light input / output units) are arranged in the same cladding so that their optical axes are parallel to each other.
  • the plurality of cores of the MCF 102 are preferably arranged so that the distances between the cores are equal.
  • the core array may be a one-dimensional array in which a plurality of cores are arranged in a straight line, but is preferably a two-dimensional array such as a triangular lattice or a tetragonal array.
  • the MCF 102 of this embodiment has a triangular lattice-like two-dimensional array, with one at the center of the clad and six around it at sixty degrees, so that a total of seven cores are equally spaced from each other. Has been placed. For example, when there is no central core, it is different from a strict triangular lattice arrangement. However, in the present invention, an arrangement in which a triangular lattice arrangement is realized when the existence of the central core is assumed is also included.
  • the SCF 103 (optical component) is a fiber having a core having the same diameter as that of the MCF 102 and having a cladding diameter reduced at least at the tip so as to be equal to the distance between the cores of the MCF 102.
  • An MT connector 104 is attached to the tips of the plurality of SCFs 103.
  • Guide pins 105 and 105 for attaching the optical connecting member 101 are provided on the distal end surface 104 a of the MT connector 104. Between the guide pins 105, 105, the ends of the seven SCFs 103 are exposed in a horizontal row at a predetermined pitch in accordance with the number of cores of the MCF 102.
  • the optical connecting member 101 is formed of a plastic resin used to constitute a general optical connector such as a PPS (polyphenylene sulfide) resin or a PEI (polyetherimide) resin.
  • a main body 111 a plurality (seven in this case) of waveguides 112 provided in the main body 111, and first and second fixing parts 120 that fix each end of the plurality of waveguides 112, 121.
  • the main body 111 includes a first end 113 including a first end face 113a connected to the end face of the MCF 102, and a second end 114 including a second end face 114a connected to the end faces of the plurality of SCFs 103. , And an intermediate portion 115 located between the first end portion 113 and the second end portion 114.
  • the first end portion 113 has a cylindrical shape having the same diameter as the outer diameter of the ferrule 107 in which the MCF 102 is inserted, and the end surface is a first end surface 113a having a circular cross section.
  • the length of the first end 113 is, for example, five times or more the core diameter of the MCF 102.
  • the second end portion 114 has a substantially rectangular parallelepiped shape, and the end surface thereof is a second end surface 114 a having the same shape as the front end surface 104 a of the MT connector 104.
  • the length of the second end portion 114 is, for example, five times or more the core diameter of the MCF 102, similarly to the first end portion 113.
  • the second end 114 is provided with fitting holes 116 and 116 into which the guide pins 105 and 105 of the MT connector 114 are fitted.
  • the intermediate part 115 spreads from the first end part 113 side to the second end part 114 side so as to connect the cylindrical first end part 113 and the substantially rectangular second end part 114. It has the shape which becomes.
  • the main body 111 may be formed of an epoxy resin instead of the above-described PPS or the like.
  • the waveguide section 112 is disposed in the through hole 117 without a gap between the through hole 117 extending into the main body 111 so as to connect the first end surface 113a and the second end surface 114a.
  • SCF 118 is a fiber similar to the SCF 113, and the clad diameter is reduced so as to be equal to the distance between the cores of the MCF 102.
  • An intermediate portion of the waveguide 112 is gently curved along the shape of the main body 111 between the first end surface 113a and the second end surface 114a, and connects the connection end 112A and the branch end 112B.
  • the first fixed component 120 is a hollow cylindrical component, and a plurality of first fixed components 120 are arranged so that the connection ends 112A of the plurality of waveguide portions 112 are parallel to each other.
  • the waveguide 112 is fixed on the first end 113 side. By being fixed in parallel in this way, each of the connection ends 112A of the plurality of waveguide portions 112 with the first end surfaces 113a becomes a straight line portion.
  • the first fixed component 120 is disposed in the main body 111 so that the straight line portion is orthogonal to the first end surface 113a.
  • “Orthogonal” used in the present embodiment indicates that the angle with respect to the first end face 113a is within a range of 90 ° ⁇ 0.5 °, for example, and this range is appropriately increased or decreased according to the connection accuracy by the optical connecting member. It is obvious to those skilled in the art that what can be done.
  • the plurality of waveguide sections 112 are two-dimensionally arranged by the first fixing parts 120 at the connection ends 112 ⁇ / b> A so as to correspond to the plurality of cores of the MCF 102.
  • the first fixed component 120 has a tapered portion 120b whose inner peripheral surface 120a extends outward on the side opposite to the first end surface 113a (the second end surface 114a side). The plurality of waveguides 112 are likely to spread as they go to the second end face 114a.
  • the second fixed component 121 is a component having an outer shape of a substantially rectangular parallelepiped shape and having seven through holes 121a to 121g formed therein.
  • the second fixing component 121 fixes the plurality of waveguides 112 on the second end 114 side so that the branch ends 112B of the plurality of waveguides 112 are parallel to each other.
  • each of the branch ends 112 ⁇ / b> B with the second end surfaces 114 a of the plurality of waveguide portions 112 becomes a linear portion.
  • the second fixed component 121 is disposed in the main body 111 such that the straight line portion is orthogonal to the second end surface 114a.
  • the plurality of waveguide sections 112 are arranged in a one-dimensional manner by the second fixed parts 121 at the branch ends 12 ⁇ / b> B so as to correspond to the plurality of cores of the SCF 103.
  • the first and second fixing parts 120 and 121 are made of, for example, metal, resin, ceramic, or the like. When the optical connection member 101 is manufactured by insert molding as described later, the first and second fixing parts 120 and 121 are made of insert molding parts. Composed.
  • the first fixed component 120 may be formed of any of the materials described above. However, when the first fixed component 120 is formed of zirconia, the operation of inserting the SCF 118 of the waveguide 112 into the first fixed component 120 is easy. It is more preferable.
  • the lengths of the first and second fixing parts 120 and 121, the connection end 112A, and the branch end 112B are, for example, 3 to 5 times or more the core diameter of the MCF 102.
  • one end face of the waveguide 112 is exposed to the first end face 113a so that the position of the core of the MCF 102 corresponds to the position of the core of the SCF 118. As shown in the figure, one at the center position of the first end face 113a and six around it at sixty-degree intervals, a total of seven, are arranged at equal intervals.
  • the other end surface of the waveguide 112 is exposed to the second end surface 114a by the second fixing component 121 so that the position of the core of the SCF 103 and the position of the core of the SCF 118 correspond to each other.
  • the fitting holes 116 and 116 are arranged in a horizontal row at a predetermined pitch.
  • 111 is brought into contact with the first end surface 113a of the split sleeve 119, and the guide pins 105 and 105 are fitted into the fitting holes 116 and 116 of the second end portion 114, so that the distal end surface of the MT connector 104
  • the MCF 102 and the plurality of SCFs 103 can be connected via the waveguide 112.
  • connection end 112A with the first end surface 113a is a linear portion orthogonal to the first end surface 113a, and each of the connection ends 112A is They are parallel to each other. That is, the optical axes of the plurality of waveguide portions 112 are parallel to each other on the first end portion 113 side.
  • the optical axis in the connection part of MCF102 which has an optical axis parallel to mutually, and the waveguide part 112 can be made to correspond easily.
  • the branch end 112B with the second end surface 114a is a linear portion orthogonal to the second end surface 114a, and the branch ends 112B are parallel to each other. That is, the optical axes of the plurality of waveguide portions 112 are parallel to each other on the second end portion 114 side. As a result, the optical axes at the connection portion between the SCF 103 and the waveguide portion 112 having optical axes parallel to each other can be easily matched. Therefore, according to the optical connection member 101, light is emitted obliquely from the first end surface 113a and the second end surface 114a, or the optical axes of the light from the respective waveguide portions 112 are shifted from each other. Therefore, it is possible to suitably suppress the optical connection loss.
  • the optical connecting member 101 described above can be formed by insert molding, for example.
  • seven SCFs 118 constituting the waveguide unit 112 are prepared.
  • the 1st and 2nd fixing components 120 and 121 for fixing SCF118 by an edge part are prepared.
  • one end of the SCF 118 (a part corresponding to the connection end 112 ⁇ / b> A) is inserted into the first fixing component 120, and the first fixing component 120 is used to insert the first fixing component 120.
  • a total of seven SCFs 118, one at the center position of the inner periphery and six around it at 60 degree intervals, are equally spaced from each other, and one end of each of the plurality of SCFs 118 is held parallel to each other. This parallel held part forms a straight part.
