WO2012153761A1 - 電気化学セル - Google Patents

電気化学セル Download PDF

Info

Publication number
WO2012153761A1
WO2012153761A1 PCT/JP2012/061868 JP2012061868W WO2012153761A1 WO 2012153761 A1 WO2012153761 A1 WO 2012153761A1 JP 2012061868 W JP2012061868 W JP 2012061868W WO 2012153761 A1 WO2012153761 A1 WO 2012153761A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrochemical cell
lid member
sealing plate
welding
electrode
Prior art date
Application number
PCT/JP2012/061868
Other languages
English (en)
French (fr)
Inventor
恒昭 玉地
涼 佐藤
研二 尾形
篠田 勇
渡邊 俊二
Original Assignee
セイコーインスツル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーインスツル株式会社 filed Critical セイコーインスツル株式会社
Priority to JP2013514029A priority Critical patent/JP5709187B2/ja
Priority to EP12782835.8A priority patent/EP2709128B1/en
Priority to KR1020137029590A priority patent/KR101509376B1/ko
Priority to CN201280022349.4A priority patent/CN103503096B/zh
Publication of WO2012153761A1 publication Critical patent/WO2012153761A1/ja
Priority to US14/062,316 priority patent/US8976508B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/80Gaskets; Sealings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • H01G9/10Sealing, e.g. of lead-in wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • H01G11/82Fixing or assembling a capacitive element in a housing, e.g. mounting electrodes, current collectors or terminals in containers or encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G2/00Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
    • H01G2/10Housing; Encapsulation
    • H01G2/103Sealings, e.g. for lead-in wires; Covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/08Housing; Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/155Lids or covers characterised by the material
    • H01M50/157Inorganic material
    • H01M50/159Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/169Lids or covers characterised by the methods of assembling casings with lids by welding, brazing or soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to electrochemical cells such as non-aqueous electrolyte secondary batteries and electric double layer capacitors.
  • Electrochemical cells have been conventionally used as a memory backup power source and a clock function backup power source in various small electronic devices such as mobile phones, PDAs, and portable game machines.
  • a need for this type of electrochemical cell there has been a strong demand for miniaturization and thinning. This is because the electronic device on which the electrochemical cell is mounted is downsized.
  • a reflow soldering method (a method in which an electrochemical cell coated with a solder cream is placed on a mounting substrate and the entire circuit board is heated and soldered) is frequently used for mounting. Therefore, the electrochemical cell has been required to have heat resistance that can withstand the temperature of reflow soldering.
  • an electrochemical cell having a substantially rectangular shape (chip shape) capable of effectively utilizing the mounting area has been studied. Unlike a coin-shaped cell, this chip-type electrochemical cell cannot be sealed by crimping (crimping) a can (case). For this reason, what sealed the electrode etc. inside is provided by welding a concave container and a sealing board (refer patent document 1).
  • an electrolytic solution containing an organic solvent is accommodated in a concave container, and a metal sealing plate is welded to the opening of the concave container via a metal ring.
  • the concave container is sealed.
  • Kovar Co: 17 wt%, Ni: 29 wt%, Fe: remaining alloy
  • the nickel plating is given to the surface which a sealing plate and a metal ring oppose, respectively as a joining material at the time of welding.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide an electrochemical cell that can suppress a decrease in charging efficiency and has stable quality over the long term.
  • An electrochemical cell according to the present invention includes a base member, a bonding material fixed to the base member, and a lid member welded to the base member via the bonding material, and the base member And a sealed container in which a sealed storage space is defined between the lid members, and an electrochemical element that is stored in the storage space and is chargeable / dischargeable, wherein the lid member is made of stainless steel.
  • the lid member welded to the base member via the bonding material is stainless steel whose surface is covered with a dense and stable oxide film. It is excellent in corrosion resistance as compared with Ni-based alloys such as Kovar, which are widely used. In particular, a dense oxide film is formed by containing chromium. Therefore, the base material of the lid member is protected by the oxide film, and the base material containing nickel is difficult to elute at the time of welding with the base member. Moreover, the ratio of nickel contained in the stainless steel is 14% or less, and the amount of nickel contained is relatively small compared to 29% of Kovar.
  • the oxide film formed on the surface of the lid member is stable as described above, it is difficult to peel off due to scratches and the like, and the exposure of the base material of the lid member can be suppressed. In this respect as well, it is possible to prevent the leakage current from increasing during charging, to suppress the reduction in charging efficiency, and to facilitate the handling of the lid member and the assembly workability of the electrochemical cell. It can lead to improvement. Furthermore, since stainless steel is easily available and inexpensive, it is easy to reduce the cost of the electrochemical cell itself.
  • any of the following stainless steels can be used.
  • the lid member has a high possibility of pitting corrosion due to a change in voltage during charging and discharging. Therefore, it is desirable to select a material with high pitting corrosion, and the above (a) austenite-ferritic duplex stainless steel is most desirable.
  • a metal layer made of an alloy containing one kind may be coated.
  • the base material of the lid member is protected not only by the oxide film but also by the metal layer, the base material is more difficult to be exposed due to scratches and the like, and the lid member is welded when the lid member and the base member are welded.
  • the base material is more difficult to elute.
  • Au, Cu, Ag, Ir, Pd, Rh, Sn, or an alloy thereof since it is a noble metal compared to nickel, the ionization tendency is low and it is difficult to elute. Therefore, it is difficult for nickel contained in the base material of the lid member to elute together with these metals. From these things, it can suppress effectively that leakage current increases at the time of charge, and charge efficiency falls, and it can be set as the electrochemical cell excellent in the cycling characteristics of charging / discharging.
  • the metal layer may be coated over a portion in contact with the bonding material.
  • the metal layer and the bonding material can be welded while melting each other, and the base member and the lid member are more strongly welded through the metal layer and the bonding material. Can do. Therefore, the sealing property of the storage space in which the electrochemical element is stored can be improved, and an electrochemical cell having a stable quality can be obtained.
  • An underlayer made of Ni or Cu may be formed between the metal layer and the lid member.
  • the metal layer since the metal layer is formed on the base layer, the metal layer can be stably and firmly coated on the lid member. Therefore, the above-described operational effects can be exerted more remarkably.
  • the bonding material and the underlayer are well-matched. Can be firmly bonded with high affinity, so that the base member and the lid member can be further strongly welded via the metal layer and the bonding material.
  • the lid member may have a thickness of 30 ⁇ m or less.
  • the thickness of the lid member is 30 ⁇ m or less, it is possible to suppress the occurrence of defects such as cracking and unauthorized deformation in the electrochemical cell due to the influence of heat caused by welding of the lid member when the electrochemical cell is assembled. be able to. That is, when the lid member is welded (seam welding, laser welding, etc.), for example, in seam welding, the energized portion is locally heated because it is energized with a pulse-like period with intermittent. Also in laser welding, the laser beam is irradiated with a pulse-like period with intermittent, so that the part receiving the laser beam locally generates heat.
  • the portion of the lid member and the base member is thermally expanded.
  • finish of welding although the said part in a lid member and a base member is cooled and shrink
  • stress concentrates on at least the part of the base member, and unauthorized deformation or cracking is likely to occur.
  • the thickness of the lid member is 30 ⁇ m or less, it is possible to suppress the influence of thermal shrinkage by the lid member, and it is possible to reduce the stress and suppress the occurrence of problems such as unauthorized deformation and cracking.
  • the bonding material may be a conductive seal ring formed in a ring shape surrounding the storage space.
  • the outer peripheral part may correspond with the outer peripheral part of the said seal ring.
  • the outer shape of the lid member is formed so that the outer peripheral edge thereof coincides with the outer peripheral edge of the seal ring, good welding can be performed.
  • the roller electrode can be reliably brought into contact with the lid member, and good energization can be performed and good welding can be performed.
  • a sufficient contact area between the seal ring and the lid member can be ensured, so that laser can be easily applied and good welding can be performed.
  • the seal ring may be thicker than the lid member.
  • the seal ring is difficult to thermally expand due to the influence of heat during welding, and the heat is transmitted to the base member side through the seal ring, and the base member is easily prevented from thermally expanding. Therefore, it is possible to suppress the occurrence of defects such as cracks and unauthorized deformation due to the influence of heat.
  • the base member is formed in a bottomed cylindrical shape having a flat bottom wall portion and a frame-shaped peripheral wall portion, and the lid member has a continuous welded portion at the interface between the lid member and the bonding material.
  • the wall thickness T ( ⁇ m) of the peripheral wall portion and the weld diameter ⁇ ( ⁇ m) of the welded portion are It is preferable to satisfy the following formula (1). (Weld diameter ⁇ / wall thickness T) ⁇ 0.5 (1)
  • the wall thickness of the peripheral wall portion is thin, the strength (rigidity) is reduced, and thus the above-described problem is likely to occur.
  • the welding diameter is large, the amount of current during welding is large, so that heat is excessively transmitted, and the above-described problem is likely to occur. Therefore, the wall thickness T ( ⁇ m) of the peripheral wall portion and the weld diameter ⁇ ( ⁇ m) of the weld portion satisfy the above formula (1), thereby increasing the wall thickness of the peripheral wall portion and the welding diameter. The point to make small can be made compatible with balance, and generation
  • the lid member may be welded by repeating the seam welding a plurality of times.
  • the welded part at the first welding and the welded part at the second welding can be continuously overlapped with each other, so that more reliable welding can be performed, and the storage space Can be more reliably airtight.
  • the welding diameter in one welding can be made as small as possible, and the above-described problems can be more effectively suppressed.
  • the stainless steel lid member is welded to the base member and the electrochemical element is sealed in the storage space, so that elution of nickel during welding can be suppressed, and leakage during charging It can suppress that an electric current increases and charging efficiency falls. Therefore, an electrochemical cell having stable quality over a long period of time and excellent cycle characteristics of charge / discharge can be obtained.
  • FIG. 1 is a longitudinal sectional view of a chip-type electric double layer capacitor showing an embodiment according to the present invention. It is a longitudinal cross-sectional view which shows the modification of an electrical double layer capacitor. It is a longitudinal cross-sectional view which shows another modification of an electrical double layer capacitor. It is a longitudinal cross-sectional view which shows another modification of an electric double layer capacitor.
  • FIG. 2 is a process diagram when the electric double layer capacitor shown in FIG. 1 is manufactured, and is a side view of a state in which a sealing plate is welded by seam welding using a roller electrode. It is the top view which looked at the state shown in FIG. 5 from the top, Comprising: It is a figure which advances the roller electrode along the surrounding wall part used as a long side among surrounding walls.
  • FIG. 7 is a view in which a roller electrode is advanced along a peripheral wall portion that is a short side of the peripheral wall portion after the state shown in FIG. 6. It is a top view of the state which removed the sealing board in the state shown in FIG. It is a figure corresponding to FIG. 7, Comprising: It is a figure in the case of repeating welding twice. It is sectional drawing at the time of welding a sealing board by the seam welding using a roller electrode, Comprising: It is a figure in case the external size of a sealing plate is smaller than the external size of a seal ring. It is sectional drawing at the time of welding a sealing board by the seam welding using a roller electrode, Comprising: It is a figure in case the outside size of a sealing board corresponds with the outside size of a seal ring.
  • an embodiment of an electrochemical cell according to the present invention will be described with reference to the drawings.
  • a surface-implemented electric double layer capacitor whose appearance is a substantially rectangular parallelepiped chip shape will be described as an example.
  • the electric double layer capacitor 1 includes a sealed container 2 having a storage space S sealed inside, and an electrochemical element 3 stored in the storage space S and capable of storing and charging. It is an electrochemical device that can be surface-mounted on a substrate (not shown), for example, by reflow.
  • the sealed container 2 includes a container body (base member) 10 and a sealing plate (lid member) 11 welded to the container body 10 via a conductive seal ring (joining material) 12 described later. ing.
  • the container body 10 is formed of a material such as ceramics or glass, and is a bottomed cylindrical concave container having a flat bottom wall portion 10a and a frame-shaped peripheral wall portion 10b.
  • the bottom wall portion 10a A recess is defined by the peripheral wall portion 10b.
  • the said sealing board 11 plugs up this recessed part, and seals it.
  • the bonding layer 13 is formed on the upper surface of the peripheral wall portion 10b of the container body 10 so as to surround the concave portion from the radially outer side, and the seal ring 12 is fixed on the bonding layer 13.
  • the sealing plate 11 is superimposed on the container body 10 via the seal ring 12 and is airtightly joined to the container body 10 by welding to the seal ring 12.
  • a space defined by the concave portion of the container body 10 and the sealing plate 11 is the above-described storage space S that is hermetically sealed.
  • the seal ring 12 of the present embodiment can be made of nickel-plated stainless steel or nickel-based alloy.
  • Kovar Co: 17% by weight, Ni: 29% by weight, Fe: remaining alloy
  • Elinvar Co: 12 wt%, Ni: 36 wt%, Fe: alloy consisting of the balance
  • Invar Ni: 36 wt%, Fe: alloy consisting of the balance
  • 42-alloy Ni: 42 wt%, Fe: alloy consisting of the remainder
  • the bonding layer 13 is preferably formed of, for example, nickel or gold that is well-matched with the seal ring 12.
  • a vapor phase method such as vacuum deposition may be employed in addition to electrolytic plating or electroless plating.
  • a current collector 14 is formed over substantially the entire surface. Further, a pair of external connection terminals 15 and 16 are formed on the lower surface of the bottom wall portion 10a of the container body 10 in a state where they are electrically separated. One of the external connection terminals 15 and 16 is electrically connected to the current collector 14 via a side electrode 17 formed on the side surface of the container body 10, and the other external connection terminal 16 is It is electrically connected to the bonding layer 13 via a side electrode 18 formed on the side surface of the container body 10.
  • the current collector 14 extends to the side surface of the container body 10 on the side where the one external connection terminal 15 is formed. Then, one side electrode 17 is formed on the side surface of the bottom wall portion 10 a of the container body 10 so as to connect the current collector 14 extending to the side surface and the external connection terminal 15.
  • the other side electrode 18 has a bottom wall portion 10a and a peripheral wall portion in the container main body 10 so as to connect the bonding layer 13 formed on the upper surface of the peripheral wall portion 10b of the container main body 10 and the other external connection terminal 16. 10b is formed over the side surface.
  • the pair of external connection terminals 15 and 16 and the side electrodes 17 and 18 are a single-layer film made of a single metal formed by, for example, a plating method or a sputtering method, or a laminated film in which different metals are laminated. Yes.
  • the laminated film may be two layers or three layers.
  • the base layer is nickel
  • the intermediate layer is gold
  • the surface layer is solder.
  • the current collector 14 is preferably tungsten, silver or gold, which has excellent corrosion resistance and can be formed by a film thickness method.
  • it is composed of valve metal (valve metal: a metal that forms a corrosion-resistant passive film on the surface) or carbon. You may do it.
  • the valve metal include aluminum, titanium, tantalum, niobium, hafnium, zirconium, and the like, and it is particularly preferable to use aluminum or titanium.
  • the current collector 14 is preferably formed on the underlayer with a chromium layer as the underlayer.
  • a chromium layer as the underlayer.
  • the adhesion of the current collector 14 to the container body 10 can be improved.
  • a titanium layer is also suitable as the base layer. This titanium layer can also be used as a current collector itself, not as an underlayer.
  • the sealing plate 11 is a stainless steel substrate, and is fixed to the container body 10 by welding using the seal ring 12 as described above. In addition, as welding at this time, seam welding by making a roller electrode contact, laser welding, ultrasonic welding, etc. are mentioned.
  • the sealing plate 11 of the present embodiment is coated with a metal layer 21 with the base layer 20 sandwiched between the entire lower surface facing the container body 10 side. Therefore, the base layer 20 and the metal layer 21 are in contact with the seal ring 12 as well as the negative electrode 27 described later.
