WO2012153786A1 - 多元重合体の製造方法、および多元重合体 - Google Patents

多元重合体の製造方法、および多元重合体 Download PDF

Info

Publication number
WO2012153786A1
WO2012153786A1 PCT/JP2012/061922 JP2012061922W WO2012153786A1 WO 2012153786 A1 WO2012153786 A1 WO 2012153786A1 JP 2012061922 W JP2012061922 W JP 2012061922W WO 2012153786 A1 WO2012153786 A1 WO 2012153786A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
monomer
general formula
catalyst
polymer
Prior art date
Application number
PCT/JP2012/061922
Other languages
English (en)
French (fr)
Inventor
侯 召民
莉 潘
Original Assignee
独立行政法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人理化学研究所 filed Critical 独立行政法人理化学研究所
Priority to US14/116,105 priority Critical patent/US20140088276A1/en
Priority to EP12782831.7A priority patent/EP2708562A4/en
Priority to JP2013514042A priority patent/JPWO2012153786A1/ja
Publication of WO2012153786A1 publication Critical patent/WO2012153786A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/06Hydrocarbons
    • C08F12/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • C08F297/046Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes polymerising vinyl aromatic monomers and isoprene, optionally with other conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/06Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the coordination type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/01Cp or analog bridged to a non-Cp X neutral donor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/03Cp or analog not bridged to a non-Cp X ancillary neutral donor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/04Cp or analog not bridged to a non-Cp X ancillary anionic donor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • C08F2438/03Use of a di- or tri-thiocarbonylthio compound, e.g. di- or tri-thioester, di- or tri-thiocarbamate, or a xanthate as chain transfer agent, e.g . Reversible Addition Fragmentation chain Transfer [RAFT] or Macromolecular Design via Interchange of Xanthates [MADIX]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/619Component covered by group C08F4/60 containing a transition metal-carbon bond
    • C08F4/61904Component covered by group C08F4/60 containing a transition metal-carbon bond in combination with another component of C08F4/60