  • the other end of the SCF 118 (the portion corresponding to the branch end 112B) having one end fixed by the first fixing component 120 is connected to each through hole 121a to 121g of the second fixing component 121.
  • the other fixed parts 121 hold the other ends of the plurality of SCFs 118 in parallel with each other. This parallel held part forms a straight part.
  • the SCF 118 is gently curved and deformed from one end to the other end due to elastic deformation.
  • a pair of molds 131 and 131 having recesses 132 and 132 corresponding to the shape of the main body 111 are prepared.
  • the depressions 132 and 132 correspond to the shape of one half of the main body 111 in the width direction and the shape of the other half, respectively, and when the molds 131 and 131 are closed, A space S (see FIG. 22) of the same type as the main body 111 is formed in 131.
  • a small-diameter portion 134 is provided on the tip side from the position where the first end portion 113 is formed.
  • the SCF 118 having both ends fixed by the first and second fixing parts 120 and 121 is disposed between the depressions 122 and 122 of the molds 131 and 131.
  • the first fixed component 120 is held by the inner peripheral surface of the small diameter portion 134.
  • the first fixed component 120 is arranged in the molds 131 and 131 so that the linear portion at one end of the SCF 118 is orthogonal to the first end surface 113a when the molding is completed.
  • the second fixed component 121 is also positioned with respect to the recessed portions 122 and 122 by the same member. By this positioning, the second fixed component 121 is arranged in the molds 131 and 131 so that the straight line portion at the other end of the SCF 118 is orthogonal to the second end surface 114a when the molding is completed.
  • the convex portion 135 corresponding to the shape of the small diameter portion 134 remains on the first end surface 113a of the main body 111 obtained at this time. Therefore, the first end surface 113a is formed by removing the convex portion 135 by polishing or the like. The same polishing or the like may be performed on the second end surface 114a of the main body 111 as well. And the optical connection member 101 provided with the structure mentioned above is obtained. When the protruding amount of the convex portion 135 or the like is small (for example, approximately the same as the core diameter), the convex portion 135 or the like may remain.
  • the projection 135 or the like is less likely to be damaged.
  • the waveguide portions 112 since the waveguide portions 112 have linear portions that are parallel to each other at both end portions 113 and 114, even if the polishing is performed to some extent, the parallelism is impaired. There is nothing to do.
  • the plurality of waveguide portions 112 are fixed to each other on the first end 113 side by the first fixing component 120 so as to be parallel to each other.
  • the optical axes of the plurality of waveguide portions 112 are parallel to each other on the first end portion 113 side, so that the optical axis of the optical connecting member 101 and the optical axis of the MCF 102 can be easily matched. It is possible to suitably suppress the connection loss.
  • the optical connecting member 101 since the optical connecting member 101 includes regions in which the plurality of waveguide portions 112 are parallel to each other on the first end portion 113 side, the optical connecting member 101 is used to obtain a good connection surface. Even when the connection surfaces of the waveguide portions are polished to some extent, the parallelism of the waveguide portion 112 can be maintained.
  • the optical connection member 101 includes a second fixed component 121 that holds the other ends of the plurality of waveguide portions 112 at the second end portion 114. For this reason, it is possible to fix the plurality of waveguide sections 112 so as to be parallel to each other also on the second end 114 side by the second fixing component 121. Thereby, since the optical axes of the plurality of waveguides 112 are also parallel to each other on the second end 114 side, the optical axes of the optical connection member 101 and the optical axes of the plurality of SCFs 103 can be easily matched. Thus, it is possible to more suitably suppress the optical connection loss.
  • the optical connection member 101 since the optical connection member 101 includes regions in which the plurality of waveguide portions 112 are parallel to each other on the second end portion 114 side, the optical connection member 101 is provided in order to obtain a good connection surface. Even when the connection surface is polished to some extent, the parallelism of the waveguide portion can be maintained.
  • the first and second fixing parts 120 and 121 are insert molding parts. For this reason, it becomes possible to easily manufacture the optical connecting member 101 in which the positioning of the first and second fixing parts 120 and 121 in the main body 111 is performed with high accuracy.
  • the waveguide section 112 is formed by the SCF 118 having a clad diameter equal to the distance between the plurality of cores of the MCF 102. Since the core array of the MCF 102 is usually formed so that the distance between the cores becomes equal, the waveguide 112 having the same array as the core array of the MCF 102 can be easily obtained with the above configuration.
  • the end surface 113a on the first end 113 side has a substantially circular shape. For this reason, after fixing the MCF 102 to the general-purpose columnar ferrule 107, the end face of the MCF 102 and the first end 113 of the optical connecting member 101 can be easily connected via the sleeve 119.
  • the end surfaces of the waveguide portions 112 are arranged at equal intervals in the first end portion 113. Since the core arrangement of the MCF 102 is usually two-dimensionally arranged so that the distance between the cores is equal, the above configuration facilitates connection with the MCF 102.
  • the present invention is not limited to the above embodiment, and various modifications can be applied.
  • the first fixed component 120 has a cylindrical shape, but the optical axes of the plurality of cores of the MCF 102 coincide with the optical axes of one end of the plurality of waveguide portions 112.
  • a notch surface 122a having a partially cutout outer periphery so as to have a D-shaped cross section may be provided.
  • the first fixing component 122 that fixes the waveguide unit 112 has a guide unit for matching the optical axis, the optical axis of the MCF 102 and the optical axis of the waveguide unit 112 Can be more easily matched.
  • the fitting holes 116 and 116 are formed in the main body 111 as guide portions for connecting to the SCF 103 so that the optical axes of the plurality of SCFs 103 coincide with the optical axes of the other ends of the plurality of waveguide portions 112.
  • fitting holes 124a and 124b having such a function may be included in the second fixing component 124.
  • the second fixing component for fixing the waveguide section 112 has a guide section for matching the optical axes, the optical axes of the plurality of SCFs 103 and the optical axes of the waveguide sections 112 Can be more easily matched.
  • the main body 111 has the second end from the first end 113 side so as to connect the cylindrical first end 113 and the substantially rectangular second end 114.
  • it has a shape that spreads toward the part 114 side, as shown in FIG. 25, it may be formed so that the entire outer shape thereof has a substantially rectangular parallelepiped shape. In this case, the configuration of the mold for molding can be simplified.
  • the SCF 118 having a constant outer diameter is disposed in the through hole 117 is used as the waveguide portion 112.
  • the core diameter 138a is constant as shown in FIG.
  • An SCF 138 whose diameter gradually increases may be used as the waveguide unit 112.
  • the cladding diameter portion 138b is the smallest on the first end 113 side, and portions 138c and 138d whose diameters increase toward the second end 114 are formed.
  • a covering portion 138e is formed inside, so that the core or the like covered with the covering portion extends from the second end surface 114a with a sufficient length. (So-called pigtail type parts).
  • the SCF 138 extending from the second end surface 114a of the optical connecting member 101 can be directly connected to another optical device without a guide pin.
  • the straight line portion may not exist.
  • the SCF 118 when the optical connecting member 101 is manufactured, the SCF 118 is formed in the molds 131 and 131 and then molded. However, as described in the first embodiment, the superstructure having the same shape as the SCF 118 is used. After molding the main body 111 using hard pins, these pins may be removed and the SCF 118 inserted into the formed through-hole 117.
  • the first and second end faces 113a and 114a are described so as to be perpendicular to the optical axis of the MCF 102 or SCF 103.
  • the high-reflection type optical connection member is described. Therefore, the end faces 113a and 114a may be polished so as to be inclined by 8 degrees with respect to a plane perpendicular to the optical axis of the MCF 102 or SCF 103.
  • the waveguide portion 112 is parallel to each other at the end portions 113 and 114, so the optical axis of the optical connection member 101 and the optical axis of the MCF 102 are included.
  • the optical axis of the SCF 103 can be easily matched, and the optical connection loss can be suitably suppressed.
  • an optical element having a plurality of light input / output units and other optical components can be efficiently connected with a simple configuration.
  • SYMBOLS 1 Optical connection member, 2 ... MCF, 3 ... SCF, 12 ... Waveguide part, 12A ... Connection end, 12B ... Branch end, 13 ... 1st end part, 13a ... 1st end surface, 14 ... 2nd end part, 14a ... 2nd end surface, 18 ... SCF, 37, 47 ... Through-hole, 38 ... Liquid, 48 ... Light reflection film, C1, C2, C3 ... Optical connection structure, 101, 101A, 101B ... Optical connection member, 102 ... MCF , 103 ... SCF, 112 ... Waveguide, 112A ... Connection end, 112B ... Branch end, 113 ...

