WO2012169521A1 - 半導体モジュール、上下アームキットおよび3レベルインバータ - Google Patents

半導体モジュール、上下アームキットおよび3レベルインバータ Download PDF

Info

Publication number
WO2012169521A1
WO2012169521A1 PCT/JP2012/064544 JP2012064544W WO2012169521A1 WO 2012169521 A1 WO2012169521 A1 WO 2012169521A1 JP 2012064544 W JP2012064544 W JP 2012064544W WO 2012169521 A1 WO2012169521 A1 WO 2012169521A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
terminal
reverse
package
semiconductor module
Prior art date
Application number
PCT/JP2012/064544
Other languages
English (en)
French (fr)
Inventor
省吾 小川
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to CN201280028073.0A priority Critical patent/CN103597730B/zh
Priority to JP2013519503A priority patent/JP5644943B2/ja
Priority to US14/124,871 priority patent/US9685888B2/en
Publication of WO2012169521A1 publication Critical patent/WO2012169521A1/ja
Priority to US15/482,092 priority patent/US10003280B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/10Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers
    • H01L25/11Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/115Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/48139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous wire daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49113Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting different bonding areas on the semiconductor or solid-state body to a common bonding area outside the body, e.g. converging wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Definitions

  • the present invention relates to a semiconductor module, an upper and lower arm kit including the semiconductor module, and a three-level inverter including the upper and lower arm kit.
  • FIG. 13 is a circuit diagram of a three-level inverter that converts direct current to alternating current using a conventional technique.
  • reference numerals 51 and 52 in the figure are DC power sources connected in series, where the positive electrode potential is P, the negative electrode potential is N, and the neutral point potential is M.
  • the DC power supplies 51 and 52 are constituted by an AC power supply system, they can be constituted by using a diode rectifier (not shown) and a large-capacity electrolytic capacitor.
  • the U-phase series connection circuit 60 is a series connection circuit of an upper arm made of an IGBT (T1) having a diode D1 connected in antiparallel and a lower arm made of an IGBT (T2) having an antiparallel connection of a diode D2.
  • the phase series connection circuit 61 is a series connection circuit of an upper arm made of an IGBT (T3) having a diode D3 connected in antiparallel and a lower arm made of an IGBT (T4) having an antiparallel connection of a diode D4.
  • the series connection circuit 62 includes a series connection circuit of an upper arm made of an IGBT (T5) in which a diode D5 is connected in antiparallel and a lower arm made of an IGBT (T6) in which a diode D6 is connected in antiparallel.
  • an AC switch in which IGBTs connected in reverse parallel are connected in reverse series is connected in reverse series. That is, between the series connection point of the series connection circuit 60 for the U phase and the neutral point M of the DC power supply, the emitter of the IGBT module 63 composed of the IGBT 81 with the diode 82 connected in antiparallel and the diode 84 are connected in antiparallel.
  • the AC switch having the configuration in which the emitter of the IGBT module 64 composed of the IGBT 83 is connected is connected to the diode 86 between the series connection point of the V-phase series connection circuit 61 and the neutral point M of the DC power supply.
  • An AC switch having a configuration in which an emitter of an IGBT module 65 made of IGBT 85 connected in parallel and an emitter of an IGBT module 66 made of IGBT 87 connected in reverse parallel to a diode 88 is connected is a series connection point of a series connection circuit 62 for a W phase.
  • the neutral point M of the DC power supply are I Emitter and diode AC switch configuration emitter and is connected to IGBT module 68 consisting of 92 IGBT 91 which was antiparallel connection BT module 67 are connected, respectively.
  • the series connection point of each series connection circuit 60, 61, 62 becomes an alternating current output, and is connected to the load 74 via the filter reactors 71, 72, 73, respectively.
  • FIG. 14 shows an example of the output voltage (Vout) waveform. It is characterized by the fact that an AC voltage with three voltage levels and few low-order harmonic components is output to a two-level type inverter, and the filter reactors (output filters) 71 to 73 are downsized. It becomes possible.
  • FIG. 15 is a configuration diagram for one phase of the upper and lower arms including an AC switch of a three-level inverter, where (a) is a circuit diagram and (b) is a perspective view of a semiconductor module.
  • the semiconductor module 40 shown in FIG. 15B accommodates an AC switch 53 in which two reverse blocking IGBTs 54 and 55 are anti-parallel and two IGBTs (T1, T2). ing.
  • FIG. 16 is a schematic cross-sectional view of a semiconductor module.
  • a power semiconductor chip 43 (T1, T2, D1, D2, 54, and 55 indicated by reference numerals in FIG. 15) is mounted on an insulating substrate 42 on a heat radiating metal base 41 and led out to the outside.
  • the metal terminals 44 are exposed on the upper surface of the package 45, and the interior of the package 45 is filled with a resin 46.
  • the semiconductor module 40 is applied to a voltage-type three-level inverter.
  • the semiconductor module 40 includes a first IGBT (T1) in which a diode D1 whose collector terminal C1 is connected to the positive terminal (P terminal) of the series connection circuit 60 is connected in reverse parallel, and the first IGBT (T1).
  • T1 a first IGBT
  • T2 a second IGBT
  • D2 a diode D2 whose collector is connected to the emitter and whose emitter terminal E2 is connected to the negative terminal (N terminal) of the series connection circuit 60 is connected in antiparallel.
  • the AC switch 53 includes a first reverse blocking IGBT 54 whose collector is connected to the emitter of the first IGBT (T1) and a second reverse blocking IGBT 55 connected in reverse parallel to the first reverse blocking IGBT 54. Consists of.
  • the series connection circuit 60 is configured by the first IGBT (T1) and the second IGBT (T2) in which the diode D1 is antiparallel, and the positive terminal (P terminal) of the series connection circuit 60 is the collector of the first IGBT.
  • the terminal C1 is connected, and the negative terminal (N terminal) is connected to the emitter terminal E2 of the second IGBT (T2).
  • the first reverse blocking IGBT 54 and the second reverse blocking IGBT 55 constitute an AC switch 53.
  • the AC switch 53 includes a connection point E1C2 between the emitter of the first IGBT (T1) and the collector of the second IGBT (T2), a positive terminal (P terminal) and a negative terminal (N terminal) of the series connection circuit 60. To an intermediate potential terminal (M terminal) that is at an intermediate potential.
  • the first IGBT (T1), the second IGBT (T2), the first reverse blocking IGBT 54, and the second reverse blocking IGBT 55 are housed in one package 45.
  • the reverse blocking IGBT is an IGBT having a reverse breakdown voltage (reverse breakdown voltage) equivalent to the forward breakdown voltage (forward breakdown voltage), and is called a symmetric IGBT because the forward breakdown voltage and the reverse breakdown voltage are equivalent.
  • reverse breakdown voltage reverse breakdown voltage
  • forward breakdown voltage forward breakdown voltage
  • An IGBT having no reverse breakdown voltage is an IGBT called an asymmetric IGBT whose reverse breakdown voltage is significantly lower than the forward breakdown voltage.
  • a freewheeling diode is connected in reverse parallel to an inverter circuit where no reverse breakdown voltage is applied.
  • IGBT simply refers to an IGBT having no reverse breakdown voltage.
  • Patent Documents 2 to 4 two types of modules in which the lead-out positions of the emitter terminal and the collector terminal are exchanged are prepared in a so-called one-piece semiconductor module, these two types of modules are arranged side by side and adjacent to each other. It is disclosed that one upper and lower arm of an inverter is configured by connecting an emitter terminal of one module and a collector terminal of the other module.
  • JP 2008-1937779 A Japanese Patent Laid-Open No. 3-108749 Japanese Patent Laid-Open No. 3-65065 Japanese Patent Laid-Open No. 9-9644
  • the semiconductor elements such as IGBT and reverse blocking IGBT stored in the module are changed depending on the capacity of the three-level inverter. That is, in order to increase the capacity, the chip size of the semiconductor element is changed, or an IGBT, a reverse blocking IGBT, or the like is connected in parallel.
  • a dedicated semiconductor module package 45 in accordance with semiconductor elements such as IGBTs and reverse blocking IGBTs to be stored. Therefore, in order to cope with a wide current range of several tens of A to several thousand A, it is necessary to newly prepare several packages. In order to cope with a wide withstand voltage range of several hundred volts to several hundred hundred volts, it is necessary to newly prepare several packages.
  • first and second IGBTs (T1, T2) and the first and second reverse blocking IGBTs 54, 55 are configured as separate packages 56a, 57 (see FIGS. 17 and 19) to form a three-level inverter. In some cases.
  • FIG. 17 is a configuration diagram of one phase of the upper and lower arms of the inverter.
  • FIG. 17A is a circuit diagram
  • FIG. 17B is a plan view of the main part of the semiconductor module.
  • the three main terminals (E1C2, E2, C1) are arranged in a line on the upper surface of the package 56a.
  • FIG. 18 is an internal structural diagram of the semiconductor module of FIG.
  • the E1C2 of A and B are connected in the package 56a, and the E1C2 of A is arranged on the package 56a.
  • FIG. 19 is a configuration diagram of an AC switch in which reverse blocking IGBTs are connected in reverse parallel.
  • FIG. 19A is a circuit diagram
