JP2016033618A - マルチコアファイバと偏波面保存ファイバの光接続部品および光接続部品の製造方法 - Google Patents

マルチコアファイバと偏波面保存ファイバの光接続部品および光接続部品の製造方法 Download PDF

Info

Publication number
JP2016033618A
JP2016033618A JP2014156778A JP2014156778A JP2016033618A JP 2016033618 A JP2016033618 A JP 2016033618A JP 2014156778 A JP2014156778 A JP 2014156778A JP 2014156778 A JP2014156778 A JP 2014156778A JP 2016033618 A JP2016033618 A JP 2016033618A
Authority
JP
Japan
Prior art keywords
optical connection
core
fiber
connection component
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014156778A
Other languages
English (en)
Other versions
JP5719960B1 (ja
Inventor
井本 克之
Katsuyuki Imoto
克之 井本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kohoku Kogyo Co Ltd
Original Assignee
Kohoku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kohoku Kogyo Co Ltd filed Critical Kohoku Kogyo Co Ltd
Priority to JP2014156778A priority Critical patent/JP5719960B1/ja
Application granted granted Critical
Publication of JP5719960B1 publication Critical patent/JP5719960B1/ja
Publication of JP2016033618A publication Critical patent/JP2016033618A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

【課題】マルチコアファイバと偏波面保存ファイバとの間で良好な偏波面保持と光結合を得ることができる光接続部品およびその製造方法を提供する。【解決手段】光接続部品100は、マルチコアファイバに接する第1端面と偏波面保存ファイバに接する第2端面とを有する石英ガラス4の部材と、石英ガラス4の部材の中に配置された、マルチコアファイバ1のコア8及び偏波面保存ファイバ2のコア5とモードフィールド径が同じコアを有するN個のガラスファイバ3とを備え、第1端面におけるN個のガラスファイバ3のコアの間隔がマルチコアファイバ1のコア8の配置と等しく、第2端面におけるガラスファイバ3のコアの間隔が偏波面保存ファイバ2の外径と同じであるか又は外径よりも大きいことを特徴とする。【選択図】図1