Definitions

  • the present invention relates to a method for producing a multi-block copolymer using a chain transfer agent, and a multi-block copolymer.
  • Patent Document 1 describes that a syndiotactic styrene polymer (sPS) can be produced by a polymerization reaction using a metallocene complex.
  • sPS syndiotactic styrene polymer
  • a copolymer is produced by polymerizing two or more monomers having different properties.
  • Non-Patent Document 1 reports a synthesis example of a copolymer having a syndiotactic styrene chain by copolymerizing a styrene monomer and an isoprene monomer, but the repeating unit derived from isoprene in the copolymer is It has a random structure and is not subjected to position control or stereo control.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a novel method for producing a multi-block copolymer using a chain transfer agent, and a multi-block copolymer. To do.
  • the inventors of the present application have made extensive studies to solve the above problems. As a result, it was found that by utilizing the difference in catalytic activity with respect to the monomer and using a chain transfer agent, a multi-polymer having highly controlled position or steric control can be obtained, leading to the present invention. It was.
  • the present invention includes the following.
  • ⁇ 1> A method for producing a multi-polymer comprising a repeating unit derived from a first monomer and a repeating unit derived from a second monomer different from the first monomer, wherein the first monomers
  • a first catalyst that selectively catalyzes a regioselective or stereoselective polymerization reaction from a polymerization reaction between the second monomers and a polymerization reaction between the first monomer and the second monomer
  • a second catalyst that selectively catalyzes a regioselective or stereoselective polymerization reaction between two monomers by a polymerization reaction between the first monomers and a polymerization reaction between the first monomer and the second monomer.
  • a multi-component polymer that performs a polymerization reaction using the catalyst in the presence of the first catalyst, the second catalyst, the first monomer, the second monomer, and the chain transfer agent in the same reaction system Manufacturing method.
  • Ligand Cp wherein the first catalyst includes (1) a central metal M which is a Group 3 metal atom or a lanthanoid metal atom, and a substituted or unsubstituted cyclopentadienyl derivative bonded to the central metal.
  • the ligand Cp * in the general formula (I) has a cyclopentadienyl ring having a substituent, a substituted or unsubstituted fluorenyl ring, a substituted or unsubstituted octahydrofluorenyl ring, and a substituent. Any one selected from the group consisting of indenyl rings, When Cp * is a cyclopentadienyl ring having a substituent, it is represented by the following general formula (II):
  • Rx is a hydrocarbyl group having 1 to 20 carbon atoms or a metalloid group substituted with a hydrocarbyl group having 1 to 20 carbon atoms, which is bonded to the carbon atom constituting the skeleton of the cyclopentadienyl ring.
  • * represents a bond with M
  • n is an integer of 3 to 5.
  • one of the carbon atoms constituting the skeleton of the cyclopentadienyl ring shown in the general formula (II) is substituted with a group 14 atom (excluding carbon atoms and lead atoms) or a group 15 atom. It may be.
  • Cp * is an indenyl ring having a substituent, it is represented by the following general formula (III).
  • Rx1 is a metalloid substituted with a hydrocarbyl group having 1 to 20 carbon atoms or a hydrocarbyl group having 1 to 20 carbon atoms bonded to a carbon atom constituting a 5-membered skeleton of an indenyl ring.
  • * represents a bond with M
  • n1 is an integer of 1 to 3.
  • the ligand Cp, wherein the second catalyst includes (1) a central metal M which is a Group 3 metal atom or a lanthanoid metal atom, and a substituted or unsubstituted cyclopentadienyl derivative bonded to the central metal.
  • the ligand Cp * in the general formula (I) is any selected from the group consisting of a substituted or unsubstituted cyclopentadienyl ring and an unsubstituted indenyl ring,
  • Cp * is a cyclopentadienyl ring having a substituent, it is represented by the following general formula (IV):
  • Rx2 represents a hydrocarbyl group having 1 to 3 carbon atoms bonded to the carbon atom constituting the skeleton of the cyclopentadienyl ring, * represents a bond with M, and n2 represents 1 It is an integer of ⁇ 2.
  • the second catalyst is a catalyst composition comprising (1) a complex represented by the general formula (V), and (2) an ionic compound comprising a non-coordinating anion and a cation. ⁇ 2> or the manufacturing method of the multicomponent polymer as described in ⁇ 3>.
  • R 1 and R 2 each independently represents an alkyl group, a cyclohexyl group, an aryl group or an aralkyl group
  • R 3 represents an alkyl group, alkenyl group, alkynyl group, aryl group or aralkyl group, aliphatic, aromatic or cyclic amino group, or phosphino group, boryl group, alkyl or arylthio group, alkoxy or aryloxy group
  • M represents any of rare earth elements from lanthanum (La) to lutetium (Lu) excluding scandium (Sc), yttrium (Y) or promethium Pm
  • Q 1 and Q 2 each independently represents a monoanionic ligand
  • L represents a neutral Lewis base
  • w represents an integer of 0 to 3.
  • ⁇ 2> or ⁇ 3> above which is a catalyst composition comprising a complex represented by the general formula (VI) containing a child Cp * , and (2) an ionic compound comprising a non-coordinating anion and a cation.
  • the ligand Cp * in the general formula (VI) is any selected from the group consisting of a substituted or unsubstituted cyclopentadienyl ring and an unsubstituted indenyl ring,
  • Cp * is a cyclopentadienyl ring having a substituent, it is represented by the following general formula (IV):
  • Rx2 represents a hydrocarbyl group having 1 to 3 carbon atoms bonded to the carbon atom constituting the skeleton of the cyclopentadienyl ring, * represents a bond with M, and n2 represents 1 It is an integer of ⁇ 2.
  • Rx2 represents a hydrocarbyl group having 1 to 3 carbon atoms bonded to the carbon atom constituting the skeleton of the cyclopentadienyl ring, * represents a bond with M, and n2 represents 1 It is an integer of ⁇ 2.
  • Rx2 represents a hydrocarbyl group having 1 to 3 carbon atoms bonded to the carbon atom constituting the skeleton of the cyclopentadienyl ring, * represents a bond with M, and n2 represents 1 It is an integer of ⁇ 2.
  • ⁇ 8> The method according to any one of ⁇ 3> to ⁇ 7>, wherein the central metal M is scandium (Sc) or yttrium (Y).
  • ⁇ 11> The production method according to any one of ⁇ 3> to ⁇ 6>, wherein the neutral Lewis base L is tetrahydrofuran.
  • the polymer block obtained by polymerizing the styrene monomer contains an aromatic group having syndiotactic stereoregularity in the side chain, and the syndiotacticity is 80 rrrr% or more.
  • ⁇ 13> The production method according to any one of ⁇ 2> to ⁇ 12>, wherein the polymer block obtained by polymerizing the styrene monomer is poly (alkylated) styrene or polyvinyl naphthalene.
  • ⁇ 14> The production method according to any one of ⁇ 2> to ⁇ 13>, wherein the chain transfer agent is trialkylaluminum.
  • ⁇ 15> A multipolymer produced by the production method according to any one of ⁇ 1> to ⁇ 14>, wherein the first polymer block is obtained by polymerizing the first monomer; A second polymer block obtained by polymerizing two monomers, each of the first polymer block and the second polymer block having a predetermined regioregularity or stereoregularity.
  • FIG. 3 is a diagram showing a DSC curve of a block copolymer (run 3 shown in Table 1) in Part A-1 of an example.
  • FIG. 3 is a diagram showing a GPC graph of run1 (no chain transfer agent) shown in Table 2 in Part A-2 of Examples.
  • 5 is a diagram showing a 13 C NMR spectrum of run4 shown in Table 4 in Part C of Examples.
  • FIG. It is a figure which shows the structural formula of the complex used for the Example, its general reaction, and reaction of an Example.
  • the method for producing a multi-polymer according to the present invention is a method for producing a multi-polymer comprising a repeating unit derived from a first monomer and a repeating unit derived from a second monomer different from the first monomer.
  • a catalyst A second catalyst that selectively catalyzes a regioselective or stereoselective polymerization reaction between the second monomers by a polymerization reaction between the first monomers and a polymerization reaction between the first monomer and the second monomer.
  • the first catalyst, the second catalyst, the first monomer, the second monomer, and the chain transfer agent are present in the same reaction system to perform a polymerization reaction.
  • the first polymer block that is the result of the regioselective or stereoselective polymerization reaction between the first monomers catalyzed by the first catalyst; And obtaining a novel block copolymer comprising a second polymer block that is a result of a regioselective or stereoselective polymerization reaction between the second monomers catalyzed by the second catalyst.
  • a novel block copolymer comprising a second polymer block that is a result of a regioselective or stereoselective polymerization reaction between the second monomers catalyzed by the second catalyst.
  • the third monomer in addition to the first monomer and the second monomer, another monomer (for convenience, referred to as a third monomer) is added to carry out a polymerization reaction, so It also includes obtaining a multi-component polymer.
  • the third monomer is preferably one in which the polymerization reaction is catalyzed by the first catalyst or the second catalyst.
  • the combination of the first catalyst, the second catalyst, the first monomer, and the second monomer is determined as follows. Those skilled in the art can determine these combinations based on the following description.
  • an arbitrary combination of the first monomer and the second monomer is selected as the monomer constituting the block copolymer.
  • a catalyst A first catalyst candidate
  • a catalyst B (second catalyst candidate) that catalyzes a regioselective or stereoselective polymerization reaction between the second monomers is selected.
  • the catalyst B has the ability to catalyze the polymerization reaction between the first monomers or the ability to catalyze the polymerization reaction between the first monomer and the second monomer. If there is no special report for any ability, it is determined that the second catalyst is suitable.
  • the category of the document information includes information on the database.
  • the chain transfer agent can be appropriately selected from known ones.
  • the multi-component copolymer obtained by the production method of the present invention is preferably a first polymer block obtained by polymerizing the first monomer and a second polymer obtained by polymerizing the second monomer.
  • Each block includes at least one block, and both the first polymer block and the second polymer block exhibit predetermined positional regularity or stereoregularity in each block.
  • the types of regioregularity and stereoregularity are not particularly limited, and in one aspect, they exhibit properties such as syndiotactic or isotactic, i.e., are not atactic.
  • regioregularity and stereoregularity are cis selectivity or transselectivity from another viewpoint.
  • regioregularity and stereoregularity are, for example, when a single monomer may be incorporated into a polymer as a plurality of types of repeating units having different chemical structures. It also indicates that only is preferentially selected.
  • isoprene may be incorporated into the polymer as cis 1,4 type or iso-3,4 type repeating units, so that the isoprene block in the polymer is substantially of cis 1,4 type.
  • the case of being composed only of repeating units is also an example of a case exhibiting positional regularity and stereoregularity.
  • the present invention produces a copolymer comprising a polymer block formed by polymerizing a styrene monomer, a polymer block formed by polymerizing isoprene and / or a polymer block formed by polymerizing butadiene.
  • a copolymer comprising a polymer block formed by polymerizing a styrene monomer, a polymer block formed by polymerizing isoprene and / or a polymer block formed by polymerizing butadiene.
  • Example of production method of multi-component polymer according to the present invention (1) ⁇ Outline of manufacturing method>
  • a styrene monomer is used as the first monomer
  • isoprene and / or butadiene is used as the second monomer.
  • the catalyst composition (A1) mentioned later is used as a 1st catalyst which catalyzes the regioselective or stereoselective polymerization reaction of styrene-type monomers.
  • the catalyst composition (B1) mentioned later is used as a 2nd catalyst which catalyzes the regioselective or stereoselective polymerization reaction of isoprene and / or butadiene.
  • the catalyst composition (A1) catalyzes a syndiotactic polymerization reaction between styrene monomers, while a polymerization reaction between isoprenes, a polymerization reaction between butadienes, and a polymerization between these and a styrene monomer.
  • the selectivity for the reaction is very low (ie there is a clear difference in the polymerization activity).
  • the catalyst composition (B1) catalyzes a polymerization reaction between isoprenes or a polymerization reaction between butadienes, selectivity (catalytic effect) with respect to the polymerization reaction between these and a styrene monomer, and a styrene monomer
  • selectivity (catalytic effect) for the polymerization reaction between the bodies is very low (that is, a clear difference is seen in the polymerization activity).
  • the polymerization reaction is carried out by allowing the catalyst composition (A1), the catalyst composition (B1), the styrene monomer, isoprene and / or butadiene, and the chain transfer agent to be present in the same reaction system.
  • the polymerization reaction a multi-polymer comprising a syndiotactic polystyrene block and a polyisoprene block and / or a polybutadiene block provided with a predetermined regioregularity or stereoregularity is obtained.
  • the catalyst composition (A1) includes 1) a metatheron complex, and 2) an ionic compound composed of non-coordinating anions and cations.
  • the metatheron complex includes a central metal M which is a Group 3 metal atom or a lanthanoid metal atom, a ligand Cp * containing a substituted or unsubstituted cyclopentadienyl derivative bonded to the central metal, a monoanionic ligand Q 1 and Q 2 , and W (W is an integer of 0 to 3) neutral Lewis base L, and the structure is represented by the following general formula (I).
  • the complex is preferably a half metallocene complex.
  • M is a central metal in a metallocene complex.
  • the central metal M is a Group 3 metal or a lanthanoid metal. Since the metallocene complex used in the present invention can be used as one component of the polymerization catalyst composition (A1), the central metal M is appropriately selected depending on the type of monomer to be polymerized. Of these, Group 3 metals are preferable, scandium (Sc) and yttrium (Y) are more preferable, and Sc is more preferable.
  • any Group 3 metal or lanthanoid metal may be used.
  • the central metal M is Sc, Gd, Y, Lu. And Sc is more preferable.
  • Cp * is a ligand containing a cyclopentadienyl derivative and is ⁇ -bonded to the central metal M.
  • the ligand is, for example, a non-bridged ligand.
  • the non-bridged ligand means a ligand having a coordination atom or a coordination group other than the cyclopentadienyl derivative, wherein the cyclopentadienyl derivative is ⁇ -bonded to the central metal.
  • the ligand is, for example, a bridged ligand.
  • the bridged ligand means a ligand having a coordination atom or a coordination group in addition to the cyclopentadienyl derivative.
  • the substituted or unsubstituted cyclopentadienyl derivative included in Cp * includes a cyclopentadienyl ring having a substituent, a substituted or unsubstituted fluorenyl ring, a substituted or unsubstituted octahydrofluorenyl ring, and a substituted Any one selected from the group consisting of an indenyl ring having a group.
  • the most preferred cyclopentadienyl derivative is a cyclopentadienyl ring having a substituent.
  • Rx is a hydrocarbyl group having 1 to 20 carbon atoms or a metalloid group substituted with a hydrocarbyl group having 1 to 20 carbon atoms, which is bonded to the carbon atom constituting the skeleton of the cyclopentadienyl ring.
  • * represents a bond with M
  • n is an integer of 3 to 5.
  • One of the carbon atoms constituting the skeleton of the cyclopentadienyl ring shown in the general formula (II) is a group 14 atom (excluding carbon atoms and lead atoms) or a group 15 atom (heteroatom). ) May be substituted.
  • Preferred examples of the hetero atom are a nitrogen atom or a phosphorus atom.
  • the hydrocarbyl group is preferably a hydrocarbyl group having 1 to 20 carbon atoms, more preferably an alkyl group having 1 to 20 carbon atoms (preferably 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms), phenyl Group or aryl group such as naphthyl group, benzyl group and the like, and most preferably methyl group.
  • the hydrocarbyl group may have a substituent (referred to as a substituted hydrocarbyl group).
  • the hydrocarbyl group in the substituted hydrocarbyl group is the same as the hydrocarbyl group described above.
  • the substituted hydrocarbyl group is a hydrocarbyl group in which at least one hydrogen atom of the hydrocarbyl group is substituted with a halogen atom, an amide group, a phosphide group, an alkoxy group, an aryloxy group, or the like.
  • Examples of the metalloid in the metalloid group substituted with the hydrocarbyl group include germyl (Ge), stannyl (Sn), and silyl (Si).
  • the hydrocarbyl group substituted with a metalloid group is the same as the hydrocarbyl group described above, and the number of substitutions is determined by the type of metalloid (for example, in the case of a silyl group, the number of substitutions of the hydrocarbyl group is 3).
  • At least one Rx of the cyclopentadienyl ring is a metalloid group (preferably a silyl group) substituted with a hydrocarbyl group, more preferably a trimethylsilyl group.
  • n is preferably 4 or 5 and more preferably 5 from the viewpoint of further improving the syndiotacticity of the styrene monomer. More specifically, the cyclopentadienyl ring represented by the general formula (II) is more preferably tetramethyl (trimethylsilyl) cyclopentadienyl, pentamethylcyclopentadienyl, or tetramethylcyclopentadienyl. Tetramethyl (trimethylsilyl) cyclopentadienyl or pentamethylcyclopentadienyl is more preferable.
  • One of the carbon atoms constituting the skeleton of the cyclopentadienyl ring shown in the general formula (II) is a group 14 atom (excluding the carbon atom and lead atom) or a group 15 atom (heteroatom). Rx may be bonded to this hetero atom.
  • Rx1 is a metalloid substituted with a hydrocarbyl group having 1 to 20 carbon atoms or a hydrocarbyl group having 1 to 20 carbon atoms bonded to a carbon atom constituting a 5-membered skeleton of an indenyl ring.
  • * represents a bond with M
  • n1 is an integer of 1 to 3.
  • the definition of the hydrocarbyl group and metalloid group in general formula (III) is the same as Rx in general formula (II).
  • At least one of Rx1 of the indenyl ring is a metalloid group (preferably a silyl group) substituted with a hydrocarbyl group, more preferably a trimethylsilyl group.
  • n is preferably 2 or 3, more preferably 3, in the general formula (III). More specifically, in the indenyl ring represented by the general formula (III), n is 3, and all three Rx1 are methyl groups, or two Rx1 are methyl groups and one Rx1 is a trimethylsilyl group. is there.
  • the substituted or unsubstituted cyclopentadienyl derivative contained in Cp * is a substituted or unsubstituted fluorenyl ring (composition formula: C 13 H 9-x R x ), or a substituted or unsubstituted octahydrofluorenyl. It may be a ring (composition formula: C 13 H 17-x R x ).
  • R is the same as Rx shown in the general formula (II) in the above-described cyclopentadienyl ring
  • X is an integer of 0 to 9 or 0 to 17.
  • Q 1 and Q 2 are the same or different monoanionic ligands (monoanionic ligands).
  • Monoanionic ligands include 1) hydride, 2) halide, 3) substituted or unsubstituted hydrocarbyl group having 1 to 20 carbon atoms, 4) alkoxy group or aryloxy group, 5) amide group, or 6) Examples include, but are not limited to, phosphino groups.
  • the category of Q 1 and Q 2 includes CH 2 C 6 H 4 N (CH 3 ) 2 -o and the like.
  • Q 1 and Q 2 may be bonded to each other or may be combined to form a so-called dianionic ligand.
  • dianionic ligands include alkylidene, dienes, cyclometallated hydrocarbyl groups, and bidentate chelate ligands.
  • the halide may be any of chloride, bromide, fluoride and iodide.
  • the hydrocarbyl group having 1 to 20 carbon atoms is preferably a methyl group, ethyl group, propyl group, butyl group, amyl group, isoamyl group, hexyl group, isobutyl group, heptyl group, octyl group, nonyl group, decyl group, cetyl group.
  • alkyl group such as 2-ethylhexyl group, aryl group such as phenyl group or naphthyl group, unsubstituted hydrocarbyl group such as benzyl group, substituted benzyl group, trialkylsilylmethyl group, bis (trialkylsilyl) methyl group
  • hydrocarbyl groups such as Examples of preferred hydrocarbyl groups include substituted or unsubstituted benzyl groups and trialkylsilylmethyl groups, and more preferred examples include ortho-dimethylaminobenzyl groups and trimethylsilylmethyl groups.
  • the alkoxy group or aryloxy group is preferably a methoxy group, a substituted or unsubstituted phenoxy group, and the like.
  • the amide group is preferably a dimethylamide group, a diethylamide group, a methylethylamide group, a di-t-butylamide group, a diisopropylamide group, an unsubstituted or substituted diphenylamide group, and the like.
  • the phosphino group is preferably a diphenylphosphino group, a dicyclohexylphosphino group, a diethylphosphino group, a dimethylphosphino group, or the like.
  • the alkylidene is preferably methylidene, ethylidene, propylidene or the like.
  • the cyclometallated hydrocarbyl group is preferably propylene, butylene, pentylene, hexylene, octylene or the like.
  • the diene is preferably 1,3-butadiene, 1,3-pentadiene, 1,4-pentadiene, 1,3-hexadiene, 1,4-hexadiene, 1,5-hexadiene, 2,4-dimethyl-1, 3-pentadiene, 2-methyl-1,3-hexadiene, 2,4-hexadiene and the like.
  • L is a neutral Lewis base.
  • Neutral Lewis bases include tetrahydrofuran, diethyl ether, dimethylaniline, trimethylphosphine, lithium chloride and the like.
  • L may be bonded to Q 1 and / or Q 2 to form a so-called multidentate ligand.
  • W of L W in the general formula (I) represents the number of neutral Lewis bases L.
  • w is an integer of 0 to 3, preferably 0 to 1.
  • the metallocene complex is prepared by the method described above, for example, (1) Reference: Tardif, O .; Nishiura, M .; Hou, Z. M. Organometallics 22, 1171, (2003)., (2) Reference: Hultzsch , K. C .; Spaniol, T. P .; Okuda, J. Angew. Chem. Int. Ed, 38, 227, (1999). (3) References: International Publication WO2006 / 004068 Pamphlet, (4) Reference: Can be synthesized according to the method described in Japanese Patent Application Publication No. 2008-222780.
  • the catalyst composition (A1) contains an ionic compound.
  • the ionic compound includes an ionic compound composed of a non-coordinating anion and a cation.
  • the ionic compound is combined with the metallocene complex described above to cause the metallocene complex to exhibit activity as a polymerization catalyst. As the mechanism, it can be considered that the ionic compound reacts with the metallocene complex to generate a cationic complex (active species).
  • a tetravalent boron anion is preferable, and tetra (phenyl) borate, tetrakis (monofluorophenyl) borate, tetrakis (difluorophenyl) borate, tetrakis (tri Fluorophenyl) borate, tetrakis (trifluorophenyl) borate, tetrakis (pentafluorophenyl) borate, tetrakis (tetrafluoromethylphenyl) borate, tetra (tolyl) borate, tetra (xylyl) borate, (triphenyl, pentafluorophenyl) Examples thereof include borate, [tris (pentafluorophenyl), phenyl] borate, and tridecahydride-7,8-dicarbaoundecaborate.
  • tetrakis (pentafluorophenyl) borate is preferred.
  • Examples of the cation that is a constituent component of the ionic compound include a carbonium cation, an oxonium cation, an ammonium cation, a phosphonium cation, a cycloheptatrienyl cation, and a ferrocenium cation having a transition metal.
  • the carbonium cation include a tri-substituted carbonium cation such as a triphenyl carbonium cation and a tri-substituted phenyl carbonium cation.
  • the tri-substituted phenyl carbonium cation include a tri (methylphenyl) carbonium cation and a tri (dimethylphenyl) carbonium cation.
  • ammonium cation examples include a trialkylammonium cation, a triethylammonium cation, a tripropylammonium cation, a tributylammonium cation, a trialkylammonium cation such as a tri (n-butyl) ammonium cation, an N, N-dimethylanilinium cation, an N Dialkylammonium cations such as N, N-diethylanilinium cation, N, N-2,4,6-pentamethylanilinium cation, N, N-dialkylanilinium cation, di (isopropyl) ammonium cation, dicyclohexylammonium cation, etc. included.
  • phosphonium cation examples include triarylphosphonium cations such as triphenylphosphonium cation, tri (methylphenyl) phosphonium cation, and tri (dimethylphenyl) phosphonium cation.
  • anilinium cation or carbonium cation is preferable, and triphenylcarbonium cation is more preferable.
  • the ionic compound contained in the catalyst composition of the present invention may be a combination of those selected from the aforementioned non-coordinating anions and cations.
  • triphenylcarbonium tetrakis (pentafluorophenyl) borate triphenylcarbonium tetrakis (tetrafluorophenyl) borate, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, 1,1′-dimethylferrocete Examples thereof include nium tetrakis (pentafluorophenyl) borate.
  • One ionic compound may be used, or two or more ionic compounds may be used in combination.
  • triphenylcarbonium tetrakis (pentafluorophenyl) borate are particularly preferred.
  • B (C 6 F 5 ) 3 , Al (C 6 F 5 ) 3, etc. which are Lewis acids that can react with transition metal compounds to form cationic transition metal compounds, are used as ionic compounds. These may be used in combination with the ionic compound.
  • an alkylaluminum compound (aluminoxane, preferably MAO or MMAO), or a combination of an alkylaluminum compound and a borate compound can also be used as the ionic compound, or may be used in combination with other ionic compounds.
  • the monoanionic ligand Q of the complex (general formula (I)) is other than alkyl or hydride (for example, when it is halogen)
  • it is an alkylaluminum compound, or a combination of an alkylaluminum compound and a borate compound. It is considered preferable to use
  • the catalyst composition of the present invention can contain optional components in addition to the metallocene complex and the ionic compound.
  • optional component include alkyl aluminum compounds, silane compounds, hydrogen and the like.
  • the alkylaluminum compound usually includes an organoaluminum compound called aluminoxane (alumoxane) used in a metallocene polymerization catalyst.
  • aluminoxane aluminoxane
  • MAO methylaluminoxane
  • silane compound examples include phenylsilane.
  • the catalyst composition (A1) includes the metallocene complex and an ionic compound.
  • the molar ratio of the ionic compound to the metallocene complex varies depending on the type of the complex and the ionic compound.
  • the molar ratio is, for example, 0.5 to 1 when the ionic compound is composed of a carbonium cation and a boron anion (for example, [Ph 3 C] [B (C 6 F 5 ) 4 ]). In the case of MAO or the like, it is preferably about 300 to 4000. If the molar ratio of the ionic compound and the complex is within the above range, the metallocene complex can be sufficiently activated, and the ionic compound and the monomer to be polymerized react undesirably. It is possible to reduce the fear more reliably.
  • compositions containing each component such as a metallocene complex and an ionic compound
  • each component such as a metallocene complex and an ionic compound
  • providing each component separately in the polymerization reaction system By constituting the composition, it can be used as a polymerization catalyst composition.
  • “providing as a composition” includes providing a metallocene complex (active species) activated by reaction with an ionic compound.
  • the catalyst composition (B1) contains 1) a metatheron complex, and 2) an ionic compound composed of non-coordinating anions and cations.
  • the metatheron complex includes a central metal M which is a Group 3 metal atom or a lanthanoid metal atom, a ligand Cp * containing a substituted or unsubstituted cyclopentadienyl derivative bonded to the central metal, a monoanionic ligand Q 1 and Q 2 , and W (W is an integer of 0 to 3) neutral Lewis base L, the structure of which is represented by the above general formula (I) (for general formula (I), the catalyst composition (See column (A1)).
  • the complex is preferably a half metallocene complex.
  • the ligand Cp * in the general formula (I) is any one selected from the group consisting of a substituted or unsubstituted cyclopentadienyl ring and an unsubstituted indenyl ring.
  • Polymerization of a styrene monomer From the viewpoint of reducing the ability to selectively catalyze the reaction and more selectively catalyzing the polymerization reaction between isoprenes or the polymerization reaction between butadienes, the ligand Cp * is an unsubstituted cyclopentadienyl ring or An unsubstituted indenyl ring is preferred, and an unsubstituted cyclopentadienyl ring is more preferred.
  • Cp * is a cyclopentadienyl ring having a substituent, it is represented by the following general formula (IV):
  • Rx2 represents a hydrocarbyl group having 1 to 3 carbon atoms bonded to the carbon atom constituting the skeleton of the cyclopentadienyl ring, * represents a bond with M, and n2 represents 1 It is an integer of ⁇ 2.
  • the hydrocarbyl group is preferably an alkyl group having 1 to 3 carbon atoms, and most preferably a methyl group.
  • the hydrocarbyl group may have a substituent (referred to as a substituted hydrocarbyl group).
  • the hydrocarbyl group in the substituted hydrocarbyl group is the same as the hydrocarbyl group described above.
  • the substituted hydrocarbyl group is a hydrocarbyl group in which at least one hydrogen atom of the hydrocarbyl group is substituted with a halogen atom, an amide group, a phosphide group, an alkoxy group, an aryloxy group, or the like.
  • all Rx2 of the cyclopentadienyl ring are methyl groups, more preferably Rx2 is a methyl group and n2 is 1.
  • the metallocene complex is synthesized according to the method described above, for example, (1) Reference J.JAm. Chem. Soc, 2009, 131, 13870, (2) Reference WO2006 / 004068. Can do.
  • the catalyst composition (B1) contains an ionic compound.
  • the ionic compound includes an ionic compound composed of a non-coordinating anion and a cation.
  • the ionic compound is combined with the metallocene complex described above to cause the metallocene complex to exhibit activity as a polymerization catalyst.
  • the metallocene complex As the mechanism, it can be considered that the ionic compound reacts with the metallocene complex to generate a cationic complex (active species).
  • the same thing as what was demonstrated by the catalyst composition (A1) can be used for an ionic compound.
  • the polymerization reaction is carried out by adding the catalyst composition (A1) and the catalyst composition (B1) to the same reaction system, one kind of ionic compounds (catalyst compositions (A1) and (B1) and It may be preferable to add a common ionic compound).
  • the catalyst composition (B1) includes the metallocene complex and an ionic compound.
  • the molar ratio of the ionic compound to the metallocene complex varies depending on the type of the complex and the ionic compound.
  • the molar ratio is, for example, 0.5 to 1 when the ionic compound is composed of a carbonium cation and a boron anion (for example, [Ph 3 C] [B (C 6 F 5 ) 4 ]). In the case of MAO or the like, it is preferably about 300 to 4000. If the molar ratio of the ionic compound and the complex is within the above range, the metallocene complex can be sufficiently activated, and the ionic compound and the monomer to be polymerized react undesirably. It is possible to reduce the fear more reliably.
  • compositions containing each component such as a metallocene complex and an ionic compound
