WO2012160652A1 - 硫化物系固体電池モジュール - Google Patents

硫化物系固体電池モジュール Download PDF

Info

Publication number
WO2012160652A1
WO2012160652A1 PCT/JP2011/061883 JP2011061883W WO2012160652A1 WO 2012160652 A1 WO2012160652 A1 WO 2012160652A1 JP 2011061883 W JP2011061883 W JP 2011061883W WO 2012160652 A1 WO2012160652 A1 WO 2012160652A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfide
negative electrode
positive electrode
based solid
hydrogen sulfide
Prior art date
Application number
PCT/JP2011/061883
Other languages
English (en)
French (fr)
Inventor
杏子 熊谷
雄志 鈴木
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US13/388,372 priority Critical patent/US20140099531A1/en
Priority to JP2011542595A priority patent/JPWO2012160652A1/ja
Priority to CN2011800043088A priority patent/CN102906927A/zh
Priority to PCT/JP2011/061883 priority patent/WO2012160652A1/ja
Publication of WO2012160652A1 publication Critical patent/WO2012160652A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0463Cells or batteries with horizontal or inclined electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/669Steels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a sulfide-based solid battery module that prevents deterioration of a negative electrode due to hydrogen sulfide.
  • the secondary battery can convert the decrease in chemical energy associated with the chemical reaction into electrical energy and perform discharge.
  • the secondary battery converts electrical energy into chemical energy by flowing current in the opposite direction to that during discharge.
  • the battery can be stored (charged).
  • lithium secondary batteries are widely used as power sources for notebook personal computers, mobile phones, and the like because of their high energy density.
  • lithium cobaltate Li 1-x CoO 2
  • Li 1-x CoO 2 + xLi + + xe ⁇ ⁇ LiCoO 2 (II) (In the above formula (II), 0 ⁇ x ⁇ 1.)
  • reverse reactions of the above formulas (I) and (II) proceed in the negative electrode and the positive electrode, respectively, and in the negative electrode, graphite (Li x C) containing lithium by graphite intercalation is Since lithium cobaltate (Li 1-x CoO 2 ) is regenerated, re-discharge is possible.
  • a lithium secondary battery in which the electrolyte is a solid electrolyte and the battery is completely solid does not use a flammable organic solvent in the battery. It is considered to be excellent in productivity.
  • a sulfide-based solid electrolyte is known as a solid electrolyte material used for such a solid electrolyte.
  • sulfide-based solid electrolyte materials easily react with moisture, batteries using sulfide-based solid electrolyte materials are prone to deterioration due to generation of hydrogen sulfide, and there is a problem that the battery life is short. It was.
  • Patent Document 1 a sulfur compound that contains a sulfur compound that generates hydrogen sulfide gas by decomposition in a battery cell, traps the hydrogen sulfide gas, and detoxifies, and the outer periphery of the battery cell is covered. Secondary battery technology is disclosed.
  • Paragraph [0021] of the specification of Patent Document 1 includes an alkaline substance as an example of a substance that traps and detoxifies hydrogen sulfide gas.
  • the alkaline substance since the alkaline substance does not directly participate in charge / discharge, the alkaline substance is used from the viewpoint of the cost of preparing the alkaline substance, the increase in the mass of the entire battery due to the inclusion of the alkaline substance, and the decrease in the volumetric efficiency of the battery. The use of is considered undesirable.
  • the present invention has been accomplished in view of the above circumstances, and an object thereof is to provide a sulfide-based solid battery module that prevents deterioration of a negative electrode due to hydrogen sulfide.
  • the sulfide-based solid battery module of the present invention houses a sulfide-based solid battery including a positive electrode, a negative electrode, and a sulfide-based solid electrolyte interposed between the positive electrode and the negative electrode, and the sulfide-based solid battery.
  • a sulfide-based solid battery module including a battery case, wherein the negative electrode is positioned vertically above the positive electrode, and a gas having a lower density than hydrogen sulfide is included in the battery case. To do.
  • the negative electrode includes a negative electrode active material layer and a negative electrode current collector, and the negative electrode current collector includes at least one conductive material selected from the group consisting of copper, nickel, and stainless steel. You may go out.
  • the gas having a lower density than hydrogen sulfide is selected from the group consisting of nitrogen (N 2 ), oxygen (O 2 ), carbon monoxide (CO), helium (He), and hydrogen (H 2 ). It may be at least one gas.
  • the sulfide-based solid battery module of the present invention houses a sulfide-based solid battery including a positive electrode, a negative electrode, and a sulfide-based solid electrolyte interposed between the positive electrode and the negative electrode, and the sulfide-based solid battery.
  • a sulfide-based solid battery module including a battery case, wherein the negative electrode is positioned vertically above the positive electrode, and a gas having a lower density than hydrogen sulfide is included in the battery case. To do.
  • the gas density referred to in the present invention refers to the gas density in the standard state (0 ° C., 101.325 kPa).
  • the fact that the negative electrode is positioned vertically above the positive electrode indicates the following positional relationship between the negative electrode and the positive electrode.
  • the positional relationship means that when a yarn is hung down from the arbitrary part of the negative electrode in the vertical direction, the yarn may touch the positive electrode, but the yarn from the arbitrary part of the positive electrode to the lower side in the vertical direction. Is a relationship in which the thread cannot touch the negative electrode.
  • the material contained in the sulfide-based solid battery is contained or permeated through the exterior resin part that covers the sulfide-based solid battery and mixed from outside air. May react with the sulfide-based solid material to generate hydrogen sulfide (H 2 S).
  • H 2 S hydrogen sulfide
  • Factors that cause a small amount of moisture to be mixed into the sulfide-based solid battery include water at the time of production, water permeation from the seal portion under the usage environment, and the like. In order to prevent mixing of water at the time of manufacture, it is possible to take measures to manufacture batteries in a dry room or a glove box with dew point control.
  • the present inventors arrange the negative electrode vertically above the positive electrode and fill the battery case with a gas having a density lower than that of hydrogen sulfide, so that hydrogen sulfide is sulfided even when hydrogen sulfide is generated.
  • the present invention has been completed by discovering that the negative electrode deterioration due to hydrogen sulfide can be suppressed because it accumulates in the lower part of the physical solid battery in the vertical direction.
  • FIG. 1A is a diagram showing a typical example of a laminated structure of a sulfide-based solid battery module according to the present invention, and is a diagram schematically showing a cross section cut in the lamination direction. A double wavy line means omission of the figure.
  • a sulfide-based solid battery 8 includes a positive electrode 6 including a positive electrode active material layer 2 and a positive electrode current collector 4, and a negative electrode 7 including a negative electrode active material layer 3 and a negative electrode current collector 5. And a sulfide-based solid electrolyte 1 sandwiched between the positive electrode 6 and the negative electrode 7. As shown in FIG.
  • the stacking direction 9 in the sulfide-based solid battery 8 substantially coincides with the vertical direction 20.
  • the stacking direction is a direction in which the layers are stacked, and is a direction substantially perpendicular to the plane direction of the layers.
  • the negative electrode 7 is disposed so as to be positioned above the positive electrode 6 in the vertical direction.
  • the entire sulfide-based solid battery 8 is housed in a battery case 10 while leaving the ends of the positive electrode current collector 4 and the negative electrode current collector 5.
  • the positive electrode current collector 4 is extended toward the front or back in the direction of the paper, and a part of the positive electrode current collector 4 is exposed to the outside of the battery case 10. Yes.
  • the battery case 10 is filled with a gas having a lower density than hydrogen sulfide.
  • FIG. 1B is a schematic diagram showing the distribution of gas occupying the inside of the battery case when the sulfide-based solid battery module of this typical example is used.
  • a white circle 11 indicates a gas having a lower density than hydrogen sulfide, and a circle 12 indicates hydrogen sulfide.
  • a double wavy line means omission of the figure.
  • the gas 11 filling the battery case 10 occupies the upper part in the vertical direction of the sulfide-based solid battery 8 rather than the hydrogen sulfide 12.
  • the negative electrode 7 is positioned above the positive electrode 6 in the vertical direction. Therefore, when hydrogen sulfide is generated, hydrogen sulfide accumulates vertically downward, so that deterioration of the negative electrode due to hydrogen sulfide can be suppressed.
  • FIG. 2 is a view showing a modification of the laminated structure of the sulfide-based solid battery module according to the present invention, and is a view schematically showing a cross section cut in the stacking direction.
  • a double wavy line means omission of the figure.