Description

本発明は、マルチコアファイバと偏波面保存ファイバのコア同士を接続するために用いられる光接続部品およびその製造方法に関する。
従来、光ファイバは1個の低屈折率のクラッド内の中心に屈折率の高いコアを1個有する構造が用いられてきた。ところが、最近になって、1個のクラッド内に屈折率の高いコアを複数個有する、いわゆるマルチコアファイバが大容量情報伝送、高速伝送を期待できることで注目されるようになってきた。マルチコアファイバはすでに提案されている構造である。
図21から図23はマルチコアファイバと偏波面保存ファイバとを接続する際の構成図を示しているが、これに用いるマルチコアファイバ50は、それぞれクラッド51内に高屈折率のコア52(コア径d:10μm程度、波長1550nmでのモードフィールド径a:9.5μm)が4個および7個を有する例を示している。このように、一般的なマルチコアファイバは、1個のクラッド内に4個から7個、あるいは15個程度のコア52を有している。それぞれのコア52の間隔Smは互いにコア52内を伝搬している光信号が干渉しない程度の30μmから60μmに設定され、マルチコアファイバ50の外径Dmは120μmから180μmに設定されている。このようなマルチコアファイバ50を用いて偏波変動のほとんどない情報伝送を実現するためには、上記マルチコアファイバ50内の複数個のコア52にそれぞれ1個の偏波面保存ファイバ60を接続して各偏波面保存ファイバ(パンダファイバ(PANDA(Polarization-maintaining AND Absorption-reducing)ファイバ)、楕円ジャケットファイバ、ボウタイ型ファイバがあり、この例ではパンダファイバを示す。)60のコア61内を伝搬してきた光情報の偏波面を保持した状態でマルチコアファイバ50を介して受光器で受信する、あるいは複数個の光送信器からの光信号をそれぞれ個別の偏波面保存ファイバ60を介して偏波面を保持した状態でマルチコアファイバ50の複数個のコア52内に送り込まなければならない。
ところが、1550nmの光通信用として用いる場合には、この偏波面保存ファイバ60はコア61の径が10μm程度(モードフィールド径:9.5μm)で、ファイバ外径Dh(クラッド63の外径)は応力付与部62を設けなければならないために余裕を見て125μmが必要であり、上記マルチコアファイバ50のそれぞれのコア52に偏波面保存ファイバ60を接続しようとするとコア間隔がSh:125μmになるので、上記偏波面保存ファイバがはみだしてしまい、構造寸法上無理があった。すなわち、マルチコアファイバのコア間隔Smに比して偏波面保存ファイバの外径が大きいために、上記マルチコアファイバのそれぞれのコアに偏波面保存ファイバのコアを接続しようとすると、偏波面保存ファイバがはみ出してしまう。そのために現在までに偏波面保存ファイバを接続したマルチコアファイバ伝送系は実現されていなかった。また偏波面保存ファイバ60の外径は、応力付与部63を設けなければならないために、最悪でも最小で80μmまでしか小さくできないために上記コア間隔Smが30μmから60μmのマルチコアファイバ50のそれぞれのコア52に接続することはできなかった。
特開2010-286548号公報 特開2010-286661号公報 特開2010-286718号公報
マルチコアファイバ50の直径は最大でも300μm程度であり、その中に有するコア数が多いほど大容量の情報を一度に伝送することができるが、上記マルチコアファイバ50の断面積の制約、コア(使用する波長帯630nmから1550nmによって異なり、そのモードフィールド径は4μmから11μmの範囲から選ばれるが、通常、大容量伝送を実現する1550nm帯ではコア径10μmでモードフィールド径はそれよりもわずかに小さい値9.5μmである。)52間の干渉などを考慮に入れると、コア数は4個から19個の範囲であることが望ましい。そして上記コア間隔Smは30μmから60μmに設定される。これに対して、上記通信用波長帯1550nmでは上記コア52から出射した光を取り込む偏波面保存ファイバ60は、応力付与部62があるためにクラッド外径63は125μmよりも小さくできず、コア61の径は上記と同じ10μmである(モードフィールド径は波長1550nmにおいて9.5μmであり、コア径よりもわずかに小さい値である。)。このため、上記マルチコアファイバ50の断面内に有するコア52のそれぞれに1対1で光結合するように上記偏波面保存ファイバ60を配置させると、上記偏波面保存ファイバ60のほとんどが上記断面からはみ出してしまい、マルチコアファイバ50の各コア52と偏波面保存ファイバ60のコア61との間で良好な偏波面保持と光結合を得ることが困難となってしまう。そのために未だ実現されていなかった。
本発明が解決しようとする課題は、前記した課題を解決することができるマルチコアファイバと偏波面保存ファイバの光接続部品およびその製造方法を提供するものである。
上記課題を解決するために成された本発明の第1態様は、
1個のクラッド内にN個のコアが所定の間隔Smで配置されたマルチコアファイバと、外径Dhが前記間隔Smよりも大きく、前記マルチコアファイバのコアとモードフィールド径が同じである、N個の偏波面保存ファイバとを接続するための光接続部品であって、
前記マルチコアファイバに接する第1端面と、前記偏波面保存ファイバに接する第2端面とを有する石英ガラス部材と、
該石英ガラス部材の中に配置された前記第1端面から前記第2端面にかけて延びるN個のガラスファイバであって、前記マルチコアファイバのコア及び前記偏波面保存ファイバのコアとモードフィールド径が同じコアを有するN個のガラスファイバを備え、
前記第1端面における前記N個のガラスファイバのコアの間隔が前記マルチコアファイバのコアの配置と等しく、前記第2端面における前記ガラスファイバのコアの間隔が前記偏波面保存ファイバの外径と同じであるか又は該外径よりも大きいことを特徴とする光接続部品である。
本発明に係る光接続部品は、Nの数が4〜15のマルチコアファイバと4〜15個の偏波面保存ファイバを接続する部品に適しているが、コアの数が2個又は3個、あるいは16個以上のマルチコアファイバと該マルチコアファイバのコアの数と同数の偏波面保存ファイバを接続する光接続部品にも適用可能である。
本発明に係る光接続部品においては、前記ガラスファイバが、前記コアと、該コアの外周を取り囲む厚みが一定の、前記コアよりも屈折率が低い低屈折層とから構成されていることが好ましい。
また、本発明に係る光接続部品は、前記石英ガラス部材の中の前記N個のガラスファイバのそれぞれの両側に、前記第1端面から前記第2端面にかけて延びるように配置された一対の空孔を備えており、前記N対のガラスファイバのN対の空孔が対向する方向が全て同じであることが好ましい。
上記構成によれば、光接続部品の第2端面に接続されるN個の偏波面保存ファイバの偏波面を保持したままマルチコアファイバに接続することができる。
さらに、本発明に係る光接続部品は、
前記石英ガラス部材の第2端面に、該第2端面に接続されるN個の偏波面保存ファイバの偏波面の方向を示す偏波面指示手段が設けられていることが好ましい。
偏波面指示手段は、例えば、石英ガラス部材の第2端面に偏波面の方向を表す凹部や凸部を形成することにより実現できる。また、石英ガラス部材の凹部や凸部に対応する凸部や凹部を偏波面保存ファイバの端面に形成しておき、石英ガラス部材の凹部又は凸部と、偏波面保存ファイバの凹部又は凸部を付き合わせて、光接続部品と偏波面保存ファイバを接続するようにしても良い。
さらに、石英ガラス部材の第1端面にも、マルチコアファイバの接続方向を示す目印を設けても良い。
また、本発明に係る光接続部品においては、
石英ガラス部材の第1端面に、第1接続凹部又は第1接続凸部を設け、第2端面に、第2接続凹部又は第2接続凸部を設けても良い。
上記課題を解決するために成された本発明の第2態様は、上述の光接続部品の製造方法であって、
柱状の石英ガラス母材と、この石英ガラス母材の内部に、該石英ガラス母材の一方の端面から他方の端面に向かって互いの間隔が放射状に拡がるように配置されたN本のガラスファイバ用母材とからなる光接続部品用母材を加熱、延伸することにより光接続部品を得ることを特徴とする光接続部品の製造方法である。
この場合、前記ガラスファイバ用母材が、コア用母材と該コア用母材の外周を取り囲む低屈折率層用母材からなり、
前記コア用母材の外径が前記マルチコアファイバのコアの外径のP倍であり、且つ、前記石英ガラス母材の一方の端面における前記コア用母材の間隔が前記マルチコアファイバのコアの間隔のP倍であり(ただし、Pは8〜15の数)、
前記光接続部品用母材を、その外径が1/P倍に縮小するように加熱、延伸することにより光接続部品を製造することが好ましい。
また、上記光接続部品の製造方法においては、
前記光接続部品用母材を複数、直列に連結し、連結部分を溶融して接続することにより、複数個の光接続部品を連結した連結光接続部品に対応する連結光接続部品用母材を形成し、該連結光接続部品用母材を加熱、延伸した後、切り分けることにより一度に複数個の光接続部品を得るようにしても良い。
さらに、前記光接続部品用母材を複数、石英ガラス管内に挿入し、溶融して該石英ガラス管に前記複数の光接続部品用母材を固定することにより、複数個の光接続部品を連結した連結光接続部品に対応する連結光接続部品用母材を形成し、該連結光接続部品用母材を加熱、延伸した後、切り分けることにより一度に複数個の光接続部品を得ることも良い方法である。
この場合、前記光接続部品用母材が、その両端部のうちの一方に凸部を、他方に凹部を有し、一の光接続部品用母材の凸部を別の光接続部品用母材の凹部に嵌め込むことにより複数個の光接続部品用母材を直列に連結するようにすると、複数の光接続部品用母材の端部同士を確実に接続することができる。
本発明は、一つのファイバ内にN個のコアを所望間隔dで配置されたマルチコアファイバのそれぞれのコア(モードフィールド径がMF)にモードフィールド径aが該マルチコアファイバのコアのそれと同じ値を持つガラスファイバを介して同じモードフィールド径aを有し、外径Dhが上記Smよりも大きい偏波面保存ファイバのコア(モードフィールド径がa)を1対1でそれぞれ接続したことを特徴とし、かつ該それぞれのファイバに接続された偏波面保存ファイバのそれぞれの応力付与部の方向が同じであることを特徴とする光接続部品であるので、N(N:4から15)個のコアをコア間隔Smを有する種々の構造のマルチコアファイバのそれぞれのコアにモードフィールド径が同じaのガラスファイバを通して外径が上記コア間隔Sm(d:30μmから60μm)よりもはるかに大きいDh(Dh:125μm)を有する偏波面保存ファイバを該マルチコアファイバ端面にN個並べて低結合損失で接続することができる。
しかも該偏波面保存ファイバのモードフィールド径も上記と同じaなので、複屈折率特性を維持した反射の無い低結合損失で接続することができる。すなわち、マルチコアファイバ、ガラスファイバ、偏波面保存ファイバを低結合損失で各接続ファイバ間での屈折率のミスマッチングによる反射のほとんどない伝送系を実現することができる。また光接続部品に接続する偏波面保存ファイバのそれぞれの応力付与部の方向を同じになるように設定して接続することにより、それぞれのマルチコアファイバのコア内を伝搬してきた偏波変動のある光信号の光の偏波面を常に一定に保つことができる。