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

 光接続部材1は、第1端面13aと第2端面14aとを結ぶ導波部12によってMCF2と複数のSCF3との間の光接続を実現する。この光接続部材1では、複数の導波部12のそれぞれにおいて、第1端面13aとの接続端12Aが第1端面13aに直交する直線部分となっている。さらに、第2端面14aとの分岐端12Bが第2端面14aに直交する直線部分となっている。これにより、導波部12を通った光が第1端面13a及び第2端面14aからほぼ垂直に出射するため、光の接続損失を好適に抑えることが可能となる。

Description

光接続部材、光接続構造、及び、光接続部材の製造方法
 本発明は、光通信システムに好適に適用されるマルチコアファイバなどの光素子に対し、複数の単一コアファイバなどの光学部品を効率的に接続するための光接続部材、及び、その光接続構造、並びに、光接続部材の製造方法に関する。
 従来、1つの送信局と複数の加入者との間の光通信を可能にするFTTH(Fiber To The Home)サービスを提供するため、多段の光スプリッタを介在させることで1本の光ファイバを各加入者が共有する、いわゆるPON(Passive Optical Network)システムが実現されている。しかしながら、PONシステムでは、輻輳制御(Congestion Control)や受信ダイナミックレンジの確保など、将来的な伝送容量の増加に対する技術的課題を有している。
 この技術的課題を解決する手段の一つとして、SS(Single Star)システムへの移行が考えられる。SSシステムへ移行する場合は、局内側においてファイバ心数がPONシステムに対して増大するため、局内側光ケーブルにおいて極細径化・超高密度化が必須となる。極細径・超高密度化用の光ファイバとしては、例えば、同一のクラッド内に複数のコアを備えたマルチコアファイバを用いることが好適である。
 マルチコアファイバとして、例えば特許文献1に開示された光ファイバは、その断面において二次元に配置された7本以上のコアを有している。また、例えば特許文献2には、複数のコアが一直線上に並列された光ファイバが開示されており、光導波部・半導体光集積素子との接続が容易になる旨が記載されている。
特開平05-341147号公報 特開平10-104443号公報
 しかしながら、上述のような複数のコアを有するマルチコアファイバへの接続対象として想定されるネットワーク資源、例えば一般の光学機器などは、単一コアファイバを介して局と接続することを前提にしているのが現状である。このため、マルチコアファイバと複数の単一コアファイバとの接続構成が重要となり、簡単な構成で接続損失を抑えられる光接続手段が求められている。
 本発明は、上記課題の解決のためになされたものであり、複数のコアを有するマルチコアファイバなどの光素子と複数の単一コアファイバなどの光学部品とを簡単な構成で効率的に接続できる光接続部材、及び当該光接続部材と光素子などを接続する光接続構造を提供することを目的とする。
 上記課題の解決のため、本発明の第1の態様に係る光接続部材は、互いに平行な光軸を有する複数の光入出力部を有する光素子を他の光学部品に接続する光接続部材であって、光素子側の第1端部及び他の光学部品側の第2端部を有する本体部と、本体部内に配置され、第1端部と第2端部とを結ぶように延在する複数の導波部とを備えている。この光接続部材では、複数の導波部のそれぞれは、第1端部において、複数の光入出力部の配列に対応するように配列されており且つ互いに平行である直線部分を有している。
 この第1の態様に係る光接続部材は、第1端部と第2端部とを結ぶ導波部によってマルチコアファイバなどの光素子と複数の単一ファイバなどの光学部品との間に光接続を実現する。この光接続部材では、複数の導波部それぞれが、第1端部において、複数の光出力部の配列に対応するように配列されており且つ互いに平行である直線部分を有している。これにより、複数の導波部の光軸が第1端部側において互いに平行となるため、光接続部材の光軸とマルチコアファイバなどの光素子の光軸とを容易に一致させることができ、光の接続損失を好適に抑えることが可能となる。また、この光接続部材は、第1端部側において複数の導波部それぞれが互いに平行となる領域を備えていることになるため、良好な接続面を得るために光接続部材の接続面をある程度、研磨する場合であっても、導波部の平行度を維持することが可能である。
 上記第1の態様に係る光接続部材では、複数の導波部のそれぞれは、第1端部において、複数の光入出力部の二次元配列に対応するように二次元に配列されていてもよい。
 上記第1の態様に係る光接続部材では、複数の導波部のそれぞれは、第2端部において、他の光学部品の配列に対応するように一次元に配列されており且つ互いに平行である直線部分を有していてもよい。この場合、複数の導波部の光軸が第2端部側において互いに平行となるため、光接続部材の光軸と複数の単一コアファイバなどの光学部品の光軸とを容易に一致させることができ、光の接続損失を好適に抑えることが可能となる。また、この光接続部材は、第2端部側において複数の導波部それぞれが互いに平行となる領域を備えていることになるため、良好な接続面を得るために光接続部材の接続面をある程度、研磨する場合であっても、導波部の平行度を維持することが可能である。
 上記第1の態様に係る光接続部材では、本体部は、複数の導波部の外径と略等しい内径を有する複数の貫通孔を有し、複数の導波部は、複数の貫通孔にそれぞれ収容されて固定されていてもよい。この場合において、複数の導波部は、複数の光入出力部間の距離に等しいクラッド径を有する単一コアファイバによってそれぞれ形成されていてもよく、例えば、光素子がマルチコアファイバの場合、マルチコアファイバのコア配列は、通常、コア間距離が等しくなるように形成される。したがって、上記構成により、マルチコアファイバのコア配列と同じように導波部が配列された第1端部を容易に得られる。
 上記第1の態様に係る光接続部材では、複数の導波部は、本体部内に形成された複数の貫通孔に、本体部よりも屈折率の高い液体を充填することによってそれぞれ形成されていてもよい。また、複数の導波部は、本体部内に形成された複数の貫通孔の内壁に光反射膜を被膜させることによってそれぞれ形成されていてもよい。これらいずれの場合であっても、光の接続損失を抑えた導波部を簡単に構成できる。
 上記第1の態様に係る光接続部材では、第1端部は、円筒形状になっていてもよい。この場合、マルチコアファイバなどの光素子を汎用的な円筒状のフェルールに固定した上で、マルチコアファイバなどの光素子の端面と光接続部材の端面とをスリーブを介して容易に接続できる。また、第2端部には、他の光学部品の光軸と複数の導波部の第2端部における光軸とが一致するように他の光学部品に接続するためのガイド部が設けられていてもよい。
 上記第1の態様に係る光接続部材では、第1端部において、各導波部の端面が等間隔に配列されていてもよい。この場合、例えば、光素子がマルチコアファイバであると、マルチコアファイバのコア配列は、通常、コア間距離が等しくなるように二次元配列される。したがって、上記構成の第1端部を形成することにより、マルチコアファイバの接続が容易となる。
 また、上記課題の解決のため、本発明の第1の態様に係る光接続部材は、複数のコアを有するマルチコアファイバと複数の単一コアファイバとを接続する光接続部材であって、マルチコアファイバの端面に接続される第1端面と、複数の単一コアファイバに分岐される第2端面と、第1端面と第2端面とを結ぶように延在する複数の導波部とを有する本体部を有し、複数の導波部のそれぞれは、少なくとも第1端面との接続端が第1端面に直交する直線部分となっている。
 この光接続部材は、第1端面と第2端面とを結ぶ導波部によってマルチコアファイバと複数の単一コアファイバとの間の光接続を実現する。この光接続部材では、複数の導波部のそれぞれにおいて、少なくとも第1端面との接続端が第1端面に直交する直線部分となっている。これにより、導波部を通った光が第1端面及び第2端面からほぼ垂直に出射するため、マルチコアファイバと複数の単一コアファイバの接続部における光軸を容易に一致させることができ、光の接続損失を好適に抑えることが可能となる。
 また、上記課題の解決のため、本発明の第2の態様に係る光接続部材は、互いに平行な光軸を有する複数の光入出力部を有する光素子を他の光学部品に接続する光接続部材であり、光素子側の第1の端部及び他の光学部品側の第2の端部を有する本体部と、本体部内に配置され、第1の端部と第2の端部とを結ぶように延在する複数の導波部と、第1の端部において複数の導波部の一端を保持する第1の固定部品とを備えている。この光接続部材では、第1の固定部品は、その内部において、複数の導波部それぞれが互いに平行となるように複数の導波部を固定している。
 この第2の態様に係る光接続部材は、第1の端部と第2の端部とを結ぶ導波部によってマルチコアファイバなどの光素子と複数の単一コアファイバなどの光学部品との間の光接続を実現する。この光接続部材では、第1の固定部品により、第1の端部側において複数の導波部それぞれが互いに平行となるように固定されている。これにより、複数の導波部の光軸が第1の端部側において互いに平行となるため、光接続部材の光軸とマルチコアファイバなどの光素子の光軸とを容易に一致させることができ、光の接続損失を好適に抑えることが可能となる。また、この光接続部材は、第1の端部側において複数の導波部それぞれが互いに平行となる領域を備えていることになるため、良好な接続面を得るために光接続部材の接続面をある程度、研磨する場合であっても、導波部の平行度を維持することが可能である。
 上記第2の態様に係る光接続部材では、第1の固定部品は、複数の導波部が第1の端部において二次元配列となるように固定してもよい。この場合、通常2次元に配列されているマルチコアファイバなどの光素子の光入出力部の配列と光接続部材の導波部の配列とを容易に対応させることができる。
 上記第2の態様に係る光接続部材では、第1の固定部品は、光素子の複数の光入出力部の光軸と複数の導波部の一端の光軸とが一致するように光素子に接続するためのガイド部を有していてもよい。この場合、導波部を固定する第1の固定部品が、光軸を一致させるためのガイド部を有していることになるため、光素子の光軸と導波部の光軸とを容易に一致させることが可能となる。
 上記第2の態様に係る光接続部材は、第2の端部において複数の導波部の他端を保持する第2の固定部品を更に備えていてもよい。この場合、第2の固定部品により、第2の端部側において複数の導波部それぞれが互いに平行となるように固定されている。これにより、第2の端部側においても複数の導波部の光軸が互いに平行となるため、光接続部材の光軸と複数の単一コアファイバなどの光学部品の光軸とを容易に一致させることができ、光の接続損失を好適に更に抑えることが可能となる。また、この光接続部材は、第2の端部側において複数の導波部それぞれが互いに平行となる領域を備えていることになるため、良好な接続面を得るために光接続部材の接続面をある程度、研磨する場合であっても、導波部の平行度を維持することが可能である。
 上記第2の態様に係る光接続部材では、第2の固定部品は、複数の導波部が第2の端部において一次元配列となるように固定していてもよい。この場合、通常一次元に配列されている複数の単一コアファイバなどの光学部品の光入出力部の配列と光接続部材の導波部の配列とを容易に対応させることができる。
 上記第2の態様に係る光接続部材では、第2の固定部品は、他の光学部品の光軸と複数の導波部の他端の光軸とが一致するように他の光学部品に接続するためのガイド部を有していてもよい。この場合、導波部を固定する第2の固定部品が、光軸を一致させるためガイド部を有していることになるため、他の光学部品の光軸と導波部の光軸とを容易に一致させることが可能となる。
 上記第2の態様に係る光接続部材では、第1又は第2の固定部品は、インサート成形用の部品であってもよい。この場合、本体部内における第1又は第2の固定部品の位置決めが精度よく行われた光接続部材を容易に作製することが可能となる。
 上記第2の態様に係る光接続部材では、導波部は、光素子の複数の光入出力部間の距離に等しいクラッド径を有する単一コアファイバによって形成されていてもよい。マルチコアファイバなど光素子のコア配列は、通常、コア間距離が等しくなるように形成される。したがって、上記構成により、マルチコアファイバなどの光素子のコア配列と同じ配列の導波部を容易に得ることができる。
 上記第2の態様に係る光接続部材では、第1の端部側の端面が略円形状となっていてもよい。この場合、マルチコアファイバなどの光素子を汎用的な円柱状のフェルールに固定した上で、マルチコアファイバなどの光素子の端面と光接続部材の第1端部とをスリーブを介して容易に接続することができる。