  • a battery case 10 including the sulfide-based solid battery 8 shown in FIG. 1A is further laminated.
  • the stacking direction 9 in the sulfide-based solid battery 8 substantially coincides with the direction 19 in which the battery cases 10 are stacked, and the stacking direction 19 is approximately the vertical direction 20.
  • Match As shown in FIG. 2, also in this typical example, the negative electrode 7 is positioned above the positive electrode 6 in the vertical direction in each battery case.
  • the gas having a density lower than that of hydrogen sulfide occupies the upper part in the vertical direction of the sulfide-based solid battery 8 rather than hydrogen sulfide in the battery case 10. Therefore, also in this modified example, the deterioration of the negative electrode due to hydrogen sulfide can be suppressed as in the above typical example.
  • the embodiment of the present invention is not limited to the above typical example and modification.
  • the negative electrode and the positive electrode may be used while being assembled so that the negative electrode is positioned vertically above the positive electrode.
  • a part or the whole of the sulfide-based solid battery module is made movable, and each time the sulfide-based solid battery module is used, the module is so arranged that the negative electrode is positioned above the positive electrode in the vertical direction. You may adjust the inclination of one part or the whole.
  • the stacking direction and the vertical direction of the sulfide-based solid battery do not need to substantially coincide with each other as shown in FIGS. That is, as long as the negative electrode is positioned above the positive electrode in the vertical direction, the stacking direction of the sulfide-based solid battery may be inclined with respect to the vertical direction.
  • the positive electrode used in the present invention preferably includes a positive electrode current collector and a positive electrode tab connected to the positive electrode current collector, and more preferably includes a positive electrode active material layer containing a positive electrode active material.
  • the negative electrode used in the present invention preferably includes a negative electrode current collector and a negative electrode tab connected to the negative electrode current collector, and more preferably includes a negative electrode active material layer containing a negative electrode active material.
  • the positive electrode active material used in the present invention include LiCoO 2 , LiNi 1/3 Mn 1/3 Co 1/3 O 2 , LiNiPO 4 , LiMnPO 4 , LiNiO 2 , LiMn 2 O 4 , LiCoMnO 4. , Li 2 NiMn 3 O 8 , Li 3 Fe 2 (PO 4 ) 3 and Li 3 V 2 (PO 4 ) 3 .
  • the surface of fine particles made of the positive electrode active material may be coated with LiNbO 3 or the like.
  • LiCoO 2 is preferably used as the positive electrode active material in the present invention.
  • the thickness of the positive electrode active material layer used in the present invention varies depending on the intended use of the sulfide-based solid battery module, but is preferably in the range of 5 to 250 ⁇ m, and in the range of 20 to 200 ⁇ m. Is particularly preferable, and most preferably in the range of 30 to 150 ⁇ m.
  • the average particle diameter of the positive electrode active material is, for example, preferably in the range of 1 to 50 ⁇ m, more preferably in the range of 1 to 20 ⁇ m, and particularly preferably in the range of 3 to 5 ⁇ m. If the average particle size of the positive electrode active material is too small, the handleability may be deteriorated. If the average particle size of the positive electrode active material is too large, it may be difficult to obtain a flat positive electrode active material layer. Because.
  • the average particle diameter of the positive electrode active material can be determined by measuring and averaging the particle diameter of the active material carrier observed with, for example, a scanning electron microscope (SEM).
  • the positive electrode active material layer may contain a conductive material, a binder, and the like as necessary.
  • the conductive material included in the positive electrode active material layer used in the present invention is not particularly limited as long as the conductivity of the positive electrode active material layer can be improved.
  • the content of the conductive material in the positive electrode active material layer varies depending on the type of the conductive material, but is usually in the range of 1 to 10% by mass.
  • the binding material of the positive electrode active material layer used in the present invention examples include synthetic rubbers such as styrene-butadiene rubber, ethylene-propylene rubber, styrene-ethylene-butadiene rubber; polyvinylidene fluoride (PVDF), polytetra A fluoropolymer such as fluoroethylene (PTFE) can be given.
  • the content of the binder in the positive electrode active material layer may be an amount that can fix the positive electrode active material or the like, and is preferably smaller.
  • the content of the binder is usually in the range of 1 to 10% by mass. By containing a binder, the flexibility of the entire solid battery can be expected to be improved.
  • the positive electrode active material layer may be pressed in order to improve the electrode density.
  • the positive electrode current collector used in the present invention is not particularly limited as long as it has a function of collecting the positive electrode active material layer and contains a substance that does not easily react with hydrogen sulfide.
  • the aluminum foil is hardly affected by hydrogen sulfide. Therefore, examples of the material for the positive electrode current collector include aluminum, an aluminum alloy, and stainless steel such as SUS. Among these, aluminum and SUS are preferable.
  • a shape of a positive electrode electrical power collector foil shape, plate shape, mesh shape etc. can be mentioned, for example, Foil shape is preferable.
  • the positive electrode tab is a member for connecting the positive electrode current collector to an external load or a conductive wire outside the battery.
  • the positive electrode tab is not particularly limited as long as it is the same material as the positive electrode current collector described above.
  • Examples of the material for the positive electrode tab include aluminum, an aluminum alloy, and stainless steel such as SUS. Among these, aluminum and SUS are preferable.
  • a dedicated sealing material may be used for the sealing tab of the positive electrode tab and the sealing portion of the battery case described later.
  • the dedicated sealing material include general-purpose polymers such as polypropylene.
  • a commercially available tab lead (manufactured by Sumitomo Electric Industries) or the like in which the positive electrode tab and the seal are integrated may be used.
  • the negative electrode active material used for the negative electrode active material layer is not particularly limited as long as it can absorb and release metal ions.
  • metal ions for example, metal oxides such as metal lithium, lithium alloys, and lithium titanate, metal sulfides, metal nitrides, and carbon materials such as graphite, soft carbon, and hard carbon are used. Can be mentioned.
  • the negative electrode active material may be in the form of a powder or a thin film.
  • the negative electrode active material layer may contain a conductive material, a binder, and the like as necessary.
  • the binder and the conductive material that can be used in the negative electrode active material layer those described above can be used.
  • the film thickness of the negative electrode active material layer is not particularly limited, but is preferably in the range of, for example, 5 to 150 ⁇ m, and more preferably in the range of 10 to 80 ⁇ m.
  • the negative electrode current collector used in the present invention is not particularly limited as long as it has a function of collecting the negative electrode active material layer.
  • the negative electrode current collector since the negative electrode current collector and the hydrogen sulfide are difficult to contact, there is no need to consider the reactivity of the negative electrode current collector with hydrogen sulfide. Therefore, the negative electrode current collector may contain a substance that easily reacts with hydrogen sulfide. As shown in Examples described later, among copper foils, SUS foils, and aluminum foils usually used for current collectors, copper foils are most severely corroded by hydrogen sulfide. Therefore, examples of the material for the negative electrode current collector include nickel, copper, and stainless steel such as SUS. Among these, copper and SUS are preferable. In addition, examples of the shape of the negative electrode current collector include a foil shape, a plate shape, and a mesh shape. Of these, a foil shape is preferable.
  • the negative electrode tab is a member for connecting the negative electrode current collector to an external load or a conductive wire outside the battery.
  • the negative electrode tab is not particularly limited as long as it is the same material as the negative electrode current collector described above.
  • Examples of the material for the negative electrode tab include nickel, copper, and stainless steel such as SUS. Among these, copper and SUS are preferable.
  • the point which can use an exclusive sealing material and the point which can use the tab lead which integrated the tab and the seal are the same as that of the positive electrode tab.
  • the same method as the method for producing the positive electrode as described above can be employed.
  • the positive electrode and / or the negative electrode used in the present invention may contain a solid electrolyte.
  • the solid electrolyte include oxide-based solid electrolytes, polymer electrolytes, gel electrolytes, and the like in addition to sulfide-based solid electrolytes described in detail later.