  • the underlayer 20 is made of nickel, for example, and the metal layer 21 is made of gold, for example.
  • the formation method of the base layer 20 and the metal layer 21 is not particularly limited, but it is preferable to employ electroless plating.
  • the film thickness is preferably about 5 ⁇ 4 ⁇ m for the underlayer 20 made of nickel and about 0.05 to 6 ⁇ m for the metal layer 21 made of gold, for example.
  • the underlayer 20 and the metal layer 21 also play a role as a current collector of the negative electrode 27 described later.
  • the thickness of the metal layer 21 is desirably 0.05 ⁇ m or more, and more desirably 1 ⁇ m or more. Moreover, 6 micrometers or less are desirable.
  • the thickness of the plating is thin, there is a possibility that a defect such as a pinhole may exist, and it is not suitable because it is easily damaged. Further, when the plating thickness is thick, cracks may occur due to the internal stress of plating after plating, and corrosion may occur from the pinholes or cracks.
  • electrolytic plating without addition of P or B is preferable to electroless plating to which B (boron compound) or P (phosphorus compound) is added.
  • B boron compound
  • P phosphorus compound
  • Electrolytic plating has a lower melting point than materials plated with pure nickel and is easy to weld by seam or laser. On the other hand, it has a lower oxidation potential than pure nickel and is likely to develop local batteries and is susceptible to corrosion. .
  • the nickel precipitation pattern in the plating tends to vary, and this variation tends to cause corrosion of the LID (sealing plate 11). It can also be used as a two-layer or three-layer clad material.
  • the sealing plate 11 can be formed by punching with a die punch, for example. Further, the sealing plate 11 can be obtained by laser cutting or wire electric discharge machining other than punching. Furthermore, when a thin metal foil is used, an etching method can be used, which is desirable. In laser and wire electric discharge machining, an oxide film is formed on the cut surface at the time of cutting, and current and laser power are required at the time of sealing. Therefore, it is preferable to use a method in which the amount of energization is based on etching, or to remove the excessive oxide film after processing.
  • the electrochemical element 3 is stacked with a positive electrode (first electrode) 25 fixed on the bottom wall portion 10 a of the container body 10 via a current collector 14 and a separator (separating member) 26 sandwiched between the positive electrode 25 and the positive electrode 25.
  • the negative electrode (second electrode) that can polarize dissociative ion species (eg, TEMA-BF 4 ) contained in the liquid electrolyte (electrolyte) W filled in the storage space S with the positive electrode 25 27).
  • the electrochemical element 3 includes a positive electrode (first electrode (for example, activated carbon)) 25 fixed on the bottom wall portion 10a of the container body 10 via a current collector 14, and a separator (separating member) on the positive electrode 25. ) 26, and a negative electrode (second electrode (for example, activated carbon)) 27 that moves lithium ions (cations) to and from the positive electrode 25 through the liquid electrolyte (electrolyte) W filled in the storage space S. May be provided.
  • first electrode for example, activated carbon
  • second electrode for example, activated carbon
  • the electrochemical element 3 occludes (or does doping) anions such as cations or lithium ions into at least one of the positive electrode 25 and the negative electrode 27 through the liquid electrolyte (electrolyte) W filled in the storage space S.
  • anions such as cations or lithium ions
  • the electrochemical element 3 occludes (or does doping) anions such as cations or lithium ions into at least one of the positive electrode 25 and the negative electrode 27 through the liquid electrolyte (electrolyte) W filled in the storage space S.
  • the positive electrode 25 and the negative electrode 27 each have an electrode active material (positive electrode active material, negative electrode active material) (not shown) involved in the electrochemical reaction. At least one of the positive electrode 25 and the negative electrode 27 can be a metal oxide or the like that can occlude and release lithium ions via the liquid electrolyte W. Further, the positive electrode 25 and the negative electrode 27 may be configured by adding a conductive additive for the purpose of increasing the electron conductivity between the electrode active materials and further adding a binder to maintain the shape of the electrode. Absent.
  • the positive electrode 25 is fixed on the current collector 14 using a conductive adhesive or the like (not shown) and is conducted. Thereby, the positive electrode 25 is electrically connected to one external connection terminal 15 via the current collector 14 and the side electrode 17.
  • the electrode needs to be dried in advance in a vacuum, an aerobic atmosphere (in air), or a nitrogen atmosphere (reducing atmosphere) at a temperature of 200 ° C. or higher and 500 ° C. or lower.
  • a conductive adhesive is used when joining the sealing plate and the electrode, the solidification reaction of the conductive adhesive can be performed simultaneously with the drying of the electrode. Therefore, solidification is insufficient at 120 ° C. or lower, and drying is insufficient at less than 200 ° C.
  • a sealing plate using Cu or an alloy thereof as a plating material needs to be heated in a vacuum or a nitrogen atmosphere.
  • the temperature for taking out the product should be less than 100 ° C, and if possible, less than 50 ° C. I must.
  • the sheet-like separator 26 and the negative electrode 27 are stacked on the positive electrode 25 in this order.
  • the negative electrode 27 is in contact with the lower surface of the sealing plate 11 through the base layer 20 and the metal layer 21 and is electrically connected to the base layer 20 and the metal layer 21. Accordingly, the negative electrode 27 is electrically connected to the other external connection terminal 16 through the base layer 20, the metal layer 21, the seal ring 12, the bonding layer 13, and the side electrode 18.
  • the separator 26 is a member that separates the positive electrode 25 and the negative electrode 27 and restricts the direct contact between the electrodes 25 and 27. Even if an impact or the like is received, the electrodes 25 and 27 come into contact with each other and are electrically It is designed not to conduct.
  • the thickness of the separator 26 is the distance between the positive electrode 25 and the negative electrode 27.
  • the liquid electrolyte W can be prepared by, for example, using an aprotic polar organic solvent (for example, propylene carbonate or sulfolane) from which moisture has been previously removed to 100 ppm or less in the same manner and removing quaternary ammonium borofluoride salt (for example, TEMA- BF 4 ) is dissolved in the non-aqueous electrolyte (liquid) as long as at least the positive electrode 25, the negative electrode 27, and the separator 26 are immersed in the storage space S.
  • an aprotic polar organic solvent for example, propylene carbonate or sulfolane
  • quaternary ammonium borofluoride salt for example, TEMA- BF 4
  • the container main body (base member) 10 may be damaged by the heat
  • the electric double layer capacitor 1 of the present embodiment can be suitably used for the following applications, for example.
  • -Power backup for memory and clock functions notebook computers, mobile phones, cordless phones, headphone stereos, video cameras, digital cameras, portable electronic dictionaries, calculators, memory cards, PDAs, portable game devices, etc.).
  • ⁇ Power storage elements such as wireless sensor networks, RFID tags, and RF remote controls for digital home appliances.
  • -Power supply for saving data to flash memory.
  • -Assist power source for energy storage device bioelectric power generation equipment.
  • the sealing plate 11 welded to the container body 10 via the seal ring 12 is formed of stainless steel whose surface is covered with a dense and stable oxide film. Therefore, it is excellent in corrosion resistance as compared with Kovar, which has been widely used as a material for the sealing plate 11. Therefore, the base material of the sealing plate 11 is in a state protected by an oxide film, and the base material containing nickel is difficult to elute at the time of welding to the container body 10. Moreover, the amount of nickel contained in stainless steel is relatively small compared to Kovar.
  • the oxide film formed on the surface of the sealing plate 11 is stable as described above, it is difficult to peel off due to scratches and the like, and the base material of the sealing plate 11 can be suppressed from being exposed. In this respect as well, it is possible to suppress an increase in leakage current during charging, and to facilitate the handling of the sealing plate 11 and improve the assembly workability of the electric double layer capacitor 1. Furthermore, since stainless steel is easily available and inexpensive, it is easy to reduce the cost of the electric double layer capacitor 1 itself.
  • the metal layer 21 is coated on the lower surface of the sealing plate 11 via the base layer 20. Therefore, the base material of the sealing plate 11 is protected not only by the oxide film but also by the metal layer 21. Accordingly, the base material is less likely to be exposed due to scratches and the like, and nickel contained in the base material of the sealing plate 11 is less likely to elute when the container body 10 and the sealing plate 11 are welded. Therefore, in this respect as well, it is possible to prevent an increase in leakage current during charging, to suppress a reduction in charging efficiency, and to provide an electric double layer capacitor having excellent charge / discharge cycle characteristics. Can do.
  • the metal layer 21 is formed on the base layer 20, the metal layer 21 can be stably and firmly coated on the sealing plate 11. Further, during welding of the sealing plate 11, nickel plated on the seal ring 12, nickel of the underlayer 20, and gold of the metal layer 21 can be firmly welded while being melted together. The container body 10 and the sealing plate 11 can be firmly welded via the base layer 20 and the metal layer 21. Therefore, the sealing property of the storage space S in which the electrochemical element 3 is stored can be improved, and the quality can be easily stabilized.
  • the seal ring 12 and the underlayer 20 can be reliably welded with high affinity and high affinity. Therefore, strong welding between the container body 10 and the sealing plate 11 is possible.
  • the metal layer 21 made of gold is a noble metal compared to nickel, it has a low ionization tendency and is difficult to be eluted during welding. Therefore, the nickel of the base layer 20 and the nickel contained in the base material of the sealing plate 11 together with the metal layer 21 are difficult to elute, and it is difficult to cause a phenomenon that leakage current increases during charging and the charging efficiency decreases.
  • the stainless steel as the material of the sealing plate 11 includes, for example, austenitic ferrite duplex stainless steel such as SUS329J4L, SUS301, SUS302, SUS304, SUS316, SUS316L, SUS321, SUS347, SUS201, SUS202, and the like. All types such as austenite, martensite such as SUS403, ferrite such as SUS430 and SUS405, martensite precipitation hardening such as SUS630 and SUS631, and precipitation hardening stainless steel such as SUS15-7PH and SUS17-7PH Is included. In particular, austenite / ferrite duplex stainless steel and austenite are preferable because of their high corrosion resistance. Furthermore, austenitic stainless steels such as SUS201 and SUS202 having a high Mn content and austenitic / ferritic duplex stainless steels are desirable because of their low thermal expansion coefficients.
  • the base layer 20 and the metal layer 21 were formed in the whole lower surface of the sealing board 11, the base layer 20 and the metal layer 21 were covered over the whole surface of the sealing board 11 from a viewpoint of rust prevention and the ease of formation. Is preferably formed. However, since the purpose is to prevent nickel contained in the base material of the sealing plate 11 from eluting and precipitating, it should be formed at least on the surface of the sealing plate 11 facing the negative electrode 27. . However, in order to improve compatibility with the seal ring 12 at the time of welding, it is preferable to form the underlayer 20 and the metal layer 21 also in a portion in contact with the seal ring 12 as in the illustrated example.
  • the base layer 20 and the metal layer 21 were formed in the sealing board 11, these are not essential,
  • the sealing board 11 in which these base layers 20 and the metal layer 21 are not formed is used as a sealing ring. 12 may be welded directly to the container body 10. Even in this case, since the stainless steel sealing plate 11 is used, it is possible to suppress the leakage current from increasing during charging and reducing the charging efficiency. However, it is preferable to coat the metal layer 21 on the sealing plate 11, and it is more preferable to coat the metal layer 21 with the base layer 20 interposed therebetween.
  • gold was mentioned as an example of the metal layer 21, it is not limited to gold, Tin (Sn), copper (Cu), silver (Ag), iridium (Ir), It may be formed of a metal material selected from palladium (Pd) and rhodium (Rh), or may be formed of an alloy containing at least one of these metal materials.
  • the metal is a precious metal as compared with nickel, so that the ionization tendency is low and it is difficult to elute. For this reason, it is difficult for nickel contained in the base material of the sealing plate 11 to be eluted together with these metals.
  • nickel is used as the underlayer 20, for example, when silver is used as the metal layer 21, it is preferable to use copper having excellent affinity with silver and familiarity. However, when nickel plating is applied to the surface of the seal ring 12, it is preferable to use nickel which is the same material as the underlayer 20 in order to improve the familiarity during welding.
  • the seal ring 12 is fixed on the bonding layer 13.
  • the bonding layer 13 is not essential, and the seal ring 12 may be brazed directly on the peripheral wall portion 10 b of the container body 10. I do not care.
  • the side electrode 18 may be electrically connected to the seal ring 12.
  • the seal ring 12 which gave nickel plating was mentioned as an example as an example of a joining material, you may give tin, gold plating, etc. other than nickel, for example.
  • the material of the seal ring 12 is not limited to Kovar. However, those having a coefficient of thermal expansion close to that of the container body 10 are preferable.
  • the seal ring 12 may be made of Kovar having a thermal expansion coefficient of 5.2 ⁇ 10 ⁇ 6 / ° C. It is preferable to use a 42-alloy of 5 to 6.5 ⁇ 10 ⁇ 6 / ° C.
  • the bonding material is not limited to the seal ring 12 and may be a brazing material such as gold brazing, silver brazing, or silver bronze brazing (Ag—Cu), or a soldering material.
  • the material of the bonding material may be determined in consideration of the familiarity with the sealing plate 11 and the reflow temperature. For example, when reflow is performed at a temperature of about 260 ° C., a bonding material that melts at a temperature higher than 260 ° C. may be used, and a bonding material of about 300 ° C. can be used.
  • ceramics and glass are exemplified as an example of the material of the container body 10. More specifically, for example, ceramic materials include HTCC (High Temperature Co-fired Ceramic) made of alumina, glass, and the like. Ceramic LTCC (Low Temperature Co-fired Ceramic) or the like can be used. As the glass material, soda lime glass, lead glass, borosilicate glass, or the like can be used, but borosilicate glass is desirable in consideration of workability.
  • the current collector 14 is electrically connected to the one external connection terminal 15 via the side electrode 17, and the bonding layer 13 is electrically connected to the other external connection terminal 16 via the side electrode 18.
  • the present invention is not limited to this case.
  • the current collector 14 is electrically connected to one external connection terminal 15 via the first through electrode 31 and the bonding layer 13 is connected to the other external connection via the second through electrode 32.
  • the terminal 16 may be electrically connected. This point will be described in detail.
  • the current collector 14 in this case is formed on the bottom wall portion 10a of the container body 10 in the storage space S.
  • the 1st penetration electrode 31 is formed so that the bottom wall part 10a of the container main body 10 may be penetrated up and down, and is electrically connected with the electrical power collector 14 and one external connection terminal 15.
  • the second through electrode 32 is formed so as to penetrate the bottom wall portion 10a and the peripheral wall portion 10b of the container body 10 vertically, and conducts the bonding layer 13 and the other external connection terminal 16.
  • the same effect can be obtained only by the connection route of the pair of external connection terminals 15 and 16, the current collector 14 and the bonding layer 13 being different. It can be used as a surface mount type electric double layer capacitor.
  • the current collector 14 and the one external connection terminal 15 may be electrically connected, and the bonding layer 13 and the other external connection terminal 16 may be electrically connected.
  • a current collector 14 having a cross-sectional area smaller than that of the positive electrode 25 is formed at substantially the center of the positive electrode 25 on the bottom wall portion 10 a of the container body 10.
  • These side electrodes 41 are connected to each other using one internal electrode 43 formed in the bottom wall portion 10a.
  • the through electrode 45 that is electrically connected to the bonding layer 13 is formed partway through the bottom wall portion 10a, and the other internal electrode 44 formed in the bottom wall portion 10a is used to make the through electrode 45 and the other side electrode. 42 are connected to each other.
  • the current collector 14 can be electrically connected to the one external connection terminal 15 through the one internal electrode 43 and the one side electrode 41. Further, the bonding layer 13 can be conducted to the other external connection terminal 16 through the through electrode 45, the other internal electrode 44, and the other side electrode 42. Even in the electric double layer capacitor 40 configured in this manner, the same operation and effect can be obtained only by connecting the pair of external connection terminals 15 and 16, the current collector 14 and the bonding layer 13 differently. It can be used as a surface mount type electric double layer capacitor.