  • each component such as a metallocene complex and an ionic compound
  • providing each component separately in the polymerization reaction system By constituting the composition, it can be used as a polymerization catalyst composition.
  • “providing as a composition” includes providing a metallocene complex (active species) activated by reaction with an ionic compound.
  • a styrene monomer is used as the first monomer, and isoprene and / or butadiene is used as the second monomer.
  • the catalyst composition (A1) catalyzes a syndiotactic polymerization reaction exclusively between styrene monomers.
  • the catalyst composition (B1) exclusively catalyzes the cis-1,4 polymerization reaction of isoprene and / or butadiene.
  • the said styrene-type monomer refers to the substituted styrene which has a substituent on a benzene ring, or an unsubstituted styrene, Especially preferably, it is an unsubstituted styrene (namely, styrene).
  • substituted styrene is not specifically limited, The following are illustrated.
  • the catalyst composition (B1) can also perform a regioselective or stereoselective polymerization reaction of a conjugated diene other than butadiene.
  • conjugated diene is not specifically limited here, For example, it is a chain conjugated diene or a cyclic conjugated diene.
  • conjugated dienes examples include isoprene, 1,3-butadiene, 1,3-pentadiene, 1,4-pentadiene, 1,3-hexadiene, 1,4-hexadiene, 1,5-hexadiene, 2, Examples include 4-dimethyl-1,3-pentadiene, 2-methyl-1,3-hexadiene, 2,4-hexadiene, and cyclohexadiene.
  • a chain transfer agent refers to an agent that performs a chain transfer reaction that receives a growing polymer chain and returns it back to the polymerization catalyst.
  • the type of chain transfer agent is not particularly limited, and examples thereof include trialkylaluminum chain transfer agents such as triisobutylaluminum (TIBA), tripropylaluminum (TPA), and triethylaluminum (TEA); diethylzinc; .
  • trialkylaluminum chain transfer agents such as triisobutylaluminum (TIBA), tripropylaluminum (TPA), and triethylaluminum (TEA) are preferable.
  • a cis-1,4 polyisoprene and / or polybutadiene polymer block obtained by polymerizing (butadiene) is linked to produce a block multi-component copolymer in which position control or steric control is performed.
  • the polymerization reaction is carried out by allowing the catalyst composition (A1), the catalyst composition (B1), the styrene monomer, isoprene and / or butadiene, and the chain transfer agent to be present in the same reaction system. Do it. There are no particular restrictions on the order, method, and the like of supplying these components into the reaction system.
  • the polymerization method may be any method such as a gas phase polymerization method, a solution polymerization method, a suspension polymerization method, a liquid phase bulk polymerization method, an emulsion polymerization method, or a solid phase polymerization method.
  • the solvent to be used is not particularly limited as long as it is inactive in the polymerization reaction and can dissolve the polymer material and the catalyst.
  • saturated aliphatic hydrocarbons such as butane, pentane, hexane and heptane
  • saturated alicyclic hydrocarbons such as cyclopentane and cyclohexane
  • aromatic hydrocarbons such as benzene and toluene
  • Halogenated hydrocarbons such as ethylene, perchlorethylene, 1,2-dichloroethane, chlorobenzene, bromobenzene, chlorotoluene and the like can be mentioned.
  • a solvent having low toxicity to a living body is preferable.
  • an aromatic hydrocarbon, particularly toluene is preferable.
  • the solvent may be used alone or in combination of two or more.
  • the amount of the solvent used is arbitrary, but the amount of the metallocene complex contained in the catalyst compositions (A1) and (B1) according to the present invention should be 0.1 to 0.0001 mol / l. preferable.
  • the temperature at which the polymerization reaction is performed may be any temperature at which the polymerization reaction proceeds.
  • the polymerization temperature can be performed, for example, around room temperature, that is, about 25 ° C.
  • the polymerization time is, for example, about several seconds to several hours.
  • the polymerization time may be, for example, 1 hour or less, and in some cases 30 minutes or less.
  • the amount of the monomer to be subjected to the polymerization reaction can be appropriately set according to the intended multi-polymer to be produced.
  • the styrene monomer is preferably 50 times or more and 2500 times or less, and 100 times or more and 1000 times or less in terms of molar ratio with respect to the metallocene complex constituting the catalyst composition (A1). More preferred.
  • isoprene and / or butadiene is preferably 50 times or more and 2500 times or less, more preferably 100 times or more and 1000 times or less in molar ratio with respect to the metallocene complex constituting the catalyst composition (B1). More preferred.
  • the activity and selectivity of the catalyst can be suitably maintained. Then, by supplying styrene monomer and isoprene and / or butadiene at a molar ratio of 50 times or more with respect to the metathelon complex, a polymer having a certain molecular weight is obtained. The properties of coalescence appear sufficiently.
  • the amount of the chain transfer agent used for the polymerization reaction can be appropriately set according to the intended multi-polymer to be produced.
  • the amount of the chain transfer agent used is in the range of 1 to 1000 times and in the range of 2 to 100 times in molar ratio with respect to the total of all catalyst compositions. It is preferable.
  • a multi-polymer comprising a syndiotactic polystyrene block and a polyisoprene block and / or a polybutadiene block provided with a predetermined regioregularity or stereoregularity (cis-1,4) Is obtained.
  • the multi-component copolymer obtained in Example (1) includes a syndiotactic polystyrene block, a polyisoprene block and / or a polybutadiene block provided with a predetermined regioregularity or stereoregularity. including.
  • syndiotacticity represented by the polystyrene block is 80 rrrr% (for example, preferably 85 rrrr%, more preferably 90 rrrr%, particularly preferably 95 rrrr%, most preferably 99 rrrr%) in pentad display.
  • syndiotacticities can be calculated from data obtained by measuring NMR (particularly 13 C-NMR) of the block multi-polymer of the present invention.
  • % represents the percentage of all repeating units derived from polyisoprene and / or polybutadiene in the block multipolymer of the present invention as denominators and the repeating units having a cis-1,4 structure as numerators. It is.
  • the number average molecular weight of the multipolymer according to the present invention is not particularly limited, but is, for example, in the range of 1 or more and 10 or less, preferably 1.1 or more and 8 or less, and more preferably 1.2. It is in the range of 5 or less above.
  • Example (2) of Multi-Polymer Production Method According to the Present Invention ⁇ Outline of manufacturing method>
  • a styrene monomer is used as the first monomer
  • isoprene and / or butadiene is used as the second monomer.
  • said catalyst composition (A1) is used as a 1st catalyst which catalyzes the regioselective or stereoselective polymerization reaction of styrene-type monomers.
  • the catalyst composition (B2) mentioned later is used as a 2nd catalyst which catalyzes the regioselective or stereoselective polymerization reaction of isoprene and / or butadiene.
  • the catalyst composition (B2) catalyzes a polymerization reaction between isoprenes or a polymerization reaction between butadienes, while selectivity (catalytic effect) for the polymerization reaction between these and a styrene monomer, and a styrene monomer
  • selectivity (catalytic effect) for the polymerization reaction between the bodies is very low (that is, a clear difference is seen in the polymerization activity).
  • the said catalyst composition (A1), the said catalyst composition (B2), a styrene-type monomer, isoprene and / or butadiene, and a chain transfer agent are made to exist in the same reaction system, and a polymerization reaction is performed.
  • a polymerization reaction a multi-polymer comprising a syndiotactic polystyrene block and a polyisoprene block and / or a polybutadiene block provided with a predetermined regioregularity or stereoregularity is obtained.
  • the catalyst composition (A1), styrene monomer (first monomer), isoprene and / or butadiene (second monomer), and chain transfer agent are the same as those described in [2. The same thing as what was demonstrated in the example of the manufacturing method of the multi-component polymer which concerns on this invention (1)] column can be used. Therefore, in the following description, the catalyst composition (B2) will be mainly described.
  • the catalyst composition (B2) contains 1) a metathelone complex, and 2) an ionic compound composed of non-coordinating anions and cations.
  • the metatheron complex includes a central metal M which is a Group 3 metal atom or a lanthanoid metal atom, and a ligand Cp * containing a substituted or unsubstituted cyclopentadienyl derivative bonded to the central metal,
  • the structure is represented by Formula (VI).
  • the complex is preferably a half metallocene complex.
  • the ligand Cp * in the general formula (VI) reduces the ability to selectively catalyze the polymerization reaction of the styrene monomer.
  • the ligand Cp * is preferably an unsubstituted cyclopentadienyl ring or an unsubstituted indenyl ring. An unsubstituted cyclopentadienyl ring is more preferred.
  • the metallocene complex represented by the general formula (VI) is obtained by the above-described method, for example, (1) Reference: International Publication WO 2006/004068 Pamphlet, (2) Reference: Japan Published Patent Publication JP-A-2008-222780. It can be synthesized with reference to the method described.
  • the catalyst composition (B2) contains an ionic compound.
  • the ionic compound includes an ionic compound composed of a non-coordinating anion and a cation.
  • the ionic compound is combined with the metallocene complex described above to cause the metallocene complex to exhibit activity as a polymerization catalyst.
  • the ionic compound reacts with the metallocene complex to generate a cationic complex (active species).
  • the same thing as what was demonstrated by the catalyst composition (A1) can be used for an ionic compound.
  • the polymerization reaction is performed by adding the catalyst composition (A1) and the catalyst composition (B2) to the same reaction system, one kind of ionic compound (catalyst composition (A1) and (B2) and It may be preferable to add a common ionic compound).
  • the catalyst composition (B2) includes the metallocene complex and an ionic compound.
  • the molar ratio of the ionic compound to the metallocene complex varies depending on the type of the complex and the ionic compound.
  • the molar ratio is, for example, 0.5 to 1 when the ionic compound is composed of a carbonium cation and a boron anion (for example, [Ph 3 C] [B (C 6 F 5 ) 4 ]). In the case of MAO or the like, it is preferably about 300 to 4000. If the molar ratio of the ionic compound and the complex is within the above range, the metallocene complex can be sufficiently activated, and the ionic compound and the monomer to be polymerized react undesirably. It is possible to reduce the fear more reliably.
  • compositions containing each component such as a metallocene complex and an ionic compound
  • each component such as a metallocene complex and an ionic compound
  • providing each component separately in the polymerization reaction system By constituting the composition, it can be used as a polymerization catalyst composition.
  • “providing as a composition” includes providing a metallocene complex (active species) activated by reaction with an ionic compound.
  • the polymerization reaction is carried out by allowing the catalyst composition (A1), the catalyst composition (B2), the styrenic monomer, isoprene and / or butadiene, and the chain transfer agent to be present in the same reaction system. Do it. There are no particular restrictions on the order, method, and the like of supplying these components into the reaction system.
  • the kind and amount of the solvent used in the case of the polymerization method and the solution polymerization method the temperature at which the polymerization reaction is carried out (polymerization temperature), the polymerization time, the amount of the monomer to be subjected to the polymerization reaction, and the chain transfer agent to be subjected to the polymerization reaction
  • the amount of [2. The same conditions as described in the column (Example (1)) for producing the multi-component polymer according to the present invention can be applied.
  • a multi-polymer comprising a syndiotactic polystyrene block and a polyisoprene block and / or a polybutadiene block provided with a predetermined regioregularity or stereoregularity (cis-1,4) Is obtained.
  • the multi-component copolymer obtained in Example (2) includes a syndiotactic polystyrene block, a polyisoprene block and / or a polybutadiene block provided with a predetermined regioregularity or stereoregularity. including.
  • syndiotacticity represented by the polystyrene block is 80 rrrr% (for example, preferably 85 rrrr%, more preferably 90 rrrr%, particularly preferably 95 rrrr%, most preferably 99 rrrr%) in pentad display.
  • syndiotacticities can be calculated from data obtained by measuring NMR (particularly 13 C-NMR) of the block multi-polymer of the present invention.
  • % represents the percentage of all repeating units derived from polyisoprene and / or polybutadiene in the block multipolymer of the present invention as denominators and the repeating units having a cis-1,4 structure as numerators. It is.
  • the number average molecular weight of the multipolymer according to the present invention is not particularly limited, but is, for example, in the range of 1 or more and 10 or less, preferably 1.1 or more and 8 or less, and more preferably 1.2. It is in the range of 5 or less above.
  • Still another example (3) of the method for producing a multi-component polymer according to the present invention ⁇ Outline of manufacturing method>
  • a styrene monomer is used as the first monomer
  • isoprene and / or butadiene is used as the second monomer.
  • said catalyst composition (A1) is used as a 1st catalyst which catalyzes the regioselective or stereoselective polymerization reaction of styrene-type monomers.
  • the catalyst composition (B3) mentioned later is used as a 2nd catalyst which catalyzes the regioselective or stereoselective polymerization reaction of isoprene and / or butadiene.
  • the catalyst composition (B3) catalyzes a polymerization reaction between isoprenes or a polymerization reaction between butadienes, selectivity (catalytic effect) with respect to the polymerization reaction between these and a styrene monomer, and a styrene monomer
  • selectivity (catalytic effect) for the polymerization reaction between the bodies is very low (that is, a clear difference is seen in the polymerization activity).
  • the said catalyst composition (A1), the said catalyst composition (B3), a styrene-type monomer, isoprene and / or butadiene, and a chain transfer agent are made to exist in the same reaction system, and a polymerization reaction is performed.
  • a polymerization reaction a multi-polymer comprising a syndiotactic polystyrene block and a polyisoprene block and / or a polybutadiene block provided with a predetermined regioregularity or stereoregularity is obtained.
  • the catalyst composition (A1), styrene monomer (first monomer), isoprene and / or butadiene (second monomer), and chain transfer agent are the same as those described in [2. The same thing as what was demonstrated in the example of the manufacturing method of the multi-component polymer which concerns on this invention (1)] column can be used. Therefore, in the following description, the catalyst composition (B3) will be mainly described.
  • the catalyst composition (B3) includes 1) a complex represented by the general formula (V), and 2) an ionic compound composed of a non-coordinating anion and cation.
  • the complex includes a central metal M which is any of rare earth elements from lanthanum (La) to lutetium (Lu) excluding scandium (Sc), yttrium (Y) or promethium Pm; monoanionic ligands Q 1 and Q 2 And W (W is an integer of 0 to 3) neutral Lewis bases L;
  • M is a central metal in the complex.
  • the central metal M is any of rare earth elements from lanthanum (La) to lutetium (Lu) excluding scandium (Sc), yttrium (Y) or promethium Pm. Since the complex used in the present invention can be used as one component of the polymerization catalyst composition (B3), the central metal M is appropriately selected depending on the type of monomer to be polymerized. Among these, scandium Sc, yttrium Y or lutetium Lu is preferable, and scandium Sc or yttrium Y is particularly preferable.
  • R 1 and R 2 each independently represents an alkyl group, a substituted or unsubstituted cyclohexyl group, an aryl group, or an aralkyl group.
  • alkyl group include a methyl group, an ethyl group, an isopropyl group, an n-butyl group, and a t-butyl group.
  • substituted cyclohexyl group include a cyclohexyl group having an alkyl group as a substituent, for example, a methylcyclohexyl group.
  • the unsubstituted aryl group include a phenyl group.
  • Examples of the substituted aryl group include a phenyl group having an alkyl group as a substituent.
  • Examples of the unsubstituted aralkyl group include a benzyl group.
  • Examples of the substituted aralkyl group include a benzyl group having an alkyl group as a substituent.
  • phenyl having an alkyl group as a substituent is preferable, and 2,6-diisopropylphenyl group is particularly preferable.
  • R 1 and R 2 may be the same or different, but both R 1 and R 2 are preferably phenyl groups having an alkyl group as a substituent, and both are preferably 2,6-diisopropylphenyl groups. preferable.
  • R 3 is an alkyl group, alkenyl group, alkynyl group, aryl group or aralkyl group, aliphatic, aromatic or cyclic amino group, or phosphino group, boryl group, alkyl or arylthio group, alkoxy group or An aryloxy group is shown. Among these, an aryl group is preferable, and a phenyl group is particularly preferable.
  • the complex represented by the general formula (V) can be prepared by the above-described method, for example, (1) Reference: Japanese Published Patent Publication No. 2007-238857, (2) Reference: Japanese Published Patent Publication No. 2008- It can be synthesized with reference to the method described in No. 222791.
  • the catalyst composition (B3) contains an ionic compound.
  • the ionic compound includes an ionic compound composed of a non-coordinating anion and a cation.
  • the ionic compound is combined with the complex described above to cause the complex to exhibit activity as a polymerization catalyst. As the mechanism, it can be considered that the ionic compound reacts with the complex to form a cationic complex (active species).
  • the same thing as what was demonstrated by the catalyst composition (A1) can be used for an ionic compound.
  • the polymerization reaction is performed by adding the catalyst composition (A1) and the catalyst composition (B3) to the same reaction system, one kind of ionic compound (catalyst composition (A1) and (B3) and It may be preferable to add a common ionic compound).
  • the catalyst composition (B3) includes the complex and an ionic compound.
  • the molar ratio of the ionic compound to the complex varies depending on the type of the complex and the ionic compound.
  • the molar ratio is, for example, 0.5 to 1 when the ionic compound is composed of a carbonium cation and a boron anion (for example, [Ph 3 C] [B (C 6 F 5 ) 4 ]). In the case of MAO or the like, it is preferably about 300 to 4000. If the molar ratio of the ionic compound and the complex is within the above range, the complex can be sufficiently activated, and the ionic compound and the monomer to be polymerized may cause an undesirable reaction. Can be more reliably reduced.
  • a composition containing each component is provided in the polymerization reaction system, or 2) each component is separately provided in the polymerization reaction system, and the composition in the reaction system By constituting the product, it can be used as a polymerization catalyst composition.
  • “providing as a composition” includes providing a complex (active species) activated by reaction with an ionic compound.
  • the polymerization reaction is carried out by allowing the catalyst composition (A1), the catalyst composition (B3), the styrenic monomer, isoprene and / or butadiene, and the chain transfer agent to be present in the same reaction system. Do it. There are no particular restrictions on the order, method, and the like of supplying these components into the reaction system.
  • the kind and amount of the solvent used in the case of the polymerization method and the solution polymerization method the temperature at which the polymerization reaction is carried out (polymerization temperature), the polymerization time, the amount of the monomer to be subjected to the polymerization reaction, and the chain transfer agent to be subjected to the polymerization reaction
  • the amount of [2. The same conditions as described in the column (Example (1)) for producing the multi-component polymer according to the present invention can be applied.
  • a multi-polymer comprising a syndiotactic polystyrene block and a polyisoprene block and / or a polybutadiene block provided with a predetermined regioregularity or stereoregularity is obtained.
  • the positional regularity or stereoregularity of the polyisoprene block is iso-3,4, and the positional regularity or stereoregularity of the polybutadiene block is a repeating unit derived from 1,2-butadiene (see also FIG. 17).
  • the multi-polymer obtained in Example (3) is composed of a syndiotactic polystyrene block and a polyisoprene block and / or a polybutadiene block given a predetermined regioregularity or stereoregularity. Including.
  • syndiotacticity represented by the polystyrene block is 80 rrrr% (for example, preferably 85 rrrr%, more preferably 90 rrrr%, particularly preferably 95 rrrr%, most preferably 99 rrrr%) in pentad display.
  • syndiotacticities can be calculated from data obtained by measuring NMR (particularly 13 C-NMR) of the block multi-polymer of the present invention.
  • An example of the proportion of the iso-3,4 structure in the polyisoprene block is 60% or more, preferably 70% or more, more preferably 80% or more.
  • “%” represents the percentage of all repeating units derived from polyisoprene in the block multi-polymer of the present invention as the denominator and the repeating units having the iso-3,4 structure as the numerator.
  • An example of the proportion of the 1,2-butadiene-derived repeating unit in the polybutadiene block is 60% or more, preferably 70% or more, and more preferably 80% or more.
  • “%” represents the percentage of all repeating units derived from polybutadiene in the block multi-polymer of the present invention as a denominator and the repeating units having a 1,2-butadiene-derived repeating unit structure as a numerator. .
  • the number average molecular weight of the multipolymer according to the present invention is not particularly limited, but is, for example, in the range of 1 or more and 10 or less, preferably 1.1 or more and 8 or less, and more preferably 1.2. It is in the range of 5 or less above.
  • Still another example (4) of the method for producing a multi-component polymer according to the present invention In this example (4), a styrene monomer is used as the first monomer, and isoprene and / or butadiene is used as the second monomer.
  • the first catalyst for catalyzing the regioselective or stereoselective polymerization reaction between styrene monomers the above catalyst composition (A1) or an ansa-metallocene neodymium catalyst (ansa-neodimocene catalyst) ) Is used.
  • the ansa-metallocene-based neodymium catalysts include those described in references J. Am. Chem. Soc., 2004, 126 (39), 12240. Thereby, a syndiotactic polystyrene block is formed.
  • the first catalyst, the second catalyst, the first monomer, the second monomer, and the chain transfer agent are present in the same reaction system to perform the polymerization reaction.
  • a multi-polymer comprising a syndiotactic polystyrene block and a polyisoprene block and / or a polybutadiene block provided with a predetermined regioregularity or stereoregularity is obtained.
  • Part A1-1 Synthesis of Syndiotactic Polystyrene-Block-cis-1,4-Polyisoprene Block Copolymer
  • Part A1-1 syndiotactic Polystyrene-block-cis- using cationic scandium dialkyl complexes (1) and (2) in the presence of TIBA or TPA
  • TIBA or TPA cationic scandium dialkyl complexes
  • Example 1 A typical polymerization reaction is shown below (Table 1, run 1).
  • the mixture was stirred at room temperature for 2 minutes and a monomer mixture containing 1.04 g (10 mmol) styrene and 0.68 g (10 mmol) isoprene in 28 mL toluene was added to the flask.
  • the copolymerization reaction was performed for 4 hours, the flask was removed from the glove box, and 10 mL of methanol was added to complete the polymerization reaction.
  • the mixture was poured into methanol (400 mL) to precipitate the polymer product.
  • the polymer was collected by filtration and vacuum dried at 60 ° C. until a constant weight was obtained.
  • Example 2 A typical polymerization reaction is shown below (Table 1, run 2).
  • Example 5 The copolymerization procedure and conditions (Table 1, run 5) are similar to Example 2 except that a monomer mixture containing 0.52 g (5 mmol) styrene and 1.36 g (20 mmol) isoprene was used. .
  • Example 6 The copolymerization procedure and conditions (Table 1, run 6) are similar to Example 2 except that a monomer mixture containing 0.52 g (5 mmol) styrene and 2.04 g (30 mmol) isoprene was used. .
  • Example 7 The copolymerization procedure and conditions (Table 1, run 7) are similar to Example 3 except that a monomer mixture containing 1.04 g (10 mmol) styrene and 1.36 g (20 mmol) isoprene was used. .
  • TPA tripropyl-aluminum
  • FIG. 3 shows the 1 H NMR spectrum of run1 (without chain transfer agent) in Table 1.
  • FIG. 6 shows a DSC curve of the block copolymer (run 3 in Table 1).
  • Part A1-2 Synthesis of Syndiotactic Polystyrene-Block-cis-1,4-Polyisoprene Block Copolymer
  • a block-1,4-polyisoprene block copolymer was synthesized. The results of synthesis, reaction conditions, etc. are summarized in Table 2.
  • the copolymerization reaction was performed for 4 hours, the flask was removed from the glove box, and 10 mL of methanol was added to complete the polymerization reaction. The mixture was poured into methanol (400 mL) to precipitate the polymer product. The polymer was collected by filtration and vacuum dried at 60 ° C. until a constant weight was obtained.
  • Example 2 A typical polymerization reaction is shown below (Table 2, run 2).
  • Example 2 is the same as Example 2 except that a monomer mixture containing is used.
  • Example 2 is the same as Example 2 except that a monomer mixture containing is used.
  • FIG. 7 shows a GPC graph of run1 (without chain transfer agent) in Table 2.
  • FIG. 9 shows the 1 H NMR spectrum of run1 (without chain transfer agent) in Table 2.
  • Part B Synthesis of Syndiotactic Polystyrene-Block-3,4-Polyisoprene Block Copolymer
  • Part B syndiotactic polystyrene-block-3,4-in the presence of TIBA or TPA using cationic scandium alkyl complexes (1) and (4) as shown in Examples 1-7 below.
  • a polyisoprene block copolymer was synthesized. The synthesis results, reaction conditions, etc. are summarized in Table 3.
  • Example 1 A typical polymerization reaction is shown below (Table 3, run 1). A toluene solution (4 ml) of [Ph 3 C] [B (C 6 F 5 ) 4 ] (36 mg, 40 ⁇ mol) in a 100 mL flask at 25 ° C.
  • the mixture was stirred at room temperature for 2 minutes and a monomer mixture containing 1.04 g (10 mmol) styrene and 0.68 g (10 mmol) isoprene in 28 mL toluene was added to the flask.
  • the copolymerization reaction was performed for 4 hours, the flask was removed from the glove box, and 10 mL of methanol was added to complete the polymerization reaction.
  • the mixture was poured into methanol (400 mL) to precipitate the polymer product.
  • the polymer was collected by filtration and vacuum dried at 60 ° C. until a constant weight was obtained.
  • Example 2 A typical polymerization reaction is shown below (Table 3, run 2).
  • Example 4 The copolymerization procedure and conditions (Table 3, run 4) were similar to Example 3 except that a monomer mixture containing 1.04 g (10 mmol) styrene and 1.36 g (20 mmol) isoprene was used. .
  • Example 2 is the same as Example 2 except that a monomer mixture containing is used.
  • TPA tripropyl-aluminum
  • FIG. 11 shows the 1 H NMR spectrum of run1 (without chain transfer agent) in Table 3.
  • Part C Synthesis of Syndiotactic Polystyrene-Block-1,4-Polyisoprene-Block-1,4-Polybutadiene Block Copolymer
  • Synthesis of block-1,4-polybutadiene block copolymer and syndiotactic polystyrene-block-3,4-polyisoprene-block-1,2-polybutadiene was carried out. The synthesis results, reaction conditions, etc. are summarized in Table 4.
  • Example 1 A typical polymerization reaction is shown below (Table 4, run 1).
  • the mixture is stirred at room temperature for 2 minutes and a monomer mixture containing 1.04 g (10 mmol) styrene, 0.68 g (10 mmol) isoprene, and 0.54 g (10 mmol) butadiene in 48 mL toluene is added to the flask. It was.
  • the copolymerization reaction was performed for 0.5 hour, the flask was removed from the glove box, and 10 mL of methanol was added to complete the polymerization reaction.
  • the mixture was poured into methanol (400 mL) to precipitate the polymer product.
  • the polymer was collected by filtration and vacuum dried at 60 ° C. until a constant weight was obtained.
  • Example 2 A typical polymerization reaction is shown below (Table 4, run 2).
  • Example 4 The copolymerization procedure and conditions (Table 4, run 4) used a monomer mixture containing 1.04 g (10 mmol) styrene, 0.68 g (10 mmol) isoprene, and 1.14 g (20 mmol) butadiene.
  • Table 4, run 4 The copolymerization procedure and conditions (Table 4, run 4) used a monomer mixture containing 1.04 g (10 mmol) styrene, 0.68 g (10 mmol) isoprene, and 1.14 g (20 mmol) butadiene.
  • Table 4 The copolymerization procedure and conditions (Table 4, run 4) used a monomer mixture containing 1.04 g (10 mmol) styrene, 0.68 g (10 mmol) isoprene, and 1.14 g (20 mmol) butadiene.
  • the third embodiment is the same as the third embodiment.
  • Example 5 The copolymerization procedure and conditions (Table 4, run 5) used a monomer mixture containing 1.04 g (10 mmol) of styrene, 1.36 g (20 mmol) of isoprene and 0.57 g (10 mmol) of butadiene.
  • Table 4, run 5 The copolymerization procedure and conditions (Table 4, run 5) used a monomer mixture containing 1.04 g (10 mmol) of styrene, 1.36 g (20 mmol) of isoprene and 0.57 g (10 mmol) of butadiene.
  • Table 4 The copolymerization procedure and conditions (Table 4, run 5) used a monomer mixture containing 1.04 g (10 mmol) of styrene, 1.36 g (20 mmol) of isoprene and 0.57 g (10 mmol) of butadiene.
  • the second embodiment is the same as the second embodiment.
  • FIG. 16 shows the 13 C NMR spectrum of run4 in Table 4.
  • FIG. 17 shows the structural formulas of the cationic scandium dialkyl complexes (1), (2), (4), and the scandium aminobenzyl complex (3) used in the above examples, their general reactions, and the reactions of the examples. Indicated.
  • complexes 1, 2, and 4 correspond to the cationic scandium dialkyl complexes (1), (2), and (4), respectively
  • complex 3 corresponds to the scandium aminobenzyl complex (3).
  • the metal complexes 1d, 1e, 3d and 3e were found to be particularly suitable for syndiotactic polystyrene synthesis from the viewpoint of their catalytic activity and stereoselectivity (Table 5, Runs 4-6, Run10- 12).
  • methoxyphenyl-bonded metal complex 2 also had very high catalytic activity for polystyrene synthesis under the same reaction conditions, and remarkably high selectivity for syndiotactic steric structures.
  • the metal complexes 1a, 1b, 3a, and 3b are more excellent in reactivity with isoprene or butadiene, and a polymer that gives a predetermined regioregularity or stereoregularity can be obtained.
  • the metal complex 3b ((C 5 H 4 Me) Sc (CH 2 C 6 H 4 NMe 2 -o) 2 ) was prepared as follows.
  • a multi-polymer that is highly position-controlled or stereo-controlled and a method for producing the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Polymerization Catalysts (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