  • LiPON lithium phosphate oxynitride
  • La 0.51 Li 0.34 TiO Examples include 0.74 , Li 3 PO 4 , Li 2 SiO 2 , Li 2 SiO 4 and the like.
  • the polymer electrolyte contains a lithium salt and a polymer.
  • the lithium salt is not particularly limited as long as it is a lithium salt used in a general lithium secondary battery.
  • LiPF 6 , LiBF 4 , LiN (CF 3 SO 2 ) 2 , LiCF 3 SO 3 examples include LiC 4 F 9 SO 3 , LiC (CF 3 SO 2 ) 3, and LiClO 4 .
  • the polymer is not particularly limited as long as it forms a complex with a lithium salt, and examples thereof include polyethylene oxide.
  • the gel electrolyte contains a lithium salt, a polymer, and a nonaqueous solvent.
  • the lithium salt described above can be used as the lithium salt.
  • the non-aqueous solvent is not particularly limited as long as it can dissolve the lithium salt.
  • non-aqueous solvents may be used alone or in combination of two or more.
  • room temperature molten salt can also be used as a non-aqueous electrolyte.
  • the polymer is not particularly limited as long as it can be gelled, and examples thereof include polyethylene oxide, polypropylene oxide, polyacrylonitrile, polyvinylidene fluoride (PVDF), polyurethane, polyacrylate, cellulose and the like. Can be mentioned.
  • the sulfide-based solid electrolyte used in the present invention preferably has a function of performing ion exchange between the positive electrode active material and the negative electrode active material described above.
  • a solid electrolyte crystal may be used as the sulfide-based solid electrolyte.
  • Specific examples of the sulfide-based solid electrolyte used in the present invention include Li 2 S—P 2 S 5 , Li 2 S—P 2 S 3 , Li 2 S—P 2 S 3 —P 2 S 5 , Li 2 S—SiS 2 , Li 2 S—Si 2 S, Li 2 S—B 2 S 3 , Li 2 S—GeS 2 , LiI—Li 2 SP—S 2 S 5 , LiI—Li 2 S—SiS 2 -P 2 S 5 , Li 2 S-SiS 2 -Li 4 SiO 4 , Li 2 S-SiS 2 -Li 3 PO 4 , Li 3 PS 4 -Li 4 GeS 4 , Li 3.4 P 0.6 Si 0 .4 S 4 , Li 3.25 P 0.25 Ge 0.76 S 4 , Li 4-x Ge 1-x P x S 4 and the like.
  • a method of processing the sulfide-based solid electrolyte into a layer a method of pressing the sulfide-based solid electrolyte can be exemplified.
  • the above-mentioned sulfide-based solid electrolyte and a solvent mixed into a slurry may be processed into a layer by applying it to a desired location such as a positive electrode or a negative electrode.
  • the sulfide-based solid electrolyte may contain the binder described above.
  • the shape of the battery case that can be used in the present invention is not particularly limited as long as it can accommodate the above-described positive electrode, negative electrode, sulfide-based solid electrolyte, and the like. , Coin type, laminate type and the like.
  • a laminate type a three-layer film of polyethylene phthalate / aluminum / polyethylene can be used as the laminate film.
  • the battery case contains a gas having a lower density than hydrogen sulfide (density: 1.539).
  • the gas is not particularly limited as long as the gas has a density of less than 1.539 and does not adversely affect the members in the battery case.
  • the gas may be filled in the battery case in advance before using the sulfide-based solid battery module of the present invention, and replenished after each use, or the sulfide-based solid battery module of the present invention is used.
  • the battery case may be continuously supplied from an external gas cylinder or the like.
  • the gas having a lower density than hydrogen sulfide includes nitrogen (N 2 , density: 1.250), oxygen (O 2 , density: 1.429), carbon monoxide (CO, density: 1.250), helium (He , Density: 0.1785) and at least one gas selected from the group consisting of hydrogen (H 2 , density: 0.0899). Since all of these gases have a density in a standard state of less than 1.539, even if hydrogen sulfide is generated in the battery case, there is no possibility that hydrogen sulfide will invade the negative electrode located at the upper part of the battery case. These gases may be used alone or in combination of two or more.
  • the density of the gas filling the battery case is preferably 1.52 or less, more preferably 0.08 to 1.5, and further preferably 0.08 to 1.45.
  • the initial pressure of the gas filling the battery case is preferably 1 to 10 atm. If the initial pressure is less than 1 atm, the pressure is too low and water vapor contained in the outside air may easily flow into the battery case. Further, if the initial pressure exceeds 10 atm, the pressure is too high, so that the battery case may be damaged, or the members in the sulfide-based solid battery may be burdened, and the charge / discharge performance may be hindered.
  • the initial pressure of the gas filling the battery case is more preferably 1 to 8 atm, and further preferably 1 to 5 atm. In addition, after the generation of hydrogen sulfide, it is preferable that the partial pressure of the gas having a lower density than hydrogen sulfide is higher than the partial pressure of the generated hydrogen sulfide in the atmosphere filling the battery case.
  • a separator can be used in the present invention.
  • the separator is disposed between the positive electrode current collector and the negative electrode current collector described above, and usually prevents contact between the positive electrode active material layer and the negative electrode active material layer and retains the sulfide-based solid electrolyte. It has the function to do.
  • the material for the separator include resins such as polyethylene (PE), polypropylene (PP), polyester, cellulose, and polyamide. Among them, polyethylene and polypropylene are preferable.
  • the separator may have a single layer structure or a multilayer structure.
  • the separator having a multilayer structure examples include a separator having a two-layer structure of PE / PP and a separator having a three-layer structure of PP / PE / PP.
  • the separator may be a nonwoven fabric such as a resin nonwoven fabric or a glass fiber nonwoven fabric.
  • the film thickness of the said separator is not specifically limited, It is the same as that of the separator used for a general sulfide type solid battery.
  • the deterioration of the negative electrode current collector can be suppressed, and the battery performance can be prevented from being lowered. Further, in the present invention, there is no need to newly add a special part for avoiding contact between hydrogen sulfide and the negative electrode current collector, or to newly prepare a substance for trapping hydrogen sulfide and detoxifying it. Therefore, it is not inferior to the conventional sulfide-based solid battery module in terms of manufacturing cost, the entire module mass, and volume.
  • FIG. 3A is a photograph of the copper foil before exposure to hydrogen sulfide
  • FIG. 3B is a photograph of the copper foil after exposure to hydrogen sulfide.
  • FIG. 3C is a graph showing the results of X-ray photoelectron spectroscopy (hereinafter referred to as XPS) depth direction analysis of copper after exposure to hydrogen sulfide.
  • XPS X-ray photoelectron spectroscopy
  • 3C is a graph in which the vertical axis represents the atomic concentration (Atomic Concentration (%)) and the horizontal axis represents the sputter depth (Sputter Depth (nm)). As can be seen from FIG. 3C, S diffusion into the copper foil proceeds to 15 nm.
  • FIG. 4A is a photograph of the SUS foil before exposure to hydrogen sulfide
  • FIG. 4B is a photograph of the SUS foil after exposure to hydrogen sulfide.
  • FIG. 4C is a graph showing the XPS depth direction analysis result of SUS after exposure to hydrogen sulfide. The vertical axis and the horizontal axis are the same as those in FIG. As can be seen from FIG. 4C, S diffusion into the SUS foil proceeds to 2 nm.
  • FIG. 5A is a photograph of the aluminum foil before exposure to hydrogen sulfide
  • FIG. 5B is a photograph of the aluminum foil after exposure to hydrogen sulfide.
  • FIG. 5 (c) is the graph which showed the XPS depth direction analysis result of aluminum after hydrogen sulfide exposure.
  • the vertical axis and the horizontal axis are the same as those in FIG.
  • S diffusion does not proceed in the aluminum foil.
  • FIG. 6 is a bar graph showing the contact resistance between the copper foil and the aluminum foil before and after exposure to hydrogen sulfide.
  • contact resistance of copper foil before exposure to hydrogen sulfide, contact resistance of copper foil after exposure to hydrogen sulfide, contact resistance of aluminum foil before exposure to hydrogen sulfide, contact resistance of aluminum foil after exposure to hydrogen sulfide Is a bar graph showing As can be seen from FIG. 6, the contact resistance of the copper foil before exposure to hydrogen sulfide is 0.001 ⁇ ⁇ cm 2 , whereas the contact resistance of the copper foil after exposure to hydrogen sulfide is 0.004 ⁇ ⁇ cm 2 . On the other hand, the contact resistance of the aluminum foil remains 0.005 ⁇ ⁇ cm 2 before and after exposure to hydrogen sulfide.
  • the influence of corrosion by hydrogen sulfide is large in the order of copper, SUS, and aluminum. Therefore, for example, when aluminum is used for the positive electrode current collector and copper is used for the negative electrode current collector, the negative electrode current collector is more susceptible to corrosion by hydrogen sulfide than the positive electrode current collector.
  • the contact resistance of the copper foil increases four times before and after exposure to hydrogen sulfide, whereas the contact resistance of the aluminum foil does not change before and after exposure to hydrogen sulfide. From the above, it can be seen that among copper foils, SUS foils, and aluminum foils usually used for current collectors, copper foils are most severely corroded by hydrogen sulfide. On the other hand, it can be seen that the aluminum foil is hardly affected by hydrogen sulfide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

