WO2012155349A1 - 定位梁及具有该定位梁的机器人直线运动单元 - Google Patents

定位梁及具有该定位梁的机器人直线运动单元 Download PDF

Info

Publication number
WO2012155349A1
WO2012155349A1 PCT/CN2011/074278 CN2011074278W WO2012155349A1 WO 2012155349 A1 WO2012155349 A1 WO 2012155349A1 CN 2011074278 W CN2011074278 W CN 2011074278W WO 2012155349 A1 WO2012155349 A1 WO 2012155349A1
Authority
WO
WIPO (PCT)
Prior art keywords
support beam
positioning
linear motion
transmission mechanism
support
Prior art date
Application number
PCT/CN2011/074278
Other languages
English (en)
French (fr)
Inventor
单忠德
刘丰
陈少凯
刘丽敏
Original Assignee
机械科学研究总院先进制造技术研究中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 机械科学研究总院先进制造技术研究中心 filed Critical 机械科学研究总院先进制造技术研究中心
Priority to US13/878,969 priority Critical patent/US9032827B2/en
Priority to EP11865485.4A priority patent/EP2662189B1/en
Priority to JP2014510634A priority patent/JP5801952B2/ja
Priority to KR1020137033434A priority patent/KR101895960B1/ko
Priority to CA2836516A priority patent/CA2836516C/en
Publication of WO2012155349A1 publication Critical patent/WO2012155349A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/023Cartesian coordinate type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/02Manipulators mounted on wheels or on carriages travelling along a guideway
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0075Means for protecting the manipulator from its environment or vice versa
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/02Manipulators mounted on wheels or on carriages travelling along a guideway
    • B25J5/04Manipulators mounted on wheels or on carriages travelling along a guideway wherein the guideway is also moved, e.g. travelling crane bridge type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/08Programme-controlled manipulators characterised by modular constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/12Programme-controlled manipulators characterised by positioning means for manipulator elements electric
    • B25J9/126Rotary actuators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S901/00Robots
    • Y10S901/19Drive system for arm
    • Y10S901/25Gearing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S901/00Robots
    • Y10S901/49Protective device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/18Mechanical movements
    • Y10T74/18568Reciprocating or oscillating to or from alternating rotary
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/18Mechanical movements
    • Y10T74/18568Reciprocating or oscillating to or from alternating rotary
    • Y10T74/18792Reciprocating or oscillating to or from alternating rotary including worm
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/18Mechanical movements
    • Y10T74/18568Reciprocating or oscillating to or from alternating rotary
    • Y10T74/18832Reciprocating or oscillating to or from alternating rotary including flexible drive connector [e.g., belt, chain, strand, etc.]
    • Y10T74/18848Reciprocating or oscillating to or from alternating rotary including flexible drive connector [e.g., belt, chain, strand, etc.] with pulley
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/20Control lever and linkage systems
    • Y10T74/20012Multiple controlled elements
    • Y10T74/20201Control moves in two planes