またモードフィールド径が同じaのガラスファイバを通してマルチコアファイバと偏波面保存ファイバとを接続することができるので、マルチコアファイバ内を伝搬してきた光信号、あるいは偏波面保存ファイバ内を伝搬してきた光信号を変動させることなく安定して偏波面保存ファイバへ、あるいはマルチコアファイバへ伝搬させることができる。本発明の光接続部品はN(N:4から15)個のコア間隔Sm(Sm:30から60μm)を有するマルチコアファイバの種々の構造のものに対応することができる汎用的な光接続部品である。しかも後述するように、光接続部品の長さが少なくとも1000mmよりも長いので、今までのように極めて短い光接続部品という概念のものに比して、両端面からの多重の端面反射の影響を受けにくい。
また第1の発明において、ガラスファイバのモードフィールド径a、その外周の低屈折率層の厚みは該接続部品の長さ方向に亘って一様で、かつ十分に厚い低屈折率層であることを特徴とする光接続部品であるので、この光接続部品での光伝搬の状態(モード)が変化することなしにマルチコアファイバと偏波面保存ファイバとを良好に光接続することができる。ただしN(N:4から15)個のコア間隔Smを有する種々の構造を有するマルチコアファイバのそれぞれのコアにモードフィールド径が同じaのガラスファイバを通して外径が上記コア間隔Sm(Sm:30μmから60μm)よりもはるかに大きいDh(Dh:125μm)を有する偏波面保存ファイバを該マルチコアファイバ端面にN個並べて低結合損失で接続することができる。マルチコアファイバから偏波面保存ファイバへのガラスファイバを通しての接続は構造的に長い光接続部品の伝送路を伝搬して放射状に徐々に広がってガラスファイバが張り巡らせられるので、ガラスファイバの軸の傾きによる軸ずれ損失を小さく抑える事が出来る。しかも、ガラスファイバの外周の低屈折率層の厚みは該接続部品の長さ方向に亘って一様で、かつ十分に厚い層であることにより、光接続部品での光伝搬条件を一定に維持することができる。
また本発明において、該光接続部品は石英ガラス母材の中に一方の第1端面はマルチコアファイバのそれぞれN本のコア間隔Smに、そして他方の第2端面はN本の束ねた偏波面保存ファイバのコア間隔Sh(Sm<Sh)に向かって中心を軸として放射状に埋め込まれたガラスファイバからなる光接続部品用母材を加熱、延伸することによって得られることを特徴とする光接続部品であるので、構造寸法の異なる種々のマルチコアファイバと偏波面保存ファイバとを良好な光学特性を保って接続することができる。すなわち、これはガラスファイバから成る光接続部品用母材を1/Pに加熱して、P倍の長い長さに延伸することによって実現されている。これは、該接続部品用母材の断面積及びガラスファイバのモードフィールド径の断面積は該マルチコアファイバのモードフィールド径aのP倍(P:8倍から15倍)の大きさに設定され、それを1/Pに加熱して、P倍の長い長さに、延伸することによってはじめて本発明者が見出して得ることができたまったく新規の発想の結果による光接続部品である。
また、本発明は、石英ガラス母材の中のN個のガラスファイバのそれぞれの両側に一対ずつ空孔を配置させ、全てのガラスファイバの両側の空孔の対向方向を偏波面保存ファイバの応力付与部の対向方向(つまり、偏波方向)と同じにしたことを特徴とする光接続部品である。このように光接続部品の中の複数のガラスファイバの両側に空孔を配置させ、該両側の空孔の方向を偏波面保存ファイバの応力付与部の方向と同じにすることにより、光接続部品と偏波面保存ファイバとの位置合わせが容易になると共に光接続部品の位置で偏波状態を一定に保つ、すなわち、複屈折率特性を維持した安定した光信号を得ることができる。また光接続部品内のガラスファイバの両端に空孔を設けた構造を容易に実現できる製造方法を用いることにより、結果的にガラスファイバの比屈折率差を大きくすることができ、マルチコアファイバ、偏波面保存ファイバとの接続が容易に行えるようにもなる。また光接続部品内に空孔を形成することにより、ガラスファイバのクラッドの等価屈折率を低くでき、その結果、コアの屈折率を低くすることができ、コアの中に添加する屈折率制御用添加物の添加量を下げることができ、コアとクラッドとの軟化温度の差が小さくなり、製造しやすくなる。
また、本発明の光接続部品の製造方法では、複数個の光接続部品用母材の端面同士を溶融、一体化することにより、長さ方向に複数本溶融接続された連結光接続部品用母材を得、さらにこれを加熱、延伸した後、切り出して一度に複数個の光接続部品とすることにより、数多くの光接続部品を量産ができるようになり、これにより大幅な低コストを期待することができる。なお、延伸工程の後に光接続部品の外周をポリマ材料で被覆すれば、機械的強度のすぐれた光接続部品を実現することができる。ここで、複数の光接続部品用母材端面同士を溶融する際に母材同士を圧着して融着するが、端面の不具合により、隙間が生じる場合には端面にゾルゲル用塗布液(たとえば高純度化学研究所製のSi−05S)を塗布して隙間の無いように埋めつくしてその後に加熱すれば加熱によって上記液体はSiOになるので、好都合良く上記隙間を埋め尽くすことができる。
また、該複数本の光接続部品用母材を石英ガラス管内に挿入して一体的に溶融、固定してより太い母材棒として、該石英ガラス管を加熱、延伸、その外周にポリマ材料を被覆して得た連結光接続部品用母材から切り出して得た光接続部品とすることにより、より安定的に量産することができ、さらなる低コスト化を期待することができる。またこの複数本の光接続部品用母材を石英ガラス管内に溶融して隙間の無いように密封溶融固定することにより、それを加熱して連続的に延伸することにより外形変動を抑えた連結光接続部品用母材を実現することができ、その結果、ガラスファイバ内のコア径の大きさ、低屈折率層の厚みの均一性を向上させることができる。この場合にも上記塗布液が有効である。なお、上記石英ガラス管はガラスファイバのクラッドと屈折率がほぼ同じであるので、厚い膜厚のクラッド層として作用し、光接続部品の中を伝搬する光信号を安定的に伝搬させる保護的な層としての役割をもつ。このガラス管には石英ガラス管よりも融点のわずかに低いバイコールガラス管(コーニング社の商品名)でもよい。
また、光接続部品の端面にマルチコアファイバの目印となる代表的なコアの位置や偏波面保存ファイバの応力付与部の方向を示す偏波面指示手段を形成することにより、上記目印や偏波面指示手段を、光接続部品にマルチコアファイバおよび偏波面保存ファイバを接続する際の基準面として活用することもでき、またより短時間で接続することができる。また確実にそれぞれのコア内を伝搬してきた光信号の偏波状態を一定に維持して偏波面保存ファイバから光信号をとりだしたりすることができる。
また、光接続部品用母材の一方の第1端面に凹部又は凸部をもたせ、反対の第2端面にも上記と同じ凹部又は凸部をもたせ、第1端面及び第2端面に凸部を持たせた光接続部品用母材と、第1端面及び第2端面に凹部を持たせた別の光接続部品用母材を、第1端面同士の凹凸部、第2端面同士の凹凸部をつなぎ合わせて一体的に順次つなぎ合わせて融着接続することにより、複数の連続した光接続部品用母材を量産することができる。また量産する際のつなぎ合わせの部分が凹凸であるので、複数の光接続部品用母材を確実に一体的に融着接続することができる。特に石英ガラス部品は確実に融着しておかないと加熱、延伸の際の接続部での変形が生じやすいが、これを解消することができる。また該接続部が確実に融着されていると、加熱、延伸工程を経ることにより、光ファイバの線引きのように、光接続部品の外径の安定したものを連続して製造することができる。
また、複数本の光接続部品用母材を石英ガラス管内に溶融、固定化し、該石英ガラス管を加熱、延伸して得た該複数本の光接続部品が連なった状態のものから個々の光接続部品を切り出して得ることにより、さらに安定して複数本の光接続部品を実現することができる。
また光接続部品用母材は円形あるいは角型の石英ガラスロッドを用い、該ロッド内に機械研削、ドリル加工などによって形成されたN個の空孔内にマルチコアファイバのコア及び偏波面保存ファイバのコアのモードフィールド径のP倍の大きさのガラスファイバを挿入した構成とし、一方の第1端面側はN個のコアを有するマルチコアファイバのコアのモードフィールド径のP倍の大きさのコアとそのコア間隔を有する構造からなり、反対の第2端面側はN個の偏波面保存ファイバを束ねた構造でコアのモードフィールド径のP倍の大きさのコアとそのコア間隔を有する構造からなり、それを1/Pに加熱、延伸することによって長さがPに延伸されたことを特徴とする光接続部品とすると良い。また上記光接続部品用母材を複数本つなぎ合わせた連結光接続部品用母材とし、該母材を加熱、延伸してその後に1本ずつに切りだせば複数本の光接続部品を一度に大量生産することができる。なお、上記光接続部品用母材の長さは10mmから数10mm程度の短い長さであるので、機械加工でも容易に空孔形成することができる。
また上記光接続部品用母材を複数本接続、溶融した連結光接続部品用母材を石英ガラス管内に挿入、融着、固定して加熱、延伸することによって大量生産してもよい。その後に上記のように、1本ずつに切りだせば一度に複数本の光接続部品を大量生産することができる。
なお、以上に示した光接続部品用母材の外形は円形、角型、三角形のいずれでもよく、またサイズも特に限らない。
本発明の第1実施例に係る光接続部品の第1端面にマルチコアファイバを、第2端面にパンダファイバを束ねたものを接続した図であり、(a)は正面図、(b)はA−A矢視断面図、(c)はB−B矢視断面図、(d)はC−C矢視断面図。 本発明の第2実施例に係る光接続部品の第1端面にマルチコアファイバを、第2端面にパンダファイバを束ねたものを接続した図であり、(a)は正面図、(b)はA−A矢視断面図、(c)はB−B矢視断面図。 本発明の第3実施例に係る光接続部品の第1端面にマルチコアファイバを、第2端面にパンダファイバを束ねたものを接続した図であり、(a)は正面図、(b)はA−A矢視断面図、(c)はB−B矢視断面図。 本発明の第4実施例に係る光接続部品の第1端面にマルチコアファイバを、第2端面にパンダファイバを束ねたものを接続した図であり、(a)は正面図、(b)はA−A矢視断面図、(c)はB−B矢視断面図。 本発明の第5実施例に係る光接続部品の第1端面にマルチコアファイバを、第2端面にパンダファイバを束ねたものを接続した図であり、(a)は正面図、(b)はA−A矢視断面図、(c)はB−B矢視断面図。 本発明の第6実施例に係る光接続部品の第1端面にマルチコアファイバを、第2端面にパンダファイバを束ねたものを接続した図であり、(a)は正面図、(b)はA−A矢視断面図、(c)はB−B矢視断面図。 本発明の第7実施例に係る光接続部品の第1端面にマルチコアファイバを、第2端面にパンダファイバを束ねたものを接続した図であり、(a)は正面図、(b)はA−A矢視断面図、(c)はB−B矢視断面図。 光接続部品用母材製造のための金型の実施例を示したものである。同図(a)は光接続部品用母材製造のための金型の半割の断面図、同図(b)は同図(a)の第1端面A−A矢視断面図、同図(c)は同図(a)の第2端面B−B矢視断面図。 図8で得た多孔質ガラスの光接続部品用母材を示したものである。同図(a)は多孔質ガラスの光接続部品用母材の断面図、同図(b)は同図(a)の第1端面A−A矢視断面図、同図(c)は同図(a)の第2端面B−B矢視断面図。 