 硫化水素による負極の劣化を防ぐ硫化物系固体電池モジュールを提供する。 正極、負極、及び、当該正極及び当該負極の間に介在する硫化物系固体電解質を備える硫化物系固体電池、並びに、当該硫化物系固体電池を収納する電池ケースを備える硫化物系固体電池モジュールであって、前記負極が前記正極よりも鉛直方向上側に位置し、且つ、前記電池ケース内に硫化水素より密度の低い気体が含まれることを特徴とする、硫化物系固体電池モジュール。

Description

硫化物系固体電池モジュール
 本発明は、硫化水素による負極の劣化を防ぐ硫化物系固体電池モジュールに関する。
 二次電池は、化学反応に伴う化学エネルギーの減少分を電気エネルギーに変換し、放電を行うことができる他に、放電時と逆方向に電流を流すことにより、電気エネルギーを化学エネルギーに変換して蓄積(充電)することが可能な電池である。二次電池の中でも、リチウム二次電池は、エネルギー密度が高いため、ノート型のパーソナルコンピューターや、携帯電話機等の電源として幅広く応用されている。
 リチウム二次電池においては、負極活物質としてグラファイト(Cと表現する)を用いた場合、放電時において、負極では下記式(I)の反応が進行する。
 LiC→C+xLi+xe   (I)
(上記式(I)中、0<x<1である。)
 式(I)の反応で生じる電子は、外部回路を経由し、外部の負荷で仕事をした後、正極に到達する。そして、式(I)の反応で生じたリチウムイオン(Li)は、負極と正極に挟持された電解質内を、負極側から正極側に電気浸透により移動する。
 また、正極活物質としてコバルト酸リチウム(Li1-xCoO)を用いた場合、放電時において、正極では下記式(II)の反応が進行する。
 Li1-xCoO+xLi+xe→LiCoO   (II)
(上記式(II)中、0<x<1である。)
 充電時においては、負極及び正極において、それぞれ上記式(I)及び式(II)の逆反応が進行し、負極においてはグラファイトインターカレーションによりリチウムが入り込んだグラファイト(LiC)が、正極においてはコバルト酸リチウム(Li1-xCoO)が再生するため、再放電が可能となる。
 リチウム二次電池の中でも、電解質を固体電解質とし、電池を全固体化したリチウム二次電池は、電池内に可燃性の有機溶媒を用いないため、安全かつ装置の簡素化が図れ、製造コストや生産性に優れると考えられている。このような固体電解質に用いられる固体電解質材料として、硫化物系固体電解質が知られている。
 しかしながら、硫化物系固体電解質材料は水分と反応しやすい性質を持つため、硫化物系固体電解質材料を用いた電池においては硫化水素の発生による劣化が起こりやすく、電池の寿命が短いという課題があった。
 硫化水素ガスを捕捉し無害化することを目的とする技術は、これまでにも開発されている。特許文献1には、分解により硫化水素ガスが発生する硫黄化合物を電池セル内に含み、硫化水素ガスをトラップし無毒化する物質で、前記電池セルの外周部が覆われている硫化物系二次電池の技術が開示されている。
特開2008-103245号公報
 特許文献1の明細書の段落[0021]には、硫化水素ガスをトラップし無毒化する物質の例として、アルカリ性物質が挙げられている。しかし、アルカリ性物質は充放電に直接関与しないため、当該アルカリ性物質を準備するコストや、アルカリ性物質を含有することによる電池全体の質量の増加、及び電池の容積効率の低下等の観点から、アルカリ性物質の使用は好ましくないと考えられる。
 本発明は、上記実状を鑑みて成し遂げられたものであり、硫化水素による負極の劣化を防ぐ硫化物系固体電池モジュールを提供することを目的とする。
 本発明の硫化物系固体電池モジュールは、正極、負極、及び、当該正極及び当該負極の間に介在する硫化物系固体電解質を備える硫化物系固体電池、並びに、当該硫化物系固体電池を収納する電池ケースを備える硫化物系固体電池モジュールであって、前記負極が前記正極よりも鉛直方向上側に位置し、且つ、前記電池ケース内に硫化水素より密度の低い気体が含まれることを特徴とする。
 本発明においては、前記負極が、負極活物質層及び負極集電体を備え、前記負極集電体が、銅、ニッケル、及びステンレス鋼からなる群より選ばれる少なくとも1種の導電性材料を含んでいてもよい。
 本発明においては、硫化水素より密度の低い前記気体が、窒素(N)、酸素(O)、一酸化炭素(CO)、ヘリウム(He)、及び水素(H)からなる群より選ばれる少なくとも1種の気体であってもよい。
 本発明によれば、硫化水素が発生した場合においても、硫化水素が硫化物系固体電池の鉛直方向下部に溜まるため、硫化水素による負極の劣化を抑制できる。
本発明に係る硫化物系固体電池モジュールの積層構造の典型例を示す図であって、積層方向に切断した断面を模式的に示した図である。 本発明に係る硫化物系固体電池モジュールの積層構造の変形例を示す図であって、積層方向に切断した断面を模式的に示した図である。 硫化水素曝露前後の銅箔の写真、及び、硫化水素曝露後の銅のXPS深さ方向分析結果を示したグラフである。 硫化水素曝露前後のSUS箔の写真、及び、硫化水素曝露後のSUSのXPS深さ方向分析結果を示したグラフである。 硫化水素曝露前後のアルミニウム箔の写真、及び、硫化水素曝露後のアルミニウムのXPS深さ方向分析結果を示したグラフである。 硫化水素曝露前後の銅箔及びアルミニウム箔の接触抵抗を示した棒グラフである。
 本発明の硫化物系固体電池モジュールは、正極、負極、及び、当該正極及び当該負極の間に介在する硫化物系固体電解質を備える硫化物系固体電池、並びに、当該硫化物系固体電池を収納する電池ケースを備える硫化物系固体電池モジュールであって、前記負極が前記正極よりも鉛直方向上側に位置し、且つ、前記電池ケース内に硫化水素より密度の低い気体が含まれることを特徴とする。
 本発明でいう気体の密度とは、標準状態(0℃、101.325kPa)における気体の密度を指す。
 また、本発明において、負極が正極よりも鉛直方向上側に位置するとは、負極と正極の以下に示す位置関係を示す。すなわち、当該位置関係とは、負極の任意の部位から鉛直方向下側に糸を垂らした場合には、当該糸が正極に触れることがあるが、正極の任意の部位から鉛直方向下側に糸を垂らした場合には、当該糸が負極に触れることはあり得ない関係をいう。
 硫化物系固体材料を含む硫化物系固体電池の場合、当該硫化物系固体電池中の材料が含んでいたり、又は当該硫化物系固体電池を覆う外装樹脂部等を透過して外気から混入したりする微量の水分と、硫化物系固体材料とが反応し、硫化水素(HS)が生じることがある。
 硫化物系固体電池内に少量の水分が混入する要因としては、製造時の水の混入や、使用環境下におけるシール部からの水の透過等が考えられる。製造時の水の混入を防止するためには、露点管理されたドライルーム内やグローブボックス内で電池を製造する対策を講じることができる。また、使用環境下におけるシール部からの水の透過を防止するためには、シール材料やシール構造の改善を図ることができる。
 しかし、上記対策を講じてもなお、従来技術においては、電池セル内への水分の混入を完全に防ぐことは困難であった。