Definitions

  • Positioning beam and robot linear motion unit having the positioning beam The application is submitted to the State Intellectual Property Office of China on May 16, 2011, and the application number is 201110126387.1.
  • the invention name is "positioning beam and linear motion of the robot with the positioning beam” Priority of the patent application of the unit.
  • Field of the Invention The present invention relates to the field of robot linear motion systems, and more particularly to a positioning beam and a robot linear motion unit having the positioning beam.
  • Cartesian robots are a kind of spatial geometry
  • the three-dimensional space formed by the XYZ direction serves as an industrial automation robot device for the workspace.
  • the device can be set up by different programs to achieve automatic control and form a multi-purpose operating machine.
  • the Cartesian robot has four major functional modules: a linear motion unit, a drive unit, a control unit, and an end operating unit.
  • a linear motion unit In order to reduce the cost of Cartesian robots, shorten the product development cycle, increase product reliability and improve product performance, many countries in Europe and America have modularized Cartesian robots, while linear motion units are the most typical and most modular.
  • the core unit In order to reduce the cost of Cartesian robots, shorten the product development cycle, increase product reliability and improve product performance, many countries in Europe and America have modularized Cartesian robots, while linear motion units are the most typical and most modular.
  • the core unit In order to reduce the cost of Cartesian robots, shorten the product development cycle, increase product reliability and improve product performance, many countries in Europe and America have modularized Cartesian robots,
  • the so-called linear motion unit is to add the whole motion element to a whole movement, which includes a sports support part (light bar or linear guide), a positioning part part (various models of profiles), a transmission part (synchronous pulley and The timing belt or the screw) and the moving part of the slider (moving with the timing belt or the screw nut).
  • a sports support part light bar or linear guide
  • a positioning part part variable models of profiles
  • a transmission part synchronous pulley and The timing belt or the screw
  • the moving part of the slider moving with the timing belt or the screw nut.
  • the assembly space for assembling the transmission unit is cut in the middle section of the ordinary aluminum profile, and the moving support part is directly laid in the assembly space, so that the mechanical structure of the original profile is destroyed, of course. It also reduces the mechanical and mechanical properties of the overall structure.
  • the conventional positioning part and the moving support part often use a single aluminum profile to form a cantilever structure, or a versatile aluminum profile to form a frame structure. Through long-term practice, the two mechanical structures based on the aluminum profile are found. It is easy to have different degrees of flexural deformation and torsional deformation, and the impact resistance is relatively low when the robot moves at a higher speed. These are very deadly for linear motion systems of Cartesian robots that require high performance, high reliability and high precision.
  • An object of the present invention is to provide a positioning beam and a linear motion unit of the robot having the positioning beam, so as to solve the problem that the positioning body profile of the existing linear motion unit is susceptible to flexural deformation and torsional deformation, resulting in impact resistance of the linear motion unit. Poor technical issues.
  • a positioning beam comprising: a first supporting beam and a second supporting beam which are parallel to each other, and a beam, a beam connected between the first supporting beam and the second supporting beam
  • a joint of a first support beam and a second support beam and a joint of the beam with the first support beam and the second support beam are provided with right angle connectors.
  • a right angle connector is disposed on both sides of the joint of each of the beams with the first support beam and the second support beam.
  • the ends of the first support beam and the second support beam are provided with an integral or separate sealing cover.
  • the first support beam, the second support beam and the beam are all aluminum profiles.
  • a robot linear motion unit comprising a motion track and a transmission mechanism disposed along an extending direction of the motion track, the motion track being disposed on a surface of the positioning beam.
  • the transmission mechanism includes a single-track transmission mechanism, and the motion rail is a single rail disposed on the first support beam and the second support beam of the positioning beam.
  • the transmission mechanism includes a dual-track transmission mechanism, and the movement rails are first rails and second rails respectively disposed on the first support beam and the second support beam of the positioning beam.
  • the transmission mechanism is a screw drive mechanism.
  • the transmission mechanism is a synchronous pulley transmission mechanism.
  • the beam and the right angle connecting member are arranged between the first supporting beam and the second supporting beam, which can effectively improve the mechanical structural strength of the positioning beam, reduce the deflection deformation and torsional deformation of the positioning beam, and further improve the robot Impact resistance of linear motion units.
  • the present invention has other objects, features and advantages. The present invention will be further described in detail below with reference to the drawings. BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are incorporated in FIG. BRIEF DESCRIPTION OF THE DRAWINGS FIG.
  • FIG. 1 is a front perspective view of a positioning beam suitable for a single-track transmission mechanism according to a preferred embodiment of the present invention
  • FIG. 2 is a perspective view showing a three-dimensional structure of a positioning beam suitable for a single-track transmission mechanism according to a preferred embodiment of the present invention
  • Figure 3 is a front elevational view showing the two transmission mechanisms applied to the two positioning beams of the single-track transmission mechanism, driven by a drive motor, in accordance with a preferred embodiment of the present invention
  • Figure 4 is a preferred embodiment of the present invention.
  • FIG. 5 is a perspective view of a three-dimensional structure of a positioning beam suitable for a dual-track transmission mechanism according to a preferred embodiment of the present invention;
  • FIG. 5 is a perspective view of a three-dimensional structure of a positioning beam suitable for a dual-track transmission mechanism according to a preferred embodiment of the present invention
  • FIG. 5 is a schematic perspective view of a two-position transmission mechanism on two positioning beams of a single-track transmission mechanism
  • FIG. 6 is a schematic perspective view showing a three-dimensional structure in which a screw drive mechanism is mounted on a positioning beam suitable for a dual-track transmission mechanism according to a preferred embodiment of the present invention
  • Fig. 7 is a perspective view showing the structure of a synchronous pulley transmission mechanism mounted on a positioning beam suitable for a dual-track transmission mechanism according to a preferred embodiment of the present invention.
