WO2012153509A1 - アルデヒド化合物の製造方法 - Google Patents

アルデヒド化合物の製造方法 Download PDF

Info

Publication number
WO2012153509A1
WO2012153509A1 PCT/JP2012/002987 JP2012002987W WO2012153509A1 WO 2012153509 A1 WO2012153509 A1 WO 2012153509A1 JP 2012002987 W JP2012002987 W JP 2012002987W WO 2012153509 A1 WO2012153509 A1 WO 2012153509A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
general formula
mol
metal
Prior art date
Application number
PCT/JP2012/002987
Other languages
English (en)
French (fr)
Inventor
隈 茂教
歩治 坂田
幸一 徳永
島川 千年
直志 柿沼
政幸 古屋
田中 守
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2013513927A priority Critical patent/JP5719021B2/ja
Priority to KR1020167013536A priority patent/KR20160062218A/ko
Priority to KR1020137028648A priority patent/KR101641759B1/ko
Priority to EP12782970.3A priority patent/EP2708527B1/en
Priority to US14/114,774 priority patent/US9227925B2/en
Priority to CN201280022577.1A priority patent/CN103582623B/zh
Publication of WO2012153509A1 publication Critical patent/WO2012153509A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
    • C07C45/505Asymmetric hydroformylation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/30Preparation of carboxylic acid nitriles by reactions not involving the formation of cyano groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/24Preparation of compounds containing amino groups bound to a carbon skeleton by reductive alkylation of ammonia, amines or compounds having groups reducible to amino groups, with carbonyl compounds
    • C07C209/26Preparation of compounds containing amino groups bound to a carbon skeleton by reductive alkylation of ammonia, amines or compounds having groups reducible to amino groups, with carbonyl compounds by reduction with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/44Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers
    • C07C209/48Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers by reduction of nitriles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/44Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers
    • C07C209/52Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers by reduction of imines or imino-ethers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/16Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of a saturated carbon skeleton containing rings other than six-membered aromatic rings
    • C07C211/19Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of a saturated carbon skeleton containing rings other than six-membered aromatic rings containing condensed ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/45Carboxylic acid nitriles having cyano groups bound to carbon atoms of rings other than six-membered aromatic rings
    • C07C255/47Carboxylic acid nitriles having cyano groups bound to carbon atoms of rings other than six-membered aromatic rings to carbon atoms of rings being part of condensed ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C263/00Preparation of derivatives of isocyanic acid
    • C07C263/10Preparation of derivatives of isocyanic acid by reaction of amines with carbonyl halides, e.g. with phosgene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C265/00Derivatives of isocyanic acid
    • C07C265/14Derivatives of isocyanic acid containing at least two isocyanate groups bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/29Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation of hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/78Separation; Purification; Stabilisation; Use of additives
    • C07C45/86Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/28Saturated compounds having —CHO groups bound to carbon atoms of rings other than six—membered aromatic rings
    • C07C47/34Saturated compounds having —CHO groups bound to carbon atoms of rings other than six—membered aromatic rings polycyclic
    • C07C47/347Saturated compounds having —CHO groups bound to carbon atoms of rings other than six—membered aromatic rings polycyclic having a —CHO group on a condensed ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/36Systems containing two condensed rings the rings having more than two atoms in common
    • C07C2602/42Systems containing two condensed rings the rings having more than two atoms in common the bicyclo ring system containing seven carbon atoms