 硫化物系固体電池内を満たす雰囲気(乾燥空気等)に対し、通常、硫化水素は標準状態における密度が高い(1.54kg/m)。したがって、発生した硫化水素は、硫化物系固体電池の鉛直方向下部に澱む。その結果、負極を正極よりも鉛直方向下側に配置した場合には、負極集電体に用いられる銅等の金属は、硫化水素に腐食(硫化)されやすく、また腐食に伴い電池性能が低下するおそれがある。
 本発明者らは、負極を正極よりも鉛直方向上側に配置し、且つ、電池ケース内に硫化水素より密度の低い気体を充填することにより、硫化水素が発生した場合においても、硫化水素が硫化物系固体電池の鉛直方向下部に溜まるため、硫化水素による負極の劣化を抑制できることを見出し、本発明を完成させた。
 通常、硫化物系固体電池の技術の分野においては、正極と負極のどちらを鉛直方向上側に配置するかという観点では、ほとんど議論されたことがない。
 しかし、本発明者らは、これまで特に議論されてこなかった正極と負極の上下の位置関係に着目し、負極を正極よりも鉛直方向上側に配置することを検討した。その結果、負極を正極よりも鉛直方向上側に配置することに加えて、電池ケース内の雰囲気を硫化水素より密度の低い気体とすることにより、硫化水素による電池部材の腐食を回避できる利点が見出された。
 図1(a)は本発明に係る硫化物系固体電池モジュールの積層構造の典型例を示す図であって、積層方向に切断した断面を模式的に示した図である。また、二重波線は図の省略を意味する。
 図1(a)に示すように、硫化物系固体電池8は、正極活物質層2及び正極集電体4を備える正極6と、負極活物質層3及び負極集電体5を備える負極7と、当該正極6及び当該負極7に挟持される硫化物系固体電解質1を備える。
 図1(a)に示すように、硫化物系固体電池8中の積層方向9は、鉛直方向20と略一致する。なお、本発明における積層方向とは、層が積み重なる方向のことであり、層の平面方向と略垂直な方向のことである。また、負極7は、正極6よりも鉛直方向上側に位置するように配置されている。
 正極集電体4、及び負極集電体5の端部を残し、硫化物系固体電池8全体は電池ケース10に収納されている。なお、図示されてはいないが、正極集電体4は、紙面に向かって手前又は奥のいずれかの方向に延長され、正極集電体4の一部は電池ケース10の外に露出している。さらに、図示されてはいないが、電池ケース10内に硫化水素より密度の低い気体が充填されている。
 図1(b)は本典型例の硫化物系固体電池モジュールを使用する際の、電池ケース内を占める気体の分布を示した模式図である。白丸11は硫化水素より密度の低い気体を、丸12は硫化水素をそれぞれ示す。また、二重波線は図の省略を意味する。
 図1(b)に示すように、電池ケース10内を満たす気体11は、硫化水素12よりも硫化物系固体電池8の鉛直方向上部を占める。また、本典型例においては、負極7が正極6よりも鉛直方向上側に位置する。したがって、硫化水素が発生した際には、硫化水素が鉛直方向下方に溜まるため、硫化水素による負極の劣化を抑制できる。
 図2は本発明に係る硫化物系固体電池モジュールの積層構造の変形例を示す図であって、積層方向に切断した断面を模式的に示した図である。二重波線は図の省略を意味する。
 本変形例は、図1(a)に示した硫化物系固体電池8を備える電池ケース10を、さらに積層させたものである。本変形例においては、図2に示すように、硫化物系固体電池8中の積層方向9は、電池ケース10を積層した方向19と略一致し、且つ、積層方向19は鉛直方向20と略一致する。
 図2に示すように、本典型例においても、各電池ケース内において、負極7が正極6よりも鉛直方向上側に位置する。また、図示されてはいないが、硫化水素よりも密度の低い上記気体は、電池ケース10内において、硫化水素よりも硫化物系固体電池8の鉛直方向上部を占める。したがって、本変形例においても、上記典型例と同様に、硫化水素による負極の劣化を抑制できる。
 本発明の実施形態は、上記典型例及び変形例に限定されない。本発明の硫化物系固体電池モジュールを設置する際には、負極が正極よりも鉛直方向上側に位置するように組み立て、負極と正極の位置を固定したまま使用してもよい。また、本発明においては、硫化物系固体電池モジュールの一部又は全体を可動式にし、硫化物系固体電池モジュールを使用する度に、負極が正極よりも鉛直方向上側に位置するように当該モジュールの一部又は全体の傾きを調整してもよい。
 硫化物系固体電池の積層方向と、鉛直方向とは、図1及び図2に示すように略一致している必要はない。すなわち、負極が正極よりも鉛直方向上側に位置していれば、硫化物系固体電池の積層方向は、鉛直方向に対して傾いていてもよい。
 以下、本発明の硫化物系固体電池モジュールに用いられる、正極及び負極、硫化物系固体電解質、電池ケース、並びにセパレータ等のその他の部材について、項を分けて説明する。
 (正極及び負極)
 本発明に用いられる正極は、好ましくは、正極集電体、及び、当該正極集電体に接続した正極タブを備えており、さらに好ましくは正極活物質を含有する正極活物質層を備える。本発明に用いられる負極は、好ましくは、負極集電体、及び、当該負極集電体に接続した負極タブを備えており、さらに好ましくは負極活物質を含有する負極活物質層を備える。
 本発明に用いられる正極活物質としては、具体的には、LiCoO、LiNi1/3Mn1/3Co1/3、LiNiPO、LiMnPO、LiNiO、LiMn、LiCoMnO、LiNiMn、LiFe(PO及びLi(PO等を挙げることができる。正極活物質からなる微粒子の表面にLiNbO等を被覆してもよい。
 これらの材料の中でも、本発明においては、LiCoOを正極活物質として用いることが好ましい。
 本発明に用いられる正極活物質層の厚さは、目的とする硫化物系固体電池モジュールの用途等により異なるものであるが、5~250μmの範囲内であるのが好ましく、20~200μmの範囲内であるのが特に好ましく、特に30~150μmの範囲内であることが最も好ましい。
 正極活物質の平均粒径としては、例えば1~50μmの範囲内、中でも1~20μmの範囲内、特に3~5μmの範囲内であることが好ましい。正極活物質の平均粒径が小さすぎると、取り扱い性が悪くなる可能性があり、正極活物質の平均粒径が大きすぎると、平坦な正極活物質層を得るのが困難になる場合があるからである。なお、正極活物質の平均粒径は、例えば走査型電子顕微鏡(SEM)により観察される活物質担体の粒径を測定して、平均することにより求めることができる。
 正極活物質層は、必要に応じて導電化材及び結着材等を含有していても良い。
 本発明において用いられる正極活物質層が有する導電化材としては、正極活物質層の導電性を向上させることができれば特に限定されるものではないが、例えばアセチレンブラック、ケッチェンブラック、VGCF等のカーボンブラック等を挙げることができる。また、正極活物質層における導電化材の含有量は、導電化材の種類によって異なるものであるが、通常1~10質量%の範囲内である。
 本発明に用いられる正極活物質層が有する結着材としては、例えば、スチレン-ブタジエンゴム、エチレン-プロピレンゴム、スチレン-エチレン-ブタジエンゴム等の合成ゴム;ポリビニリデンフロライド(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素ポリマーを挙げることができる。また、正極活物質層における結着材の含有量は、正極活物質等を固定化できる程度の量であれば良く、より少ないことが好ましい。結着材の含有量は、通常1~10質量%の範囲内である。結着剤を含有することにより、固体電池全体の柔軟性向上が期待できる。