図8に用いるガラスファイバ13の構造図を示したものである。 図8で得た多孔質ガラスの光接続部品用母材を燒結して得た光接続部品用母材内の空孔内にガラスファイバ13を挿入した上記母材の実施例を示したものである。同図(a)は燒結した光接続部品用母材16の断面図、同図(b)は同図(a)の第1端面A−A矢視断面図、同図(c)は同図(a)の第2端面B−B矢視断面図。 図11の母材を加熱して断面積が1/Pになるように延伸して得た光接続部品を示したものである。同図(a)は光接続部品の断面図、同図(b)は同図(a)の第1端面A−A矢視断面図、同図(c)は同図(a)の第2端面B−B矢視断面図。 本発明の光接続部品用母材を大量生産する方法を示したものである。 本発明の光接続部品用母材を大量生産する方法の第2の実施例を示したものである。 本発明の光接続部品用母材を大量生産する方法の第3の実施例を示したものである。 図13で得た、つながった母材を石英ガラス管内に入れずに加熱して1/Pに断面積を引き伸ばして延伸することにより、つながった複数本の光接続部品を実現し、ついで個々の光接続部品を切断することにより得る方法の実施例。 光接続部品用母材の一方の第1端面にマルチコアファイバを突き合わせる凸部を設け、反対の偏波面保存ファイバを束ねたものを接続する第2端面にも上記と同じ凸部を持たせた光接続部品用母材を製造するための金型構造の実施例。 図17の金型を用いて実現した光接続部品用母材を焼結して透明ガラス化した母材の実施例。 光接続部品用母材の一方の第1端面にマルチコアファイバを突き合わせる凹部を設け、反対の偏波面保存ファイバを束ねたものを接続する第2端面にも上記と同じ凹部を持たせた光接続部品用母材を製造するための金型構造の実施例。 図19の金型を用いて実現した光接続部品用母材の実施例 従来のマルチコアファイバと偏波面保存ファイバとを接続する際の構成図。 従来のマルチコアファイバと偏波面保存ファイバとを接続する際の構成図。 従来のマルチコアファイバと偏波面保存ファイバとを接続する際の構成図。
以下、本発明に係る光接続用部品に関するいくつかの実施例について図1〜図7を用いて説明する。
図1は本発明の第1実施例に係る光接続部品の構成図を示す。同図(a)は光接続部品の正面図、同図(b)は同図(a)の第1端面A−A矢視断面図、同図(c)は同図(a)の第2端面B−B矢視断面図、同図(d)は第2端面に接続する7個の偏波面保存ファイバを7個束ねたC−C矢視断面図を示したものである。上記光接続部品100は石英ガラス4で構成され、その石英ガラス4内の空孔内にモードフィールド径が9.5μmのガラスファイバ3が挿入、融着、固定されている。この例ではガラスファイバ3のコアにはマルチコアファイバ1のコア8と同じように、GeOを添加したSiOを用い、クラッドにはSiO層を用いた(ガラスファイバ3の構造については後述する。)。なお、ガラスファイバ3のクラッドの外周にFを添加したSiO層を設けてもよい。この例では7個のガラスファイバ3が空孔内に挿入、融着、固定されている。この光接続部品100はマルチコアファイバ1のコア間隔Smが40μmでコアのモードフィールド径が9.5μmのマルチコアファイバ1が第1端面側に接続され、第2端面側にはモードフィールド経が9.5μmのコアを有する偏波面保存ファイバ(この例では通常良く用いられるパンダファイバを用いた。)2を7個束ねたものが接続され、それぞれのパンダファイバ2のコア5の間隔Shはパンダファイバ2の外径と同じ125μmである。すなわち、パンダファイバ2の外径に等しい値である。
これにより、マルチコアファイバ1のそれぞれのコアに外径が125μmのパンダファイバ2のコア5を1対1で光接続されている。上記光接続部品内のガラスファイバ3はマルチコアファイバ1側からパンダファイバ2側に向けて中心を軸として徐々に放射状に拡がる様に配置されている。この構成はマルチコアファイバ1の構造による。ここで、それぞれのパンダファイバ2のクラッド7に設けられた一対の応力付与部6の対向方向(これは、一対の応力付与部6が並ぶ方向をいい、偏波面の2方向の一つを指す。)は同一方向に揃えてある。この場合には紙面の上下方向である。
これにより、パンダファイバ2を伝搬した光信号は偏波保持されて出力される。この光接続部品の外形は円形であり、その外径はパンダファイバ2を7個束ねた外径(この場合、375μm)と同等か、それよりも大きくても良い。なお、上記光接続部品の外形は矩形でも多角形構造でも良い。上記光接続部品の長さは、後述するように、P(P:8から15)倍に大きい光接続部品用母材を加熱して、断面を1/Pになるように延伸して作るので、その長さはPになり、1000mmから5000mmの範囲の長い長さを有することが特徴である。この光接続部品はマルチコアファイバ1のコア8の間隔Smが30μmでも対応でき、また大きい方は容易であり、例えば60μmは容易に実現できる値である。
図2は光接続部品100Aの外形が矩形構造の第2実施例である。同図(a)は光接続部品100Aの正面図、同図(b)は同図(a)の第1端面A−A矢視断面図、同図(c)は同図(a)の第2端面B−B矢視断面図を示したものである。このように外形が矩形の場合には両端に接続するそれぞれのファイバ接続を容易に行うことができる。また後述するように、光接続部品用母材を重ねて接続して加熱、延伸する際に、矩形同士であるので、位置合わせが容易のため、接続を簡単に、容易に行うことができる。なお、光接続部品100Aの外形が円形から矩形に変わっている以外は図1と同じであるため、同じ符号を付している。
図3は光接続部品100Bの第3実施例を示したものである。同図(a)は光接続部品100Bの正面図、同図(b)は同図(a)の第1端面A−A矢視断面図、同図(c)は同図(a)の第2端面B−B矢視断面図を示したものである。これは、第2端面に接続するそれぞれのパンダファイバ2の応力付与部6の方向を紙面の左右方向に全て揃えた例である。光接続部品の長さは1000mmから5000mmの範囲が好ましい。またその外径は、全体が低屈折率のSiOガラスで覆われているので、光信号の伝搬にはあまり影響を与えないので、マルチコアファイバ1の外径に合わせるか、あるいはパンダファイバ2を7本束ねた外径にあわせても良い。さらにはそれよりも大きくして取り扱いを容易にしても良い。ここでマルチコアファイバ1にはコア8を7個有し、そのまわりをクラッド9で覆った構造のものを用いた。そのマルチコアファイバ1の外径は7個のコア8を有する構造のため、コア8の間隔Smを考慮して160μmとしたが、それよりも大きくても、あるいはわずかに小さい値でも接続ができればよい。
図4は光接続部品100Cの第4実施例を示したものである。同図(a)は光接続部品100Cの正面図、同図(b)は同図(a)の第1端面A−A矢視断面図、同図(c)は同図(a)の第2端面B−B矢視断面図を示したものである。この実施例では、第1端面に接続するマルチコアファイバ1の外径を前記と同様に160μmとし、コア8の数が5個でコア8の間隔Smが40μmであり、第2端面に接続するパンダファイバ2の数量も5個であり、その外径は125μm、そのコア5の間隔Shは125μmの場合である。この場合もそれぞれのパンダファイバ2の応力付与部6の方向は紙面の左右方向に揃えてある。
図5は光接続部品100Dの第5実施例を示したものである。同図(a)は光接続部品100Dの正面図、同図(b)は同図(a)の第1端面A−A矢視断面図、同図(c)は同図(a)の第2端面B−B矢視断面図を示したものである。この実施例では、第1端面に接続するマルチコアファイバ1のコア8の数が4個であるので、外径は125μmとし、コア8の間隔Smが40μmであり、第2端面に接続するパンダファイバ2の数量も4個であり、その外径は125μm、そのコア5の間隔Shは125μmの場合である。このように、本発明は種々のコア数を有するマルチコアファイバ構造に対しても1対1でそれぞれのコア8にパンダファイバ2のコア5を接続することができる。マルチコアファイバ1のコア8の間隔Smは30μmから60μm程度までならば容易に接続することができる。
図6は光接続部品100Eの第6実施例を示したものである。同図(a)は光接続部品100Eの正面図、同図(b)は同図(a)の第1端面A−A矢視断面図、同図(c)は同図(a)の第2端面B−B矢視断面図を示したものである。この実施例は、マルチコアファイバ1のコア8の数が4個の場合である。コア8の間隔Smは縦方向に40μm、横方向に100μmに定めた。そして光接続部品100Eの中のガラスファイバ3の両端に空孔10を設けてガラスファイバ3内へのマルチコアファイバ1からの光信号を効率良く閉じ込めるようにし、かつガラスファイバ3からの光信号をパンダファイバ2へ効率良く結合させるために設けたものである。上記空孔10は光接続部品用母材を製造する際にガラスファイバの両端に細径の金属棒を張り巡らして置き、後述の図8の金型内に硬化性樹脂及び硬化剤を含んだSiOガラス原料溶液15を注入、充填し、その後、硬化性樹脂と硬化剤の反応により自己硬化反応を生じさせて上記該原料溶液15を固化させて上記ガラスファイバ(あるいは金属線)と細径の金属棒、金型を脱離し、その後、乾燥、脱脂、加熱して多孔質ガラス状の光接続部品用母材を形成する。そしてこの多孔質ガラス状の光接続部品用母材を塩素雰囲気下で高温加熱して透明なSiOガラスからなる光接続部品用母材を得る。上記ガラスファイバ3の両端の空孔10の形成位置と第2端面に接続されたパンダファイバ2のコア5の両側の応力付与部6との形成位置はほぼ同じ方向、同じ位置に形成されている。これにより、ガラスファイバ3からパンダファイバ2への光信号の伝搬が効率良く実現される。上記ガラスファイバ3の両端に形成する空孔10は紙面に向かって水平方向以外に垂直方向でも良い。その際はパンダファイバ2のコア5の両端の応力付与部6の形成方向も上記と同様に垂直方向にすれば良い。なお、空孔10の外径はガラスファイバ3と同程度の大きさかそれよりも小さく、応力付与部6よりも小さい値が好ましい。空孔10の間隔は40μmかそれよりもわずかに大きい値がよい。すなわち、上記母材内のクラッド内に空孔を設けることによりクラッドの等価屈折率を下げることができ、それにともない母材のコアの屈折率を低くすることができ、コアの中の屈折率制御用添加物を少なくすることができ、母材全体がSiOに近づくので、軟化温度がSiOのそれに近くなり、製造しやすくなる。
図7も光接続部品100Fの第7実施例を示したものである。同図(a)は光接続部品100Fの正面図、同図(b)は同図(a)の第1端面A−A矢視断面図、同図(c)は同図(a)の第2端面B−B矢視断面図を示したものである。この実施例は第1端面に接続するマルチコアファイバ1のコア8の数が11個で、真ん中に1個、その外周に10個、合計11個のコア8を配置したマルチコアファイバ用光接続部品であり、その第2端面にはパンダファイバ2を上記マルチコアファイバ1のコア8の配置に対応して配置させたものである。上記マルチコアファイバ1のコア8の間隔Smは40μmである。第2端面のそれぞれのパンダファイバ2はその中心は外周のパンダファイバ2と空間的に離れた状態で接続されている。この実施例ではマルチコアファイバ1の外径はコア8の数が多いことから250μmとした。なお、コア8の間隔Smは上記値に限定されない。30μmでも良い。
次に、本発明に係る光接続部品の製造方法の実施例について図8〜図21を参照して説明する。
図8は光接続部品用母材の製造のための金型の実施例を示したものである。同図(a)は光接続部品用母材製造のための金型の半割の断面図、同図(b)は同図(a)の第1端面A−A矢視断面図、同図(c)は同図(a)の第2端面B−B矢視断面図を示したものである。この金型14はマルチコアファイバのコア数が7個の場合を想定した光接続部品用母材を製造することを考えた金型である。その金型14の長さLは10mmから50mmの範囲が好ましい。あまり短いと金型14内に張り巡らすガラスファイバ13が斜めになり、損失増加を招き、またあまり長いと加熱、延伸した際の光接続部品の長さが長くなりすぎて取り扱いが面倒になる。この金型14内にはその第1端面側の仕切り板11から第2端面側の仕切り板12に向けてモードフィールド径がP(P:8から15)倍の大きさのガラスファイバ13が張り巡らされている。
ここで、上記ガラスファイバ13の代りに直径がガラスファイバの直径の金属線を用いてもよい。そしてもう一つの同じサイズの半割金型14−2をかぶせ、その金型14内に硬化性樹脂及び硬化剤を含んだSiOガラス原料溶液15を注入、充填し、その後、硬化性樹脂と硬化剤の反応により自己硬化反応を生じさせて上記該原料溶液15を固化させて上記ガラスファイバ13(あるいは金属線)と金型14を脱離し、その後、乾燥、脱脂、加熱して多孔質ガラス状の光接続部品用母材を形成する。そしてこの多孔質ガラス状の光接続部品用母材を塩素雰囲気下で高温加熱して透明なSiOガラスからなる光接続部品用母材を得る。ついでこの母材を加熱して1/Pに断面を延伸することにより前記光接続部品を得る。
なお、上記金型14の両端の仕切り板11、12は厚みF(F:5mmから15mmの範囲がこのましい。)の板壁で構成され、その板にガラスファイバ13を真直ぐに通す貫通孔16が設けられている。そして金型14内でガラスファイバ13が第1端面側から第2端面側に向かって張り巡らせてある。上記第1および第2端面をでたガラスファイバ13は接続の際の軸折れによる接続損失を低くするためには出来る限り水平に張り巡らせられていることが望ましい。なお金型14の内径はマルチコアファイバの外径のP倍かそれよりも大きい値であれば良い。また第1端面側の仕切り板11及び第2端面側の仕切り板12の厚みFは金型14に開けた貫通孔16が水平になるように形成するために5mm以上、20mm程度が好ましい。
図9は図8に示す金型14で得られた多孔質ガラスの光接続部品用母材を示したものである。同図(a)は多孔質ガラスの光接続部品用母材の断面図、同図(b)は同図(a)の第1端面A−A矢視断面図、同図(c)は同図(a)の第2端面B−B矢視断面図を示したものである。これはマルチコアファイバのコア数が7個の場合を想定した、ガラスファイバ13が引きぬかれた状態の多孔質ガラスの光接続部品用母材である。その母材の長さLは10mmから50mmの範囲である。18はSiOの多孔質ガラスである。マルチコアファイバのコア間隔Smは40μmの場合の光接続部品の実施例として、ガラスファイバを挿入する空孔17の間隔は、燒結により、元の大きさに対する収縮後の大きさの比率:約82%(収縮率:約18%)を考慮に入れて40P×(1/0.82)=488μm、空孔17の直径はモードファイールド径10μmのガラスファイバを挿入するとして、10P×(1/0.82)=134μm、外径は7個のシングルモードファイバを束ねた場合の外径として、375P×(1/0.82)=4573μmである。なお、19は多孔質ガラス18の第1端面、20は第2端面を示す。
図10は図8に示す金型14と共に用いるガラスファイバ13の構造を示したものである。このガラスファイバ13はコア21の直径が100μm、クラッド層22の外径が134μmであるが、コア21のモードフィールド径が光接続部品で接続されるマルチコアファイバ、偏波面保存ファイバのモールドフィールド径と同じ値×P倍、この例ではコアのモールドフィールド径が9.5μmであるので、そのP(この例ではP:10)倍の95μmのものを用いた。そしてそのクラッド層22の厚みは5μmから50μmの範囲のものを用いる。あまり薄いとクラッド層として十分な機能を発揮せず、またあまり厚いとガラスファイバ同士が接触するので好ましくない。ここではクラッド層22の厚みは17μmを用いた。それゆえに上記値が好ましい。そしてコア21にGeOを添加したSiOを用い、クラッド層22にはSiOを用いた。上記以外にコア22には屈折率を高めるP、Ti、Zn、Sbなどを添加したSiOを用いてもよい。またクラッド層22にはF、Bなどを添加したSiOを用いてもよい。
図11は図8に示す金型14を用いて得られた多孔質ガラスの光接続部品用母材を燒結して得た光接続部品用母材内の空孔内にガラスファイバ13を挿入した本発明に係る光接続部品用母材24の実施例を示したものである。同図(a)は光接続部品用母材24の断面図、同図(b)は同図(a)の第1端面A−A矢視断面図、同図(c)は同図(a)の第2端面B−B矢視断面図を示したものである。燒結により多孔質ガラスの光接続部品用母材は透明なSiOガラスの光接続部品用母材24となる。該母材24の両端面は垂直に形成され、挿入したガラスファイバ13もその端面でカットされている。このカットした端面は研磨され、火炎研磨され、母材を複数個接続して大量生産できるように、綺麗な端面に加工されている。
図12は図11に示す光接続部品用母材24を加熱して断面積が1/Pになるように延伸して得た光接続部品100を示したものである。同図(a)は光接続部品100の断面図、同図(b)は同図(a)の第1端面A−A矢視断面図、同図(c)は同図(a)の第2端面B−B矢視断面図を示したものである。光接続部品100の第1端面(左側)のコア間隔は7個のコア3を有するマルチコアファイバに接続できるように40μmに形成されている。そして光接続部品100の第2端面(右側)のコア間隔は7本のパンダファイバ(外径125μm)を束ねて接続できるように125μmに形成されている。なお、コアのモードフィールド径はこの場合、9.5μmである。また光接続部品4の外径は、7本のパンダファイバを束ねた場合の外径に相当する375μmに定めてある。
図12に示した光接続部品100の両端面にファイバを接続した実施例が上述の第1実施例(図1)である。光接続部品100の第1端面には外径160μmの7個のコア8を有するマルチコアファイバ1が接続され、光接続部品の第2端面には外径125μmのパンダファイバ2が7本束ねられた状態で接続されている。ここで、それぞれのパンダファイバ2の応力付与部6の方向は同一方向に並べられている。パンダファイバ2を束ねた外径は375μmになっている。光接続部品の外形は円形、あるいは多角形でもよい。そしてその外形の大きさはパンダファイバを束ねた外径と等しいか、それよりも大きい方が扱い上好ましい。
図13は光接続部品用母材を大量生産する方法を示したものである。これは、光接続部品用の第1の母材24Aの第2端面側に上記と同じ第2の母材24Bの第2端面を接続(融着)し、ついでその第2の母材24Bの第1端面側に第1の母材24Aと同じ第3の母材24C第1端面を順次繰り返し接続(融着)してつながった連結母材を石英ガラス管25内に挿入し、該つながった連結母材と石英ガラス管25とを融着接続して一つのつながった母材棒125としたものである。そしてこのつながった母材棒125を加熱して1/Pに断面積を引き伸ばして延伸することにより、複数本の光接続部品100がつながった連結光接続部品を実現し、ついで切断することにより個々の光接続部品100を得る方法である。すなわち、一度に大量の光接続部品を得る方法である。なお、この方法において、ガラスファイバは事前に母材内の空孔に挿入した母材(例えば図11)を用いた方が良い。
図14も図13と同様に、複数の光接続部品用母材がつながった連結母材を実現した実施例を示したものである。これは、光接続部品用の第1の母材24Aの第1端面側に上記と同じ第2の母材24Bの第1端面を接続(融着)し、ついでその第2の母材24Bの第2端面側に第1の母材と同じ第3の母材24Cの第2端面を順次繰り返し接続(融着)してつながった連結母材を石英ガラス管25内に挿入し、該つながった連結母材と石英ガラス管25を融着接続して一つのつながった母材棒125としたものである。
図15は図13で得た、複数の光接続部品用母材がつながった連結母材を石英ガラス管25内に入れずに加熱して1/Pに断面積を引き伸ばして延伸することにより、つながった複数本の光接続部品の連結光接続部品を実現し、ついで個々の光接続部品を切断することにより得る方法の実施例である。すなわち、一度に大量の光接続部品を得る方法である。
図16は上記の光接続部品用母材がつながった連結母材を融着接続した母材棒125を所定速度Vpで電気炉27内に送り込みながら、溶融した母材棒125を電気炉27から所定速度Vfで引っ張って線引きする。そして、ポリマ溶液20の入ったルツボ28内を通過させて外周にポリマ材を塗布し、その後に低温電気炉29で加熱してポリマ材を硬化させ、硬化ポリマ材で被覆された連結光接続部品30を得る。その後に、その連結光接続部品30を切り出すことにより複数の光接続部品が得られる。
ここで、Vfは次式(1)で求められる。
Vf=PVp ・・・・(1)
光接続部品用母材24が石英系ガラスを用いたものであるので、電気炉27の温度は1950℃から2000℃までの範囲で実現することができた。
図17は、光接続部品用母材24の一方の第1端面に凸部を設け、反対の偏波面保存ファイバを束ねたものを接続する第2端面にも上記と同じ凸部を持たせた光接続部品用母材を製造するための金型14の構造を示したものである。すなわち、母材の第1端面及び第2端面に凸部を持たせるために、金型14の内部に33−1、33-2、33−3、33-4のごとく段差部を設けたものである。そして段差部の外径Diはパンダファイバを7本束ねた外径よりも大きいことが望ましい。
図18は図17の金型を用いて実現した光接続部品用母材を焼結して透明ガラス化した母材の実施例である。この場合、段差部の外径Diはパンダファイバを7本束ねた外径よりも大きいことが望ましく、3000μm+0.2μmとした。なお、この凸部はそれぞれの偏波面保存ファイバの応力付与部の方向を揃えて接続する際の水平方向の目印としても用いることができる。すなわち、凸部内にそれぞれの偏波面保存ファイバを束ねて配置させ、それぞれの偏波面保存ファイバのコアの両端の応力付与部が水平になるように配置させて接続することができる。またこれ以外に凸部の頂点を水平に加工してその水平面にそれぞれの偏波面保存ファイバのコアの両端の応力付与部が水平になるように配置させて接続することができる。
図19は、光接続部品用母材の一方の第1端面に凹部を設け、反対の偏波面保存ファイバを束ねたものを接続する第2端面にも上記と同じ凹部を持たせた光接続部品用母材を製造するための金型14の構造を示したものである。すなわち、母材の第1端面及び第2端面に凹部を持たせるために、金型14の内部に35−1、35-2、35−3、35-4のごとく段差部を設けたものである。
図20は図19の金型14を用いて実現した光接続部品用母材24の実施例である。この場合、段差部の外径Dはパンダファイバを7本束ねた外径よりも大きいことが望ましく、3000μm―0.1μmとして図18の母材の凸部とぴたりとつなぎこめるようにした。なお、この場合の凹部も上記と同様にそれぞれの偏波面保存ファイバの応力付与部の方向を揃えて接続する際の水平方向の目印として用いることができる。また、上記凹凸部の形状は円形以外に矩形、多角形でもよく、偏波面保存ファイバの目印になるように加工してもよい。
図18と図20の母材を複数本製造して複数本のつなぎ合わせた量産用母材とすることにより、それを加熱して断面積を1/Pになるように延伸して連続的につながった光接続部品を製造することができるその後に延伸したものを個別に切断して光接続部品を得る。なお、複数本つなぎ合わせた母材は石英ガラス管内に挿入、融着した後に加熱、延伸しても良い。
また今までの実施例では光接続部品用母材は金型を用いて実現していたが、光接続部品用母材の長さが短いので、円形あるいは角型の石英ガラスロッドを用い、該ロッド内に機械研削、ドリル加工などによって形成されたN個の空孔内にモードフィールド径のP倍の大きさのガラスファイバを挿入した構成とし、一方の第1端面側はN個のコアを有するマルチコアファイバのコアのモードフィールド径のP倍の大きさのコアとそのコア間隔を有する構造からなり、反対の第2端面側はN個の偏波面保存ファイバを束ねた構造でコアのモードフィールド径のP倍の大きさのコアとそのコア間隔を有する構造からなり、それを1/Pに加熱、延伸することによって長さがPに延伸されたことを特徴とする光接続部品とすることにより、製造してもよい。なお、上記母材の長さは10mmから数10mm程度の短い長さであるので、機械加工でも容易に空孔形成することができる。
なお、上記SiOガラス原料溶液15に代えて、Si(OCと水、酸からなる液体を多孔質ガラス材62の原料溶液としても良い。この場合は、加水分解反応により多孔質ガラス材62が形成される。この他、Si(OCに代えて、他のアルキル化物、例えば、Si(OCHを用いることができる。
本発明は上記実施例に限定されない。加熱、延伸方法は横型の装置を用い、母材を横方向に設置し、熱源で加熱、延伸する方法でも良い。マルチコアファイバのコア数は3個以上、19個程度までに対応する接続部品を実現することができる。またマルチコアファイバのコア間隔Smも20μmから70μmまでに適用できる。偏波面保存ファイバのコア径も5μmから15μm程度のものまで対応でき、またその外径を化学的なエッチングにより125μmmよりも小さくした80μmの外径のファイバに対しては本発明はより好適である。また偏波面保存ファイバを束にした場合のそれぞれのコア間隔も125μmよりも狭くなればなるほど本発明は好適である。本発明の接続部品の外周にプラスチック以外に金属材料や磁性材料で覆っても良い。
本発明は上記した実施例に限定されず、適宜の変更が可能である。実施例では偏波面保存ファイバとして、パンダファイバの例を示したが、パンダファイバの代わりに、楕円ジャケットファイバ、ボウタイ型ファイバを用いてもよい。
本発明は、コア数が3個以上、19個程度までのマルチコアファイバと偏波面保存ファイバ集合体とを接続する光接続部品用母材に適用可能である。また、コア間隔Smが30μmから70μmまでのマルチコアファイバに適用できる。さらに、コア径が5μmから15μm程度の偏波面保存ファイバに適用できる。さらに、外周を化学的なエッチングにより125μmmよりも小さくした例えば80μm程度の外径の偏波面保存ファイバに対して本発明はより好適である。また、偏波面保存ファイバを束にした場合のそれぞれのコア間隔が125μmよりも狭くなればなるほど本発明は好適である。本発明の接続部品の外周にプラスチック以外に金属材料や磁性材料で覆っても良い。また偏波面保存ファイバの応力付与部は各偏波面保存ファイバのすべてが水平方向、あるいは垂直方向になっていることが必要であるが、その応力付与部の方向はいずれにも適用することができる。
1…マルチコアファイバ
2…偏波面保存ファイバ(パンダファイバ)
3…ガラスファイバ
4…石英ガラス(SiOガラス)
5…パンダファイバのコア
6…パンダファイバの応力付与部
7…パンダファイバのクラッド
8…マルチコアファイバのコア
9…マルチコアファイバのクラッド
10…光接続部品内の空孔
11…金型の第1端面側の仕切り板
12…金型の第2端面側の仕切り板
13…金型内に設置したガラスファイバ
14…金型
15…ガラス原料溶液
16…金型の端面に設けた貫通孔
17…多孔質ガラスの中の空孔
18…多孔質ガラス
19…多孔質ガラスからなる光接続部品用母材の第1端面
20…多孔質ガラスからなる光接続部品用母材の第2端面
21…ガラスファイバのコア
22…ガラスファイバのクラッド層
24…光接続部品用母材
25…石英ガラス管
27…高温電気炉
28…ポリマ溶液を入れるルツボ
29…低温電気炉
30…連結光接続部品
50…マルチコアファイバ
51…マルチコアファイバのクラッド
52…マルチコアファイバのコア
60…パンダファイバ
61…パンダファイバのコア
62…パンダファイバの応力付与部
63…パンダファイバのクラッド
100…光接続部品
125…母材棒
図21から図23はマルチコアファイバと偏波面保存ファイバとを接続する際の構成図を示しているが、これに用いるマルチコアファイバ50は、それぞれクラッド5内に高屈折率のコア5(コア径d:10μm程度、波長1550nmでのモードフィールド径a:9.5μm)が4個および7個を有する例を示している。このように、一般的なマルチコアファイバは、1個のクラッド52内に4個から7個、あるいは15個程度のコア5を有している。それぞれのコア5の間隔Smは互いにコア5内を伝搬している光信号が干渉しない程度の30μmから60μmに設定され、マルチコアファイバ50の外径Dmは120μmから180μmに設定されている。このようなマルチコアファイバ50を用いて偏波変動のほとんどない情報伝送を実現するためには、上記マルチコアファイバ50内の複数個のコア5にそれぞれ1個の偏波面保存ファイバ60を接続して各偏波面保存ファイバ(パンダファイバ(PANDA(Polarization-maintaining AND Absorption-reducing)ファイバ)、楕円ジャケットファイバ、ボウタイ型ファイバがあり、この例ではパンダファイバを示す。)60のコア61内を伝搬してきた光情報の偏波面を保持した状態でマルチコアファイバ50を介して受光器で受信する、あるいは複数個の光送信器からの光信号をそれぞれ個別の偏波面保存ファイバ60を介して偏波面を保持した状態でマルチコアファイバ50の複数個のコア5内に送り込まなければならない。
ところが、1550nmの光通信用として用いる場合には、この偏波面保存ファイバ60はコア61の径が10μm程度(モードフィールド径:9.5μm)で、ファイバ外径Dh(クラッド63の外径)は応力付与部62を設けなければならないために余裕を見て125μmが必要であり、上記マルチコアファイバ50のそれぞれのコア5に偏波面保存ファイバ60を接続しようとするとコア間隔がSh:125μmになるので、上記偏波面保存ファイバがはみだしてしまい、構造寸法上無理があった。すなわち、マルチコアファイバのコア間隔Smに比して偏波面保存ファイバの外径が大きいために、上記マルチコアファイバのそれぞれのコアに偏波面保存ファイバのコアを接続しようとすると、偏波面保存ファイバがはみ出してしまう。そのために現在までに偏波面保存ファイバを接続したマルチコアファイバ伝送系は実現されていなかった。また偏波面保存ファイバ60の外径は、応力付与部6を設けなければならないために、最悪でも最小で80μmまでしか小さくできないために上記コア間隔Smが30μmから60μmのマルチコアファイバ50のそれぞれのコア5に接続することはできなかった。
マルチコアファイバ50の直径は最大でも300μm程度であり、その中に有するコア数が多いほど大容量の情報を一度に伝送することができるが、上記マルチコアファイバ50の断面積の制約、コア(使用する波長帯630nmから1550nmによって異なり、そのモードフィールド径は4μmから11μmの範囲から選ばれるが、通常、大容量伝送を実現する1550nm帯ではコア径10μmでモードフィールド径はそれよりもわずかに小さい値9.5μmである。)5間の干渉などを考慮に入れると、コア数は4個から19個の範囲であることが望ましい。そして上記コア間隔Smは30μmから60μmに設定される。これに対して、上記通信用波長帯1550nmでは上記コア5から出射した光を取り込む偏波面保存ファイバ60は、応力付与部62があるためにクラッド外径63は125μmよりも小さくできず、コア61の径は上記と同じ10μmである(モードフィールド径は波長1550nmにおいて9.5μmであり、コア径よりもわずかに小さい値である。)。このため、上記マルチコアファイバ50の断面内に有するコア5のそれぞれに1対1で光結合するように上記偏波面保存ファイバ60を配置させると、上記偏波面保存ファイバ60のほとんどが上記断面からはみ出してしまい、マルチコアファイバ50の各コア5と偏波面保存ファイバ60のコア61との間で良好な偏波面保持と光結合を得ることが困難となってしまう。そのために未だ実現されていなかった。
上記課題を解決するために成された本発明の第1態様は、
1個のクラッド内にN個のコアが所定の間隔Smで配置されたマルチコアファイバと、外径Dhが前記間隔Smよりも大きく、前記マルチコアファイバのコアとモードフィールド径が同じである、N個の偏波面保存ファイバとを接続するための光接続部品であって、
前記マルチコアファイバに接する第1端面と、前記偏波面保存ファイバに接する第2端面とを有する石英ガラス部材と、
該石英ガラス部材の中に密着するように配置された前記第1端面から前記第2端面にかけて延びるN個のガラスファイバであって、前記マルチコアファイバのコア及び前記偏波面保存ファイバのコアとモードフィールド径が同じコアを有するN個のガラスファイバを備え、
前記第1端面における前記N個のガラスファイバのコアの間隔が前記マルチコアファイバのコアの間隔と等しく、前記第2端面における前記ガラスファイバのコアの間隔が前記偏波面保存ファイバの外径と同じであるか又は該外径よりも大きいことを特徴とする光接続部品である。
また、本発明に係る光接続部品は、前記石英ガラス部材の中の前記N個のガラスファイバのそれぞれの両側に、前記第1端面から前記第2端面にかけて延びるように配置された一対の空孔を備えており、前記NのガラスファイバのN対の空孔が対向する方向が全て同じであることが好ましい。
上記構成によれば、光接続部品の第2端面に接続されるN個の偏波面保存ファイバの偏波面を保持したままマルチコアファイバに接続することができる。
上記課題を解決するために成された本発明の第2態様は、上述の光接続部品の製造方法であって、
柱状の石英ガラス母材と、この石英ガラス母材の内部に、該石英ガラス母材の一方の端面から他方の端面に向かって互いの間隔が放射状に拡がるように、且つ前記石英ガラス母材と密着するように配置されたN本のガラスファイバ用母材とからなる光接続部品用母材を加熱、延伸することにより光接続部品を得ることを特徴とする光接続部品の製造方法である。
この場合、前記光接続部品用母材が、両端部に凸部を有するものと、両端部に凹部を有するものから成り、一の光接続部品用母材の凸部を別の光接続部品用母材の凹部に嵌め込むことにより複数個の光接続部品用母材を直列に連結するようにすると、複数の光接続部品用母材の端部同士を確実に接続することができる。

Claims (10)

  1. 1個のクラッド内にN個のコアが所定の間隔Smで配置されたマルチコアファイバと、外径Dhが前記間隔Smよりも大きく、前記マルチコアファイバのコアとモードフィールド径が同じである、N個の偏波面保存ファイバとを接続するための光接続部品であって、
    前記マルチコアファイバに接する第1端面と、前記偏波面保存ファイバに接する第2端面とを有する石英ガラス部材と、
    該石英ガラス部材の中に配置された前記第1端面から前記第2端面にかけて延びるN個のガラスファイバであって、前記マルチコアファイバのコア及び前記偏波面保存ファイバのコアとモードフィールド径が同じコアを有するN個のガラスファイバを備え、
    前記第1端面における前記N個のガラスファイバのコアの間隔が前記マルチコアファイバのコアの配置と等しく、前記第2端面における前記ガラスファイバのコアの間隔が前記偏波面保存ファイバの外径と同じであるか又は該外径よりも大きいことを特徴とする光接続部品。
  2. 請求項1に記載の光接続部品において、
    前記ガラスファイバが、前記コアと、該コアの外周を取り囲む厚みが一定の、前記コアよりも屈折率が低い低屈折層とから構成されていることを特徴とする光接続部品。
  3. 請求項1又は2に記載の光接続部品において、
    前記石英ガラス部材の中の前記N個のガラスファイバのそれぞれの両側に、前記第1端面から前記第2端面にかけて延びるように配置された一対の空孔を備え、
    前記N対のガラスファイバのN対の空孔が対向する方向が全て同じであることを特徴とする光接続部品。
  4. 請求項1〜3のいずれかに記載の光接続部品において、
    前記石英ガラス部材の第2端面には、該第2端面に接続されるN個の偏波面保存ファイバの偏波面の方向を示す偏波面指示手段が設けられていることを特徴とする光接続部品。
  5. 請求項1〜4のいずれかに記載の光接続部品において、
    前記石英ガラス部材の前記第1端面には、第1接続凹部又は第2接続凸部が設けられ、前記第2端面には、第2接続凹部又は第2接続凸部が設けられていることを特徴とする光接続部品。
  6. 請求項1〜5のいずれかに記載の光接続部品の製造方法であって、
    柱状の石英ガラス母材と、この石英ガラス母材の内部に、該石英ガラス母材の一方の端面から他方の端面に向かって互いの間隔が放射状に拡がるように配置されたN本のガラスファイバ用母材とからなる光接続部品用母材を加熱、延伸することにより光接続部品を得ることを特徴とする光接続部品の製造方法。
  7. 請求項6に記載の光接続部品の製造方法において、
    前記ガラスファイバ用母材が、コア用母材と該コア用母材の外周を取り囲む低屈折率層用母材からなり、
    前記コア用母材の外径が前記マルチコアファイバのコアの外径のP倍であり、且つ、前記石英ガラス母材の一方の端面における前記コア用母材の間隔が前記マルチコアファイバのコアの間隔のP倍であり(ただし、Pは8〜15の数)、
    前記光接続部品用母材を、その外径が1/P倍に縮小するように加熱、延伸することにより光接続部品を製造することを特徴とする光接続部品の製造方法。
  8. 請求項6又は7に記載の光接続部品の製造方法において、
    前記光接続部品用母材を複数、直列に連結し、連結部分を溶融して接続することにより、複数個の光接続部品を連結した連結光接続部品に対応する連結光接続部品用母材を形成し、該連結光接続部品用母材を加熱、延伸した後、切り分けることにより一度に複数個の光接続部品を得ることを特徴とする光接続部品の製造方法。
  9. 請求項6又は7に記載の光接続部品の製造方法において、
    前記光接続部品用母材を複数、石英ガラス管内に挿入し、溶融して該石英ガラス管に前記複数の光接続部品用母材を固定することにより、複数個の光接続部品を連結した連結光接続部品に対応する連結光接続部品用母材を形成し、該連結光接続部品用母材を加熱、延伸した後、切り分けることにより一度に複数個の光接続部品を得ることを特徴とする光接続部品の製造方法。
  10. 請求項8又は9に記載の光接続部品の製造方法において、
    前記光接続部品用母材が、その両端部のうちの一方に凸部を、他方に凹部を有し、
    一の光接続部品用母材の凸部を別の光接続部品用母材の凹部に嵌め込むことにより複数個の光接続部品用単位母材を直列に連結することを特徴とする光接続部品の製造方法。
JP2014156778A 2014-07-31 2014-07-31 マルチコアファイバと偏波面保存ファイバの光接続部品および光接続部品の製造方法 Active JP5719960B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014156778A JP5719960B1 (ja) 2014-07-31 2014-07-31 マルチコアファイバと偏波面保存ファイバの光接続部品および光接続部品の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014156778A JP5719960B1 (ja) 2014-07-31 2014-07-31 マルチコアファイバと偏波面保存ファイバの光接続部品および光接続部品の製造方法

Publications (2)

Publication Number Publication Date
JP5719960B1 JP5719960B1 (ja) 2015-05-20
JP2016033618A true JP2016033618A (ja) 2016-03-10

Family

ID=53277831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014156778A Active JP5719960B1 (ja) 2014-07-31 2014-07-31 マルチコアファイバと偏波面保存ファイバの光接続部品および光接続部品の製造方法

Country Status (1)

Country Link
JP (1) JP5719960B1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018189600A (ja) * 2017-05-11 2018-11-29 日本電信電話株式会社 光パルス試験装置及び光パルス試験方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6862712B2 (ja) * 2016-08-05 2021-04-21 住友電気工業株式会社 光ファイバ評価方法及び光ファイバ評価装置
CN113721323B (zh) * 2021-08-19 2023-07-14 天津大学 新型多芯光纤耦合装置及制备方法
CN114114522B (zh) * 2021-11-12 2023-01-24 华中科技大学 一种芯间距渐变多芯光纤及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08146242A (ja) * 1994-11-24 1996-06-07 Hoya Corp 保持部材、光学装置およびアライメント方法
JPH11295545A (ja) * 1998-04-09 1999-10-29 Oki Electric Ind Co Ltd 偏波保持ファイバ、偏波保持ファイバの調芯方法および光伝送モジュール
JP2006528367A (ja) * 2003-06-19 2006-12-14 コーニング インコーポレイテッド 単偏光光ファイバおよびシステム並びにそれを製造する方法
JP2011018013A (ja) * 2009-01-20 2011-01-27 Sumitomo Electric Ind Ltd 光通信システム及び配列変換器
JP2011237782A (ja) * 2010-04-13 2011-11-24 Sumitomo Electric Ind Ltd 光分岐素子及びそれを含む光通信システム
WO2012118132A1 (ja) * 2011-03-02 2012-09-07 株式会社フジクラ マルチコアファイバ
JP2012230156A (ja) * 2011-04-25 2012-11-22 Kohoku Kogyo Kk ファイバ及びその製造方法
WO2012172906A1 (ja) * 2011-06-17 2012-12-20 住友電気工業株式会社 光接続部材、光接続構造、及び、光接続部材の製造方法
JP2013065002A (ja) * 2011-09-01 2013-04-11 Konica Minolta Advanced Layers Inc 結合光学系及び結合方法
WO2013051656A1 (ja) * 2011-10-05 2013-04-11 湖北工業株式会社 マルチコアファイバ用コネクタ及びそれに用いる石英ガラス成形品を製造する方法並びにその方法に用いる石英ガラス成形用金型

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08146242A (ja) * 1994-11-24 1996-06-07 Hoya Corp 保持部材、光学装置およびアライメント方法
JPH11295545A (ja) * 1998-04-09 1999-10-29 Oki Electric Ind Co Ltd 偏波保持ファイバ、偏波保持ファイバの調芯方法および光伝送モジュール
JP2006528367A (ja) * 2003-06-19 2006-12-14 コーニング インコーポレイテッド 単偏光光ファイバおよびシステム並びにそれを製造する方法
JP2011018013A (ja) * 2009-01-20 2011-01-27 Sumitomo Electric Ind Ltd 光通信システム及び配列変換器
JP2011237782A (ja) * 2010-04-13 2011-11-24 Sumitomo Electric Ind Ltd 光分岐素子及びそれを含む光通信システム
WO2012118132A1 (ja) * 2011-03-02 2012-09-07 株式会社フジクラ マルチコアファイバ
JP2012230156A (ja) * 2011-04-25 2012-11-22 Kohoku Kogyo Kk ファイバ及びその製造方法
WO2012172906A1 (ja) * 2011-06-17 2012-12-20 住友電気工業株式会社 光接続部材、光接続構造、及び、光接続部材の製造方法
JP2013065002A (ja) * 2011-09-01 2013-04-11 Konica Minolta Advanced Layers Inc 結合光学系及び結合方法
WO2013051656A1 (ja) * 2011-10-05 2013-04-11 湖北工業株式会社 マルチコアファイバ用コネクタ及びそれに用いる石英ガラス成形品を製造する方法並びにその方法に用いる石英ガラス成形用金型

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018189600A (ja) * 2017-05-11 2018-11-29 日本電信電話株式会社 光パルス試験装置及び光パルス試験方法

Also Published As

Publication number Publication date
JP5719960B1 (ja) 2015-05-20

Similar Documents

Publication Publication Date Title
US10761271B2 (en) Polarization maintaining optical fiber array
US6078716A (en) Thermally expanded multiple core fiber
JP5782104B2 (ja) マルチコアファイバへの低損失でモードフィールドが整合された結合のための方法、および装置
JP5572748B1 (ja) 光接続部品およびその製造方法並びに光接続部品製造用金型容器
JP2011145562A (ja) マルチコア光ファイバ、光コネクタ、およびマルチコア光ファイバの製造方法
JP5571855B2 (ja) マルチコアファイバ用コネクタ及びそれに用いる石英ガラス成形品を製造する方法並びにその方法に用いる石英ガラス成形用金型
JP2008277582A (ja) 光ポンピングデバイス用マルチコアファイバとその製造方法、光ポンピングデバイス、ファイバレーザ及びファイバ増幅器
US5098459A (en) Method of manufacturing optical branching and coupling device
JP5719960B1 (ja) マルチコアファイバと偏波面保存ファイバの光接続部品および光接続部品の製造方法
JP2020501198A (ja) マルチチャネル光結合器アレイ
CA2523930A1 (en) Method of making fiber optic couplers with precise positioning of fibers
US9733424B2 (en) Multicore fiber and method of manufacturing the same
JP2008076685A (ja) 端面近接多芯光ファイバーおよびその製造方法
CN111552025A (zh) 一种具有下凹三包层过渡光纤的多芯光纤Fan-in/out器件
JP2012002959A (ja) 光ファイバ及びその製造方法
EP0148863B1 (en) Polarization-insensitive, evanescent-wave, fused coupler with minimal environmental sensitivity
CN103153889A (zh) 预成形体的制作方法、光纤的制造方法及光纤
CN103698841B (zh) 一种微结构光纤器件
JPH0782136B2 (ja) 光フアイバカツプラならびにその製造方法および製造装置
JP2014013354A (ja) マルチコアインタフェース及びその製造方法
JP2012194362A (ja) モード合分波カプラ及びその製造方法
US20240142720A1 (en) Ferrule-terminated high-density optical fiber cable assembly
JPH1039148A (ja) テープ状マルチコアファイバの製造方法
JP2947301B2 (ja) 光ファイバ融着形カプラの製造方法およびそれを製造するために使用する器具
JP2677666B2 (ja) 光ファイバカプラの製造方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150323

R150 Certificate of patent or registration of utility model

Ref document number: 5719960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250