 第一のモノマー由来の繰り返し単位と、第二のモノマー由来の繰り返し単位とを含む多元重合体の製造方法であって、第一のモノマー同士の位置又は立体選択的な重合反応を選択的に触媒する第一の触媒と、第二のモノマー同士の位置又は立体選択的な重合反応を選択的に触媒する第二の触媒とを用い、第一の触媒、第二の触媒、第一のモノマー、第二のモノマー、及び連鎖移動剤を同一の反応系中に存在させて重合反応を行う。

Description

多元重合体の製造方法、および多元重合体
 本発明は、連鎖移動剤を用いた多元ブロック共重合体の製造方法、および多元ブロック共重合体に関する。
 ポリマー材料の物性は、当該ポリマーの位置規則性又は立体規則性に大きく依存する。そのため、得られるポリマーの位置規則性又は立体規則性を高度に制御する技術が開発されてきた。一例として、特許文献1には、メタロセン錯体を用いる重合反応によってシンジオタクチックなスチレン重合体(sPS)が製造可能であることが記載されている。
 また、ポリマー材料の物性を改良する他の手段として、性質の異なる二種以上のモノマーを重合させて共重合体を製造することも行われている。
国際公開第WO00/18808号(2000年4月6日公開)
D. J. Arriola, E. M. Carnahan, P. D. Hustad, R. L. Kuhlman, T. T. Wenzel, Science, 2006, 312, 714.
 しかし、二種以上のモノマーを重合させる場合に、各モノマー由来の繰り返し単位の位置規則性又は立体規則性を何れも高度に制御しつつ、共重合体を製造することは非常に困難である。
 例えば、非特許文献1には、スチレンモノマーとイソプレンモノマーとを共重合させてシンジオタクチックスチレン鎖を有する共重合体の合成例が報告されているが、共重合体におけるイソプレン由来の繰り返し単位はランダム構造であって位置制御又は立体制御がなされていない。
 本発明は、上記の課題を解決するためになされたものであって、連鎖移動剤を用いた、多元ブロック共重合体の新規な製造方法、および多元ブロック共重合体を提供することを目的とする。
 本願発明者らは上記課題を解決するために鋭意検討を行った。その結果、モノマーに対する触媒活性の相違を利用し、かつ連鎖移動剤を利用することによって、高度に位置制御又は立体制御がなされた多元重合体が得られることを見出し、本願発明に想到するに至った。
 すなわち、本発明には以下のものが含まれる。
<1> 第一のモノマー由来の繰り返し単位と、第一のモノマーとは異なる第二のモノマー由来の繰り返し単位とを含んでなる多元重合体の製造方法であって、上記第一のモノマー同士の位置選択的又は立体選択的な重合反応を、上記第二のモノマー同士の重合反応及び上記第一のモノマーと第二のモノマーとの重合反応より選択的に触媒する第一の触媒と、上記第二のモノマー同士の位置選択的又は立体選択的な重合反応を、上記第一のモノマー同士の重合反応及び上記第一のモノマーと第二のモノマーとの重合反応より選択的に触媒する第二の触媒とを用い、上記第一の触媒、上記第二の触媒、上記第一のモノマー、上記第二のモノマー、及び連鎖移動剤を同一の反応系中に存在させて重合反応を行う多元重合体の製造方法。
<2> 上記第一のモノマーがスチレン系単量体であり、上記第二のモノマーがイソプレン又はブタジエンである上記<1>に記載の多元重合体の製造方法。
<3> 上記第一の触媒が、(1)第3族金属原子またはランタノイド金属原子である中心金属M、該中心金属に結合した置換または無置換のシクロペンタジエニル誘導体を含む配位子Cp*、モノアニオン配位子QおよびQ、ならびにW個(Wは0~3の整数)の中性ルイス塩基Lを含む、一般式(I)で表されるメタロセン錯体、および、(2)非配位性アニオンとカチオンからなるイオン性化合物を含んでいる触媒組成物である上記<2>に記載の多元重合体の製造方法。
Figure JPOXMLDOC01-appb-C000009
(一般式(I)における配位子Cp*は、置換基を有するシクロペンタジエニル環、置換又は無置換のフルオレニル環、置換又は無置換のオクタヒドロフルオレニル環、及び、置換基を有するインデニル環からなる群より選択される何れかであり、
Cp*が置換基を有するシクロペンタジエニル環の場合は、下記一般式(II)で表されるものであり、
Figure JPOXMLDOC01-appb-C000010
一般式(II)中で、Rxは、シクロペンタジエニル環の骨格を構成する炭素原子に結合する、炭素数1~20のヒドロカルビル基、又は炭素数1~20のヒドロカルビル基が置換したメタロイド基を指し、*はMとの結合を表し、nは3~5の整数である。また、一般式(II)中に示すシクロペンタジエニル環の骨格を構成する炭素原子の一つは、第14族原子(但し、炭素原子及び鉛原子は除く)又は第15族原子により置換されていてもよい。
Cp*が置換基を有するインデニル環の場合は、下記一般式(III)で表されるものである。
Figure JPOXMLDOC01-appb-C000011
一般式(III)中で、Rx1は、インデニル環の5員環の骨格を構成する炭素原子に結合する、炭素数1~20のヒドロカルビル基、又は炭素数1~20のヒドロカルビル基が置換したメタロイド基を指し、*はMとの結合を表し、n1は1~3の整数である。)
<4> 上記第二の触媒が、(1)第3族金属原子またはランタノイド金属原子である中心金属M、該中心金属に結合した置換または無置換のシクロペンタジエニル誘導体を含む配位子Cp*、モノアニオン配位子QおよびQ、ならびにW個(Wは0~3の整数)の中性ルイス塩基Lを含む、一般式(I)で表されるメタロセン錯体、および(2)非配位性アニオンとカチオンからなるイオン性化合物を含んでいる触媒組成物である上記<2>又は<3>に記載の多元重合体の製造方法。
Figure JPOXMLDOC01-appb-C000012
(一般式(I)における配位子Cp*は、置換又は無置換のシクロペンタジエニル環、及び、無置換のインデニル環からなる群より選択される何れかであり、
Cp*が置換基を有するシクロペンタジエニル環の場合は、下記一般式(IV)で表されるものであり、
Figure JPOXMLDOC01-appb-C000013
一般式(IV)中で、Rx2は、シクロペンタジエニル環の骨格を構成する炭素原子に結合する、炭素数1~3のヒドロカルビル基を指し、*はMとの結合を表し、n2は1~2の整数である。)
<5> 上記第二の触媒が、(1)一般式(V)で表される錯体、および(2)非配位性アニオンとカチオンからなるイオン性化合物を含んでいる触媒組成物である上記<2>又は<3>に記載の多元重合体の製造方法。
Figure JPOXMLDOC01-appb-C000014
(一般式(V)において、
1及びR2はそれぞれ独立して、アルキル基、シクロヘキシル基、アリール基又はアラルキル基を示し、
3はアルキル基、アルケニル基、アルキニル基、アリール基又はアラルキル基、脂肪族、芳香族又は環状のアミノ基、若しくはホスフィノ基、ボリル基、アルキル又はアリールチオ基、アルコキシ又はアリールオキシ基を示し、
Mは、スカンジウム(Sc)、イットリウム(Y)又はプロメチウムPmを除くランタン(La)からルテチウム(Lu)までの希土類元素の何れかを示し、
1およびQ2はそれぞれ独立して、モノアニオン性配位子を示し、
Lは中性ルイス塩基を示し、wは0~3の整数を示す。)
<6> 上記一般式(V)におけるR1及びR2が2,6-ジイソプロピルフェニル基を示し、R3がフェニル基を示す上記<5>に記載の多元重合体の製造方法。
<7> 上記第二の触媒が、(1)第3族金属原子またはランタノイド金属原子である中心金属M、及び、該中心金属に結合した置換または無置換のシクロペンタジエニル誘導体を含む配位子Cp*を含む、一般式(VI)で表される錯体、および(2)非配位性アニオンとカチオンからなるイオン性化合物を含んでいる触媒組成物である上記<2>又は<3>に記載の多元重合体の製造方法。
Figure JPOXMLDOC01-appb-C000015
(一般式(VI)における配位子Cp*は、置換又は無置換のシクロペンタジエニル環、及び、無置換のインデニル環からなる群より選択される何れかであり、
Cp*が置換基を有するシクロペンタジエニル環の場合は、下記一般式(IV)で表されるものであり、
Figure JPOXMLDOC01-appb-C000016
一般式(IV)中で、Rx2は、シクロペンタジエニル環の骨格を構成する炭素原子に結合する、炭素数1~3のヒドロカルビル基を指し、*はMとの結合を表し、n2は1~2の整数である。)
<8> 上記中心金属Mがスカンジウム(Sc)またはイットリウム(Y)である、上記<3>~<7>の何れかに記載の製造方法。
<9> 上記中心金属Mがスカンジウム(Sc)である、上記<8>に記載の製造方法。
<10> 上記QおよびQが、それぞれ独立してトリアルキルシリル基である、上記<3>~<6>のいずれかに記載の製造方法。
<11> 上記中性ルイス塩基Lは、テトラヒドロフランである、上記<3>~<6>のいずれかに記載の製造方法。
<12> 上記スチレン系単量体が重合されてなる重合体ブロックは、その側鎖においてシンジオタクチックな立体規則性を有する芳香族基を含んでおり、そのシンジオタクチシティーが80rrrr%以上である上記<2>~<11>のいずれかに記載の製造方法。
<13> 上記スチレン系単量体が重合されてなる重合体ブロックが、ポリ(アルキル化)スチレンまたはポリビニルナフタレンである<2>~<12>のいずれかに記載の製造方法。
<14> 上記連鎖移動剤はトリアルキルアルミニウムである<2>~<13>のいずれかに記載の製造方法。
<15> 上記<1>~<14>の何れかに記載の製造方法により製造される多元重合体であって、上記第一のモノマーが重合されてなる第一の重合体ブロックと、上記第二のモノマーが重合されてなる第二の重合体ブロックとを含み、第一の重合体ブロック及び第二の重合体ブロックは何れも所定の位置規則性又は立体規則性を有する多元重合体。
 本発明によれば、高度に位置制御又は立体制御がなされた多元重合体、及びその製造方法を提供することができる。
実施例のパートA-1において、表1に示すrun1(連鎖移動剤なし)及びrun2(TIBA/Sc=5)のGPCのグラフを示す図である。 実施例のパートA-1において、表1に示すrun1(連鎖移動剤なし)及びrun8(TPA/Sc=2)のGPCのグラフを示す図である。 実施例のパートA-1において、表1に示すrun1(連鎖移動剤なし)のH NMRスペクトルを示す図である。 実施例のパートA-1において、表1に示すrun2(TIBA/Sc=5)のH NMRスペクトルを示す図である。 実施例のパートA-1において、表1に示すrun2(TIBA/Sc=5)の13C NMRスペクトルを示す図である。 実施例のパートA-1において、ブロック共重合体(表1に示すrun3)のDSCカーブを示す図である。 実施例のパートA-2において、表2に示すrun1(連鎖移動剤なし)のGPCのグラフを示す図である。 実施例のパートA-2において、表2に示すrun2(TIBA/Sc=5)のGPCのグラフを示す図である。 実施例のパートA-2において、表2に示すrun1(連鎖移動剤なし)のH NMRスペクトルを示す図である。 実施例のパートA-2において、表2に示すrun2(TIBA/Sc=5, IP/St=2)のH NMRスペクトルを示す図である。 実施例のパートBにおいて、表3に示すrun1(連鎖移動剤なし)のH NMRスペクトルを示す図である。 実施例のパートBにおいて、表3に示すrun3(TIBA/Sc=10)のH NMRスペクトルを示す図である。 実施例のパートBにおいて、表3に示すrun7(TPA/Sc=5)のH NMRスペクトルを示す図である。 実施例のパートCにおいて、表4に示すrun2(TIBA/Sc=5)のGPCのグラフを示す図である。 実施例のパートCにおいて、表4に示すrun2(TIBA/Sc=5)の13C NMRスペクトルを示す図である。 実施例のパートCにおいて、表4に示すrun4の13C NMRスペクトルを示す図である。 実施例に用いた錯体の構造式、その一般反応、及び実施例の反応を示す図である。
 〔1.本発明に係る多元重合体の製造方法〕
 (製造方法の概要)
 本発明に係る多元重合体の製造方法は、第一のモノマー由来の繰り返し単位と、第一のモノマーとは異なる第二のモノマー由来の繰り返し単位とを含んでなる多元重合体を製造する方法であって、
上記第一のモノマー同士の位置選択的又は立体選択的な重合反応を、上記第二のモノマー同士の重合反応及び上記第一のモノマーと第二のモノマーとの重合反応より選択的に触媒する第一の触媒と、
上記第二のモノマー同士の位置選択的又は立体選択的な重合反応を、上記第一のモノマー同士の重合反応及び上記第一のモノマーと第二のモノマーとの重合反応より選択的に触媒する第二の触媒とを用い、
上記第一の触媒、上記第二の触媒、上記第一のモノマー、上記第二のモノマー、及び連鎖移動剤を同一の反応系中に存在させて重合反応を行う方法である。
 本発明に係る多元重合体の製造方法によれば、第一の触媒により触媒された第一のモノマー同士の位置選択的又は立体選択的な重合反応の結果物である第一の重合体ブロックと、第二の触媒により触媒された第二のモノマー同士の位置選択的又は立体選択的な重合反応の結果物である第二の重合体ブロックとを含んでなる新規なブロック共重合体を得ることができる。そして、第一の重合体ブロック及び第二の重合体ブロックは何れも所定の位置規則性又は立体規則性を有するものが得られる。
 なお、上記製造方法の範疇には、第一のモノマー、第二のモノマーに加えて、さらに他のモノマー(便宜的に第三のモノマーと称する)を加えた重合反応を行い、3元以上の多元重合体を得ることも含まれる。ここで、当該第三のモノマーは、上記第一の触媒、又は上記第二の触媒により重合反応が触媒されるものであることが好ましい。
 (組み合わせの決定例)
 上記第一の触媒、上記第二の触媒、上記第一のモノマー、及び上記第二のモノマーの組み合わせは、一例では、以下のように決定される。当業者であれば、下記の記載に基づき、これらの組合せを決定することができる。
 まずブロック共重合体を構成するモノマーとして、第一のモノマーと第二のモノマーとの任意の組合せを選択する。そして、文献情報又は予備実験に基づき、第一のモノマー同士の位置選択的又は立体選択的な重合反応を触媒する触媒A(第一の触媒の候補)を選択する。次いで、触媒Aに関する文献情報に基づき、当該触媒Aが第二のモノマー同士の重合反応を触媒する能力、又は第一のモノマーと第二のモノマーとの重合反応を触媒する能力を有するかを調べ、何れの能力についても格別の報告がなければ第一の触媒として好適と判定する。同様に、文献情報又は予備実験に基づき、第二のモノマー同士の位置選択的又は立体選択的な重合反応を触媒する触媒B(第二の触媒の候補)を選択する。次いで、触媒Bに関する文献情報に基づき、当該触媒Bが第一のモノマー同士の重合反応を触媒する能力、又は第一のモノマーと第二のモノマーとの重合反応を触媒する能力を有するかを調べ、何れの能力についても格別の報告がなければ第二の触媒として好適と判定する。なお、上記文献情報の範疇にはデータベース上の情報も含まれる。連鎖移動剤は、既知のものから、適宜、選択可能である。
 (得られた多元重合体の構造決定)
 本発明の製造方法により得られる多元共重合体は、好ましくは、上記第一のモノマーが重合されてなる第一の重合体ブロックと、上記第二のモノマーが重合されてなる第二の重合体ブロックとを少なくとも1つずつ含み、第一の重合体ブロック及び第二の重合体ブロックは何れも各ブロック内で所定の位置規則性又は立体規則性を示す。ここで、位置規則性及び立体規則性の種類は特に限定されず、一つの観点では、シンジオタクチック、又はアイソタクチック等の性質を示し、すなわちアタクチックではないものである。また、位置規則性及び立体規則性とは、他の観点では、シス選択性、又はトランス選択性である。さらに、位置規則性及び立体規則性とは、例えば、一つのモノマーが、化学構造の異なる複数種の繰り返し単位として重合体中に取り込まれる可能性がある場合に、ある特定の化学構造の繰り返し単位のみが優先的に選択されることも指す。例えば、イソプレンは、シス1,4型、又はiso-3,4型の繰り返し単位として重合体中に取り込まれる可能性があるところ、重合体中のイソプレンブロックが実質的にシス1,4型の繰り返し単位のみから構成される場合等も、位置規則性及び立体規則性を示すケースの一例である。
 なお、得られた多元共重合体を構成する重合体ブロックが上記何れかの位置規則性又は立体規則性を有するか否かを決定するために、公知の方法を適宜採用すればよい。例えば、シンジオタクチック、又はアイソタクチック等の位置規則性又は立体規則性を決定する場合は、NMRスペクトル(特に13C-NMRスペクトル)から算出することができる。なお、位置規則性又は立体規則性を示す重合体とは、モノマーの位置選択的又は立体選択的な重合反応の結果得られるものである。
 以下の説明では、本発明を、スチレン系単量体を重合してなる重合ブロックと、イソプレンを重合してなる重合ブロック及び/又はブタジエンを重合してなる重合ブロックとを含む共重合体を製造する場合に適応するケースにつき、より具体的に説明する。
 〔2.本発明に係る多元重合体の製造方法の一例(1)〕
 <製造方法の概要>
 この例(1)では、第一のモノマーとしてスチレン系単量体を、第二のモノマーとしてイソプレン及び/又はブタジエンを用いる。また、スチレン系単量体同士の位置選択的又は立体選択的な重合反応を触媒する第一の触媒として、後述する触媒組成物(A1)を用いる。また、イソプレン同士、及び/又は、ブタジエン同士の位置選択的又は立体選択的な重合反応を触媒する第二の触媒として、後述する触媒組成物(B1)を用いる。
 触媒組成物(A1)は、スチレン系単量体同士のシンジオタクチックな重合反応を触媒する一方で、イソプレン同士の重合反応、ブタジエン同士の重合反応、及びこれらとスチレン系単量体との重合反応に対する選択性は極めて低い(すなわち重合活性に明確な差が見られる)。
 触媒組成物(B1)は、イソプレン同士の重合反応、又はブタジエン同士の重合反応を触媒する一方で、これらとスチレン系単量体との重合反応に対する選択性(触媒効果)、及びスチレン系単量体同士の重合反応に対する選択性(触媒効果)は極めて低い(すなわち重合活性に明確な差が見られる)。
 そして、上記触媒組成物(A1)、上記触媒組成物(B1)、スチレン系単量体、イソプレン及び/又はブタジエン、及び連鎖移動剤を同一の反応系中に存在させて重合反応を行う。重合反応の結果、シンジオタクチックなポリスチレン系ブロックと、所定の位置規則性又は立体規則性が与えられたポリイソプレン系ブロック及び/又はポリブタジエン系ブロックとを含む多元重合体が得られる。
 <触媒組成物(A1)>
 触媒組成物(A1)は、1)メタセロン錯体、ならびに、2)非配位性のアニオンおよびカチオンからなるイオン性化合物を含んでいる。当該メタセロン錯体は、第3族金属原子またはランタノイド金属原子である中心金属M、該中心金属に結合した置換または無置換のシクロペンタジエニル誘導体を含む配位子Cp*、モノアニオン配位子QおよびQ、ならびにW個(Wは0~3の整数)の中性ルイス塩基Lを含み、下記一般式(I)によってその構造が表される。当該錯体は、好ましくはハーフメタロセン錯体である。
Figure JPOXMLDOC01-appb-C000017
 (一般式(I)のメタセロン錯体)
 一般式(I)において、Mはメタロセン錯体における中心金属である。中心金属Mは第3族金属またはランタノイド金属である。本発明で用いるメタロセン錯体は、重合触媒組成物(A1)の一構成成分として用いることができるので、中心金属Mは、重合させようとするモノマーの種類などによって適宜選択される。中でも第3族金属が好ましく、スカンジウム(Sc)、イットリウム(Y)がより好ましく、Scがさらに好ましい。
 また、置換または無置換のスチレン(スチレン系単量体)を重合する場合は、いずれの第3族金属またはランタノイド金属を用いてもよいが、例えば、中心金属MはSc、Gd、Y、Luであることが好ましく、Scがより好ましい。
 一般式(I)においてCp*は、シクロペンタジエニル誘導体を含む配位子であり、中心金属Mにπ結合している。該配位子は、例えば非架橋型配位子である。ここで、非架橋型配位子とは、シクロペンタジエニル誘導体が中心金属にπ結合して、シクロペンタジエニル誘導体以外の配位原子または配位基を有していない配位子を意味する。また、該配位子は、例えば架橋型配位子である。ここで架橋型配位子とは、シクロペンタジエニル誘導体に加えて、さらに配位原子または配位基を有している配位子を意味する。
 Cp*に含まれる置換または無置換のシクロペンタジエニル誘導体は、置換基を有するシクロペンタジエニル環、置換又は無置換のフルオレニル環、置換又は無置換のオクタヒドロフルオレニル環、及び、置換基を有するインデニル環からなる群より選択される何れかである。中でも、最も好ましいシクロペンタジエニル誘導体は、置換基を有するシクロペンタジエニル環である。
 ここで、Cp*が置換基を有するシクロペンタジエニル環の場合は、下記一般式(II)で表されるものであり、
Figure JPOXMLDOC01-appb-C000018
一般式(II)中で、Rxは、シクロペンタジエニル環の骨格を構成する炭素原子に結合する、炭素数1~20のヒドロカルビル基、又は炭素数1~20のヒドロカルビル基が置換したメタロイド基を指し、*はMとの結合を表し、nは3~5の整数である。また、一般式(II)中に示すシクロペンタジエニル環の骨格を構成する炭素原子の一つは、第14族原子(但し、炭素原子及び鉛原子は除く)又は第15族原子(複素原子)により置換されていてもよい。複素原子の好ましい例は、窒素原子又はリン原子である。
 前記ヒドロカルビル基は、好ましくは炭素数1~20のヒドロカルビル基であるが、より好ましくは炭素数1~20(好ましくは炭素数1~10、さらに好ましくは炭素数1~6)のアルキル基、フェニル基又はナフチル基等のアリール基、ベンジル基などであり、最も好ましくはメチル基である。
 前記ヒドロカルビル基は、置換基を有していてもよい(置換ヒドロカルビル基と称する)。当該置換ヒドロカルビル基におけるヒドロカルビル基は、前記したヒドロカルビル基と同様である。置換ヒドロカルビル基とは、ヒドロカルビル基の少なくとも1の水素原子が、ハロゲン原子、アミド基、ホスフィド基、アルコキシ基、またはアリールオキシ基などで置換されたヒドロカルビル基である。
 前記ヒドロカルビル基が置換したメタロイド基におけるメタロイドは、ゲルミル(Ge)、スタニル(Sn)、シリル(Si)などが挙げられる。また、メタロイド基に置換したヒドロカルビル基は前記したヒドロカルビル基と同様であり、その置換数は、メタロイドの種類によって決定される(例えばシリル基の場合は、ヒドロカルビル基の置換数は3である)。