  • a positioning beam comprising: a first support beam 11 and a second support beam 12 that are parallel to each other, a first support beam 11 and a second support beam A cross member 13 is connected between the two, the cross member 13 is perpendicular to the first support beam 11 and the second support beam 12, and the joint of the cross member 13 with the first support beam 11 and the second support beam 12 is provided with a right angle connecting member 15.
  • both sides of the joint of each beam 13 with the first support beam 11 and the second support beam 12 A right angle connector 15 is provided, that is, a total of four right angle connectors 15 can be disposed on the upper and lower sides of the beam.
  • the length of the positioning beam may be different, and the number of the beam 13 may be increased according to the length of the positioning beam.
  • the ends of the first support beam 11 and the second support beam 12 are provided with an integral or separate sealing cover 16.
  • the two support beams may be sealed by a sealing cover 16; when the thickness of the two support beams is relatively When the distance between the two is relatively long or even the frame structure can be formed, the two sealing covers 16 can be used to seal the ends of the first support beam 11 and the second support beam 12, respectively.
  • the first support beam 11, the second support beam 12 and the beam 13 are all aluminum profiles. According to another aspect of the present invention, there is also provided a robot linear motion unit comprising a motion track and a transmission mechanism disposed along an extending direction of the motion track, wherein the motion track is disposed on a surface of the positioning beam.
  • the moving track is placed on the surface of the positioning beam, no need to open the mounting groove on the positioning beam, the section profile of the positioning beam is not damaged, and the mechanical properties and mechanical properties of the positioning beam are well guaranteed.
  • the transmission mechanism is a single-track transmission mechanism (see FIGS. 1 and 2).
  • the first support beam 11 and the second support beam 12 are thinner, the distance between the two is shorter, and the length of the beam is also shorter.
  • the distance between the right angle connectors 15 is also short, and the motion track is a single track 21 disposed on the first support beam 11 and the second support beam 12 of the positioning beam.
  • a drive motor 90 it is also possible to use a drive motor 90 to simultaneously drive two single-track transmission mechanisms, each of which can be disposed on a single positioning beam.
  • the transmission mechanism can also be a double-track transmission mechanism, which uses a double track and can be applied to a motion unit with a larger impact force.
  • the thickness of the first support beam 11 and the second support beam 12 is relatively large, and the distance between the two is large.
  • the positioning beam at this time is similar to a frame structure, and the movement rails are respectively disposed on the first support beam 11 and the first The first track 22 and the second track on the second support beam 12 (not shown in the drawing, which are symmetrically disposed with the first track 22).
  • the dual track transmission has two slides that slide on the first track 22 and the second track, respectively.
  • each track including the single track 21, the first track 22 and the second track, comprises two parallel monorails, that is to say, when the transmission mechanism is a double-track transmission mechanism, a total of the positioning beams are installed.
  • the transmission mechanism is a screw drive mechanism or a synchronous pulley drive mechanism.
  • the surface of the positioning beam on which the moving track is mounted is provided with a dust cover 30 covering the moving track.
  • the moving track is arranged on the axially extending side of the positioning beam.
  • the positioning beam (positioning body profile) of the robot linear motion unit is provided.
  • the structure of the transmission mechanism (motion support unit) is as follows: The first support beam 11 and the second support beam 12 are provided with seal covers 16 at both ends thereof, and the beam 13 is fixed to the two support beams by standard right angle fixing members 15. In order to ensure the structural strength of the system, improve the system reliability and improve the system accuracy, the number of beams 13 between the support beams can be based on the length of the support beam.
  • the moving rail can be fixed to each side of the first supporting beam 11 and the second supporting beam 12 by bolts, and the dust cover 30 can be respectively fixed to the two supporting beams by bolts.
  • the structure of the lead screw drive mechanism is as follows:
  • the first shaft 7 seat 41 and the second bearing seat 42 are respectively fixed to both ends of each support beam by bolts, and the servo motor G is fixed by deceleration by bolts.
  • the reducer 50 is fixed to the first shaft 7 seat 41 by bolts, and one end of the lead screw 61 is fixed to the first bearing housing 41 through the first bearing 43, and directly coupled to the servo motor G through the coupling 51.
  • the shaft is connected to the other end, and the other end is fixed to the second shaft 7 seat 42 through the second shaft 7 42 .
  • the slider 63 is fixed to the moving rail through the lead screw 61 , and the screw nut 65 is fixed to the slider 63 through the lead screw 61 . Under the driving of the servo motor G, the slider 63 can reciprocate linearly along the moving track. The guiding function of the movement is realized.
  • the structure of the timing belt transmission mechanism is as follows: The timing belt clamp 71 is fixed to the first support beam 11 and the second support beam 12 by four bolts, and the timing belt pressure plate 72 is fixed to the timing belt chuck 71 by four bolts.
  • Timing belt 73 Upper end of the timing belt 73 is fixed to a support beam by a timing belt pressing plate 72 and a timing belt chuck 71.
  • the timing belt 73 passes through the pulley housing 75, and the pulley housing 75 is slid by bolts and timing belts.
  • the blocks 76 are fixed together, and the case cover 77 is fixed to the pulley case 75 by four bolts.
  • the timing belt slider 76 is fixed on the moving rail, and can be linearly moved together with the pulley housing 75 under the driving of the servo motor 40, thereby realizing the guiding function of the movement.
  • the Cartesian robot linear motion system of the invention has the advantages of high overall mechanical strength, strong structural reliability, strong impact resistance and torsion resistance, easy maintenance, easy operation, and the like, and its innovation.
  • the combined structure of two parallel first support beams 11, second support beams 12 and beams 13 in the linear motion system of the Cartesian coordinate robot are all made of aluminum profiles, the transmission unit (synchronous The pulley drive mechanism or the screw drive mechanism is fixed on the surface of the positioning beam; another innovation is that the beam 13 in the linear motion system of the Cartesian coordinate robot can be easily and conveniently fixed to the first support beam 11 by the standard right angle connector 15
  • the second support beam 12 and the second support beam 12 when the beam 13 is provided at both ends of the first support beam 11 and the second support beam 12, in order to strengthen the structural strength of the system, improve system reliability and improve system accuracy, two The number of beams 13 between the support beams can be determined according to the length of the support beams.
  • the linear motion system of the angular coordinate robot is light in weight, the section of the transmission positioning beam is not damaged, and the mechanical properties and mechanical properties are well guaranteed.