 正極活物質層を形成した後は、電極密度を向上させるために、正極活物質層をプレスしても良い。
 本発明に用いられる正極集電体は、上記正極活物質層の集電を行う機能を有するものであり、且つ、硫化水素と反応し難い物質を含むものであれば、特に限定されない。
 後述する実施例において示すように、集電体に通常用いられる銅箔、SUS箔、及びアルミニウム箔のうち、アルミニウム箔は硫化水素による影響をほとんど受けない。したがって、正極集電体の材料としては、例えばアルミニウム、アルミニウム合金、及びSUS等のステンレス鋼等を挙げることができ、中でもアルミニウム及びSUSが好ましい。また、正極集電体の形状としては、例えば、箔状、板状、メッシュ状等を挙げることができ、中でも箔状が好ましい。
 正極タブは、正極集電体と、電池外部の外部負荷や導線とを連結するための部材である。正極タブは、上述した正極集電体と同様の材料であれば特に限定されない。正極タブの材料としては、例えばアルミニウム、アルミニウム合金、及びSUS等のステンレス鋼等を挙げることができ、中でもアルミニウム及びSUSが好ましい。
 シール性向上の観点から、正極タブのシールタブと、後述する電池ケースのシール部は、専用シール材を用いても良い。専用シール材としては、ポリプロピレン等の汎用ポリマーが挙げられる。正極タブとシールを一体化した市販のタブリード(住友電気工業製)等を用いてもよい。
 負極活物質層に用いられる負極活物質としては、金属イオンを吸蔵・放出可能なものであれば特に限定されるものではない。金属イオンとしてリチウムイオンを用いる場合には、例えば、金属リチウム、リチウム合金、チタン酸リチウム等の金属酸化物、金属硫化物、金属窒化物、及びグラファイト、ソフトカーボン、ハードカーボン等の炭素材料等を挙げることができる。また、負極活物質は、粉末状であっても良く、薄膜状であっても良い。
 負極活物質層は、必要に応じて導電化材及び結着材等を含有していても良い。
 負極活物質層中に用いることができる結着材及び導電化材は、上述したものを用いることができる。また、結着材及び導電化材の使用量は、硫化物系固体電池モジュールの用途等に応じて、適宜選択することが好ましい。また、負極活物質層の膜厚としては、特に限定されるものではないが、例えば5~150μmの範囲内、中でも10~80μmの範囲内であることが好ましい。
 本発明に用いられる負極集電体は、上記負極活物質層の集電を行う機能を有するものであれば特に限定されない。なお、本発明においては、負極集電体と硫化水素とは接触し難い構成となっているため、負極集電体の硫化水素との反応性は考慮する必要がない。したがって、負極集電体は、硫化水素と反応しやすい物質を含んでいてもよい。
 後述する実施例において示すように、集電体に通常用いられる銅箔、SUS箔、及びアルミニウム箔のうち、銅箔は硫化水素による腐食が最も激しい。したがって、負極集電体の材料としては、例えばニッケル、銅、及びSUS等のステンレス鋼等を挙げることができ、中でも銅及びSUSが好ましい。また、負極集電体の形状としては、例えば、箔状、板状、メッシュ状等を挙げることができ、中でも箔状が好ましい。
 負極タブは、負極集電体と、電池外部の外部負荷や導線とを連結するための部材である。負極タブは、上述した負極集電体と同様の材料であれば特に限定されない。負極タブの材料としては、例えばニッケル、銅、及びSUS等のステンレス鋼等を挙げることができ、中でも銅及びSUSが好ましい。
 専用シール材が使用できる点、及び、タブとシールを一体化したタブリードが使用できる点は、正極タブと同様である。
 本発明に用いられる負極の製造方法としては、上述したような正極の製造方法と同様の方法を採用することができる。
 本発明に用いられる正極及び/又は負極は、固体電解質を含んでいてもよい。固体電解質としては、具体的には、後に詳しく述べる硫化物系固体電解質の他にも、酸化物系固体電解質、ポリマー電解質、ゲル電解質等を例示することができる。
 酸化物系固体電解質としては、具体的には、LiPON(リン酸リチウムオキシナイトライド)、Li1.3Al0.3Ti0.7(PO、La0.51Li0.34TiO0.74、LiPO、LiSiO、LiSiO等を例示することができる。
 上記ポリマー電解質は、リチウム塩及びポリマーを含有するものである。リチウム塩としては、一般的なリチウム二次電池に用いられるリチウム塩であれば特に限定されるものではなく、例えば、LiPF、LiBF、LiN(CFSO、LiCFSO、LiCSO、LiC(CFSO及びLiClO等を挙げることができる。ポリマーとしては、リチウム塩と錯体を形成するものであれば特に限定されるものではなく、例えば、ポリエチレンオキシド等が挙げられる。
 上記ゲル電解質は、リチウム塩、ポリマー、及び非水溶媒を含有するものである。
 リチウム塩としては、上述したリチウム塩を用いることができる。
 非水溶媒としては、上記リチウム塩を溶解できるものであれば特に限定されるものではなく、例えば、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、1,2-ジメトキシエタン、1,2-ジエトキシエタン、アセトニトリル、プロピオニトリル、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジオキサン、1,3-ジオキソラン、ニトロメタン、N,N-ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、γ-ブチロラクトン等が挙げられる。これらの非水溶媒は、1種のみ用いてもよく、2種以上を混合して用いても良い。また、非水電解液として、常温溶融塩を用いることもできる。
 ポリマーとしては、ゲル化が可能なものであれば特に限定されるものではなく、例えば、ポリエチレンオキシド、ポリプロプレンオキシド、ポリアクリルニトリル、ポリビニリデンフロライド(PVDF)、ポリウレタン、ポリアクリレート、セルロース等が挙げられる。
 (硫化物系固体電解質)
 本発明に用いられる硫化物系固体電解質は、好ましくは、上述した正極活物質及び負極活物質の間でイオン交換を行う働きを有する。硫化物系固体電解質としては、固体電解質結晶を用いてもよい。
 本発明に用いられる硫化物系固体電解質としては、具体的には、LiS-P、LiS-P、LiS-P-P、LiS-SiS、LiS-SiS、LiS-B、LiS-GeS、LiI-LiS-P、LiI-LiS-SiS-P、LiS-SiS-LiSiO、LiS-SiS-LiPO、LiPS-LiGeS、Li3.40.6Si0.4、Li3.250.25Ge0.76、Li4-xGe1-x等を例示することができる。
 硫化物系固体電解質を層状に加工する方法としては、上記硫化物系固体電解質をプレスする方法が例示できる。その他の方法としては、上記硫化物系固体電解質と溶媒を混ぜスラリー状にしたものを、正極又は負極等の所望の場所に塗布することで層状に加工してもよい。
 硫化物系固体電解質は、上述した結着剤を含有してもよい。
 (電池ケース)