  • the base member was the bottomed cylindrical container main body 10 and the lid member was the flat sealing plate 11, it is not limited to this case, The base member and the lid member The base member and the lid member may be formed in any shape as long as the enclosed storage space S can be defined.
  • a sealed container 51 may be used in which the base member is a flat base substrate 52 and the lid member is a capped tubular lid 53.
  • a first through electrode 54 and a second through electrode 55 are formed on the base substrate 52, respectively.
  • the first through electrode 54 makes the current collector 14 and one external connection terminal 15 conductive.
  • the second through electrode 55 makes the bonding layer 13 and the other external connection terminal 16 conductive.
  • the lid 53 is connected to the cylindrical peripheral wall 53a, the upper end of the peripheral wall 53a, the top wall 53b that closes the peripheral wall 53a, the lower end of the peripheral wall 53a, and the peripheral wall.
  • a flange portion 53c extending outward in the radial direction of the portion 53a, and the flange portion 53c is superimposed on the base substrate 52 via the bonding layer 13 and the seal ring 12.
  • the lid 53 is fixed on the base substrate 52 by welding using the seal ring 12.
  • a space defined by the peripheral wall portion 53 a and the top wall portion 53 b of the lid 53 and the base substrate 52 is defined as a storage space S.
  • a base layer 20 and a metal layer 21 are formed on the inner surface of the lid 53.
  • the electric double layer capacitor 50 configured as described above can achieve the same effect only by changing the shape of the sealed container, and can be used as a surface mount type electric double layer capacitor. is there.
  • an electric double layer capacitor has been described as an example of an electrochemical cell, but the present invention is not limited to this case. It can also be used in electrochemical devices that involve oxidation / reduction reactions.
  • lithium ion capacitors using materials that can occlude and release metallic lithium ions as the active material of the positive electrode or negative electrode, and metal lithium and aluminum or tin
  • a lithium secondary battery using an alloy with another metal such as the above may be used.
  • a lithium-ion capacitor or a lithium-ion secondary battery in which a lithium-ion occluding carbon-based material or silicon-based material is used as a negative electrode active material and lithium ions are pre-doped therein may be used.
  • the present invention can also be applied to a lithium ion capacitor in which an electrode such as activated carbon used in an electric double layer capacitor or the like is combined.
  • lithium ions can be moved or polarized between the positive electrode 25 and the negative electrode 27, and the charge due to insertion and extraction of the lithium ions.
  • charge / discharge it may be arbitrarily selected.
  • FeS may be used as the positive electrode active material
  • SiO may be used as the negative electrode active material.
  • a lithium-containing manganese oxide may be used as the positive electrode active material
  • an intermetallic compound that forms an alloy with metallic lithium such as a Li—Al alloy may be used as the negative electrode active material.
  • lithium intermetallic compounds include Li—In alloys, Li—Sn alloys, Li—Si alloys, and the like in addition to Li—Al. These intermetallic compounds may be added with a third additive in addition to the above-described elements for the purpose of improving the strength and the like of the material. Examples thereof include elements such as Ca, Mg, Si, Mn, and V. .
  • the stainless steel lid member of the present invention as a lid, even for electrode active materials and electrolytes (such as solvents, supporting salts, and solid electrolytes) containing sulfur, which have been easy to react with metallic nickel, etc. Since it can be used as an electrochemical cell, the range of its application is dramatically expanded and can greatly contribute to industrial development.
  • electrode active materials and electrolytes such as solvents, supporting salts, and solid electrolytes
  • the storage space S is filled with the liquid electrolyte W, and the negative electrode 27, the positive electrode 25, and the separator 26 are immersed.
  • the storage space S need not necessarily be immersed in a liquid-tight state.
  • the separator 26 may be impregnated with the electrolyte so that a liquid junction can be formed at least between the negative electrode 27 and the positive electrode 25. Even in this case, the liquid electrolyte W can be surely present at the interface between the separator 26 and the positive electrode 25 and the interface between the separator 26 and the negative electrode 27 to perform the electrochemical reaction.
  • the electrolyte is not limited to the liquid electrolyte W, and a solid electrolyte may be used.
  • a solid electrolyte for example, an inorganic solid electrolyte (Li 2 S, SiS 2 , Li 4 SiO 4 ) is kneaded into a ceramic paper, which is a sintered body obtained by sintering an alumina or titania fiber body, or an electrode is formed by hot pressing.
  • the solid electrolyte and the solid electrolyte can be used as a separating member instead of the separator 26.
  • the electrode and the solid electrolyte may be integrated.
  • a solid electrolyte is deposited on the surface of the positive electrode 25 or the negative electrode 27 using a physical method such as laser ablation deposition, RF sputtering, or vacuum deposition, and is then sandwiched between the positive electrode 25 and the negative electrode 27 and stacked. After being combined, they may be used after being integrated by pressure bonding or the like. Even in this case, for example, lithium ions can be moved between the positive electrode 25 and the negative electrode 27 through the solid electrolyte, so that a reliable electrochemical reaction can be performed and it can be used as an electrochemical cell. It is.
  • the solid electrolyte sheet, the positive electrode 25, and the negative electrode 27 may be integrally combined in advance in a stacked state.
  • the positive electrode 25, the negative electrode 27, and the solid electrolyte sheet can be handled as one unit, the assembling work can be further facilitated, and the productivity can be further increased.
  • the welding method of the sealing board 11 is demonstrated in detail.
  • a welding method it is preferable to perform welding by seam welding using a roller electrode as described above.
  • the roller electrode 60 travels along a pair of peripheral wall portions 10b having long sides, for example, in the peripheral wall portion 10b of the container body 10 (in the direction of the arrow shown in FIG. 6).
  • the sealing plate 11 stacked on the seal ring 12 is pressurized, and resistance welding is performed by energizing intermittently.
  • the welding method is not limited to seam welding. For example, laser welding may be used.
  • FIG. 7 is a plan view with the sealing plate 11 removed.
  • One of the roller electrodes 60 is a positive electrode and the other is a negative electrode, and a predetermined welding voltage is energized between them by a power source (not shown).
  • the welding diameter ⁇ of the welded portion 61 changes in proportion to the amount of current that is energized. That is, as the amount of current increases, the amount of heat generation increases and the weld diameter ⁇ increases.
  • the roller electrode 60 is advanced (in the direction of the arrow) along the pair of peripheral wall portions 10 b that are short sides of the peripheral wall portion 10 b of the container body 10, and welding is performed in the same manner.
  • the welded portion 61 can be formed so as to continuously overlap the interface between the sealing plate 11 and the seal ring 12 along the pair of peripheral wall portions 10b which are short sides. Welding of the sealing plate 11 along the pair of peripheral wall portions 10b that are short sides is completed.
  • FIG. 9 is a plan view with the sealing plate 11 removed.
  • the sealing plate 11 can be welded, and the electric double layer capacitor 1 shown in FIG. 1 can be obtained.
  • the pair of peripheral wall part 10b side used as a long side was welded first among the peripheral wall parts 10b in the container main body 10, it is not limited to this case, and a pair of peripheral wall part 10b side used as a short side is welded first. It doesn't matter.
  • the thickness of the sealing plate 11 is preferably 30 ⁇ m or less. This point will be described below.
  • the heat from the roller electrode 60 is transmitted to the sealing plate 11 with which the roller electrode 60 is in contact, but is also transmitted to the sealing ring 12 as well as the sealing plate 11. Therefore, both the sealing plate 11 and the seal ring 12 are thermally expanded, and are thermally contracted by cooling after the end of welding. At this time, since the sealing plate 11 and the seal ring 12 have different thermal shrinkage rates, stress acts between them.
  • the thickness of the sealing plate 11 it is preferable to reduce the thickness of the sealing plate 11 to a thickness of 30 ⁇ m or less so as to suppress the influence of heat shrinkage by the sealing plate 11. By doing so, it is possible to suppress the occurrence rate of cracks to 1% or less.
  • fever of seam welding may be considered to be transmitted to the peripheral wall part 10b of the container main body 10 through the non-aqueous electrolyte W simultaneously with the seal ring 12, for example.
  • a large temperature difference is generated between the peripheral wall portion 10b and the bottom wall portion 10a in the container body 10, stress is concentrated on the bottom wall portion 10a during cooling, and the bottom wall portion 10a is further deformed or deformed.
  • the non-aqueous electrolyte W may be volatilized and performance may be reduced. Therefore, it is preferable that the thickness of the sealing plate 11 is 30 ⁇ m or less from the viewpoint of suppressing these problems.
  • the wall thickness T (see FIG. 7) of the peripheral wall portion 10b and reduce the weld diameter ⁇ of the weld portion 61.
  • the wall thickness T is thin, the strength (rigidity) of the peripheral wall portion 10b is lowered, so that unauthorized deformation and cracking are likely to occur.
  • the welding diameter ⁇ is large, the amount of current at the time of welding is large, so that heat is excessively transmitted, so that unauthorized deformation and cracking are likely to occur.
  • the relationship between the wall thickness T ( ⁇ m) of the peripheral wall portion 10b and the welding diameter ⁇ ( ⁇ m) of the welded portion 61 satisfies the following formula (1). (Weld diameter ⁇ / wall thickness T) ⁇ 0.5 (1) By doing in this way, it is possible to suppress the incidence rate of cracking to 1% or less.
  • FIG. 10 is a plan view in a state where the sealing plate 11 is removed. Moreover, even if welding is repeated a plurality of times, since the above formula (1) is satisfied, the occurrence rate of cracks and the like are unlikely to increase.
  • the roller electrode 60 does not hit the sealing plate 11 and there is a risk of poor welding. Therefore, it is preferable to determine the outer size of the sealing plate 11 so that the outer peripheral edge portion of the sealing plate 11 coincides with the outer peripheral edge portion of the seal ring 12 as shown in FIG. Thereby, it is possible to reliably energize the sealing plate 11 using the roller electrode 60 and perform good welding.
  • the thickness of the seal ring 12 is preferably larger than the thickness of the sealing plate 11. In particular, as described above, it is preferable to reduce the thickness of the sealing plate 11 in order to prevent problems such as unauthorized deformation and cracking. However, at this time, the thickness of the seal ring 12 is made thicker than that of the sealing plate 11. By doing so, thermal expansion of the seal ring 12 can be suppressed as much as possible, and heat can be prevented from being transmitted to the peripheral wall portion 10b. For example, when the thickness of the sealing plate 11 is about 20 ⁇ m, the thickness of the seal ring 12 is preferably about 30 to 40 ⁇ m. Note that the maximum value of the thickness of the seal ring 12 is preferably about half of the total thickness of the electric double layer capacitor 1.
  • a sealing plate is welded to the container body through a nickel-plated seal ring, and an electrochemical cell in which an electrochemical element is sealed in the internal storage space is produced, and the electrochemical cell is charged and discharged.
  • the first evaluation test for evaluating the stability of the charge / discharge performance of the electrochemical cell during the period was repeated.
  • a second evaluation test was performed to confirm whether or not a crack occurred in the electrochemical cell.
  • the test was performed with a plurality of patterns while changing the material of the sealing plate, the presence or absence of plating, and the type of plating. These results are shown in Tables 1 to 4.
  • the test was performed with a plurality of patterns while changing the material and thickness of the sealing plate. These results are shown in Tables 5-8.
  • Charging / discharging was performed with a constant current (CC) and a constant voltage (CV). Specifically, charging was first started at a constant current, and when the maximum voltage (3.3 V) was reached, the voltage was held for a certain period of time. At this time, the total time of the charging time and the holding time was set to 2 hours. Next, after the elapse of 2 hours, discharge was started with a constant current, and when the minimum voltage (0 V) was reached, the voltage was held for a certain period of time. Also in this case, the total time of the discharge time and the holding time was set to 2 hours. The above-mentioned one charge and one discharge were combined to form one cycle, and this was repeated 120 cycles.
  • CC constant current
  • CV constant voltage
  • the temperature condition of the electrochemical cell when performing charge / discharge was set to a predetermined temperature that does not cause decomposition of the liquid electrolyte, specifically, 70 ⁇ 3 ° C. In the course of repeating the above cycle, the temperature was appropriately changed to room temperature (25 ⁇ 3 ° C.).
  • Test Examples 1 to 12 were evaluated and tested under the former conditions, and are examples according to the present invention.
  • Test Example 13 is an evaluation test under the latter condition, and is a comparative example for the example.
  • the thickness of the sealing plate is the same in Test Examples 1 to 13.
  • Test Example 14 to 27 were evaluated and tested under the former conditions, and are examples according to the present invention.
  • Test Example 28 is an evaluation test under the latter condition, and is a comparative example for the example.
  • the thickness of the sealing plate 11 is the same in Test Examples 14 to 28.
  • gold plating having a film thickness shown in Table 2 was performed by vacuum deposition, and in Test Examples 16 to 27, gold plating having a film thickness shown in Table 2 was performed by a wet method using electroplating. .
  • test Example 29 SUS316 austenitic stainless steel was plated with 0.08 ⁇ m pure gold as a metal layer by a wet method.
  • Test Example 30 SUS316 austenitic stainless steel was plated with 0.24 ⁇ m pure gold as a metal layer by a wet method.
  • Test Example 31 SUS316 austenitic stainless steel was plated with 0.43 ⁇ m pure gold as a metal layer by a wet method.
  • Test Example 32 SUS316 austenitic stainless steel was plated with 0.68 ⁇ m pure gold as a metal layer by a wet method.
  • Test Example 33 SUS316 austenitic stainless steel was plated with a gold-cobalt alloy of 0.19 ⁇ m as a metal layer by a wet method.
  • Test Example 34 SUS316 austenitic stainless steel was plated with a gold-cobalt alloy of 0.51 ⁇ m as a metal layer by a wet method.
  • the use of a gold-cobalt alloy instead of pure gold as the metal layer led to improved assembly workability of the electrochemical cell. That is, the hardness of soft pure gold can be increased when a gold-cobalt alloy is used compared to pure gold. Therefore, when the metal layer is formed by a wet method, the metal layer is hardly damaged. Therefore, it is easier to handle than when pure gold is used, and it is considered that the assembly workability can be improved and the yield can be improved.
  • Test Example 36 SUS316 austenitic stainless steel was plated with 5 ⁇ m of silver (Ag) as a metal layer by a wet method.
  • Test Example 37 SUS316 austenitic stainless steel was plated with 5 ⁇ m of copper (Cu) as a metal layer by a wet method.
  • Test Example 38 SUS316 austenitic stainless steel was plated with 5 ⁇ m of tin-copper (Sn—Cu) as a metal layer by a wet method.
  • Test Example 39 SUS316 austenitic stainless steel was plated with 5 ⁇ m of iridium (Ir) as a metal layer by a wet method.
  • Ir iridium
  • Test Example 40 SUS316 austenitic stainless steel was plated with 5 ⁇ m of palladium (Pd) as a metal layer by a wet method.
  • Test Example 41 SUS316 austenitic stainless steel was plated with 5 ⁇ m of rhodium (Rh) as a metal layer by a wet method.
  • the crack occurrence rate is 1% or less, and the thickness is 30 ⁇ m or more. It was confirmed that the crack occurrence rate exceeded 1%. In particular, it was recognized that the crack generation rate decreased as the thickness decreased, and the crack generation rate increased as the thickness increased. From these results, it is clear that the thickness of the sealing plate is proportional to the crack generation rate, and it was confirmed that the crack generation rate was suppressed as the thickness was reduced. Moreover, by making the thickness of the sealing plate 30 ⁇ m or less, the crack generation rate can be reduced to 1% or less, and it was confirmed that it was particularly effective.
  • the sealing plate was formed of stainless steel having a material of SUS304 and a thickness of 20 ⁇ m.
  • an evaluation test was performed while changing the wall thickness T of the peripheral wall portion of the container body in a state where the weld diameter ⁇ of the weld portion was 190 ⁇ m. The results are shown in Table 6.
  • an evaluation test was performed while changing the welding diameter ⁇ of the welded portion in a state where the wall thickness T of the peripheral wall portion of the container main body was 400 ⁇ m. The results are shown in Table 7.
  • the present invention includes a base member, a bonding material fixed to the base member, and a lid member welded to the base member via the bonding material, and is sealed between the base member and the lid member.
  • the present invention relates to an electrochemical cell comprising: a sealed container in which a storage space is defined; and an electrochemical element that is stored in the storage space and is chargeable / dischargeable, wherein the lid member is stainless steel.
  • the stainless steel lid member is welded to the base member, and the electrochemical element is sealed in the storage space. Therefore, it is possible to suppress the leakage current from increasing during charging and reducing the charging efficiency. . Therefore, an electrochemical cell having stable quality over a long period of time and excellent cycle characteristics of charge / discharge can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