Description

定位梁及具有该定位梁的机器人直线运动单元 本申请要求于 2011 年 5 月 16 日提交至中国国家知识产权局、 申请号为 201110126387.1、 发明名称为"定位梁及具有该定位梁的机器人直线运动单元" 的专利申请的优先权。 技术领域 本发明涉及机器人直线运动系统领域, 特别地, 涉及一种定位梁及具有该 定位梁的机器人直线运动单元。 背景技术 在当今迅猛发展的工业自动化时代里, 越来越多的环节需要自动化程度更 高的设备来完成, 加之人工成本的不断上升, 工作环境更高要求, 因此, 机器 人产品就孕育而生。 直角坐标机器人, 顾名思义, 就是一种以空间几何关系沿
XYZ方向所形成的立体空间作为工作空间的一种工业自动化机器人设备。该设 备在工业应用中, 可以通过不同的程序进行设定, 实现自动控制, 形成多用途 的操作机。 直角坐标机器人主要有 4大功能模块构成: 直线运动单元、 驱动单元、 控 制单元以及末端操作单元。 为了降低直角坐标机器人的成本, 缩短产品的研发 周期, 增加产品的可靠性以及提高产品性能, 欧美的许多国家都已经将直角坐 标机器人模块化, 而直线运动单元则是模块化中最为典型、 最为核心的单元。 所谓的直线运动单元就是将整个运动元素加之到一个运动整体中, 其共包括运 动支撑部分(光杠或直线导轨)、 定位体型材部分(各种型号的型材)、 传动部 分(同步带轮及同步带或丝杆) 以及滑块运动部分(通过同步带或丝杆螺母的 拉动而随之运动)。 随着科技的不断发展,人们对直角坐标机器人的性能提出高速度、 高精度、 高可靠性、 易操作性和可维修性等更高的要求。 作为其核心单元, 直线运动单 元的可靠性、 稳定性、 可操作性以及易维修性等性能更是越来越被科技人员所 重视, 而直线运动单元性能的提高主要取决于定位体型材部分和运动支撑部 分。 传统的定位体型材部分是在普通铝型材的中间截面上切割出用于装配传动 单元的装配空间, 运动支撑部分则直接铺设在装配空间内, 这样就会破坏掉原 有型材的机械结构, 当然也就降低了整体结构的机械性能以及力学性能。另夕卜, 传统的定位体型材部分和运动支撑部分常釆用单根铝型材构成悬臂结构, 或者 釆用双才艮铝型材构成^ I架结构, 通过长期的实践发现, 这两种基于铝型材的机 械结构都比较容易发生不同程度的挠曲形变以及扭转形变, 并在机器人运动速 度较高时的抗冲击力也相对较低。 这些对于被要求高性能, 高可靠性以及高精 度的直角坐标机器人直线运动系统来说是非常致命的。 因此, 有必要提供一种机械结构稳定、 能够减轻挠曲形变、 扭转形变, 并 具有较高的抗冲击性能的直线运动单元。 发明内容 本发明目的在于提供一种定位梁及具有该定位梁的机器人直线运动单元, 以解决现有直线运动单元的定位体型材容易发生挠曲变形、 扭转变形, 导致直 线运动单元的抗冲击性能差的技术问题。 为实现上述目的, 根据本发明的一个方面, 提供了一种定位梁, 包括: 相 互平行的第一支撑梁和第二支撑梁, 第一支撑梁和第二支撑梁之间连接有横 梁, 横梁与第一支撑梁和第二支撑梁垂直且横梁与第一支撑梁和第二支撑梁的 连接处均设置有直角连接件。 进一步地, 每个横梁与第一支撑梁和第二支撑梁的连接处的两侧均设置有 直角连接件。 进一步地, 第一支撑梁和第二支撑梁的端头设置有一体或分体的密封盖 板。 进一步地, 第一支撑梁、 第二支撑梁以及横梁均为铝型材。 才艮据本发明的另一方面, 还提供了一种机器人直线运动单元, 包括运动轨 道及沿该运动轨道的延伸方向布置的传动机构, 运动轨道设置于上述定位梁的 表面上。 进一步地, 传动机构包括单轨道传动机构, 运动轨道为设置于定位梁的第 一支撑梁和第二支撑梁上的单轨道。 进一步地, 传动机构包括双轨道传动机构, 运动轨道为分别设置在定位梁 的第一支撑梁和第二支撑梁上的第一轨道和第二轨道。 进一步地, 传动机构为丝杠传动机构。 进一步地, 传动机构为同步带轮传动机构。 进一步地, 定位梁的安装有运动轨道的表面上设置有覆盖在运动轨道上的 防尘罩。 本发明具有以下有益效果: 在第一支撑梁和第二支撑梁之间设置横梁及直角连接件, 能够有效提高定 位梁的机械结构强度, 减轻定位梁发生挠曲变形、 扭转变形, 进而提高机器人 直线运动单元的抗冲击性能。 除了上面所描述的目的、 特征和优点之外, 本发明还有其它的目的、 特征 和优点。 下面^参照图, 对本发明作进一步详细的说明。 附图说明 构成本申请的一部分的附图用来提供对本发明的进一步理解, 本发明的示 意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中: 图 1是本发明优选实施例的适用于单轨道传动机构的定位梁主视结构示意 图; 图 2是本发明优选实施例的适用于单轨道传动机构的定位梁立体结构示意 图; 图 3是本发明优选实施例的适用于单轨道传动机构的两根定位梁上的两个 传递机构釆用一个驱动电机进行驱动的主视结构示意图; 图 4是本发明优选实施例的适用于单轨道传动机构的两根定位梁上的两个 传递机构釆用一个驱动电机进行驱动的立体结构示意图; 图 5是本发明优选实施例的适用于双轨道传动机构的定位梁立体结构示意 图; 图 6是本发明优选实施例的适用于双轨道传动机构的定位梁上安装了丝杠 传动机构的立体结构示意图; 以及 图 7是本发明优选实施例的适用于双轨道传动机构的定位梁上安装了同步 带轮传动机构的立体结构示意图。 具体实施方式 以下结合附图对本发明的实施例进行详细说明, 但是本发明可以由权利要 求限定和覆盖的多种不同方式实施。 如图 1和图 2所示, 根据本发明的一个方面, 提供了一种定位梁, 包括: 相互平行的第一支撑梁 11和第二支撑梁 12, 第一支撑梁 11和第二支撑梁 12 之间连接有横梁 13 , 横梁 13与第一支撑梁 11和第二支撑梁 12垂直且横梁 13 与第一支撑梁 11和第二支撑梁 12的连接处均设置有直角连接件 15。 釆用平行的两根支撑梁并在两支撑梁之间设置横梁以及直角连接件, 可以 有效地防止定位梁的抗扭性, 减轻定位梁的扭曲变形, 提高整个直线运动单元 的抗冲击性能。 