  • FIG. 19B is a plan view of an AC switch package.
  • the three-level inverter shown in FIG. 15 is a semiconductor module 47 that becomes the upper and lower arms (series connection circuit 60) of the first and second IGBTs (T1, T2) shown in FIG. 17 and FIG.
  • the AC switch 53 using the two reverse blocking IGBTs 54 and 55 is combined.
  • the package of the semiconductor module 47 shown in FIG. 17 is an existing package 56a, which is a commonly used two-piece package containing an upper arm element and a lower arm element.
  • Three main terminals (E1C2, C1, E2) are arranged on the existing package 56a.
  • the package 57 of the AC switch 53 shown in FIG. 19B differs from the semiconductor module 47 shown in FIGS. 17 and 18 in the circuit configuration of the internal wiring and has two main terminals (K terminal and L terminal).
  • the package 56a of 17 (b) cannot be used.
  • the package 57 that houses the first and second reverse blocking IGBTs 54 and 55 needs to be newly developed in accordance with the current rating and the voltage rating.
  • the semiconductor module 40 (new 45 package) of FIG. 15 is used, or the semiconductor module 47 (existing package 56a) of FIG. 17 and the AC switch 53 (new package 57) of FIG. In any case, it is necessary to develop a new package.
  • Patent Documents 2 to 4 two types of modules having the same package shape are formed by changing the semiconductor element disposed inside using an existing package having the same external terminal position. However, it is not described that one upper and lower arm of a three-level inverter is configured using these two types of modules.
  • An object of the present invention is to solve the above-described problems and use an existing package without developing a new package, so that a low-cost, wide current rating and voltage rating semiconductor module, upper and lower arm kit, and three levels An inverter can be provided.
  • the semiconductor module includes a first switching element having a reverse breakdown voltage in which freewheeling diodes are connected in reverse parallel, a first reverse blocking switching element having a reverse breakdown voltage connected in series with the first switching element, A first package containing the first switching element and the first reverse blocking switching element, and a high potential side terminal disposed on the top surface of the first package and connected to the high potential side of the first switching element (C11), a first intermediate potential auxiliary terminal (M11) connected to the low potential side of the first reverse blocking switching element disposed on the top surface of the first package, and the top surface of the first package And a first connection terminal (Q11) connected to the first switching element and the first reverse blocking switching element.
  • a first switching element having a reverse breakdown voltage in which freewheeling diodes are connected in reverse parallel
  • a first reverse blocking switching element having a reverse breakdown voltage connected in series with the first switching element
  • a first package containing the first switching element and the first reverse blocking switching element and a high potential side terminal disposed on the top surface of the first package and
  • the semiconductor module is provided as follows.
  • the first switching element is an insulated gate bipolar transistor having no reverse breakdown voltage
  • the first reverse blocking switching element is a reverse blocking insulated gate bipolar transistor having a reverse breakdown voltage
  • the high potential side is a collector.
  • the low potential side is an emitter.
  • a semiconductor module as shown below is provided.
  • a second reverse blocking switching element having a reverse breakdown voltage; a second switching element having a reverse breakdown voltage in which a freewheeling diode is connected in reverse parallel with the second reverse blocking switching element;
  • a potential auxiliary terminal (M22), a low potential side terminal (E22) disposed on the top surface of the second package and connected to the low potential side of the second switching element, and disposed on the top surface of the second package.
  • a second connection terminal (Q22) connected to the second reverse blocking switching element and the second switching element;
  • the semiconductor module is provided as follows.
  • the second switching element is an insulated gate bipolar transistor having no reverse breakdown voltage
  • the second reverse blocking switching element is a reverse blocking insulated gate bipolar transistor having a reverse breakdown voltage
  • the high potential side is a collector.
  • the low potential side is an emitter.
  • an upper and lower arm kit as shown below is provided.
  • the upper and lower arm kit is composed of a pair of a first semiconductor module that is on the upper arm side of the three-level inverter and a second semiconductor module that is on the lower arm side of the three-level inverter.
  • the second semiconductor module has a second reverse blocking switching element having a reverse breakdown voltage, and a second reverse blocking voltage that is connected in series with the second reverse blocking switching element and connected in reverse parallel with a freewheeling diode.
  • Switching element, the second reverse blocking switching element, the second package containing the second switching element, and the high potential of the second reverse blocking switching element disposed on the upper surface of the second package A second intermediate potential auxiliary terminal (M22) connected to the second side, and connected to the low potential side of the second switching element disposed on the upper surface of the second package A low potential side terminal (E22) and a second connection terminal (Q22) disposed on the top surface of the second package and connected to the second reverse blocking switching element and the second switching element.
  • the three-level inverter connects the high-potential side terminals (C11 terminals) of the first semiconductor module with a third connection conductor, and connects the low-potential side terminals (E22 terminals) of the second semiconductor module to the second one.
  • the upper and lower arm kit includes a first semiconductor module and a second semiconductor module, and the first semiconductor module is a first switching element having a reverse breakdown voltage in which freewheeling diodes are connected in antiparallel.
  • a first reverse blocking switching element having a reverse withstand voltage connected in series with the first switching element, a first package containing the first switching element and the first reverse blocking switching element, A high potential side terminal (C11) disposed on the top surface of the first package and connected to a high potential side of the first switching device; and the first reverse blocking switching device disposed on the top surface of the first package.
  • a second connecting terminal (Q22) connected to the etching element and the second switching element; the first connecting terminal (Q11 terminal); the second connecting terminal (Q22 terminal); Are connected by a first connecting conductor, and the intermediate potential auxiliary terminal (M11 terminal) of the first semiconductor module and the intermediate potential auxiliary terminal (M22 terminal) of the second semiconductor module are connected by a second connecting conductor. Connect with.
  • a three-level inverter in which three upper and lower arm kits are arranged in parallel.
  • the three first connection conductors are connected to the U terminal, the V terminal, and the W terminal, which are output terminals of the three-level inverter, respectively, and the second connection conductors are connected to each other to connect the intermediate potential terminal.
  • M terminal the high potential side terminals of the first semiconductor module and the positive electrode of the first DC power supply are connected via a third connection conductor (P terminal), and the negative electrode of the first DC power supply is connected.
  • the intermediate potential terminal (M terminal) is connected, the low potential side terminals of the second semiconductor module and the negative electrode of the second DC power source are connected via a fourth connection conductor (N terminal), and the second The positive electrode of the DC power source is connected to the intermediate potential terminal (M terminal).
  • the semiconductor module, the upper and lower arm kit and the three-level inverter can be configured using the existing package (three main terminals), the design efficiency can be improved without developing a new package. Sharing can be realized and cost reduction can be achieved.
  • circuit configuration can be made using various existing packages, semiconductor modules having a wide current rating and voltage rating, an upper and lower arm kit, and a three-level inverter can be provided.
  • FIG. 4 is an internal structure diagram of the semiconductor module of FIG. 3. It is a principal part circuit diagram of the upper and lower arm kit of 3rd Example of this invention. It is a principal part top view of the upper-lower arm kit of 3rd Example of this invention.
  • FIG. (A) is a circuit diagram
  • FIG. (B) is a plan view of the package of the AC switch.
  • FIGS. 1A and 1B are configuration diagrams of a semiconductor module according to a first embodiment of the present invention, in which FIG. 1A is a principal circuit diagram and FIG. 1B is a principal plan view.
  • FIG. 2 is an internal structure diagram of the semiconductor module of FIG.
  • four first reverse blocking IGBTs 5 having reverse withstand voltage are connected in parallel
  • four first IGBTs 1 normally used IGBTs
  • FWD freewheel
  • Q11 of A and B are connected in the package 56
  • the Q11 of A is arranged on the package 56, and is a terminal corresponding to E1C2 in FIG.
  • the first semiconductor module 100 is characterized in that the FWD 2 of the upper arm of the series connection circuit of the three-level inverter is anti-parallel and has the reverse breakdown voltage of the first IGBT 1 that does not have the reverse breakdown voltage and one of the AC switches.