 好ましくは、シクロペンタジエニル環のRxの少なくとも一つが、ヒドロカルビル基が置換したメタロイド基(好ましくはシリル基)であり、より好ましくはトリメチルシリル基である。
 スチレン系単量体のシンジオタクチシティをより一層向上させる観点では、一般式(II)中で、nは好ましくは4又は5であり、より好ましくは5である。より具体的には、一般式(II)で示されるシクロペンタジエニル環は、テトラメチル(トリメチルシリル)シクロペンタジエニル、ペンタメチルシクロペンタジエニル、またはテトラメチルシクロペンタジエニルであることがより好ましく、テトラメチル(トリメチルシリル)シクロペンタジエニル、又はペンタメチルシクロペンタジエニルであることがさらに好ましい。
 なお、一般式(II)中に示すシクロペンタジエニル環の骨格を構成する炭素原子の一つが、第14族原子(但し、炭素原子及び鉛原子は除く)又は第15族原子(複素原子)により置換されている場合、上記Rxはこの複素原子に結合するものであってもよい。
 Cp*に含まれる置換または無置換のシクロペンタジエニル誘導体が、置換基を有するインデニル環の場合は、下記一般式(III)で表されるものである。
Figure JPOXMLDOC01-appb-C000019
一般式(III)中で、Rx1は、インデニル環の5員環の骨格を構成する炭素原子に結合する、炭素数1~20のヒドロカルビル基、又は炭素数1~20のヒドロカルビル基が置換したメタロイド基を指し、*はMとの結合を表し、n1は1~3の整数である。)
 なお、一般式(III)におけるヒドロカルビル基、及びメタロイド基の定義は、一般式(II)中のRxと同一である。
 また、好ましくは、インデニル環のRx1の少なくとも一つが、ヒドロカルビル基が置換したメタロイド基(好ましくはシリル基)であり、より好ましくはトリメチルシリル基である。
 スチレン系単量体のシンジオタクチシティをより一層向上させる観点では、一般式(III)中で、nは好ましくは2又は3であり、より好ましくは3である。より具体的には、一般式(III)で示されるインデニル環は、nが3であり、かつ3つのRx1が全てメチル基であるか、2つのRx1がメチル基で1つのRx1がトリメチルシリル基である。
 Cp*に含まれる置換または無置換のシクロペンタジエニル誘導体は、置換又は無置換のフルオレニル環(組成式:C139-x)、或いは、置換又は無置換のオクタヒドロフルオレニル環(組成式:C1317-x)であってもよい。ここでRは、前記したシクロペンタジエニル環において一般式(II)中で示したRxと同様であり、Xは0~9または0~17の整数である。
 本発明で用いる一般式(I)で表される錯体において、Q及びQは、同一または異なるモノアニオン配位子(モノアニオン性配位子)である。モノアニオン配位子としては、1)ヒドリド、2)ハライド、3)置換もしくは無置換の、炭素数1~20のヒドロカルビル基、4)アルコキシ基もしくはアリールオキシ基、5)アミド基、または6)ホスフィノ基などが挙げられるがこれらに限定されない。また、Q及びQの範疇には、CH264N(CH32-o等も含まれる。
 また、Q及びQは互いに結合するか、あるいは一緒になって、いわゆるジアニオン性の配位子となっていてもよい。ジアニオン性の配位子としては、アルキリデン、ジエン、シクロメタル化されたヒドロカルビル基、または二座のキレート配位子などが挙げられる。
 前記ハライドは、クロリド、ブロミド、フルオリド及びアイオダイドのいずれもでもよい。
 前記炭素数1~20のヒドロカルビル基は、好ましくはメチル基、エチル基、プロピル基、ブチル基、アミル基、イソアミル基、ヘキシル基、イソブチル基、ヘプチル基、オクチル基、ノニル基、デシル基、セチル基、2-エチルヘキシル基などのアルキル基、フェニル基又はナフチル基等のアリール基、ベンジル基などの無置換ヒドロカルビル基のほか、置換ベンジル基やトリアルキルシリルメチル基、ビス(トリアルキルシリル)メチル基などの置換ヒドロカルビル基でもよい。好ましいヒドロカルビル基の例には、置換または無置換ベンジル基やトリアルキルシリルメチル基が含まれ、さらに好ましい例にはオルト-ジメチルアミノベンジル基やトリメチルシリルメチル基が含まれる。
 前記アルコキシ基またはアリールオキシ基は、好ましくはメトキシ基、置換または無置換のフェノキシ基などである。
 前記アミド基は、好ましくはジメチルアミド基、ジエチルアミド基、メチルエチルアミド基、ジ-t-ブチルアミド基、ジイソプロピルアミド基、無置換または置換ジフェニルアミド基などである。
 前記ホスフィノ基は、好ましくはジフェニルホスフィノ基、ジシクロヘキシルホスフィノ基、ジエチルホスフィノ基、ジメチルホスフィノ基などである。
 前記アルキリデンは、好ましくはメチリデン、エチリデン、プロピリデンなどである。
 前記シクロメタル化されたヒドロカルビル基は、好ましくはプロピレン、ブチレン、ペンチレン、へキシレン、オクチレンなどである。
 前記ジエンは、好ましくは1,3-ブタジエン、1,3-ペンタジエン、1,4-ペンタジエン、1,3-ヘキサジエン、1,4-ヘキサジエン、1,5-ヘキサジエン、2,4-ジメチル-1,3-ペンタジエン、2-メチル-1,3-ヘキサジエン、2,4-ヘキサジエンなどである。
 本発明で用いる一般式(I)で表される錯体において、Lは中性ルイス塩基である。中性ルイス塩基としては、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウムなどが挙げられる。
 また、LはQ及び/又はQと結合して、いわゆる多座配位子となっていてもよい。
 一般式(I)におけるLのwは、中性ルイス塩基Lの個数を表す。wは0~3の整数であり、好ましくは0~1である。
 上記メタロセン錯体は、既述の方法、例えば(1)参考文献:Tardif, O.; Nishiura, M.; Hou, Z. M. Organometallics 22, 1171, (2003). 、(2)参考文献:Hultzsch, K. C.; Spaniol, T. P.; Okuda, J. Angew. Chem. Int. Ed, 38, 227, (1999).、(3)参考文献:国際公開WO2006/004068パンフレット、(4)参考文献:日本国公開特許公報 特開2008-222780号、に記載された方法に従って合成することができる。
 (非配位性のアニオンおよびカチオンからなるイオン性化合物)
 前記したように、触媒組成物(A1)はイオン性化合物を含む。ここでイオン性化合物とは、非配位性アニオンとカチオンからなるイオン性化合物を含む。該イオン性化合物は、前記したメタロセン錯体と組み合わされることにより、前記メタロセン錯体に重合触媒としての活性を発揮させる。そのメカニズムとして、イオン性化合物が、メタロセン錯体と反応し、カチオン性の錯体(活性種)を生成させると考えることができる。
 イオン性化合物の構成成分である非配位性アニオンとしては、例えば、4価のホウ素アニオンが好ましく、テトラ(フェニル)ボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル,ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル),フェニル]ボレート、トリデカハイドライド-7,8-ジカルバウンデカボレートなどが挙げられる。
 これらの非配位性アニオンのうち、好ましくはテトラキス(ペンタフルオロフェニル)ボレートである。
 イオン性化合物の構成成分であるカチオンの例には、カルボニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオンなどが含まれる。
 カルボニウムカチオンの具体例には、トリフェニルカルボニウムカチオン、トリ置換フェニルカルボニウムカチオンなどの三置換カルボニウムカチオンが含まれる。トリ置換フェニルカルボニウムカチオンの具体例には、トリ(メチルフェニル)カルボニウムカチオン、トリ(ジメチルフェニル)カルボニウムカチオンが含まれる。
 アンモニウムカチオンの具体例には、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン、トリ(n-ブチル)アンモニウムカチオンなどのトリアルキルアンモニウムカチオン、N,N-ジメチルアニリニウムカチオン、N,N-ジエチルアニリニウムカチオン、N,N-2,4,6-ペンタメチルアニリニウムカチオンなどのN,N-ジアルキルアニリニウムカチオン、ジ(イソプロピル)アンモニウムカチオン、ジシクロヘキシルアンモニウムカチオンなどのジアルキルアンモニウムカチオンが含まれる。
 ホスホニウムカチオンの具体例には、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオンなどのトリアリールホスホニウムカチオンが含まれる。
 これらのカチオンのうち、好ましくはアニリニウムカチオンまたはカルボニウムカチオンであり、さらに好ましくはトリフェニルカルボニウムカチオンが挙げられる。
 すなわち、本発明の触媒組成物に含まれるイオン性化合物は、前記した非配位性アニオンおよびカチオンからそれぞれ選ばれるものを組み合わせたものであり得る。
 好ましくは、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(テトラフルオロフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、1,1'-ジメチルフェロセニウムテトラキス(ペンタフルオロフェニル)ボレートなどが例示される。イオン性化合物は1種を用いてもよく、2種以上を組み合わせて用いてもよい。
 これらのイオン性化合物のうち、特に好ましいものは、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレートなどが挙げられる。
 また、遷移金属化合物と反応してカチオン性遷移金属化合物を生成させることができるルイス酸である、B(C6F5)3、Al(C6F5)3などをイオン性化合物として用いてもよく、これらを前記のイオン性化合物と組み合わせて用いてもよい。
 さらに、アルキルアルミ化合物(アルミノオキサン、好ましくはMAOまたはMMAO)、またはアルキルアルミ化合物とボレート化合物の組み合わせも、イオン性化合物として用いることができ、また他のイオン性化合物と組み合わせて用いてもよい。特に、前記した錯体(一般式(I))のモノアニオン配位子Qが、アルキルまたはヒドリド以外である場合(例えばハロゲンである場合)は、アルキルアルミ化合物、またはアルキルアルミ化合物とボレート化合物の組み合わせを用いることが好ましいと考えられる。
 (触媒組成物(A1)に含まれるその他の任意成分)
 本発明の触媒組成物は、メタロセン錯体及びイオン性化合物以外にも、任意の成分を含むことができる。任意の成分とは、アルキルアルミ化合物、シラン化合物、水素などが挙げられる。
 アルキルアルミ化合物とは、通常、メタロセン重合触媒で用いられるアルミノオキサン(アルモキサン)と称される有機アルミニウム化合物を含む。例えば、メチルアルミノキサン(MAO)などが挙げられる。
 シラン化合物とは、フェニルシランなどが挙げられる。
 (触媒組成物(A1)における組成比等)
 前記の通り、触媒組成物(A1)は前記メタロセン錯体とイオン性化合物を含む。触媒組成物(A1)において、イオン性化合物のメタロセン錯体に対するモル比率は、錯体とイオン性化合物の種類によって異なる。
 前記モル比率は、例えば、イオン性化合物がカルボニウムカチオンとホウ素アニオンからなるもの(例えば[Ph3C][B(C6F5)4])である場合は0.5~1であることが好ましく、MAOなどである場合は300~4000程度であることが好ましい。イオン性化合物と錯体とのモル比率が上記の範囲内であれば、十分にメタロセン錯体を活性化することができ、かつ、イオン性化合物と、重合反応させるべきモノマーとが不所望な反応を起こす虞をより確実に低減することが可能となる。
 例えば、1)各構成成分(メタロセン錯体およびイオン性化合物など)を含む組成物を重合反応系中に提供する、あるいは2)各構成成分を別個に重合反応系中に提供し、反応系中において組成物を構成させることにより、重合触媒組成物として用いることができる。上記1)において、「組成物として提供する」とは、イオン性化合物との反応により活性化されたメタロセン錯体(活性種)を提供することを含む。
 <触媒組成物(B1)>
 触媒組成物(B1)は、1)メタセロン錯体、ならびに、2)非配位性のアニオンおよびカチオンからなるイオン性化合物を含んでいる。当該メタセロン錯体は、第3族金属原子またはランタノイド金属原子である中心金属M、該中心金属に結合した置換または無置換のシクロペンタジエニル誘導体を含む配位子Cp*、モノアニオン配位子QおよびQ、ならびにW個(Wは0~3の整数)の中性ルイス塩基Lを含み、上記一般式(I)によってその構造が表される(一般式(I)については触媒組成物(A1)の欄を参照)。当該錯体は、好ましくはハーフメタロセン錯体である。
 (一般式(I)のメタセロン錯体)
 一般式(I)中に示す構造のうち、モノアニオン配位子QおよびQ、W個の中性ルイス塩基L、ならびに中心金属Mの定義は、触媒組成物(A1)と同じである。よって、以下の説明では、配位子Cp*についてより詳細に説明する。
 一般式(I)における配位子Cp*は、置換又は無置換のシクロペンタジエニル環、及び、無置換のインデニル環からなる群より選択される何れかであり、スチレン系単量体の重合反応を選択的に触媒する能力を低減し、イソプレン同士の重合反応、又はブタジエン同士の重合反応をより選択的に触媒するという観点では、配位子Cp*が無置換のシクロペンタジエニル環又は無置換のインデニル環であることが好ましく、無置換のシクロペンタジエニル環がより好ましい。
Cp*が置換基を有するシクロペンタジエニル環の場合は、下記一般式(IV)で表されるものであり、
Figure JPOXMLDOC01-appb-C000020
一般式(IV)中で、Rx2は、シクロペンタジエニル環の骨格を構成する炭素原子に結合する、炭素数1~3のヒドロカルビル基を指し、*はMとの結合を表し、n2は1~2の整数である。
 前記ヒドロカルビル基は、好ましくは炭素数1~3のアルキル基であり、最も好ましくはメチル基である。
 前記ヒドロカルビル基は、置換基を有していてもよい(置換ヒドロカルビル基と称する)。当該置換ヒドロカルビル基におけるヒドロカルビル基は、前記したヒドロカルビル基と同様である。置換ヒドロカルビル基とは、ヒドロカルビル基の少なくとも1の水素原子が、ハロゲン原子、アミド基、ホスフィド基、アルコキシ基、またはアリールオキシ基などで置換されたヒドロカルビル基である。
 好ましくは、シクロペンタジエニル環のRx2が何れもメチル基であり、より好ましくはRx2がメチル基でかつn2が1である。
 上記メタロセン錯体は、既述の方法、例えば(1)参考文献J. Am. Chem. Soc, 2009, 131, 13870、(2)参考文献WO2006/004068 国際公開パンフレットに記載された方法に従って合成することができる。
 (非配位性のアニオンおよびカチオンからなるイオン性化合物)
 前記したように、触媒組成物(B1)はイオン性化合物を含む。ここでイオン性化合物とは、非配位性アニオンとカチオンからなるイオン性化合物を含む。該イオン性化合物は、前記したメタロセン錯体と組み合わされることにより、前記メタロセン錯体に重合触媒としての活性を発揮させる。そのメカニズムとして、イオン性化合物が、メタロセン錯体と反応し、カチオン性の錯体(活性種)を生成させると考えることができる。なお、イオン性化合物は、触媒組成物(A1)で説明したものと同じものを使用することができる。本発明では、触媒組成物(A1)と触媒組成物(B1)とを同一の反応系に加えて重合反応を行うため、一種類のイオン性化合物(触媒組成物(A1)と(B1)とで共通のイオン性化合物)を加えるようにすることが好ましい場合がある。
 (触媒組成物(B1)における組成比等)
 前記の通り、触媒組成物(B1)は前記メタロセン錯体とイオン性化合物を含む。触媒組成物(B1)において、イオン性化合物のメタロセン錯体に対するモル比率は、錯体とイオン性化合物の種類によって異なる。
 前記モル比率は、例えば、イオン性化合物がカルボニウムカチオンとホウ素アニオンからなるもの(例えば[Ph3C][B(C6F5)4])である場合は0.5~1であることが好ましく、MAOなどである場合は300~4000程度であることが好ましい。イオン性化合物と錯体とのモル比率が上記の範囲内であれば、十分にメタロセン錯体を活性化することができ、かつ、イオン性化合物と、重合反応させるべきモノマーとが不所望な反応を起こす虞をより確実に低減することが可能となる。
 例えば、1)各構成成分(メタロセン錯体およびイオン性化合物など)を含む組成物を重合反応系中に提供する、あるいは2)各構成成分を別個に重合反応系中に提供し、反応系中において組成物を構成させることにより、重合触媒組成物として用いることができる。上記1)において、「組成物として提供する」とは、イオン性化合物との反応により活性化されたメタロセン錯体(活性種)を提供することを含む。
 <第一のモノマー及び第二のモノマー>
 この例(1)では、第一のモノマーとしてスチレン系単量体を、第二のモノマーとしてイソプレン及び/又はブタジエンを用いる。上記触媒組成物(A1)は専らスチレン系単量体同士のシンジオタクチックな重合反応を触媒する。上記触媒組成物(B1)は専ら、イソプレン及び/又はブタジエンのcis-1,4重合反応を触媒する。
 なお、上記スチレン系単量体とは、ベンゼン環上に置換基を有する置換スチレン、または無置換のスチレンを指し、特に好ましくは無置換のスチレン(すなわち、スチレン)である。置換スチレンの種類は特に限定されないが、以下のものが例示される。
(1)p-メチルスチレン、m-メチルスチレン、o-メチルスチレン、2,4-ジメチルスチレン、2,5-ジメチルスチレン、3,4-ジメチルスチレン、3,5-ジメチルスチレン、p-ターシャリーブチルスチレンなどのアルキル化スチレン、
(2)p-クロロスチレン、m-クロロスチレン、o-クロロスチレン、p-ブロモスチレン、m-ブロモスチレン、o-ブロモスチレン、p-フルオロスチレン、m-フルオロスチレン、o-フルオロスチレン、o-メチル-p-フルオロスチレンなどのハロゲン化スチレン、
(3)p-クロロメチルスチレン、m-クロロメチルスチレン、o-クロロメチルスチレンなどのハロゲン置換アルキル化スチレン、
(4)p-メトキシスチレン、m-メトキシスチレン、o-メトキシスチレン、p-エトキシスチレン、m-エトキシスチレン、o-エトキシスチレンなどのアルコキシ化スチレン
(5)p-カルボキシメチルスチレン、m-カルボキシメチルスチレン、o-カルボキシメチルスチレンなどのカルボキシアルキル化スチレン
(6)p-トリメチルシリルスチレンなどのアルキルシリル化スチレン。
(7)ビニルナフタレンなどの、スチレンを構成するベンゼン環上の置換基同士が閉環した化合物。
 なお、上記触媒組成物(B1)は、ブタジエン以外の共役ジエンの位置選択的又は立体選択的な重合反応を行うことも可能である。ここで共役ジエンの種類は特に限定されないが、例えば、鎖状の共役ジエンまたは環状の共役ジエンである。このような共役ジエンの例としては、イソプレン、1,3-ブタジエン、1,3-ペンタジエン、1,4-ペンタジエン、1,3-ヘキサジエン、1,4-ヘキサジエン、1,5-ヘキサジエン、2,4-ジメチル-1,3-ペンタジエン、2-メチル-1,3-ヘキサジエン、2,4-ヘキサジエン、およびシクロヘキサジエンなどが挙げられる。
 <連鎖移動剤(chain suttling agent)>
 この例(1)では、連鎖移動剤を用いる。連鎖移動剤とは、成長重合体鎖を受け取り、再び重合触媒に戻す連鎖移動反応を行うものを指す。連鎖移動剤の種類は特に限定されないが、例えば、トリイソブチルアルミニウム(TIBA)、トリプロピルアルミニウム(TPA)、トリエチルアルミニウム(TEA)等のトリアルキルアルミニウム系の連鎖移動剤;ジエチル亜鉛;等が挙げられる。中でも、トリイソブチルアルミニウム(TIBA)、トリプロピルアルミニウム(TPA)、トリエチルアルミニウム(TEA)等のトリアルキルアルミニウム系の連鎖移動剤が好ましい。
 この例(1)では、連鎖移動剤を用いることで、第一のモノマー(スチレン系単量体)が重合されてなるシンジオタクチックポリスチレン系重合体ブロックと、第二のモノマー(イソプレン及び/又はブタジエン)が重合されてなるcis-1,4ポリイソプレン及び/又はポリブタジエン重合体ブロックとが連結されて、位置制御又は立体制御がなされたブロック多元共重合体が製造される。
 <重合反応>
 この例(1)では、重合反応は、触媒組成物(A1)、触媒組成物(B1)、スチレン系単量体、イソプレン及び/又はブタジエン、及び連鎖移動剤を同一の反応系中に存在させて行う。反応系中にこれらを供給する順序、方法等は特に限定されない。
 重合方法は、気相重合法、溶液重合法、懸濁重合法、液相塊状重合法、乳化重合法、固相重合法などの任意の方法であり得る。溶液重合法による場合、用いられる溶媒は重合反応において不活性であり、重合体材料および触媒を溶解させ得る溶媒であれば特に限定されない。例えば、ブタン、ペンタン、ヘキサン、ヘプタン等の飽和脂肪族炭化水素;シクロペンタン、シクロヘキサン等の飽和脂環式炭化水素;ベンゼン、トルエン等の芳香族炭化水素;塩化メチレン、クロロホルム、四塩化炭素、トリクロルエチレン、パークロルエチレン、1,2-ジクロロエタン、クロルベンゼン、ブロムベンゼン、クロルトルエン等のハロゲン化炭化水素が挙げられる。
 また、生体に対する毒性の低い溶媒が好ましい。具体的には、芳香族炭化水素、特にトルエンが好ましい。溶媒は1種を単独で用いてもよいが、2種以上組み合わせた混合溶媒を用いてもよい。
 用いられる溶媒の量は任意であるが、本発明に係る触媒組成物(A1)及び(B1)に含まれるメタロセン錯体の濃度をそれぞれ0.1~0.0001mol/lとする量であることが好ましい。
 重合反応を行う温度(重合温度)は、重合反応が進行する任意の温度であればよいが、例えば-90℃以上、100℃以下の範囲内で行い得る。重合温度は、例えば、室温近辺、すなわち約25℃で行なうことができる。
 重合時間は、例えば、数秒~数時間程度である。重合時間は、例えば、1時間以下、場合によっては30分以下でよい。