优选地, 为了提高第一支撑梁 11和第二支撑梁 12的结构强度以及与横梁 之间的连接强度, 每个横梁 13与第一支撑梁 11和第二支撑梁 12的连接处的 两侧均设置有直角连接件 15 , 也就是说, 一才艮横梁的上下两个侧面上一共可以 设置有四个直角连接件 15。 才艮据直线运动单元的应用场合, 定位梁的长度可能有所不同, 横梁 13 的 数量可以根据定位梁的长度的增长而有所增加。 为了防止定位梁的两端的断面对工作人员造成伤害并使定位梁更加美观, 第一支撑梁 11和第二支撑梁 12的端头设置有一体或分体的密封盖板 16。 当第 一支撑梁 11和第二支撑梁 12的厚度较小、 两者的距离较近时, 可以釆用一个 密封盖板 16 将两个支撑梁都密封住; 当两个支撑梁的厚度较大、 两者的距离 较远乃至可以构成框架结构时, 可以釆用两个密封盖板 16 分别将第一支撑梁 11和第二支撑梁 12的端头密封。 为了提高定位梁的整体性能, 第一支撑梁 11、 第二支撑梁 12以及横梁 13 均为铝型材。 才艮据本发明的另一个方面, 还提供了一种机器人直线运动单元, 包括运动 轨道及沿该运动轨道的延伸方向布置的传动机构, 其中, 运动轨道设置于上述 的定位梁的表面上。 将运动轨道设置在定位梁的表面上, 无需在定位梁上开设安装槽, 定位梁 型材截面未被破坏, 定位梁的机械性能和力学性能都得到了很好的保证。 传动 机构为可以为单轨道传动机构 (参见图 1和图 2 ), 此时, 第一支撑梁 11和第 二支撑梁 12较薄, 两者的间距较短, 横梁的长度也较短, 四个直角连接件 15 之间的距离也较短, 运动轨道为设置于定位梁的第一支撑梁 11 和第二支撑梁 12上的单轨道 21。 如图 3和图 4所示, 也可以釆用一个驱动电机 90同时驱动两个单轨道传 动机构, 每个单轨道传动机构可以分别设置在一个定位梁上。 如图 5所示, 传动机构也可以为双轨道传动机构, 釆用双轨道, 可以应用 于具有更大冲击力的运动单元。 此时, 第一支撑梁 11和第二支撑梁 12的厚度 较大, 两者的间距也较大, 此时的定位梁类似一个框架结构, 运动轨道为分别 设置在第一支撑梁 11和第二支撑梁 12上的第一轨道 22和第二轨道 (在图中 未示出, 其与第一轨道 22对称设置)。 双轨道传动机构具有分别在第一轨道 22 和第二轨道上滑动的两个滑动件。 在此需要解释的是, 每个轨道, 包括单轨道 21、 第一轨道 22 和第二轨道都包括两条平行的单轨, 也就是说, 传动机构为 双轨道传动机构时, 定位梁上一共安装了四条单轨(第一支撑梁 11 和第二支 撑梁 12上各两条)。 优选地, 传动机构为丝杠传动机构或同步带轮传动机构。 为了对运动轨道起到防尘保护的作用, 定位梁的安装有运动轨道的表面上 设置有覆盖在运动轨道上的防尘罩 30。 实际上, 也可以说运动轨道设置在定位 梁的轴向延伸的侧面上。 下面, 对分别釆用了具有双轨道的丝杠传动机构和同步带轮传动机构的直 线运动单元进行描述: 如图 6所示, 本发明提供的机器人直线运动单元中定位梁 (定位体型材) 和传动机构 (运动支撑单元) 的结构如下: 第一支撑梁 11和第二支撑梁 12, 其两端设有密封盖板 16,横梁 13通过标准的直角固定件 15 固定于两根支撑梁 之间, 在保证两个支撑梁两端各设有横梁 15 的情况下, 为了加强系统结构强 度, 提高系统可靠性以及提高系统精度时支撑梁之间横梁 13 的根数可根据支 撑梁的长度来确定, 运动轨道可以通过螺栓固定于第一支撑梁 11 和第二支撑 梁 12的各一侧, 防尘罩 30可以通过螺栓分别固定于两根支撑梁上。 如图 7所示, 釆用的丝杠传动机构的结构如下: 第一轴 7 座 41和第二轴 承座 42通过螺栓分别固定于每个支撑梁的两端, 伺服电机 G 通过螺栓固定于 减速器 50上, 减速器 50通过螺栓固定于第一轴 7 座 41上, 丝杠 61的一端通 过第一轴承 43 固定于第一轴承座 41上, 并通过联轴器 51直接与伺服电机 G 的轴相连, 另一端通过第二轴 7 42 固定于第二轴 7 座 42上, 滑块 63穿过丝 杠 61 固定于运动轨道上, 丝杠螺母 65穿过丝杠 61 固定于滑块 63上, 在伺服 电机 G的驱动下, 滑块 63可以沿着运动轨道故往复直线运动。 实现了运动的 导向功能。 釆用的同步带传动机构的结构如下: 同步带卡头 71 通过四个螺栓固定于 第一支撑梁 11和第二支撑梁 12上, 同步带压板 72通过四个螺栓固定于同步 带卡头 71上, 同步带 73两端各通过一个同步带压板 72和一个同步带卡头 71 固定于一个支撑梁上, 同步带 73穿过带轮箱体 75 , 带轮箱体 75通过螺栓和同 步带滑块 76 固定在一起, 箱体盖板 77通过四个螺栓固定于带轮箱体 75上。 同步带滑块 76 固定于运动轨道上, 其可与带轮箱体 75在伺服电机 40驱动下 一起^ 主复直线运动, 实现了运动的导向功能。 与现有技术相比, 本发明中的直角坐标机器人直线运动系统具有总体机械 强度较高, 结构可靠性强, 抗冲击力以及抗扭性能强, 易于维修, 便于操作等 优点, 其创新之处在于本直角坐标机器人直线运动系统中的两个平行的第一支 撑梁 11、 第二支撑梁 12和横梁 13组成的组合结构 (也就是定位体型材部分) 皆釆用铝型材, 传动单元 (同步带轮传动机构或者丝杠传动机构) 固定于定位 梁表面; 其另一创新之处在于本直角坐标机器人直线运动系统中的横梁 13 可 通过标准直角连接件 15简单方便固定于第一支撑梁 11和第二支撑梁 12之间, 在保证第一支撑梁 11和第二支撑梁 12两端各设有横梁 13的情况下, 为了加 强系统结构强度, 提高系统可靠性以及提高系统精度时两根支撑梁之间的横梁 13的根数可根据支撑梁的长度来确定。 总之, 本角坐标机器人直线运动系统总 体重量轻, 传动定位梁截面未被破坏, 机械性能和力学性能都得到了很好的保 证。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领 域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的 ^"神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之 内。