Definitions

  • the present invention relates to a method for producing an aldehyde compound, a method for producing an amine compound and a method for producing an isocyanate compound using the aldehyde compound obtained by the production method.
  • Patent Documents 1 to 3 disclose a process for producing formylcyanorbornane by hydroformylating cyanorbornene using a H 2 / CO mixed gas in the presence of a catalyst.
  • Patent Documents 1 and 2 disclose examples using a metal compound as a catalyst.
  • a rhodium complex is preferably used as the catalyst because the target compound can be obtained with high selectivity and the reaction pressure can be suppressed low.
  • Patent Document 1 describes that the catalyst can be 0.1 to 10% by weight based on cyannorbornene.
  • Patent Document 2 describes that the catalyst concentration is 0.5 to 10 mmol / l, and triarylphosphine can be used in the range of 3 to 300 mol with respect to 1 mol of rhodium.
  • Patent Document 4 discloses a method for hydroformylating an olefinic compound using a H 2 / CO mixed gas in the presence of a transition metal catalyst and a trivalent phosphorus compound. The content of the metal catalyst is described as a free metal content of 10 to 1000 ppm based on the weight or volume of the catalyst composition.
  • Patent Document 5 describes a metal ligand complex catalyst, and mentions rhodium as a metal and an organophosphorus ligand as a ligand.
  • the amounts used are described as a metal concentration in the range of about 1 ppm to 10,000 ppm and a ligand: metal molar ratio of 1: 1 to 200: 1, calculated as free metal.
  • Patent Documents 6 and 7 disclose a method for producing an aldehyde compound by hydroformylating a chain olefin compound.
  • the example of Patent Document 6 describes an example in which 7-octenal is hydroformylated in the presence of a rhodium catalyst and a bisphosphite. It is described that rhodium is used at about 3 ppm mol per 1 mol of 7-octenal, and the rhodium atom / phosphorus atom is 1/20 in molar ratio.
  • paragraph 0084 of Patent Document 6 describes that 2 to 1000 mol in terms of phosphorus atom is preferable with respect to 1 mol of metal, and the reaction rate tends to be extremely low when it exceeds 1000 mol.
  • Example of patent document 7 the example which hydroformylated cyclohexene in presence of 3 ppm rhodium is described.
  • the problem of the present invention is to establish a technique for reducing the amount of rare metal used as a rare metal and effectively utilizing it while maintaining the same productivity as when using metal in the conventional amount used.
  • the present inventor has intensively studied a method for reducing the amount of metal contained in a metal compound.
  • the phosphorus compound that can be used as a ligand for forming a metal complex is excessively large.
  • the reaction rate did not decrease, the aldehyde compound could be obtained in high yield, and the productivity did not decrease.
  • a method for producing a characteristic aldehyde compound (1) With respect to 1 mol of the compound represented by the general formula (a1) or (a2), 0.01 to 300 ppm mol of a metal contained in the Group 8 to 10 metal compound, (2) The molar ratio represented by the phosphorus compound (mol) / the metal (mol) is 100 or more.
  • An amine comprising a step of reacting an aldehyde compound obtained by the production method according to any one of [1] to [6] with ammonia and reacting with hydrogen in the presence of a catalyst.
  • a method for producing an isocyanate compound comprising a step of reacting the amine compound obtained by the production method according to [7] with a carbonylating agent.
  • Formula (a1) In the formula (a2), n represents 0, 1 or 2.) Is reacted with hydrogen and carbon monoxide in the presence of a Group 8-10 metal compound and a phosphorus compound so as to satisfy the following conditions (1) and (2) to synthesize an aldehyde compound: Process, Reacting the aldehyde compound with ammonia and reacting with hydrogen in the presence of a catalyst; and a method for producing an amine compound, (1) With respect to 1 mol of the compound represented by the general formula (a1) or (a2), 0.01 to 300 ppm mol of a metal contained in the Group 8 to 10 metal compound, (2) The molar ratio represented by the phosphorus compound (mol) / the metal (mol) is 100 or more.
  • n 0, 1 or 2.
  • a process for producing an isocyanate compound comprising: (1) With respect to 1 mol of the compound represented by the general formula (a1) or (a2), 0.01 to 300 ppm mol of a metal contained in the Group 8 to 10 metal compound, (2) The molar ratio represented by the phosphorus compound (mol) / the metal (mol) is 100 or more.
  • the “phosphorus compound” in the present invention means a phosphorus compound that can form a complex with a metal compound, and any of a phosphorus compound that forms a complex with a metal compound, or a phosphorus compound that is more liberated. Is also included.
  • the amount of the substance B is expressed as 1 ppm mol.
  • the amount of metal can be reduced, and further, since the reaction rate does not decrease, the productivity is excellent and the aldehyde compound can be obtained in a high yield. Since the method for producing an amine compound and the method for producing an isocyanate compound of the present invention include the method for producing an aldehyde compound as one step, the amount of metal can be reduced, and the productivity and yield of the aldehyde compound are excellent. Therefore, the productivity and yield of the target compound are excellent. Thus, according to the present invention, it is possible to provide a technique for reducing the amount of rare metal used as a rare metal and effectively utilizing it.
  • FIG. 2 is a 1 H-NMR chart of the compound obtained in Example 1.
  • FIG. 2 is a 1 H-NMR chart of the compound obtained in Example 2.
  • FIG. 2 is a 1 H-NMR chart of the compound obtained in Example 3.
  • a compound represented by the following general formula (a1) or the following general formula (a2) is treated with hydrogen and monoxide in the presence of a Group 8-10 metal compound and a phosphorus compound. Reacting with carbon.
  • X represents a hydrogen atom, a cyano group, an aldehyde group, —CH ⁇ NR group, and R represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 20 carbon atoms. .
  • X is preferably a cyano group or an aldehyde group, and more preferably a cyano group.
  • n represents 0, 1 or 2, preferably 0 or 1, and more preferably 1.
  • the compound represented by general formula (a1) may be either an endo isomer or an exo isomer, and may be a mixture containing these in an arbitrary ratio.
  • Specific examples of the compound represented by the general formula (a1) include the following compounds.
  • Examples of the compound represented by the general formula (a2) include the following compounds.
  • n is more preferably 1.
  • a compound represented by the following general formula (1) can be preferably used.
  • X is synonymous with general formula (a1), and is preferably a cyano group or an aldehyde group, and more preferably a cyano group.
  • the compound represented by the general formula (1) may be either an endo isomer or an exo isomer, and may be a mixture containing these at an arbitrary ratio.
  • the Group 8-10 metal compound used in the reaction of this embodiment is a rhodium compound, a cobalt compound, a ruthenium compound, or an iron compound.
  • rhodium compounds examples include Rh (acac) (CO) 2 , Rh (acac) 3 , RhCl (CO) (PPh 3 ) 2 , RhCl (PPh 3 ) 3 , RhBr (CO) (PPh 3 ) 2 , Rh 2. (CO) 8 , Rh 4 (CO) 12 , Rh 6 (CO) 16 and the like.
  • cobalt compound examples include HCo (CO) 3 , HCo (CO) 4 , Co 2 (CO) 8 , HCo 3 (CO) 9, and the like.
  • Examples of the ruthenium compound include Ru (CO) 3 (PPh 3 ) 2 , RuCl 2 (PPh 3 ) 3 , RuCl 3 (PPh 3 ) 3 , Ru 3 (CO) 12 and the like.
  • As the iron compounds for example, Fe (CO) 5, Fe ( CO) 4 PPh 3, Fe (CO) 4 (PPh 3) 2 and the like.
  • “Acac” means acetylacetonate.
  • the rhodium compound used in the reaction of the present embodiment is not particularly limited as long as it is a compound containing a monovalent rhodium metal, but dicarbonylacetylacetonatodium (Rh (acac) (CO) 2 ), dodecacarbonyltetrarhodium.
  • examples include rhodium carbonyl catalysts such as (Rh 4 (CO) 12 ), hexadecacarbonyl hexarhodium (Rh 6 (CO) 16 ), and octacarbonyl dirhodium (Rh 2 (CO) 8 ); rhodium chloride.
  • R 1 and R 2 may be the same or different and each represents an optionally substituted alkyl group having 1 to 16 carbon atoms or an aryl group having 6 to 16 carbon atoms.
  • phosphorus compounds include triphenyl phosphite, triphenylphosphine, trimethylphosphine, triethylphosphine, tripropylphosphine, tri (methylbenzene) phosphine, tri (ethylbenzene) phosphine, 1,2-bis (diphenylphosphino ) Ethylene, 1,3-bis (diphenylphosphino) propane, 2,2-bis (diphenylphosphino) -1,1-binaphthyl, trimethoxy phosphite, triethoxy phosphite, tripropoxy phosphite, triisopropoxy Examples thereof include trivalent phosphorus compounds such as phosphite, trimethylphenyl phosphite, and tris (2,4-ditertiarybutylphenyl) phosphite. The hydroformylation reaction using these raw materials and the like can be performed so as
  • the Group 8 to 10 metal contained in the Group 8 to 10 metal compound is 0.01 to 300 ppm mol, preferably The amount is from 0.15 to 100 ppm mol, more preferably from 0.5 to 100 ppm mol, particularly preferably from 1 to 100 ppm mol.
  • the molar ratio represented by the phosphorus compound (mol) / group 8-10 metal (mol) contained in the group 8-10 metal compound is 100 or more, preferably 150 or more, more preferably 200 or more. is there.
  • an upper limit is not specifically limited, From a viewpoint of the said effect, it is 1 million or less, Preferably it is 100,000 or less, More preferably, it is 50,000 or less, Most preferably, it is 10,000 or less. These lower limit value and upper limit value can be arbitrarily combined.
  • the molar ratio represented by the phosphorus compound (mol) / the compound (mol) represented by the general formula (a1) or (a2) is 0.003 to 0.05, preferably 0.003 to It is 0.03, more preferably 0.003 to 0.02.
  • the numerical ranges of (1) to (3) can be arbitrarily combined.
  • a method satisfying such conditions can provide an excellent productivity of aldehyde compounds and a high yield even when the amount of the Group 8-10 metal is reduced.
  • the reason why such an effect can be obtained is presumed to be that the activity of the Group 8-10 metal compound is improved more than expected by increasing the amount of the phosphorus compound used. It is also assumed that the compound represented by the general formula (a1) or (a2) has a high steric or electronic influence.
  • the synthesis of the aldehyde compound can be performed as follows. First, a rhodium compound, a phosphorus compound, and a compound represented by the general formula (a1) or (a2) as a raw material are inserted into a container. While supplying hydrogen and carbon monoxide gas, the reaction can be performed at a temperature of 30 to 120 ° C., a pressure of 0.1 to 1.0 MPa, and a reaction time of 1 to 8 hours. In addition, the hydroformylation reaction can be carried out by appropriately selecting a homogeneous reaction system comprising only an oil phase or a two-layer reaction system comprising an aqueous layer and an oil layer. Thereby, the compound represented by the general formula (a1) or (a2) is hydroformylated to synthesize an aldehyde compound.
  • the hydroformylation reaction can also be performed in a solvent-free manner, and a substituted or unsubstituted aromatic compound, a substituted or unsubstituted aliphatic hydrocarbon compound, and an alcohol can be used.
  • a substituted or unsubstituted aromatic compound a substituted or unsubstituted aliphatic hydrocarbon compound, and an alcohol
  • toluene, benzene, hexane It can also be carried out in a solvent such as octane, acetonitrile, benzonitrile, orthodichlorobenzene, ethanol, pentanol, octanol. Since the hydroformylation reaction in this embodiment is also excellent in reactivity at a high concentration, the hydroformylation reaction can be performed in the absence of a solvent. This eliminates the need for a step of distilling off the solvent, which makes the step simple, improves the volumetric efficiency, and improves the production efficiency.
  • the aldehyde compound represented by the following general formula (b1) is synthesized from the compound of the general formula (a1) by the production method of the present embodiment.
  • An aldehyde compound represented by the following general formula (b2) is synthesized from the compound of the general formula (a2).
  • the compound represented by the general formula (b1) or (b2) is “a compound in which the 2-position and the 5-position are substituted with a predetermined group (hereinafter, 2 , 5 forms) "or” compounds substituted at the 2-position and 6-position with a predetermined group (hereinafter 2,6 forms) ", or a mixture containing these in an arbitrary ratio.
  • the 2,5 and 2,6 isomers can be obtained as either an endo-endo isomer, an endo-exo isomer, or an exo-exo isomer depending on the configuration of substituents, or at least two of these. It can also be obtained as a mixture containing seeds in any proportion.
  • the compound represented by the general formula (b1) or (b2) can be obtained as either a cis type or a trans type, and these can be obtained at any ratio. It can also be obtained as a mixture comprising In general formula (b1) or (b2), X and n are synonymous with general formula (a1) or (a2).