 また、重合反応に供する単量体の量としては、製造する目的の多元重合体に応じて適宜設定できる。例えば、スチレン系単量体は、触媒組成物(A1)を構成するメタロセン錯体に対してモル比で50倍以上、2500倍以下にすることが好ましく、100倍以上、1000倍以下にすることがより好ましい。また、イソプレン及び/又はブタジエンは、触媒組成物(B1)を構成するメタロセン錯体に対してモル比で50倍以上、2500倍以下にすることが好ましく、100倍以上、1000倍以下にすることがより好ましい。スチレン系単量体、ならびにイソプレン及び/又はブタジエンをそれぞれ、メタセロン錯体に対してモル比で2500倍以下の割合において供給することによって、触媒の活性および選択性を好適に維持することができる。そして、スチレン系単量体、ならびにイソプレン及び/又はブタジエンをそれぞれ、メタセロン錯体に対してモル比で50倍以上の割合において供給することによって、ある一定以上の分子量を有するポリマーが得られ、共重合体としての性質が十分に現れる。
 また、重合反応に供する連鎖移動剤の量は、製造する目的の多元重合体に応じて適宜設定できる。例えば、使用される連鎖移動剤の量は、全触媒組成物の合計に対してモル比で、1倍以上で1000倍以下の範囲内であり、2倍以上で100倍以下の範囲内であることが好ましい。
 重合反応の結果、シンジオタクチックなポリスチレン系ブロックと、所定の位置規則性又は立体規則性(cis-1,4)が与えられたポリイソプレン系ブロック及び/又はポリブタジエン系ブロックとを含む多元重合体が得られる。
 <得られる多元重合体>
 上記の通り、例(1)で得られる多元共重合体は、シンジオタクチックなポリスチレン系ブロックと、所定の位置規則性又は立体規則性が与えられたポリイソプレン系ブロック及び/又はポリブタジエン系ブロックとを含む。
 上記ポリスチレン系ブロックが示すシンジオタクチシティーの一例は、ペンタッド表示において80rrrr%(例えば、好ましくは85rrrr%、より好ましくは90rrrr%、特に好ましくは95rrrr%、最も好ましくは99rrrr%)以上である。これらのシンジオタクチシティーは、本発明のブロック多元重合体のNMR(特に13C-NMR)を測定して得られるデータから算出することができる。
 上記ポリイソプレン系ブロック及び/又はポリブタジエン系ブロック中に占めるcis-1,4構造の割合の一例は、60%以上であり、好ましくは70%以上であり、より好ましくは80%以上である。なお、ここにおける%とは、本発明のブロック多元重合体中に占めるポリイソプレン及び/又はポリブタジエン由来の全繰り返し単位を分母とし、cis-1,4構造を取る繰り返し単位を分子として%表示したものである。
 本発明に係る多元重合体の数平均分子量は特に限定されないが、例えば1以上で10以下の範囲内であり、好ましくは1.1以上で8以下の範囲内であり、さらに好ましくは1.2以上で5以下の範囲内である。
 〔3.本発明に係る多元重合体の製造方法の他の例(2)〕
 <製造方法の概要>
 この例(2)では、第一のモノマーとしてスチレン系単量体を、第二のモノマーとしてイソプレン及び/又はブタジエンを用いる。また、スチレン系単量体同士の位置選択的又は立体選択的な重合反応を触媒する第一の触媒として、上記の触媒組成物(A1)を用いる。また、イソプレン同士、及び/又は、ブタジエン同士の位置選択的又は立体選択的な重合反応を触媒する第二の触媒として、後述する触媒組成物(B2)を用いる。
 触媒組成物(B2)は、イソプレン同士の重合反応、又はブタジエン同士の重合反応を触媒する一方で、これらとスチレン系単量体との重合反応に対する選択性(触媒効果)、及びスチレン系単量体同士の重合反応に対する選択性(触媒効果)は極めて低い(すなわち重合活性に明確な差が見られる)。
 そして、上記触媒組成物(A1)、上記触媒組成物(B2)、スチレン系単量体、イソプレン及び/又はブタジエン、及び連鎖移動剤を同一の反応系中に存在させて重合反応を行う。重合反応の結果、シンジオタクチックなポリスチレン系ブロックと、所定の位置規則性又は立体規則性が与えられたポリイソプレン系ブロック及び/又はポリブタジエン系ブロックとを含む多元重合体が得られる。
 なお、触媒組成物(A1)、スチレン系単量体(第一のモノマー)、イソプレン及び/又はブタジエン(第二のモノマー)、及び連鎖移動剤は、上記〔2.本発明に係る多元重合体の製造方法の一例(1)〕欄で説明したものと同一のものを使用することができる。よって、以下の説明では主に触媒組成物(B2)について説明する。
 <触媒組成物(B2)>
 触媒組成物(B2)は、1)メタセロン錯体、ならびに、2)非配位性のアニオンおよびカチオンからなるイオン性化合物を含んでいる。当該メタセロン錯体は、第3族金属原子またはランタノイド金属原子である中心金属M、及び、該中心金属に結合した置換または無置換のシクロペンタジエニル誘導体を含む配位子Cp*を含み、下記一般式(VI)によってその構造が表される。当該錯体は、好ましくはハーフメタロセン錯体である。
Figure JPOXMLDOC01-appb-C000021
 (一般式(VI)のメタセロン錯体)
 一般式(VI)中に示す構造において、中心金属M、及び配位子Cp*の定義は、触媒組成物(B1)を構成するメタロセン錯体と同一であるので、触媒組成物(B1)の説明が参照される。なお、一般式(VI)中に示す構造は、触媒組成物(B1)を構成するメタロセン錯体を表す一般式(I)において、Q及びQが何れもCH264N(CH32-oであり、Wが0である構造と捉えることも出来る。
 触媒組成物(B1)を構成するメタロセン錯体の欄で説明したとおり、上記一般式(VI)における配位子Cp*は、スチレン系単量体の重合反応を選択的に触媒する能力を低減し、イソプレン同士の重合反応、又はブタジエン同士の重合反応をより選択的に触媒するという観点では、配位子Cp*が無置換のシクロペンタジエニル環又は無置換のインデニル環であることが好ましく、無置換のシクロペンタジエニル環がより好ましい。
 上記一般式(VI)に示すメタロセン錯体は、既述の方法、例えば(1)参考文献:国際公開WO2006/004068パンフレット、(2)参考文献:日本国公開特許公報 特開2008-222780号、に記載された方法を参照して合成することができる。
 (非配位性のアニオンおよびカチオンからなるイオン性化合物)
 前記したように、触媒組成物(B2)はイオン性化合物を含む。ここでイオン性化合物とは、非配位性アニオンとカチオンからなるイオン性化合物を含む。該イオン性化合物は、前記したメタロセン錯体と組み合わされることにより、前記メタロセン錯体に重合触媒としての活性を発揮させる。そのメカニズムとして、イオン性化合物が、メタロセン錯体と反応し、カチオン性の錯体(活性種)を生成させると考えることができる。なお、イオン性化合物は、触媒組成物(A1)で説明したものと同じものを使用することができる。本発明では、触媒組成物(A1)と触媒組成物(B2)とを同一の反応系に加えて重合反応を行うため、一種類のイオン性化合物(触媒組成物(A1)と(B2)とで共通のイオン性化合物)を加えるようにすることが好ましい場合がある。
 (触媒組成物(B2)における組成比等)
 前記の通り、触媒組成物(B2)は前記メタロセン錯体とイオン性化合物を含む。触媒組成物(B2)において、イオン性化合物のメタロセン錯体に対するモル比率は、錯体とイオン性化合物の種類によって異なる。
 前記モル比率は、例えば、イオン性化合物がカルボニウムカチオンとホウ素アニオンからなるもの(例えば[Ph3C][B(C6F5)4])である場合は0.5~1であることが好ましく、MAOなどである場合は300~4000程度であることが好ましい。イオン性化合物と錯体とのモル比率が上記の範囲内であれば、十分にメタロセン錯体を活性化することができ、かつ、イオン性化合物と、重合反応させるべきモノマーとが不所望な反応を起こす虞をより確実に低減することが可能となる。
 例えば、1)各構成成分(メタロセン錯体およびイオン性化合物など)を含む組成物を重合反応系中に提供する、あるいは2)各構成成分を別個に重合反応系中に提供し、反応系中において組成物を構成させることにより、重合触媒組成物として用いることができる。上記1)において、「組成物として提供する」とは、イオン性化合物との反応により活性化されたメタロセン錯体(活性種)を提供することを含む。
 <重合反応>
 この例(2)では、重合反応は、触媒組成物(A1)、触媒組成物(B2)、スチレン系単量体、イソプレン及び/又はブタジエン、及び連鎖移動剤を同一の反応系中に存在させて行う。反応系中にこれらを供給する順序、方法等は特に限定されない。
 また、重合方法、溶液重合法の場合に用いる溶媒の種類及び量、重合反応を行う温度(重合温度)、重合時間、重合反応に供する単量体の量、並びに、重合反応に供する連鎖移動剤の量は、上記〔2.本発明に係る多元重合体の製造方法の一例(1)〕欄で説明したものと同一の条件を適用することが出来る。
 重合反応の結果、シンジオタクチックなポリスチレン系ブロックと、所定の位置規則性又は立体規則性(cis-1,4)が与えられたポリイソプレン系ブロック及び/又はポリブタジエン系ブロックとを含む多元重合体が得られる。
 <得られる多元重合体>
 上記の通り、例(2)で得られる多元共重合体は、シンジオタクチックなポリスチレン系ブロックと、所定の位置規則性又は立体規則性が与えられたポリイソプレン系ブロック及び/又はポリブタジエン系ブロックとを含む。
 上記ポリスチレン系ブロックが示すシンジオタクチシティーの一例は、ペンタッド表示において80rrrr%(例えば、好ましくは85rrrr%、より好ましくは90rrrr%、特に好ましくは95rrrr%、最も好ましくは99rrrr%)以上である。これらのシンジオタクチシティーは、本発明のブロック多元重合体のNMR(特に13C-NMR)を測定して得られるデータから算出することができる。
 上記ポリイソプレン系ブロック及び/又はポリブタジエン系ブロック中に占めるcis-1,4構造の割合の一例は、60%以上であり、好ましくは70%以上であり、より好ましくは80%以上である。なお、ここにおける%とは、本発明のブロック多元重合体中に占めるポリイソプレン及び/又はポリブタジエン由来の全繰り返し単位を分母とし、cis-1,4構造を取る繰り返し単位を分子として%表示したものである。
 本発明に係る多元重合体の数平均分子量は特に限定されないが、例えば1以上で10以下の範囲内であり、好ましくは1.1以上で8以下の範囲内であり、さらに好ましくは1.2以上で5以下の範囲内である。
 〔4.本発明に係る多元重合体の製造方法のさらに他の例(3)〕
 <製造方法の概要>
 この例(3)では、第一のモノマーとしてスチレン系単量体を、第二のモノマーとしてイソプレン及び/又はブタジエンを用いる。また、スチレン系単量体同士の位置選択的又は立体選択的な重合反応を触媒する第一の触媒として、上記の触媒組成物(A1)を用いる。また、イソプレン同士、及び/又は、ブタジエン同士の位置選択的又は立体選択的な重合反応を触媒する第二の触媒として、後述する触媒組成物(B3)を用いる。
 触媒組成物(B3)は、イソプレン同士の重合反応、又はブタジエン同士の重合反応を触媒する一方で、これらとスチレン系単量体との重合反応に対する選択性(触媒効果)、及びスチレン系単量体同士の重合反応に対する選択性(触媒効果)は極めて低い(すなわち重合活性に明確な差が見られる)。
 そして、上記触媒組成物(A1)、上記触媒組成物(B3)、スチレン系単量体、イソプレン及び/又はブタジエン、及び連鎖移動剤を同一の反応系中に存在させて重合反応を行う。重合反応の結果、シンジオタクチックなポリスチレン系ブロックと、所定の位置規則性又は立体規則性が与えられたポリイソプレン系ブロック及び/又はポリブタジエン系ブロックとを含む多元重合体が得られる。
 なお、触媒組成物(A1)、スチレン系単量体(第一のモノマー)、イソプレン及び/又はブタジエン(第二のモノマー)、及び連鎖移動剤は、上記〔2.本発明に係る多元重合体の製造方法の一例(1)〕欄で説明したものと同一のものを使用することができる。よって、以下の説明では主に触媒組成物(B3)について説明する。
 <触媒組成物(B3)>
 触媒組成物(B3)は、1)一般式(V)に示す錯体、ならびに、2)非配位性のアニオンおよびカチオンからなるイオン性化合物を含んでいる。当該錯体は、スカンジウム(Sc)、イットリウム(Y)又はプロメチウムPmを除くランタン(La)からルテチウム(Lu)までの希土類元素の何れかである中心金属M;モノアニオン配位子QおよびQ;ならびにW個(Wは0~3の整数)の中性ルイス塩基L;を含む。
 (一般式(V)に示す錯体)
 下記一般式(V)中に示す構造のうち、モノアニオン配位子QおよびQ、及びW個の中性ルイス塩基Lの定義は、触媒組成物(A1)と同じである。よって、以下の説明では、R1~R3、及び中心金属Mについてより詳細に説明する。
Figure JPOXMLDOC01-appb-C000022
 一般式(V)において、Mは錯体における中心金属である。中心金属Mは、スカンジウム(Sc)、イットリウム(Y)又はプロメチウムPmを除くランタン(La)からルテチウム(Lu)までの希土類元素の何れかである。本発明で用いる錯体は、重合触媒組成物(B3)の一構成成分として用いることができるので、中心金属Mは、重合させようとするモノマーの種類などによって適宜選択される。中でも、スカンジウムSc、イットリウムY又はルテチウムLuが好ましく、特にスカンジウムSc又はイットリウムYが好ましい。
 一般式(V)において、R1及びR2はそれぞれ独立して、アルキル基、置換若しくは無置換のシクロヘキシル基、アリール基又はアラルキル基を示す。アルキル基としては、メチル基、エチル基、イソプロピル基、n-ブチル基、t-ブチル基等を例示できる。置換のシクロヘキシル基としては、アルキル基を置換基とするシクロヘキシル基、例えばメチルシクロヘキシル基等を例示できる。無置換のアリール基としては、例えばフェニル基を例示でき、置換のアリール基としては、例えばアルキル基を置換基とするフェニル基等を例示できる。無置換のアラルキル基としては、例えばベンジル基を例示でき、置換のアラルキル基としては、例えばアルキル基を置換基とするベンジル基等を例示できる。この中でもアルキル基を置換基とするフェニルが好ましく、特に2,6-ジイソプロピルフェニル基が好ましい。R1及びR2は同一でも異なっていてもよいが、R1及びR2は共にアルキル基を置換基とするフェニル基であることが好ましく、共に2,6-ジイソプロピルフェニル基であることがさらに好ましい。
 一般式(V)において、R3はアルキル基、アルケニル基、アルキニル基、アリール基又はアラルキル基、脂肪族、芳香族又は環状のアミノ基、若しくはホスフィノ基、ボリル基、アルキル又はアリールチオ基、アルコキシ又はアリールオキシ基を示す。この中でもアリール基が好ましく、特にフェニル基が好ましい。
 さらに、一般式(V)に示す錯体は、R1及びR2が、共に2,6-ジイソプロピルフェニル基であり、かつR3がフェニル基であるN,N'-ビス(2,6-ジイソプロピルフェニル)ベンズアミジナート(NCN)の構造を有することが好ましい。
 上記一般式(V)に示す錯体は、既述の方法、例えば(1)参考文献:日本国公開特許公報 特開2007-238857号、(2)参考文献:日本国公開特許公報 特開2008-222791号、に記載された方法を参照して合成することができる。
 (非配位性のアニオンおよびカチオンからなるイオン性化合物)
 前記したように、触媒組成物(B3)はイオン性化合物を含む。ここでイオン性化合物とは、非配位性アニオンとカチオンからなるイオン性化合物を含む。該イオン性化合物は、前記した錯体と組み合わされることにより、前記錯体に重合触媒としての活性を発揮させる。そのメカニズムとして、イオン性化合物が、錯体と反応し、カチオン性の錯体(活性種)を生成させると考えることができる。なお、イオン性化合物は、触媒組成物(A1)で説明したものと同じものを使用することができる。本発明では、触媒組成物(A1)と触媒組成物(B3)とを同一の反応系に加えて重合反応を行うため、一種類のイオン性化合物(触媒組成物(A1)と(B3)とで共通のイオン性化合物)を加えるようにすることが好ましい場合がある。
 (触媒組成物(B3)における組成比等)
 前記の通り、触媒組成物(B3)は前記錯体とイオン性化合物を含む。触媒組成物(B3)において、イオン性化合物の錯体に対するモル比率は、錯体とイオン性化合物の種類によって異なる。
 前記モル比率は、例えば、イオン性化合物がカルボニウムカチオンとホウ素アニオンからなるもの(例えば[Ph3C][B(C6F5)4])である場合は0.5~1であることが好ましく、MAOなどである場合は300~4000程度であることが好ましい。イオン性化合物と錯体とのモル比率が上記の範囲内であれば、十分に錯体を活性化することができ、かつ、イオン性化合物と、重合反応させるべきモノマーとが不所望な反応を起こす虞をより確実に低減することが可能となる。
 例えば、1)各構成成分(錯体およびイオン性化合物など)を含む組成物を重合反応系中に提供する、あるいは2)各構成成分を別個に重合反応系中に提供し、反応系中において組成物を構成させることにより、重合触媒組成物として用いることができる。上記1)において、「組成物として提供する」とは、イオン性化合物との反応により活性化された錯体(活性種)を提供することを含む。
 <重合反応>
 この例(3)では、重合反応は、触媒組成物(A1)、触媒組成物(B3)、スチレン系単量体、イソプレン及び/又はブタジエン、及び連鎖移動剤を同一の反応系中に存在させて行う。反応系中にこれらを供給する順序、方法等は特に限定されない。
 また、重合方法、溶液重合法の場合に用いる溶媒の種類及び量、重合反応を行う温度(重合温度)、重合時間、重合反応に供する単量体の量、並びに、重合反応に供する連鎖移動剤の量は、上記〔2.本発明に係る多元重合体の製造方法の一例(1)〕欄で説明したものと同一の条件を適用することが出来る。
 重合反応の結果、シンジオタクチックなポリスチレン系ブロックと、所定の位置規則性又は立体規則性が与えられたポリイソプレン系ブロック及び/又はポリブタジエン系ブロックとを含む多元重合体が得られる。ここで、ポリイソプレン系ブロックの位置規則性又は立体規則性はiso-3,4であり、ポリブタジエン系ブロックの位置規則性又は立体規則性は1,2-ブタジエン由来繰り返し単位である(図17も参照のこと)。
 <得られる多元重合体>
 上記の通り、例(3)で得られる多元重合体は、シンジオタクチックなポリスチレン系ブロックと、所定の位置規則性又は立体規則性が与えられたポリイソプレン系ブロック及び/又はポリブタジエン系ブロックとを含む。
 上記ポリスチレン系ブロックが示すシンジオタクチシティーの一例は、ペンタッド表示において80rrrr%(例えば、好ましくは85rrrr%、より好ましくは90rrrr%、特に好ましくは95rrrr%、最も好ましくは99rrrr%)以上である。これらのシンジオタクチシティーは、本発明のブロック多元重合体のNMR(特に13C-NMR)を測定して得られるデータから算出することができる。
 上記ポリイソプレン系ブロック中に占めるiso-3,4構造の割合の一例は、60%以上であり、好ましくは70%以上であり、より好ましくは80%以上である。なお、ここにおける%とは、本発明のブロック多元重合体中に占めるポリイソプレン由来の全繰り返し単位を分母とし、iso-3,4構造を取る繰り返し単位を分子として%表示したものである。
 上記ポリブタジエン系ブロック中に占める1,2-ブタジエン由来繰り返し単位の割合の一例は、60%以上であり、好ましくは70%以上であり、より好ましくは80%以上である。なお、ここにおける%とは、本発明のブロック多元重合体中に占めるポリブタジエン由来の全繰り返し単位を分母とし、1,2-ブタジエン由来繰り返し単位構造を取る繰り返し単位を分子として%表示したものである。
 本発明に係る多元重合体の数平均分子量は特に限定されないが、例えば1以上で10以下の範囲内であり、好ましくは1.1以上で8以下の範囲内であり、さらに好ましくは1.2以上で5以下の範囲内である。
 〔5.本発明に係る多元重合体の製造方法のさらに他の例(4)〕
 この例(4)では、第一のモノマーとしてスチレン系単量体を、第二のモノマーとしてイソプレン及び/又はブタジエンを用いる。
 また、スチレン系単量体同士の位置選択的又は立体選択的な重合反応を触媒する第一の触媒として、上記の触媒組成物(A1)、又はアンサ-メタロセン系のネオジム触媒(アンサ-ネオジモセン触媒)を用いる。アンサ-メタロセン系のネオジム触媒としては、例えば、参考文献J. Am. Chem. Soc., 2004, 126 (39), 12240に記載のものが挙げられる。これにより、シンジオタクチックなポリスチレン系ブロックが形成される。
 また、イソプレン同士、及び/又は、ブタジエン同士の位置選択的又は立体選択的な重合反応を触媒する第二の触媒として、当該位置選択的又は立体選択的な重合反応を触媒することが知られている各種メタロセン系の触媒を用いる。各種メタロセン系の触媒としては、例えば、参考文献:特開2004-238637号、参考文献:特開2004-27179号、参考文献:特開2004-27103号、参考文献:特開2003-292513号、参考文献:特開2002-256012号、参考文献:特開2002-187908号、参考文献:特開2002-69117号、参考文献:特開2001-288234号、参考文献:特開2001-64313号、参考文献:特開2000-313710号、等に記載のものが挙げられる。これら参考文献に記載の各種メタロセン触媒は、イソプレン、及びブタジエンがcis-1,4構造の繰り返し単位として重合体中に取り込まれるように重合反応を触媒する。
 そして、上記第一の触媒、第二の触媒、第一のモノマー、第二のモノマー、及び連鎖移動剤を同一の反応系中に存在させて重合反応を行う。重合反応の結果、シンジオタクチックなポリスチレン系ブロックと、所定の位置規則性又は立体規則性が与えられたポリイソプレン系ブロック及び/又はポリブタジエン系ブロックとを含む多元重合体が得られる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、実施形態に開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 以下、実施例により本発明をより詳細に説明する。
 〔パートA1-1:シンジオタクチックポリスチレン-ブロック-cis-1,4-ポリイソプレンブロック共重合体の合成〕
 パートA1-1では、以下の実施例1~9に示す通り、カチオン性スカンジウムジアルキル錯体(1)及び(2)を用いた、TIBA又はTPA存在下での、シンジオタクチックポリスチレン-ブロック-cis-1,4-ポリイソプレンブロック共重合体の合成を行った。合成の結果、及び反応条件等は表1に纏めて示した。
 <実施例1>