Claims

权 利 要 求 书
1. 一种定位梁, 其特征在于, 包括:
相互平行的第一支撑梁( 11 )和第二支撑梁( 12 ), 所述第一支撑梁 ( 11) 和所述第二支撑梁 ( 12 ) 之间连接有横梁 ( 13 ), 所述横梁 ( 13 ) 与所述第一支撑梁( 11 )和所述第二支撑梁( 12 )垂直且所述横梁( 13 ) 与所述第一支撑梁 ( 11) 和所述第二支撑梁 ( 12) 的连接处均设置有直 角连接件 ( 15)。
2. 根据权利要求 1所述的定位梁, 其特征在于, 每个所述横梁 ( 13) 与所 述第一支撑梁 ( 11) 和所述第二支撑梁 ( 12) 的连接处的两侧均设置有 所述直角连接件 ( 15)。
3. 根据权利要求 2所述的定位梁, 其特征在于, 所述第一支撑梁 ( 11 ) 和 所述第二支撑梁 ( 12) 的端头设置有一体或分体的密封盖板 ( 16)。
4. 根据权利要求 2所述的定位梁, 其特征在于, 所述第一支撑梁( 11 )、 所 述第二支撑梁 ( 12) 以及所述横梁 ( 13 ) 均为铝型材。
5. —种机器人直线运动单元, 包括运动轨道 (21、 22) 及沿所述运动轨道
(21、 22)的延伸方向布置的传动机构,其特征在于,所述运动轨道(21、 22 )设置于权利要求 1至 4中任一项所述的定位梁的表面上。
6. 根据权利要求 5所述的机器人直线运动单元, 其特征在于, 所述传动机 构包括单轨道传动机构, 所述运动轨道 (21、 22) 为设置于所述定位梁 的所述第一支撑梁 ( 11 ) 和所述第二支撑梁 ( 12) 上的单轨道 (21 )。
7. 根据权利要求 5所述的机器人直线运动单元, 其特征在于, 所述传动机 构包括双轨道传动机构, 所述运动轨道 (21、 22) 为分别设置在所述定 位梁的所述第一支撑梁( 11)和所述第二支撑梁( 12)上的第一轨道(22) 和第二轨道。
8 根据权利要求 5至 7中任一项所述的机器人直线运动单元,其特征在于, 所述传动机构为丝杠传动机构。 根据权利要求 5至 7中任一项所述的机器人直线运动单元,其特征在于, 所述传动机构为同步带轮传动机构。 根据权利要求 5至 7中任一项所述的机器人直线运动单元,其特征在于, 所述定位梁的安装有所述运动轨道 (21、 22 ) 的所述表面上设置有覆盖 在所述运动轨道 (21、 22 ) 上的防尘罩 (30 )。
PCT/CN2011/074278 2011-05-16 2011-05-18 定位梁及具有该定位梁的机器人直线运动单元 WO2012155349A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/878,969 US9032827B2 (en) 2011-05-16 2011-05-18 Locating beam and robot linear motion unit having the same
EP11865485.4A EP2662189B1 (en) 2011-05-16 2011-05-18 Robot linear motion unit having a locating beam
JP2014510634A JP5801952B2 (ja) 2011-05-16 2011-05-18 位置付けビーム及び該位置付けビームを備えるロボット直線運動ユニット
KR1020137033434A KR101895960B1 (ko) 2011-05-16 2011-05-18 위치 지정 들보 및 그 위치 지정 들보를 구비한 로봇 직선 운동 유닛
CA2836516A CA2836516C (en) 2011-05-16 2011-05-18 Locating beam and robot linear motion unit having the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110126387.1 2011-05-16
CN201110126387.1A CN102166750B (zh) 2011-05-16 2011-05-16 定位梁及具有该定位梁的机器人直线运动单元

Publications (1)

Publication Number Publication Date
WO2012155349A1 true WO2012155349A1 (zh) 2012-11-22

Family

ID=44488171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/074278 WO2012155349A1 (zh) 2011-05-16 2011-05-18 定位梁及具有该定位梁的机器人直线运动单元

Country Status (7)

Country Link
US (1) US9032827B2 (zh)
EP (1) EP2662189B1 (zh)
JP (1) JP5801952B2 (zh)
KR (1) KR101895960B1 (zh)
CN (1) CN102166750B (zh)
CA (1) CA2836516C (zh)
WO (1) WO2012155349A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107186693A (zh) * 2017-06-05 2017-09-22 上海发那科机器人有限公司 一种小型机器人的行走轴
CN117773979B (zh) * 2024-02-27 2024-04-26 合肥小步智能科技有限公司 一种双重限位巡检机器人