  • a compound represented by the general formula (b1) is preferably obtained, and examples of the compound include a compound represented by the following general formula (2).
  • the aldehyde compound represented by the general formula (2) is a compound in which the 2-position of bicyclo [2.2.1] heptane is substituted with a substituent X and the 5-position is substituted with an aldehyde group (hereinafter referred to as 2 , 5 forms) "or" a compound in which the 2-position is substituted with a substituent X and the 6-position is substituted with an aldehyde group (hereinafter, 2,6 forms) ", or a mixture containing these in an arbitrary ratio Can be obtained as
  • the 2,5 and 2,6 isomers can be obtained as either an endo-endo isomer, an endo-exo isomer, or an exo-exo isomer depending on the configuration of substituents, or at least two of these. It can also be obtained as a mixture containing seeds in any proportion.
  • a predetermined purification step can be performed to obtain the target aldehyde compound
  • the manufacturing method of the amine compound of this embodiment includes the manufacturing method of the above-mentioned aldehyde compound as a process (a). Therefore, in the step (a), the amount of the Group 8-10 metal can be reduced, and further, the productivity and yield of the aldehyde compound are excellent. It will be even better.
  • the process (a) is the same as the process in the above “method for producing an aldehyde compound”, the description thereof is omitted.
  • the aldehyde compound represented by the general formula (b1) or the following general formula (b2) obtained in the step (a) is reacted with ammonia to iminate and in the presence of a catalyst.
  • An amine compound is synthesized by hydrogenation.
  • a metal catalyst such as nickel, platinum, palladium, ruthenium or the like can be used.
  • the aldehyde compound has a cyano group as a substituent, a —CH 2 —NH 2 group is generated by hydrogen reduction.
  • the aldehyde group of the aldehyde compound becomes an amino group by imination, and the cyano group also becomes an amino group by hydrogen reduction. Therefore, in the following general formula (c1) having two amino groups, The amine compound represented is synthesized.
  • X is a hydrogen atom
  • the amine compound represented by the following general formula (c2) is synthesized.
  • n is synonymous with general formula (a1) or (a2).
  • the compound represented by the general formula (c1) is “a compound in which 2-position and 5-position are substituted with a predetermined group (hereinafter, 2,5-body)” or “2-position” It can be obtained as any of “compounds substituted at the 6-position with a predetermined group (hereinafter, 2,6)” or a mixture containing these in an arbitrary ratio.
  • the 2,5 and 2,6 isomers can be obtained as either an endo-endo isomer, an endo-exo isomer, or an exo-exo isomer depending on the configuration of substituents, or at least two of these.
  • the compound represented by the general formula (c1) can be obtained as either a cis type or a trans type, and can also be obtained as a mixture containing these at an arbitrary ratio.
  • the compound represented by the general formula (c2) can be obtained as an endo isomer or an exo isomer, and can also be obtained as a mixture containing these in an arbitrary ratio.
  • a compound of the general formula (c1) is preferably obtained, and examples of the compound include compounds of the following chemical formula (3) in which n is 1.
  • the amine compound represented by the chemical formula (3) is “a compound in which the 2- and 5-positions of bicyclo [2.2.1] heptane are substituted with aminomethyl groups (hereinafter, 2,5)”, or Any of “compounds substituted with aminomethyl groups at the 2-position and 6-position” (hereinafter, 2,6 compounds), or a mixture containing these in an arbitrary ratio can be obtained.
  • the 2,5 and 2,6 isomers can be obtained as either an endo-endo isomer, an endo-exo isomer, or an exo-exo isomer depending on the configuration of substituents, or at least two of these. It can also be obtained as a mixture containing seeds in any proportion.
  • the above imination and hydrogenation reaction can be performed as follows. First, an aldehyde compound, a solvent, and a catalyst are charged into a reaction vessel, and ammonia gas is blown into the reaction vessel. Then, hydrogen is injected to a pressure of about 1 MPa, the temperature is raised to about 100 ° C., and the reaction is performed for about 1 to 10 hours under the temperature and pressure while supplying hydrogen.
  • the solvent for example, alcohol having 1 to 8 carbon atoms, water and the like are preferably used.
  • the target amine compound can be obtained after completion
  • the manufacturing method of the isocyanate compound of this embodiment includes the following processes.
  • the manufacturing method of the isocyanate compound of this embodiment includes the manufacturing method of the above-mentioned aldehyde compound as a process (a). Therefore, in the step (a), the amount of the Group 8-10 metal compound can be reduced, and the productivity and yield of the aldehyde compound are excellent. As a result, the productivity and yield of the isocyanate compound as the target compound can be improved. The rate will also be excellent.
  • step (a) is the same as the step in the “method for producing an aldehyde compound”, and the step (b) is the same as the step in the “method for producing an amine compound”.
  • the amine compound represented by the general formula (c1) or (c2) obtained in the step (b) is reacted with a carbonylating agent under a predetermined condition, whereby the following general formula (d1) Alternatively, an isocyanate compound represented by (d2) is synthesized.
  • a carbonylating agent phosgene, urea derivatives, carbonate derivatives, carbon monoxide and the like can be used.
  • n is synonymous with general formula (a1) or (a2).
  • the compound represented by the general formula (d1) is “a compound in which 2-position and 5-position are substituted with a predetermined group (hereinafter, 2,5-body)” or “2-position” It can be obtained as any of “compounds substituted at the 6-position with a predetermined group (hereinafter, 2,6)” or a mixture containing these in an arbitrary ratio.
  • the 2,5 and 2,6 isomers can be obtained as either an endo-endo isomer, an endo-exo isomer, or an exo-exo isomer depending on the configuration of substituents, or at least two of these.
  • the compound represented by the general formula (d1) can be obtained as either a cis type or a trans type, and can also be obtained as a mixture containing these at an arbitrary ratio.
  • the compound represented by the general formula (d2) can be obtained as an endo isomer or an exo isomer, and can also be obtained as a mixture containing these in an arbitrary ratio.
  • a compound of the general formula (d1) is preferably obtained, and examples of the compound include compounds of the following chemical formula (4) in which n is 1.
  • the isocyanate compound represented by the chemical formula (4) is “a compound in which 2- and 5-positions of bicyclo [2.2.1] heptane are substituted with an isocyanatomethyl group (hereinafter, 2,5)”, Alternatively, it can be obtained as any one of “compounds substituted with isocyanatomethyl groups at the 2nd and 6th positions (hereinafter, 2,6)”, or a mixture containing these in an arbitrary ratio.
  • the 2,5 and 2,6 isomers can be obtained as either an endo-endo isomer, an endo-exo isomer, or an exo-exo isomer depending on the configuration of substituents, or at least two of these. It can also be obtained as a mixture containing seeds in any proportion.
  • step (c) when phosgene is used as the carbonylating agent, specifically, a method in which an amine compound and a solvent are first charged in a reaction vessel and hydrochloric acid is converted to hydrochloric acid with hydrochloric acid and then reacted with phosgene, Examples thereof include a method in which a carbamoyl chloride compound is obtained by direct reaction with phosgene and then thermally decomposed. Furthermore, the target isocyanate compound can be obtained by performing a normal purification process after the reaction is completed.
  • the reaction solvent in the case of using phosgene as the carbonylating agent is not particularly limited, but has a high solubility in hydrochloric acid during the salt formation reaction, a large solubility in phosgene during the phosgenation reaction, and a low solubility in hydrochloric acid. It is preferable to use an organic aromatic compound or an ester compound.
  • Examples of high-boiling organic aromatic compounds include 1,2-diethylbenzene, 1,3-diethylbenzene, 1,4-diethylbenzene, isopropylbenzene, 1,2,4-trimethylbenzene, amylbenzene, diamylbenzene, triamylbenzene, Examples include dodecylbenzene, p-cymene, cumene methylphenyl ether, ethylphenyl ether, diisoamyl ether, n-hexyl ether, orthodichlorobenzene, parachlorotoluene, bromobenzene, 1,2,4-trichlorobenzene and the like.
  • the ester compound is not particularly limited, but is preferably an acetate such as isoamyl acetate or isooctyl acetate. Among these exemplified solvents, aromatic solvents are particularly preferred for carrying out the present invention.
  • the isocyanate compound obtained by this embodiment can be used as a raw material for optical materials and a paint.
  • the amine compound obtained by this embodiment can also be used as a raw material for paints and curing agents.
  • the obtained reaction liquid containing bicyclo [2.2.1] -5-heptene-2-carbonitrile was 355.6 g, and analysis showed that bicyclo [2.2.1] -5-heptene-2- It contained 331.2 g (2.78 mol) of carbonitrile. 352.4 g of the reaction solution containing 328.2 g (2.75 mol) of the obtained bicyclo [2.2.1] -5-heptene-2-carbonitrile was charged into a 500 ml flask, Distillation was performed to obtain 300.7 g (2.52 mol) of bicyclo [2.2.1] -5-heptene-2-carbonitrile as a main fraction.
  • reaction solution containing 2-cyano-5, (6) -formylbicyclo [2.2.1] heptane.
  • the reaction solution was analyzed and found to be 208.8 g (1.4 mol) of 2-cyano-5-formylbicyclo [2.2.1] heptane and 2-cyano-6-formylbicyclo [2.2.1] heptane. Contained.
  • Raney cobalt catalyst obtained by developing a cobalt-aluminum alloy containing 89.5 g (0.6 mol) of heptane, 89.5 g of methanol, and manganese (94% by mass of cobalt, 3.5% by mass of aluminum, Manganese (2.1% by mass) 4.5 g (dry mass) was charged, and ammonia gas 24.5 g (1.44 mol) was blown.
  • Example 3 [Synthesis of 2,5-bisisocyanatomethyl-bicyclo [2.2.1] heptane and 2,6-bisisocyanatomethyl-bicyclo [2.2.1] heptane] 958 g of orthodichlorobenzene was charged into a 2-liter 5-neck reaction flask equipped with a reflux condenser, a stirring blade, a thermometer, a gas blowing tube, and a raw material charging tube, and obtained in Example 2 in the raw material tank.
  • aging was performed for 1 hour while charging hydrochloric acid gas at 20 g / hr.
  • hydrochloride reaction mass was then heated to 160 ° C., and then phosgene was blown from the phosgene blowing tube at 100 g / hr (1.0 mol / hr) and reacted for 6 hours while maintaining the temperature.
  • the system was purged with nitrogen with unreacted phosgene and hydrochloric acid gas, and the solvent was removed, followed by 2,5-bisisocyanatomethyl-bicyclo [2.2.1] heptane and 2,6-bisisocyanate.
  • Example 5 According to Example 2, the “mixture of 2-cyano-5-formylbicyclo [2.2.1] heptane and 2-cyano-6-formylbicyclo [2.2.1] heptane” obtained in Example 4 Then, “a mixture of 2,5-bisaminomethyl-bicyclo [2.2.1] heptane and 2,6-bisaminomethyl-bicyclo [2.2.1] heptane” was synthesized. The yield was 85.6%.
  • Example 6 According to Example 3, the “2,5-bisaminomethyl-bicyclo [2.2.1] heptane and 2,6-bisaminomethyl-bicyclo [2.2.1] heptane obtained in Example 5 From the “mixture”, “a mixture of 2,5-bisisocyanatomethyl-bicyclo [2.2.1] heptane and 2,6-bisisocyanatomethyl-bicyclo [2.2.1] heptane” was synthesized. The yield after distillation was 85.6%.
  • the mixed gas in the system is purged with nitrogen, and the reaction contains 2,5-bisformylbicyclo [2.2.1] heptane and 2,6-bisformylbicyclo [2.2.1] heptane.
  • a liquid was obtained in an amount of 280.1 g.
  • the reaction solution was analyzed and found to contain 266.1 g (1.76 mol) of the compound.
  • 2,5 or 2,6 can be obtained depending on the reaction conditions.
  • the 2,5 isomer can be obtained as either an endo-endo isomer, an endo-exo isomer, or an exo-exo isomer depending on the configuration of substituents, or includes at least two of these in an arbitrary ratio. It can also be obtained as a mixture.
  • 2,6 can also be obtained as any of endo-endo, endo-exo, exo-exo, or a mixture containing at least two of these in any proportion. .
  • the present invention includes the following contents.
  • the following general formula (1) (In formula (1), X represents a cyano group or an aldehyde group.)
  • An aldehyde compound comprising a step of reacting hydrogen and carbon monoxide in the presence of a rhodium compound and a phosphorus compound so as to satisfy the following conditions (1) and (2): Manufacturing method of (1) With respect to 1 mol of the compound represented by the general formula (1), rhodium contained in the rhodium compound is 0.01 to 300 ppm mol, (2) The molar ratio represented by the phosphorus compound (mol) / rhodium (mol) is 100 or more.
  • [E] A method for producing an isocyanate compound, comprising a step of reacting an amine compound obtained by the production method according to [d] with a carbonylating agent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

 本発明のアルデヒド化合物の製造方法は、下記一般式(a1)または(a2)で表される化合物を、下記条件(1)および(2)を満たすように、第8~10族金属化合物とリン化合物の存在下で、水素および一酸化炭素と反応させてアルデヒド化合物を合成させる工程を含む、ことを特徴とする。 (1)前記一般式(a1)または(a2)で表される前記化合物1molに対して、第8~10族金属化合物に含まれる金属が0.01~300ppmmolである。 (2)前記リン化合物(mol)/前記金属(mol)で表されるモル比が100以上である。

Description

アルデヒド化合物の製造方法
 本発明は、アルデヒド化合物の製造方法、この製造方法により得られたアルデヒド化合物を用いた、アミン化合物の製造方法およびイソシアネート化合物の製造方法に関する。
 ノルボルネン化合物を用いたアルデヒド化合物の製造方法としては、例えば特許文献1~3に記載の方法が知られている。
 特許文献1~3には、触媒存在下で、H/CO混合ガスを用いてシアンノルボルネンをヒドロホルミル化させ、ホルミルシアンノルボルナンを製造する方法が開示されている。特許文献1および2には、触媒として金属化合物を用いた例が開示されている。なお、目的化合物を高選択的に得ることができ、反応圧力を低く抑制することができることから、触媒としてロジウム錯体が好ましく用いられている。
 特許文献1には、触媒をシアンノルボルネンに対し0.1~10重量%とすることができると記載されている。特許文献2には、触媒濃度を0.5~10mmol/lとし、トリアリールホスフィンをロジウム1モルに対して3~300モルの範囲で用いることができると記載されている。
 特許文献4には、遷移金属触媒と三価のリン化合物の存在下で、H/CO混合ガスを用いてオレフィン系化合物をヒドロホルミル化する方法が開示されている。そして、金属触媒の含量は、触媒組成物の重さまたは体積を基準に、遊離金属含量が10~1000ppmであると記載されている。
 特許文献5には、金属リガンド錯体触媒に関して記載されており、金属としてロジウム、リガンドとして有機燐リガンドが挙げられている。これらの使用量としては、遊離の金属として計算した場合、約1ppm~10,000ppmの範囲の金属濃度、およびリガンド:金属のモル比が1:1~200:1と記載されている。
 また、特許文献6、7には、鎖状のオレフィン化合物をヒドロホルミル化させ、アルデヒド化合物を製造する方法が開示されている。
 特許文献6の実施例には、ロジウム触媒およびビスホスファイトの存在下で、7-オクテナールをヒドロホルミル化させた例が記載されている。7-オクテナール 1molに対しロジウムは3ppmmol程度で用いられており、ロジウム原子/リン原子はモル比で1/20であると記載されている。一方、特許文献6の0084段落には、金属1モルに対してリン原子換算で2~1000モルが好ましく、1000モルを超える場合は、反応速度が極めて小さくなる傾向があると記載されている。
 また、特許文献7の実施例には、シクロヘキセンを、3ppmのロジウムの存在下でヒドロホルミル化させた例が記載されている。
特開昭57-193438号公報 特開昭60-72844号公報 米国特許3,143,570号公報 特表2010-538818号公報 特表2003-505438号公報 特開2008-031125号公報 特表2011-503018号公報
 近年、技術の発達に伴い希少金属の使用量が増加しており、希少金属資源の枯渇や価格の上昇が問題となってきている。したがって、いわゆるレアメタルの使用量を低減し、有効活用することが広く求められてきている。
 しかしながら、ノルボルネン化合物、例えば、シアノノルボルネンのヒドロホルミル化反応において、触媒である金属化合物に含まれる金属の基質に対する量を低減すると、反応速度が低下したり、または反応自体が進まなくなり収率が低下するなど、生産性に問題が生じる。つまり、触媒である金属化合物に含まれる金属の量の低減と、生産性の向上はトレードオフの関係にあり、現在まで、ノルボルネン化合物のヒドロホルミル化反応において金属の量を低減する方法は確立されていない。
 なお、シアノノルボルネン化合物のヒドロホルミル化反応における従来の技術水準としては、特許文献1の実施例5に記載のように、基質に対する金属の量が55ppmである。しかしながら、選択率が87.2%と低く改善の余地があった。
 すなわち、本発明の課題は、従来の使用量で金属を用いた場合と同等の生産性を維持しつつ、レアメタルである希少金属の使用量を低減し、有効活用する技術を確立することを課題とする。
 本願発明者は、上述の課題を解決するため、金属化合物に含まれる金属の量を低減する方法を鋭意検討したところ、金属錯体を形成する配位子として用いることができるリン化合物を大過剰に加えた場合、驚くべきことに金属の量を低減させたとしても、反応速度が低下せず、アルデヒド化合物を高収率で得ることができ、生産性が低下しないことを見出した。
 本発明は以下に示すことができる。
 [1] 下記一般式(a1)
Figure JPOXMLDOC01-appb-C000001
 または、下記一般式(a2)
Figure JPOXMLDOC01-appb-C000002
(式(a1)中、Xは水素原子、シアノ基、アルデヒド基、-CH=NR基を示し、Rは、水素原子、炭素数1~6のアルキル基、アリール基を示す。式(a1)および式(a2)中、nは、0、1または2を示す。)
で表される化合物を、下記条件(1)および(2)を満たすように、第8~10族金属化合物とリン化合物の存在下で、水素および一酸化炭素と反応させる工程を含む、ことを特徴とするアルデヒド化合物の製造方法;
(1)前記一般式(a1)または(a2)で表される前記化合物1molに対して、前記第8~10族金属化合物に含まれる金属が0.01~300ppmmol、
(2)前記リン化合物(mol)/前記金属(mol)で表されるモル比が100以上。
[2] 前記第8~10族金属化合物が、ロジウム化合物、コバルト化合物、ルテニウム化合物または鉄化合物であることを特徴とする[1]に記載のアルデヒド化合物の製造方法。
[3] 前記第8~10族金属化合物が、ロジウム化合物であることを特徴とする[1]または[2]に記載のアルデヒド化合物の製造方法。
[4] 前記一般式(a1)で表される化合物を用い、当該化合物が下記一般式(1)
Figure JPOXMLDOC01-appb-C000003
(式(1)中、Xは一般式(a1)と同義である。)
で表される化合物であることを特徴とする[1]乃至[3]のいずれかに記載のアルデヒド化合物の製造方法。
[5] 前記リン化合物は、三価のリン化合物であることを特徴とする[1]乃至[4]のいずれかに記載のアルデヒド化合物の製造方法。
[6] 前記工程は、無溶剤中で行うことを特徴とする[1]乃至[5]のいずれかに記載のアルデヒド化合物の製造方法。
[7] [1]乃至[6]のいずれかに記載の製造方法により得られたアルデヒド化合物を、アンモニアと反応させるとともに、触媒の存在下で水素と反応させる工程を含むことを特徴とするアミン化合物の製造方法。
[8] [7]に記載の製造方法により得られたアミン化合物を、カルボニル化剤と反応させる工程を含むことを特徴とするイソシアネート化合物の製造方法。
[9] 下記一般式(a1)
Figure JPOXMLDOC01-appb-C000004
 または、下記一般式(a2)
Figure JPOXMLDOC01-appb-C000005
(式(a1)中、Xは水素原子、シアノ基、アルデヒド基、-CH=NR基を示し、Rは、水素原子、炭素数1~6のアルキル基、アリール基を示す。式(a1)および式(a2)中、nは、0、1または2を示す。)
で表される化合物を、下記条件(1)および(2)を満たすように、第8~10族金属化合物とリン化合物の存在下で、水素および一酸化炭素と反応させてアルデヒド化合物を合成する工程と、
 前記アルデヒド化合物をアンモニアと反応させるとともに、触媒の存在下で水素と反応させる工程と、を含むことを特徴とするアミン化合物の製造方法;
(1)前記一般式(a1)または(a2)で表される前記化合物1molに対して、前記第8~10族金属化合物に含まれる金属が0.01~300ppmmol、
(2)前記リン化合物(mol)/前記金属(mol)で表されるモル比が100以上。
[10] 前記第8~10族金属化合物が、ロジウム化合物、コバルト化合物、ルテニウム化合物または鉄化合物であることを特徴とする[9]に記載のアミン化合物の製造方法。
[11] 前記第8~10族金属化合物が、ロジウム化合物であることを特徴とする[9]または[10]に記載のアミン化合物の製造方法。
[12] 前記一般式(a1)で表される化合物を用い、当該化合物が下記一般式(1)
Figure JPOXMLDOC01-appb-C000006
(式(1)中、Xは一般式(a1)と同義である。)
で表される化合物であることを特徴とする[9]乃至[11]のいずれかに記載のアミン化合物の製造方法。
[13] 下記一般式(a1)
Figure JPOXMLDOC01-appb-C000007
 または、下記一般式(a2)
Figure JPOXMLDOC01-appb-C000008
(式(a1)中、Xは水素原子、シアノ基、アルデヒド基、-CH=NR基を示し、Rは、水素原子、炭素数1~6のアルキル基、アリール基を示す。式(a1)および式(a2)中、nは、0、1または2を示す。)
で表される化合物を、下記条件(1)および(2)を満たすように、第8~10族金属化合物とリン化合物の存在下で、水素および一酸化炭素と反応させてアルデヒド化合物を合成する工程と、
 前記アルデヒド化合物をアンモニアと反応させるとともに、触媒の存在下で水素と反応させてアミン化合物を合成する工程と、
 前記アミン化合物を、カルボニル化剤と反応させる工程と、
 を含むことを特徴とするイソシアネート化合物の製造方法;
(1)前記一般式(a1)または(a2)で表される前記化合物1molに対して、前記第8~10族金属化合物に含まれる金属が0.01~300ppmmol、
(2)前記リン化合物(mol)/前記金属(mol)で表されるモル比が100以上。
[14] 前記第8~10族金属化合物が、ロジウム化合物、コバルト化合物、ルテニウム化合物または鉄化合物であることを特徴とする[13]に記載のイソシアネート化合物の製造方法。
[15] 前記第8~10族金属化合物が、ロジウム化合物であることを特徴とする[13]または[14]に記載のイソシアネート化合物の製造方法。
[16] 前記一般式(a1)で表される化合物を用い、当該化合物が下記一般式(1)
Figure JPOXMLDOC01-appb-C000009
(式(1)中、Xは一般式(a1)と同義である。)
で表される化合物であることを特徴とする[13]乃至[15]のいずれかに記載のイソシアネート化合物の製造方法。
 なお、本発明における「リン化合物」は、金属化合物と錯体を形成することができるリン化合物を意味し、金属化合物と錯体を形成しているリン化合物、おより遊離しているリン化合物、のいずれをも含む。
 また、本発明において、物質A 1molに対して、物質Bを1×10-6molの量で用いる場合、物質Bの量を1ppmmolと表記する。
 本発明のアルデヒド化合物の製造方法によれば、金属の量を低減することができ、さらに、反応速度が低下しないため生産性に優れ、さらにアルデヒド化合物を高収率で得ることができる。本発明のアミン化合物の製造方法、およびイソシアネート化合物の製造方法は、アルデヒド化合物の製造方法を一工程として含むので、金属の量を低減することができ、さらにアルデヒド化合物の生産性および収率に優れることから、ひいては目的化合物の生産性および収率にも優れる。このように、本発明によれば、レアメタルである希少金属の使用量を低減し、有効活用する技術を提供することができる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
実施例1で得られた化合物のH-NMRチャートである。 実施例2で得られた化合物のH-NMRチャートである。 実施例3で得られた化合物のH-NMRチャートである。
 以下、本実施形態のアルデヒド化合物の製造方法について説明し、アミン化合物の製造方法、次いでイソシアネート化合物の製造方法について説明する。
<アルデヒド化合物の製造方法>
 本実施形態のアルデヒド化合物の製造方法は、下記一般式(a1)または下記一般式(a2)で表される化合物を、第8~10族金属化合物とリン化合物の存在下で、水素および一酸化炭素と反応させる工程を含む。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 式(a1)中、Xは水素原子、シアノ基、アルデヒド基、-CH=NR基を示し、Rは、水素原子、炭素数1~6のアルキル基、炭素数6~20のアリール基を示す。Xとしては、シアノ基、アルデヒド基が好ましく、シアノ基がより好ましい。式(a1)および式(a2)中、nは、0、1または2を示し、0または1が好ましく、1がより好ましい。
 なお、一般式(a1)で表される化合物は、エンド体またはエキソ体の何れかであってもよく、これらを任意の割合で含む混合物であってもよい。
 一般式(a1)で表される化合物として、具体的には以下の化合物を挙げることができる。
(1)n:0の化合物として、
 シクロヘキセン、4-シアノ-1-シクロへキセン、3-シクロへキセン-1-カルボキシアルデヒド、(4-イミノメチルー1-シクロヘキサンを挙げることができる。
(2)n:1の化合物として、
 ビシクロ[2.2.1]-5-ヘプテン、ビシクロ[2.2.1]-5-ヘプテン-2-カルボニトリル、ビシクロ[2.2.1]-5-ヘプテン-2-カルボキシアルデヒド、(ビシクロ[2,2,1]-5-ヘプテンー2-イルメタンアミンを挙げることができる。
(3)n:2の化合物として、
 ビシクロ[2、2、2]-5-オクテン、ビシクロ[2、2、2]-5-オクテンー2-カルボニトリル、ビシクロ[2、2、2]-5-オクテンー2-カルボキシアルデヒド、ビシクロ[2、2、2]-5-ヘプテン-2-イルメタンアミンを挙げることができる。
 一般式(a2)で表される化合物として、以下の化合物を挙げることができる。
(1)n:0の化合物として、
 1,3-シクロヘキサジエンを挙げることができる。
(2)n:1の化合物として、
 ビシクロ[2.2.1]ヘプタ-2,5-ジエンを挙げることができる。
(3)n:2の化合物として、
 ビシクロ[2、2、2]オクタ-2、5-ジエンを挙げることができる。
 本実施形態においては、一般式(a1)で表される化合物を用いることが好ましく、nが1であることがより好ましい。当該化合物としては、具体的に、下記一般式(1)で表される化合物を好ましく用いることができる。
Figure JPOXMLDOC01-appb-C000012
 式(1)中、Xは一般式(a1)と同義であり、シアノ基またはアルデヒド基であることが好ましく、シアノ基がより好ましい。
 なお、一般式(1)で表される化合物は、エンド体またはエキソ体の何れかであってもよく、これらを任意の割合で含む混合物であってもよい。
 本実施形態の反応に用いられる第8~10族金属化合物は、ロジウム化合物、コバルト化合物、ルテニウム化合物または鉄化合物である。
 ロジウム化合物としては、例えばRh(acac)(CO)、Rh(acac)、RhCl(CO)(PPh、RhCl(PPh、RhBr(CO)(PPh、Rh(CO)、Rh(CO)12、Rh(CO)16などが挙げられる。コバルト化合物としては、例えばHCo(CO)、HCo(CO)、Co(CO)、HCo(CO)などが挙げられる。ルテニウム化合物としては、例えばRu(CO)(PPh、RuCl(PPh、RuCl(PPh、Ru(CO)12などが挙げられる。また、鉄化合物としては、例えばFe(CO)、Fe(CO)PPh、Fe(CO)(PPhなどが挙げられる。なお、「acac」はアセチルアセトナトを意味する。
 本実施形態の反応に用いられるロジウム化合物としては、1価のロジウム金属を含む化合物であれば特に制限されないが、ジカルボニルアセチルアセトナトロジウム(Rh(acac)(CO))、ドデカカルボニルテトラロジウム(Rh(CO)12)、ヘキサデカカルボニルヘキサロジウム(Rh(CO)16)、オクタカルボニルジロジウム(Rh(CO))等のロジウムカルボニル触媒;塩化ロジウム等を挙げることができる。
 本実施形態の反応に用いられるリン化合物としては、三価のリン化合物であれば特に制限されないが、下記式で表される化合物を用いることが好ましい。
(R)
(RO)
 上記式中、R、Rは同一又は異なっていてもよく、それぞれ置換基を有していてもよい炭素数1~16のアルキル基または炭素数6~16のアリール基を示す。
 リン化合物として、具体的には、トリフェニルホスファイト、トリフェニルホスフィン、トリメチルホスフィン、トリエチルホスフィン、トリプロピルホスフィン、トリ(メチルベンゼン)ホスフィン、トリ(エチルベンゼン)ホスフィン、1,2-ビス(ジフェニルホスフィノ)エチレン、1,3-ビス(ジフェニルホスフィノ)プロパン、2,2-ビス(ジフェニルホスフィノ)-1,1-ビナフチル、トリメトキシホスファイト、トリエトキシホスファイト、トリプロポキシホスファイト、トリイソプロポキシホスファイト、トリメチルフェニルホスファイト、トリス(2,4-ジターシャルブチルフェニル)ホスファイト等の三価のリン化合物を挙げることができる。
 これらの原料等を用いたヒドロホルミル化反応は、下記に示される条件(1)と、条件(2)および/または条件(3)と、を満たすように行うことができる。本実施形態においては、条件(1)と条件(2)の2条件を満たすことが好ましい。
(1)前記一般式(a1)または(a2)で表される前記化合物1molに対して、第8~10族金属化合物に含まれる第8~10族金属が、0.01~300ppmmol、好ましくは0.15~100ppmmol、より好ましくは0.5~100ppmmol、特に好ましくは1~100ppmmolである。
(2)リン化合物(mol)/第8~10族金属化合物に含まれる第8~10族金属(mol)で表されるモル比は、100以上、好ましくは150以上、より好ましくは200以上である。上限は、特に限定されないが、上記効果の観点から100万以下、好ましくは10万以下、より好ましくは5万以下、特に好ましくは1万以下である。これら下限値および上限値は任意に組み合わせることができる。
(3)リン化合物(mol)/前記一般式(a1)または(a2)で表される前記化合物(mol)で表されるモル比が、0.003~0.05、好ましくは0.003~0.03、さらに好ましくは0.003~0.02である。
 なお、上記(1)~(3)の数値範囲は任意に組み合わせることができる。
 このような条件を満たす方法は、第8~10族金属の量を低減した場合であっても、アルデヒド化合物の生産性に優れかつ高収率で得ることができる。このような効果が得られる理由は、リン化合物の使用量を多くすることで、第8~10族金属化合物の活性が予測を超えて向上するためであると推測される。また、一般式(a1)または(a2)で表される化合物が、立体的又は電子的な影響が高いことも想定される。
 アルデヒド化合物の合成は、具体的には、以下のようにして行うことができる。
 まず、容器内に、ロジウム化合物と、リン化合物と、原料の一般式(a1)または(a2)で表される化合物を挿入する。そこに、水素および一酸化炭素ガスを供給しながら、温度30~120℃、圧力0.1~1.0MPa、反応時間1~8時間で行うことができる。なお、油相のみの均一反応系または水層および油層からなる二層反応系を適宜選択してヒドロホルミル化反応を行うことができる。
 これにより、一般式(a1)または(a2)で表される化合物をヒドロホルミル化し、アルデヒド化合物が合成される。
 なお、ヒドロホルミル化反応は、無溶剤中で行うこともでき、置換又は無置換の芳香族化合物、置換又は無置換の脂肪族炭化水素化合物、アルコールを用いることができ、例えばトルエン、ベンゼン、ヘキサン、オクタン、アセトニトリル、ベンゾニトリル、オルソジクロルベンゼン、エタノール、ペンタノール、オクタノール等の溶剤中で行うこともできる。本実施形態におけるヒドロホルミル化反応は、高濃度における反応性にも優れるため、無溶剤中でヒドロホルミル化反応を行うことができる。これにより、溶媒を留去する工程等が必要でなくなるため、工程が簡便なものとなり、また容積効率も向上し、生産効率にも優れる。
 本実施形態の製造方法により、一般式(a1)の化合物から下記一般式(b1)で表されるアルデヒド化合物が合成される。一般式(a2)の化合物から下記一般式(b2)で表されるアルデヒド化合物が合成される。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 nが1または2でありXが水素原子以外の場合、一般式(b1)または(b2)で表される化合物は、「2位と5位が所定の基で置換された化合物(以下、2,5体)」、または「2位と6位が所定の基で置換された化合物(以下、2,6体)」の何れか、またはこれらを任意の割合で含む混合物として得ることができる。また、2,5体および2,6体は、各々、置換基の立体配置により、エンド-エンド体、エンド-エキソ体、エキソ-エキソ体の何れかとして得ることができ、またはこれらの少なくとも2種を任意の割合で含む混合物として得ることもできる。
 なお、nが0でありXが水素原子以外の場合、一般式(b1)または(b2)で表される化合物は、シス型、トランス型の何れかとして得ることができ、これらを任意の割合で含む混合物として得ることもできる。
 一般式(b1)または(b2)中、Xおよびnは、一般式(a1)または(a2)と同義である。
 本実施形態においては、一般式(b1)で表される化合物が好ましく得られ、当該化合物としては、下記一般式(2)で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000015
 式(2)中、Xは式(1)と同義である。
 なお、一般式(2)で表されるアルデヒド化合物は、「ビシクロ[2.2.1]ヘプタンの2位が置換基Xで置換され、5位がアルデヒド基で置換された化合物(以下、2,5体)」、または「2位が置換基Xで置換され、6位がアルデヒド基で置換された化合物(以下、2,6体)」の何れか、またはこれらを任意の割合で含む混合物として得ることができる。また、2,5体および2,6体は、各々、置換基の立体配置により、エンド-エンド体、エンド-エキソ体、エキソ-エキソ体の何れかとして得ることができ、またはこれらの少なくとも2種を任意の割合で含む混合物として得ることもできる。
 ヒドロホルミル化反応終了後、所定の精製工程を行い、目的とするアルデヒド化合物を得ることができる。
<アミン化合物の製造方法>
 本実施形態のアミン化合物の製造方法は、以下の工程を含む。
工程(a):第8~10族金属化合物とリン化合物の存在下で、前記一般式(a1)または(a2)で表される化合物を水素および一酸化炭素と反応させる。
工程(b):工程(a)で得られたアルデヒド化合物をアンモニアと反応させるとともに、触媒の存在下で水素と反応させる。
 本実施形態のアミン化合物の製造方法は、上述のアルデヒド化合物の製造方法を工程(a)として含む。そのため、工程(a)において、第8~10族金属の量を低減することができ、さらにアルデヒド化合物の生産性および収率に優れることから、ひいては目的化合物であるアミン化合物の生産性および収率にも優れることとなる。
 なお、工程(a)は、上記「アルデヒド化合物の製造方法」における工程と同一であるので、説明を省略する。
 工程(b)では、工程(a)で得られた前記一般式(b1)または下記一般式(b2)で表されるアルデヒド化合物を、アンモニアと反応させてイミノ化するとともに、触媒の存在下で水素添加することにより、アミン化合物を合成する。
 触媒としては、ニッケル、白金、パラジウム、ルテニウムなどの金属触媒等を用いることができる。アルデヒド化合物が置換基としてシアノ基を有する場合、水素還元により-CH-NH基が生成される。
 このように、工程(b)において、前記アルデヒド化合物が有するアルデヒド基がイミノ化によりアミノ基となり、シアノ基も水素還元によりアミノ基となるため、2つのアミノ基を有する下記一般式(c1)で表されるアミン化合物が合成される。なお、Xが水素原子の場合は、下記一般式(c2)で表されるアミン化合物が合成される。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 一般式(c1)または(c2)中、nは一般式(a1)または(a2)と同義である。
 nが1または2の場合、一般式(c1)で表される化合物は、「2位と5位が所定の基で置換された化合物(以下、2,5体)」、または「2位と6位が所定の基で置換された化合物(以下、2,6体)」の何れか、またはこれらを任意の割合で含む混合物として得ることができる。また、2,5体および2,6体は、各々、置換基の立体配置により、エンド-エンド体、エンド-エキソ体、エキソ-エキソ体の何れかとして得ることができ、またはこれらの少なくとも2種を任意の割合で含む混合物として得ることもできる。
 なお、nが0の場合、一般式(c1)で表される化合物は、シス型、トランス型の何れかとして得ることができ、これらを任意の割合で含む混合物として得ることもできる。
 nが1または2の場合、一般式(c2)で表される化合物は、エンド体またはエキソ体として得ることができ、これらを任意の割合で含む混合物として得ることもできる。
 一般式(c1)の化合物を好ましく得られ、当該化合物としては、nが1である、以下の化学式(3)の化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000018
 なお、化学式(3)で表されるアミン化合物は、「ビシクロ[2.2.1]ヘプタンの2位および5位がアミノメチル基で置換された化合物(以下、2,5体)」、または「2位および6位がアミノメチル基で置換された化合物(以下、2,6体)」の何れか、またはこれらを任意の割合で含む混合物として得ることができる。また、2,5体および2,6体は、各々、置換基の立体配置により、エンド-エンド体、エンド-エキソ体、エキソ-エキソ体の何れかとして得ることができ、またはこれらの少なくとも2種を任意の割合で含む混合物として得ることもできる。
 上記のイミノ化および水素添加反応は、具体的には、以下のようにして行うことができる。まず、反応容器内に、アルデヒド化合物、溶剤、触媒を仕込み、アンモニアガスを吹き込む。そして、1MPa程度の圧力まで水素を圧入し、100℃程度まで昇温し、水素を供給しながら当該温度および圧力下で、1~10時間程度反応させる。溶媒としては、例えば、炭素数1~8のアルコール、水等が好適に用いられる。
 さらに、反応終了後、通常の触媒ろ過、脱溶媒、精製工程等を行い、目的とするアミン化合物を得ることができる。
<イソシアネート化合物の製造方法>
 本実施形態のイソシアネート化合物の製造方法は、以下の工程を含む。
工程(a):第8~10族金属化合物とリン化合物の存在下で、前記一般式(a1)または(a2)で表される化合物を水素および一酸化炭素と反応させる。
工程(b):工程(a)で得られたアルデヒド化合物をアンモニアと反応させるとともに、触媒の存在下で水素と反応させる。
工程(c):工程(b)で得られたアミン化合物を、カルボニル化剤と反応させる。
 本実施形態のイソシアネート化合物の製造方法は、上述のアルデヒド化合物の製造方法を工程(a)として含む。そのため、工程(a)において、第8~10族金属化合物の量を低減することができ、さらにアルデヒド化合物の生産性および収率に優れることから、ひいては目的化合物であるイソシアネート化合物の生産性および収率にも優れることとなる。
 なお、工程(a)は、上記「アルデヒド化合物の製造方法」における工程と同一であり、工程(b)は、上記「アミン化合物の製造方法」における工程と同一であるので、説明を省略する。
 工程(c)では、工程(b)で得られた一般式(c1)または(c2)で表されるアミン化合物を、所定の条件でカルボニル化剤と反応させることにより、下記一般式(d1)または(d2)で表されるイソシアネート化合物が合成される。カルボニル化剤としてはホスゲン、尿素誘導体、カーボネート誘導体、一酸化炭素等を用いることができる。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 一般式(d1)または一般式(d2)中、nは一般式(a1)または(a2)と同義である。
 nが1または2の場合、一般式(d1)で表される化合物は、「2位と5位が所定の基で置換された化合物(以下、2,5体)」、または「2位と6位が所定の基で置換された化合物(以下、2,6体)」の何れか、またはこれらを任意の割合で含む混合物として得ることができる。また、2,5体および2,6体は、各々、置換基の立体配置により、エンド-エンド体、エンド-エキソ体、エキソ-エキソ体の何れかとして得ることができ、またはこれらの少なくとも2種を任意の割合で含む混合物として得ることもできる。
 なお、nが0の場合、一般式(d1)で表される化合物は、シス型、トランス型の何れかとして得ることができ、これらを任意の割合で含む混合物として得ることもできる。
 nが1または2の場合、一般式(d2)で表される化合物は、エンド体またはエキソ体として得ることができ、これらを任意の割合で含む混合物として得ることもできる。
 一般式(d1)の化合物を好ましく得られ、当該化合物としては、nが1である、以下の化学式(4)の化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000021
 なお、化学式(4)で表されるイソシアネート化合物は、「ビシクロ[2.2.1]ヘプタンの2位および5位がイソシアナトメチル基で置換された化合物(以下、2,5体)」、または「2位および6位がイソシアナトメチル基で置換された化合物(以下、2,6体)」の何れか、またはこれらを任意の割合で含む混合物として得ることができる。また、2,5体および2,6体は、各々、置換基の立体配置により、エンド-エンド体、エンド-エキソ体、エキソ-エキソ体の何れかとして得ることができ、またはこれらの少なくとも2種を任意の割合で含む混合物として得ることもできる。
 工程(c)は、カルボニル化剤としてホスゲンを用いる場合、具体的には、まず、反応容器内に、アミン化合物と溶媒を装入し、塩酸により塩酸塩化させた後にホスゲンと反応させる方法や、直接ホスゲンと反応させ、カルバモイルクロライド化合物を得た後に、熱分解させる方法等を挙げることができる。さらに、反応終了後、通常の精製工程等を行い、目的とするイソシアネート化合物を得ることができる。
 なお、カルボニル化剤としてホスゲンを用いる場合の反応溶媒としては、特に制限はされないが、造塩反応時には塩酸の溶解度が大きく、ホスゲン化反応時にはホスゲンの溶解度が大きく、かつ塩酸溶解度が小さい、高沸点有機芳香族化合物またはエステル化合物を用いることが好ましい。高沸点有機芳香族化合物としては、1,2-ジエチルベンゼン、1,3-ジエチルベンゼン、1,4-ジエチルベンゼン、イソプロピルベンゼン、1,2,4-トリメチルベンゼン、アミルベンゼン、ジアミルベンゼン、トリアミルベンゼン、ドデシルベンゼン、p-シメン、クメンメチルフェニルエーテル、エチルフェニルエーテル、ジイソアミルエーテル、n-ヘキシルエーテル、オルソジクロロベンゼン、パラクロロトルエン、ブロムベンゼン、1,2,4-トリクロロベンゼン等を挙げることができる。また、エステル化合物としては、特に制限されないが、酢酸イソアミル、酢酸イソオクチル等の酢酸エステルが好ましい。これら例示溶媒の中で、本発明を実施するのに特に好ましい溶媒は、芳香族ハロゲン化合物である。
 本実施形態により得られるイソシアネート化合物は、光学材料の原料、塗料として用いることができる。なお、本実施形態により得られるアミン化合物は、塗料、硬化剤の原料として用いることもできる。
 以下、実施例等により本発明をさらに具体的に説明するが、本発明の範囲はこれらの実施例等に限定されるものではない。
 [参考例]
[ビシクロ[2.2.1]-5-ヘプテン-2-カルボニトリルの合成]
 1000mlオートクレーブに、純度95%ジシクロペンタジエン195.0g(1.40モル)と、N-ニトロソジフェニルアミン0.36g(1.8ミリモル)を添加したアクリロニトリル163.6g(3.08モル)を装入し、撹拌下、160℃で5時間反応後、さらに昇温して180℃で2時間反応し終了した。得られたビシクロ[2.2.1]-5-ヘプテン-2-カルボニトリルを含む反応液は、355.6gであり、分析したところビシクロ[2.2.1]-5-ヘプテン-2-カルボニトリルを331.2g(2.78モル)含有していた。得られたビシクロ[2.2.1]-5-ヘプテン-2-カルボニトリル328.2g(2.75モル)を含む反応液352.4gを、500ミリリットルのフラスコに装入し、減圧下、蒸留を行い、主留分としてビシクロ[2.2.1]-5-ヘプテン-2-カルボニトリル300.7g(2.52モル)を得た。
[実施例1]
[2-シアノ-5-ホルミルビシクロ[2.2.1]ヘプタンおよび2-シアノ-6-ホルミルビシクロ[2.2.1]ヘプタンの合成]
 内容積0.5リットルのSUS316L製電磁攪拌式オートクレーブに、ロジウムアセチルアセトナトジカルボニル3.7mg(0.014mmol)、参考例で得られたビシクロ[2.2.1]-5-ヘプテン-2-カルボニトリル168.73g(1.4mol)、トリフェニルホスファイト4.45g(14.3mmol)、トルエン59.0gを装入し、25℃で攪拌し、Rh触媒調整液232.2gを得た。なお、条件(1)~(3)は以下のとおりであった。
・ロシウム使用量(条件(1)):ビシクロ[2.2.1]-5-ヘプテン-2-カルボニトリル 1molに対して、ロジウムアセチルアセトナトジカルボニルに含まれるロジウムが10ppmmol
・リン化合物量(a)(条件(2)):トリフェニルホスファイト(mol)/ロジウムアセチルアセトナトジカルボニルに含まれるロジウム(mol):1000
・リン化合物量(b)(条件(3)):トリフェニルホスファイト(mol)/ビシクロ[2.2.1]-5-ヘプテン-2-カルボニトリル(mol):0.01
 次いで、窒素にて充分置換した後、一酸化炭素/水素=体積比50/50の混合ガスで十分に置換した。同ガスにて、オートクレーブ内の圧力が0.6MPaGとなるまで圧入した後、攪拌下、100℃に昇温してヒドロホルミル化反応を開始した。反応の進行と共にオートクレーブ内の圧力が低下するため、圧力が 0.6MPaGを保つように、連続的に混合ガスを供給し、かつ液温が100℃を保つように調整して、6時間反応を実施した。反応終了後、窒素にて系内の混合ガスをパージし、2-シアノ-5,(6)-ホルミルビシクロ[2.2.1]ヘプタンを含む反応液を241.0g得た。その反応液を分析したところ、2-シアノ-5-ホルミルビシクロ[2.2.1]ヘプタンおよび2-シアノ-6-ホルミルビシクロ[2.2.1]ヘプタンを208.8g(1.4mol)含有していた。
 還流冷却管、攪拌翼、温度計が付属した内容積2リットルの4つ口反応フラスコに、2-シアノ-5,(6)-ホルミルビシクロ[2.2.1]ヘプタン255.1g(1.71mol)、トリフェニルホスファイト4.7g(0.02mol)を含んだ反応液263.8g、水14.0gを装入、攪拌し80℃まで昇温し、2時間加水分解した。得られた溶液を分析したところ、2-シアノ-5-ホルミルビシクロ[2.2.1]ヘプタンおよび2-シアノ-6-ホルミルビシクロ[2.2.1]ヘプタンを252.1g(1.69mol)含有しており、トリフェニルホスファイトは、検出されなかった。
 加水分解溶液に20重量%の炭酸水素カリウム水溶液を6.4g(0.012mol)を、25℃でpH7.0になるまで滴下した。
 次いで、減圧下、蒸留を行い、2-シアノ-5-ホルミルビシクロ[2.2.1]ヘプタンおよび2-シアノ-6-ホルミルビシクロ[2.2.1]ヘプタンを250.6g(1.68mol)含んだ溶液264gを得た。その溶液を、減圧下蒸留精製を行い、2-シアノ-5-ホルミルビシクロ[2.2.1]ヘプタンおよび2-シアノ-6-ホルミルビシクロ[2.2.1]ヘプタンの混合物244.7g(1.64mol)を得た。H-NMRチャートを図1に示す。
[実施例2]
[2,5-ビスアミノメチル-ビシクロ[2.2.1]ヘプタンおよび2,6-ビスアミノメチル-ビシクロ[2.2.1]ヘプタンの合成]
 内容積0.5リットルのステンレス製電磁攪拌式オートクレーブに、実施例1で得られた2-シアノ-5-ホルミルビシクロ[2.2.1]ヘプタンおよび2-シアノ-6-ホルミルビシクロ[2.2.1]ヘプタン89.5g(0.6mol)、メタノール89.5g、およびマンガンを含有したコバルト-アルミニウム合金を展開して得たラネーコバルト触媒(コバルト94質量%、 アルミニウム3.5質量%、マンガン2.1質量%)4.5g(乾燥質量)を仕込み、アンモニアガス24.5g(1.44mol)を吹き込んだ。
 次いで、窒素にて充分置換した後、続いて水素で置換した。そして、オートクレーブ内の圧力が、1.2MPaGとなるまで水素を圧入した後、攪拌下、100℃に昇温して反応を開始した。反応の進行と共にオートクレーブ内の圧力が低下するため、圧力が 1.2MPaGを保つように連続的に水素を供給し、かつ液温が100℃を保つように調整して、6時間水素化反応を実施した。
 室温まで冷却を行い、濾過で触媒ラネーコバルトを除いた後にアンモニア、メタノールを4kPa、60℃で留去し、2,5-ビスアミノメチル-ビシクロ[2.2.1]ヘプタンおよび2,6-ビスアミノメチル-ビシクロ[2.2.1]ヘプタンを含む溶液102.0gを得た。
 得られた2,5-ビスアミノメチル-ビシクロ[2.2.1]ヘプタンおよび2,6-ビスアミノメチル-ビシクロ[2.2.1]ヘプタンを含む溶液102.0を200mlフラスコに装入し、減圧下、蒸留を行い、精製された2,5-ビスアミノメチル-ビシクロ[2.2.1]ヘプタンおよび2,6-ビスアミノメチル-ビシクロ[2.2.1]ヘプタンの混合物を79.0g得た。H-NMRチャートを図2に示す。
[実施例3]
[2,5-ビスイソシアナトメチル-ビシクロ[2.2.1]ヘプタンおよび2,6-ビスイソシアナトメチル-ビシクロ[2.2.1]ヘプタンの合成]
 還流冷却管、攪拌翼、温度計、ガス吹込み管、原料装入管が付属した内容積2リットルの5つ口反応フラスコにオルソジクロロベンゼン958gを装入し、原料槽に実施例2で得られた2,5-ビスアミノメチル-ビシクロ[2.2.1]ヘプタンおよび2,6-ビスアミノメチル-ビシクロ[2.2.1]ヘプタン154.2g(1.0モル)及び、オルソジクロロベンゼン702gを仕込んだ。次に、0.1MPa下にて、反応容器を120℃に昇温後、塩酸吹き込み管より塩酸ガスを43.8g/hrの速度で、原料槽より溶媒で希釈したアミンを、原料装入ポンプにて428.1g/hrの速度で、同時に装入を始め、2時間掛けて全量を装入した。更に塩酸ガスを20g/hrで装入しながら、1時間熟成を行った。反応終了後、次に、塩酸塩反応マスを160℃に昇温後、ホスゲン吹き込み管より,ホスゲンを100g/hr(1.0モル/hr)で吹き込み、温度を保ちながら6時間反応した。反応終了後、窒素にて系内の未反応ホスゲン及び、塩酸ガスをパージ、脱溶媒して、2,5-ビスイソシアナトメチル-ビシクロ[2.2.1]ヘプタンおよび2,6-ビスイソシアナトメチル-ビシクロ[2.2.1]ヘプタンを含む溶液200.9gを得た。更に、減圧下蒸留を行い、純度99.0%の2,5-ビスイソシアナトメチル-ビシクロ[2.2.1]ヘプタンおよび2,6-ビスイソシアナトメチル-ビシクロ[2.2.1]ヘプタンの混合物175.7gを得た。H-NMRチャートを図3に示す。
 [実施例4]
[2-シアノ-5-ホルミルビシクロ[2.2.1]ヘプタンおよび2-シアノ-6-ホルミルビシクロ[2.2.1]ヘプタンの合成]
 内容積0.5リットルのSUS316L製電磁攪拌式オートクレーブに、ロジウムアセチルアセトナトジカルボニル4.64mg(0.018mmol)、参考例で得られたビシクロ[2.2.1]-5-ヘプテン-2-カルボニトリル215.3g(1.8mol)、トリフェニルホスファイト5.59g(18.0mmol)、25℃で攪拌し、Rh触媒調整液220.9gを得た。なお、条件(1)~(3)は以下のとおりであった。
・ロシウム使用量(条件(1)):ビシクロ[2.2.1]-5-ヘプテン-2-カルボニトリル 1molに対して、ロジウムアセチルアセトナトジカルボニルに含まれるロジウムが10ppmmol
・リン化合物量(a)(条件(2)):トリフェニルホスファイト(mol)/ロジウムアセチルアセトナトジカルボニルに含まれるロジウム(mol):1000
・リン化合物量(b)(条件(3)):トリフェニルホスファイト(mol)/ビシクロ[2.2.1]-5-ヘプテン-2-カルボニトリル(mol):0.01
 次いで、窒素にて充分置換した後、一酸化炭素/水素=体積比50/50の混合ガスで十分に置換した。同ガスにて、オートクレーブ内の圧力が、0.6MPaGとなるまで圧入した後、攪拌下、100℃に昇温してヒドロホルミル化反応を開始した。反応の進行と共にオートクレーブ内の圧力が低下するため、圧力が 0.6MPaGを保つように、連続的に混合ガスを供給し、かつ液温が100℃を保つように調整して、6時間ヒドロホルミル化反応を実施した。反応終了後、窒素にて系内の混合ガスをパージし、2-シアノ-5-ホルミルビシクロ[2.2.1]ヘプタンおよび2-シアノ-6-ホルミルビシクロ[2.2.1]ヘプタンを含む反応液を276.7gの量で得た。その反応液を分析したところ、当該化合物を261.8g(1.76mol)を含有していた。
 [実施例5]
 実施例2にしたがって、実施例4で得られた「2-シアノ-5-ホルミルビシクロ[2.2.1]ヘプタンおよび2-シアノ-6-ホルミルビシクロ[2.2.1]ヘプタンの混合物」から、「2,5-ビスアミノメチル-ビシクロ[2.2.1]ヘプタンおよび2,6-ビスアミノメチル-ビシクロ[2.2.1]ヘプタンの混合物」を合成した。収率は85.6%であった。
 [実施例6]
 実施例3にしたがって、実施例5で得られた「2,5-ビスアミノメチル-ビシクロ[2.2.1]ヘプタンおよび2,6-ビスアミノメチル-ビシクロ[2.2.1]ヘプタンの混合物」から、「2,5-ビスイソシアナトメチル-ビシクロ[2.2.1]ヘプタンおよび2,6-ビスイソシアナトメチル-ビシクロ[2.2.1]ヘプタンの混合物」を合成した。蒸留後の収率は85.6%であった。
 [実施例7~21、比較例1~3]
 溶媒を用いる場合は実施例1の方法に準じ、溶媒を用いない場合は実施例3方法に準じて、表1に示す量および反応圧力となるようにアルデヒド化合物を合成した。結果を表1に示す。
 [実施例22]
 [2,5-ビスホルミルビシクロ[2.2.1]ヘプタン、および、2、6-ビスホルミルビシクロ[2.2.1]ヘプタンの合成]
内容積0.5リットルのSUS316L製電磁攪拌式オートクレーブに、ロジウムアセチルアセトナトジカルボニル4.64mg(0.018mmol)、ビシクロ[2.2.1]-5-ヘプテン-2-カルボキシアルデヒド219.9g(1.8mol)、トリフェニルホスファイト5.59g(18.0mmol)、25℃で攪拌し、Rh触媒調整液225.5gを得た。なお、条件(1)~(3)は以下のとおりであった。
・ロシウム使用量(条件(1)):ビシクロ[2.2.1]-5-ヘプテン-2-カルボキシアルデヒド 1molに対して、ロジウムアセチルアセトナトジカルボニルに含まれるロジウムが10ppmmol
・リン化合物量(a)(条件(2)):トリフェニルホスファイト(mol)/ロジウムアセチルアセトナトジカルボニルに含まれるロジウム(mol):1000
・リン化合物量(b)(条件(3)):トリフェニルホスファイト(mol)/ビシクロ[2.2.1]-5-ヘプテン-2-カルボキシアルデヒド(mol):0.01
 次いで、窒素にて充分置換した後、一酸化炭素/水素=体積比50/50の混合ガスで十分に置換した。同ガスにて、オートクレーブ内の圧力が、0.6MPaGとなるまで圧入した後、攪拌下、100℃に昇温してヒドロホルミル化反応を開始した。反応の進行と共にオートクレーブ内の圧力が低下するため、圧力が 0.6MPaGを保つように、連続的に混合ガスを供給し、かつ液温が100℃を保つように調整して、6時間ヒドロホルミル化反応を実施した。反応終了後、窒素にて系内の混合ガスをパージし、2、5-ビスホルミルビシクロ[2.2.1]ヘプタンおよび2、6-ビスホルミルビシクロ[2.2.1]ヘプタンを含む反応液を280.1gの量で得た。その反応液を分析したところ、当該化合物を266.1g(1.76mol)を含有していた。
 なお、上記実施例においては、ビシクロ[2.2.1]ヘプタンの2位および5位が置換された化合物(2,5体)および2位および6位が置換された化合物(2,6体)の混合物が得られる例を挙げたが、反応条件により2,5体または2,6体の何れかを得ることもできる。また、2,5体は、置換基の立体配置により、エンド-エンド体、エンド-エキソ体、エキソ-エキソ体の何れかとして得ることができ、またはこれらの少なくとも2種を任意の割合で含む混合物として得ることもできる。2,6体においても同様に、エンド-エンド体、エンド-エキソ体、エキソ-エキソ体の何れかとして得ることができ、またはこれらの少なくとも2種を任意の割合で含む混合物として得ることもできる。
Figure JPOXMLDOC01-appb-T000001
 この出願は、2011年5月9日に出願された日本出願特願2011-104401号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 本発明は以下の内容を含む。
[a] 下記一般式(1)
Figure JPOXMLDOC01-appb-C000022
(式(1)中、Xはシアノ基またはアルデヒド基を示す。)
で表される化合物を、下記条件(1)および(2)を満たすように、ロジウム化合物とリン化合物の存在下で、水素および一酸化炭素と反応させる工程を含む、ことを特徴とするアルデヒド化合物の製造方法;
(1)前記一般式(1)で表される前記化合物1molに対して、前記ロジウム化合物に含まれるロジウムが0.01~300ppmmol、
(2)前記リン化合物(mol)/前記ロジウム(mol)で表されるモル比が100以上。
[b] 前記リン化合物は、三価のリン化合物であることを特徴とする[a]に記載のアルデヒド化合物の製造方法。
[c] 前記工程は、無溶剤中で行うことを特徴とする[a]または[b]に記載のアルデヒド化合物の製造方法。
[d] [a]乃至[c]のいずれかに記載の製造方法により得られたアルデヒド化合物を、アンモニアと反応させるとともに、触媒の存在下で水素と反応させる工程を含むことを特徴とするアミン化合物の製造方法。
[e] [d]に記載の製造方法により得られたアミン化合物を、カルボニル化剤と反応させる工程を含むことを特徴とするイソシアネート化合物の製造方法。
[f] 下記一般式(1)
Figure JPOXMLDOC01-appb-C000023
(式(1)中、Xはシアノ基またはアルデヒド基を示す。)
で表される化合物を、下記条件(1)および(2)を満たすように、ロジウム化合物とリン化合物の存在下で、水素および一酸化炭素と反応させてアルデヒド化合物を合成する工程と、
 前記アルデヒド化合物をアンモニアと反応させるとともに、触媒の存在下で水素と反応させる工程と、を含むことを特徴とするアミン化合物の製造方法;
(1)前記一般式(1)で表される前記化合物1molに対して、前記ロジウム化合物に含まれるロジウムが0.01~300ppmmol、
(2)前記リン化合物(mol)/前記ロジウム(mol)で表されるモル比が100以上。
[g] 下記一般式(1)
Figure JPOXMLDOC01-appb-C000024
(式(1)中、Xはシアノ基またはアルデヒド基を示す。)
で表される化合物を、下記条件(1)および(2)を満たすように、ロジウム化合物とリン化合物の存在下で、水素および一酸化炭素と反応させてアルデヒド化合物を合成する工程と、
 前記アルデヒド化合物をアンモニアと反応させるとともに、触媒の存在下で水素と反応させてアミン化合物を合成する工程と、
 前記アミン化合物を、カルボニル化剤と反応させる工程と、
 を含むことを特徴とするイソシアネート化合物の製造方法;
(1)前記一般式(1)で表される前記化合物1molに対して、前記ロジウム化合物に含まれるロジウムが0.01~300ppmmol、
(2)前記リン化合物(mol)/前記ロジウム(mol)で表されるモル比が100以上。