 本発明に係る電気化学セル(1)は、ベース部材(10)と、ベース部材に固定された接合材(12)と、接合材を介してベース部材に溶接されたリッド部材(11)と、を有し、ベース部材及びリッド部材の間に密封された収納空間(S)が画成された密封容器(2)と、この収納空間内に収納され、充放電可能な電気化学素子(3)と、を備え、リッド部材がステンレスである。

Description

電気化学セル
 本発明は、非水電解質二次電池や電気二重層キャパシタ等の電気化学セルに関する。
 本願は、2011年5月12日に日本に出願された特願2011-107552号について優先権を主張し、その内容をここに援用する。
 電気化学セルは、従来から携帯電話、PDA、携帯用ゲーム機等の各種小型電子機器において、メモリのバックアップ用電源や時計機能のバックアップ用電源等として利用されている。近年、この種の電気化学セルのニーズとして、小型化及び薄型化に対する要求が強くなっている。これは、電気化学セルが搭載される電子機器が小型化しているためである。また、実装する際にリフロー半田付け法(半田クリームを塗布した電気化学セルを実装基板上に配置し、回路基板ごと加熱し半田付けを行う方法)が多用されている。そのため、電気化学セルには、リフロー半田付けの温度に耐える耐熱性が求められるようになった。
 従来の電気化学セルは、電池缶をかしめて封口するコイン形状(ボタン形状)をしているものが多い。そのため、実装面積を有効に活用することができず、省スペース化を阻害する要因となっていた。また、リフロー半田付けを行う際には、端子等をケースに予め溶接しておく必要があり、部品点数の増加及び製造工数の増加という点でコストアップとなっていた。
 そこで、この種の問題を解決するため、実装面積を有効に活用できる略四角形状(チップ状)の電気化学セルが検討されるようになった。このチップ型の電気化学セルは、コイン形状のものとは異なり、缶(ケース)をかしめて(クリンプして)、封口することができるものではない。このため、凹状容器と封口板とを溶接することにより、電極等を内部に密閉したものが提供されている(特許文献1参照)。
特開2004-227059号公報
 上記特許文献1に記載の電気化学セルでは、凹状容器内に有機溶媒を含む電解液が収納されており、金属リングを介して凹状容器の開口部に金属製の封口板を溶接することで、凹状容器を封口している。この際、封口板、金属リングの材質としては、セラミックス製の凹状容器との熱膨張を合わせるため、コバール(Co:17重量%、Ni:29重量%、Fe:残部、からなる合金)が好適に用いられている。また、封口板と金属リングとの対向する面には、それぞれ溶接時の接合材としてニッケルメッキが施されている。
 ところで、チップ型の電気化学セルにおいて、封口板及び金属リングは負極活物質と接続されることが多いため、通常還元側の電位に維持され、溶解することがないと思われていた。しかし、電気化学セルの長期の使用においては、電解液の分解や、封口板や金属リング、又は接合材の金属の溶け出し等、電気化学セルの機能に障害を引き起こす場合があった。
 具体的には、接合材として用いたニッケルが、充放電の繰り返しに伴う電圧の印加、又はその電圧の保持の過程で溶解し、特に充電時に漏れ電流が増加して、充電効率が低下するという課題があった。
 本発明は、このような事情に考慮してなされたもので、その目的は充電効率の低下を抑制でき、長期的に品質が安定した電気化学セルを提供することである。
(1)本発明に係る電気化学セルは、ベース部材と、前記ベース部材に固定された接合材と、前記接合材を介してベース部材に溶接されたリッド部材と、を有し、前記ベース部材及び前記リッド部材の間に密封された収納空間が画成された密封容器と、前記収納空間内に収納され、充放電可能な電気化学素子と、を備え、前記リッド部材がステンレスであることを特徴とする。
 本発明に係る電気化学セルによれば、接合材を介してベース部材に溶接されたリッド部材が、表面が緻密で安定した酸化被膜で覆われているステンレスであるので、リッド部材の材料として従来多用されていたコバール等のNi基合金に比べて耐腐食性に優れている。特に、クロムを含有することで、緻密な酸化被膜が形成されている。そのため、リッド部材の母材は酸化被膜によって保護された状態となっており、ベース部材との溶接時にニッケルを含む母材が溶出し難い。しかもステンレスに含まれるニッケルの割合は14%以下であり、コバールの29%に比べて含有するニッケルの量がそもそも少ない。つまり、溶接時にリッド部材の母材を溶出し難くすることができ、溶出したとしても溶出分に含まれる成分にはニッケルの量が少ない。
 従って、充電時に漏れ電流が増加することを防止でき、充電効率が低下することを抑制できる。これにより、長期的に亘って品質が安定した電気化学セルとすることができる。
 また、上記したようにリッド部材の表面に形成された酸化被膜は安定しているので、傷等によって剥がれ難く、リッド部材の母材が露出することを抑制できる。この点においても、充電時に漏れ電流が増加してしまうことを防止して、充電効率が低下することを抑制することができると共に、リッド部材の取り扱い性を容易にして電気化学セルの組み立て作業性の向上化に繋げることができる。更に、ステンレスは簡便に入手可能であるうえ安価であるので、電気化学セル自体の低コスト化を図り易い。
 なお、ステンレス鋼としては、次のいずれかのステンレス鋼を用いることができる。
(a)オーステナイト・フェライト二相ステンレス鋼。
(b)オーステナイト系ステンレス鋼。
(c)析出硬化ステンレス鋼。
(d)フェライト系ステンレス鋼。
(e)マルテンサイト系ステンレス鋼。
 特にリッド部材には、充放電時において電圧の変化によって孔食が発生する可能性が高い。そのため、孔食の高い材料を選択することが望ましく、上記(a)オーステナイト・フェライト二相ステンレス鋼が最も望ましい。
(2)前記リッド部材の表面のうち少なくとも前記電気化学素子の電極と接する部分に、Au、Sn、Cu、Ag、Ir、Pd、Rhのうちから選択される金属材料、又はこれら金属材料を少なくとも一種含む合金からなる金属層が被膜されていても良い。
 この場合には、リッド部材の母材が酸化被膜だけでなく金属層によっても保護されているので、傷等によって母材がより露出し難くなるうえ、リッド部材とベース部材との溶接時にリッド部材の母材がより溶出し難い。
 加えて、Au、Cu、Ag、Ir、Pd、Rh、Sn、又はそれらの合金を用いた場合には、ニッケルに比べて貴な金属であるためイオン化傾向が低く溶出し難い。そのため、これらの金属と共にリッド部材の母材に含まれるニッケルが溶出するといったことが生じ難い。
 これらのことから、充電時に漏れ電流が増加して充電効率が低下してしまうことを効果的に抑制でき、充放電のサイクル特性に優れた電気化学セルとすることができる。
(3)前記金属層が前記接合材と接する部分に亘って被膜されていても良い。
 この場合には、リッド部材の溶接時に、金属層と接合材とを互いに溶かし合いながら溶着させることができ、これら金属層及び接合材を介してベース部材とリッド部材とをより強固に溶接することができる。そのため、電気化学素子が収納されている収納空間の密閉性を高めることができ、さらに品質の安定した電気化学セルとすることができる。
(4)前記金属層と前記リッド部材との間には、Ni又はCuからなる下地層が形成されていても良い。
 この場合には、下地層上に金属層が形成されているので、リッド部材に対して金属層を安定且つ強固に被膜させることができる。従って、上述した作用効果をより顕著に奏効することができる。
 また、例えば、金属層が接合材と接する部分に亘って被膜されている場合であって、接合材及び下地層にニッケルを用いた場合には、接合材と下地層とがなじみが良く、両者を高い親和性で強固に接合させることができるので、これら金属層及び接合材を介してベース部材とリッド部材とをさらに強固に溶接することが可能である。
(5)前記リッド部材は厚みが30μm以下とされていても良い。
 この場合には、リッド部材の厚みが30μm以下であるので、電気化学セルの組み立て時、リッド部材の溶接による熱の影響によって電気化学セルに割れや不正変形等の不具合が発生することを抑制することができる。
 即ち、リッド部材を溶接(シーム溶接やレーザー溶接等)する際、例えばシーム溶接では、間欠を伴うパルス的な周期を伴い通電するため、通電された部位が局所的に発熱する。また、レーザー溶接においても、間欠を伴うパルス的な周期を伴いレーザービームを照射するため、レーザービームを受けた部位が局所的に発熱する。いずれの場合であっても、その熱は接合材を介してベース部材のうち少なくとも接合材側の一部分に伝わるので、リッド部材及びベース部材における上記一部分が熱膨張する。そして、溶接終了後、リッド部材及びベース部材における上記一部分は、冷却されるので収縮するが、その際の熱収縮率が異なるので応力が発生する。これにより、例えばベース部材における少なくとも上記一部分に応力が集中してしまい、不正変形や割れ等が発生し易い。
 しかしながら、リッド部材の厚みが30μm以下であるので、リッド部材による熱収縮の影響を抑えることができ、上記応力を低減させて不正変形や割れ等の不具合の発生を抑制することができる。
(6)前記接合材は、前記収納空間を囲繞するリング状に形成された導電性のシールリングとされていても良い。
 この場合には、導電性のシールリングを介してリッド部材が溶接されているので、収納空間をより確実に気密に封止し易い。
(7)前記リッド部材は、その外周縁部が前記シールリングの外周縁部と一致していても良い。
 この場合には、リッド部材が、その外周縁部がシールリングの外周縁部と一致するように外形形成されているので、良好な溶接を行うことができる。例えば、ローラ電極を利用したシーム溶接を行う場合、ローラ電極をリッド部材に対して確実に接触させることができ、確実な通電を行って良好な溶接を行うことができる。また、レーザー溶接を行う場合であっても、シールリングとリッド部材との接触領域を十分に確保できるので、レーザーを当て易く、やはり良好な溶接を行うことができる。
(8)前記シールリングは前記リッド部材よりも厚くても良い。
 この場合には、溶接時の熱の影響によってシールリングが熱膨張し難いうえ、その熱がシールリングを介してベース部材側に伝わり、該ベース部材が熱膨張してしまうことも抑制し易い。従って、熱の影響に起因する割れや不正変形等の不具合が発生することを抑制することができる。
(9)前記ベース部材は、平板状の底壁部及び枠状の周壁部を有する有底筒状に形成され、前記リッド部材は、該リッド部材と前記接合材との界面において溶接部が連続的に重なったシーム溶接により、該接合材を介して前記ベース部材における前記周壁部の上面に溶接され、前記周壁部の壁厚T(μm)と前記溶接部の溶接径φ(μm)とは、下記式(1)を満たすことが良い。
 (溶接径φ/壁厚T)<0.5 ・・・・(1)
 この場合には、電気化学セルの組み立て時、リッド部材の溶接による熱の影響によって電気化学セルに割れや不正変形等の不具合が発生することを抑制することができる。
 即ち、リッド部材を溶接(シーム溶接やレーザー溶接等)する際、その熱は接合材を介してベース部材における周壁部に伝わるので、リッド部材及び周壁部が熱膨張する。そして、溶接終了後、リッド部材及び周壁部は、冷却されるので収縮するが、その際の熱収縮率が異なるので応力が発生する。これにより、周壁部にその応力が集中してしまい、不正変形や割れ等の不具合が発生し易い。
 特に、周壁部の壁厚が薄い場合には、強度(剛性)が低下するので上記不具合が生じ易くなってしまう。また、溶接径が大きいと、溶接時の電流量が大きいので熱が過大に伝わり、やはり上記不具合が生じ易くなってしまう。
 そこで、周壁部の壁厚T(μm)と溶接部の溶接径φ(μm)とを上記式(1)を満たすようにすることで、周壁部の壁厚を厚くする点と、溶接径を小さくする点と、をバランス良く両立させることができ、上記不具合の発生を抑制することができる。
(10)前記リッド部材は、前記シーム溶接を複数回繰り返し行うことにより溶接されていても良い。
 この場合には、例えば1回目の溶接時における溶接部と、2回目の溶接時における溶接部と、を互いに連続的に重ね合わせることができるので、より確実な溶接を行うことができ、収納空間をさらに確実に気密にすることができる。
 特に、溶接を複数回行うので、1回の溶接での溶接径をできるだけ小さくでき、上記不具合をさらに効果的に抑制できる。
 本発明に係る電気化学セルによれば、ステンレス製のリッド部材をベース部材に溶接して電気化学素子を収納空間内に密封しているので、溶接時におけるニッケルの溶出を抑制でき、充電時に漏れ電流が増加して充電効率が低下してしまうことを抑制できる。従って、長期的に亘って品質が安定し、且つ充放電のサイクル特性に優れた電気化学セルとすることができる。
本発明に係る実施形態を示すチップ型の電気二重層キャパシタの縦断面図である。 電気二重層キャパシタの変形例を示す縦断面図である。 電気二重層キャパシタの別の変形例を示す縦断面図である。 電気二重層キャパシタのさらに別の変形例を示す縦断面図である。 図1に示す電気二重層キャパシタを製造する際の一工程図であって、ローラ電極を利用したシーム溶接によって封口板を溶接している状態の側面図である。 図5に示す状態を上方から見た平面図であって、周壁部のうち長辺となる周壁部に沿ってローラ電極を進行させている図である。 図6に示す状態において、封口板を取り外した状態の平面図である。 図6に示す状態の後、周壁部のうち短辺となる周壁部に沿ってローラ電極を進行させている図である。 図8に示す状態において、封口板を取り外した状態の平面図である。 図7に相当する図であって、溶接を2回繰り返した場合における図である。 ローラ電極を利用したシーム溶接によって封口板を溶接する際の断面図であって、封口板の外形サイズがシールリングの外形サイズよりも小さい場合の図である。 ローラ電極を利用したシーム溶接によって封口板を溶接する際の断面図であって、封口板の外形サイズがシールリングの外形サイズと一致している場合の図である。
 以下、本発明に係る電気化学セルの実施形態について図面を参照して説明する。なお、本実施形態では、電気化学セルの一例として、外観が略直方体のチップ形状とされた表面実施型の電気二重層キャパシタを例に挙げて説明する。
(電気二重層キャパシタの構成)
 図1に示すように、電気二重層キャパシタ1は、内部に密封された収納空間Sを有する密封容器2と、収納空間S内に収納され、蓄充電可能な電気化学素子3と、を備えており、図示しない基板に例えばリフローによって表面実装可能とされた電気化学デバイスである。
 密封容器2は、容器本体(ベース部材)10と、該容器本体10に対して後述する導電性のシールリング(接合材)12を介して溶接された封口板(リッド部材)11と、を備えている。
 容器本体10は、セラミックスやガラス等の材料で形成されたものであり、平板状の底壁部10a及び枠状の周壁部10bを有する有底筒状の凹状容器とされ、底壁部10aと周壁部10bとで凹部を画成している。そして、この凹部を上記封口板11が塞いで封口している。
 この点詳細に説明すると、容器本体10の周壁部10bの上面には凹部を径方向外側から囲繞するように接合層13が形成され、接合層13上に上記シールリング12が固定されている。封口板11はこのシールリング12を介して容器本体10に重ねられており、シールリング12に対する溶着によって容器本体10に対して気密に接合されている。そして、容器本体10の凹部と封口板11とで画成された空間が、気密に封止された上記収納空間Sとされている。
 なお、本実施形態のシールリング12は、ニッケルメッキを施したステンレススチール、又はニッケル基合金を用いることができ、例えばコバール(Co:17重量%、Ni:29重量%、Fe:残部からなる合金)、エリンバー(Co:12重量%、Ni:36重量%、Fe:残部からなる合金)、インバー(Ni:36重量%、Fe:残部からなる合金)、42-アロイ(Ni:42重量%、Fe:残部からなる合金)、又は前記封口板11に用いたステンレス鋼の中から選ばれる1つとされている。
 接合層13は、例えばシールリング12とのなじみの良いニッケルや金等から形成することが好ましい。接合層13の形成方法としては、電解メッキや無電解メッキの他、真空蒸着等の気相法等を採用しても良い。