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013071477A1 (zh) * 2011-11-14 2013-05-23 机械科学研究总院先进制造技术研究中心 模块化的直线运动单元
CN102490173A (zh) * 2011-11-14 2012-06-13 机械科学研究总院先进制造技术研究中心 模块化的直线运动单元
CN104633406B (zh) * 2015-01-30 2017-06-27 北京建筑大学 一种几何约束自适应双推杆起降机构
JP6677970B2 (ja) * 2015-02-20 2020-04-08 川崎重工業株式会社 産業用ロボット
US10392203B2 (en) 2015-12-31 2019-08-27 ROI Industries Group, Inc. Compact dual palletizer including a skeleton and a subassembly
US9511957B1 (en) 2015-12-31 2016-12-06 ROI Industries Group, Inc. Compact palletizer including a skeleton and a subassembly
US10287112B2 (en) 2015-12-31 2019-05-14 ROI Industries Group, Inc. Compact palletizer including a skeleton, subassembly, and stretch wrap system
US10676292B2 (en) 2015-12-31 2020-06-09 ROI Industries Group, Inc. Compact palletizer including a skeleton, subassembly, and stretch wrap system
CN106441056A (zh) * 2016-04-18 2017-02-22 杭州愚工智能设备有限公司 一种尺寸测量装置
CN109806005A (zh) * 2019-03-22 2019-05-28 重庆金山医疗机器人有限公司 一种便于定位的手术机器人机械臂横梁
KR102279452B1 (ko) * 2020-01-03 2021-07-20 주식회사 엘지씨엔에스 갠트리 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1047749C (zh) * 1995-01-06 1999-12-29 欧登塞造船厂 一种具有机械手机架的桥架结构
DE19921729A1 (de) * 1999-05-12 2000-11-30 Prokon Gmbh Fahrzeugtechnische Führungseinrichtung für Manipulatoren
NL1013343C2 (nl) * 1999-10-19 2001-04-23 Food Processing Systems Rechtgeleiding voor een manipulator alsmede een manipulator voorzien van een dergelijke rechtgeleiding.
WO2002038473A1 (en) * 2000-11-07 2002-05-16 Winner Bearings Co., Ltd. Linear motion guide
CN201046573Y (zh) * 2007-06-20 2008-04-16 上海永乾机电有限公司 直线运动导向装置

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3884363A (en) * 1973-09-13 1975-05-20 Bendix Corp Programmable universal transfer device
US4588346A (en) * 1982-08-25 1986-05-13 Intest Corporation Positioner for maintaining an object in a substantially weightless condition
DE3420936C1 (de) * 1984-06-05 1985-12-19 Kuka Schweissanlagen + Roboter Gmbh, 8900 Augsburg Schutzvorrichtung fuer die Fuehrungsbahn eines ersten Maschinenteiles,auf dem ein zweites Maschinenteil laengsbeweglich gelagert ist
US4597707A (en) * 1984-08-17 1986-07-01 General Machine Design, Inc. Automatic operating palletizer
JPS6364483U (zh) * 1986-10-13 1988-04-28
JPH04310384A (ja) * 1991-04-09 1992-11-02 Toyota Motor Corp 複腕ロボット
US4890420A (en) * 1988-03-21 1990-01-02 Hossein Azimi Grinding machine
JPH0663527B2 (ja) * 1989-12-26 1994-08-22 株式会社ダイフク 型材の連結構造
JP2504327B2 (ja) * 1990-11-22 1996-06-05 三菱自動車工業株式会社 多関節形溶接ロボット及び該ロボットにおける電極の芯合せ方法
US5252024A (en) * 1991-11-04 1993-10-12 General Motors Corporation Transfer method for various sizes of assemblies
JPH0574788U (ja) * 1992-03-19 1993-10-12 トキコ株式会社 走行装置
JPH09503831A (ja) * 1993-07-15 1997-04-15 ユンガー、ハンス 移動可能な作業足場を橋脚の回りで方向転換する方法及び該方法を実施する装置
JPH08159119A (ja) * 1994-12-07 1996-06-18 N I Shi Auto Tec Kk 連結材
JPH10217165A (ja) * 1997-02-04 1998-08-18 Shibaura Eng Works Co Ltd 直線移動型ロボット
JPH10317511A (ja) * 1997-05-14 1998-12-02 Nippon Light Metal Co Ltd 梁材の連結構造
JPH1128693A (ja) * 1997-07-07 1999-02-02 Yamaha Motor Co Ltd 単軸ロボット
JPH1133943A (ja) * 1997-07-14 1999-02-09 Oki Electric Ind Co Ltd ロボット機構
US6227793B1 (en) * 1999-05-25 2001-05-08 Norfield Industries Door transport system
WO2001051259A2 (en) * 2000-01-11 2001-07-19 Hai Hong Zhu Modular robot manipulator apparatus
JP4060608B2 (ja) * 2001-03-14 2008-03-12 ユニバーサル造船株式会社 溶接装置
US7666065B2 (en) * 2003-07-07 2010-02-23 Michael Langenbach Shaping apparatus
CN1240525C (zh) * 2003-08-18 2006-02-08 西安交通大学 金属电弧喷涂快速制造汽车覆盖件模具专用机器人
DE102004043606A1 (de) * 2003-09-09 2005-04-14 Smc K.K. Stellglied
US20050061092A1 (en) * 2003-09-19 2005-03-24 Nordson Corporation Modular motion unit with tensioner
GB0416186D0 (en) * 2004-07-20 2004-08-18 Jones Tim Improvement in and relating to activators
FR2873672B1 (fr) * 2004-07-30 2008-02-01 Xavier Lombard Ensemble elevateur
US8029710B2 (en) * 2006-11-03 2011-10-04 University Of Southern California Gantry robotics system and related material transport for contour crafting
DE102005003513A1 (de) * 2005-01-25 2006-08-03 Universität Karlsruhe (TH) Institut für Rechnerentwurf und Fehlertoleranz Lehrstuhl für Intelligente Sensor-Aktor-Systeme (ISAS) Mobile haptische Schnittstelle
DE102005004618B3 (de) * 2005-02-01 2006-04-20 Siemens Ag Positioniereinrichtung mit einer linear verschiebbaren Positioniereinheit
US8042653B2 (en) * 2005-02-02 2011-10-25 Werner Co. Adjustable work platform
CN2851235Y (zh) * 2005-09-23 2006-12-27 上海易图高液压设备有限公司 可移动组装式检修架
EP2119662B1 (en) * 2007-02-14 2017-03-15 Gogou Co., Ltd. Movement control method, movement operating device, and method for operating movement of moving body
JP2008208619A (ja) * 2007-02-27 2008-09-11 Junten:Kk フレーム構造体の連結構造
WO2008110899A2 (en) * 2007-03-12 2008-09-18 Azimut-Benetti S.P.A. Method and plant for surface fairing a structure
CN100513096C (zh) * 2007-11-05 2009-07-15 中国农业大学 一种直角坐标式果实采摘机械手装置
CN101456182B (zh) * 2007-12-12 2012-03-28 中国科学院自动化研究所 大型工件焊接智能机器人装置
FR2937854B1 (fr) * 2008-10-31 2010-12-03 Aripa Services Innovations Ind Dispositif pour positionner un patient par rapport a un rayonnement.
CN101444914A (zh) * 2008-11-19 2009-06-03 浙江工业大学 三自由度拟人并联机械臂
CN101457513B (zh) * 2008-12-30 2010-09-15 中铁大桥局集团第三工程有限公司 一种桥梁架设方法
JP2010177411A (ja) * 2009-01-29 2010-08-12 Daihen Corp ワーク搬送装置
CN101670994B (zh) * 2009-08-12 2012-02-29 杭州赛奇高空作业机械有限公司 施工升降工作平台
CN101637914A (zh) * 2009-08-24 2010-02-03 清华大学 高刚度多级伸缩机构
CN101797185B (zh) * 2010-03-11 2011-06-01 上海交通大学 七自由度微创手术机械从手装置
CN102234026B (zh) * 2010-04-28 2014-01-22 鸿富锦精密工业(深圳)有限公司 码垛机器人