 典型的な重合反応を下記に示す(表1、run1)。グローブボックス中で、25℃において、100mLのフラスコ中で、[Ph3C][B(C6F5)4](36mg,40μmol)のトルエン溶液(4ml)を、(η5-C5Me4SiMe3)Sc(CH2SiMe3)2(THF)(錯体(1):9.4mg,20μmol)及び(η5-C5H5)Sc(CH2SiMe3)2(THF)(錯体(2):7.1mg,20μmol)のトルエン溶液(8ml)に加えた。混合物を室温で2分間かき混ぜて、28mLのトルエン中に1.04g(10mmol)のスチレン及び0.68g(10mmol)のイソプレンを含むモノマー混合物を当該フラスコに加えた。共重合反応を4時間行い、フラスコをグローブボックスから取り出し、重合反応を終了するために10mLのメタノールを加えた。当該混合物をメタノール(400mL)へ注いで、ポリマー産物を沈殿させた。ろ過してポリマーを回収し、一定の重量になるまで、60℃で真空乾燥した。
 <実施例2>
 典型的な重合反応を下記に示す(表1、run2)。グローブボックス中で、25℃において、100mLのフラスコ中で、[Ph3C][B(C6F5)4](36mg,40μmol)のトルエン溶液(4ml)を、(η5-C5Me4SiMe3)Sc(CH2SiMe3)2(THF)(錯体(1):9.4mg,20μmol)及び(η5-C5H5)Sc(CH2SiMe3)2(THF)(錯体(2):7.1mg,20μmol)のトルエン溶液(8ml)に加えた。その後、200μLのTIBA(ヘキサン中に1mol/L,Al/Sc=5)を反応混合物に加えて、2分間反応させ、さらに、28mLのトルエン中に1.04g(10mmol)のスチレン及び0.68g(10mmol)のイソプレンを含むモノマー混合物を加えた。共重合反応を2時間行い、フラスコをグローブボックスから取り出し、重合反応を終了するために10mLのメタノールを加えた。当該混合物をメタノール(400mL)へ注いで、ポリマー産物を沈殿させた。ろ過してポリマーを回収し、一定の重量になるまで、60℃で真空乾燥した。得られた共重合体は、THFを溶剤として用いて、室温で抽出したが、homo-PIはみられなかった。
 <実施例3>
 共重合化の手順及び条件(表1、run3)は、TIBAの量を400μL(Al/Sc=10)に増やしたこと以外は、実施例2と同様である。
 <実施例4>
 共重合化の手順及び条件(表1、run4)は、TIBAの量を800μL(Al/Sc=20)に増やしたこと以外は、実施例2と同様である。
 <実施例5>
 共重合化の手順及び条件(表1、run5)は、0.52g(5mmol)のスチレン及び1.36g(20mmol)のイソプレンを含むモノマー混合物を用いたこと以外は、実施例2と同様である。
 <実施例6>
 共重合化の手順及び条件(表1、run6)は、0.52g(5mmol)のスチレン及び2.04g(30mmol)のイソプレンを含むモノマー混合物を用いたこと以外は、実施例2と同様である。
 <実施例7>
 共重合化の手順及び条件(表1、run7)は、1.04g(10mmol)のスチレン及び1.36g(20mmol)のイソプレンを含むモノマー混合物を用いたこと以外は、実施例3と同様である。
 <実施例8>
 共重合化の手順及び条件(表1、run8)は、TIBAの替わりに80μLのトリプロピル-アルミニウム(TPA,80μmol,ヘキサン中に1mol/L,Al/Sc=2)を用いたこと以外は、実施例2と同様である。
 <実施例9>
 共重合化の手順及び条件(表1、run9)は、TPAの量を200μL(Al/Sc=5)に増やしたこと以外は、実施例8と同様である。
Figure JPOXMLDOC01-appb-T000023
 図1に、表1のrun1(連鎖移動剤なし:no CSA)及びrun2(TIBA/Sc=5)のGPCのグラフを示す。図2に、表1のrun1(連鎖移動剤なし:no CSA)及びrun8(TPA/Sc=2)のGPCのグラフを示す。図3に、表1のrun1(連鎖移動剤なし)のH NMRスペクトルを示す。図4に、表1のrun2(TIBA/Sc=5)のH NMRスペクトルを示す。図5に、表1のrun2(TIBA/Sc=5)の13C NMRスペクトルを示す。図6に、ブロック共重合体(表1のrun3)のDSCカーブを示す。
 〔パートA1-2:シンジオタクチックポリスチレン-ブロック-cis-1,4-ポリイソプレンブロック共重合体の合成〕
 パートA1-2では、以下の実施例1~5に示す通り、カチオン性スカンジウムジアルキル錯体(1)、及びスカンジウムアミノベンジル錯体(3)を用いた、TIBA又はTPA存在下での、シンジオタクチックポリスチレン-ブロック-1,4-ポリイソプレンブロック共重合体の合成を行った。合成の結果、及び反応条件等は表2に纏めて示した。
 <合成例:上記スカンジウムアミノベンジル錯体(3)の合成>
 グローブボックス内で、テフロン(登録商標)コックつきのシュレンク管中で、 Sc(CH2C6H4NMe2-o)3(1.792 g, 4.000 mmol)のTHF溶液(12 mL)を、C5H6 (0.317 g, 4.800 mmol)のTHF 溶液 (6 mL)に添加した。このシュレンク管を外部に取り出して、40℃で1時間加熱した。減圧条件下で溶媒を取り除いた。得られた残留物をヘキサン抽出した。濃縮した-30℃のヘキサン溶液中から、上記錯体(3)(CpSc(CH2C6H4Me2-o)2)の黄色結晶が得られた(1.226 g, 81% yield)。
1H NMR (C6D6, 50 °C): 1.47 (s, 4H, CH2), 2.32 (s, 12H, NMe2), 5.79 (s, 5H, C5H5), 6.73 (2H, aryl), 6.82 (2H, aryl), 7.05 (4H, aryl). 13C NMR (C6D6, 25 °C): 44.5 (CH2), 46.6 (NMe2), 112.2, 117.2, 120.9, 127.2, 130.1, 144.0, 145.71 (aromatics and Cp ring carbons). Anal. Calcd. for C23H29ScN2: C 72.99; H 7.72; N 7.40. Found: C 73.44; H 7.75; N 7.45.
 <実施例1>
 典型的な重合反応を下記に示す(表2、run1)。グローブボックス中で、25℃において、100mLのフラスコ中で、[Ph3C][B(C6F5)4](36mg,40μmol)のトルエン溶液(4ml)を、(η5-C5Me4SiMe3)Sc(CH2SiMe3)2(THF)(錯体(1):9.4mg,20μmol)及びCpSc(CH2C6H4Me2-o)2(錯体(3):7.6mg,20μmol)のトルエン溶液(8ml)に加えた。混合物を室温で2分間かき混ぜて、28mLのトルエン中に1.04g(10mmol)のスチレン及び0.68g(10mmol)のイソプレンを含むモノマー混合物を当該フラスコに加えた。共重合反応を4時間行い、フラスコをグローブボックスから取り出し、重合反応を終了するために10mLのメタノールを加えた。当該混合物をメタノール(400mL)へ注いで、ポリマー産物を沈殿させた。ろ過してポリマーを回収し、一定の重量になるまで、60℃で真空乾燥した。
 <実施例2>
 典型的な重合反応を下記に示す(表2、run2)。グローブボックス中で、25℃において、100mLのフラスコ中で、[Ph3C][B(C6F5)4](36mg,40μmol)のトルエン溶液(4ml)を、(η5-C5Me4SiMe3)Sc(CH2SiMe3)2(THF)(1)(9.4mg,20μmol)及びCpSc(CH2C6H4Me2-o)2(3)(7.6mg,20μmol)のトルエン溶液(8ml)に加えた。その後、200μLのTIBA(ヘキサン中に1mol/L,Al/Sc=5)を反応混合物に加えて、2分間反応させ、28mLのトルエンに、0.52g(5mmol)のスチレン及び0.68g(10mmol)のイソプレンを含むモノマー混合物をさらに加えた。共重合反応を2時間行い、フラスコをグローブボックスから取り出し、重合反応を終了するために10mLのメタノールを加えた。当該混合物をメタノール(400mL)へ注いで、ポリマー産物を沈殿させた。ろ過してポリマーを回収し、一定の重量になるまで、60℃で真空乾燥した。得られた共重合体は、THFを溶剤として用いて、室温で抽出したが、homo-PIはみられなかった。
 <実施例3>
 共重合化の手順及び条件(表2、run3)は、TIBAの量を400μL(Al/Sc=10)に増やしたこと、並びに1.04g(10mmol)のスチレン及び0.68g(10mmol)のイソプレンを含むモノマー混合物を用いたこと以外は、実施例2と同様である。
 <実施例4>
 共重合化の手順及び条件(表2、run4)は、TIBAの量を400μL(Al/Sc=10)に増やしたこと以外は、実施例2と同様である。
 <実施例5>
 共重合化の手順及び条件(表2、run5)は、TIBAの量を400μL(Al/Sc=10)に増やしたこと、並びに0.52g(5mmol)のスチレン及び1.36g(20mmol)のイソプレンを含むモノマー混合物を用いたこと以外は、実施例2と同様である。
Figure JPOXMLDOC01-appb-T000024
 図7に、表2のrun1(連鎖移動剤なし)のGPCのグラフを示す。図8に、表2のrun2(TIBA/Sc=5)のGPCのグラフを示す。図9に、表2のrun1(連鎖移動剤なし)のH NMRスペクトルを示す。図10に、表2のrun2(TIBA/Sc=5, IP/St=2)のH NMRスペクトルを示す。
 〔パートB:シンジオタクチックポリスチレン-ブロック-3,4-ポリイソプレンブロック共重合体の合成〕
 パートBでは、以下の実施例1~7に示す通り、カチオン性スカンジウムアルキル錯体(1)及び(4)を用いた、TIBA又はTPA存在下での、シンジオタクチックポリスチレン-ブロック-3,4-ポリイソプレンブロック共重合体の合成を行った。合成の結果、及び反応条件等は表3に纏めて示した。
 <実施例1>
 典型的な重合反応を下記に示す(表3、run1)。グローブボックス中で、25℃において、100mLのフラスコ中で、[Ph3C][B(C6F5)4](36mg,40μmol)のトルエン溶液(4ml)を、(η5-C5Me4SiMe3)Sc(CH2SiMe3)2(THF)(錯体(1):9.4mg,20μmol)及び(NCNdipp)Sc(CH2SiMe3)2(THF)(錯体(4), NCNdipp = PhC(NC6H4iPr2-2,6)2)(14mg,20μmol)のトルエン溶液(8ml)に加えた。混合物を室温で2分間かき混ぜて、28mLのトルエン中に1.04g(10mmol)のスチレン及び0.68g(10mmol)のイソプレンを含むモノマー混合物を当該フラスコに加えた。共重合反応を4時間行い、フラスコをグローブボックスから取り出し、重合反応を終了するために10mLのメタノールを加えた。当該混合物をメタノール(400mL)へ注いで、ポリマー産物を沈殿させた。ろ過してポリマーを回収し、一定の重量になるまで、60℃で真空乾燥した。
 <実施例2>
 典型的な重合反応を下記に示す(表3、run2)。グローブボックス中で、25℃において、100mLのフラスコ中で、[Ph3C][B(C6F5)4](36mg,40μmol)のトルエン溶液(4ml)を、(η5-C5Me4SiMe3)Sc(CH2SiMe3)2(THF)(錯体(1):9.4mg,20μmol)及び(NCNdipp)Sc(CH2SiMe3)2(THF)(錯体(4):14mg,20μmol)のトルエン溶液(8ml)に加えた。その後、200μLのTIBA(ヘキサン中に1mol/L,Al/Sc=5)を反応混合物に加えて、2分間反応させ、28mLのトルエン中に1.04g(10mmol)のスチレン及び0.68g(10mmol)のイソプレンを含むモノマー混合物をさらに加えた。共重合反応を2時間行い、フラスコをグローブボックスから取り出し、重合反応を終了するために10mLのメタノールを加えた。当該混合物をメタノール(400mL)へ注いで、ポリマー産物を沈殿させた。ろ過してポリマーを回収し、一定の重量になるまで、60℃で真空乾燥した。得られた共重合体は、THFを溶剤として用いて、室温で抽出したが、homo-PIはみられなかった。
 <実施例3>
 共重合化の手順及び条件(表3、run3)は、TIBAの量を400μL(Al/Sc=10)に増やしたこと以外は、実施例2と同様である。
 <実施例4>
 共重合化の手順及び条件(表3、run4)は、1.04g(10mmol)のスチレン及び1.36g(20mmol)のイソプレンを含むモノマー混合物を用いたこと以外は、実施例3と同様である。
 <実施例5>
 共重合化の手順及び条件(表3、run5)は、TIBAの量を800μL(Al/Sc=20)に増やしたこと、並びに1.04g(10mmol)のスチレン及び1.36g(20mmol)のイソプレンを含むモノマー混合物を用いたこと以外は、実施例2と同様である。
 <実施例6>
 共重合化の手順及び条件(表3、run6)は、TIBAの替わりに80μLのトリプロピル-アルミニウム(TPA,80μmol,ヘキサン中に1mol/L,Al/Sc=2)を用いたこと以外は、実施例2と同様である。
 <実施例7>
 共重合化の手順及び条件(表3、run7)は、TPAの量を200μL(Al/Sc=5)に増やしたこと以外は、実施例6と同様である。
Figure JPOXMLDOC01-appb-T000025
 図11に、表3のrun1(連鎖移動剤なし)のH NMRスペクトルを示す。図12に、表3のrun3(TIBA/Sc=10)のH NMRスペクトルを示す。図13に、表3のrun7(TPA/Sc=5)のH NMRスペクトルを示す。
 〔パートC:シンジオタクチックポリスチレン-ブロック-1,4-ポリイソプレン-ブロック-1,4-ポリブタジエンブロック共重合体等の合成〕
 パートCでは、以下の実施例1~7に示す通り、カチオン性スカンジウムジアルキル錯体(1)及び(2)を用いた、TIBA存在下での、シンジオタクチックポリスチレン-block-1,4-ポリイソプレン-ブロック-1,4-ポリブタジエンブロック共重合体及びシンジオタクチックポリスチレン-block-3,4-ポリイソプレン-ブロック-1,2-ポリブタジエンの合成を行った。合成の結果、及び反応条件等は表4に纏めて示した。
 <実施例1>
 典型的な重合反応を下記に示す(表4、run1)。グローブボックス中で、25℃において、100mLのフラスコ中で、[Ph3C][B(C6F5)4](36mg,40μmol)のトルエン溶液(4ml)を、(η5-C5Me4SiMe3)Sc(CH2SiMe3)2(THF)(錯体(1):9.4mg,20μmol)及び(η5-C5H5)Sc(CH2SiMe3)2(THF)(錯体(2):7.1mg,20μmol)のトルエン溶液(8ml)に加えた。混合物を室温で2分間かき混ぜて、48mLのトルエン中に1.04g(10mmol)のスチレン、0.68g(10mmol)のイソプレン、及び0.54g(10mmol)のブタジエンを含むモノマー混合物を当該フラスコに加えた。共重合反応を0.5時間行い、フラスコをグローブボックスから取り出し、重合反応を終了するために10mLのメタノールを加えた。当該混合物をメタノール(400mL)へ注いで、ポリマー産物を沈殿させた。ろ過してポリマーを回収し、一定の重量になるまで、60℃で真空乾燥した。
 <実施例2>
 典型的な重合反応を下記に示す(表4、run2)。グローブボックス中で、25℃において、100mLのフラスコ中で、[Ph3C][B(C6F5)4](36mg,40μmol)のトルエン溶液(4ml)を、(η5-C5Me4SiMe3)Sc(CH2SiMe3)2(THF)(錯体(1):9.4mg,20μmol)及び(NCNdipp)Sc(CH2SiMe3)2(THF)(錯体(4):14mg,20μmol)のトルエン溶液(8ml)に加えた。その後、200μLのTIBA(ヘキサン中に1mol/L,Al/Sc=5)を反応混合物に加えて、2分間反応させ、48mLのトルエン中に1.04g(10mmol)のスチレン、0.68g(10mmol)のイソプレン、及び0.54g(10mmol)のブタジエンを含むモノマー混合物をさらに加えた。共重合反応を5分間行い、フラスコをグローブボックスから取り出し、重合反応を終了するために10mLのメタノールを加えた。当該混合物をメタノール(400mL)へ注いで、ポリマー産物を沈殿させた。ろ過してポリマーを回収し、一定の重量になるまで、60℃で真空乾燥した。得られた共重合体は、THFを溶剤として用いて、室温で抽出したが、homo-PIはみられなかった。
 <実施例3>
 共重合化の手順及び条件(表4、run3)は、TIBAの量を400μL(Al/Sc=10)に増やしたこと及び重合化を10分間にしたこと以外は、実施例2と同様である。
 <実施例4>
 共重合化の手順及び条件(表4、run4)は、1.04g(10mmol)のスチレン、0.68g(10mmol)のイソプレン、及び1.14g(20mmol)のブタジエンを含むモノマー混合物を用いたこと以外は、実施例3と同様である。
 <実施例5>
 共重合化の手順及び条件(表4、run5)は、1.04g(10mmol)のスチレン、1.36g(20mmol)のイソプレン、及び0.57g(10mmol)のブタジエンを含むモノマー混合物を用いたこと以外は、実施例2と同様である。
 <実施例6>
 共重合化の手順及び条件(表4、run6)は、(η5-C5Me4SiMe3)Sc(CH2SiMe3)2(THF)(錯体(1):9.4mg,20μmol)及び(NCNdipp)Sc(CH2SiMe3)2(THF) (錯体(4),NCNdipp = PhC(NC6H4iPr2-2,6)2)(14mg,20μmol)で構成された触媒を用いたこと以外は、実施例1と同様である。
 <実施例7>
 共重合化の手順及び条件(表4、run7)は、錯体(1)(9.4mg,20μmol)及び錯体(4)(,NCNdipp = PhC(NC6H4iPr2-2,6)2)(14mg,20μmol)で構成された触媒を用いたこと、並びに重合化を30分間にしたこと以外は、実施例2と同様である。
Figure JPOXMLDOC01-appb-T000026
 図14に、表4のrun2(TIBA/Sc=5)のGPCのグラフを示す。図15に、表4のrun2(TIBA/Sc=5)の13C NMRスペクトルを示す。図16に、表4のrun4の13C NMRスペクトルを示す。
 なお、図17に上記実施例に用いたカチオン性スカンジウムジアルキル錯体(1)、(2)、(4)、及びスカンジウムアミノベンジル錯体(3)の構造式、その一般反応、及び実施例の反応を示した。同図中で、錯体1、2、4は、順にカチオン性スカンジウムジアルキル錯体(1)、(2)、(4)に対応し、錯体3は、スカンジウムアミノベンジル錯体(3)に相当する。
 〔参考例:配位子の構造がポリスチレンの立体規則性に与える影響の考察〕
 <様々な触媒を用いたスチレンの単独重合>
Figure JPOXMLDOC01-appb-C000027
 上記の金属錯体(ハーフサンドイッチスカンジウムジアルキル錯体)1a~1e、2、3a~3eを用いてスチレンの単独重合を行い、その代表的な結果を表5に示した。なお、単独重合の反応条件の概要は表5の末尾に示す通りであった。
Figure JPOXMLDOC01-appb-T000028
 反応系に[Ph3C][B(C6F5)4]のみを添加して金属錯体は加えなかった場合、分子量が小さい(M= 1000)アタクチックなポリスチレンが得られ、その分子量分布は非常にブロードであった(Mw/M= 3.84) (表5, Run 1)。
 THFを含み、かつ配位子Cp1が相対的に小さいという点で類似した構造を示す金属錯体1a及び1bを用いた場合、アタクチックなポリスチレンが得られた(表5, Run 2及び3)。また、ポリスチレン合成に関する触媒活性は低かった。
 THFを含まないが、やはり配位子Cp1が相対的に小さい金属錯体3a及び3bを用いた場合、配位子Cp1が金属錯体1a及び1bと同じであるにも関わらず、同じ反応条件下で、ポリスチレン合成に関する触媒活性はやや高かった。しかしながら、得られたポリスチレンはやはりアタクチックなものであった(表5, Run8及び9)。
 一方、配位子Cp1が大きくなってその立体障害の影響が大きくなるに従い、ポリスチレン合成に関する触媒活性が非常に高くなり、かつシンジオタクチックな立体構造に対する選択性が格段に高くなった。特に、金属錯体1d、1e,3d及び3eはその触媒活性及び立体選択性の観点から、シンジオタクチックポリスチレンの合成に特に好適であることが明らかになった(表5, Run4~6、Run10~12も参照)。
 また、メトキシフェニル結合型の金属錯体2も、同じ反応条件下で、ポリスチレン合成に関する触媒活性が非常に高く、かつシンジオタクチックな立体構造に対する選択性が格段に高かった。
 なお、データを示さないが、イソプレン又はブタジエンに対する反応性は金属錯体1a、1b、3a、3bがより優れており、所定の位置規則性又は立体規則性を与える重合体が得られる。
 <金属錯体の調製例>
 上記金属錯体3b((C5H4Me)Sc(CH2C6H4NMe2-o)2)の調製は以下の通り行った。
 グローブボックス内で、テフロン(登録商標)コックつきのシュレンク管中で、 Sc(CH2C6H4NMe2-o)3(1.792 g, 4.000 mmol)のTHF溶液(12 mL)を、C5H5Me (0.317 g, 4.800 mmol)のTHF 溶液 (6 mL)に添加した。このシュレンク管を外部に取り出して、40℃で2時間加熱した。減圧条件下で溶媒を取り除いた。得られた残留物をヘキサン抽出した。濃縮した-30℃のヘキサン溶液中から、上記錯体3b((C5H4Me)Sc(CH2C6H4NMe2-o)2)の黄色結晶が得られた(1.255 g, 80% yield)。
1H NMR (C6D6, 50 °C): 1.43 (s, 4H, CH2), 2.08 (s, 3H, C5H4Me), 2.34 (s, 12H, NMe2), 5.26 (s, 2H, C5H4Me), 5.82 (t, 2H, C5H4Me), 6.73 (2H, aryl), 6.85 (2H, aryl), 7.05 (4H, aryl). 13C NMR (C6D6, 25 °C): 14.9 (C5H4Me), 45.0 (CH2), 46.8 (NMe2), 112.4, 117.2, 120.9, 124.1, 126.9, 130.1, 144.0, 146.0 (aromatics and Cp ring carbons). Anal. Calcd. for C24H31ScN2: C 73.45; H 7.96; N 7.14. Found: C 73.50; H 7.95; N 7.23.
 本発明によれば、高度に位置制御又は立体制御がなされた多元重合体、及びその製造方法が提供される。