 本発明に使用できる電池ケースの形状としては、上述した正極、負極、硫化物系固体電解質等を収納できるものであれば特に限定されるものではないが、具体的には、円筒型、角型、コイン型、ラミネート型等を挙げることができる。ラミネート型の場合は、ラミネートフィルムとして、ポリエチレンフタレート/アルミニウム/ポリエチレンの3層フィルムが使用できる。
 電池ケース内には、硫化水素(密度:1.539)より密度の低い気体が含まれる。当該気体は、密度が1.539未満であり、且つ、電池ケース内の部材に悪影響を及ぼすことのない気体であれば、特に限定されない。当該気体は、本発明の硫化物系固体電池モジュール使用前に予め電池ケース内に充填され、使用が終わる度に補充されるものであってもよいし、本発明の硫化物系固体電池モジュール使用中、外部のガスボンベ等から電池ケース内に連続的に供給されるものであってもよい。
 硫化水素より密度の低い前記気体は、窒素(N、密度:1.250)、酸素(O、密度:1.429)、一酸化炭素(CO、密度:1.250)、ヘリウム(He、密度:0.1785)、及び水素(H、密度:0.0899)からなる群より選ばれる少なくとも1種の気体であってもよい。これらの気体はいずれも標準状態における密度が1.539未満であるため、電池ケース内において硫化水素が発生したとしても、電池ケース上部に位置する負極を硫化水素が侵すおそれがない。これらの気体は、1種のみを単独で用いてもよいし、2種以上を混合して用いてもよい。
 電池ケース内を満たす気体の密度と、硫化水素の密度との差は、大きいほど好ましい。したがって、電池ケース内を満たす気体の密度は、1.52以下であることが好ましく、0.08~1.5であることがより好ましく、0.08~1.45であることがさらに好ましい。
 電池ケース内を満たす気体の初期圧力は、1~10atmであることが好ましい。当該初期圧力が1atm未満であるとすると、圧力が低すぎるため、外気に含まれる水蒸気が電池ケース内に流入しやすくなるおそれがある。また、当該初期圧力が10atmを超えるとすると、圧力が高すぎるため、電池ケースが破損したり、硫化物系固体電池中の部材に負担がかかるため充放電性能に支障が生じるおそれがある。
 電池ケース内を満たす気体の初期圧力は、1~8atmであることがより好ましく、1~5atmであることがさらに好ましい。
 また、硫化水素が発生した後においては、電池ケース内を満たす雰囲気中、硫化水素より密度の低い気体の分圧が、発生した硫化水素の分圧よりも高いことが好ましい。
 (その他の構成要素)
 その他の構成要素として、セパレータを本発明に用いることができる。セパレータは、上述した正極集電体及び上記負極集電体の間に配置されるものであり、通常、正極活物質層と負極活物質層との接触を防止し、硫化物系固体電解質を保持する機能を有する。さらに、上記セパレータは、上記セパレータの材料としては、例えばポリエチレン(PE)、ポリプロピレン(PP)、ポリエステル、セルロース及びポリアミド等の樹脂を挙げることができ、中でもポリエチレン及びポリプロピレンが好ましい。また、上記セパレータは、単層構造であっても良く、複層構造であっても良い。複層構造のセパレータとしては、例えばPE/PPの2層構造のセパレータ、PP/PE/PPの3層構造のセパレータ等を挙げることができる。さらに、本発明においては、上記セパレータが、樹脂不織布、ガラス繊維不織布等の不織布等であっても良い。また、上記セパレータの膜厚は、特に限定されるものではなく、一般的な硫化物系固体電池に用いられるセパレータの膜厚と同様である。
 このように、本発明においては、負極集電体の劣化を抑制でき、電池性能の低下を防止できる。また、本発明においては、硫化水素と負極集電体との接触を避けるための特別な部品を新たに追加したり、硫化水素をトラップし無毒化する物質を新たに調製したりする必要が無いため、製造コスト、モジュール全体の質量、及び容積等の観点においても、従来の硫化物系固体電池モジュールと遜色がない。
 銅箔、SUS箔、及びアルミニウム箔を、25℃の温度条件において、硫化水素雰囲気(HS濃度:4%)下に24時間曝した。
 図3(a)は硫化水素曝露前の銅箔の写真、図3(b)は硫化水素曝露後の銅箔の写真である。図3(a)及び図3(b)を比較すると分かるように、銅箔は、硫化水素曝露により赤変し、目視で分かるほど激しく腐食する。
 図3(c)は硫化水素曝露後の銅のX線光電子分光(X-ray Photoelectron Spectroscopy;以下、XPSと称する)深さ方向分析結果を示したグラフである。図3(c)は、縦軸には原子濃度(Atomic Concentration(%))、横軸にはスパッタ深さ(Sputter Depth(nm))をとったグラフである。図3(c)から分かるように、銅箔中へのS拡散は15nmまで進行する。
 図4(a)は硫化水素曝露前のSUS箔の写真、図4(b)は硫化水素曝露後のSUS箔の写真である。図4(a)及び図4(b)を比較すると分かるように、SUS箔は硫化水素曝露によりわずかに腐食する。
 図4(c)は硫化水素曝露後のSUSのXPS深さ方向分析結果を示したグラフである。縦軸及び横軸は図3(c)と同様である。図4(c)から分かるように、SUS箔中へのS拡散は2nmまで進行する。
 図5(a)は硫化水素曝露前のアルミニウム箔の写真、図5(b)は硫化水素曝露後のアルミニウム箔の写真である。図5(a)及び図5(b)を比較すると分かるように、アルミニウム箔は硫化水素曝露により腐食しない。
 図5(c)は硫化水素曝露後のアルミニウムのXPS深さ方向分析結果を示したグラフである。縦軸及び横軸は図3(c)と同様である。図5(c)から分かるように、アルミニウム箔中においては、S拡散は進行しない。
 図6は、硫化水素曝露前後の銅箔及びアルミニウム箔の接触抵抗を示した棒グラフである。図6中、左から、硫化水素曝露前の銅箔の接触抵抗、硫化水素曝露後の銅箔の接触抵抗、硫化水素曝露前のアルミニウム箔の接触抵抗、硫化水素曝露後のアルミニウム箔の接触抵抗をそれぞれ示した棒グラフである。
 図6から分かるように、硫化水素曝露前の銅箔の接触抵抗は0.001Ω・cmであるのに対し、硫化水素曝露後の銅箔の接触抵抗は0.004Ω・cmである。一方、アルミニウム箔の接触抵抗は、硫化水素曝露前後で変わらず0.005Ω・cmである。
 図3~図5に示すように、硫化水素による腐食の影響は、銅、SUS、アルミニウムの順に大きい。したがって、例えば、アルミニウムを正極集電体、銅を負極集電体に用いるとすると、負極集電体は正極集電体よりも硫化水素による腐食を受けやすいこととなる。
 図6に示すように、硫化水素曝露前後で銅箔の接触抵抗は4倍に増えるのに対し、アルミニウム箔の接触抵抗は、硫化水素曝露前後で変化しない。
 以上より、集電体に通常用いられる銅箔、SUS箔、及びアルミニウム箔のうち、銅箔は硫化水素による腐食が最も激しいことが分かる。一方、アルミニウム箔は硫化水素による影響をほとんど受けないことが分かる。
1 硫化物系固体電解質
2 正極活物質層
3 負極活物質層
4 正極集電体
5 負極集電体
6 正極
7 負極
8 硫化物系固体電池
9 硫化物系固体電池の積層方向を示す両矢印
10 電池ケース
11 硫化水素より密度の低い気体
12 硫化水素
19 硫化物系固体電池を備える電池ケースを積層した方向を示す両矢印
20 鉛直方向を示す矢印