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1047749C (zh) * 1995-01-06 1999-12-29 欧登塞造船厂 一种具有机械手机架的桥架结构
DE19921729A1 (de) * 1999-05-12 2000-11-30 Prokon Gmbh Fahrzeugtechnische Führungseinrichtung für Manipulatoren
NL1013343C2 (nl) * 1999-10-19 2001-04-23 Food Processing Systems Rechtgeleiding voor een manipulator alsmede een manipulator voorzien van een dergelijke rechtgeleiding.
WO2002038473A1 (en) * 2000-11-07 2002-05-16 Winner Bearings Co., Ltd. Linear motion guide
CN201046573Y (zh) * 2007-06-20 2008-04-16 上海永乾机电有限公司 直线运动导向装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2662189A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107186693A (zh) * 2017-06-05 2017-09-22 上海发那科机器人有限公司 一种小型机器人的行走轴
CN107186693B (zh) * 2017-06-05 2024-04-05 上海发那科机器人有限公司 一种小型机器人的行走轴
CN117773979B (zh) * 2024-02-27 2024-04-26 合肥小步智能科技有限公司 一种双重限位巡检机器人

Also Published As

Publication number Publication date
CN102166750A (zh) 2011-08-31
EP2662189B1 (en) 2020-08-19
US9032827B2 (en) 2015-05-19
JP5801952B2 (ja) 2015-10-28
KR20140053023A (ko) 2014-05-07
JP2014516812A (ja) 2014-07-17
EP2662189A4 (en) 2015-01-07
CA2836516A1 (en) 2012-11-22
CN102166750B (zh) 2014-01-29
US20140053668A1 (en) 2014-02-27
CA2836516C (en) 2016-02-09
KR101895960B1 (ko) 2018-09-06
EP2662189A1 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
WO2012155349A1 (zh) 定位梁及具有该定位梁的机器人直线运动单元
CA2667483C (en) Gantry robotics system and related material transport for contour crafting
RU2663510C2 (ru) Робот, выполненный с использованием принципа параллелограмма
EP3231549B1 (en) Linear flexible positioning device
CN104858854A (zh) 一种轻型物体搬运机械手
JP6029337B2 (ja) 多車種車体組立システムのサイド位置決め装置
CN102366907B (zh) 工作台导轨防尘罩随动系统及精加工设备
CN204471392U (zh) 非接触式搬运工件的超声驻波悬浮夹持式机械手
CN2536348Y (zh) 整体式二维运动工作平台
JP4759094B1 (ja) Xyテーブル
CN202271235U (zh) 工作台导轨防尘罩随动系统及精加工设备
WO2021114724A1 (zh) 一种多轴运动装置
CN111906662A (zh) 一种动龙门式直线导轨四面复合成型磨床
CN102416432B (zh) 铆接机构
JP4674308B2 (ja) 運動装置及びこれを用いたチップマウンター
CN216464570U (zh) 一种自动化机器人的移动导轨
CN111702748A (zh) 一种适用于特殊环境下抓取的柔性并联机构
CN203765206U (zh) 直角坐标型自动焊机末端执行机构
CN214999195U (zh) 一种正反向丝杠传动的模组
CN211496059U (zh) 码垛机
CN211997488U (zh) 高速直线单元、两轴高速平台及高速测试轨道
TWI453101B (zh) 直角坐標機器人
CN215557097U (zh) 镜头模组组装的双工站流水线结构
CN104139389A (zh) 驱动机构
JP5295543B2 (ja) スライド駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11865485

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011865485

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13878969

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014510634

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2836516

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137033434

Country of ref document: KR

Kind code of ref document: A