 収納空間Sに面した容器本体10の底壁部10aの上面には、集電体14が略全面に亘って形成されている。また、容器本体10の底壁部10aの下面には、一対の外部接続端子15、16が電気的に切り離された状態で形成されている。
 両外部接続端子15、16のうち一方の外部接続端子15は、容器本体10の側面に形成された側面電極17を介して集電体14に導通しており、他方の外部接続端子16は、容器本体10の側面に形成された側面電極18を介して接合層13に導通している。
 この点、詳細に説明する。
 集電体14は、一方の外部接続端子15が形成されている側の容器本体10の側面まで延設している。そして、側面まで延設された集電体14と外部接続端子15とを接続するように、容器本体10における底壁部10aの側面に一方の側面電極17が形成されている。一方、他方の側面電極18は、容器本体10の周壁部10bの上面に形成された接合層13と他方の外部接続端子16とを接続するように、容器本体10における底壁部10a及び周壁部10bの側面に亘って形成されている。
 なお、これら一対の外部接続端子15、16及び側面電極17、18は、例えばメッキ法やスパッタ法等により形成された単一金属による単層膜、又は異なる金属が積層された積層膜とされている。積層膜としては、2層、3層でも構わないが、例えば基板との良好なリフローを行うために、下地層がニッケル、中間層が金、表面層が半田の3層が好ましい。
 上記集電体14は、耐食性に優れ且つ膜厚法での形成が可能なタングステン、銀や金が好ましい。また、貴な電位を印加した際において後述する液体電解質W中に溶解するのを防止するため、バルブメタル(弁作用金属:表面に耐腐食性の不働態被膜を生成する金属)又は炭素で構成しても良い。バルブメタルとしては、アルミニウム、チタン、タンタル、ニオブ、ハフニウム、ジルコニウム等が挙げられるが、特にアルミニウム又はチタンを採用することが好ましい。
 更に、集電体14としてはクロム層を下地層として、該下地層上に形成することが好ましい。下地層を形成することで、容器本体10に対する集電体14の密着性を向上させることが可能である。なお、下地層としては、クロム層以外にチタン層も好適である。このチタン層は、下地層としてではなく集電体自体として利用することも可能である。
 封口板11は、ステンレス製の基板であり、上述したようにシールリング12を利用した溶接によって容器本体10に固定されている。なお、このときの溶接としては、ローラ電極を接触させることによるシーム溶接、レーザー溶接や超音波溶接等が挙げられる。
 また、本実施形態の封口板11には、容器本体10側に向いた下面の全体に下地層20を挟んで金属層21が被膜されている。そのため、これら下地層20及び金属層21は、後述する負極27と接しているだけでなくシールリング12とも接している。
 下地層20は、例えばニッケルとされ、金属層21は、例えば金とされている。なお、これら下地層20及び金属層21の形成方法としては、特に限定されるものではないが、無電解メッキを採用することが好ましい。また、膜厚としては、例えばニッケルからなる下地層20としては5±4μm程度、金からなる金属層21としては0.05~6μm程度が好ましい。なお、これら下地層20及び金属層21は、後述する負極27の集電体としての役割も果している。
 ここで、金属層21の厚みとしては0.05μm以上が望ましく、より望ましくは1μm以上の厚さにすることが望ましい。また、6μm以下が望ましい。メッキの厚みが薄い場合には、ピンホール等の欠陥が存在する可能性もあり、また傷を付けやすいため不適切である。また、メッキ厚が厚い場合は、メッキ後のメッキの内部応力によって、クラックを生じる可能性もあり、先のピンホールやクラック部から腐食を生じる可能性がある。
 また、メッキの場合はB(ホウ素系化合物)やP(リン系化合物)を添加した無電解メッキよりも、PやBの添加のない電解メッキが望ましい。これは、B(ホウ素系化合物)を添加した場合は、純ニッケルでメッキした材料よりも融点が高いために、シーム溶接やレーザー等の溶接がし難く、P(リン系化合物)を添加した無電解メッキでは、純ニッケルでメッキした材料よりも融点が低くシーム溶接やレーザー等の溶接がし易いが、その反面、純ニッケルと比較して酸化電位が低く局所電池を発現し易く、腐食しやすい。特に、電解メッキの場合は、バレルメッキよりも連続メッキを用いた方が望ましい。これは、電解メッキを行う場合、メッキにおけるニッケルの析出形態にバラツキを生じ易いためであり、このバラツキがLID(封口板11)の腐食を引き起こし易いためである。
 また、2層又は3層のクラッド材として、使用することもできる。
 ここで、封口板11は、例えばダイ・パンチによる打ち抜きによって形成することができる。また、封口板11は、打ち抜き以外にもレーザーによる切断加工やワイヤー放電加工によって得ることもできる。さらに、薄い金属箔を用いる場合には、エッチングによる方法を用いることができ、望ましい。レーザーやワイヤー放電加工では、切断時に切断面に酸化被膜ができて、封止の際に電流やレーザーのパワーを要するため、容器の割れを招くので好ましくない。そのため、通電量がエッチングによる方法を用いるか、加工後に過剰な酸化被膜を除去することが好ましい。
 電気化学素子3は、集電体14を介して容器本体10の底壁部10a上に固定された正極(第1電極)25と、該正極25上にセパレータ(隔離部材)26を挟んで重ねられ、収納空間S内に充填された液体電解質(電解質)Wに含有する解離性のイオン種(例えば、TEMA-BF等)を正極25との間に分極させることができる負極(第2電極)27と、を備えている。
 また、電気化学素子3は、集電体14を介して容器本体10の底壁部10a上に固定された正極(第1電極(例えば活性炭))25と、該正極25上にセパレータ(隔離部材)26を挟んで重ねられ、収納空間S内に充填された液体電解質(電解質)Wを通じてリチウムイオン(カチオン)を正極25との間で移動させる負極(第2電極(例えば活性炭))27と、を備えていても良い。
 更に、電気化学素子3は、収納空間S内に充填された液体電解質(電解質)Wを通じてカチオン又はリチウムイオン等のアニオンを正極25及び負極27のうちの少なくともいずれか一方に吸蔵(又はドーピング)することによって、電荷を蓄積できる能力を備えていても良い。
 正極25及び負極27は、それぞれ電気化学反応に関与する図示しない電極活物質(正極活物質、負極活物質)を有している。なお、これら正極25及び負極27のうちの少なくともいずれか一方は、液体電解質Wを介してリチウムイオンを吸蔵放出可能な金属酸化物等とすることができる。また、電極活物質同士の電子伝導性を高めるための目的で導電助剤を添加し、さらに電極の形状を保つために結着剤を添加して、正極25及び負極27を構成しても構わない。
 両電極25、27のうち正極25は、図示しない導電性接着剤等を利用して集電体14上に固定されて導通している。これにより正極25は、集電体14及び側面電極17を介して一方の外部接続端子15に導通している。
 なお、電極は予め真空、又は有酸素雰囲気(大気中)、又は窒素雰囲気(還元雰囲気)で、200℃以上で500℃以下の温度で加熱乾燥することが必要である。封口板と電極を接合する際に、導電性接着剤を用いる場合は、この電極の乾燥と同時に、導電性接着剤の固化反応を併せて実施することが出来る。そのため、120℃以下では、固化が不十分であり、200℃未満では乾燥が不十分である。さらに、製品としてリフロー処理を行う場合はリフロー処理と同等以上の温度で予め熱処理することが望ましい。これによって、電極に吸着した物質を取り除き、安定した品質を確保できる。さらに、メッキを施した場合、有酸素雰囲気で、500℃より高い温度で加熱する場合は、集電体の表面のメッキの酸化が進み望ましくない。特に、メッキの材質としてCuやその合金を用いた封口板では、真空や窒素雰囲気で加熱する必要が有り、その場合、製品の取り出し温度は、100℃未満、可能であれば50℃未満にしなければならない。50℃を越える温度で有酸素雰囲気に暴露すると表面の酸化がおこり、製品の品質が安定しない。
 そして、正極25上にシート状のセパレータ26及び負極27がこの順序で重ねられている。負極27は、下地層20及び金属層21を介して封口板11の下面に接していると共に、下地層20及び金属層21に対して導通している。これにより負極27は、下地層20、金属層21、シールリング12、接合層13及び側面電極18を介して他方の外部接続端子16に導通している。
 セパレータ26は、正極25と負極27とを隔離して両電極25、27の直接的な接触を規制する部材であり、仮に衝撃等を受けたとしても、両電極25、27が接触して電気的に導通しないように設計されている。また、セパレータ26の厚みが正極25と負極27との電極間距離となる。
 液体電解質Wは、例えば予め水分を100ppm以下に除去した非プロトン性の極性有機溶媒(例えば、プロピレンカーボネートやスルホラン等)に、同様に水分を除去した4級アンモニウムのホウフッ化物塩(例えば、TEMA-BF)を溶解させた非水電解質(液)であり、少なくとも正極25、負極27及びセパレータ26を浸漬させた状態で収納空間S内に存在していれば良い。電解液が多い場合、溶接時の発熱によって、電解液の液体の体積膨張や蒸気圧の上昇等の影響により、容器本体(ベース部材)10の損壊に至る場合がある。また、必要以上に封口板(リッド部材)11に電解液が付着した場合、電気化学的に封口板(リッド部材)11の腐食が生じ、キャパシタ等の性能の低下を招く。
(電気二重層キャパシタの作用)
 上記のように構成された電気二重層キャパシタ1によれば、一対の外部接続端子15、16を介して正極25と負極27との間に電圧が印加されると、例えば、ホウフッ化物の4級アンモニウム塩が液体電解質W内でイオン化し、前記非プロトン性の極性有機溶媒と溶媒和した状態で、正極25及び負極27に吸着することで分極する。これにより、活性炭表面に電気二重層を形成することで、電荷の蓄積が行われ、充放電が行われる。
 本実施形態の電気二重層キャパシタ1は、例えば、下記の用途に好適に用いることができる。
 ・(ノート型パソコン、携帯電話、コードレス電話、ヘッドフォンステレオ、ビデオカメラ、デジタルカメラ、携帯電子辞書、電卓、メモリーカード、PDA、携帯用ゲーム機器等)のメモリや時計機能の電源バックアップ。
 ・HEMS(ホームエネルギーマネージメントシステム)に関連するセンサー類の電源。
 ・EH(環境発電:エネルギー・ハーベスト)を用いた発電エネルギーの蓄電素子。
 ・無線センサーネットワーク、RFIDタグ、デジタル家電のRFリモコン等の蓄電素子。
 ・非接触ICカード、多機能ICカードの電源や蓄電素子。
 ・瞬断時のCPUやDRAMのバックアップ電源。
 ・フラッシュメモリへのデータ退避用電源。
 ・蓄電素子生体発電機器のアシスト電源。
 特に、本実施形態の電気二重層キャパシタ1によれば、シールリング12を介して容器本体10に溶接された封口板11が、表面が緻密で安定した酸化被膜で覆われているステンレスで形成されているので、封口板11の材料として従来多用されてきたコバールに比べて耐腐食性に優れている。そのため、封口板11の母材は酸化被膜によって保護された状態となっており、容器本体10との溶接時にニッケルを含む母材が溶出し難い。しかもステンレスはコバールに比べて含有するニッケルの量がそもそも少ない。
 従って、充電時に漏れ電流が増加することを防止でき、充電効率が低下することを抑制できる。これにより、長期的に亘って品質が安定した信頼性の高い電気二重層キャパシタとすることができる。特に、充放電のサイクル特性に優れた電気二重層キャパシタとすることができる。
 また、上記したように封口板11の表面に形成された酸化被膜は安定しているので、傷等によって剥がれ難く、封口板11の母材が露出することを抑制できる。この点においても、充電時に漏れ電流が増加することを抑制することができると共に、封口板11の取り扱い性を容易にして電気二重層キャパシタ1の組み立て作業性の向上化に繋げることができる。更に、ステンレスは簡便に入手可能であるうえ安価であるので、電気二重層キャパシタ1自体の低コスト化を図り易い。
 また、本実施形態では、封口板11の下面に下地層20を介して金属層21が被膜されている。そのため、封口板11の母材が酸化被膜だけでなく金属層21によっても保護されている。従って、傷等によって母材がより露出し難くなるうえ、容器本体10と封口板11との溶接時に封口板11の母材に含まれるニッケルがより溶出し難い。従って、この点においても、充電時に漏れ電流が増加してしまうことを防止して、充電効率が低下することを抑制することができると共に、充放電のサイクル特性に優れ電気二重層キャパシタとすることができる。
 なお、下地層20上に金属層21が形成されているので、該金属層21を封口板11に対して安定且つ強固に被膜させることが可能とされている。また、封口板11の溶接時に、シールリング12にメッキされたニッケルと、下地層20のニッケルと、金属層21の金と、を互いに溶かし合いながら強固に溶着させることができ、これらシールリング12、下地層20及び金属層21を介して容器本体10と封口板11とを強固に溶接することができる。そのため、電気化学素子3が収納されている収納空間Sの密閉性を高めることができ、品質の安定化を図り易い。
 特に、下地層20としてシールリング12にメッキされたニッケルと同じニッケルを用いているので、非常になじみ易く高い親和性でシールリング12と下地層20とを確実に溶着できる。そのため、容器本体10と封口板11との強固な溶接が可能となる。
 なお、金からなる金属層21は、ニッケルに比べて貴な金属であるためイオン化傾向が低く、溶接時に溶出し難い。そのため、金属層21と共に下地層20のニッケルや、封口板11の母材に含まれるニッケルが溶出し難く、充電時に漏れ電流が増加し、充電効率が低下する現象を引き起こし難い。
 なお、上記実施形態において、封口板11の材質であるステンレスとしては、例えば、SUS329J4L等のオーステナイト・フェライト二相ステンレス鋼、SUS301、SUS302、SUS304、SUS316、SUS316L、SUS321、SUS347、SUS201、SUS202等のオーステナイト系、SUS403等のマルテンサイト系、SUS430、SUS405等のフェライト系、SUS630、SUS631等のマルテンサイト系析出硬化型、SUS15-7PH、SUS17-7PH等の析出硬化型ステンレス鋼等のいずれのタイプも含むものである。
 特に、オーステナイト・フェライト二相ステンレス鋼やオーステナイト系が、耐食性が高く望ましい。さらに、Mnの含有率が高いSUS201、SUS202等のオーステナイト系ステンレスや、オーステナイト・フェライト二相ステンレス鋼は熱膨張係数が小さく望ましい。
 また、封口板11の下面の全体に下地層20及び金属層21を形成したが、防錆の観点、形成し易さの観点から封口板11の表面全体に亘って下地層20及び金属層21を形成することが好ましい。
 但し、封口板11の母材に含まれるニッケルが溶出して析出することを防止することが目的であるため、少なくとも封口板11の表面のうち負極27と対向する部分に形成されていれば良い。しかしながら、溶接時におけるシールリング12との親和性を高めてなじみを良くするために、図示の例の如く、下地層20及び金属層21をシールリング12と接する部分にも形成することが好ましい。
 また、上記実施形態では、封口板11に下地層20及び金属層21を形成したがこれらは必須なものではなく、これら下地層20及び金属層21が形成されていない封口板11を、シールリング12を介して容器本体10に直接溶接しても構わない。この場合であっても、ステンレス製の封口板11を利用しているので、充電時に漏れ電流が増加して充電効率が低下してしまうことを抑制できる。
 但し、封口板11に金属層21を被膜させる方が好ましく、下地層20を挟んで金属層21を被膜させる方がさらに好ましい。