Claims (16)

  1.  下記一般式(a1)
    Figure JPOXMLDOC01-appb-C000025
     または、下記一般式(a2)
    Figure JPOXMLDOC01-appb-C000026
    (式(a1)中、Xは水素原子、シアノ基、アルデヒド基、-CH=NR基を示し、Rは、水素原子、炭素数1~6のアルキル基、アリール基を示す。式(a1)および式(a2)中、nは、0、1または2を示す。)
    で表される化合物を、下記条件(1)および(2)を満たすように、第8~10族金属化合物とリン化合物の存在下で、水素および一酸化炭素と反応させる工程を含む、ことを特徴とするアルデヒド化合物の製造方法;
    (1)前記一般式(a1)または(a2)で表される前記化合物1molに対して、前記第8~10族金属化合物に含まれる金属が0.01~300ppmmol、
    (2)前記リン化合物(mol)/前記金属(mol)で表されるモル比が100以上。
  2.  前記第8~10族金属化合物が、ロジウム化合物、コバルト化合物、ルテニウム化合物または鉄化合物であることを特徴とする請求項1に記載のアルデヒド化合物の製造方法。
  3.  前記第8~10族金属化合物が、ロジウム化合物であることを特徴とする請求項1または2に記載のアルデヒド化合物の製造方法。
  4.  前記一般式(a1)で表される化合物を用い、当該化合物が下記一般式(1)
    Figure JPOXMLDOC01-appb-C000027
    (式(1)中、Xは一般式(a1)と同義である。)
    で表される化合物であることを特徴とする請求項1乃至3のいずれかに記載のアルデヒド化合物の製造方法。
  5.  前記リン化合物は、三価のリン化合物であることを特徴とする請求項1乃至4のいずれかに記載のアルデヒド化合物の製造方法。
  6.  前記工程は、無溶剤中で行うことを特徴とする請求項1乃至5のいずれかに記載のアルデヒド化合物の製造方法。
  7.  請求項1乃至6のいずれかに記載の製造方法により得られたアルデヒド化合物を、アンモニアと反応させるとともに、触媒の存在下で水素と反応させる工程を含むことを特徴とするアミン化合物の製造方法。
  8.  請求項7に記載の製造方法により得られたアミン化合物を、カルボニル化剤と反応させる工程を含むことを特徴とするイソシアネート化合物の製造方法。
  9.  下記一般式(a1)
    Figure JPOXMLDOC01-appb-C000028
     または、下記一般式(a2)
    Figure JPOXMLDOC01-appb-C000029
    (式(a1)中、Xは水素原子、シアノ基、アルデヒド基、-CH=NR基を示し、Rは、水素原子、炭素数1~6のアルキル基、アリール基を示す。式(a1)および式(a2)中、nは、0、1または2を示す。)
    で表される化合物を、下記条件(1)および(2)を満たすように、第8~10族金属化合物とリン化合物の存在下で、水素および一酸化炭素と反応させてアルデヒド化合物を合成する工程と、
     前記アルデヒド化合物をアンモニアと反応させるとともに、触媒の存在下で水素と反応させる工程と、を含むことを特徴とするアミン化合物の製造方法;
    (1)前記一般式(a1)または(a2)で表される前記化合物1molに対して、前記第8~10族金属化合物に含まれる金属が0.01~300ppmmol、
    (2)前記リン化合物(mol)/前記金属(mol)で表されるモル比が100以上。
  10.  前記第8~10族金属化合物が、ロジウム化合物、コバルト化合物、ルテニウム化合物または鉄化合物であることを特徴とする請求項9に記載のアミン化合物の製造方法。
  11.  前記第8~10族金属化合物が、ロジウム化合物であることを特徴とする請求項9または10に記載のアミン化合物の製造方法。
  12.  前記一般式(a1)で表される化合物を用い、当該化合物が下記一般式(1)
    Figure JPOXMLDOC01-appb-C000030
    (式(1)中、Xは一般式(a1)と同義である。)
    で表される化合物であることを特徴とする請求項9乃至11のいずれかに記載のアミン化合物の製造方法。
  13.   下記一般式(a1)
    Figure JPOXMLDOC01-appb-C000031
     または、下記一般式(a2)
    Figure JPOXMLDOC01-appb-C000032
    (式(a1)中、Xは水素原子、シアノ基、アルデヒド基、-CH=NR基を示し、Rは、水素原子、炭素数1~6のアルキル基、アリール基を示す。式(a1)および式(a2)中、nは、0、1または2を示す。)
    で表される化合物を、下記条件(1)および(2)を満たすように、第8~10族金属化合物とリン化合物の存在下で、水素および一酸化炭素と反応させてアルデヒド化合物を合成する工程と、
     前記アルデヒド化合物をアンモニアと反応させるとともに、触媒の存在下で水素と反応させてアミン化合物を合成する工程と、
     前記アミン化合物を、カルボニル化剤と反応させる工程と、
     を含むことを特徴とするイソシアネート化合物の製造方法;
    (1)前記一般式(a1)または(a2)で表される前記化合物1molに対して、前記第8~10族金属化合物に含まれる金属が0.01~300ppmmol、
    (2)前記リン化合物(mol)/前記金属(mol)で表されるモル比が100以上。
  14.  前記第8~10族金属化合物が、ロジウム化合物、コバルト化合物、ルテニウム化合物または鉄化合物であることを特徴とする請求項13に記載のイソシアネート化合物の製造方法。
  15.  前記第8~10族金属化合物が、ロジウム化合物であることを特徴とする請求項13または14に記載のイソシアネート化合物の製造方法。
  16.  前記一般式(a1)で表される化合物を用い、当該化合物が下記一般式(1)
    Figure JPOXMLDOC01-appb-C000033
    (式(1)中、Xは一般式(a1)と同義である。)
    で表される化合物であることを特徴とする請求項13乃至15のいずれかに記載のイソシアネート化合物の製造方法。
PCT/JP2012/002987 2011-05-09 2012-05-07 アルデヒド化合物の製造方法 WO2012153509A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2013513927A JP5719021B2 (ja) 2011-05-09 2012-05-07 アルデヒド化合物の製造方法
KR1020167013536A KR20160062218A (ko) 2011-05-09 2012-05-07 알데히드 화합물의 제조 방법
KR1020137028648A KR101641759B1 (ko) 2011-05-09 2012-05-07 알데히드 화합물의 제조 방법
EP12782970.3A EP2708527B1 (en) 2011-05-09 2012-05-07 Aldehyde compound production method
US14/114,774 US9227925B2 (en) 2011-05-09 2012-05-07 Process for producing aldehyde compounds
CN201280022577.1A CN103582623B (zh) 2011-05-09 2012-05-07 醛化合物的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011104401 2011-05-09
JP2011-104401 2011-05-09