  • One reverse blocking IGBT 5 is housed in the same package 56 as the existing package 56a.
  • the first semiconductor module 100 has a configuration in which a first IGBT 1 in which FWD 2 is connected in antiparallel and a first reverse blocking IGBT 5 are connected in series, and the emitter of the first IGBT 1 and the first reverse blocking IGBT 5 The collector is connected at connection point 9a.
  • the high potential side terminal 7 (C11) connected to the collector of the first IGBT 1, the first intermediate potential auxiliary terminal 11 (M11) connected to the emitter of the first reverse blocking IGBT 5, the first A first connection terminal 9 (Q11) connected to a connection point 9a between the emitter of IGBT1 and the collector of first reverse blocking IGBT5 is arranged.
  • gate terminals G1 and G2 and auxiliary emitter terminals E1 and E2 of the first IGBT 1 and the first reverse blocking IGBT 5 are arranged.
  • Q11 is a terminal corresponding to E1C2 in FIG.
  • the first IGBT 1 in which the FWD 2 is connected in reverse parallel is an element constituting the upper arm of the three-level inverter 500 (see FIGS. 9 and 10), and the first reverse blocking IGBT 5 is the AC switch 15 (see FIG. 9). ) Is a part of the device.
  • the package 56 shown in FIG. 1B is the same as the package 56a of the existing semiconductor module 47 (see FIG. 17B), including the arrangement of terminals.
  • the package 56 used in the semiconductor module 100 of FIG. 1 can be shared with the existing package 56a of the conventional semiconductor module 47 shown in FIG. 17B, a new package is developed for the three-level inverter 500. Therefore, the development period of the first semiconductor module 100 can be shortened and the cost can be reduced.
  • FIGS. 3A and 3B are configuration diagrams of a semiconductor module according to a second embodiment of the present invention, in which FIG. 3A is a principal circuit diagram and FIG. 3B is a principal plan view.
  • FIG. 4 is an internal structure diagram of the semiconductor module of FIG. In FIG. 4, four second reverse blocking IGBTs 6 having reverse breakdown voltage are connected in parallel, four second IGBTs 3 (normally used IGBTs) having no reverse breakdown voltage are connected in parallel, and four FWDs 4 are connected. In the above, an example is shown in which each normal second IGBT 3 is arranged in reverse parallel.
  • the second semiconductor module 200 is characterized in that the FWD 4 in the lower arm of the serial connection circuit of the three-level inverter is anti-parallel and the second IGBT 3 that does not have a reverse breakdown voltage and the other reverse breakdown voltage of the AC switch.
  • the second reverse blocking IGBT 6 is housed in the same package 56 as the existing package 56a.
  • the second semiconductor module 200 has a configuration in which a second IGBT 3 in which FWD 4 is connected in reverse parallel and a second reverse blocking IGBT 6 are connected in series, and the collector of the second IGBT 3 and the second reverse blocking IGBT 6 Emitter connects.
  • gate terminals G3 and G4 and auxiliary emitter terminals E3 and E4 of the second IGBT 3 and the second reverse blocking IGBT 6 are arranged.
  • Q22 is a terminal corresponding to E1C2 in FIG.
  • the second IGBT 3 in which the FWD 4 is connected in reverse parallel is an element constituting the lower arm of the three-level inverter 500, and the second reverse blocking IGBT 6 is an element constituting a part of the AC switch 15 (see FIG. 9). It is.
  • the package 56 shown in FIG. 3 (b) is the same as the package 56a (see FIG. 17) of the existing semiconductor module 47 in which two conventional IGBT chips are housed in series, including each terminal arrangement.
  • the package 56 used in the semiconductor module 200 of FIG. 3B can be shared with the existing package 56a of the conventional semiconductor module 47 shown in FIG. There is no need to develop a package, and the development period of the second semiconductor module 200 can be shortened and the cost can be reduced.
  • FIGS. 5 and 6 show an upper and lower arm kit according to a third embodiment of the present invention.
  • FIG. 5 is a principal circuit diagram
  • FIG. 6 is a principal plan view.
  • the upper and lower arm kit 300 includes a pair of the first semiconductor module 100 on the upper arm side of the three-level inverter 500 shown in FIGS. 9 and 10 and the second semiconductor module 200 on the lower arm side.
  • a method of constructing one upper and lower arm of the three-level inverter 500 using the upper and lower arm kit 300 of FIG. 5 and FIG. 6 in which the upper and lower arms are not connected will be described.
  • a first connection terminal 9 (Q11) of the first semiconductor module 100 and a second connection terminal 10 (Q22) of the second semiconductor module 200 are connected by a first connection conductor 13 indicated by a dotted line, and a three-level inverter 500 is connected.
  • the U terminal of the output terminal see FIGS. 9 and 10).
  • the first intermediate potential auxiliary terminal 11 (M11) of the first semiconductor module 100 and the second intermediate potential auxiliary terminal 12 (M22) of the second semiconductor module 200 are connected by a second connection conductor 14 indicated by a dotted line.
  • the M terminal of the intermediate potential terminal of the three level inverter 500 is used.
  • the high potential side terminal 7 (C11) of the first semiconductor module 100 is connected to a P terminal (not shown) of the three-level inverter 500, and the low potential side terminal 8 (E22) of the second semiconductor module 200 is connected to the three-level inverter 500. Connect to N terminal (not shown).
  • the upper and lower arm kit 300 is configured using the same package 56 as the existing package 56a, the cost of the upper and lower arm kit 300 can be reduced. Also, the upper and lower arm kit 300 having a wide current rating and voltage rating can be easily provided.
  • the upper and lower arm kit 300 includes a first semiconductor module 100 and a second semiconductor module 200 that are not connected to each other.
  • ⁇ Example 4> 7 and 8 show a vertical arm kit according to a fourth embodiment of the present invention.
  • FIG. 7 is a principal circuit diagram
  • FIG. 8 is a principal plan view.
  • the difference between the upper and lower arm kit 400 in FIGS. 7 and 8 and the upper and lower arm kit 300 in FIGS. 5 and 6 is that Q11 and M11 of the first semiconductor module 100 on the upper arm side and the second semiconductor module 200 on the lower arm side are different.
  • Q22 and M22 are connected by the third connection conductor 16 and the fourth connection conductor 17, and the semiconductor modules 100 and 200 of the upper and lower arms are integrated.
  • FIGS. 9 and 10 are configuration diagrams of a three-level inverter according to a fifth embodiment of the present invention.
  • FIG. 9 is a circuit diagram of the main part
  • FIG. 10 is a plan view of the main part.
  • the first and second DC power sources 23 and 24 shown in FIG. 9 are not shown.
  • Q11 and Q22 of each of the three upper and lower arm kits 300 are connected by the first connecting conductor 13 to be the U terminal, V terminal, and W terminal which are output terminals.
  • M11 and M22 of each of the three upper and lower arm kits 300 are connected by the second connection conductor 14 to form an M terminal that is an intermediate potential terminal. This portion constitutes the AC switch 15 of the three-level inverter 500 shown in FIG.
  • the high potential side terminals 7 (C 11) of the first semiconductor module 100 are connected to each other by the fifth connection conductor 21 to be a P terminal of the three-level inverter 500.
  • the low potential side terminals 8 (E22) of the second semiconductor module 200 are connected to each other by the sixth connection conductor 22 to be an N terminal of the three-level inverter 500.
  • the positive and negative electrodes of the first DC power supply 23 are connected to the P and M terminals of the three-level inverter 500, respectively, and the positive and negative electrodes of the second DC power supply 24 are connected to the M and N terminals of the three-level inverter 500, respectively.
  • the three-level inverter 500 is configured.
  • the wiring inductance connected to the first and second DC power supplies 23 and 24 can be reduced by providing the M terminal, which is an intermediate potential terminal, at two locations.
  • FIGS. 11 and 12 are configuration diagrams of a three-level inverter according to a sixth embodiment of the present invention.
  • FIG. 11 is a principal circuit diagram
  • FIG. 12 is a principal plan view. In FIG. 12, the first and second DC power supplies 23 and 24 shown in FIG. 10 are not shown.
  • the difference between the three-level inverter 600 and the three-level inverter 500 shown in FIGS. 9 and 10 is that the upper and lower arm kit 400 is used instead of the upper and lower arm kit 300.
  • the first semiconductor module 100 and the second semiconductor module 200 are connected by the third and fourth connection conductors 16 and 17.
  • the connection conductor 25 and the eighth connection conductor 26 are connected at connection points 18 and 19, respectively, to obtain an M terminal, a U terminal, a V terminal, and a W terminal.
  • the positive and negative electrodes of the first DC power supply 23 are connected to the P and M terminals of the three-level inverter 600, respectively.
  • the positive and negative electrodes of the second DC power supply 24 are connected to the M and N terminals of the three-level inverter 600, respectively.
  • a three-level inverter 600 is configured.
  • the wiring inductance connected to the first and second DC power supplies 23 and 24 can be reduced by providing the M terminal, which is an intermediate potential terminal, at two locations.
  • the IGBT is used as the semiconductor element, but a power MOSFET may be used.
  • a power MOSFET may be used.
  • the power MOSFET does not have a reverse breakdown voltage, it is necessary to connect a diode in series to the power MOSFET used for the portion corresponding to the reverse blocking IGBT.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