Claims (15)

  1.  第一のモノマー由来の繰り返し単位と、第一のモノマーとは異なる第二のモノマー由来の繰り返し単位とを含んでなる多元重合体の製造方法であって、
     上記第一のモノマー同士の位置選択的又は立体選択的な重合反応を、上記第二のモノマー同士の重合反応及び上記第一のモノマーと第二のモノマーとの重合反応より選択的に触媒する第一の触媒と、
     上記第二のモノマー同士の位置選択的又は立体選択的な重合反応を、上記第一のモノマー同士の重合反応及び上記第一のモノマーと第二のモノマーとの重合反応より選択的に触媒する第二の触媒とを用い、
     上記第一の触媒、上記第二の触媒、上記第一のモノマー、上記第二のモノマー、及び連鎖移動剤を同一の反応系中に存在させて重合反応を行うことを特徴とする多元重合体の製造方法。
  2.  上記第一のモノマーがスチレン系単量体であり、上記第二のモノマーがイソプレン又はブタジエンであることを特徴とする請求項1に記載の多元重合体の製造方法。
  3.  上記第一の触媒が、
     (1)第3族金属原子またはランタノイド金属原子である中心金属M、該中心金属に結合した置換または無置換のシクロペンタジエニル誘導体を含む配位子Cp*、モノアニオン配位子QおよびQ、ならびにW個(Wは0~3の整数)の中性ルイス塩基Lを含む、一般式(I)で表されるメタロセン錯体、および、
     (2)非配位性アニオンとカチオンからなるイオン性化合物
    を含んでいる触媒組成物であることを特徴とする請求項2に記載の多元重合体の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(I)における配位子Cp*は、置換基を有するシクロペンタジエニル環、置換又は無置換のフルオレニル環、置換又は無置換のオクタヒドロフルオレニル環、及び、置換基を有するインデニル環からなる群より選択される何れかであり、
    Cp*が置換基を有するシクロペンタジエニル環の場合は、下記一般式(II)で表されるものであり、
    Figure JPOXMLDOC01-appb-C000002
    一般式(II)中で、Rxは、シクロペンタジエニル環の骨格を構成する炭素原子に結合する、炭素数1~20のヒドロカルビル基、又は炭素数1~20のヒドロカルビル基が置換したメタロイド基を指し、*はMとの結合を表し、nは3~5の整数である。また、一般式(II)中に示すシクロペンタジエニル環の骨格を構成する炭素原子の一つは、第14族原子(但し、炭素原子及び鉛原子は除く)又は第15族原子により置換されていてもよい。
    Cp*が置換基を有するインデニル環の場合は、下記一般式(III)で表されるものである。
    Figure JPOXMLDOC01-appb-C000003
    一般式(III)中で、Rx1は、インデニル環の5員環の骨格を構成する炭素原子に結合する、炭素数1~20のヒドロカルビル基、又は炭素数1~20のヒドロカルビル基が置換したメタロイド基を指し、*はMとの結合を表し、n1は1~3の整数である。)
  4.  上記第二の触媒が、
     (1)第3族金属原子またはランタノイド金属原子である中心金属M、該中心金属に結合した置換または無置換のシクロペンタジエニル誘導体を含む配位子Cp*、モノアニオン配位子QおよびQ、ならびにW個(Wは0~3の整数)の中性ルイス塩基Lを含む、一般式(I)で表されるメタロセン錯体、および
     (2)非配位性アニオンとカチオンからなるイオン性化合物
    を含んでいる触媒組成物であることを特徴とする請求項2又は3に記載の多元重合体の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    (一般式(I)における配位子Cp*は、置換又は無置換のシクロペンタジエニル環、及び、無置換のインデニル環からなる群より選択される何れかであり、
    Cp*が置換基を有するシクロペンタジエニル環の場合は、下記一般式(IV)で表されるものであり、
    Figure JPOXMLDOC01-appb-C000005
    一般式(IV)中で、Rx2は、シクロペンタジエニル環の骨格を構成する炭素原子に結合する、炭素数1~3のヒドロカルビル基を指し、*はMとの結合を表し、n2は1~2の整数である。)
  5.  上記第二の触媒が、
     (1)一般式(V)で表される錯体、および
     (2)非配位性アニオンとカチオンからなるイオン性化合物
    を含んでいる触媒組成物であることを特徴とする請求項2又は3に記載の多元重合体の製造方法。
    Figure JPOXMLDOC01-appb-C000006
    (一般式(V)において、
    1及びR2はそれぞれ独立して、アルキル基、シクロヘキシル基、アリール基又はアラルキル基を示し、
    3はアルキル基、アルケニル基、アルキニル基、アリール基又はアラルキル基、脂肪族、芳香族又は環状のアミノ基、若しくはホスフィノ基、ボリル基、アルキル又はアリールチオ基、アルコキシ又はアリールオキシ基を示し、
    Mは、スカンジウム(Sc)、イットリウム(Y)又はプロメチウムPmを除くランタン(La)からルテチウム(Lu)までの希土類元素の何れかを示し、
    1およびQ2はそれぞれ独立して、モノアニオン性配位子を示し、
    Lは中性ルイス塩基を示し、wは0~3の整数を示す。)
  6. 上記一般式(V)におけるR1及びR2が2,6-ジイソプロピルフェニル基を示し、R3がフェニル基を示すことを特徴とする、請求項5に記載の多元重合体の製造方法。
  7.  上記第二の触媒が、
     (1)第3族金属原子またはランタノイド金属原子である中心金属M、及び、該中心金属に結合した置換または無置換のシクロペンタジエニル誘導体を含む配位子Cp*を含む、一般式(VI)で表される錯体、および
     (2)非配位性アニオンとカチオンからなるイオン性化合物
    を含んでいる触媒組成物であることを特徴とする請求項2又は3に記載の多元重合体の製造方法。
    Figure JPOXMLDOC01-appb-C000007
    (一般式(VI)における配位子Cp*は、置換又は無置換のシクロペンタジエニル環、及び、無置換のインデニル環からなる群より選択される何れかであり、
    Cp*が置換基を有するシクロペンタジエニル環の場合は、下記一般式(IV)で表されるものであり、
    Figure JPOXMLDOC01-appb-C000008
    一般式(IV)中で、Rx2は、シクロペンタジエニル環の骨格を構成する炭素原子に結合する、炭素数1~3のヒドロカルビル基を指し、*はMとの結合を表し、n2は1~2の整数である。)
  8.  上記中心金属Mがスカンジウム(Sc)またはイットリウム(Y)である、請求項3~7の何れか一項に記載の製造方法。
  9.  上記中心金属Mがスカンジウム(Sc)である、請求項8に記載の製造方法。
  10.  上記QおよびQが、それぞれ独立してトリアルキルシリル基である、請求項3~6のいずれか1項に記載の製造方法。
  11.  上記中性ルイス塩基Lは、テトラヒドロフランである、請求項3~6のいずれか1項に記載の製造方法。
  12.  上記スチレン系単量体が重合されてなる重合体ブロックは、その側鎖においてシンジオタクチックな立体規則性を有する芳香族基を含んでおり、そのシンジオタクチシティーが80rrrr%以上であることを特徴とする請求項2~11のいずれか1項に記載の製造方法。
  13.  上記スチレン系単量体が重合されてなる重合体ブロックが、ポリ(アルキル化)スチレンまたはポリビニルナフタレンであることを特徴とする請求項2~12のいずれか1項に記載の製造方法。
  14.  上記連鎖移動剤はトリアルキルアルミニウムであることを特徴とする請求項2~13のいずれか1項に記載の製造方法。
  15.  請求項1~14の何れか一項に記載の製造方法により製造される多元重合体であって、上記第一のモノマーが重合されてなる第一の重合体ブロックと、上記第二のモノマーが重合されてなる第二の重合体ブロックとを含み、第一の重合体ブロック及び第二の重合体ブロックは何れも所定の位置規則性又は立体規則性を有することを特徴とする多元重合体。
PCT/JP2012/061922 2011-05-09 2012-05-09 多元重合体の製造方法、および多元重合体 WO2012153786A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/116,105 US20140088276A1 (en) 2011-05-09 2012-05-09 Manufacturing method for multidimensional polymer, and multidimensional polymer
EP12782831.7A EP2708562A4 (en) 2011-05-09 2012-05-09 PROCESS FOR MANUFACTURING MULTIDIMENSIONAL POLYMER, AND MULTIDIMENSIONAL POLYMER
JP2013514042A JPWO2012153786A1 (ja) 2011-05-09 2012-05-09 多元重合体の製造方法、および多元重合体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011104790 2011-05-09
JP2011-104790 2011-05-09

Publications (1)

Publication Number Publication Date
WO2012153786A1 true WO2012153786A1 (ja) 2012-11-15

Family

ID=47139262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061922 WO2012153786A1 (ja) 2011-05-09 2012-05-09 多元重合体の製造方法、および多元重合体

Country Status (4)

Country Link
US (1) US20140088276A1 (ja)
EP (1) EP2708562A4 (ja)
JP (1) JPWO2012153786A1 (ja)
WO (1) WO2012153786A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103554365A (zh) * 2013-10-11 2014-02-05 大连理工大学 一类基于稀土催化体系丁二烯异戊二烯二元共聚物及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7179750B2 (ja) * 2017-03-15 2022-11-29 ダウ グローバル テクノロジーズ エルエルシー マルチブロックコポリマー形成用触媒系
SG11201908306TA (en) * 2017-03-15 2019-10-30 Dow Global Technologies Llc Catalyst system for multi-block copolymer formation
JP2024506221A (ja) * 2020-12-18 2024-02-09 ダウ グローバル テクノロジーズ エルエルシー エチレン/ビニルアレーンマルチブロックインターポリマーのための単一反応器チェーンシャトリング反応

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000018808A1 (en) 1998-09-30 2000-04-06 Exxon Chemical Patents Inc. Cationic group 3 catalyst system
JP2000313710A (ja) 1999-03-04 2000-11-14 Inst Of Physical & Chemical Res 触媒組成物
JP2001064313A (ja) 1999-08-27 2001-03-13 Inst Of Physical & Chemical Res 触媒組成物
JP2001288234A (ja) 2000-04-07 2001-10-16 Inst Of Physical & Chemical Res ブロック共重合体の製造方法
JP2002069117A (ja) 2000-08-30 2002-03-08 Inst Of Physical & Chemical Res 触媒組成物
JP2002187908A (ja) 2000-12-19 2002-07-05 Nippon Zeon Co Ltd 共役ジエン重合触媒及び共役ジエン系重合体の製造方法
JP2002256012A (ja) 2001-02-28 2002-09-11 Inst Of Physical & Chemical Res 重合用触媒
JP2002348342A (ja) * 2001-05-25 2002-12-04 Idemitsu Petrochem Co Ltd スチレン系重合体、その製造方法及び該重合体を含む熱可塑性樹脂組成物
JP2003292513A (ja) 2002-03-29 2003-10-15 Inst Of Physical & Chemical Res 触媒組成物
JP2004027179A (ja) 2002-05-08 2004-01-29 Inst Of Physical & Chemical Res 重合用触媒
JP2004027103A (ja) 2002-06-27 2004-01-29 Inst Of Physical & Chemical Res 触媒組成物
JP2004238637A (ja) 2002-05-08 2004-08-26 Institute Of Physical & Chemical Research 重合用触媒
WO2006004068A1 (ja) 2004-07-02 2006-01-12 Riken メタロセン錯体を含む重合触媒組成物、およびそれを用いて製造される重合体
JP2007238857A (ja) 2006-03-10 2007-09-20 Institute Of Physical & Chemical Research イソプレン系化合物の重合用の重合触媒組成物
JP2008222780A (ja) 2007-03-09 2008-09-25 Institute Of Physical & Chemical Research 複素環配位子を含む金属錯体、及びそれを含む重合触媒組成物
JP2008222791A (ja) 2007-03-09 2008-09-25 Institute Of Physical & Chemical Research イソプレン系化合物の重合用の重合触媒組成物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005090427A2 (en) * 2004-03-17 2005-09-29 Dow Global Technologies Inc. Catalyst composition comprising shuttling agent for ethylene multi-block copolymer formation
CA2622720A1 (en) * 2005-09-15 2007-03-29 Dow Global Technologies Inc. Catalytic olefin block copolymers via polymerizable shuttling agent

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000018808A1 (en) 1998-09-30 2000-04-06 Exxon Chemical Patents Inc. Cationic group 3 catalyst system
JP2000313710A (ja) 1999-03-04 2000-11-14 Inst Of Physical & Chemical Res 触媒組成物
JP2001064313A (ja) 1999-08-27 2001-03-13 Inst Of Physical & Chemical Res 触媒組成物
JP2001288234A (ja) 2000-04-07 2001-10-16 Inst Of Physical & Chemical Res ブロック共重合体の製造方法
JP2002069117A (ja) 2000-08-30 2002-03-08 Inst Of Physical & Chemical Res 触媒組成物
JP2002187908A (ja) 2000-12-19 2002-07-05 Nippon Zeon Co Ltd 共役ジエン重合触媒及び共役ジエン系重合体の製造方法
JP2002256012A (ja) 2001-02-28 2002-09-11 Inst Of Physical & Chemical Res 重合用触媒
JP2002348342A (ja) * 2001-05-25 2002-12-04 Idemitsu Petrochem Co Ltd スチレン系重合体、その製造方法及び該重合体を含む熱可塑性樹脂組成物
JP2003292513A (ja) 2002-03-29 2003-10-15 Inst Of Physical & Chemical Res 触媒組成物
JP2004027179A (ja) 2002-05-08 2004-01-29 Inst Of Physical & Chemical Res 重合用触媒
JP2004238637A (ja) 2002-05-08 2004-08-26 Institute Of Physical & Chemical Research 重合用触媒
JP2004027103A (ja) 2002-06-27 2004-01-29 Inst Of Physical & Chemical Res 触媒組成物
WO2006004068A1 (ja) 2004-07-02 2006-01-12 Riken メタロセン錯体を含む重合触媒組成物、およびそれを用いて製造される重合体
JP2007238857A (ja) 2006-03-10 2007-09-20 Institute Of Physical & Chemical Research イソプレン系化合物の重合用の重合触媒組成物
JP2008222780A (ja) 2007-03-09 2008-09-25 Institute Of Physical & Chemical Research 複素環配位子を含む金属錯体、及びそれを含む重合触媒組成物
JP2008222791A (ja) 2007-03-09 2008-09-25 Institute Of Physical & Chemical Research イソプレン系化合物の重合用の重合触媒組成物

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ANDREIA VALENTE ET AL.: "Catalytic chain transfer (co-)polymerization: unprecedented polyisoprene CCG and a new concept to tune the composition of a statistical copolymer", MACROMOLECULAR RAPID COMMUNICATIONS, vol. 30, no. 7, 2009, pages 528 - 531, XP055135110 *
D. J. ARRIOLA; E. M. CARNAHAN; P. D. HUSTAD; R. L. KUHLMAN; T. T. WENZEL, SCIENCE, vol. 312, 2006, pages 714
HULTZSCH, K. C.; SPANIOL, T. P.; OKUDA, J., ANGEW. CHEM. INT. ED, vol. 38, 1999, pages 227
J. AM. CHEM. SOC., vol. 126, no. 39, 2004, pages 12240
See also references of EP2708562A4 *
TARDIF, O.; NISHIURA, M.; HOU, Z. M., ORGANOMETALLICS, vol. 22, 2003, pages 1171

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103554365A (zh) * 2013-10-11 2014-02-05 大连理工大学 一类基于稀土催化体系丁二烯异戊二烯二元共聚物及其制备方法

Also Published As

Publication number Publication date
US20140088276A1 (en) 2014-03-27
EP2708562A1 (en) 2014-03-19
EP2708562A4 (en) 2014-12-10
JPWO2012153786A1 (ja) 2014-07-31

Similar Documents

Publication Publication Date Title
Huang et al. Precisely Controlled Polymerization of Styrene and Conjugated Dienes by Group 3 Single‐Site Catalysts
JP5035864B2 (ja) メタロセン錯体、およびそれを含む重合触媒組成物
JP3624290B2 (ja) 重合用触媒
EP1764375A1 (en) Polymerization catalyst compositions containing metallocene complexes and polymers produced by using the same
EP3121187B1 (en) Metallocene complex and method for manufacturing olefin polymer
CA2462348A1 (en) Metal complex compositions and their use as catalysts to produce polydienes
WO2012153786A1 (ja) 多元重合体の製造方法、および多元重合体
JP2004532320A (ja) 金属錯体触媒の使用により製造されたランダムまたはブロック共重合体または三元重合体
US6683140B2 (en) Catalyst for polymerization
JP6176015B2 (ja) メタロセン錯体およびオレフィンの重合方法
ES2222655T3 (es) Polimero en bloque de estireno-butadieno.
JPWO2005085306A1 (ja) アイソタクチック3,4−イソプレン系重合体
CN108530572B (zh) 一种乙烯-苯乙烯衍生物共聚物的制备方法
JPS5927901A (ja) 1,3‐ジエンモノマーの重合又は共重合用触媒
JPS63241009A (ja) スチレン系共重合体およびその製造方法
KR20160067509A (ko) 혼성 담지 촉매 및 이를 이용하는 올레핀 중합체의 제조 방법
JP2000154221A (ja) 共役ジエン系ブロック共重合体の製造方法、共役ジエン系ブロック共重合体、およびブタジエン系ブロック共重合体
JP6613987B2 (ja) メタロセン錯体、オレフィン重合用触媒、およびオレフィン重合体の製造方法
ES2225142T3 (es) Procedimiento para la obtencion e soluciones de caucho en solucion de estireno con catalizadores de quelatos estericamente exigentes.
JP2008222780A (ja) 複素環配位子を含む金属錯体、及びそれを含む重合触媒組成物
US6960631B2 (en) Catalyst composition and process for producing copolymer
JP2001064313A (ja) 触媒組成物
JP2014025043A (ja) ペンタジエン単独又は共重合体の製造方法及びペンタジエン単独又は共重合体
JPH11286509A (ja) 共役ジエン系共重合体の製造方法
JP2008056584A (ja) カチオン錯体、これを含有してなる重合触媒、この重合触媒を用いる重合方法及び重合体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12782831

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013514042

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012782831

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14116105

Country of ref document: US