Publications (1)

Publication Number Publication Date
WO2012153509A1 true WO2012153509A1 (ja) 2012-11-15

Family

ID=47138997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002987 WO2012153509A1 (ja) 2011-05-09 2012-05-07 アルデヒド化合物の製造方法

Country Status (7)

Country Link
US (1) US9227925B2 (ja)
EP (1) EP2708527B1 (ja)
JP (1) JP5719021B2 (ja)
KR (2) KR20160062218A (ja)
CN (1) CN103582623B (ja)
TW (1) TW201302305A (ja)
WO (1) WO2012153509A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2918577A4 (en) * 2012-11-09 2016-06-29 Mitsui Chemicals Inc PROCESS FOR PURIFYING ALDEHYDE COMPOUND
EP2918575A4 (en) * 2012-11-09 2016-07-13 Mitsui Chemicals Inc PROCESS FOR PRODUCING ALDEHYDE COMPOUND
US9487475B2 (en) 2012-11-09 2016-11-08 Mitsui Chemicals, Inc. Preparation method of aldehyde compound with limited amount of acrylonitrile

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112892601A (zh) * 2019-12-03 2021-06-04 中国科学院大连化学物理研究所 一种由3-环己烯-1-甲醛制备1,4-环己烷二甲醛的方法
CN114181077B (zh) * 2021-12-20 2024-02-27 风火轮(上海)生物科技有限公司 一种合成氨甲环酸的方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5589238A (en) * 1978-11-16 1980-07-05 Henkel Kgaa Manufacture of aldehyde
JPS5821638A (ja) * 1981-07-31 1983-02-08 Mitsubishi Petrochem Co Ltd ジアルデヒド類の製造方法
JPH0433969A (ja) * 1990-05-29 1992-02-05 Mitsui Toatsu Chem Inc カチオン電着組成物
JPH07502488A (ja) * 1991-08-21 1995-03-16 ユニオン カーバイド ケミカルズ アンド プラスティックス テクノロジー コーポレイション 不斉合成
JPH1180067A (ja) * 1997-09-03 1999-03-23 Kuraray Co Ltd トリシクロデカンジカルバルデヒドの製造法
JP2002511055A (ja) * 1997-01-13 2002-04-09 セラニーズ・ケミカルズ・ヨーロッパ・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング 触媒としてロジウムおよびスルホン化トリアリールホスフィンを含む水性相の存在下にアルデヒドを製造する方法
JP2003505438A (ja) * 1999-07-27 2003-02-12 ユニオン・カーバイド・ケミカルズ・アンド・プラスティックス・テクノロジー・コーポレイション 改良された金属リガンド錯体触媒プロセス
JP2003286241A (ja) * 2002-03-28 2003-10-10 Mitsui Takeda Chemicals Inc ビシクロ[2.2.1]ヘプト−2−エン−5−メチルイソシアナートの製造方法
JP2006282640A (ja) * 2005-04-05 2006-10-19 Mitsui Chemicals Polyurethanes Inc ポリイソシアネート連続製造装置
JP2010180142A (ja) * 2009-02-03 2010-08-19 Kuraray Co Ltd シクロヘキサンカルボニトリルの製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2956977A (en) * 1958-05-15 1960-10-18 Eastman Kodak Co Esters of 6-cyanonorcamphane-2(or 3)-carboxylic acid and resin plasticized therewith
US3143570A (en) 1960-07-01 1964-08-04 Eastman Kodak Co Method for preparing alicyclic diamines
DE3119819A1 (de) 1981-05-19 1982-12-16 Hoechst Ag, 6000 Frankfurt "verfahren zur herstellung von formylcyannorbornan"
JPS6072844A (ja) 1983-09-29 1985-04-24 Mitsubishi Petrochem Co Ltd 極性官能基含有ホルミルノルボルナンの製造方法
US5840928A (en) * 1996-03-12 1998-11-24 Mitsui Chemicals, Inc. Method for production of 3-formyl-tetrahydrofuran
JP2008031125A (ja) 2006-07-31 2008-02-14 Kuraray Co Ltd アルデヒドの製造方法
KR100964099B1 (ko) 2007-09-14 2010-06-16 주식회사 엘지화학 인을 포함하는 촉매 조성물 및 이를 이용한 히드로포밀화방법
DE102007053385A1 (de) 2007-11-09 2009-05-20 Oxea Deutschland Gmbh Verfahren zur Herstellung von Aldehyden
TWI361181B (en) * 2007-12-31 2012-04-01 Ind Tech Res Inst A hydroformylation process

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5589238A (en) * 1978-11-16 1980-07-05 Henkel Kgaa Manufacture of aldehyde
JPS5821638A (ja) * 1981-07-31 1983-02-08 Mitsubishi Petrochem Co Ltd ジアルデヒド類の製造方法
JPH0433969A (ja) * 1990-05-29 1992-02-05 Mitsui Toatsu Chem Inc カチオン電着組成物
JPH07502488A (ja) * 1991-08-21 1995-03-16 ユニオン カーバイド ケミカルズ アンド プラスティックス テクノロジー コーポレイション 不斉合成
JP2002511055A (ja) * 1997-01-13 2002-04-09 セラニーズ・ケミカルズ・ヨーロッパ・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング 触媒としてロジウムおよびスルホン化トリアリールホスフィンを含む水性相の存在下にアルデヒドを製造する方法
JPH1180067A (ja) * 1997-09-03 1999-03-23 Kuraray Co Ltd トリシクロデカンジカルバルデヒドの製造法
JP2003505438A (ja) * 1999-07-27 2003-02-12 ユニオン・カーバイド・ケミカルズ・アンド・プラスティックス・テクノロジー・コーポレイション 改良された金属リガンド錯体触媒プロセス
JP2003286241A (ja) * 2002-03-28 2003-10-10 Mitsui Takeda Chemicals Inc ビシクロ[2.2.1]ヘプト−2−エン−5−メチルイソシアナートの製造方法
JP2006282640A (ja) * 2005-04-05 2006-10-19 Mitsui Chemicals Polyurethanes Inc ポリイソシアネート連続製造装置
JP2010180142A (ja) * 2009-02-03 2010-08-19 Kuraray Co Ltd シクロヘキサンカルボニトリルの製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2918577A4 (en) * 2012-11-09 2016-06-29 Mitsui Chemicals Inc PROCESS FOR PURIFYING ALDEHYDE COMPOUND
EP2918575A4 (en) * 2012-11-09 2016-07-13 Mitsui Chemicals Inc PROCESS FOR PRODUCING ALDEHYDE COMPOUND
US9475760B2 (en) 2012-11-09 2016-10-25 Mitsui Chemicals, Inc. Preparation method of aldehyde compound using a metal compound and a phosphorus compound
US9487475B2 (en) 2012-11-09 2016-11-08 Mitsui Chemicals, Inc. Preparation method of aldehyde compound with limited amount of acrylonitrile
US9809533B2 (en) 2012-11-09 2017-11-07 Mitsui Chemicals, Inc. Purification method of aldehyde compound
US10399929B2 (en) 2012-11-09 2019-09-03 Mitsui Chemicals, Inc. Purification method of aldehyde compound
US10399930B2 (en) 2012-11-09 2019-09-03 Mitsui Chemicals, Inc. Purification method of aldehyde compound

Also Published As

Publication number Publication date
CN103582623B (zh) 2016-05-18
CN103582623A (zh) 2014-02-12
KR101641759B1 (ko) 2016-07-21
US20140088321A1 (en) 2014-03-27
US9227925B2 (en) 2016-01-05
EP2708527A1 (en) 2014-03-19
EP2708527A4 (en) 2014-09-24
KR20160062218A (ko) 2016-06-01
TW201302305A (zh) 2013-01-16
KR20130138833A (ko) 2013-12-19
EP2708527B1 (en) 2019-03-20
JP5719021B2 (ja) 2015-05-13
JPWO2012153509A1 (ja) 2014-07-31

Similar Documents

Publication Publication Date Title
JP5719021B2 (ja) アルデヒド化合物の製造方法
JP5840801B2 (ja) アルデヒド化合物の製造方法
JP5841676B2 (ja) アルデヒド化合物の製造方法
US10399929B2 (en) Purification method of aldehyde compound
JP6778327B2 (ja) シアノノルボルネンの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12782970

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013513927

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137028648

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14114774

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012782970

Country of ref document: EP