 新規のパッケージを開発することなく、既存のパッケージを用いることで、低コストで広い電流定格および電圧定格の半導体モジュール、上下アームキットおよび3レベルインバータを提供することができる。 既存のパッケージを用いて、上アーム側の第1半導体モジュール(100)と下アーム側の第2半導体モジュール(200)を形成し、これらの半導体モジュール(100),(200)を用いて上下アームキット(300)を構成する。さらにこの上下アームキッド(300)を用いて3レベルインバータ(500)を構成する。これらを既存のパッケージ(56)を用いて形成できるので、低コスト化で広い電流定格および電圧定格の半導体モジュール(100),(200)、上下アームキット(300)および3レベルインバータ(500)を提供することができる。

Description

半導体モジュール、上下アームキットおよび3レベルインバータ
 この発明は、半導体モジュール、この半導体モジュールで構成される上下アームキットおよびこの上下アームキットで構成される3レベルインバータに関する。
 図13は、従来の技術を用いた直流から交流に変換する3レベルインバータの回路図である。
 図13において、図中の符号の51,52が直列に接続された直流電源で、正極電位をP、負極電位をN、中性点電位をMとしている。直流電源51,52を交流電源システムより構成する場合は、図示していないダイオード整流器と大容量の電解コンデンサなどを用いて構成することが可能である。
 正極電位Pと負極電位Nとの間には、ダイオードを逆並列接続した絶縁ゲートバイポーラトランジスタ(以下IGBTという)の直列接続回路が3相分接続されている。即ち、U相用の直列接続回路60はダイオードD1を逆並列接続したIGBT(T1)からなる上アームとダイオードD2を逆並列接続したIGBT(T2)からなる下アームとの直列接続回路で、V相用の直列接続回路61はダイオードD3を逆並列接続したIGBT(T3)からなる上アームとダイオードD4を逆並列接続したIGBT(T4)からなる下アームとの直列接続回路で、W相用の直列接続回路62はダイオードD5を逆並列接続したIGBT(T5)からなる上アームとダイオードD6を逆並列接続したIGBT(T6)からなる下アームとの直列接続回路で、それぞれ構成されている。
 各相の直列接続回路の上アームと下アームの直列接続点と直流中性点電位Mとの間には、ダイオードを逆並列接続したIGBTを逆直列接続した交流スイッチが接続されている。即ち、U相用の直列接続回路60の直列接続点と直流電源の中性点Mとの間には、ダイオード82を逆並列接続したIGBT81からなるIGBTモジュール63のエミッタとダイオード84を逆並列接続したIGBT83からなるIGBTモジュール64のエミッタとが接続された構成の交流スイッチが、V相用の直列接続回路61の直列接続点と直流電源の中性点Mとの間には、ダイオード86を逆並列接続したIGBT85からなるIGBTモジュール65のエミッタとダイオード88を逆並列接続したIGBT87からなるIGBTモジュール66のエミッタとが接続された構成の交流スイッチが、W相用の直列接続回路62の直列接続点と直流電源の中性点Mとの間には、ダイオード90を逆並列接続したIGBT89からなるIGBTモジュール67のエミッタとダイオード92を逆並列接続したIGBT91からなるIGBTモジュール68のエミッタとが接続された構成の交流スイッチが、それぞれ接続されている。また、各直列接続回路60、61、62の直列接続点は交流出力となり、各々フィルタ用リアクトル71、72、73を介して負荷74に接続される。
 本回路構成とすることで、各直列接続回路60、61、62の直列接続点は、正極電位P、負極電位N、および中性点電位Mを出力することが可能となるため、3レベルのインバータ出力となる。図14に出力電圧(Vout)波形例を示す。2レベルタイプのインバータに対して、3つの電圧レベルを持った低次の高調波成分の少ない交流電圧が出力されることが特徴であり、フィルタ用リアクトル(出力フィルタ)71~73の小型化が可能となる。
 つぎに、特許文献1に記載されている従来の3レベルインバータについて図15を用いて説明する。
 図15は、3レベルインバータの交流スイッチを含んだ上下アーム1相分の構成図であり、(a)は回路図、(b)は半導体モジュールの斜視図である。
 図15(b)に示す半導体モジュール40は、図15(a)に示すように2個の逆阻止IGBT54,55を逆並列にした交流スイッチ53と2個のIGBT(T1,T2)が収納されている。
 図16は、半導体モジュールの模式的な断面図である。この半導体モジュール40は、パワー半導体チップ43(図15の符号で示すT1,T2,D1,D2,54,55)を放熱用金属ベース41上の絶縁基板42上に実装し、外部へ導出するための金属端子44をパッケージ45の上面に露出し、パッケージ45の内部は樹脂46が充填されている。
 この半導体モジュール40は、電圧形の3レベルインバータに適用される。この半導体モジュール40は、直列接続回路60の正極端子(P端子)にコレクタ端子C1が接続されるダイオードD1を逆並列接続した第1のIGBT(T1)と、この第1のIGBT(T1)のエミッタにコレクタが接続され直列接続回路60の負極端子(N端子)にエミッタ端子E2が接続されるダイオードD2が逆並列接続した第2のIGBT(T2)からなる。
 また、第1のIGBT(T1)のエミッタにコレクタが接続する第1の逆阻止型IGBT54と、第1の逆阻止IGBT54に逆並列接続される第2の逆阻止IGBT55で構成される交流スイッチ53からなる。
 前記のダイオードD1が逆並列した第1のIGBT(T1)と第2のIGBT(T2)で直列接続回路60が構成され、直列接続回路60の正極端子(P端子)が第1のIGBTのコレクタ端子C1と接続し、負極端子(N端子)が第2のIGBT(T2)のエミッタ端子E2と接続する。
 前記の第1の逆阻止IGBT54と第2の逆阻止IGBT55で交流スイッチ53が構成される。
 また、この交流スイッチ53は第1のIGBT(T1)のエミッタと第2のIGBT(T2)のコレクタとの接続点E1C2と直列接続回路60の正極端子(P端子)と負極端子(N端子)との間の中間電位にある中間電位端子(M端子)との間に接続される。第1のIGBT(T1)、第2のIGBT(T2)、第1の逆阻止IGBT54および第2の逆阻止IGBT55は一つのパッケージ45内に収納される。
 このように、一つの上下アームを一つのパッケージ45に収納し、これらのパッケージ45を3個用いて3レベルインバータを構成すると、外部配線が単純化される。さらに、3レベルインバータの配線インダクタンスの低減が図れると同時に、装置全体の小型化が図れる。
 ここで、逆阻止IGBTとは、順方向耐圧(順耐圧)と同等の逆方向耐圧(逆耐圧)を有するIGBTのことであり、順耐圧と逆耐圧が同等であるところから対称型IGBTと称することもある。
 また、逆耐圧を有さないIGBTとは、逆耐圧が順耐圧より大幅に低い非対称型IGBTと称せられるIGBTを指し、逆耐圧が印加されない例えばインバータ回路などにフリーホイーリングダイオードを逆並列接続して多用される。通常、単にIGBTというとこの逆耐圧を有さないIGBTのことを指す。
 また、特許文献2~4には、いわゆる1個組の半導体モジュールにおいて、エミッタ端子、コレクタ端子の導出位置を入れ替えた2種類のモジュールを用意し、この2種類のモジュールを並べて配置し、隣接する一方のモジュールのエミッタ端子と他方のモジュールのコレクタ端子を接続することでインバータの一つの上下アームを構成することが開示されている。
特開2008-193779号公報 特開平3-108749号公報 特開平3-65065号公報 特開平9-9644号公報
 しかし、前記の図15で示す半導体モジュールを用いて3レベルインバータを製作する場合、3レベルインバータの容量によってモジュール内に格納するIGBTや逆阻止IGBTなどの半導体素子が変更される。すなわち、容量を大きくするためには、半導体素子のチップサイズが変更されたり、IGBTや逆阻止IGBTなどを並列接続したりする。このように、多種の容量の3レベルインバータを揃える場合、格納するIGBTや逆阻止IGBTなどの半導体素子に応じて専用の半導体モジュールのパッケージ45を新規に開発する必要がある。そのため、数十Aから数千Aの広い電流領域に対応するためには、幾つかのパッケージを新規に用意する必要がある。また、数百Vから千数百Vの広い耐圧領域に対応するためには、幾つかのパッケージを新規に用意する必要がある。
 また、前記の第1、第2のIGBT(T1,T2)と第1、第2の逆阻止IGBT54,55を別々のパッケージ56a,57(図17、図19参照)で3レベルインバータを構成する場合もある。
 図17は、インバータの上下アーム1相分の構成図であり、同図(a)は回路図、(b)は半導体モジュールの要部平面図である。ここで示す例では3主端子(E1C2,E2,C1)はパッケージ56aの上面に一列に配置されている。
 図18は、図17の半導体モジュールの内部構造図である。イとロのE1C2はパッケージ56a内で接続しており、パッケージ56a上に配置されるのはイのE1C2である。
 図19は、逆阻止IGBTが逆並列接続された交流スイッチの構成図であり、同図(a)は回路図、同図(b)は交流スイッチのパッケージの平面図である。
 図15に示す3レベルインバータを図17および図18で示す第1、第2のIGBT(T1,T2)の上下アーム(直列接続回路60)となる半導体モジュール47と図19で示す第1、第2の逆阻止IGBT54,55を用いた交流スイッチ53を組み合わせて構成する。この場合は、図17で示す半導体モジュール47のパッケージは既存のパッケージ56aであり、上アームの素子と下アームの素子を収納した通常よく用いられている2個組パッケージである。この既存のパッケージ56a上には3個の主端子(E1C2,C1,E2)が配置される。
 しかし、図19(b)に示す交流スイッチ53のパッケージ57は、図17および図18に示す半導体モジュール47と内部配線の回路構成が異なり2主端子(K端子、L端子)であるため、図17(b)のパッケージ56aは使用できない。
 そのため、第1、第2の逆阻止IGBT54,55を収納するパッケージ57は電流定格および電圧定格に合せて新規に開発する必要がある。
 3レベルインバータを製作するときに、図15の半導体モジュール40(新規の45パッケージ)を用いる場合や図17の半導体モジュール47(既存のパッケージ56a)と図19の交流スイッチ53(新規のパッケージ57)を組み合わせて用いる場合にはいずれにしても新規のパッケージを開発する必要がある。
 また、特許文献2~4では、外部端子の位置が同じである既存のパッケージを用いて、内部に配置される半導体素子を変更することで,パッケージの形状が同一で2種類のモジュールを形成し、この2種類のモジュールを用いて3レベルインバータの一つの上下アームを構成することについては記載されていない。
 この発明の目的は、前記の課題を解決して、新規のパッケージを開発することなく、既存のパッケージを用いることで、低コストで広い電流定格および電圧定格の半導体モジュール、上下アームキットおよび3レベルインバータを提供することができる。