 また上記実施形態では、金属層21の一例として金(Au)を挙げたが、金に限定されるものではなく、スズ(Sn)、銅(Cu)、銀(Ag)、イリジウム(Ir)、パラジウム(Pd)、ロジウム(Rh)のうちから選択される金属材料で形成されても構わないし、これら金属材料を少なくとも一種含む合金から形成されても構わない。
 特に、Cu、Ag、Ir、Pd、Rhを用いた場合には、Auを用いた場合と同様に、ニッケルに比べて貴な金属であるためイオン化傾向が低く溶出し難い。そのため、これらの金属と共に封口板11の母材に含まれるニッケルが溶出するといったことが生じ難い。一方、Snを単体で用いた場合には、融点が低いためリフロー処理には不向きである。そのため、Snを用いる場合には、Co、Cu等の合金メッキとして用いることが望ましい。
 このように、上記したいずれの金属材料を用いたとしても、充電時に漏れ電流が増加して充電効率が低下してしまうことを抑制できる。
 また、下地層20としてニッケルを用いたが、例えば金属層21として銀を用いた場合には、銀に対して親和性に優れなじみの良い銅を用いることが好ましい。但し、シールリング12の表面にニッケルメッキを施した場合には、溶接時のなじみを良くするために下地層20として同材料であるニッケルを用いることが好ましい。
 また、上記実施形態では、接合層13上にシールリング12を固定させたが、接合層13は必須なものではなく、容器本体10の周壁部10b上に直接シールリング12をロウ付けしても構わない。この場合には、側面電極18をシールリング12に導通させれば良い。
 また、上記実施形態では、接合材の一例としてニッケルメッキを施したシールリング12を例に挙げたが、ニッケル以外にも例えばスズや金メッキ等を施しても構わない。また、シールリング12の材質としては、コバールに限定されるものではない。
 但し、容器本体10に対して熱膨張係数の近いものが好ましい。例えば、容器本体10を熱膨張係数6.8×10-6/℃のアルミナを用いる場合、シールリング12としては熱膨張係数5.2×10-6/℃のコバールや、熱膨張係数4.5~6.5×10-6/℃の42-アロイを用いることが好ましい。
 なお、接合材としてはシールリング12に限られるものではなく、例えば金ロウ、銀ロウ、銀銅ロウ(Ag-Cu)等のロウ材や半田材等でも構わない。この場合、封口板11に対するなじみやリフロー温度等を考慮して、接合材の材質を決定すれば良い。例えば、260℃前後の温度でリフローを行う場合には、260℃よりも高い温度で融解する接合材を用いれば良く、300℃前後の接合材を用いることができる。但し、溶接時の容器本体10への熱の影響を考慮すれば、シールリング12を用いることが好ましい。
 また、上記実施形態において、容器本体10の材料の一例としてセラミックスやガラス等を挙げたが、より具体的には例えばセラミックス材料としては、アルミナ製のHTCC(High Temperature Co-fired Ceramic)や、ガラスセラミックス製のLTCC(Low Temperature Co-fired Ceramic)等を用いることができる。
 また、ガラス材料としては、ソーダ石灰ガラス、鉛ガラスや硼珪酸ガラス等を用いることができるが、加工性を考慮すると硼珪酸ガラスが望ましい。
 また、上記実施形態では、側面電極17を介して集電体14と一方の外部接続端子15とを導通させると共に、側面電極18を介して接合層13と他方の外部接続端子16とを導通させたが、この場合に限定されるものではない。
 例えば、図2に示すように、第1貫通電極31を介して集電体14と一方の外部接続端子15とを導通させると共に、第2貫通電極32を介して接合層13と他方の外部接続端子16とを導通させても構わない。この点詳細に説明する。
 この場合の集電体14は、収納空間S内における容器本体10の底壁部10a上に形成されている。そして、第1貫通電極31は、容器本体10の底壁部10aを上下に貫通するように形成され、集電体14と一方の外部接続端子15とを導通している。一方、第2貫通電極32は、容器本体10の底壁部10a及び周壁部10bを共に上下に貫通するように形成され、接合層13と他方の外部接続端子16とを導通している。
 このように構成した電気二重層キャパシタ30であっても、一対の外部接続端子15、16と、集電体14及び接合層13と、の接続ルートが異なるだけで同様の作用効果を奏効することができ、表面実装型の電気二重層キャパシタとして利用できる。
 また、貫通電極と側面電極とを組み合わせることで、集電体14と一方の外部接続端子15とを導通させ、接合層13と他方の外部接続端子16とを導通させても構わない。
 例えば、図3に示すように、容器本体10の底壁部10a上における正極25の略中心に、該正極25よりも横断面積が小さい集電体14を形成し、該集電体14と一方の側面電極41とを、底壁部10a内に形成した一方の内部電極43を利用して互いに接続させる。また、接合層13に導通している貫通電極45を底壁部10aの途中まで形成し、底壁部10a内に形成した他方の内部電極44を利用して、貫通電極45と他方の側面電極42とを互いに接続させる。
 このように構成することで、一方の内部電極43及び一方の側面電極41を介して集電体14を一方の外部接続端子15に導通させることができる。また、貫通電極45、他方の内部電極44及び他方の側面電極42を介して接合層13を他方の外部接続端子16に導通させることができる。
 このように構成した電気二重層キャパシタ40であっても、一対の外部接続端子15、16と、集電体14及び接合層13と、の接続ルートが異なるだけで、同様の作用効果を奏効することができ、表面実装型の電気二重層キャパシタとして利用できる。
 更に、上記実施形態では、ベース部材を有底筒状の容器本体10とし、リッド部材を平板状の封口板11としたが、この場合に限定されるものではなく、ベース部材とリッド部材との間に密閉した収納空間Sを画成できれば、ベース部材及びリッド部材をどのような形状に形成しても構わない。
 例えば、図4に示すように、ベース部材を平板状のベース基板52とし、リッド部材を有頂筒状の蓋体53とした密封容器51としても構わない。
 ベース基板52には、例えば第1貫通電極54及び第2貫通電極55がそれぞれ形成されている。第1貫通電極54は、集電体14と一方の外部接続端子15とを導通させている。第2貫通電極55は、接合層13と他方の外部接続端子16とを導通させている
 蓋体53は、筒状の周壁部53aと、該周壁部53aの上端部に連設され、且つ周壁部53aを塞ぐ頂壁部53bと、周壁部53aの下端部に連設され、且つ周壁部53aの径方向外方に延びるフランジ部53cと、を備えており、フランジ部53cが接合層13及びシールリング12を介してベース基板52上に重ねられている。
 そして蓋体53は、シールリング12を利用した溶接によってベース基板52上に固定されている。この際、蓋体53の周壁部53a及び頂壁部53bと、ベース基板52とで画成された空間が、収納空間Sとされている。また、蓋体53の内面には下地層20及び金属層21が形成されている。
 このように構成された電気二重層キャパシタ50であっても、密封容器の形状が異なるだけで同様の作用効果を奏効することができ、表面実装型の電気二重層キャパシタとして利用することが可能である。
 なお、本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、上記実施形態では、電気化学セルの一例として電気二重層キャパシタを例に挙げて説明したが、この場合に限定されるものではない。
 酸化・還元反応の伴う電気化学デバイスにも利用することができ、例えば、正極又は負極の活物質として金属リチウムイオンを吸蔵、放出可能な材料を用いたリチウムイオンキャパシタや、金属リチウムとアルミニウムや錫等の他の金属との合金を用いたリチウム二次電池でも構わない。
 特に、負極活物質にリチウムイオン吸蔵可能な炭素系材料やケイ素系材料を用い、そこにリチウムイオンを予めドープさせたリチウムイオンキャパシタや、リチウムイオン二次電池でも構わないし、少なくとも正極又は負極のいずれか一方に電気二重層キャパシタ等で用いる活性炭等の電極を組み合わせたリチウムイオンキャパシタにも適用可能である。
 例えば、上記実施形態において、正極25、負極27及び液体電解質Wのそれぞれの材料については、正極25と負極27との間でリチウムイオンが移動又は分極可能とされ、該リチウムイオンの吸蔵放出による電荷の授受により充放電可能とされれば適宜自由に選択して構わない。
 例えば、正極活物質としてFeS、負極活物質としてSiOを用いても構わない。また、正極活物質としてリチウム含有マンガン酸化物、負極活物質としてLi-Al合金等の金属リチウムと合金をなす金属間化合物を用いても構わない。
 なお、リチウムの金属間化合物としては、Li-Al以外にも、Li-In合金、Li-Sn合金、Li-Si合金等を例示できる。これらの金属間化合物は、材料の強度等を向上させる目的で、上述の元素以外に第三の添加物を加えても良く、例えば、Ca、Mg、Si、Mn、V等の元素が例示できる。
 従来、金属ニッケル等と反応しやすかった硫黄等を含む電極活物質や電解質(溶媒や支持塩や固体電解質等)であっても、蓋材に、本発明のステンレス製のリッド部材を用いることで、電気化学セルとして利用することができるため、その応用の範囲は飛躍的に広がり、産業の発展に大きく寄与できる。
 また、上記実施形態では、収納空間S内に液体電解質Wを充填し、負極27、正極25及びセパレータ26を浸漬させた構成にしたが、必ずしも収納空間S内を液密状態に浸漬させる必要はなく、少なくとも負極27、正極25の間に液絡を形成できるように電解液がセパレータ26に含浸されていれば良い。この場合であっても、セパレータ26と正極25との界面、及びセパレータ26と負極27との界面に確実に液体電解質Wを存在させて電気化学反応を行わせることができる。
 また、電解質としては、液体電解質Wに限定されるものではなく固体電解質を利用しても構わない。
 この場合、例えばアルミナやチタニアの繊維体を焼結させた焼結体であるセラミックペーパーに、無機の固体電解質(Li2S、SiS2、Li4SiO4)を練りこみ、又はホットプレスにより電極と固体電解質とを一体化させた状態のものをセパレータ26の代わりに隔離部材として利用することができる。
 また、電極と固体電解質とを一体化させる方法として、該固体電解質を正極25と負極27との間に配置し積み重ねた状態でSPS法(通電焼結=プラズマ焼結)等の物理手法を用いて、電極と固体電解質とを一体化しても構わない。また、固体電解質を、正極25又は負極27の表面に、レーザアブレーション堆積法やRFスパッタ法、真空蒸着等の物理手法を用いて析出させた後、正極25と負極27との間に挟み、重ね合わせた後、圧着等で一体化した後に利用しても良い。
 この場合であっても、固体電解質を通じて例えばリチウムイオンを正極25と負極27との間で移動させることができるので、確実な電気化学反応を行わせることができ、電気化学セルとして用いることが可能である。
 特に、この場合には液体の電解質を用いる必要がないので、組立性に優れており生産性を高めることができる。また、リフロー時に液体の電解質が蒸発するといった懸念がないので、リフロー作業をより効率良く行うことができる。
 更に、上記固体電解質シートを隔離部材として利用する場合、該固体電解質シートと正極25と負極27とを互いに積層した状態で予め一体的に組み合わせても構わない。こうすることで、正極25、負極27及び固体電解質シートを1つのユニットとして取り扱うことができるので、さらに組立作業を容易に行うことができ、生産性をさらに高めることができる。
(封口板の溶接方法)
 ここで、図1に示す電気二重層キャパシタ1を作製するにあたり、封口板11の溶接方法について、詳しく説明する。
 この場合の溶接方法としては、先に述べたようにローラ電極を利用したシーム溶接で溶接を行うことが好ましい。具体的には、図5及び図6に示すように、容器本体10における周壁部10bのうち、例えば長辺となる一対の周壁部10bに沿ってローラ電極60を進行(図6に示す矢印方向)させながら、シールリング12上に重ねられた封口板11を加圧し、且つ断続的に通電することで抵抗溶接を行う。
 なお、上記溶接方法としては、シーム溶接に限られるものではない。例えばレーザー溶接であっても良い。
 これにより、図7に示すように、長辺となる一対の周壁部10bに沿って、封口板11の下面に形成された金属層21とシールリング12のメッキ部分とが互いに溶け合って融合した溶接部61を、封口板11とシールリング12との界面に連続的に重なるように形成することができる。これにより、長辺となる一対の周壁部10bに沿った封口板11の溶接が完了する。
 なお、図7は封口板11を外した状態における平面図である。
 なお、ローラ電極60のうちの一方は正極側の電極とされ、他方は負極側の電極とされており、図示しない電源によって両者の間に所定の溶接電圧が通電される。この際、通電される電流量に比例して、上記溶接部61の溶接径φが変化する。つまり、電流量を増大するほど、発熱量が大きくなり溶接径φが大きくなる。
 次いで、図8に示すように、容器本体10における周壁部10bのうち、短辺となる一対の周壁部10bに沿ってローラ電極60を進行(矢印方向)させて、同様に溶接を行う。これにより、図9に示すように、短辺となる一対の周壁部10bに沿って上記溶接部61を封口板11とシールリング12との界面に連続的に重なるように形成することができ、短辺となる一対の周壁部10bに沿った封口板11の溶接が完了する。
 なお、図9は封口板11を外した状態における平面図である。
 その結果、封口板11を溶接することができ、図1に示す電気二重層キャパシタ1を得ることができる。なお、容器本体10における周壁部10bのうち、長辺となる一対の周壁部10b側を先に溶接したが、この場合に限定されず、短辺となる一対の周壁部10b側を先に溶接しても構わない。
 ところで、上述したシーム溶接の際、封口板11の厚みを薄くすることが好ましい。具体的には、30μm以下の厚みにすることが好ましい。この点について、以下に説明する。
 溶接時、ローラ電極60からの熱は、該ローラ電極60が接する封口板11に伝わるが、封口板11だけでなくシールリング12にも伝わる。従って、封口板11及びシールリング12は共に熱膨張すると共に、溶接終了後、冷却によって熱収縮する。このとき、封口板11及びシールリング12は、熱収縮率が異なるので、両者の間に応力が作用する。すると、この応力はシールリング12に接続され、壁厚が薄い容器本体10の周壁部10bに集中して作用し易いので、この周壁部10bに不正変形や割れ等の不具合が発生するおそれがある。
 従って、このような不具合の発生を抑制するためにも、封口板11の厚みを30μm以下の厚みにして薄くし、封口板11による熱収縮の影響を抑えることが好ましい。こうすることで、割れの発生率を1%以下に抑えることが可能である。
 なお、シーム溶接の熱は、シールリング12と同時に、例えば非水電解液Wを介して容器本体10の周壁部10bに伝わる場合も考えられる。この場合には、容器本体10における周壁部10bと底壁部10aとで温度差が大きく生じてしまい、冷却時に底壁部10aに応力が集中して、さらにこの底壁部10aに不正変形や割れ等が発生するおそれがあった。加えて、非水電解液Wが揮発し、性能低下を招いてしまうおそれもあった。
 そこで、これらの不具合を抑制する点でも、封口板11の厚みを30μm以下にすることが好ましい。
 また、上述した不具合の発生を効果的に抑えるためには、周壁部10bの壁厚T(図7参照)を厚く形成し、且つ、溶接部61の溶接径φを小さくすることが好ましい。
 壁厚Tが薄い場合には、該周壁部10bの強度(剛性)が低下するので、不正変形や割れ等が発生し易くなってしまう。また、溶接径φが大きいと、溶接時の電流量が大きいので熱が過大に伝わり、やはり不正変形や割れ等が発生し易くなってしまう。
 そこで、具体的には、周壁部10bの壁厚T(μm)と、溶接部61の溶接径φ(μm)と、の関係を、下記式(1)を満たすようにすることが好ましい。
 (溶接径φ/壁厚T)<0.5 ・・・・(1)
 このようにすることで、割れの発生率を1%以下に抑えることが可能である。