 上記第2の態様に係る光接続部材では、第1の端部において、各導波部の端面が等間隔に配列されていてもよい。マルチコアファイバなどの光素子のコア配列は、通常、コア間距離が等しくなるように二次元配列される。したがって、上記構成の第1の端部を備えることにより、マルチコアファイバなどの光素子との接続が容易となる。
 また、上記課題の解決のため、本発明に係る光接続構造は、上述した何れかの光接続部材と、互いに平行な光軸を有する複数の光入出力部を有し、光接続部材に接続される光素子とを備えている。この光接続構造では、光素子は、第1端部の光素子側の第1端面における複数の導波部と光素子の複数の入出力部とが対向するように、光接続部材に接続されている。この場合、光素子の複数の光入出力部は、所定の回転軸を中心に点対称に配置され、第1端面における複数の導波部と対向するよう回転角を調整して接続されるようにしてもよい。これにより、光素子と光接続部材との接続を容易に行うことができる。
 上記光接続構造では、光素子は、複数のコアが共通のクラッドに包囲されたマルチコアファイバであり、マルチコアファイバは、ガイド部材によって光接続部材に対して位置決めされて固定される光フェルールによって保持されていてもよい。この場合、マルチコアファイバ及び光フェルールには、マルチコアファイバの回転角を規制する規制構造が設けられていてもよい。これにより、マルチコアファイバと光接続部材との回転方向における位置決めを容易に行うことができる。
 上記光接続構造では、光素子は、複数の受発光部を二次元状に配列した受発光素子であり、受発光素子の複数の受発光部それぞれを、複数の導波部に光接続させるための集光光学系を更に備えるようにしてもよい。この場合、VCSELのように複数の受発光部を備えた受発光素子を他の光学部品に、接続損失を好適に抑えて接続することができる。
 また、本発明は、上述した第2の態様に係る光接続部材をインサート成形によって製造する製造方法として捉えることもできる。すなわち、本発明に係る光接続部材は、光接続部材を構成する複数の導波部及びインサート成形用の固定部品を準備する工程と、複数の導波部の一端を、固定部品の内部において、複数の導波部それぞれが互いに平行となるように保持させる工程と、固定部品及び当該固定部品によって一端が保持された複数の導波部を成形金型に配置する工程と、成形金型に所定の成形材料を注入してインサート成形を行う工程と、を備えている。
 この光接続部材の製造方法では、複数の導波部の一端を、固定部品の内部において、複数の導波部それぞれが互いに平行となるように保持させる工程を備えている。このように平行に保持された複数の導波部と複数の導波部を固定する固定部品とを金型に配置してインサート成形を行うようになっている。この場合、固定部品により、複数の導波部それぞれが互いに平行となるように固定されて、光接続部材が製造される。その結果、製造された光接続部材では、複数の導波部の光軸が互いに平行となり、光接続部材の光軸と、マルチコアファイバなどの光素子又は複数の単一コアファイバなどの光学部品の光軸とを容易に一致させることができ、光の接続損失を好適に抑えることが可能となる。
 本発明によれば、複数の光入出力部を有する光素子と他の光学部品とを簡単な構成で効率的に接続できる。
本発明の第1実施形態に係る光接続部材及び光接続構造を示す斜視図である。 図1に示した光接続部材の一部を切り欠いて示す平面図である。 図1に示した光接続部材の本体部の第1端面を示す図である。 図1に示した光接続部材の本体部の第2端面を示す図である。 図1に示した光接続部材の製造工程の一例を示す斜視図である。 図5の後続の工程を示す斜視図である。 成型直後の本体部の第1端部を示す斜視図である。 本発明の第1実施形態に係る光接続部材の変形例を示す図である。 本発明の第1実施形態に係る光接続部材の別の変形例を示す図である。 本発明の第1実施形態に係る光接続構造の変形例を示す斜視図である。 図10に示した光接続構造に用いられる受発光素子を示す平面図である。 図1に示した光接続構造に用いられるマルチコアファイバ及び光フェルールの変形例を示す図である。 本発明の第2実施形態に係る光接続部材及び光接続構造を示す斜視図である。 図13に示した光接続部材の一部を切り欠いて示す平面図である。 図13に示した光接続部材の本体部の第1の端面を示す図である。 図13に示した光接続部材の本体部の第2の端面を示す図である。 図13に示した光接続部材を構成する固定部品を示す斜視図であり、(a)は、第1の端面側に配置される第1の固定部品を示し、(b)は、第2の端面側に配置される第2の固定部品を示す。 図13に示した光接続部材の製造工程の一例を示す斜視図であり、SCFを準備する工程を示す図である。 図18に示したSCFの一端を第1の固定部品に挿入する工程を示す斜視図である。 図19に示したSCFの他端を第2の固定部品に挿入する工程を示す斜視図である。 図20に示したSCFを金型に配置する工程を示す斜視図である。 図21で示した工程の後に成形を実行する工程を示す斜視図である。 成形直後の本体部の第1の端部を示す斜視図である。 第2実施形態に係る光接続部材を構成する固定部品の変形例を示す斜視図であり、(a)は、第1の端面側に配置される第1の固定部品の変形例を示し、(b)は、第2の端面側に配置される第2の固定部品の変形例を示す。 光接続部材の別の変形例を示す図である。 光接続部材の更に別の変形例を示す図である。
 以下、図面を参照しながら、本発明に係る光接続部材及び光接続構造の好適な実施形態について詳細に説明する。
(第1実施形態)
 図1は、本発明の第1実施形態に係る光接続部材及び当該光接続部材を用いた光接続構造を示す斜視図である。図2は、図1に示した光接続部材の一部を切り欠いて示す平面図である。図1に示すように、光接続部材1は、マルチコアファイバ(以下「MCF」)2と、複数の単一コアファイバ(以下「SCF」)3とを接続する光接続部材である。光接続部材1を用いて、光素子の一例であるMCF2と光学部品の一例であるSCF3とを光学的に接続し、光接続構造C1が構成される。
 MCF2は、同一のクラッド内に複数のコア(光入出力部)が互いの光軸が平行となるように配置されたファイバである。MCF2の複数のコアは、コア間距離がそれぞれ等しくなるように配置されていることが好ましい。コア配列は、直線的な一次元配列であってもよいが、例えば三角格子状や四方配列といった二次元配列であることが好ましい。
 本実施形態のMCF2は、三角格子状の配列となっており、クラッドの中心位置に1つ、及びその周りに60°間隔で6つ、計7つのコアが互いに等間隔となるように配置されている。つまり、MCF2のコアは、中心に位置する回転軸を中心に点対称に配置されている。例えば中心コアが存在しない場合には厳密な三角格子配列とは異なるが、本発明においては、中心コアの存在を仮想した場合に三角格子配列が実現される配列をも含むものとする。
 一方、SCF3は、MCF2と同径のコアを有すると共に、MCF2のコア間距離に等しくなるように、少なくとも先端部分のクラッド径が細径化されたファイバである。SCF3の先端には、MTコネクタ4が取り付けられており、SCF3の先端部分の光軸が互いに平行になるようにSCF3がMTコネクタによって固定されている。MTコネクタ4の先端面4aには、光接続部材1を取り付けるためのガイドピン5,5が設けられており、ガイドピン5,5の間には、MCF2のコア数に応じて、7本のSCF3の先端が所定のピッチで横一列に露出している。
 光接続部材1は、図1及び図2に示すように、例えばPPS(ポリフェニレンサルファイド)樹脂やPEI(ポリエーテルイミド)樹脂といった一般的な光コネクタを構成するのに用いられるプラスチック樹脂によって形成された本体部11と、本体部11内に設けられた複数(ここでは7本)の導波部12とを備えている。本体部11は、MCF2の端面に接続される第1端面13aを含む第1端部13と、SCF3の端面に接続される第2端面14aを含む第2端部14と、第1端部13と第2端部14との間に位置する中間部15とを有している。
 第1端部13は、MCF2が挿入されたフェルール7の外径と同径の円筒形状をなしており、その端面が断面円形の第1端面13aとなっている。第1端部13の長さは、例えばMCF2のコア径の5倍以上となっている。一方、第2端部14は、略直方体形状をなしており、その端面がMTコネクタ4の先端面4aと同形の第2端面14aとなっている。
 第2端部14の長さは、第1端部13と同様に、例えばMCF2のコア径の5倍以上となっている。この第2端部14には、MTコネクタ4のガイドピン5,5が嵌合する嵌合孔16,16(ガイド部)が設けられている。中間部15は、円筒状の第1端部13と略長方形状の第2端部14とを繋ぐように第1端部13側から第2端部14側にかけて裾広がりとなる形状を有している。
 導波部12は、より具体的には、第1端部13の第1端面13aと第2端部14の第2端面14aとを結ぶように本体部11内に延在する貫通孔17内に隙間無く配置(収容)されたSCF18によって構成されている。貫通孔17は、SCF18の外径と略等しい内径を有する。SCF18は、SCF3と同様のファイバであり、MCF2のコア間距離に等しくなるようにクラッド径が細径化されている。
 複数の導波部12のそれぞれは、第1端面13aとの接続端12Aが第1端面13aに直交する直線部分となっている。複数の導波部12の第1端部13における、これら直線部分からなる接続端12Aは、互いに平行となるように配列されている。第2端面14aとの分岐端12Bが第2端面14aに直交する直線部分となっている。複数の導波部12の第2端部14における、これら直線部分からなる分岐端12Bは、互いに平行となるように配列されている。
 本実施形態で用いる「直交」は、例えば第1端面13aに対する角度が90度±0.5度の範囲内であることを示すが、光接続部材による接続精度に応じてこの範囲を適宜増減できることは当業者にとって自明である。接続端12A及び分岐端12Bの長さは、例えばMCF2のコア径の5倍以上となっている。導波部12の中間部分は、第1端面13aと第2端面14aとの間で本体部11の形状に沿って緩やかに湾曲し、接続端12A及び分岐端12B同士を繋いでいる。
 導波部12の一端面は、MCF2のコアの位置とSCF18のコアの位置とが対応するように第1端面13aに露出しており、図3に示すように、第1端面13aの中心位置に1つ、及びその周りに60°間隔で6つ、計7つが互いに等間隔となるように配置されている。導波部12の他端面は、SCF3のコアの位置とSCF18のコアの位置とが対応するように第2端面14aに露出しており、図4に示すように、嵌合孔16,16の間に所定のピッチで横一列に配置されている。
 つまり、複数の導波部12は、図3に示されるように、その接続端12Aにおいて、MCF2の複数のコアに対応するように二次元状に(即ち、コアを結ぶ直線が多角形を形成するように)配列されている。一方、複数の導波部12は、図4に示されるように、その分岐端12Bにおいて、SCF3の複数のコアに対応するように1次元状に(即ち、コアを結ぶ直線が一直線を形成するように)配列されている。
 以上のような構成を有する光接続部材1では、MCF2のコア位置と第1端面13a上の導波部12の位置とを合わせた状態、つまりMCF2のコアと第1端面13a上の導波部12とがそれぞれ対向するように互いに回転角を調整した状態で、フェルール7によって固定されたMCF2の端面と本体部11の第1端面13aとを割りスリーブ19(ガイド部材)内で当接させる。さらに、第2端部14の嵌合孔16,16にガイドピン5,5を嵌合してMTコネクタ4の先端面4aと本体部11の第2端面14aとを当接させることにより、導波部12を介してMCF2とSCF3とを接続することができる。
 このとき、光接続部材1では、複数の導波部12のそれぞれにおいて、第1端面13aとの接続端12Aが第1端面13aに直交する直線部分であり、これら直線部分が互いに平行となっている。これにより、MCF2と導波部12の接続部における光軸を容易に一致させることができる。第2端面14aとの分岐端12Bが第2端面14aに直交する直線部分であり、これら直線部分が互いに平行となっている。これにより、導波部12とSCF3の接続部における光軸をも容易に一致させることができる。従って、光が第1端面13a及び第2端面14aから斜めに出射する場合に比べて、光の接続損失を好適に抑えることが可能となる。
 上述した光接続部材1は、例えば射出成型によって形成することができる。この場合、まず、図5に示すように、本体部11の形状に応じた窪み部22,22を有する一対の金型21,21を用意する。窪み部22,22は、それぞれ本体部11の幅方向の一方の半分部分の形状と他方の半分部分の形状とに対応しており、金型21,21が閉じたときに、金型21,21内に本体部11と同型の空間S(図6参照)を形成するようになっている。窪み部22,22には、第1端部13の形成位置よりも先端側に小径部24が設けられている。
 次に、弾性部材からなる複数(MCF2のコア数と同数)の成型ピン23を用意し、窪み部22,22間に配置する。この状態で、図6に示すように、一対の金型21,21を閉じると、各成型ピン23の先端が小径部24によって互いに平行になるように束ねられると共に、空間S内で弾性変形によって緩やかに変形した状態となる。これにより、各成型ピン23のそれぞれが、第1端面13aに直交する直線部分と第2端面14aに直交する直線部分とを有することとなる。その後、金型21,21の樹脂注入孔(不図示)から樹脂を注入し、成型ピン23を引き抜くと、複数の貫通孔17が形成された本体部11が得られる。
 このとき得られた本体部11の第1端面13aには、図7に示すように、小径部24の形状に対応した凸部25が残存する。したがって、凸部25を研磨等によって除去することにより、第1端面13aが形成される。貫通孔17は、第1端部13における接続端12Aに対応する互いに平行な直接部分を有しているため、このような研磨等を行った場合でも導波部12の光軸の平行度が維持される。最後に、各貫通孔17にSCF18を挿入することにより、光接続部材1が得られる。なお、凸部25の突出量が小さい(例えばコア径と同程度)場合には凸部25が残存したままであってもよい。MCF2と接続した場合にも、凸部25が損傷する恐れが小さいからである。
 本発明は、上記実施形態に限られるものではなく、種々の変形を適用できる。例えば上述した第1実施形態では、貫通孔17にSCF18を配置して導波部12を構成したが、図8に示すように、MCF2のコア径と同径の貫通孔37を形成し、貫通孔37内に本体部11よりも屈折率の高い液体38を充填することによって導波部12を形成してもよい。液体38としては、例えばシリコーン樹脂などを含むマッチングオイルを用いることができる。
 また、図9に示すように、MCF2のコア径と同径の貫通孔47を形成し、貫通孔47の内壁を光反射膜48で被膜することによって導波部12を形成してもよい。光反射膜48としては、例えば無電解めっき等で形成されたAu膜が挙げられる。以上のような構成によっても、光の接続損失を抑えた導波部12を簡単に構成できる。
 さらに、貫通孔17に配置するSCF18は、第2端面14aから十分な長さをもって延出していてもよい(後述する図26参照)。こうすると、光接続部材1の第2端面14aから延出するSCF18を、ガイドピンなしで直接他の光デバイスに接続することができる。この場合には上記の実施形態とは異なり導波部12とSCF3の第2端面14aにおける接続部が存在しないため、第2端面14aとの分岐端12Bが第2端面14aに直交する直線部分は存在しなくても良い。また、この場合、光接続部材1の内部に固定されるSCF18を被覆付光ファイバとすることが好ましい。
 すなわち、SCF18は、第1端面13a側において細径化され、かつ被覆が除去された状態となっており、被覆の少なくとも一部が光接続部材1の内部に固定されていることが好ましい。このような光接続部材1を形成する場合には、成型ピン23として一方の端部が大径(被覆径に相当)で、他方の端部が小径(被覆除去部分の外径に相当)であるものを用い、大径側が第2端面14a側を向くように配置して、上記と同様のプロセスで本体部11を射出成形すればよい。
 また、上述した実施形態では、図1に示すように光接続部材1をMCF2に接続した光接続構造の例を説明したが、図10に示すように、光接続部材1を受発光素子57に結合レンズ59(集光光学系)を介して接続するようにした光接続構造C2としてもよい。この受発光素子57は、図11に示すように、MCF2のコア配列と同様に配列された複数(図11の例では7つ)の受発光部52を備えており、光接続構造C2によれば、光接続構造C1と同様に、複数の導波部12と複数の受発光部52における光軸を容易に一致させることができる。従って、光素子の一例として受発光素子57を用いた場合であっても、光が第1端面13a及び第2端面14aから斜めに出射する場合に比べて、光の接続損失を好適に抑えることが可能となる。
 また、上述した実施形態では、断面円形形状のMCF2を光フェルール7に挿入した例を用いて説明したが、図12に示すように、MCF62の一部を切り欠いて平坦面62aを設け、光フェルール67の内孔にこの平坦面62aに対応する平坦面67aを設ける構成にしてもよい。この規制構造によれば、MCF62の回転を光フェルール67によって規制することができる。上述した製造方法では、成型ピン23を用いて本体部11に貫通孔17を形成した後、貫通孔17にSCF18を配置して導波部12を構成するようにしたが、成型ピン23を使用せずにSCF18を最初から一対の金型21,21に配置して導波部12を構成するようにしてももちろんよい。
(第2実施形態)
 続いて、本発明の第2実施形態について説明する。
 図13は、本発明の第2実施形態に係る光接続部材でマルチコアファイバと複数の単一コアファイバとを接続する態様の一例を示した斜視図である。図14は、図13に示した光接続部材の一部を切り欠いて示す平面図である。図13に示すように、光接続部材101は、マルチコアファイバ(以下「MCF」)102と、複数の単一コアファイバ(以下「SCF」)103とを接続する光接続部材である。光接続部材101を用いて、光素子の一例であるMCF102と光学部品の一例であるSCF103とを光学的に接続し、光接続構造C3が構成される。なお、光接続部材101を用いて、図10に示される光接続構造C2を形成してもよい。
 MCF102(光素子)は、同一のクラッド内に複数のコア(光入出力部)が互いの光軸が平行となるように配置されたファイバである。MCF102の複数のコアは、コア間距離がそれぞれ等しくなるように配置されていることが好ましい。コア配列は、複数のコアが一直線状に配置された一次元配列であってもよいが、例えば三角格子状や四方配列といった二次元配列であることが好ましい。
 本実施形態のMCF102は、三角格子状の二次元配列となっており、クラッドの中心位置に1つ、及びその周りに60度間隔で6つ、計7つのコアが互いに等間隔となるように配置されている。例えば中心コアが存在しない場合には厳密な三角格子配列とは異なるが、本発明においては、中心コアの存在を仮想した場合に三角格子配列が実現される配列をも含むものとする。
 SCF103(光学部品)は、MCF102と同径のコアを有すると共に、MCF102のコア間距離に等しくなるように、少なくとも先端部分のクラッド径が細径化されたファイバである。複数のSCF103の先端には、MTコネクタ104が取り付けられている。MTコネクタ104の先端面104aには、光接続部材101を取り付けるためのガイドピン105,105が設けられている。ガイドピン105,105の間には、MCF102のコア数に応じて、7本のSCF103の先端が所定のピッチで横一列に露出している。
 光接続部材101は、図13及び図14に示すように、例えばPPS(ポリフェニレンサルファイド)樹脂やPEI(ポリエーテルイミド)樹脂といった一般的な光コネクタを構成するのに用いられるプラスチック樹脂によって形成された本体部111と、本体部111内に設けられた複数(ここでは7本)の導波部112と、複数の導波部112の各端部を固定する第1及び第2の固定部品120,121とを備えている。本体部111は、MCF102の端面に接続される第1の端面113aを含む第1の端部113と、複数のSCF103の端面に接続される第2の端面114aを含む第2の端部114と、第1の端部113と第2の端部114との間に位置する中間部115とを有している。
 第1の端部113は、MCF102が挿入されたフェルール107の外径と同径の円筒状をなしており、その端面が断面円形の第1の端面113aとなっている。第1の端部113の長さは、例えばMCF102のコア径の5倍以上となっている。一方、第2の端部114は、略直方体形状をなしており、その端面がMTコネクタ104の先端面104aと同形の第2の端面114aとなっている。第2の端部114の長さは、第1の端部113と同様に、例えばMCF102のコア径の5倍以上となっている。
 第2の端部114には、MTコネクタ114のガイドピン105,105が嵌合する嵌合孔116,116が設けられている。中間部115は、円筒状の第1の端部113と略長方体形状の第2の端部114とを繋ぐように第1の端部113側から第2の端部114側にかけて裾広がりとなる形状を有している。本体部111は、上述したPPS等に代えて、エポキシ樹脂によって形成されていてもよい。
 導波部112は、より具体的には、第1の端面113aと第2の端面114aとを結ぶように本体部111内に延在する貫通孔117と、貫通孔117内に隙間無く配置されたSCF118とによって構成されている。SCF118は、SCF113と同様のファイバであり、MCF102のコア間距離に等しくなるようにクラッド径が細径化されている。導波部112の中間部分は、第1の端面113aと第2の端面114aとの間で本体部111の形状に沿って緩やかに湾曲し、接続端112A及び分岐端112B同士を繋いでいる。
 第1の固定部品120は、図17の(a)に示されるように、中空の円筒状をなす部品であり、複数の導波部112それぞれの接続端112Aが互いに平行となるように、複数の導波部112を第1の端部113側において固定する。このように平行に固定されたことで、複数の導波部112の第1の端面113aとの接続端112Aそれぞれが直線部分となる。第1の固定部品120は、この直線部分が第1の端面113aに直交するように本体部111内に配置される。本実施形態で用いる「直交」は、例えば第1の端面113aに対する角度が90度±0.5度の範囲内であることを示すが、光接続部材による接続精度に応じてこの範囲を適宜増減できることは当業者にとって自明である。
また、複数の導波部112は、図15に示されるように、その接続端112Aにおいて、MCF102の複数のコアに対応するように第1の固定部品120によって二次元に配列されている。図17の(a)に示されるように、第1の固定部品120は、その内周面120aが第1の端面113aと逆側(第2の端面114a側)において外側に広がるテーパ部120bを有しており、複数の導波部112が第2の端面114aに向かうにつれて広がりやすくなっている。
 第2の固定部品121は、図17の(b)に示されるように、外形が略直方体形状を呈しており、その内部に7つの貫通孔121a~121gが形成された部品である。第2の固定部品121は、複数の導波部112それぞれの分岐端112Bが互いに平行となるように、複数の導波部112を第2の端部114側において固定する。このように平行に固定されたことで、複数の導波部112の第2の端面114aとの分岐端112Bそれぞれが直線部分となる。第2の固定部品121は、この直線部分が第2の端面114aに直交するように本体部111内に配置される。複数の導波部112は、図16に示されるように、その分岐端12Bにおいて、SCF103の複数のコアに対応するように第2の固定部品121によって1次元に配列されている。
 第1及び第2の固定部品120,121は、例えば、金属、樹脂又はセラミック等から形成され、光接続部材101が後述するようにインサート成形によって製造される場合には、インサート成形用の部品から構成される。第1の固定部品120は上述したいずれの材料によって形成されてもよいが、ジルコニアから形成されている場合には第1の固定部品120内への導波部112のSCF118の挿入作業が容易になり、より好ましい。第1及び第2の固定部品120,121並びに接続端112A及び分岐端112Bの長さは、例えばMCF102のコア径の3~5倍以上となっている。
 第1の固定部品120による固定により、導波部112の一端面は、MCF102のコアの位置とSCF118のコアの位置とが対応するように第1の端面113aに露出しており、図15に示すように、第1の端面113aの中心位置に1つ、及びその周りに60度間隔で6つ、計7つが互いに等間隔となるように配置されている。導波部112の他端面は、第2の固定部品121による固定により、SCF103のコアの位置とSCF118のコアの位置とが対応するように第2の端面114aに露出しており、図16に示すように、嵌合孔116,116の間に所定のピッチで横一列に配置されている。
 以上のような構成を有する光接続部材101では、MCF102のコア位置と第1の端面113a上の導波部112の位置とを合わせた状態で、フェルール107によって固定されたMCF102の端面と本体部111の第1の端面113aとを割りスリーブ119内で当接させ、さらに、第2の端部114の嵌合孔116,116にガイドピン105,105を嵌合してMTコネクタ104の先端面104aと本体部111の第2の端面114aとを当接させることにより、導波部112を介してMCF102と複数のSCF103とを接続することができる。
 このとき、光接続部材101では、複数の導波部112のそれぞれにおいて第1の端面113aとの接続端112Aが第1の端面113aに直交する直線部分となっており、これら接続端112Aそれぞれが互いに平行になっている。つまり、複数の導波部112の光軸が第1の端部113側において互いに平行になっている。これにより、互いに平行な光軸を有するMCF102と導波部112の接続部における光軸を容易に一致させることができる。
 第2の端面114aとの分岐端112Bが第2の端面114aに直交する直線部分となっており、これら分岐端112Bそれぞれが互いに平行になっている。つまり、複数の導波部112の光軸が第2の端部114側において互いに平行になっている。これにより、互いに平行な光軸を有するSCF103と導波部112の接続部における光軸をも容易に一致させることができる。従って、光が第1の端面113a及び第2の端面114aから斜めに出射したり、各導波部112からの光の光軸が互いにずれていたりする場合に比べ、光接続部材101によれば、光の接続損失を好適に抑えることが可能となる。
 上述した光接続部材101は、例えばインサート成形によって形成することができる。この場合、まず、図18に示されるように、導波部112を構成する7本のSCF118を準備する。また、SCF118を端部で固定するための第1及び第2の固定部品120,121を準備する。
 続いて、図19に示されるように、SCF118の一端(接続端112Aに対応する部分)を第1の固定部品120内に挿入し、第1の固定部品120により、第1の固定部品120の内周の中心位置に1つ、及びその周りに60度間隔で6つ、計7つのSCF118が互いに等間隔となると共に、複数のSCF118それぞれの一端が互いに平行となるように保持させる。この平行に保持された部分は直線部分を形成する。
 続いて、図20に示されるように、一端が第1の固定部品120で固定されたSCF118の他端(分岐端112Bに対応する部分)を第2の固定部品121の各貫通孔121a~121gに挿入し、第2の固定部品121により、複数のSCF118それぞれの他端が互いに平行となるように保持させる。この平行に保持された部分は直線部分を形成する。このような保持をさせる際に、SCF118は、弾性変形によって一端から他端に向けて緩やかに湾曲変形した状態となる。
 続いて、図21に示されるように、本体部111の形状に応じた窪み部132,132を有する一対の金型131,131を用意する。窪み部132,132は、それぞれ本体部111の幅方向の一方の半分部分の形状と他方の半分部分の形状とに対応しており、金型131,131が閉じたときに、金型131,131内に本体部111と同型の空間S(図22参照)を形成するようになっている。窪み部132,132には、第1の端部113の形成位置よりも先端側に小径部134が設けられている。
 そして、第1及び第2の固定部品120,121で両端が固定されたSCF118を、金型131,131の窪み部122,122間に配置する。この配置の際、第1の固定部品120は、小径部134の内周面によって保持される。この保持により、第1の固定部品120は、成形が終了した際にSCF118の一端の直線部分が第1の端面113aに直交するように、金型131,131内に配置される。第2の固定部品121も同様の部材によって窪み部122,122に対して位置決めされる。この位置決めにより、第2の固定部品121は、成形が終了した際にSCF118の他端の直線部分が第2の端面114aに直交するように、金型131,131内に配置される。
 この状態で、図22に示すように、一対の金型131,131を閉じ、金型131,131の樹脂注入孔(不図示)から樹脂(成形材料)を注入すると、SCF118からなる複数の導波部112と導波部112の各端部をそれぞれ固定する第1及び第2の固定部品120,121とが本体部111の内部に形成された光接続部材101が得られる。なお、トランスファー成形技術を用いてもよい。
 このとき得られた本体部111の第1の端面113aには、図23に示すように、小径部134の形状に対応した凸部135が残存する。したがって、凸部135を研磨等によって除去することにより、第1の端面113aが形成される。本体部111の第2の端面114aにおいても同様の研磨等を行ってもよい。そして、上述した構成を備えた光接続部材101が得られる。凸部135等の突出量が小さい(例えばコア径と同程度)場合には凸部135等が残存したままであってもよい。MCF102やSCF103と接続した場合にも、凸部135等が損傷する恐れが小さいからである。本実施形態に係る光接続部材101では、両端部113,114において導波部112が互いに平行である直線部分を有しているので、ある程度、研磨を行ったとしても、その平行度が毀損されることがない。
 以上、説明したとおり、光接続部材101では、第1の固定部品120により、第1の端部113側において複数の導波部112それぞれが互いに平行となるように固定されている。これにより、複数の導波部112の光軸が第1の端部113側において互いに平行となるため、光接続部材101の光軸とMCF102の光軸とを容易に一致させることができ、光の接続損失を好適に抑えることが可能となる。また、光接続部材101は、第1の端部113側において複数の導波部112それぞれが互いに平行となる領域を備えていることになるため、良好な接続面を得るために光接続部材101の接続面をある程度、研磨する場合であっても、導波部112の平行度を維持することが可能である。
 また、光接続部材101は、第2の端部114において複数の導波部112の他端を保持する第2の固定部品121を備えている。このため、第2の固定部品121により、第2の端部114側においても複数の導波部112それぞれが互いに平行となるように固定することができる。これにより、第2の端部114側においても複数の導波部112の光軸が互いに平行となるため、光接続部材101の光軸と複数のSCF103の光軸とを容易に一致させることができ、光の接続損失を更に好適に抑えることが可能となる。また、光接続部材101は、第2の端部114側において複数の導波部112それぞれが互いに平行となる領域を備えていることになるため、良好な接続面を得るために光接続部材の接続面をある程度、研磨する場合であっても、導波部の平行度を維持することが可能である。
 また、光接続部材101では、第1及び第2の固定部品120,121がインサート成形用の部品である。このため、本体部111内における第1及び第2の固定部品120,121の位置決めが精度よく行われた光接続部材101を容易に作製することが可能となる。
 また、光接続部材101では、導波部112は、MCF102の複数のコア間の距離に等しいクラッド径を有するSCF118によって形成されている。MCF102のコア配列は、通常、コア間距離が等しくなるように形成されるため、上記構成により、MCF102のコア配列と同じ配列の導波部112を容易に得ることができる。
 また、光接続部材101では、第1の端部113側の端面113aが略円形状となっている。このため、MCF102を汎用的な円柱状のフェルール107に固定した上で、MCF102の端面と光接続部材101の第1の端部113とをスリーブ119を介して容易に接続することができる。
 また、光接続部材101では、第1の端部113において、各導波部112の端面が等間隔に配列されている。MCF102のコア配列は、通常、コア間距離が等しくなるように二次元配列されるため、上記構成により、MCF102との接続が容易となる。
 また、上述した光接続部材101の製造方法では、複数の導波部112の両端部を、固定部品120,121の内部において、複数の導波部112それぞれが互いに平行となるように保持させる工程を備えている。そして、このように平行に保持された複数の導波部112と複数の導波部112を固定する固定部品120,121とを金型131,131に配置してインサート成形を行うようになっている。このため、製造された光接続部材101では、複数の導波部12の光軸が両端において互いに平行となり、光接続部材101の光軸とMCF102及びSCF103の光軸とを容易に一致させることができ、光の接続損失を好適に抑えることが可能となる。
 本発明は、上記実施形態に限られるものではなく、種々の変形を適用できる。例えば上述した第2実施形態では、第1の固定部品120は、円筒形状であったが、MCF102の複数のコアの光軸と複数の導波部112の一端の光軸とが一致するように接続するためのガイド部として、図24の(a)に示されるように、断面D形状となるように一部外周を切り欠いた切欠き面122aを有するようにしてもよい。この場合、導波部112を固定する第1の固定部品122が、光軸を一致させるためのガイド部を有していることになるため、MCF102の光軸と導波部112の光軸とをより容易に一致させることが可能となる。
 上述した実施形態では、複数のSCF103の光軸と複数の導波部112の他端の光軸とが一致するようにSCF103に接続するためのガイド部として本体部111に嵌合孔116,116が設けられていたが、図24の(b)に示されるように、かかる機能を備えた嵌合孔124a,124bを第2の固定部品124に含ませるようにしてもよい。この場合、導波部112を固定する第2の固定部品が、光軸を一致させるためガイド部を有していることになるため、複数のSCF103の光軸と導波部112の光軸とをより容易に一致させることが可能となる。
 上述した実施形態では、本体部111は、円筒状の第1の端部113と略長方体形状の第2の端部114とを繋ぐように第1の端部113側から第2の端部114側にかけて裾広がりとなる形状を有していたが、図25に示されるように、その外形全体が略直方体形状となるように形成してもよい。この場合、成形するための金型の構成を簡易なものとすることができる。
 上述した実施形態では、導波部112として、貫通孔117に外径が一定のSCF118を配置した例を用いたが、図26に示されるように、コア径138aは一定であるものの、その外径が段階的に拡大するSCF138を導波部112として用いてもよい。このSCF138では、第1の端部113側では最も小さいクラッド径部分138bとなっており、第2の端部114に向かうにつれて、径が拡大された部分138c,138dとなっている。第2の端部114側の部分138dでは、内部に被覆部138eが形成されており、この被覆部に覆われたコア等が第2の端面114aから十分な長さを持って延出するようにもなっている(いわゆるピグテール型の部品)。
 こうすると、光接続部材101の第2の端面114aから延出するSCF138を、ガイドピンなしで直接他の光デバイスに接続することができる。この場合には上記の実施形態とは異なり導波部112とSCF103の第2の端面114aにおける接続部が存在しないため、第2の端面114aとの分岐端112Bが第2の端面114aに直交する直線部分は存在しなくても良い。
 上述した実施形態では、光接続部材101を製造するにあたり、SCF118を金型131,131内に配置した後に成形を行っていたが、第1実施形態で説明したように、SCF118と同形状の超硬ピンを用いて本体部111の成形を行った後、これらピンを抜いて、形成された貫通孔117にSCF118を挿入するようにしてもよい。
 また、上述した実施形態では、第1及び第2の端面113a,114aがMCF102又はSCF103の光軸に対して直角となるように形成したものを例として説明したが、高反射タイプの光接続部材とするために、これら端面113a,114aをMCF102又はSCF103の光軸に対して直角となる面に対して8度傾斜するように研磨してもよい。この場合であっても、本実施形態に係る光接続部材101では、導波部112が各端部113,114において互いに平行となっているため、光接続部材101の光軸とMCF102の光軸又はSCF103の光軸とを容易に一致させることができ、光の接続損失を好適に抑えることが可能となる。
 本発明に係る光接続部材及び光接続構造によれば、複数の光入出力部を有する光素子と他の光学部品とを簡単な構成で効率的に接続することができる。
 1…光接続部材、2…MCF、3…SCF、12…導波部、12A…接続端、12B…分岐端、13…第1端部、13a…第1端面、14…第2端部、14a…第2端面、18…SCF、37,47…貫通孔、38…液体、48…光反射膜、C1,C2,C3…光接続構造、101,101A,101B…光接続部材、102…MCF、103…SCF、112…導波部、112A…接続端、112B…分岐端、113…第1の端部、113a…第1の端面、114…第2の端部、114a…第2の端面、118…SCF,120,123…第1の固定部品、121、124…第2の固定部品、122a…切欠き面、124a,124b…嵌合孔。

Claims (27)

  1.  互いに平行な光軸を有する複数の光入出力部を有する光素子を他の光学部品に接続する光接続部材であって、
     前記光素子側の第1端部及び前記他の光学部品側の第2端部を有する本体部と、
     前記本体部内に配置され、前記第1端部と前記第2端部とを結ぶように延在する複数の導波部と、を備え、
     前記複数の導波部のそれぞれは、前記第1端部において、前記複数の光入出力部の配列に対応するように配列されており且つ互いに平行である直線部分を有している光接続部材。
  2.  前記複数の導波部のそれぞれは、前記第1端部において、前記複数の光入出力部の二次元配列に対応するように二次元に配列されている、請求項1に記載の光接続部材。
  3.  前記複数の導波部のそれぞれは、前記第2端部において、前記他の光学部品の配列に対応するように一次元に配列されており且つ互いに平行である直線部分を有している、請求項1又は2に記載の光接続部材。
  4.  前記本体部は、前記複数の導波部の外径と略等しい内径を有する複数の貫通孔を有し、
     前記複数の導波部は、前記複数の貫通孔にそれぞれ収容されて固定されている、請求項1~3の何れか一項に記載の光接続部材。
  5.  前記複数の導波部は、前記複数の光入出力部間の距離に等しいクラッド径を有する単一コアファイバによってそれぞれ形成されている、請求項1~4の何れか一項に記載の光接続部材。
  6.  前記複数の導波部は、前記本体部内に形成された複数の貫通孔に、前記本体部よりも屈折率の高い液体を充填することによってそれぞれ形成されている、請求項1~4の何れか一項に記載の光接続部材。
  7.  前記複数の導波部は、前記本体部内に形成された複数の貫通孔の内壁に光反射膜を被膜させることによってそれぞれ形成されている、請求項1~4の何れか一項に記載の光接続部材。
  8.  前記第1端部は、円筒形状になっている、請求項1~7の何れか一項に記載の光接続部材。
  9.  前記第2端部には、前記他の光学部品の光軸と前記複数の導波部の前記第2端部における光軸とが一致するように前記他の光学部品に接続するためのガイド部が設けられている、請求項1~8の何れか一項に記載の光接続部材。
  10.  前記第1端部において、前記各導波部の端面が等間隔に配列されている、請求項1~9の何れか一項に記載の光接続部材。
  11.  複数のコアを有するマルチコアファイバと複数の単一コアファイバとを接続する光接続部材であって、
     前記マルチコアファイバの端面に接続される第1端面と、
     前記複数の単一コアファイバに分岐される第2端面と、
     前記第1端面と前記第2端面とを結ぶように延在する複数の導波部とを有する本体部を有し、
     前記複数の導波部のそれぞれは、少なくとも前記第1端面との接続端が前記第1端面に直交する直線部分となっている、光接続部材。
  12.  互いに平行な光軸を有する複数の光入出力部を有する光素子を他の光学部品に接続する光接続部材であって、
     前記光素子側の第1の端部及び前記他の光学部品側の第2の端部を有する本体部と、
     前記本体部内に配置され、前記第1の端部と前記第2の端部とを結ぶように延在する複数の導波部と、
     前記第1の端部において前記複数の導波部の一端を保持する第1の固定部品と、を備え、
     前記第1の固定部品は、その内部において、前記複数の導波部それぞれが互いに平行となるように前記複数の導波部を固定していることを特徴とする光接続部材。
  13.  前記第1の固定部品は、前記複数の導波部が前記第1の端部において二次元配列となるように固定している、請求項12に記載の光接続部材。
  14.  前記第1の固定部品は、前記光素子の前記複数の光入出力部の光軸と前記複数の導波部の一端の光軸とが一致するように前記光素子に接続するためのガイド部を有している、請求項12又は13に記載の光接続部材。
  15.  前記第2の端部において前記複数の導波部の他端を保持する第2の固定部品を更に備え、
     前記第2の固定部品は、その内部において、前記複数の導波部それぞれが互いに平行となるように前記複数の導波部を固定している、請求項12~14の何れか一項に記載の光接続部材。
  16.  前記第2の固定部品は、前記複数の導波部が前記第2の端部において一次元配列となるように固定している、請求項15に記載の光接続部材。
  17.  前記第2の固定部品は、前記他の光学部品の光軸と前記複数の導波部の他端の光軸とが一致するように前記他の光学部品に接続するためのガイド部を有している、請求項15又は16に記載の光接続部材。
  18.  前記第1又は第2の固定部品は、インサート成形用の部品である、請求項12~17の何れか一項に記載の光接続部材。
  19.  前記導波部は、前記光素子の前記複数の光入出力部間の距離に等しいクラッド径を有する単一コアファイバによって形成されている、請求項12~18の何れか一項に記載の光接続部材。
  20.  前記第1の端部側の端面が略円形状となっている、請求項12~19の何れか一項に記載の光接続部材。
  21.  前記第1の端部において、前記各導波部の端面が等間隔に配列されている、請求項12~20の何れか一項に記載の光接続部材。
  22.  請求項1~21の何れか一項に記載の光接続部材と、
     互いに平行な光軸を有する前記複数の光入出力部を有し、前記光接続部材に接続される光素子と、を備え、
     前記光素子は、前記本体部の前記光素子側の第1端面における前記複数の導波部と前記光素子の前記複数の光入出力部とが対向するように、前記光接続部材に接続されている光接続構造。
  23.  前記光素子の前記複数の光入出力部は、所定の回転軸を中心に点対称に配置されており、前記第1端面における前記複数の導波部と対向するよう回転角を調整して接続される、請求項22に記載の光接続構造。
  24.  前記光素子は、複数のコアが共通のクラッドに包囲されたマルチコアファイバであり、
     前記マルチコアファイバは、ガイド部材によって前記光接続部材に対して位置決めされて固定される光フェルールによって保持されている、請求項22又は23に記載の光接続構造。
  25.  前記マルチコアファイバ及び前記光フェルールには、前記マルチコアファイバの回転を規制する規制構造が設けられている、請求項24に記載の光接続構造。
  26.  前記光素子は、複数の受発光部を二次元状に配列した受発光素子であり、
     前記受発光素子の前記複数の受発光部それぞれを、前記複数の導波部に光接続させるための集光光学系を更に備える、請求項22~25の何れか一項に記載の光接続構造。
  27.  互いに平行な光軸を有する複数の光入出力部を有する光素子を他の光学部品に接続する光接続部材をインサート成形によって製造する製造方法であって、
     前記光接続部材を構成する複数の導波部及びインサート成形用の固定部品を準備する工程と、
     前記複数の導波部の一端を、前記固定部品の内部において、前記複数の導波部それぞれが互いに平行となるように保持させる工程と、
     前記固定部品及び当該固定部品によって一端が保持された前記複数の導波部を成形金型に配置する工程と、
     前記成形金型に所定の成形材料を注入してインサート成形を行う工程と、
    を備えた光接続部材の製造方法。
PCT/JP2012/062410 2011-06-17 2012-05-15 光接続部材、光接続構造、及び、光接続部材の製造方法 WO2012172906A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137033863A KR101563797B1 (ko) 2011-06-17 2012-05-15 광 접속 부재, 광 접속 구조, 및 광 접속 부재의 제조 방법
EP12800410.8A EP2730959A4 (en) 2011-06-17 2012-05-15 OPTICAL CONNECTING ELEMENT, OPTICAL CONNECTING STRUCTURE AND METHOD FOR PRODUCING THE OPTICAL CONNECTING ELEMENT
CN201280029884.2A CN103608709B (zh) 2011-06-17 2012-05-15 光连接构件、光连接构造、及光连接构件的制造方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-135216 2011-06-17
JP2011135216 2011-06-17
JP2012-084183 2012-04-02
JP2012084183A JP2013213934A (ja) 2012-04-02 2012-04-02 光接続部材及び光接続部材の製造方法
JP2012-096905 2012-04-20
JP2012096905A JP2013020229A (ja) 2011-06-17 2012-04-20 光接続部材及び光接続構造