Claims (3)

  1.  正極、負極、及び、当該正極及び当該負極の間に介在する硫化物系固体電解質を備える硫化物系固体電池、並びに、当該硫化物系固体電池を収納する電池ケースを備える硫化物系固体電池モジュールであって、
     前記負極が前記正極よりも鉛直方向上側に位置し、且つ、
     前記電池ケース内に硫化水素より密度の低い気体が含まれることを特徴とする、硫化物系固体電池モジュール。
  2.  前記負極が、負極活物質層及び負極集電体を備え、
     前記負極集電体が、銅、ニッケル、及びステンレス鋼からなる群より選ばれる少なくとも1種の導電性材料を含む、請求の範囲第1項に記載の硫化物系固体電池モジュール。
  3.  硫化水素より密度の低い前記気体が、窒素(N)、酸素(O)、一酸化炭素(CO)、ヘリウム(He)、及び水素(H)からなる群より選ばれる少なくとも1種の気体である、請求の範囲第1項又は第2項に記載の硫化物系固体電池モジュール。
PCT/JP2011/061883 2011-05-24 2011-05-24 硫化物系固体電池モジュール WO2012160652A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/388,372 US20140099531A1 (en) 2011-05-24 2011-05-24 Sulfide-based solid cell module
JP2011542595A JPWO2012160652A1 (ja) 2011-05-24 2011-05-24 硫化物系固体電池モジュール
CN2011800043088A CN102906927A (zh) 2011-05-24 2011-05-24 硫化物类固体电池模块
PCT/JP2011/061883 WO2012160652A1 (ja) 2011-05-24 2011-05-24 硫化物系固体電池モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/061883 WO2012160652A1 (ja) 2011-05-24 2011-05-24 硫化物系固体電池モジュール

Publications (1)

Publication Number Publication Date
WO2012160652A1 true WO2012160652A1 (ja) 2012-11-29

Family

ID=47216755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061883 WO2012160652A1 (ja) 2011-05-24 2011-05-24 硫化物系固体電池モジュール

Country Status (4)

Country Link
US (1) US20140099531A1 (ja)
JP (1) JPWO2012160652A1 (ja)
CN (1) CN102906927A (ja)
WO (1) WO2012160652A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112019001560T5 (de) * 2018-03-28 2021-01-21 Honda Motor Co., Ltd. Feststoff-Batteriemodul

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009193729A (ja) * 2008-02-12 2009-08-27 Toyota Motor Corp 固体型電池
JP2009218010A (ja) * 2008-03-07 2009-09-24 Toyota Motor Corp 固体型電池
JP2011113803A (ja) * 2009-11-26 2011-06-09 Toyota Motor Corp 全固体電池
JP2011124084A (ja) * 2009-12-10 2011-06-23 Toyota Motor Corp 全固体電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4052695B2 (ja) * 1996-06-14 2008-02-27 日立マクセル株式会社 リチウム二次電池
JP3412616B2 (ja) * 2000-07-19 2003-06-03 住友電気工業株式会社 リチウム二次電池用負極の製造方法
JP4174816B2 (ja) * 2001-02-28 2008-11-05 住友電気工業株式会社 無機固体電解質およびリチウム電池部材
JP3591523B2 (ja) * 2002-04-11 2004-11-24 日産自動車株式会社 組電池
JP4952191B2 (ja) * 2006-10-27 2012-06-13 トヨタ自動車株式会社 蓄電装置及び冷却システム
JP2009193696A (ja) * 2008-02-12 2009-08-27 Sony Corp 負極、二次電池およびそれらの製造方法
JP2010153140A (ja) * 2008-12-24 2010-07-08 Nissan Motor Co Ltd 非水電解質二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009193729A (ja) * 2008-02-12 2009-08-27 Toyota Motor Corp 固体型電池
JP2009218010A (ja) * 2008-03-07 2009-09-24 Toyota Motor Corp 固体型電池
JP2011113803A (ja) * 2009-11-26 2011-06-09 Toyota Motor Corp 全固体電池
JP2011124084A (ja) * 2009-12-10 2011-06-23 Toyota Motor Corp 全固体電池

Also Published As

Publication number Publication date
CN102906927A (zh) 2013-01-30
JPWO2012160652A1 (ja) 2014-07-31
US20140099531A1 (en) 2014-04-10

Similar Documents

Publication Publication Date Title
CN109326770B (zh) 通过气相沉积保形涂覆可充电锂离子电池的锂阳极
WO2010073332A1 (ja) リチウム空気電池
WO2012111061A1 (ja) 電池および電池の製造方法
US11430994B2 (en) Protective coatings for lithium metal electrodes
KR20160110380A (ko) 비수전해질 이차 전지용 부극재 및 부극 활물질 입자의 제조 방법
KR101455165B1 (ko) 안전성이 향상된 전극조립체 및 이를 포함하는 이차전지
CZ2016618A3 (cs) Soli multivalentních kovů pro lithium-iontové články, které mají elektrodové aktivní materiály, které zahrnují kyslík
CN112448047B (zh) 预锂化电极的方法
JP2007273183A (ja) 負極及び二次電池
CN111095614B (zh) 二次电池用正极、二次电池和二次电池用正极的制造方法
JP2008060033A (ja) 正極活物質、これを用いた正極および非水電解質二次電池、並びに正極活物質の製造方法
CN110265629B (zh) 负极及锂离子二次电池
US20140004406A1 (en) Unification-typed electrode assembly and secondary battery using the same
JP2014225324A (ja) 非水電解質二次電池
JP2017010923A (ja) リチウム二次電池用正極活物質、リチウム二次電池用正極、リチウム二次電池及びこれらの製造方法
US20210135194A1 (en) Method for making silicon-carbon composite electrode materials
US10637048B2 (en) Silicon anode materials
JPWO2014155992A1 (ja) 非水電解質二次電池
JP2011100694A (ja) 非水電解質二次電池
CN110651384B (zh) 用于锂二次电池的负极和包括该负极的锂离子二次电池
US11728490B2 (en) Current collectors having surface structures for controlling formation of solid-electrolyte interface layers
KR20150065078A (ko) 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
US20220294037A1 (en) Method for manufacturing secondary battery
JP2013118067A (ja) リチウム二次電池
WO2013008335A1 (ja) 硫化物系固体電池、硫化物系固体電池を備える移動体、及び硫化物系固体電池の使用方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180004308.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2011542595

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011811509

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13388372

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11811509

Country of ref document: EP

Kind code of ref document: A1

WD Withdrawal of designations after international publication
NENP Non-entry into the national phase

Ref country code: DE