 更に、上記式(1)を満たす場合において、溶接を複数回、繰り返し行うことが好ましい。このようにすることで、図10に示すように、例えば容器本体10における周壁部10bのうち、長辺となる一対の周壁部10bを溶接する際、1回目の溶接時における溶接部61Aと、2回目の溶接時における溶接部61Bと、を互いに連続的に重ね合わせることができるので、より確実な溶接を行うことができ、収納空間Sをさらに確実に気密することができる。
 なお、図10は封口板11を外した状態における平面図である。また、溶接を複数回繰り返したとしても、上記式(1)を満たしているので、割れの発生率等が増加し難い。
 また、上述したシーム溶接を行う場合、上記したように不正変形や割れ等の不具合を防止するために、封口板11の厚みを薄くすることが好ましいが、この場合、図11に示すように封口板11の外形サイズがシールリング12よりも小さいと、ローラ電極60が封口板11に当たらず、溶接不良を招くおそれがある。
 従って、図12に示すように、封口板11の外周縁部がシールリング12の外周縁部と一致するように、封口板11の外形サイズを決定することが好ましい。これにより、ローラ電極60を利用して封口板11に確実に通電でき、良好な溶接を行うことができる。
 また、シールリング12の厚みは、封口板11の厚みよりも厚くすることが好ましい。特に、上記したように不正変形や割れ等の不具合を防止するために、封口板11の厚みを薄くすることが好ましいが、このとき、シールリング12の厚みを封口板11よりも厚くする。こうすることで、シールリング12の熱膨張をできるだけ抑制することができると共に、周壁部10bに熱が伝わってしまうことも抑制できる。
 例えば、封口板11の厚みを20μm程度にした場合には、シールリング12の厚みを30~40μm程度にすると良い。なお、シールリング12の厚みの最大値としては、電気二重層キャパシタ1の全体の厚みの略半分程度にすることが好ましい。
 以下に本発明の有効性を確認するために実施した例について説明する。
 具体的には、ニッケルメッキを施したシールリングを介して封口板を容器本体に溶接し、内部の収納空間内に電気化学素子を密封した電気化学セルを作製し、該電気化学セルについて充放電を繰り返し行い、その間での電気化学セルの充放電性能の安定性を評価する第1の評価試験を行った。
 また、電気化学セルを作製するにあたり、封口板を溶接し、その後冷却した際に、電気化学セルに割れが発生したか否かを確認する第2の評価試験を行った。
 第1の評価試験では、封口板の材質や、メッキの有無や、メッキの種類を変えながら複数のパターンで試験を行った。これらの結果を表1~表4に示す。
 第2の評価試験では、封口板の材質や、厚みを変えながら複数のパターンで試験を行った。これらの結果を表5~8に示す。
 はじめに、第1の評価試験について説明する。
 充放電としては、定電流(CC:Constant Current)、定電圧(CV:Constant Voltage)で行った。具体的には、まず定電流で充電を開始し、最大電圧(3.3V)に達した時点で該電圧を一定時間保持した。この際、充電時間と保持時間との合計時間を2時間に設定した。次に、この2時間が経過した後、定電流で放電を開始し、最低電圧(0V)に達した時点で該電圧を一定時間保持した。この際も、放電時間と保持時間との合計時間を2時間に設定した。
 上記した1回の充電及び1回の放電を合わせて1サイクルとし、これを120サイクル繰り返し行った。
 充放電を行う際の電気化学セルの温度条件としては、液体電解質の分解が生じない程度の所定温度、具体的には70±3℃に設定した。なお、上記サイクルを繰り返す途中で、適宜室温(25±3℃)に温度変更した。
 そして、上述した各条件の下、充放電を120サイクル繰り返し行い、その間の容量(充電に使用した電気容量(μAh))の変化をモニタリングすることで、充放電のサイクル特性の安定性について評価した。
 具体的には、充放電中に電解液の分解やニッケルの溶出等によるリーク電流の増加が100%以上ある場合(電流値が倍になった状態)には、充電異常となり上記容量の変化が急激に大きく変化する。
 従って、この容量の大きな変化が現れた場合には、リーク電流の増加が「あり」と判断し、(充電効率が低下した)と判断した。これに対して、大きな容量変化がなく、滑らかに上記容量が推移した場合には、リーク電流の増加が「なし」と判断し、(充電効率の低下がなく、充放電のサイクル特性が安定化している)と判断した。
(第1評価試験)
 まず、ステンレス製の封口板を用いた場合と、ニッケルメッキを施したコバール製の封口板を用いた場合と、で評価試験を行った。これらの結果を表1に示す。
 表1において、試験例1~12は前者の条件で評価試験したものであり、本発明に係る実施例である。これに対して試験例13は後者の条件で評価試験したものであり、実施例に対する比較例である。なお、封口板の厚みは、試験例1~13において同一である。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、コバール製の封口板を用いた場合には、40サイクルまでに、電解液の分解等に起因するリーク電流の増加(充電異常)が認められたのに対して、ステンレス製の封口板を用いた場合には、40サイクル経過した時点ではリーク電流の増加がなく、それ以上の80サイクル又は120サイクルに達するまでにリーク電流の増加が認められた。
 これらの結果から、封口板をステンレス製とすることで充電効率の低下を抑制でき、充放電のサイクル特性の向上化に繋がることが確認された。
(第2評価試験)
 次いで、ステンレスに金属層として金メッキを施した封口板を用いた場合と、ニッケルメッキを施したコバール製の封口板を用いた場合と、で評価試験を行った。これらの結果を表2に示す。
 表2において、試験例14~27は前者の条件で評価試験したものであり、本発明に係る実施例である。これに対して試験例28は後者の条件で評価試験したものであり、実施例に対する比較例である。
 なお、封口板11の厚みは、試験例14~28において同一である。また、試験例14、15では、真空蒸着法により表2に示す膜厚の金メッキをそれぞれ施し、試験例16~27では、電界メッキによる湿式法により表2に示す膜厚の金メッキをそれぞれ施した。
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、コバール製の封口板を用いた場合には、40サイクルまでにリーク電流の増加が認められたのに対して、金メッキが施されたステンレス製の封口板を用いた場合には、40サイクル経過した時点ではリーク電流の増加がなかった。特に、試験例14及び15、17~27では、80サイクル経過してもリーク電流の増加がなかった。
 これらの結果から、金メッキが施されたステンレス製の封口板を用いることで、充電効率の低下を抑制でき、充放電のサイクル特性の向上化に繋がることが確認された。
 加えて、表1における試験例1の結果と、表2における試験例14、15の結果と、を考慮すると、ステンレス単体よりも、ステンレスの表面に金メッキからなる金属層を被膜させた場合の方が、リーク電流の増加が生じ難かった。つまり、充電効率の低下をより抑制することができた。
(第3評価試験)
 次いで、ステンレスに下地層としてニッケルメッキを形成した後、ニッケルメッキ上に金属層として金又はその合金をメッキした封口板を用いた場合と、ニッケルメッキを施したコバール製の封口板を用いた場合と、で評価試験を行った。これらの結果を表3に示す。
 表3において、試験例29~34は前者の条件で評価試験したものであり、本発明に係る実施例である。これに対して試験例35は後者の条件で評価試験したものであり、実施例に対する比較例である。
 なお、試験例29では、SUS316のオーステナイト系のステンレスに、湿式法により金属層として0.08μmの純金のメッキを施した。試験例30では、SUS316のオーステナイト系のステンレスに、湿式法により金属層として0.24μmの純金のメッキを施した。試験例31では、SUS316のオーステナイト系のステンレスに、湿式法により金属層として0.43μmの純金のメッキを施した。試験例32では、SUS316のオーステナイト系のステンレスに、湿式法により金属層として0.68μmの純金のメッキを施した。試験例33では、SUS316のオーステナイト系のステンレスに、湿式法により金属層として0.19μmの金-コバルト合金のメッキを施した。試験例34では、SUS316のオーステナイト系のステンレスに、湿式法により金属層として0.51μmの金-コバルト合金のメッキを施した。
Figure JPOXMLDOC01-appb-T000003
 表3から明らかなように、コバール製の封口板を用いた場合には、40サイクルまでにリーク電流の増加が認められたのに対して、ニッケルメッキからなる下地層、金又はその合金のメッキからなる金属層が施されたステンレス製の封口板を用いた場合には、40サイクル経過した時点ではリーク電流の増加がなかった。
 特に、金属層の膜厚が増すにつれて、リーク電流の増加が認められないサイクル回数が増えた。つまり、金属層の膜厚が増すにつれて充電効率の低下をより抑制することができた。特に試験例32、34では、120サイクル経過してもリーク電流の増加がなく、充電効率の低下をより効果的に抑制することができた。
 なお、金属層として、純金ではなく金-コバルト合金を用いた場合、電気化学セルの組立作業性の向上化に繋がった。つまり、純金に比べて金-コバルト合金を用いた場合の方が、軟質な純金の硬度を上げることができる。そのため、湿式法により金属層を形成する際に、該金属層に傷等が付き難くなる。従って、純金を用いた場合に比べて取り扱い易くなり、組立作業性が向上するうえ、歩留まりを向上させることができるものと考えられる。
(第4評価試験)
 次いで、ステンレスに下地層としてニッケルメッキを形成した後、ニッケルメッキ上に金以外の金属材料をメッキした封口板を用いた場合と、ニッケルメッキを施したコバール製の封口板を用いた場合と、で評価試験を行った。これらの結果を表4に示す。
 表4において、試験例36~41は前者の条件で評価試験したものであり、本発明に係る実施例である。これに対して試験例42は後者の条件で評価試験したものであり、実施例に対する比較例である。
 なお、試験例36では、SUS316のオーステナイト系のステンレスに、湿式法により金属層として5μmの銀(Ag)のメッキを施した。試験例37では、SUS316のオーステナイト系のステンレスに、湿式法により金属層として5μmの銅(Cu)のメッキを施した。試験例38では、SUS316のオーステナイト系のステンレスに、湿式法により金属層として5μmのスズ-銅(Sn-Cu)のメッキを施した。試験例39では、SUS316のオーステナイト系のステンレスに、湿式法により金属層として5μmのイリジウム(Ir)のメッキを施した。試験例40では、SUS316のオーステナイト系のステンレスに、湿式法により金属層として5μmのパラジウム(Pd)のメッキを施した。試験例41では、SUS316のオーステナイト系のステンレスに、湿式法により金属層として5μmのロジウム(Rh)のメッキを施した。
Figure JPOXMLDOC01-appb-T000004
 表4から明らかなように、コバール製の封口板を用いた場合には、40サイクルまでにリーク電流の増加が認められたのに対して、ニッケルメッキからなる下地層、銀、銅、スズ、イリジウム、パラジウム、ロジウムのメッキからなる金属層が施されたステンレス製の封口板を用いた場合には、40サイクル経過した時点ではリーク電流の増加が認められなかった。従って、上記各種の金属層を用いた場合であっても、充電効率の低下を抑制することができた。
 次に、第2の評価試験について説明する。
 メッキがなされていないステンレス製の封口板をシールリング上に重ねた後、ローラ電極を接触させることによるシーム溶接により溶接を行い、その後冷却した際に、電気化学セルに割れが発生したかを、倍率が約20倍程度の双眼の実体顕微鏡を使った外観の観察によって確認した。この際、複数個の電気化学セルについて外観の検査を行い、その割れ発生率を算出した。
(第5評価試験)
 ステンレス製の封口板を用いるにあたって、材質及び厚みを変えながら評価試験を行った。これらの結果を表5に示す。
 試験例43~46では、SUS304のステンレスを用い、厚みをそれぞれ変化させた。試験例47~56では、材質及び厚みがそれぞれ異なるステンレスを用いた。
Figure JPOXMLDOC01-appb-T000005
 表5から明らかなように、いずれの材質のステンレスを用いた場合であっても、封口板の厚みが30μm以下の場合には割れ発生率が1%以下であり、厚みが30μm以上である場合には割れ発生率が1%を超えることが認められた。特に、厚みが薄くなるにつれて割れ発生率が低下し、厚みが厚くなるにつれて割れ発生率が上昇することが認められた。
 これらの結果から、封口板の厚みが割れ発生率に比例して関係していることが明らかであり、薄くするほど割れ発生率を抑えることが確認できた。また、封口板の厚みを30μm以下にすることで、割れ発生率を1%以下にすることができ、特に有効であることが確認できた。
(第6評価試験)
 次いで、容器本体の周壁部の壁厚T(μm)と、溶接時における溶接部の溶接径φ(μm)と、割れ発生率と、の関係について評価試験を行った。これらの結果を表6及び表7に示す。
 本評価試験では、材質がSUS304、厚みが20μmのステンレスで封口板を形成した。そして、まず、溶接部の溶接径φを190μmとした状態で、容器本体の周壁部の壁厚Tを変化させながら評価試験を行った。この結果を表6に示す。
 次に、容器本体の周壁部の壁厚Tを400μmとした状態で、溶接部の溶接径φを変化させながら評価試験を行った。この結果を表7に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表6から明らかなように、周壁部の壁厚Tが薄くなるほど割れ発生率が高くなることが認められた。また、表7から明らかなように、溶接径φが大きくなるほど割れ発生率が高くなることが認められた。
 これらのことから、周壁部の壁厚Tを厚く形成し、且つ溶接部の溶接径φを小さくすることが、割れ発生率を低く抑えることに有効であることが確認できた。そして、表6及び表7から、〔(溶接径φ/壁厚T)<0.5〕を満たす場合には、割れ発生率が1%以下になることを確認できた。
(第7評価試験)
 次いで、溶接回数と溶接不良との関係について評価試験を行った。この結果を表8に示す。
 本評価試験では、表6における試験例57と同じ条件で、1回溶接を行った場合と、2回溶接行った場合と、で比較した。そして、溶接後、双眼の実体顕微鏡を使った外観検査を行うことで、溶接不良の有無を確認した。
Figure JPOXMLDOC01-appb-T000008
 表8から明らかなように、溶接を2回繰り返した場合には、溶接不良の発生率が低下することが認められた。これにより、1回目に溶接時における溶接部と、2回目の溶接時における溶接部と、を互いに連続的に重ね合わせることができ、より確実な溶接を行えることが確認できた。
 本発明は、ベース部材と、前記ベース部材に固定された接合材と、前記接合材を介してベース部材に溶接されたリッド部材と、を有し、前記ベース部材及び前記リッド部材の間に密封された収納空間が画成された密封容器と、前記収納空間内に収納され、充放電可能な電気化学素子と、を備え、前記リッド部材がステンレスである電気化学セルに関する。本発明によれば、ステンレスのリッド部材をベース部材に溶接して電気化学素子を収納空間内に密封しているので、充電時に漏れ電流が増加して充電効率が低下してしまうことを抑制できる。従って、長期的に亘って品質が安定し、且つ充放電のサイクル特性に優れた電気化学セルとすることができる。
 S 収納空間
 W 液体電解質(電解質)
 1、30、40、50 電気二重層キャパシタ(電気化学セル)
 2、51 密封容器
 3 電気化学素子
 10 容器本体(ベース部材)
 10a 容器本体の底壁部
 10b 容器本体の周壁部
 11 封口板(リッド部材)
 12 シールリング(接合材)
 20 下地層
 21 金属層
 25 正極(第1電極)
 26 セパレータ(隔離部材)
 27 負極(第2電極)
 52 ベース基板(ベース部材)
 53 蓋体(リッド部材)
 61 溶接部