 上記目的を達成するために、以下に示すような、半導体モジュールが提供される。半導体モジュールは、フリーホイーリングダイオードを逆並列接続した逆耐圧を有さない第1のスイッチング素子と、前記第1のスイッチング素子と直列接続する逆耐圧を有する第1の逆阻止スイッチング素子と、前記第1のスイッチング素子と前記第1の逆阻止スイッチング素子を収納した第1のパッケージと、前記第1のパッケージの上面に配置され前記第1のスイッチング素子の高電位側と接続する高電位側端子(C11)と、前記第1のパッケージの上面に配置される前記第1の逆阻止スイッチング素子の低電位側と接続する第1の中間電位補助端子(M11)と、前記第1のパッケージの上面に配置され前記第1のスイッチング素子と前記第1の逆阻止スイッチング素子とに接続する第1の接続端子(Q11)と、を有する。
 また、上記半導体モジュールは、次のようにして提供される。前記第1のスイッチング素子は、逆耐圧を有さない絶縁ゲートバイポーラトランジスタであり、前記第1の逆阻止スイッチング素子は、逆耐圧を有する逆阻止絶縁ゲートバイポーラトランジスタであり、前記高電位側がコレクタであり、前記低電位側がエミッタである。
 また、上記目的を達成するために、以下に示すような、半導体モジュールが提供される。逆耐圧を有する第2の逆阻止スイッチング素子と、前記第2の逆阻止スイッチング素子と直列接続しフリーホイーリングダイオードを逆並列接続した逆耐圧を有さない第2のスイッチング素子と、前記第2の逆阻止スイッチング素子と前記第2のスイッチング素子を収納した第2のパッケージと、前記第2のパッケージの上面に配置され前記第2の逆阻止スイッチング素子の高電位側と接続する第2の中間電位補助端子(M22)と、前記第2のパッケージの上面に配置され前記第2のスイッチング素子の低電位側と接続する低電位側端子(E22)と、前記第2のパッケージの上面に配置され前記第2の逆阻止スイッチング素子と前記第2のスイッチング素子とに接続する第2の接続端子(Q22)と、を有する。
 また、上記半導体モジュールは、次のようにして提供される。前記第2のスイッチング素子は、逆耐圧を有さない絶縁ゲートバイポーラトランジスタであり、前記第2の逆阻止スイッチング素子は、逆耐圧を有する逆阻止絶縁ゲートバイポーラトランジスタであり、前記高電位側がコレクタであり、前記低電位側がエミッタである。
 また、上記目的を達成するために、以下に示すような、上下アームキットが提供される。上下アームキットは、3レベルインバータの上アーム側となる第1の半導体モジュールと、前記3レベルインバータの下アーム側となる第2の半導体モジュールの一対の組からなり、前記第1の半導体モジュールは、フリーホイーリングダイオードを逆並列接続した逆耐圧を有さない第1のスイッチング素子と、前記第1のスイッチング素子と直列接続する逆耐圧を有する第1の逆阻止スイッチング素子と、前記第1のスイッチング素子と前記第1の逆阻止スイッチング素子を収納した第1のパッケージと、前記第1のパッケージの上面に配置され前記第1のスイッチング素子の高電位側と接続する高電位側端子(C11)と、前記第1のパッケージの上面に配置される前記第1の逆阻止スイッチング素子の低電位側と接続する第1の中間電位補助端子(M11)と、前記第1のパッケージの上面に配置され前記第1のスイッチング素子と前記第1の逆阻止スイッチング素子とに接続する第1の接続端子(Q11)と、を有し、前記第2の半導体モジュールは、逆耐圧を有する第2の逆阻止スイッチング素子と、前記第2の逆阻止スイッチング素子と直列接続しフリーホイーリングダイオードを逆並列接続した逆耐圧を有さない第2のスイッチング素子と、前記第2の逆阻止スイッチング素子と前記第2のスイッチング素子を収納した第2のパッケージと、前記第2のパッケージの上面に配置され前記第2の逆阻止スイッチング素子の高電位側と接続する第2の中間電位補助端子(M22)と、前記第2のパッケージの上面に配置され前記第2のスイッチング素子の低電位側と接続する低電位側端子(E22)と、前記第2のパッケージの上面に配置され前記第2の逆阻止スイッチング素子と前記第2のスイッチング素子とに接続する第2の接続端子(Q22)と、を有する。
 また、上記上下アームキットを3個並列配置する3レベルインバータが提供される。3レベルインバータは、前記第1の半導体モジュールの前記高電位側端子(C11端子)同士を第3の接続導体で接続し、前記第2の半導体モジュールの低電位側端子(E22端子)同士を第4の接続導体で接続し、各前記第1の半導体モジュールの中間電位補助端子(M11)と各前記第2の半導体モジュールの中間電位補助端子(M22)同士を第5の接続導体で接続し、前記第3の接続導体と前記第5の接続導体に第1の直流電源の正極と負極をそれぞれ接続し、前記第5の接続導体と前記第4の接続導体に第2の直流電源の正極と負極をそれぞれ接続し、各前記第1の半導体モジュールの第1の接続端子(Q11)と各前記第2の半導体モジュールの第2の接続端子(Q22)を各々第6の接続導体で接続し、該3個の第6の接続導体を出力端子であるU端子、V端子、W端子とする。
 また、上記目的を達成するために、以下に示すような、上下アームキットが提供される。上下アームキットは、第1の半導体モジュールと、第2の半導体モジュールと、を含み、前記第1の半導体モジュールは、フリーホイーリングダイオードを逆並列接続した逆耐圧を有さない第1のスイッチング素子と、前記第1のスイッチング素子と直列接続する逆耐圧を有する第1の逆阻止スイッチング素子と、前記第1のスイッチング素子と前記第1の逆阻止スイッチング素子を収納した第1のパッケージと、前記第1のパッケージの上面に配置され前記第1のスイッチング素子の高電位側と接続する高電位側端子(C11)と、前記第1のパッケージの上面に配置される前記第1の逆阻止スイッチング素子の低電位側と接続する第1の中間電位補助端子(M11)と、前記第1のパッケージの上面に配置され前記第1のスイッチング素子と前記第1の逆阻止スイッチング素子とに接続する第1の接続端子(Q11)と、を有し、前記第2の半導体モジュールは、逆耐圧を有する第2の逆阻止スイッチング素子と、前記第2の逆阻止スイッチング素子と直列接続しフリーホイーリングダイオードを逆並列接続した逆耐圧を有さない第2のスイッチング素子と、前記第2の逆阻止スイッチング素子と前記第2のスイッチング素子を収納した第2のパッケージと、前記第2のパッケージの上面に配置され前記第2の逆阻止スイッチング素子の高電位側と接続する第2の中間電位補助端子(M22)と、前記第2のパッケージの上面に配置され前記第2のスイッチング素子の低電位側と接続する低電位側端子(E22)と、前記第2のパッケージの上面に配置され前記第2の逆阻止スイッチング素子と前記第2のスイッチング素子とに接続する第2の接続端子(Q22)と、を有し、前記第1の接続端子(Q11端子)と、前記第2の接続端子(Q22端子)と、を第1の接続導体で接続し、前記第1の半導体モジュールの中間電位補助端子(M11端子)と前記第2の半導体モジュールの中間電位補助端子(M22端子)と、を第2の接続導体で接続する。
 また、上記上下アームキットを3個並列配置する3レベルインバータが提供される。3レベルインバータは、前記3個の第1の接続導体に3レベルインバータの出力端子であるU端子、V端子、W端子をそれぞれ接続し、前記第2の接続導体同士を接続して中間電位端子(M端子)とし、前記第1半導体モジュールの高電位側端子同士と第1の直流電源の正極を第3の接続導体(P端子)を介して接続し、該第1の直流電源の負極を前記中間電位端子(M端子)に接続し、前記第2半導体モジュールの低電位側端子同士と第2の直流電源の負極を第4の接続導体(N端子)を介して接続し、該第2の直流電源の正極を前記中間電位端子(M端子)に接続する。
 この発明によれば、既存のパッケージ(3主端子)を用いて、半導体モジュール、上下アームキットおよび3レベルインバータが構成できるため、新規にパッケージを開発することなく、設計効率の向上、パッケージ部材の共通化が実現できて低コスト化を図ることができる。
 また、各種の既存のパッケージを用いて回路構成ができるため、広い電流定格および電圧定格の半導体モジュール、上下アームキットおよび3レベルインバータを提供することができる。
 本発明の上記および他の目的、特徴および利点は本発明の例として好ましい実施の形態を表す添付の図面と関連した以下の説明により明らかになるであろう。
この発明の第1実施例の半導体モジュールの構成図であり、(a)は要部回路図、(b)は要部平面図である。 図1の半導体モジュールの内部構造図である。 この発明の第2実施例の半導体モジュールの構成図であり、(a)は要部回路図、(b)は要部平面図である。 図3の半導体モジュールの内部構造図である。 この発明の第3実施例の上下アームキットの要部回路図である。 この発明の第3実施例の上下アームキットの要部平面図である。 この発明の第4実施例の上下アームキットの要部回路図である。 この発明の第4実施例の上下アームキットの要部平面図である。 この発明の第5実施例の3レベルインバータの要部回路図である。 この発明の第5実施例の3レベルインバータの構成図の要部平面図である。 この発明の第6実施例の3レベルインバータの要部回路図である。 この発明の第6実施例の3レベルインバータの構成図の要部平面図である。 従来の技術を用いた直流から交流に変換する3レベルインバータの回路図である。 3レベルインバータの出力電圧(Vout)波形例の図である。 3レベルインバータの交流スイッチを含んだ上下アーム1相分の構成図であり、(a)は回路図、(b)は半導体モジュールの斜視図である。 半導体モジュールの模式的な断面図である。 インバータの上下アーム1相分の構成図であり、(a)は回路図、(b)は半導体モジュールの要部平面図である。 図17の半導体モジュールの内部構造図である。 逆阻止IGBTが逆並列接続された交流スイッチの構成図であり、同図(a)は回路図、同図(b)は交流スイッチのパッケージの平面図である。
 実施の形態を以下の実施例で説明する。
<実施例1>
 図1は、この発明の第1実施例の半導体モジュールの構成図であり、同図(a)は要部回路図、同図(b)は要部平面図である。図2は、図1の半導体モジュールの内部構造図である。図2では、逆耐圧を有する第1の逆阻止IGBT5が4個並列接続され、逆耐圧を有さない第1のIGBT1(通常用いられているIGBT)が4個並列接続され、FWD(フリーホイーリングダイオード)2が4個で各第1のIGBT1に逆並列された配置された例を挙げた。これは、図18のFWD(D2)を除去した場合の配置と同じである。また、イとロのQ11はパッケージ56内で接続しており、パッケージ56上に配置されるのはイのQ11であり、図17のE1C2に相当する端子である。
 また、この第1半導体モジュール100の特徴は、3レベルインバータの直列接続回路の上アームのFWD2が逆並列された逆耐圧を有さない第1のIGBT1と交流スイッチの一方の逆耐圧を有する第1の逆阻止IGBT5を既存のパッケージ56aと同一のパッケージ56に収納している点である。
 図1において、第1半導体モジュール100は、FWD2を逆並列接続した第1のIGBT1と第1の逆阻止IGBT5を直列接続した構成であり、第1のIGBT1のエミッタと第1の逆阻止IGBT5のコレクタが接続点9aで接続する。
 パッケージ56上には、第1のIGBT1のコレクタと接続する高電位側端子7(C11)、第1の逆阻止IGBT5のエミッタと接続する第1の中間電位補助端子11(M11)、第1のIGBT1のエミッタと第1の逆阻止IGBT5のコレクタの接続点9aに接続する第1の接続端子9(Q11)が配置される。
 また、パッケージ56上には、第1のIGBT1および第1の逆阻止IGBT5のそれぞれのゲート端子G1,G2と補助エミッタ端子E1,E2とが配置される。前記のQ11は図17のE1C2に相当する端子である。
 前記のFWD2を逆並列接続した第1のIGBT1は、3レベルインバータ500(図9、図10参照)の上アームを構成する素子であり、第1の逆阻止IGBT5は交流スイッチ15(図9参照)の一部を構成する素子である。
 図1(b)に示すパッケージ56は各端子配置も含めて、既存の半導体モジュール47のパッケージ56a(図17(b)参照)と同じである。
 このように、図1の半導体モジュール100で用いられるパッケージ56は、図17(b)に示す従来の半導体モジュール47の既存のパッケージ56aと共用できるため、3レベルインバータ500用として新規のパッケージを開発する必要がなく、第1半導体モジュール100の開発期間の短縮と、低コスト化ができる。
 また、新規のパッケージを開発せずに容易に広い電流定格および電圧定格の第1半導体モジュール100を提供することができる。
<実施例2>
 図3は、この発明の第2実施例の半導体モジュールの構成図であり、同図(a)は要部回路図、同図(b)は要部平面図である。図4は、図3の半導体モジュールの内部構造図である。図4は、逆耐圧を有する第2の逆阻止IGBT6が4個並列接続され、逆耐圧を有さない第2のIGBT3(通常用いられているIGBT)が4個並列接続され、FWD4が4個で各通常の第2のIGBT3に逆並列された配置された例を挙げた。これは、図18のFWD(D1)を除去した場合の配置と同じである。また、イとロのQ22はパッケージ56内で接続しており、パッケージ56上に配置されるのはイのQ22であり、図17のE1C2に相当する端子である。
 また、この第2半導体モジュール200の特徴は、3レベルインバータの直列接続回路の下アームのFWD4が逆並列された逆耐圧を有さない第2のIGBT3と交流スイッチの他方の逆耐圧を有する第2の逆阻止IGBT6を既存のパッケージ56aと同一のパッケージ56に収納している点である。
 図3において、第2半導体モジュール200は、FWD4を逆並列接続した第2のIGBT3と第2の逆阻止IGBT6を直列接続した構成であり、第2のIGBT3のコレクタと第2の逆阻止IGBT6のエミッタが接続する。
 第2のIGBT3のエミッタと接続する低電位側端子8(E22)、第2の逆阻止IGBT6のコレクタと接続する第2の中間電位補助端子12(M22)、第2のIGBT3のコレクタと第2の逆阻止IGBT6のエミッタの接続点10aに接続する第2の接続端子10(Q22)と、第2のIGBT3および第2の逆阻止IGBT6のそれぞれのゲート端子G2と補助エミッタ端子E2とが、第2半導体モジュール200のパッケージ56上に配置される。
 また、パッケージ56上には、第2のIGBT3および第2の逆阻止IGBT6のそれぞれのゲート端子G3,G4と補助エミッタ端子E3,E4とが配置される。前記のQ22は図17のE1C2に相当する端子である。
 前記のFWD4を逆並列接続した第2のIGBT3は、3レベルインバータ500の下アームを構成する素子であり、第2の逆阻止IGBT6は交流スイッチ15(図9参照)の一部を構成する素子である。
 図3(b)に示すパッケージ56は各端子配置も含めて、従来のIGBTチップが2個直列接続して収納される既存の半導体モジュール47のパッケージ56a(図17参照)と同じである。
 このように、図3(b)の半導体モジュール200で用いられるパッケージ56は、図17(b)に示す従来の半導体モジュール47の既存のパッケージ56aと共用できるため、3レベルインバータ500用として新規のパッケージを開発する必要がなく、第2半導体モジュール200の開発期間の短縮と、低コスト化ができる。
 また、新規のパッケージを開発せずに容易に広い電流定格および電圧定格の第2半導体モジュール200を提供することができる。
 尚、図中のG3,E3は第2の逆阻止IGBT6のゲート端子、エミッタ補助端子であり、G4,E4は第2のIGBT3のゲート端子、エミッタ補助端子である。
<実施例3>
 図5および図6は、この発明の第3実施例の上下アームキットであり、図5は要部回路図、図6は要部平面図である。
 この上下アームキット300は、図9および図10に示す3レベルインバータ500の上アーム側となる前記第1半導体モジュール100と下アーム側となる第2半導体モジュール200の一対組からなる。
 上下アームが接続されていない図5および図6の上下アームキット300を用いて3レベルインバータ500の一つの上下アームを構成する仕方を説明する。
 前記第1半導体モジュール100の第1の接続端子9(Q11)と第2半導体モジュール200の第2の接続端子10(Q22)を点線で示す第1の接続導体13で接続して3レベルインバータ500(図9、図10参照)の出力端子の例えばU端子とする。
 前記第1半導体モジュール100の第1の中間電位補助端子11(M11)と第2半導体モジュール200の第2の中間電位補助端子12(M22)を点線で示す第2の接続導体14で接続して3レベルインバータ500の中間電位端子のM端子とする。
 前記の第1半導体モジュール100の高電位側端子7(C11)は3レベルインバータ500の図示しないP端子に接続し、第2半導体モジュール200の低電位側端子8(E22)は3レベルインバータ500の図示しないN端子に接続する。
 このように、既存のパッケージ56aと同一のパッケージ56を用いてこの上下アームキット300を構成するので上下アームキット300の低コスト化ができる。また、容易に広い電流定格および電圧定格の上下アームキット300を提供できる。
 また、前記の上下アームキット300は、互いに接続していない第1半導体モジュール100と第2半導体モジュール200で構成されている。
<実施例4>
 図7および図8は、この発明の第4実施例の上下アームキットであり、図7は要部回路図、図8は要部平面図である。
 図7および図8の上下アームキット400と図5および図6の上下アームキット300との違いは、上アーム側の第1半導体モジュール100のQ11,M11と下アーム側の第2半導体モジュール200のQ22,M22を第3の接続導体16、第4の接続導体17で接続し、上下アームの半導体モジュール100,200を一体化した点である。
 この場合上下アームが一体化されているので使い勝手がよい。また、第3実施例と同様の効果が得られる。
<実施例5>
 図9および図10は、この発明の第5実施例の3レベルインバータの構成図であり、図9は要部回路図、図10は要部平面図である。図10では図9に示す第1、第2の直流電源23,24は図示されていない。
 3個の上下アームキット300(図5および図6)のそれぞれのQ11,Q22を第1の接続導体13で接続して出力端子であるU端子、V端子、W端子とする。
 また、3個の上下アームキット300のそれぞれのM11,M22を第2の接続導体14で接続して、中間電位端子であるM端子とする。この部分は図9に示す3レベルインバータ500の交流スイッチ15を構成する。
 また、第1の半導体モジュール100の高電位側端子7(C11)同士を第5の接続導体21で接続して3レベルインバータ500のP端子とする。
 また、第2の半導体モジュール200の低電位側端子8(E22)同士を第6の接続導体22で接続して3レベルインバータ500のN端子とする。
 第1の直流電源23の正極と負極を3レベルインバータ500のP端子とM端子にそれぞれ接続し、第2の直流電源24の正極と負極を3レベルインバータ500のM端子とN端子にそれぞれ接続することで、3レベルインバータ500が構成される。尚、図示しないが中間電位端子であるM端子を2箇所に設けることで第1、第2の直流電源23,24と接続する配線インダクタンスを低減できる場合もある。
 このように上アーム側を構成する第1半導体モジュール100と下アーム側を構成する第2半導体モジュール200の一対からなる前記の上下アームキット300を3個用いて3レベルインバータ500を製作するため、3レベルインバータ500の低コスト化ができる。また、容易に広い電流定格および電圧定格の3レベルインバータ500を製作できる。
<実施例6>
 図11および図12は、この発明の第6実施例の3レベルインバータの構成図であり、図11は要部回路図、図12は要部平面図である。図12では図10に示す第1、第2の直流電源23,24は図示されていない。
 この3レベルインバータ600と図9および図10の3レベルインバータ500との違いは、上下アームキット300の代わりに上下アームキット400を用いた点である。上下アームキット400では第1半導体モジュール100と第2半導体モジュール200は第3、第4の接続導体16,17で接続されているので、その第3、第4の接続導体16,17に第7の接続導体25、第8の接続導体26を接続点18,19でそれぞれ接続して、M端子、U端子、V端子、W端子とする。
 第1の直流電源23の正極と負極を3レベルインバータ600のP端子とM端子にそれぞれ接続し、第2の直流電源24の正極と負極を3レベルインバータ600のM端子とN端子にそれぞれ接続することで、3レベルインバータ600が構成される。尚、図示しないが中間電位端子であるM端子を2箇所に設けることで第1、第2の直流電源23,24と接続する配線インダクタンスを低減できる場合もある。
 この3レベルインバータ600の場合も前記の3レベルインバータ500と同様の効果が得られる。
 尚、前記の第1実施例から第6実施例は半導体素子としてIGBTを例として挙げたが、パワーMOSFETを用いても構わない。しかし、FWDが内蔵されたパワーMOSFETの場合には、FWDを外付けする必要はない。また、パワーMOSFETは逆耐圧がないため、逆阻止IGBTに相当する部位に用いるパワーMOSFETには直列にダイオードを接続する必要がある。
 上記については単に本発明の原理を示すものである。
 さらに、多数の変形、変更が当業者にとって可能であり、本発明は上記に示し、説明した正確な構成および応用例に限定されるものではなく、対応するすべての変形例および均等物は、添付の請求項およびその均等物による本発明の範囲とみなされる。
 1 第1のIGBT
 2,4 FWD
 3 第2のIGBT
 5 第1の逆阻止IGBT
 6 第2の逆阻止IGBT
 7 高電位側端子(C11)
 8 低電位側端子(E22)
 9 第1の接続端子(Q11)
 9a,10a,18,19 接続点
 10 第2の接続端子(Q22)
 11 第1の中間電位補助端子(M11)
 12 第2の中間電位補助端子(M22)
 13 第1の接続導体(出力端子:U端子、V端子、N端子)
 14 第2の接続導体(中間電位端子:M端子)
 15 交流スイッチ
 16 第3の接続導体
 17 第4の接続導体
 21 第5の接続導体(P端子)
 22 第6の接続導体(N端子)
 23 第1の直流電源
 24 第2の直流電源
 25 第7の接続導体(中間電位端子:M端子)
 26 第8の接続導体(出力端子:U端子、V端子、W端子)
 56 パッケージ(既存のパッケージ56aと同じ)
 100 第1半導体モジュール
 200 第2半導体モジュール
 300,400 上下アームキット
 500,600 3レベルインバータ

Claims (8)

  1.  フリーホイーリングダイオードを逆並列接続した逆耐圧を有さない第1のスイッチング素子と、
     前記第1のスイッチング素子と直列接続する逆耐圧を有する第1の逆阻止スイッチング素子と、
     前記第1のスイッチング素子と前記第1の逆阻止スイッチング素子を収納した第1のパッケージと、
     前記第1のパッケージの上面に配置され前記第1のスイッチング素子の高電位側と接続する高電位側端子(C11)と、
     前記第1のパッケージの上面に配置される前記第1の逆阻止スイッチング素子の低電位側と接続する第1の中間電位補助端子(M11)と、
     前記第1のパッケージの上面に配置され前記第1のスイッチング素子と前記第1の逆阻止スイッチング素子とに接続する第1の接続端子(Q11)と、
     を有することを特徴とする半導体モジュール。
  2.  逆耐圧を有する第2の逆阻止スイッチング素子と、
     前記第2の逆阻止スイッチング素子と直列接続しフリーホイーリングダイオードを逆並列接続した逆耐圧を有さない第2のスイッチング素子と、
     前記第2の逆阻止スイッチング素子と前記第2のスイッチング素子を収納した第2のパッケージと、
     前記第2のパッケージの上面に配置され前記第2の逆阻止スイッチング素子の高電位側と接続する第2の中間電位補助端子(M22)と、
     前記第2のパッケージの上面に配置され前記第2のスイッチング素子の低電位側と接続する低電位側端子(E22)と、
     前記第2のパッケージの上面に配置され前記第2の逆阻止スイッチング素子と前記第2のスイッチング素子とに接続する第2の接続端子(Q22)と、
     を有することを特徴とする半導体モジュール。
  3.  前記第1のスイッチング素子は、逆耐圧を有さない絶縁ゲートバイポーラトランジスタであり、
     前記第1の逆阻止スイッチング素子は、逆耐圧を有する逆阻止絶縁ゲートバイポーラトランジスタであり、前記高電位側がコレクタであり、前記低電位側がエミッタであることを特徴とする請求の範囲第1項に記載の半導体モジュール。
  4.  前記第2のスイッチング素子は、逆耐圧を有さない絶縁ゲートバイポーラトランジスタであり、
     前記第2の逆阻止スイッチング素子は、逆耐圧を有する逆阻止絶縁ゲートバイポーラトランジスタであり、前記高電位側がコレクタであり、前記低電位側がエミッタであることを特徴とする請求の範囲第2項に記載の半導体モジュール。
  5.  3レベルインバータの上アーム側となる第1の半導体モジュールと、前記3レベルインバータの下アーム側となる第2の半導体モジュールの一対の組からなる上下アームキットであって、
     前記第1の半導体モジュールは、
     フリーホイーリングダイオードを逆並列接続した逆耐圧を有さない第1のスイッチング素子と、
     前記第1のスイッチング素子と直列接続する逆耐圧を有する第1の逆阻止スイッチング素子と、
     前記第1のスイッチング素子と前記第1の逆阻止スイッチング素子を収納した第1のパッケージと、
     前記第1のパッケージの上面に配置され前記第1のスイッチング素子の高電位側と接続する高電位側端子(C11)と、
     前記第1のパッケージの上面に配置される前記第1の逆阻止スイッチング素子の低電位側と接続する第1の中間電位補助端子(M11)と、
     前記第1のパッケージの上面に配置され前記第1のスイッチング素子と前記第1の逆阻止スイッチング素子とに接続する第1の接続端子(Q11)と、
     を有し、
     前記第2の半導体モジュールは、
     逆耐圧を有する第2の逆阻止スイッチング素子と、
     前記第2の逆阻止スイッチング素子と直列接続しフリーホイーリングダイオードを逆並列接続した逆耐圧を有さない第2のスイッチング素子と、
     前記第2の逆阻止スイッチング素子と前記第2のスイッチング素子を収納した第2のパッケージと、
     前記第2のパッケージの上面に配置され前記第2の逆阻止スイッチング素子の高電位側と接続する第2の中間電位補助端子(M22)と、
     前記第2のパッケージの上面に配置され前記第2のスイッチング素子の低電位側と接続する低電位側端子(E22)と、
     前記第2のパッケージの上面に配置され前記第2の逆阻止スイッチング素子と前記第2のスイッチング素子とに接続する第2の接続端子(Q22)と、
     を有する、
     ことを特徴とする上下アームキット。
  6.  第1の半導体モジュールと、第2の半導体モジュールと、を含む上下アームキットであって、
     前記第1の半導体モジュールは、
     フリーホイーリングダイオードを逆並列接続した逆耐圧を有さない第1のスイッチング素子と、
     前記第1のスイッチング素子と直列接続する逆耐圧を有する第1の逆阻止スイッチング素子と、
     前記第1のスイッチング素子と前記第1の逆阻止スイッチング素子を収納した第1のパッケージと、
     前記第1のパッケージの上面に配置され前記第1のスイッチング素子の高電位側と接続する高電位側端子(C11)と、
     前記第1のパッケージの上面に配置される前記第1の逆阻止スイッチング素子の低電位側と接続する第1の中間電位補助端子(M11)と、
     前記第1のパッケージの上面に配置され前記第1のスイッチング素子と前記第1の逆阻止スイッチング素子とに接続する第1の接続端子(Q11)と、
     を有し、
     前記第2の半導体モジュールは、
     逆耐圧を有する第2の逆阻止スイッチング素子と、
     前記第2の逆阻止スイッチング素子と直列接続しフリーホイーリングダイオードを逆並列接続した逆耐圧を有さない第2のスイッチング素子と、
     前記第2の逆阻止スイッチング素子と前記第2のスイッチング素子を収納した第2のパッケージと、
     前記第2のパッケージの上面に配置され前記第2の逆阻止スイッチング素子の高電位側と接続する第2の中間電位補助端子(M22)と、
     前記第2のパッケージの上面に配置され前記第2のスイッチング素子の低電位側と接続する低電位側端子(E22)と、
     前記第2のパッケージの上面に配置され前記第2の逆阻止スイッチング素子と前記第2のスイッチング素子とに接続する第2の接続端子(Q22)と、
     を有し、
     前記第1の接続端子(Q11端子)と、前記第2の接続端子(Q22端子)と、を第1の接続導体で接続し、前記第1の半導体モジュールの中間電位補助端子(M11端子)と前記第2の半導体モジュールの中間電位補助端子(M22端子)と、を第2の接続導体で接続する、
     ことを特徴とする上下アームキット。
  7.  請求の範囲第5項に記載の上下アームキットを3個並列配置し、
     前記第1の半導体モジュールの前記高電位側端子(C11端子)同士を第3の接続導体で接続し、前記第2の半導体モジュールの低電位側端子(E22端子)同士を第4の接続導体で接続し、各前記第1の半導体モジュールの中間電位補助端子(M11)と各前記第2の半導体モジュールの中間電位補助端子(M22)同士を第5の接続導体で接続し、前記第3の接続導体と前記第5の接続導体に第1の直流電源の正極と負極をそれぞれ接続し、前記第5の接続導体と前記第4の接続導体に第2の直流電源の正極と負極をそれぞれ接続し、各前記第1の半導体モジュールの第1の接続端子(Q11)と各前記第2の半導体モジュールの第2の接続端子(Q22)を各々第6の接続導体で接続し、該3個の第6の接続導体を出力端子であるU端子、V端子、W端子とする、
     ことを特徴とする3レベルインバータ。
  8.  請求の範囲第6項に記載の上下アームキットを3個並列配置し、
     前記3個の第1の接続導体に3レベルインバータの出力端子であるU端子、V端子、W端子をそれぞれ接続し、前記第2の接続導体同士を接続して中間電位端子(M端子)とし、前記第1半導体モジュールの高電位側端子同士と第1の直流電源の正極を第3の接続導体(P端子)を介して接続し、該第1の直流電源の負極を前記中間電位端子(M端子)に接続し、前記第2半導体モジュールの低電位側端子同士と第2の直流電源の負極を第4の接続導体(N端子)を介して接続し、該第2の直流電源の正極を前記中間電位端子(M端子)に接続する、
     ことを特徴とする3レベルインバータ。
PCT/JP2012/064544 2011-06-10 2012-06-06 半導体モジュール、上下アームキットおよび3レベルインバータ WO2012169521A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280028073.0A CN103597730B (zh) 2011-06-10 2012-06-06 半导体模块、上下臂成套件和三电平逆变器
JP2013519503A JP5644943B2 (ja) 2011-06-10 2012-06-06 半導体モジュール、上下アームキットおよび3レベルインバータ
US14/124,871 US9685888B2 (en) 2011-06-10 2012-06-06 Semiconductor module, upper and lower arm kit, and three-level inverter
US15/482,092 US10003280B2 (en) 2011-06-10 2017-04-07 Semiconductor module, upper and lower arm kit, and three-level inverter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-129923 2011-06-10
JP2011129923 2011-06-10

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/124,871 A-371-Of-International US9685888B2 (en) 2011-06-10 2012-06-06 Semiconductor module, upper and lower arm kit, and three-level inverter
US15/482,092 Continuation US10003280B2 (en) 2011-06-10 2017-04-07 Semiconductor module, upper and lower arm kit, and three-level inverter

Publications (1)

Publication Number Publication Date
WO2012169521A1 true WO2012169521A1 (ja) 2012-12-13

Family

ID=47296080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064544 WO2012169521A1 (ja) 2011-06-10 2012-06-06 半導体モジュール、上下アームキットおよび3レベルインバータ

Country Status (4)

Country Link
US (2) US9685888B2 (ja)
JP (1) JP5644943B2 (ja)
CN (1) CN103597730B (ja)
WO (1) WO2012169521A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014122877A1 (ja) * 2013-02-06 2014-08-14 富士電機株式会社 半導体装置
JP2016119739A (ja) * 2014-12-18 2016-06-30 三菱電機株式会社 半導体装置
JPWO2017141407A1 (ja) * 2016-02-18 2018-06-28 三菱電機株式会社 パワー半導体モジュール

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI488421B (zh) * 2013-04-03 2015-06-11 Delta Electronics Inc 直流轉交流電源轉換系統及其操作方法
EP3093974B1 (en) * 2014-08-26 2019-02-20 Fuji Electric Co., Ltd. Three-level power conversion device
US9859808B2 (en) * 2016-04-26 2018-01-02 General Electric Company Power converter topology for use in an energy storage system
CN105789159B (zh) * 2016-05-03 2019-03-22 扬州国扬电子有限公司 一种电极连接点矩阵排列的功率模块
CN105827122A (zh) * 2016-05-03 2016-08-03 扬州国扬电子有限公司 一种电极连接点成列布置的三电平功率模块
CN109417354B (zh) * 2017-01-18 2021-03-19 富士电机株式会社 三电平逆变器
FR3076175B1 (fr) * 2017-12-22 2020-01-10 Valeo Siemens Eautomotive France Sas Equipement electrique a paroi deportee
CN212324008U (zh) * 2020-04-20 2021-01-08 阳光电源股份有限公司 一种逆变器及其功率单元和功率模块

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1014260A (ja) * 1996-06-18 1998-01-16 Toshiba Corp スイッチングモジュールおよびモジュールを用いた電力変換器
JP2002247862A (ja) * 2001-02-20 2002-08-30 Hitachi Ltd 電力変換装置
JP2008193779A (ja) * 2007-02-02 2008-08-21 Fuji Electric Systems Co Ltd 半導体モジュール
JP2010016947A (ja) * 2008-07-02 2010-01-21 Fuji Electric Device Technology Co Ltd 電力変換装置のパワーモジュール
JP2010288415A (ja) * 2009-06-15 2010-12-24 Fuji Electric Systems Co Ltd 3レベル電力変換装置
JP2011030350A (ja) * 2009-07-24 2011-02-10 Fuji Electric Systems Co Ltd 電力変換装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2580804B2 (ja) 1989-06-23 1997-02-12 富士電機株式会社 電力変換装置用トランジスタモジュール
JP2707747B2 (ja) 1989-07-31 1998-02-04 富士電機株式会社 インバータ装置
JPH099644A (ja) 1995-06-21 1997-01-10 Fuji Electric Co Ltd 電力用半導体装置
JPH1198837A (ja) * 1997-09-24 1999-04-09 Sansha Electric Mfg Co Ltd 直流電源装置
ATE459131T1 (de) * 2006-02-01 2010-03-15 Abb Research Ltd Schaltzelle sowie umrichterschaltung zur schaltung einer vielzahl von spannungsniveaus
EP2107672A1 (de) * 2008-03-31 2009-10-07 SMA Solar Technology AG Dreiphasiger Wechselrichter ohne Verbindung zwischen dem Neutralleiter des Netzes und dem Mittelpunkt des Zwischenkreises
DE112009004960B4 (de) * 2009-06-19 2015-10-22 Mitsubishi Electric Corporation Leistungsumwandlungseinrichtung
JP5461899B2 (ja) * 2009-06-26 2014-04-02 株式会社東芝 電力変換装置
JP2011109789A (ja) * 2009-11-17 2011-06-02 Fuji Electric Holdings Co Ltd 電力変換装置
JP5429032B2 (ja) * 2010-05-07 2014-02-26 三菱電機株式会社 電力変換回路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1014260A (ja) * 1996-06-18 1998-01-16 Toshiba Corp スイッチングモジュールおよびモジュールを用いた電力変換器
JP2002247862A (ja) * 2001-02-20 2002-08-30 Hitachi Ltd 電力変換装置
JP2008193779A (ja) * 2007-02-02 2008-08-21 Fuji Electric Systems Co Ltd 半導体モジュール
JP2010016947A (ja) * 2008-07-02 2010-01-21 Fuji Electric Device Technology Co Ltd 電力変換装置のパワーモジュール
JP2010288415A (ja) * 2009-06-15 2010-12-24 Fuji Electric Systems Co Ltd 3レベル電力変換装置
JP2011030350A (ja) * 2009-07-24 2011-02-10 Fuji Electric Systems Co Ltd 電力変換装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014122877A1 (ja) * 2013-02-06 2014-08-14 富士電機株式会社 半導体装置
CN104838576A (zh) * 2013-02-06 2015-08-12 富士电机株式会社 半导体装置
EP2955836A1 (en) * 2013-02-06 2015-12-16 Fuji Electric Co., Ltd. Semiconductor device
JPWO2014122877A1 (ja) * 2013-02-06 2017-01-26 富士電機株式会社 半導体装置
EP2955836A4 (en) * 2013-02-06 2017-03-29 Fuji Electric Co., Ltd. Semiconductor device
JP2017118816A (ja) * 2013-02-06 2017-06-29 富士電機株式会社 半導体装置
US9871465B2 (en) 2013-02-06 2018-01-16 Fuji Electric Co., Ltd. Semiconductor device including positive, negative and intermediate potential conductor plates
JP2016119739A (ja) * 2014-12-18 2016-06-30 三菱電機株式会社 半導体装置
JPWO2017141407A1 (ja) * 2016-02-18 2018-06-28 三菱電機株式会社 パワー半導体モジュール

Also Published As

Publication number Publication date
US20170214336A1 (en) 2017-07-27
CN103597730A (zh) 2014-02-19
US9685888B2 (en) 2017-06-20
JPWO2012169521A1 (ja) 2015-02-23
CN103597730B (zh) 2016-01-20
US20140169054A1 (en) 2014-06-19
US10003280B2 (en) 2018-06-19
JP5644943B2 (ja) 2014-12-24

Similar Documents

Publication Publication Date Title
JP5644943B2 (ja) 半導体モジュール、上下アームキットおよび3レベルインバータ
JP5369922B2 (ja) 3レベル電力変換装置
US8300443B2 (en) Semiconductor module for use in power supply
JP6717270B2 (ja) 半導体モジュール
JP5494147B2 (ja) パワー半導体モジュール及びそれを用いた電力変換装置
JPWO2010146637A1 (ja) 電力変換装置
WO2011061813A1 (ja) 3レベル電力変換装置
KR101373170B1 (ko) 컨버터
JP2009022062A (ja) 3レベル電力変換回路の配線構造
JP2014217270A (ja) 3レベル電力変換装置用ハーフブリッジ
JP6665456B2 (ja) パワー半導体装置
WO2017141407A1 (ja) パワー半導体モジュール
JP2011120376A (ja) パワー半導体モジュールとそれを適用した電力変換装置
JP5571013B2 (ja) 半導体スイッチ、及び電力変換装置
JP5678597B2 (ja) 電力変換器の主回路構造
JP2006158107A (ja) 3レベルインバータ装置
CN107546974A (zh) 具有级联二极管电路的升压电路和逆变器拓扑
JPH10285950A (ja) 3レベル電力変換装置の主回路
JP6206090B2 (ja) 3レベル電力変換装置
JP6573025B2 (ja) マルチレベル電力変換装置
JP2006271131A (ja) 電力変換装置
JP7364103B2 (ja) 電力変換装置
JPH0638507A (ja) 電力変換装置
JP2017162884A (ja) 半導体装置
US10873268B2 (en) Main circuit wiring member and power conversion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12796196

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013519503

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14124871

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12796196

Country of ref document: EP

Kind code of ref document: A1