Publications (1)

Publication Number Publication Date
WO2012172906A1 true WO2012172906A1 (ja) 2012-12-20

Family

ID=48169137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062410 WO2012172906A1 (ja) 2011-06-17 2012-05-15 光接続部材、光接続構造、及び、光接続部材の製造方法

Country Status (6)

Country Link
US (2) US8727634B2 (ja)
EP (1) EP2730959A4 (ja)
KR (1) KR101563797B1 (ja)
CN (1) CN103608709B (ja)
TW (1) TWI553362B (ja)
WO (1) WO2012172906A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5572748B1 (ja) * 2013-08-20 2014-08-13 湖北工業株式会社 光接続部品およびその製造方法並びに光接続部品製造用金型容器
JP5719960B1 (ja) * 2014-07-31 2015-05-20 湖北工業株式会社 マルチコアファイバと偏波面保存ファイバの光接続部品および光接続部品の製造方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9188747B2 (en) 2011-05-23 2015-11-17 Senko Advanced Components, Inc. True one piece housing fiber optic adapter
US10215926B2 (en) 2011-12-14 2019-02-26 Commscope Technologies Llc Multi-fiber fiber optic connection system with flexible, insertable pins
EP2880477A2 (en) * 2012-07-31 2015-06-10 CommScope, Inc. of North Carolina Backwards compatible multi-core optical fiber
JPWO2014021215A1 (ja) * 2012-08-01 2016-07-21 コニカミノルタ株式会社 マルチコアファイバ接続部材、マルチコアファイバの接続構造及びマルチコアファイバの接続方法
US8977127B2 (en) * 2012-08-15 2015-03-10 Futurewei Technologies, Inc. Inter-optical line terminal (OLT) communication in multiple-OLT passive optical networks (PONs)
US20140161385A1 (en) * 2012-12-07 2014-06-12 Telefonaktiebolaget Lm Ericsson (Publ) Method and Apparatus for Coupling to an Optical Waveguide in a Silicon Photonics Die
US9360649B2 (en) 2013-05-22 2016-06-07 Senko Advanced Components, Inc. Cable guide for fiber optic cables
DE102013013071B3 (de) * 2013-08-06 2014-10-09 Leoni Kabel Holding Gmbh Optischer Koppler
US9274287B2 (en) * 2014-05-13 2016-03-01 Senko Advanced Components, Inc. Optical fiber connector and ferrule
US10162126B2 (en) 2014-12-01 2018-12-25 Commscope Asia Holdings B.V. Multi-fiber optic connector with pivotally-aligned ferrule and resilient alignment pins
TWI563300B (en) 2015-05-25 2016-12-21 Kow-Je Ling Preparing method and structure of optical fiber connector
WO2016205201A1 (en) * 2015-06-19 2016-12-22 Commscope Technologies Llc Fiber optic connector ferrule with improved alignment mechanism
JP6972904B2 (ja) * 2017-10-19 2021-11-24 住友電気工業株式会社 光ファイバケーブル、光コネクタケーブル、及び、光ファイバケーブルの製造方法
CN110727045B (zh) * 2018-07-17 2022-01-28 中国建筑材料科学研究总院有限公司 光学纤维锥及其加工方法
JP7028137B2 (ja) * 2018-10-24 2022-03-02 日本電信電話株式会社 多心光コネクタ及び光ケーブル接続方法
JP2021026103A (ja) * 2019-08-02 2021-02-22 住友電気工業株式会社 光コネクタ
US11500160B2 (en) 2020-05-29 2022-11-15 Corning Research & Development Corporation Multicore optical fiber fan-out assemblies and apparatuses

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247604A (ja) * 1985-08-27 1987-03-02 Furukawa Electric Co Ltd:The マルチコアフアイバの端末部
JPS62226107A (ja) * 1986-03-28 1987-10-05 Nec Corp 光フアイバ接続構造
JPH04249205A (ja) * 1990-11-27 1992-09-04 Internatl Business Mach Corp <Ibm> コンピュータシステム用光バス
JPH05341147A (ja) 1992-06-12 1993-12-24 Asahi Chem Ind Co Ltd マルチコア型シングルモード光ファイバおよびこれを用いた伝送方法
JPH10104443A (ja) 1996-09-26 1998-04-24 Nippon Telegr & Teleph Corp <Ntt> マルチコアファイバ
JP2007279194A (ja) * 2006-04-04 2007-10-25 Wired Japan:Kk 光ファイバケーブル、光伝送方法、及び分光分析システム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS605924B2 (ja) * 1977-05-30 1985-02-14 富士通株式会社 多芯光フアイバのコネクタ
JPS6011804A (ja) * 1983-06-30 1985-01-22 Sumitomo Electric Ind Ltd 光フアイバの分岐器
JPS6080806A (ja) * 1983-10-11 1985-05-08 Sumitomo Electric Ind Ltd 光分岐器及びその製造方法
JPH0627889B2 (ja) * 1985-06-07 1994-04-13 住友電気工業株式会社 光フアイバテープの多心/単心変換部
JPS6219821A (ja) * 1985-07-19 1987-01-28 Nippon Telegr & Teleph Corp <Ntt> 光フアイバ多心コネクタプラグの製造方法
JPS62189412A (ja) * 1986-02-14 1987-08-19 Sumitomo Electric Ind Ltd 光フアイバテ−プの多心/単心変換構造
SE506577C2 (sv) * 1996-05-03 1998-01-12 Ericsson Telefon Ab L M Vinklat opto-mekaniskt don samt förfarande för framställning av ett sådant
FR2821933B1 (fr) * 2001-03-07 2004-05-28 Teem Photonics Element de maintien et d'indexation d'une structure guidante asymetrique, et son utilisation pour la connexion de la structure a un composant d'optique integree
US7218811B2 (en) * 2002-01-10 2007-05-15 The Furukawa Electric Co., Ltd. Optical module, and multi-core optical collimator and lens housing therefor
US20070127871A1 (en) * 2005-12-02 2007-06-07 Hitachi Cable, Ltd. Boot for MT connector
JP2008076685A (ja) * 2006-09-20 2008-04-03 National Institute Of Advanced Industrial & Technology 端面近接多芯光ファイバーおよびその製造方法
JP4731461B2 (ja) * 2006-12-27 2011-07-27 株式会社フジクラ 光コネクタ付き多心光ファイバの分岐部構造
JP2011018013A (ja) * 2009-01-20 2011-01-27 Sumitomo Electric Ind Ltd 光通信システム及び配列変換器
CN201464685U (zh) * 2009-05-27 2010-05-12 中航光电科技股份有限公司 一种光缆分线器
JP2010286548A (ja) 2009-06-09 2010-12-24 Sumitomo Electric Ind Ltd マルチコアファイバ及びそれを含む光コネクタ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6247604A (ja) * 1985-08-27 1987-03-02 Furukawa Electric Co Ltd:The マルチコアフアイバの端末部
JPS62226107A (ja) * 1986-03-28 1987-10-05 Nec Corp 光フアイバ接続構造
JPH04249205A (ja) * 1990-11-27 1992-09-04 Internatl Business Mach Corp <Ibm> コンピュータシステム用光バス
JPH05341147A (ja) 1992-06-12 1993-12-24 Asahi Chem Ind Co Ltd マルチコア型シングルモード光ファイバおよびこれを用いた伝送方法
JPH10104443A (ja) 1996-09-26 1998-04-24 Nippon Telegr & Teleph Corp <Ntt> マルチコアファイバ
JP2007279194A (ja) * 2006-04-04 2007-10-25 Wired Japan:Kk 光ファイバケーブル、光伝送方法、及び分光分析システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2730959A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5572748B1 (ja) * 2013-08-20 2014-08-13 湖北工業株式会社 光接続部品およびその製造方法並びに光接続部品製造用金型容器
US9703035B2 (en) 2013-08-20 2017-07-11 Kohoku Kogyo Co., Ltd. Optical connector, method for manufacturing the same, and mold container for manufacturing the same
JP5719960B1 (ja) * 2014-07-31 2015-05-20 湖北工業株式会社 マルチコアファイバと偏波面保存ファイバの光接続部品および光接続部品の製造方法
JP2016033618A (ja) * 2014-07-31 2016-03-10 湖北工業株式会社 マルチコアファイバと偏波面保存ファイバの光接続部品および光接続部品の製造方法

Also Published As

Publication number Publication date
TW201305633A (zh) 2013-02-01
US8727634B2 (en) 2014-05-20
KR20140016982A (ko) 2014-02-10
CN103608709A (zh) 2014-02-26
US20120328244A1 (en) 2012-12-27
US20140219611A1 (en) 2014-08-07
TWI553362B (zh) 2016-10-11
CN103608709B (zh) 2016-10-26
EP2730959A1 (en) 2014-05-14
EP2730959A4 (en) 2015-05-20
KR101563797B1 (ko) 2015-10-27

Similar Documents

Publication Publication Date Title
WO2012172906A1 (ja) 光接続部材、光接続構造、及び、光接続部材の製造方法
US8360659B2 (en) Fiber-optic pin-and-socket connector having a beam expansion device
JP6434079B2 (ja) 光ファイバーアセンブリ
US9348090B2 (en) Optical coupling element and manufacturing method
EP2998771B1 (en) Ferrule
JP6379898B2 (ja) 光コネクタ、及び、光コネクタの製造方法
WO2008023544A1 (fr) Élément de modification de trajet lumineux et connecteur optique pour rayons lumineux à trajet modifié
JP2021157194A (ja) 導波路アクセス不可能スペースを有する光フェルール
JP2013522677A (ja) マルチコアファイバへの低損失でモードフィールドが整合された結合のための方法、および装置
US20140294339A1 (en) Compact optical fiber splitters
US9632258B2 (en) Optical connector ferrule
JP2018534633A (ja) 導波路による位置合わせを有する光結合デバイス
CN102183824A (zh) 携带准直透镜的二维光纤阵列
US11543599B2 (en) Ferrules including keying features and fiber optic junctions including the same
US9387603B2 (en) Method of forming single-mode polymer waveguide array assembly
US20180074268A1 (en) Optical connector and optical connection structure
JP2016184106A (ja) 光ファイバ付きフェルール、光コネクタシステム及び光ファイバ付きフェルールの製造方法
Wlodawski et al. A new generation of ultra-dense optical I/O for silicon photonics
US11782216B2 (en) Optical connector and optical connector manufacturing method
US11550103B2 (en) Optical connection component
JP2013020229A (ja) 光接続部材及び光接続構造
JP2013213934A (ja) 光接続部材及び光接続部材の製造方法
JP6492647B2 (ja) 光コネクタフェルール
JP2011048157A (ja) フェルール及び多心光コネクタの製造方法
JP2015034944A (ja) 光コネクタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12800410

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137033863

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012800410

Country of ref document: EP