Claims (10)

  1.  ベース部材と、前記ベース部材に固定された接合材と、前記接合材を介してベース部材に溶接されたリッド部材と、を有し、前記ベース部材及び前記リッド部材の間に密封された収納空間が画成された密封容器と、
     前記収納空間内に収納され、充放電可能な電気化学素子と、を備え、
     前記リッド部材がステンレスである電気化学セル。
  2.  請求項1に記載の電気化学セルであって、
     前記リッド部材の表面のうち少なくとも前記電気化学素子の電極と接する部分に、Au、Sn、Cu、Ag、Ir、Pd、Rhのうちから選択される金属材料、又はこれら金属材料を少なくとも一種含む合金からなる金属層が被膜されている電気化学セル。
  3.  請求項2に記載の電気化学セルであって、
     前記金属層は、前記接合材と接する部分に亘って被膜されている電気化学セル。
  4.  請求項2又は3に記載の電気化学セルであって、
     前記金属層と前記リッド部材との間には、Ni又はCuからなる下地層が形成されている電気化学セル。
  5.  請求項1から4のいずれか1項に記載の電気化学セルであって、
     前記リッド部材は、厚みが30μm以下とされている電気化学セル。
  6.  請求項1から5のいずれか1項に記載の電気化学セルであって、
     前記接合材は、前記収納空間を囲繞するリング状に形成された導電性のシールリングとされている電気化学セル。
  7.  請求項6に記載の電気化学セルであって、
     前記リッド部材は、その外周縁部が前記シールリングの外周縁部と一致している電気化学セル。
  8.  請求項6に記載の電気化学セルであって、
     前記シールリングは、前記リッド部材よりも厚い電気化学セル。
  9.  請求項1から8のいずれか1項に記載の電気化学セルであって、
     前記ベース部材は、平板状の底壁部及び枠状の周壁部を有する有底筒状に形成され、
     前記リッド部材は、該リッド部材と前記接合材との界面において溶接部が連続的に重なったシーム溶接により、該接合材を介して前記ベース部材における前記周壁部の上面に溶接され、
     前記周壁部の壁厚T(μm)と前記溶接部の溶接径φ(μm)とは、下記式(1)を満たす電気化学セル。
     (溶接径φ/壁厚T)<0.5 ・・・・(1)
  10.  請求項9に記載の電気化学セルであって、
     前記リッド部材は、前記シーム溶接を複数回繰り返し行うことにより溶接されている電気化学セル。
PCT/JP2012/061868 2011-05-12 2012-05-09 電気化学セル WO2012153761A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013514029A JP5709187B2 (ja) 2011-05-12 2012-05-09 電気化学セル
EP12782835.8A EP2709128B1 (en) 2011-05-12 2012-05-09 Electrochemical cell
KR1020137029590A KR101509376B1 (ko) 2011-05-12 2012-05-09 전기 화학 셀
CN201280022349.4A CN103503096B (zh) 2011-05-12 2012-05-09 电化学电池
US14/062,316 US8976508B2 (en) 2011-05-12 2013-10-24 Electrochemical cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011107552 2011-05-12
JP2011-107552 2011-05-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/062,316 Continuation US8976508B2 (en) 2011-05-12 2013-10-24 Electrochemical cell

Publications (1)

Publication Number Publication Date
WO2012153761A1 true WO2012153761A1 (ja) 2012-11-15

Family

ID=47139237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/061868 WO2012153761A1 (ja) 2011-05-12 2012-05-09 電気化学セル

Country Status (6)

Country Link
US (1) US8976508B2 (ja)
EP (1) EP2709128B1 (ja)
JP (1) JP5709187B2 (ja)
KR (1) KR101509376B1 (ja)
CN (1) CN103503096B (ja)
WO (1) WO2012153761A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013089695A (ja) * 2011-10-14 2013-05-13 Seiko Instruments Inc 電気化学セル、蓋体及び電気化学セルの製造方法
JP2014195052A (ja) * 2013-02-28 2014-10-09 Seiko Instruments Inc 電気化学セルおよびその製造方法
WO2015111494A1 (ja) * 2014-01-24 2015-07-30 日本碍子株式会社 全固体電池の使用
KR101549812B1 (ko) 2013-11-06 2015-09-04 비나텍주식회사 세라믹 기판 및 그를 이용한 표면 실장형 슈퍼 커패시터
US9685680B2 (en) 2014-01-24 2017-06-20 Ngk Insulators, Ltd. Method of using all-solid-state battery
WO2018123319A1 (ja) * 2016-12-29 2018-07-05 株式会社 村田製作所 全固体電池、電子機器、電子カード、ウェアラブル機器および電動車両
CN111868991A (zh) * 2018-03-19 2020-10-30 Tdk株式会社 全固体电池
JP2021012835A (ja) * 2019-07-09 2021-02-04 マクセルホールディングス株式会社 全固体電池

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9806380B2 (en) * 2013-05-31 2017-10-31 General Electric Company High temperature electrochemical cell structures, and methods for making
US9142352B2 (en) * 2013-08-30 2015-09-22 Cornell-Dubilier Marketing, Inc. Capacitor for high g-force applications
US10559864B2 (en) 2014-02-13 2020-02-11 Birmingham Technologies, Inc. Nanofluid contact potential difference battery
EP3174125B1 (en) * 2014-08-25 2018-07-18 Nisshin Steel Co., Ltd. Lithium-ion secondary-battery case and manufacturing method therefor
TWI637668B (zh) * 2016-10-13 2018-10-01 輝能科技股份有限公司 邏輯電池
US11830672B2 (en) 2016-11-23 2023-11-28 KYOCERA AVX Components Corporation Ultracapacitor for use in a solder reflow process
JP7052017B2 (ja) * 2017-09-08 2022-04-11 クリアウォーター ホールディングス,リミテッド 蓄電を改善するシステム及び方法
CN108962613B (zh) * 2018-06-11 2020-08-11 中国科学院电工研究所 一种减小锂离子电容器漏电流的方法
KR20200137237A (ko) 2019-05-29 2020-12-09 삼성에스디아이 주식회사 이차 전지
US20210091685A1 (en) * 2019-09-25 2021-03-25 Birmingham Technologies, Inc. Nano-Scale Energy Harvesting Device
US11509011B2 (en) * 2019-10-15 2022-11-22 Greatbatch Ltd. Miniature electrochemical cell having a casing of a conductive plate closing an open-ended ceramic container having a via hole supporting a platinum-containing conductive pathway

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983340A (ja) * 1982-11-04 1984-05-14 Matsushita Electric Ind Co Ltd 扁平形電池
JPH0757718A (ja) * 1993-08-10 1995-03-03 Katayama Tokushu Kogyo Kk 電池の負極端子板の被膜処理方法
JP2004227059A (ja) 2003-01-20 2004-08-12 Murata Mach Ltd 無人搬送車システム
JP2007012921A (ja) * 2005-06-30 2007-01-18 Sanyo Electric Co Ltd 電気化学素子及び電気化学素子の製造方法
JP2011107552A (ja) 2009-11-20 2011-06-02 Fuji Xerox Co Ltd 画像形成装置および処理プログラム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0746705B2 (ja) * 1985-08-02 1995-05-17 富士通株式会社 半導体装置
JPH0393150A (ja) 1989-09-05 1991-04-18 Sanyo Electric Co Ltd 密閉形電池
JPH08290272A (ja) * 1995-04-20 1996-11-05 Toyo Commun Equip Co Ltd シーム溶接封止用パッケージ
JP3959220B2 (ja) 2000-02-04 2007-08-15 株式会社エスアイアイ・マイクロパーツ 表面実装用非水電解電池および表面実装用電気二重層キャパシタ
JP4248226B2 (ja) * 2002-11-05 2009-04-02 トヨタ自動車株式会社 レーザ溶着された組立体
JP2004227959A (ja) 2003-01-23 2004-08-12 Sii Micro Parts Ltd 非水電解質電池および電気二重層キャパシタ
JP2004281156A (ja) 2003-03-14 2004-10-07 Toyo Aluminium Kk 蓄電用容器、蓄電用容器集合体及びこれらの製造方法
US7023078B2 (en) * 2003-05-06 2006-04-04 Seiko Instruments Inc. Packages for communication devices
US7651813B2 (en) 2004-11-25 2010-01-26 Kyocera Corporation Container, battery and electric double layer capacitor
JP2008235531A (ja) * 2007-03-20 2008-10-02 Mitsubishi Electric Corp 気密封止用パッケージおよび接続構造
JP5181153B2 (ja) 2009-01-06 2013-04-10 セイコーインスツル株式会社 電気化学セル及び電気化学セルの製造方法
JP2010165909A (ja) 2009-01-16 2010-07-29 Seiko Instruments Inc 電気化学セル及び電気化学セルの製造方法
JP5479758B2 (ja) * 2009-03-02 2014-04-23 アズビル株式会社 レーザ溶着方法および筐体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983340A (ja) * 1982-11-04 1984-05-14 Matsushita Electric Ind Co Ltd 扁平形電池
JPH0757718A (ja) * 1993-08-10 1995-03-03 Katayama Tokushu Kogyo Kk 電池の負極端子板の被膜処理方法
JP2004227059A (ja) 2003-01-20 2004-08-12 Murata Mach Ltd 無人搬送車システム
JP2007012921A (ja) * 2005-06-30 2007-01-18 Sanyo Electric Co Ltd 電気化学素子及び電気化学素子の製造方法
JP2011107552A (ja) 2009-11-20 2011-06-02 Fuji Xerox Co Ltd 画像形成装置および処理プログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2709128A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013089695A (ja) * 2011-10-14 2013-05-13 Seiko Instruments Inc 電気化学セル、蓋体及び電気化学セルの製造方法
JP2014195052A (ja) * 2013-02-28 2014-10-09 Seiko Instruments Inc 電気化学セルおよびその製造方法
KR101549812B1 (ko) 2013-11-06 2015-09-04 비나텍주식회사 세라믹 기판 및 그를 이용한 표면 실장형 슈퍼 커패시터
WO2015111494A1 (ja) * 2014-01-24 2015-07-30 日本碍子株式会社 全固体電池の使用
JPWO2015111494A1 (ja) * 2014-01-24 2017-03-23 日本碍子株式会社 全固体電池の使用
US9685680B2 (en) 2014-01-24 2017-06-20 Ngk Insulators, Ltd. Method of using all-solid-state battery
WO2018123319A1 (ja) * 2016-12-29 2018-07-05 株式会社 村田製作所 全固体電池、電子機器、電子カード、ウェアラブル機器および電動車両
JPWO2018123319A1 (ja) * 2016-12-29 2019-10-31 株式会社村田製作所 全固体電池、電子機器、電子カード、ウェアラブル機器および電動車両
US11642971B2 (en) 2016-12-29 2023-05-09 Murata Manufacturing Co., Ltd. All-solid-state battery, electronic device, electronic card, wearable device, and electric vehicle
CN111868991A (zh) * 2018-03-19 2020-10-30 Tdk株式会社 全固体电池
JP2021012835A (ja) * 2019-07-09 2021-02-04 マクセルホールディングス株式会社 全固体電池

Also Published As

Publication number Publication date
JP5709187B2 (ja) 2015-04-30
CN103503096A (zh) 2014-01-08
JPWO2012153761A1 (ja) 2014-07-31
EP2709128A4 (en) 2015-03-25
EP2709128B1 (en) 2019-11-20
US8976508B2 (en) 2015-03-10
KR20130137044A (ko) 2013-12-13
US20140049878A1 (en) 2014-02-20
EP2709128A1 (en) 2014-03-19
CN103503096B (zh) 2016-10-19
KR101509376B1 (ko) 2015-04-14

Similar Documents

Publication Publication Date Title
JP5709187B2 (ja) 電気化学セル
JP5099964B2 (ja) 電気化学セル及びその製造方法
JP5268489B2 (ja) 端子付電気化学セル
JP2008294001A5 (ja)
JPWO2010092944A1 (ja) 電気化学セル、携帯電子機器、及び電気化学セルの製造方法
JP5923272B2 (ja) 電気化学セル、蓋体及び電気化学セルの製造方法
JP2011204487A (ja) 電気化学素子
JP5705569B2 (ja) 電気化学素子及びその製造方法
JP6341686B2 (ja) 電気化学セルおよびその製造方法
JP5212998B2 (ja) 電気化学セル
JP5909387B2 (ja) 電気化学素子及びその製造方法
JP5909340B2 (ja) 電気化学セル、蓋体及び電気化学セルの製造方法
JP5697472B2 (ja) 電気化学素子
JP5806024B2 (ja) 電気化学セル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12782835

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013514029

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012782835

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137029590

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE